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Abstract
Log anomaly detection is a useful tool for analyzing system log files and is based on
identifying anomalous log messages in such files. Recent years have seen a surge in
the use of automated, machine learning/artificial intelligence-based, methods for log
anomaly detection. This is due to a general increase of system complexity, which
has made manual methods a very time consuming and difficult task. The natural
language processing based transformer model has seen success in the field of log
anomaly detection but may fail in cases where log data is highly unstructured and
where anomalous log messages may be far apart. One reason for this could be the
transformer model’s squared dependency on input length, limiting how many log
messages can be used as input to the model. So called sparse transformers address
this problem with different variants achieving sub-quadratic dependencies on input
length. In this project, one transformer-based model and two sparse transformer-
based models are investigated and compared in their effectiveness for log anomaly
detection in system log files.

The transformer-based model uses a BERT-style architecture whereas the two sparse
transformer-based models use a Big Bird- and a Longformer-type architecture. All
three models then have a hyperspherical loss function applied directly on the raw
model outputs. These outputs are then used to compute an anomaly score which
in turn is used to classify a log message as being either normal or anomalous. Fur-
thermore, all models are scaled down and trained from scratch on system log files in
order to make them fit on the GPU. The log files used for evaluation in this project
are the two open source data sets Hadoop Distributed File System (HDFS) and
BlueGene/L (BG/L) as well as one Ericsson system log data set.

All models are evaluated on annotated test data sets and the two main metrics looked
at are F1-scores and estimated anomaly score probability density functions. Across
the data sets, the highest F1-scores are achieved by the sparse transformer based
models suggesting that the increased input size does affect performance. However,
the highest F1-scores vary among the data sets with some only being slightly higher
than those achieved by the transformer-based model, suggesting future to work ex-
plore other areas to increase performance. The estimated anomaly score probability
density functions show a general tendency of the models failing to separate normal
and anomalous log messages, although some models show hints of separation on
certain data sets.

Keywords: log anomaly detection, natural language processing, transformer, sparse
transformer.

v





Acknowledgements
We would like to thank Ericsson and in particular our supervisors at Ericsson, Jesper
Derehag and Åke Johansson for the opportunity to try our hands at a very chal-
lenging but interesting problem. Furthermore they were very helpful and provided
regular opportunities for discussion.

We would also like to thank our supervisor/examiner at Chalmers, Larisa Beilina,
who provided us with good feedback on the report as well as being very helpful in
regards to academic support.

Joel Harf Abili Marco Cuskic, Gothenburg, June 2022

vii





ix



x



Contents

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Basic Structure of Log Messages . . . . . . . . . . . . . . . . . . 2
1.1.2 Anomaly Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.1 Log Anomaly Detection . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Sparse Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Delimitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Theoretical Framework 9
2.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Log Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Tokenization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 Word Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 Transformer Architecture . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Self-Attention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Sparse Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1 Fixed Attention Pattern . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Model Pretraining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.1 Proxy Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.1.1 Masked Language Modeling . . . . . . . . . . . . . . . 16
2.4.1.2 Next Sentence Prediction . . . . . . . . . . . . . . . . . 16

2.5 Hyperspherical Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.6.1 Confusion Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.6.2 F1-Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Methods 21
3.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Soft- and hardware . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.2 Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Model Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.1 Context Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 23

xi



Contents

3.2.2 Training from Scratch . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.3 Hyperspherical Loss . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.4 Anomaly Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Evaluation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Results 29
4.1 Training from Scratch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1.1 3L-BERT Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.1.2 3L-Big Bird Model . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.1.3 3L-Longformer Model . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Anomaly Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.1 F1-scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.2 BERT-based Model . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.3 Big Bird-based Model . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.4 Longformer-based Model . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.5 Model Training Times . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Discussion 39
5.1 Key Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1.1 RQ1: Usefulness of Sparse Transformers for Log Anomaly De-
tection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1.2 RQ2: Possibility to extract explanatory information without
use of parsing methods . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.2.1 Fixed Attention Pattern . . . . . . . . . . . . . . . . . . . . . . . 40
5.2.2 Context Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2.3 Hyperparameter Tuning . . . . . . . . . . . . . . . . . . . . . . . 41
5.2.4 Model Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2.5 Training from Scratch . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2.6 Gradient Checkpointing . . . . . . . . . . . . . . . . . . . . . . . 42

5.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6 Conclusion 45

Bibliography 47

List of Figures 51

List of Tables 55

A Appendix I
A.1 Log Anomaly Detection Confusion Matrices . . . . . . . . . . . . . . . . I

A.1.1 BERT-based Model . . . . . . . . . . . . . . . . . . . . . . . . . . I
A.1.2 Big Bird-based Model . . . . . . . . . . . . . . . . . . . . . . . . . I
A.1.3 Longformer-based Model . . . . . . . . . . . . . . . . . . . . . . . II

xii



1
Introduction

In this section, the background of this thesis along with related work will be presented.
Furthermore, the aim of the thesis together with the guiding research questions are
presented. Also brought up is the scope and delimitations taken into consideration
in this thesis.

1.1 Background
In many areas, logging is an important feature when considering the development
and maintenance of different systems [1, 2]. Logging is useful for communicating
information about a system to its user and it is important to define how, what, and
when to log, and how to make use of logs to extract useful data that can be used for
analysis. Such information could for instance regard errors, which can then be used
for troubleshooting, but it could also regard successful requests which could give an
insight into how users work with a system.

In recent years, interest has grown for full automation of the logging process in
order to aid with the increasing complexity of inspecting logs that arise from the
increased complexity of a system [2, 3]. Semi-automated methods typically lack in
this area due to the limitations in their sets of rules and their sensitivity to changes
in the system [4] and the requirement of manual labor. Thus, full automation by
the use of machine learning and artificial intelligence has grown as an area of interest.

Automation in this sense is of particular interest in the field of log anomaly detec-
tion, in which one wishes to be able to distinguish between normal and abnormal
sequences of log messages [5]. Recently, deep learning methods, and in particular,
recurrent neural networks (RNNs) have been used in this endeavor in several works
[5, 6, 7]. This approach is quite intuitive as RNNs have proven useful for model-
ing sequential data, doing so by capturing sequential information via the recurrence
formula. The general approach is to train the RNN to capture normal log message
patterns and to label any violation of this pattern as an anomaly. As the name
suggests, however, RNNs are only able to look at contextual information in one
direction (either right or left context, not both) [8]. They also have the problem of
vanishing gradients. To this end, the transformer model and Bidirectional Encoder
Representations from Transformers (BERT) specifically has seen success within the
field of log anomaly detection as it is able to capture contextual information in both
directions and it does not have problems with vanishing gradients [9].
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1. Introduction

One drawback of the transformer model is its inherent dependency on sequence
length. The standard transformer and BERT has a limit of 512 tokens and will
fail to handle longer sequences. In the field of log anomaly detection, erroneous log
messages in unstructured log files are often very sparsely distributed, which means
that standard transformer-based solutions will often fail to capture the error signal
inside its limited context window. Recently, studies have been issued investigating
the possibility of using so-called sparse transformers to mitigate the standard trans-
formers’ inability to handle long sequences [10, 11].

This project was performed at Ericsson and the issue that the project considers is
that the error signals in the system log files are very sparse, i.e. the problematic log
messages in the log files are typically very sparsely distributed. In the case of log
anomaly detection, this becomes problematic since the files typically contain a very
large amount of log messages. As mentioned previously, transformer-based methods
are sensitive to the sequence length, which limits the input size and therefore what
part of the log file that can be given as context. Furthermore, a restriction was set
by Ericsson that we are to keep anyform of data preprocessing at minimum.

1.1.1 Basic Structure of Log Messages
The structure of a log message can vary, with different developers, and is not fixed.
However, there are some essential components that often are present in a message.
These parts consists, for instance, of time stamps, facility codes, severity levels,
and messages. Furthermore, these components can be written in various ways by
developers and there is no ”correct” way to write a component. A log message can,
for example, be written as

March 4 08:42:23.416: INFO ABCD-XYZ: Connected to server

In this specific log message, the timestamp is written as

March 4 08:42:23.416.

Another way to write a timestamp could be

2020-03-04-08.42.23.416.

Therefore, there exists variation in both the structure of a message and components,
making log messages complex. The complexity and the huge volume of the log data
are two major challenges in anomaly detection [12].

An example of different severity levels of a log message is shown in Tab. 1.1.
Emergency messages implies that the system is unusable and alert messages indicates
that one needs to act instantly to correct an erroneous condition [13]. Critical
messages report that the system is in a critical condition and error messages indicates
that something in the systems needs to be corrected immediately. A severity level
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1. Introduction

Table 1.1: Example of severity levels of a log message. For each severity level, there is
a corresponding keyword and a value. The values ranges from 0 to 7.

Severity level Keyword Numerical Code
Emergency emerg 0
Alert alert 1
Critical crit 2
Error err 3
Warning warning 4
Notice notice 5
Informational info 6
Debug debug 7

of error and warning implies error and warning conditions, respectively. A notice
level means that the condition can be considered to be normal, but significant. As
for informational and debug levels, the messages are to be seen as informational and
the need to debug. One naive thought, is that there exists a correlation between
the severity level and abnormal log messages. This is not entirely correct, since the
anomalies can consist of different severity levels.

1.1.2 Anomaly Types

Anomalies can be seen as rare messages in the log data, deviating from normal mes-
sages. The deviation from the normal messages can take different shapes. Anoma-
lies can therefore be grouped into three major types: point anomaly, conditional
anomaly, and collective anomalies [12].

The first type of anomaly is a point anomaly. A point anomaly consists of a data
instance which deviates from the normal pattern of the data, where the instance
is isolated from the context. Therefore, this type of anomaly does not depend on
the context, and can be called a non-contextual anomaly. This is the most common
type of anomaly [12]. The second type of anomaly is the conditional anomaly. The
conditional anomaly depends on the context, why it can be referred to as a contex-
tual anomaly. Conditional anomalies are data instances that are considered to be
anomalies, and that this consideration is based on a specific context or condition.
The third type of anomalies are the collective anomalies. Collective anomalies are
instances that, when viewed in isolation, are not considered to be an anomaly. How-
ever, when the data is considered as a group of instances, it is said to be collective
anomalies.

3



1. Introduction

1.2 Related Work

1.2.1 Log Anomaly Detection
Automated methods for log anomaly detection have become ubiquitous due to the
increasing complexity of systems and consequently the increased difficulty to rely on
semi-automated methods. Machine learning based approaches such as the works by
Zhang et al., Xu et al. and Reidemeister et al. have explored log anomaly detection
using Support Vector Machine (SVM), Principle Component Analysis (PCA) and
Decision-Tree (DT) based methods respectively [14, 15, 16]. More recently, deep
learning based methods along with NLP techniques have shown promising results,
exploiting semantic relationships between log messages [17]. These include but are
not limited to RNN-, CNN- and transformer-based models [6, 8, 18, 19].

Most of these techniques follow similar steps that include some form of log data
preprocessing. One commonly used preprocessing step is log parsing, which aims to
structure the raw log messages into a more digestible format, so called log templates
(also referred to as log events or log keys), which are then analyzed instead of the raw
log messages. This step, however, introduces errors which affects the performance of
the anomaly detector. This is one of the motivations behind alternatives not relying
on log parsing, such as in the work by Van-Hoang et al. [3].

One deep learning method for log anomaly detection is DeepLog, introduced by Du
et al. which leverages Long Short-Term Memory (LSTM) in order to detect log
anomalies [6]. They first parse the log data in to a structured format and then train
the model to learn normal log patterns. Then, during the detection stage, the model
identifies an anomaly as a deviation from the model prediction.

In the article by Zhang et al. they address the innate instability of log data which
they mean comes from the evolution of logging statements as well as the processing
noise in log data [7]. They propose LogRobust, which is a log anomaly detection
model that utilizes semantic information in log events. Detection is performed us-
ing an attention-based Bidirectional LSTM (Bi-LSTM) model that is able to learn
contextual information in log sequences. This makes LogRobust more robust when
it comes to unstable log data.

In an attempt to tackle some of the drawbacks of RNNs for log anomaly detection,
Guo et al. leverage BERT, in a self-supervised framework they call LogBERT [8].
It is used to learn the patterns of normal log data which done by using two training
tasks; 1) masked log key prediction 2) volume of hypersphere minimization. The
first task consists of predicting masked log keys in a sequence of normal logs. The
second task is used to project normal log sequences close to each other in the em-
bedding space. Anomalous log sequences are then identified by using a criterion
that the authors introduce.

All of the previously mentioned methods include some form of log parsing as a pre-
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processing step to structure the raw log messages. This, however, does not come
without its drawbacks. In the work by Van-Hoang et al. they address two errors
that arise as a consequence of log parsing [3] and propose NeuralLog, a log anomaly
detection method that does not require log parsing. The two problems they men-
tion with parsing is the handling of OOV words and semantic misunderstandings
which they mean can lead to a loss of important information when it comes to log
anomaly detection. NeuralLog instead forms a semantic representation of the raw
log messages and use a transformer-based classification model to detect anomalies.

In the thesis work by Wall et al. done at Ericsson, they investigate the performance
transformer-based framework for log anomaly detection on highly unstructured sys-
tem log files [20]. More specifically, they use a BERT-based model in conjunction
with two different methods for anomaly detection. One method involves using next
sentence prediction as a proxy task and the other method applies a hyperspherical
loss on the BERT-model output. Additionally they employ two different methods for
extracting relevant historical log context, which they call preceding sequence context
and basic keyword search context. The preceding sequence context method uses the
preceding lines in the log file as context whereas the basic keyword search context
method uses lines containing specific keywords as context. They found that their
approach generally failed to distinguish between normal and anomalous log messages
with some models showing some indication of a normal/anomaly separation.

1.2.2 Sparse Transformer
The transformer model has risen to prominence within the field of NLP due to its
parallelizability as a consequence of its attention module. One drawback of the
transformer, however, is its inherent, quadratic, time- and memory-dependency on
input length. As such, it has been of recent interest to develop transformer-based
models that mitigate this.

In the work by Child et al. they address the quadratic scaling issue by proposing
sparse factorizations of the attention matrix which reduces the dependency from
O(n2) to O(n√n), where n is the sequence length [11]. The sparse factorization
is done by modifying the attention matrix such that not all tokens attend to one
another using specific attention patterns (as opposed to the fully dense case in which
all tokens attend one another). Child et al. specifically use two patterns which they
call strided and fixed attention. They call networks with this form of factorization,
along with a few other changes to the architecture and methodology, sparse trans-
formers.

Another attempt to combat the scaling issue of transformers was presented by Belt-
agy et al. [10]. The model which they call Longformer, has a linearly scaling
attention mechanism which allows it to operate on longer input sequences. They
adapt two local attention matrix patterns, namely sliding window- and dilated slid-
ing window attention for capturing local context as well as global attention on a few
input tokens used for classification. These global tokens are allowed to attend all
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other tokens in the sequence and vice versa.

Zaheer et al. introduce Big Bird, a modified transformer model which also manages
to achieve linear scaling [21] by leveraging a sparse attention mechanism. They use
the sliding window attention and global attention as in the work by Beltagy et al. as
well as random attention, the latter in which each query block attends to a certain
number of random key blocks.

Whereas the previously mentioned attempts to reduce the quadratic scaling have
all relied on fixed attention patterns, Wu et al. introduce Smart Bird, a model with
a learnable sparse attention pattern [22]. They raise the point that manually de-
signing the attention pattern may come at a cost of being uninformative for context
modeling. Instead, they compute a sketched attention matrix with a single-head,
low-dimensional transformer. The goal of the transformer is to learn potentially
important token interactions and then use this information to sample token pairs
based on probability scores obtained from the sketched attention matrix. These
samples are then used to create index matrices for different attention heads which
in turn are used to form inputs to sparse attention networks.

1.3 Aim

The purpose of this project is to try to mitigate the problem of capturing the error
signal in the context provided to a model for anomaly detection. It should however
be stressed that the problem is of high complexity, since the data set of Ericsson is
highly unstructured. We will mainly explore one area that we think could potentially
combat this problem, namely the use of sparse transformers for anomaly detection in
unstructured logs. The expectation is that the sparse transformer’s ability to process
longer input sequences can be used to spot contextual anomalies more effectively
than the non-sparse counterparts. More specifically, this thesis will investigate the
performance of two sparse transformer-based models (Big Bird and Longformer) on
log anomaly detection, leveraging the hyperspherical loss method as mentioned in
Sec. 1.2.1.

1.4 Research Questions

The research questions in the project are as follows:

• Can sparse transformers be useful for log anomaly detection when handling
very unstructured logs?

• Is it possible to extract explanatory information of the given data set without
the usage of parsing methods?

6



1. Introduction

1.5 Delimitations
In this section, the limitations of the project will be discussed. The limitations of
the project are listed below:

• In this project, the models used trying to solve the problem will be restricted
to transformer-based models.

• Three data sets will be used in this project, namely the Ericsson data set, the
Hadoop Distributed File System log data set (HDFS), and the BlueGene/L
(BG/L) data set.

• There will not be an extensive focus on hyper-parameter tuning the parameters
of the model due to time restrictions.

• Due to time and resource limitations, any form of training models from scratch
will be on smaller data sets than many of the larger, pretrained models avail-
able which might affect performance.

• The used data will not be subjected to any form of parsing methods as we
want to keep any form of preprocessing as limited as possible. This is done
per request by Ericsson to keep generalization across data sets as high as
possible.

7
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2
Theoretical Framework

In this section, an in-depth description of the theoretical aspects deemed relevant to
this thesis is presented. The chapter leads off with an introduction to preprocessing
and moves on to present the traditional and sparse transformer models. Then model
pretraining, the hyperspherical loss and the used evaluation metrics are discussed.

2.1 Preprocessing
An important step in log anomaly detection is the preprocessing of log data. The
degree of preprocessing varies in different works, but the main function of this step
is to transform the raw log messages into a format the model can process, i.e. digit
form [23].

2.1.1 Log Parsing
Many established log anomaly detection methods employ log parsing as a first step
of preprocessing [5, 6, 7, 8]. Log parsing is applied on the raw log messages in order
to structure them. Log messages can be divided into two parts, namely a message
header and a message body. The message header usually exists for all log messages
and typically contains information such as time and date, type of log and severity
level. The body part can be further divided and often contain a variable part and a
fixed part, where the fixed part of a log message is the text written by the developers
to describe a system event and the variable part contains "runtime-specific" program
parameter values. The goal of log parsing is to identify and separate the fixed and
variable parts of a log message and to structure them. The fixed parts are what form
so called log templates and the variable parts make up the key parameters related to
a specific log template. Certain models (such as SVM- or Decision Tree methods)
require log parsing as a preprocessing step [3]. They use the log templates in order
to form so called log count vectors (based on occurrence of log templates) which are
then used in machine learning models for anomaly detection.

2.1.2 Tokenization
Another approach is to directly tokenize the raw log messages. Tokenization is
the process of breaking a text down into its constituents (which is typically either
words, characters, or subwords). There exists different types of tokenization, such as

9



2. Theoretical Framework

word- or character tokenization, which define the constituents (words and individual
characters respectively). Another type of tokenization is subword tokenization which
is utilized, for instance, in BERT and whose main advantage is that it addresses the
problems of word tokenization (out-of-vocabulary (OOV) tokens, large vocabularies,
etc.). In this case, common words can be found in the dictionary whereas OOV
tokens can be further broken down into subwords the size of individual characters
if need be.

2.1.3 Word Embedding
Word embedding in NLP is a learned numerical representation, typically a real-
valued vector, of words [24]. The numerical representation is encoded such that
words similar in meaning are close to each other in a defined vector space. Word
embeddings are typically obtained either through stand-alone unsupervised training
of a model or through joint training with a model on some specific language model-
ing task [25]. Common approaches to obtain word embeddings are through the use
of techniques such as Word2Vec and GloVe which are able to capture semantic sim-
ilarities between words [26, 27]. Using BERT to obtain word embeddings is another
alternative that generates representations of words that depend on the context they
are used in [9].

2.2 Transformers
In 2017, Vaswani et al. presented a new network architecture in [28], called the
transformer. Prior to the transformer, state-of-the-art methods in the field of nat-
ural language processing consisted of Recurrent Neural Networks (RNN’s), such as
Long Short-Term Memory (LSTM).

In this section, transformers will be thoroughly discussed. Moreover, the section
will be dedicated to the original transformer presented by Vaswani et al. in [28], of-
ten referred to as the vanilla transformer. The section will begin with presenting the
general structure of the transformer, and will then move on to explain self-attention
more rigorously.

2.2.1 Transformer Architecture
At a high level, the transformer consists of an encoder-decoder structure. The en-
coders are stacked upon each other, creating a stack of encoders. In the same way,
the decoders create a stack of identical layers (decoders). These two stacks of lay-
ers can be seen as the two blocks of a transformer. The full architecture of the
transformer can be seen in Fig. 2.1. The encoder consists of two sublayers and the
decoder consists of three sublayers. The sublayers of the encoder are the multi-head
self-attention and the feed-forward neural network. Each sublayer is connected via
a normalization layer and a residual connection, see Fig. 2.1. Furthermore, the de-
coder consists of the two sublayers as the encoder, but with an additional sublayer.
The additional sublayer is the masked multi-head self-attention layer. As with the
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other sublayers, the masked multi-head attention is connected with a normalization
layer and with residual connections.

In the encoders, the dimension of the input sequence must equal the dimension
of the output sequence [29]. To see this, let x be a d-dimensional input vector, i.e.
x ∈ Rd. For the residual connections to hold, i.e. for x + sublayer(x) ∈ Rd to be
feasible, sublayer(x) ∈ Rd must hold. Here, sublayer(⋅) denotes the output of any
sublayer of the encoder. Therefore, the dimension of the input sequence will be
preserved throughout the encoder.

Figure 2.1: The vanilla transformer.
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2.2.2 Self-Attention
The core part of the transformer model is the attention mechanism. It is inspired
from the attention mechanisms of primates, being able to outsource redundant in-
formation and put full attention to certain objects [29]. Even if the concept of
attention mechanisms are not entirely new, the introduction of them in the field of
deep learning is. It has been the foundation of many new models recently. It is
mainly adopted to the field of natural language processing, but it is also used in
other areas such as computer vision, reinforcement learning, and speech recognition
[29]. Consequently, the attention mechanism is used in many modern deep learning
applications.

The attention mechanism proposed by Vaswani et al. in [28], is referred to as scaled
dot-product attention. The name is rather intuitive since scalar multiplications are
fundamental in the attention mechanism. In a particular step of the attention mech-
anism, one applies a softmax function, which is defined below.

Definition 1. For a vector z ∈ RN , with N > 1, the softmax function σ: RN Ð→
(0,1)N is given by

σ(z)j =
exp(zj)

∑Nn=1 exp(zn)
, j = 1, ...,N. (2.1)

Note that the softmax function takes each value of a vector z ∈ RN and transforms
it to a numerical value in the interval (0,1). It is done by taking the exponential of
the input value and normalizing it.

Before the introduction of the attention scoring function, i.e. the scale dot-product
attention, the concept of queries, keys, and values will first be presented. The
queries, keys, and values all have a corresponding weight matrices, denoted WQ ∈
Rd×d,WK ∈ Rd×d, andWV ∈ Rd×d. Let the input sequence be denoted by n embedded
vectors xi ∈ Rd, i = 1, .., n. In matrix form, the input sequence may be written as

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⋯ xT1 ⋯
⋯ xT2 ⋯

⋮
⋯ xTn ⋯

⎤⎥⎥⎥⎥⎥⎥⎥⎦

∈ Rn×d. (2.2)

Then, for a specific query vector qi, it holds that

qi =WQxi,

k1 =WKx1 , k2 =WKx2 , . . . , kn =WKxn,

v1 =W V x1 , v2 =W V x2 , . . . , vn =W V xn.

(2.3)

The weight matrices are trainable (change sentence). Furthermore, let n denote the
number of queries, and let m denote the number of items in the sequence i.e. the
number of keys and values. Also, let the matrices of the queries, keys, and values be
denoted as Q ∈ Rn×d andK, V ∈ Rm×d. The matrices Q, K, and V are constructed
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such that each row consists of a vector qi, ki, or vi, i = 1, . . . , n, respectively, defined
in Eq. (2.3). In other words, the matrices are given by

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⋯ qT1 ⋯
⋯ qT2 ⋯

⋮
⋯ qTn ⋯

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

K =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⋯ kT1 ⋯
⋯ kT2 ⋯

⋮
⋯ kTm ⋯

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

V =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⋯ vT1 ⋯
⋯ vT2 ⋯

⋮
⋯ vTm ⋯

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

(2.4)

This can also be written as

Q = WQ X,
K =WKX,

V =WVX.

(2.5)

Finally, the output of the scaled dot-product attention can be written as

Att(Q,K,V ) = σ(QK
T

√
d

) ⋅V ∈ Rn×d. (2.6)

As mentioned in section 2.2.1, one can observe that the dimension of the input and
output is equal. From Eq. (2.2) and (2.6), it holds that dim(X) = dim(Att(Q,K,V )).

The attention scoring function in Eq. (2.6) may be overwhelming at first, but as
same as the softmax function, it is also rather intuitive. Firstly, a scalar multipli-
cation is done between the query matrix Q and key matrix K, given by QKT . In
this way, the similarity between the matrices is being calculated. After the scalar
multiplication, the resulting matrix is normalized, by a factor of

√
d, leading to the

equation QKT /
√
d. The next step is to turn the resulting elements into probabili-

ties, which is done by applying a softmax function, i.e. taking σ(QKT /
√
d). In the

last step, these probabilities are multiplied with the value matrix V to obtain final

output, which leads to Eq. (2.6), i.e. the equation σ(QKT
√
d

) ⋅V . The elements with

the highest values in Eq. (2.6) are the elements which the model will put the most
attention to.
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2.3 Sparse Transformers

The transformer has proven useful for many NLP tasks, however, it suffers from a
quadratic complexity with regards to sequence length. This is due to the fact that in
the self-attention mechanism, every sequence token attends all the other tokens. In
mathematical terms, this is due to the scaled dot-product in the expression for self-
attention Eq. (2.6). This results in a O(n2d) complexity, where n is the sequence
length and d is the hidden dimension. Sparse transformers address this problem
and several works aim at reducing the quadratic complexity by applying sparse
modifications to the self-attention matrix [11, 21, 22]. The modifications are often
either in the form of fixed attention patterns, where tokens attend to each other
in a predefined manner, or in the form of a learnable attention pattern, where
the model learns which tokens should attend to one another. Both approaches
aim to approximate the full, dense, self-attention matrix while they gain a lowered
complexity due to the lowered number of operations as a result of the sparse attention
pattern.

2.3.1 Fixed Attention Pattern

There exists different types of fixed attention patterns which, in general, can be di-
vided in to five categories, namely global attention, band attention, dilated attention,
random attention and block local attention [30]. Examples of the different types of
attention patterns are shown in Fig. 2.2. Global attention refers to specific tokens
in the pattern that are allowed to attend all tokens in the sequence and all tokens in
turn are allowed to attend to it. These tokens are used in order to somewhat retain
the standard transformers’ ability to handle long-range dependencies. Band atten-
tion (also referred to as local- or sliding window attention) is employed as a result
of data often inhibiting strong property of locality. This type of attention restricts
tokens to only attend to a specified number of neighboring tokens. Dilated attention
is used for its ability to potentially increase the receptive field of band attention by
including gaps of dilation (analogous to dilated CNNs). Random attention refers
to the allowance of certain tokens to attend to a select number of random tokens
in order to increase the ability of non-local interactions. Block local attention di-
vides the input sequence into different, non-overlapping, query block segments with
a corresponding local memory block. Here, tokens in a specific query block attend
to tokens in the associated local memory block.

Often, models employ a combination of the above-mentioned attention patterns.
Longformer, introduced by Beltagy et al. use a combination of global and local
attention by employing band- and global attention patterns. Big Bird, by Zaheer
et al. utilize band-, global and random attention patterns. Both models’ attention
patterns are illustrated in Fig. 2.3.
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(a) Global attention pattern. (b) Band attention pattern. (c) Dilated attention pattern.

(d) Random attention pattern. (e) Block local attention pat-
tern.

Figure 2.2: Different types of fixed attention patterns. An element in the matrix
refers to a specific query-key token pair. Coloured squares indicate that the corresponding
attention scores will be calculated for those query-key token pairs, whereas blank squares
indicate that the corresponding attention scores will be discarded.

(a) Longformer attention pattern. (b) Big Bird attention pattern.

Figure 2.3: Typical attention patterns of the Longformer and Big Bird models. Long-
former uses a combination of band- and global attention. Big Bird uses band-, global- and
random attention.

2.4 Model Pretraining
Model pretraining is an important step for many downstream language modeling
tasks such as text classification or sentiment analysis. The concept of pretraining
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revolves around training a model on some specific task (such as Masked Language
Modeling or Next Sentence Prediction which was done by Devlin et al. [9]) before
fine-tuning model on a downstream task. One of the benefits of pretraining, atleast
within the field of NLP, lies in the fact that it can be done on huge amounts of
data by big organizations with access to large amounts of resources and then be
fine-tuned by smaller groups where data and resources may be scarce.

2.4.1 Proxy Task
In natural language processing one often deals with large amounts of data which
makes labeling it a very costly task. As a consequence, self-supervised and unsuper-
vised methods are often sought after. In the case of self-supervised learning in NLP,
so called proxy tasks (also called pretext tasks) are often employed for model pretrain-
ing. These tasks commonly involve an algorithm that generates proxy-task-specific
labels, allowing for supervised training on a specific proxy task. The hope is that
a good choice of proxy task will lead to the model being able to yield good results
on downstream tasks (such as text classification, sequence labeling etc.). BERT, for
instance, leverages two such tasks, namely Masked Language Modeling (MLM) and
Next Sentence Prediction (NSP) allowing it to be trained on huge amounts of data
[9].

2.4.1.1 Masked Language Modeling

The task of MLM was first introduced by Devlin et al. and is a common proxy
task for pretraining NLP models [9]. Given a sequence of input tokens, the masked
language model randomly masks some of them and the objective is to predict the
masked tokens, represented by the [MASK] token, given the surrounding tokens.
The strength of this proxy task lies in the masked language model’s ability to utilize
both right- and left-hand side context for prediction, as opposed to unidirectional
alternatives. In order to train the masked language model, the final hidden vectors
representing the masked words go through a softmax layer over all the words in the
model vocabulary, with a loss function. For example, cross entropy loss was used
by Devlin et al. The vocabulary is generated by a word embedding algorithm, such
as WordPiece.

Since the masked tokens are only present in the pretraining step and not in any
downstream task necessarily, this creates a mismatch between pretraining and fine-
tuning. One way to combat this is to only replace some of the masked words with
[MASK] tokens and otherwise replacing them with either a random token or leaving
them unchanged.

2.4.1.2 Next Sentence Prediction

Next sentence prediction is used in order to make the model learn relationships
between sentences. Introduced by Devlin et al., next sentence prediction involves
predicting whether a sentence A is followed by sentence B or not [9]. For training,
a sentence pair (A, B) is chosen from a corpus and with a certain probability B is a
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sentence that actually follows A, otherwise it is a random sentence from the corpus.
A label is added to the sentence pair specifying whether B follows A or not. The
model is then trained to predict the correct labels.

2.5 Hyperspherical Loss
One approach for log anomaly detection is the one based on using a hyperspherical
loss function in place of the traditional sigmoid loss, as in the work by Nedelkoski
et al. [31]. The objective is to learn to distinguish between normal and anoma-
lous log messages by forcing normal log samples to be close to the center of a
high-dimensional sphere and forcing anomalous log samples to be further from the
center. Here, normal log samples are log messages from a target system whereas
anomalous log samples are data taken from an auxiliary data set. This effectively
allows for the model to be trained in a self-supervised fashion since the data points
can be labeled based on which data set they belong to. The idea is that the data
from the auxiliary data set provides enough information such that the model can
effectively distinguish between auxiliary and normal data, while also being diverse
enough to reduce the risk of overfitting.

The hyperspherical loss function, LHS(θ), is derived from the binary cross-entropy
loss and is given by

LHS(θ) = −
1
n

n

∑
i=1

(1 − yi) log l (φ (xi; θ)) + yi log (1 − l (φ (xi; θ))) , (2.7)

where yi is the label and yi = 0 if the data point belongs to the target system and
yi = 1 if the data point belongs to the auxiliary data set. Furthermore, xi ∈ Rd×∣ri∣ is
the training data with samples from both the target system and the auxiliary data
set, where ri is the number of tokens in the log message and d is the dimension of
the vector representation of said tokens. The function φ(⋅ ; θ) ∶ Rd → Rp denotes the
encoder network, with parameters θ, which maps the log message input embeddings
to a p-dimensional space. Finally, l(⋅) ∶ Rp → [0,1] is a function that maps the
encoder outputs to an anomaly score, which is used to classify the log message as
either normal or anomalous.

In order to ensure compactness of the normal data representations, Nedelkoski et
al. set l(⋅) to be the Gaussian radial basis function l(z) ∶= exp(−∣∣z∣∣2) such that Eq.
(2.7) becomes

LHS(θ) =
1
n

n

∑
i=1

(1 − yi) ∥φ (xi; θ)∥2 − yi log (1 − exp (− ∥φ (xi; θ)∥2)) . (2.8)

The objective is for the model to minimize the loss function in Eq. (2.8) with re-
spect to the model parameters θ. The minimization procedure is performed using
an optimization algorithm. One common such algorithm is gradient descent which
iteratively changes the parameter values in the opposite direction of the gradient
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w.r.t. the model parameters until the loss function is minimized. The model pa-
rameters are then updated to these optimal parameter values.

Gradient descent is motivated by the reason that given a multi-variable function
F (x) that is defined and differentiable in a neighborhood of a point x∗, the most
rapid decrease of F (x∗) is in the negative direction of the gradient w.r.t. x at x = x∗.

As a result of the aforementioned motivation and given a small enough learning rate
αn ∈ R+, it follows that if

θn+1 = θn − αn∇F (θn), (2.9)

then F (θn) ≥ F (θn+1), where n is the current step of the gradient descent iteration.
Furthermore, let dn ∶= −∇F (θn). Then, an optimal learning rate αn,opt can be found
through the following minimization

αn,opt = arg min
αn

F (θn + αndn) (2.10)

An extension to gradient descent, and a method that is commonly used in many deep
learning applications, is the Adaptive Moment Estimation (Adam) optimization
algorithm [32]. This method, as opposed to normal gradient descent, leverages
individual and adaptive learning rates for different parameters given by estimates of
the first- and second order moments of the parameter gradients. Note that all above
mentioned optimization methods are local and as such, convergence of a model is
sensitive to the initial values.

2.6 Evaluation Metrics

This section will present the two evaluation metrics used in this thesis, namely
confusion matrices and F1-scores.

2.6.1 Confusion Matrix

In machine learning, a confusion matrix is a two by two matrix used to evalute a
model’s performance. The matrix shows the true positive (TP), false negative (FN ),
false positive (FP), and true negative (TN ) values for a model. Compared to only
observing the accuracy of a model, a confusion matrix yields a more complete way
to evaluate a model. This is due to the fact that only observing the accuracy can
be misleading when the data set is imbalanced.

The structure of a confusion matrix can be seen in Fig. 2.4. The rows consist
of the actual class labels, i.e. the ground-truth labels. The columns consist of the
predicted class labels. Ideally, one would want to achieve as high TP and TN values
as possible.
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Figure 2.4: The structure of a confusion matrix.

2.6.2 F1-Score
In this thesis, F1-score is used as the main metric. To understand the F1-metric,
we will first define precision and recall. Precision is a metric defined as TP divided
by the sum of TP and FP, i.e.

Precision = TP

TP + FP .

Recall is defined as TP divided by the sum of TP and FN, according to

Recall = TP

TP + FN .

The precision and recall, ranging between 0 and 1, gives an indication of the number
of FP and FN for a model. The optimal value to achieve for the precision or the
recall is 1, since this would imply a FP or FN value close to 0. Furthermore, the
F1-score is a harmonic mean between the precision and the recall, given by

F1 = 2 ⋅ Precision ⋅RecallPrecision +Recall .

As for the precision and the recall, the F1-score ranges between 0 and 1, with a
value of 1 being the optimal value.
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3
Methods

This section describes the most central methods that were used in the thesis. The
setup in regards to hard- and software will be presented as well as a model overview
and the used evaluation methods.

3.1 Setup
In this section, the specifications about the soft- and hardware will be presented.
Also, the data sets used in the thesis will be discussed.

3.1.1 Soft- and hardware
The code for this thesis is written in Python. The machine learning part of this
thesis was implemented using the open source framework PyTorch1. Also, Hugging
Face2 was used as basis for all implementations regarding transformer models. All
training and evaluation of the different models were performed on Ericsson’s remote
server, equipped with two Tesla P100-PCIE-16GB GPUs.

3.1.2 Data Sets
In this thesis, we use three different log data sets; HDFS, BG/L and, the Ericsson
data set. The former two data sets are fully annotated and are publically available
on the open-source AI platform for automated log analysis, LogPAI3. The HDFS
data set has log messages divided into traces according to block IDs, with each trace
belonging to a certain block ID being given a label of either normal or anomalous.
The BG/L data set is annotated linewise according to alert category tags. Non-
alert messages are labeled whereas alert messages are not. The Ericsson data set is
mainly unlabeled with a few log files being labeled linewise.

Since only a small portion of the Ericsson data is labeled, we want to use it in the
evaluation. The training data will thus consist of the unlabeled counterpart. In
order to have the different data sets be as similarly structured as possible, the labels
for the HDFS and BG/L data used in training are removed.

1https://pytorch.org/
2https://huggingface.co/
3https://github.com/logpai
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During evaluation on the test data sets, the HDFS and BG/L data sets have been
annotated in similar fashion as the Ericsson data set, i.e. linewise with a label of
being either a normal or an anomalous log message. As for the HDFS test data, all
lines associated with a specific block ID are given the same label as the one that was
given to the block id itself. In the BG/L test data, non-alert messages are labeled
as normal and alert messages are labeled as anomalous.

In Tab. 3.1, information about the data sets is shown. The table includes the total
number of annotated log files available as well as the number of log files used for
training, validation and testing.

Table 3.1: A table showing information about the different data sets. The total number
of annotated log messages is shown in the first row. The train, validation and test split is
shown in the remaining rows. Note that we want to use all of the annotated Ericsson data
for evaluation. Also noted should be that the training and validation data for the Ericsson
data set is provided separately from the test data set. As for the BG/L and HDFS data
sets, the training and validation sets are the label-stripped log messages and are extracted
from the full (annotated) data sets. The proportion of training and validation data (of
the full data sets) used for the BG/L and HDFS data sets are shown in parentheses.

Number of total annotated log messages as well as train-, validation-, test split.
Ericsson BG/L HDFS

Total (annotated) 456 680 4 795 379 11 175 600
Training 1 000 267 1 281 933 (27%) 1 229 316 (11%)
Validation 218 106 284 874 (6%) 335 268 (3%)
Test 456 680 (100%) 474 790 (10%) 1 117 560 (10%)

3.2 Model Overview

The overall framework for the thesis can be seen in Fig. 3.1. First, the log data will
be extracted with a basic context extraction algorithm. The basic context extraction
selects the most rare word in a log file, and extracts the context thereafter. The
selected context will then be fed to the model. Furthermore, the work in this thesis
is divided in two main parts: training from scratch and anomaly detection with a
hyperspherical loss. All models and the tokenizer used are trained from scratch on
log data. The anomaly detection was done by utilizing a hyperspherical loss function.

In this report, we focus on two sparse transformer models; Big Bird and Longformer,
along with the BERT model, for log anomaly detection. These have all been trained
from scratch with masked language modeling on six log files (two log files for each
data set). The number of log files used was mainly determined by the time it took
for the training.

22



3. Methods

Figure 3.1: Overall framework for log anomaly detection.

The motivation behind choosing to use sparse transformers in this project is due to
the fact that we are then able to include more log messages as context, which we
hope will lead to a good performance in log anomaly detection. This is due to the
sub-quadratic sequence length dependency of the input data.

3.2.1 Context Extraction
The input to the model used for anomaly detection consists of one query log message
and several other log messages. The set of log messages used in the input is often
described as the context. Since the sequence length of both the BERT model and the
sparse transformer models are limited, it is desired to catch the ”most relevant” log
messages as the input. With the ”most relevant”, one means the log messages with
the highest probability to yield satisfying results, in terms of correct predictions.
Particularly, one would want to reduce the amount of noisy log messages in the
context. Therefore, a satisfying context is necessary for good model performance,
why this step is of high importance for the results.

The model used for context extraction in this thesis is built upon a basic keyword
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search methodology as proposed by Wall et al. [20]. The key idea behind the key-
word search is to find the most rare word in the query line (w.r.t. a pre-defined
vocabulary), search it through the preceding log messages in the training set, and to
pick the most recent log messages containing the rare word. These lines will then be
used as context for the model. The process continues until the maximum number of
tokens allowed is reached. If no other lines contain the rare token, or if all preceding
log messages have been searched through without reaching the token limit, the lines
preceding the query will be used as context instead.

The motivation behind the context extraction algorithm is the limitation of input
tokens to the models used. The BERT model has a limitation of 512 tokens. How-
ever, this limitation is increased in the sparse models. The sparse models have a
maximum input length of 4096 tokens, why a larger context can fit in them. The
goal would be to fit at least 10 000 lines of log messages in the context. However,
even if one line would correspond to one token, this would still not be possible. This
means that the context must be chosen wisely, preferably so that information of at
least 10 000 lines would be captured.

3.2.2 Training from Scratch
The pretrained versions of the Big Bird and Longformer models are very large
(1.275×108 parameters for Hugging Face’s bigbird-roberta-base and 1.487×108

parameters for Hugging Face’s allenai/longformer-base-4096) which leads to
long training times. The main motivation behind training the models from scratch
with a custom tokenizer is that if trained on log data, it would allow for longer
sequences to be represented by fewer tokens as compared to a tokenizer trained
on other corpuses. Training from scratch also allows for scaling of the model ar-
chitecture, which can be used to reduce the number of model parameters by, for
instance, reducing the number of hidden layers and/or reducing the hidden layer
size. In this project, the training from scratch includes training a tokenizer on the
log data as well as training the two models on masked language modeling, similar
to how BERT was pretrained but without next sentence prediction. The reason for
not using next sentence prediction was that the model architectures for the sparse
transformer models from the Transformers4 Python library did not have any model
heads for training on next sentence prediction available.

In this project, the number of hidden layers is reduced to 3 (from the default 12
layers for both Big Bird and Longformer), which effectively reduces the number of
network parameters by a factor of 10 for both Big Bird and for Longformer. The
jump from 12 to 3 layers is quite large but the hope is that 3 layers is enough to
yield good performance for the somewhat unique structure and language of the log
message data. To keep the models consistent and for more suitable comparisons,
we also train a BERT model from scratch with three hidden layers even though
pretrained versions (such as Hugging Face’s bert-base-uncased) would fit. The
model configurations were set up using the classes BertConfig, BigBirdConfig,

4https://github.com/huggingface/transformers
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and LongformerConfig from the Transformers library. A summary of the number of
parameters for different models are shown in Tab. 3.2. Continuing, we refer to these
three, from scratch trained models, as 3L-BERT, 3L-Big Bird and 3L-Longformer.

Still, the model sizes for the sparse transformer in particular, are quite large so in
order to make them fit on the GPU:s, gradient checkpointing had to be implemented
which decreases the memory usage in exchange for longer training times. The gradi-
ent checkpointing was only used for the sparse models as the BERT-based model fit
on the GPU without having to use further memory usage reduction. In this project,
the checkpoint function from PyTorch was used. Other alternatives exist, and the
use of this implementation along with its effect on the results will be discussed later
in the thesis.

Table 3.2: A table showing the number of model parameters for Hugging Face models
bert-base-uncased, bigbird-roberta-base, and
allenai/longformer-base-4096 and for the 3L-models. This decrease in hidden layers
reduce the number of model parameters by a factor 10 for all three models.

Number of Model Parameters
Model: BERT Big Bird Longformer
# of params.
(Hugging Face):

1.095×108 1.275×108 1.487×108

# of params. (3L): 2.854×107 3.661×107 3.129×107

In this step, all models were trained for six epochs on a total of six log files (two per
data set). A learning rate of 5 × 10−5 was used. The training loss is saved at every
training step and the validation loss is recorded at the end of each epoch.

The tokenizer used in this project is a subword tokenizer trained from scratch on
the log files. More specifically, the ByteLevelBPETokenizer from the Tokenizers5

Python library was used. The vocabulary size for the tokenizer was set to 8192
which is rather small compared to the vocabulary sizes in many pretrained models’
tokenizers. The reason for this is that the vocabulary for log files is most likely not
as diverse as vocabularies required for other, more general, NLP tasks.

3.2.3 Hyperspherical Loss
The model for log anomaly detection is trained using a hyperspherical loss as de-
scribed in Section 2.5. The target system is set to be the data set the model is
currently being trained on. The auxiliary data set is set to be the remaining two
data sets. The procedure for generating true and false samples is as follows; a query
line is sampled from the target system with probability rate p, or the auxiliary data
set with probability rate 1 − p. Context lines are then, in both cases, generated
from the target system using the basic keyword search context method. The pairs

5https://github.com/huggingface/tokenizers
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of query-context are then labeled as true if both query and context are from the
target system and false if the query is from the auxiliary data set. In this project,
we use a probability rate p = 0.9.

Furthermore, the hyperspherical loss is applied to the [CLS] token of the model
output as it contains information about the entire token sequence. The goal is then
for the model to be able to separate true and false samples. Here, an assumption
that the three data sets fulfill the assumptions of being informative enough for the
model to be able to distinguish between auxiliary and normal data, while being
diverse enough to reduce the risk of overfitting, is made.

3.2.4 Anomaly Detection
We interpret the hyperspherical loss as an anomaly score since it tries to separate
normal and auxiliary data points. Normal data points are expected to lie close to
zero, see Eq. (2.8), whereas auxiliary data points are expected to be forced away
from zero. Thus, the anomaly score can be used in conjunction with a threshold
value to separate data points into two discrete labels.

All models are trained for two epochs and a batch size of 16 is used for all models
and data sets. The Adam optimizer was used with learning rate 1×10−6 and weight
decay 1 × 10−7. After each training epoch, a validation epoch is initialized. Train-
ing and validation losses are stored after each respective epoch. During validation,
an anomaly score threshold is chosen dynamically in order to maximize F1-score,
allowing us to construct a confusion matrix. Gradient checkpointing was used only
for the Longformer- and Big Bird-based models.

3.3 Evaluation Method
The evaluation in the log anomaly detection step is performed on the 3L-models.
All of them use the basic keyword search context extraction method and are trained
with the hyperspherical loss function on all three data sets.

When training and validation is done, a model evaluation is performed on the test
data sets. Here, similarly to the validation epoch, an anomaly score threshold is
chosen dynamically in order to maximize the F1-score and to obtain a confusion
matrix. More specifically, for each log message, an anomaly score is computed and
the threshold is selected to separate normal messages from anomalous ones in such
a way that the F1-score is maximized for the model predictions.

The models are compared to a baseline model that always predicts a positive result.
More specifically, an untrained model is directly evaluated on and modified such
that only anomalies are predicted. Thus, any model obtaining lower F1-score than
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the baseline model would be a model performing worse than an always-positive pre-
dicting model. Since the model predictions are set to 1 (anomaly) for all data points,
it is independent of which model is used. In this project, an untrained version of the
BERT-based model was used as base for the baseline model. In order to deal with
class imbalance in the data sets, the F1-score is looked at rather than accuracy as a
measure of performance.

The results for the log anomaly detection step will be presented in the form of
obtained maximum F1-scores as well as estimated anomaly score probability den-
sity functions for each model on each data set. The estimated probability density
functions looked at will illustrate the distribution of the anomaly scores colored
according to the model predicted label for a specific data point, giving some indica-
tion of the model’s ability to separate normal and anomalous log messages. These
distributions are computed using the kdeplot function from the Seaborn6 Python
library. Moreover, confusion matrices for the different models will be provided in
the appendix.

6https://seaborn.pydata.org/

27

https://seaborn.pydata.org/


3. Methods

28



4
Results

In this section, the central results obtained in this project are presented. It is divided
into two sections; one training from scratch section and one log anomaly detection
section. First, the results obtained from training the models from scratch will be
presented, followed by the log anomaly detection results.

4.1 Training from Scratch
In this section, the training- and validation loss curves are illustrated for the training-
from-scratch step for all 3L-models. First, 3L-BERT, will be presented, followed by
3L-Big Bird and 3L-Longformer.

4.1.1 3L-BERT Model
Training- and validation losses for the 3L-BERT model during training from scratch
is shown in Fig. 4.1. Both losses seem to converge at the end of the run with
a stronger convergence for the training loss compared to the validation loss. The
model was trained for six epochs and losses were stored every 250 steps and after
every epoch for training- and validation loss respectively.

4.1.2 3L-Big Bird Model
In Fig. 4.2, the training- and validation losses for the 3L-Big Bird model during
training from scratch can be observed. In similarity to the 3L-BERT model, both
losses seem to converge with a stronger convergence for the training loss than for
the validation loss in terms of change in loss from start to finish. The model was
trained for six epochs and losses were stored every 250 steps and after every epoch
for training- and validation loss respectively.

4.1.3 3L-Longformer Model
The training- and validation losses for the 3L-Longformer model converge, as for
the two other models, in similar fashion, see Fig. 4.3. For all models, it is also
observed that the scales on the y-axis are on the same order for both the training-
and validation losses. The model was trained for six epochs and losses were stored
every 250 steps and after every epoch for training- and validation loss respectively.
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(a) 3L-BERT model training loss during training from
scratch.

(b) 3L-BERT model validation loss during training from
scratch.

Figure 4.1: These figures, (a) and (b) respectively, illustrate the training- and valida-
tion losses for the 3L-BERT model during the training-from-scratch step. The training
loss seems to have converged at the end of the training cycle, whereas the validation loss
seems to converge albeit not as strongly as the training loss. Note that training loss was
stored every 250 training steps and the validation loss was stored after each epoch.

4.2 Anomaly Detection

In this section, the results of the log anomaly detection step of the project are
presented. F1-scores and plots over estimated anomaly score probability density
functions will be presented below. It should be noted that the distribution plots
are smoothed out by the use of the kdeplot function in the seaborn Python li-
brary. Furthermore, as the training times of the sparse transformer-based models in
particular were an important factor in this thesis, the total training and evaluation
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(a) 3L-Big Bird model training loss during training from
scratch.

(b) 3L-Big Bird model validation loss during training from
scratch.

Figure 4.2: These figures illustrate the training- and validation losses ((a) and (b)
respectively) for the 3L-Big Bird model during the training-from-scratch step. Similar to
the 3L-BERT model, the losses show indications of converging. Note that training loss
was stored every 250 training steps and the validation loss was stored after each epoch.

times will be presented for each model. In App. A.1, the confusion matrices will be
provided for each model on the three data sets.

4.2.1 F1-scores
In Tab. 4.1, the F1-scores obtained by maximization w.r.t. the anomaly threshold
are shown. Also, the baseline F1-scores, in which a model was made to only predict
positive results (i.e. only predict anomalies) are shown. All F1-scores are computed
on the test data sets.
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(a) 3L-Longformer model training loss during training from
scratch.

(b) 3L-Longformer model validation loss during training from
scratch.

Figure 4.3: These figures illustrate the training- and validation losses ((a) and (b)
respectively) for the 3L-Longformer model during the training-from-scratch step. Similar
to the previous model, the losses show indications of converging. Note that training loss
was stored every 250 training steps and the validation loss was stored after each epoch.

It is observed that many of the maximum F1-scores lie close to or are in level with
the baseline scores for all data sets. There are a few stand-out scores, primarily
that of the Big Bird-based model, achieving a maximum F1-score of 0.4980 for
the BG/L data set. Also, the Longformer-based model achieves relatively high
maximum F1-scores for the HDFS and BG/L data sets. For the Ericsson data set,
all models achieve maxmimum F1-scores comparable to that of the baseline, with a
small increase achieved for the Longformer-based model at a value of 0.1378.
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Table 4.1: A table showing the F1-scores obtained by maximization w.r.t. the anomaly
threshold for the different models. All F1-scores are computed on the test data sets.

Maximum F1-scores for the different models.
Ericsson BG/L HDFS

Baseline 0.1328 0.1145 0.0140
3L-BERT 0.1332 0.1145 0.0168
3L-Big Bird 0.1328 0.4980 0.0174
3L-Longformer 0.1378 0.3426 0.1551

4.2.2 BERT-based Model
In Fig. 4.4, the estimated anomaly score probability density functions are shown for
the BERT-based model. The anomaly score probability density functions are shown
for all data sets and are computed on the test data sets.

The anomaly score probability density functions for the BERT-based model in Fig.
4.4 shows a tendency of the model being unable to distinguish normal and anomalous
log messages, for all data sets. This is indicated by the fact that the two distributions
(for the true labels normal and anomaly) overlap.

4.2.3 Big Bird-based Model
The estimated anomaly score probability density functions for the Big Bird-based
model are shown in Fig. 4.5. These are computed on the test data sets for all three
data sets.

The estimated anomaly score probability density functions for the Big Bird-based
model, as seen in Fig. 4.5, generally contain a lot of overlap between the two
distributions which, as earlier discussed, indicates that the model fails to distinguish
between normal and anomalous log messages. For the BG/L data set, we see some
indication of the normal/anomalous separation as most of the normal log messages
are distributed to the left of the threshold and a large part of the anomalous messages
being distributed to the right. Also noteworthy is the location of the threshold
(between 27.7-27.8) for all data sets which is significantly larger than for the BERT-
based model.

4.2.4 Longformer-based Model
In Fig. 4.6, the estimated anomaly score probability density functions are shown
for the Longformer-based model. These are computed on the test data sets for all
three data sets.

The Longformer-based model’s anomaly score distributions, as shown in Fig. 4.6,
show a general tendency of being unable to distinguish normal and anomalous log
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messages. There is a slight indication of separation for the BG/L data set, in which
most of the normal log messages are distributed to the left of the threshold. The
distribution for the HDFS data set differs from most of the previous distributions
in that it has three distinct peaks around which the anomaly scores are distributed.
Notable is that these peaks lie very close to one another, on the order of 10−6

more specifically. Similarly to the Big Bird-based model, the anomaly scores are
distributed at or around 27.7.

4.2.5 Model Training Times
As previously mentioned the training times for the sparse models in particular were
a significant factor in this thesis. In Tab. 4.2, the total time for training, validation
and evaluation is shown for each model. Note that these times are only for the
models used to produce the results shown in Sec. 4.2.1-4.2.4. Furthermore, the
times shown here are only for the anomaly detection step.

Table 4.2: A table showing the total time (in hours) for training, validation and evalu-
ation for each model on every data set in the anomaly detection step.

Model Time [hrs]
3L-BERT 123
3L-Big Bird 167
3L-Longformer 180

It can be seen that the total training and evaluation times for the various models
span from roughly 5-8 days. These times were stored during model training and
evaluation.
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(a) Ericsson

(b) BG/L

(c) HDFS

Figure 4.4: These plots illustrate the BERT-based model’s estimated anomaly score
probability density function for the different data sets. The two colors denote the true
labels. Also shown is the anomaly score threshold which maximizes the F1-score. The
strong overlap of the two distributions in all the data sets indicates that the model fails
to separate the normal and anomalous messages in the hyperspherical sense. Note, these
graphs do not display the full distributions but rather are focused on the parts where the
distributions contain the most points.
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(a) Ericsson

(b) BG/L

(c) HDFS

Figure 4.5: These plots show the anomaly score probability density for the Big Bird-
based model for the different data sets. The colors indicate the true labels. Also shown
is the threshold that maximizes the F1-score. The distributions of normal and anomalous
log messages mostly overlap for the Ericsson and HDFS data sets. For the BG/L data set,
the distribution indicates some form of separation of normal and anomalous log messages
as seen by the normal messages being distributed mostly to the left of the threshold and a
large part of the anomalous log messages being distributed to the right. Note the relatively
high threshold value for all distributions as compared to the BERT-based model.
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(a) Ericsson (b) BG/L

(c) HDFS

Figure 4.6: This figure shoes the Longformer-based model’s anomaly score probability
density function. This plot illustrates the distribution of anomaly scores colored according
the true labels (normal or anomalous log message). Also shown is the anomaly score
threshold that yields the maximum F1-score. In general, the model seems unable to
separate between normal and anomalous log messages, similar to that of the two previous
models. The data set on which the model seems to have the best performance is BG/L.
This is indicated by the large distribution of normal messages to the left of the threshold.
The distribution for the HDFS data set has three distinct peak around which anomaly
scores are distributed. Note that the distance between the centers of these peaks are at
the order of 10−6. Another noteworthy result is the value of the threshold, which, as with
the Big Bird-based model lies between 27.7 and 27.8.
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5
Discussion

This section will present a rigorous discussion of the results obtained in this project.
Also, potential threats to validity of the results as well as possibilities for future work
will be discussed.

5.1 Key Results

5.1.1 RQ1: Usefulness of Sparse Transformers for Log Anomaly
Detection

In general, none of the models do a great job of distinguishing normal log messages
from anomalous ones as indicated by the maximum F1-scores and the anomaly
score distributions as shown in Tab. 4.1 and Fig. A.1-4.6. The highest maxi-
mum F1-scores for each data set are, however, obtained by the sparse models with
the Longformer-based model obtaining highest maximum F1-scores for the Ericsson
and HDFS data sets and the Big Bird-based model obtaining the highest score for
the BG/L data set. In regards to the distributions, some models on some data sets
show indications of separation of normal and anomalous log messages. Most notably
might be the Big Bird-based model on the BG/L data set in which it is observed
that the model places most of the normal log messages to the left of the threshold
and a large size of the anomalous ones to the right. This separation is by far not as
clear as it would have optimally been as a large size of the anomalies are located to
the left of the threshold. The Longformer-based model shows a similar distribution
for the BG/L data set, i.e. hints of, but no clear, separation of normal and anoma-
lous log messages. The BERT-based model on the other hand shows no indication
of separation for any of the data sets, as indicated by the vast majority of normal
and anomalous log messages being located on the same side of the threshold. This
is also reflected by the maximum F1-scores obtained, being similar to those of the
baseline on all data sets.

One peculiar result is how the Longformer-based model performed on the HDFS
data set, obtaining a maxmimum F1-score nearly ten times that of the others. This
peculiarity extends to the distribution plot (Fig. 4.6(c)) in which three distinct
peaks are observed very close to each other and the threshold being located at the
center of the middle peak. This suggests that the model outputs one of three dis-
crete anomaly scores no matter the input log message. This result, along with the
high anomaly score values for the Longformer- and Big Bird-based models, could be
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a result of the way gradient checkpointing was implemented and will be discussed
further in the threats to validity section.

The results obtained do suggest that the sparse models do in fact perform better
than the non-sparse counter part. If this is directly due to the increased size of the
input, however, is difficult to say as many other parameters had to be altered as
well. Training the models from scratch, training a tokenizer from scratch as well as
scaling the models down in order to fit on the GPU may have unforeseen effects on
model performance, meaning that input size may not be the only relevant factor.
Optimally, a proper ablation study should have been done in which the different
factors were varied one at a time, but due to the time and resource constraints no
such study could be performed.

5.1.2 RQ2: Possibility to extract explanatory information
without use of parsing methods

In order to keep generalization across data sets as high as possible and per request
by Ericsson, preprocessing of the raw log data was kept at a minimum. The gener-
ally poor ability of being able to separate normal and anomalous log messages, as
presented in the estimated anomaly score probability density functions (Figs. 4.4,
4.5 and 4.6), might very well be a reflection of the minimal effort put in to prepro-
cessing. Directly using the raw log data as input keeps the generalizability very high
as new data sets could effectively be used without relying on any data set specific
log parsing method. The benefit of log parsing however, is that it transforms the
typically unstructured format of log files into a more structured one which in many
cases might help the model in the anomaly detection procedure.

5.2 Threats to Validity

In general, due to large model sizes, long training times and time constraints, some
decisions that were made in this project likely affected the results and could poten-
tially be risks to their validity. Below are the areas which are believed to have had
the largest effects.

5.2.1 Fixed Attention Pattern

The two sparse transformers explored in this thesis, Big Bird and Longformer, both
use a fixed attention pattern. This means that which tokens attend to one another
is pre-determined. This could be an issue since it effectively means that some prior
knowledge is assumed about these token relations. Therefore, something that could
be interesting to explore are sparse transformers with trainable attention patterns
which might allow for the model to learn what token relations are important.
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5.2.2 Context Extraction
Another area that most likely influenced the results is the choice of context extrac-
tion method, namely the basic keyword search context as described in Sec. 3.2.1.
The goal of the context extraction is to provide the model with context meant to
be informative enough to result in accurate predictions. Since the basic keyword
search approach is based on a keyword search of the most rare word in the query
line (w.r.t. the tokenizer vocabulary), a lot of weight is put on the fact that this
word is informative enough. If the rare word, however, is not informative enough
this approach most likely fails to include relevant context which in turn most likely
leads to the models not being able to make any meaningful predictions.

The thought prior to acquiring the results was, however, that the sheer increase in
number of tokens available in the context for the sparse models might be enough to
see increases in performance over the traditional transformer-based model.

5.2.3 Hyperparameter Tuning
Within the field of machine learning and AI, hyperparameter tuning is often a very
important procedure which could affect model performance. However, since the
time it takes training the transformer models is quite long, no extensive study of the
choice of hyperparameters was done. A couple of choices (for learning rate as well
as weight decay) were explored without seeing any large difference in performance
which lead to the conclusion that performance was most likely dictated by other
factors in the model framework.

5.2.4 Model Architecture
One obstacle encountered in this project is the sheer size of the sparse transformer
models. As mentioned previously, the pretrained models of Big Bird and Longformer
that are on Hugging Face have ∼ 108 model parameters which are too large to fit
on the GPUs. Thus, a reduction of this number was needed in order to use these
models. In this project, the reduction of the number of model parameters was done
by reducing the number of hidden layers from 12 (in the respective base versions of
the three models) to 3. This is quite a drastic change and likely has an effect on the
models’ performances. Optimally, a comparison in performance between the larger
and smaller transformer models would be done.

5.2.5 Training from Scratch
As a result of having to change the model architectures, the benefits of using Hug-
ging Face models trained on huge amounts of natural language corpuses is lost. A
motivation for still proceeding with training the models from scratch was that due
to the unique structure and language of log messages, only training on log data
might suffice for the goal of this project. However, the number of log data to train
on was quite small (6 log files in total) and increasing this number might affect the
performances. Also, an increase in the number of training epochs might lead to an
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improvement in the results. The final models used were trained from scratch on 6
epochs each which was mainly chosen with consideration to the long training times
as well as the convergence of the training and validation losses.

Another factor which could have a positive effect on the outcome is the choice of
proxy task. In this thesis, we chose to only use the masked language modeling
proxy task as a result of there not being any implementations available online for
the next sentence prediction proxy task. As such, if time was not an issue one
might be able to implement their own next sentence prediction and use it in the
training-from-scratch step.

5.2.6 Gradient Checkpointing
As mentioned in the method chapter, the checkpoint function from the PyTorch li-
brary was used for gradient checkpointing in this project. However, as opposed to the
BERT-based model (which was trained without gradient checkpointing) the sparse
transformer-based models obtained much higher loss values both during training
and evaluation, without seeing any improvement over the two training epochs. This
is most likely due to how gradient checkpointing was implemented, as the PyTorch
implementation is sensitive to which tensors require gradients and which tensors do
not. This was overlooked during the project which led to the model weights being
unintentionally frozen during training. To see if this might have been the case, the
automated gradient checkpointing implementation from the Transformers Python
library was used on the Big Bird model for the HDFS data set, for which training
loss along with anomaly score values seemed to decrease during training as had been
wanted from the start. Due to the time constraint, the sparse models could not be
trained using this, presumably correct, implementation of gradient checkpointing.
As a result, this effectively meant that the sparse models gained little to no value
from training, which would explain the large values for the anomaly scores for the
sparse models.

5.3 Future Work
The work performed in this thesis leaves some interesting questions that could be
investigated in future work. In this section, potentially interesting areas to explore
in relation to this thesis will be discussed.

In general, for a more reliable indication on whether sparse transformer-based anomaly
detection models perform better than their traditional counterparts, future work
should look at performing a rigorous ablation study where different parameters are
varied systematically. Otherwise one might risk overlooking potentially important
parameters which might have an effect on the results.

As discussed in Sec. 5.2.1, the fixed attention pattern in both of the sparse models
researched in this thesis might not be optimal. Interesting might be for future re-
search to explore ways in which one could learn the transformer attention pattern
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when looking at a specific query line. This would then likely have to be implemented
in some form of a two-step model in which both attention pattern as well as the
performance on log anomaly detection would have to be taken in to account when
updating model parameters. This would then have the benefit of not having to
rely on a context extraction step and might lead to the model being able to dis-
tinguish better between normal and anomalous log messages. This would however
most likely see an even bigger emphasis on time and resource availability as training
such a model likely strains these two factors heavily.

Training the models from scratch could also be a potential area of improvement in
future work. In particular, one could explore the effect of directly implementing
the hyperspherical loss function instead of masked language modeling and/or next
sentence prediction. This might yield a positive result as the log anomaly detection
step sees only the hyperspherical loss implemented.
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6
Conclusion

This thesis has explored the viability of using sparse transformer-based models for
anomaly detection in system log files. More specifically, two sparse transformer-
based models were leveraged using the Big Bird and Longformer architectures.
These were compared to a traditional transformer-based model with a BERT ar-
chitecture. All models were trained from scratch with a custom tokenizer on system
log data from three different sources; Ericsson, HDFS and BG/L. The models were
then trained on log anomaly detection using a hyperspherical loss function aimed at
separating normal log messages from anomalous ones in an embedding space.

The metric looked at to determine model performance were F1-scores. Also, the
anomaly score distribution was used to evaluate the models. The F1-score was cho-
sen as a metric so as to account for class imbalance in the data sets. Furthermore,
the anomaly score distribution illustrates the estimated probability density function
of anomaly scores colored according to model predicted labels. No model shows a
clear separation of normal and anomalous log messages but the two sparse models
show indications separation on certain data sets.

Future work in log anomaly detection with sparse transformer-based models should
be done with special consideration to time and resources and a proper ablation study
should also be performed. The results shown in this report, however, do show some
indications of the potential of the sparse transformer-based models.
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A.1 Log Anomaly Detection Confusion Matrices

A.1.1 BERT-based Model
In Fig. A.1, the confusion matrices are shown for the BERT-based model. The
confusion matrices are shown for all datasets and are computed on the test datasets.

(a) Ericsson (b) BG/L (c) HDFS

Figure A.1: Confusion matrices for the BERT-based model for the three datasets. For
the Ericsson and BG/L datasets, the model seems to only predict anomalies as shown by
the low true negative and false negative rates. For the HDFS dataset, the model achieves
a high true negative rate, with the second highest being the false positive which at least
suggests the model is making different predictions.

As seen in Fig. A.1, the model seems to only predict anomalies for the Ericsson
and BG/L datasets as indicated by the low true- and false-negative rates. On the
other hand, the model achieves a high true negative rate for the HDFS dataset, with
the second highest rate being the false positive rate. As opposed to the two other
datasets, this at least suggests that the model is giving different predictions.

A.1.2 Big Bird-based Model
The confusion matrices for the Big Bird-based model are shown in Fig. A.2. These
are computed on the test datasets for all three datasets.

The confusion matrices in Fig. A.2 show some variety among the different datasets.
For the Ericsson dataset, the zero-valued true negative and false negative rates
indicate that the model only predicts anomalies. The model achieves a high true
negative rate for the BG/L dataset, with the other rates being of similar size. For
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(a) Ericsson (b) BG/L (c) HDFS

Figure A.2: Confusion matrices for the Big Bird-based model for the three different
datasets. For the Ericsson dataset, similar to the BERT-based case, the model seems to
only predict anomalies as indicated by the zero-valued true- and false-negative rates. As
for the BG/L dataset, the model achieves a high true negative rate, with the other rates
being of relatively similar size. For the HDFS dataset, the true negative and false positive
rates dominate.

the HDFS dataset, the highest rates are the true negative and false positive. As
opposed to the two other datasets, here, the model seems to vary its predictions
with about 1/4 of the predictions being anomalies and 3/4 being normal.

A.1.3 Longformer-based Model
In Fig. A.3, confusion matrices are shown for the Longformer-based model. These
are computed on the test datasets for all three datasets.

(a) Ericsson (b) BG/L (c) HDFS

Figure A.3: These figures illustrate the confusion matrices for the Longformer-based
model, for all datasets. The matrix for the Ericsson dataset shows a high value for the
false positive rate with the second highest being the true negative rate. For the BG/L
and HDFS datasets, the model has a high true negative rate. As opposed to the previous
cases, the Longformer-based model spreads its predictions between true and false for all
datasets to various extents.

The final model, the Longformer-based one, whose confusion matrices are illustrated
in Fig. A.3 seems to spread its predictions more than the two previous models. This
holds for all datasets, as opposed to the BERT-based model which only predicts
anomalies for the BG/L dataset and the Big Bird-based model which only predicts
anomalies for the Ericsson dataset. Furthermore, the Longformer-based model shows
high true negative rates for the BG/L and HDFS datasets. For the Ericsson dataset,
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the model has a high rate of false positive predictions with the second highest rate
being that for the true negative predictions.
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