
Improving Service Availability of
Singleton Software Component:
Challenges and Strategies
Master’s thesis in Computer Systems and Networks

RETA SHIFERAW
YOHANES KUMA

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2016





Master’s thesis 2016

Improving Service Availability of Singleton
Software Component:

Challenges and Strategies

RETA SHIFERAW
YOHANES KUMA

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2016



Improving Service Availability of Singleton Software Component:
Challenges and Strategies

RETTA SHIFERAW
YOHANS KUMA

© RETTA SHIFERAW, 2016.
© YOHANS KUMA, 2016.

Supervisor: Roger Johansson, Computer Science and Engineering
Examiner: Jan Jonsson, Computer Science and Engineering

Master’s Thesis 2016:NN
Department of Computer Science and Engineering
Computer Systems and Networks
Chalmers University of Technology
University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

iv



Improving Service Availability of Singleton Software Component: Challenges and
Strategies
Comuter Science and Egineering
University of Gothenburg
Chalmers University of Technology

Abstract
This study is intended to contribute for higher availability property of stateful single-
ton components with user sessions lasting significantly long duration. As availability
tactic, the study focuses on replication. Management of state synchronization of long
lasting stateful user sessions during switchover is among the main challenges of this
study.
Design research is employed to device a suitable prototype architecture. Via the
design research, the challenges are thoroughly analysed, and prototype is designed
to incorporate strategies for the challenges. Qualitative research is also undertaken
to propose suitable design patterns and object serialization technologies. The pro-
totype is evaluated to observe correctness of long lasting stateful user sessions after
switchover is performed among the replicas. In addition, further stress analysis is
performed on the prototype to show points of strength and weakest points.

Keywords: synchronization, task migration, availability, replication, stateful con-
nection, session replication.

v





Acknowledgements
First and for most, we would thank God for the duration of this project. The support
and encouragement from Peter Eriksson, Mikeal Krekola, and Björn Östlund is really
significant. We also gratitude Roger Johansson and Jan Jonsson for believing in our
study effort, and support in the process. Finally, we are thankful for our families
and friends for chilling us when we get stuck.

Reta Shiferaw, Gothenburg, 2016
Yohanes Kuma, Gothenburg, 2016

vii





Contents

List of Figures xi

List of Tables xiii

List of Abbreviations xiv

1 Introduction 1
1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Project Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Report outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 4
2.1 Theoretical Background . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Replication . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.3 Stateful Software Component Replication . . . . . . . . . . . . 5

2.2 Technical Background . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.1 Ericsson RBS . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Ericsson RBS CAT . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.3 Ericsson RBS CAT SSC . . . . . . . . . . . . . . . . . . . . . 7

3 Related Work 10

4 Methodology 12
4.1 Qualitative methodology . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2 Design Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.2.1 Stage I (Research Clarification) . . . . . . . . . . . . . . . . . 13
4.2.2 Stage II (Descriptive study I) . . . . . . . . . . . . . . . . . . 13
4.2.3 Stage III(Prescriptive study) . . . . . . . . . . . . . . . . . . . 13
4.2.4 Stage IV (Descriptive study II) . . . . . . . . . . . . . . . . . 15

5 Results 16
5.1 Design Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2 Object Serialization Patterns . . . . . . . . . . . . . . . . . . . . . . . 18

5.2.1 Data structure focused serialization pattern . . . . . . . . . . 19
5.2.1.1 Data Object Library . . . . . . . . . . . . . . . . . . 19

ix



Contents

5.2.1.2 Protocol Buffers . . . . . . . . . . . . . . . . . . . . 19
5.2.2 Object collection focused serialization pattern . . . . . . . . . 19

5.2.2.1 Boost . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2.2.2 Cereal . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.2.3 Serialization technology choice and its rationale . . . . . . . . 21
5.3 Prototype Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.3.1 Architectural Design Overview . . . . . . . . . . . . . . . . . . 21
5.3.2 Switchover Process Phases . . . . . . . . . . . . . . . . . . . . 24
5.3.3 Prototype Design Decisions . . . . . . . . . . . . . . . . . . . 26

5.3.3.1 Name Serving of Replicas . . . . . . . . . . . . . . . 26
5.3.3.2 Service Request Handling . . . . . . . . . . . . . . . 27
5.3.3.3 Service Response Handling . . . . . . . . . . . . . . 29

5.4 Switchover Process Summary . . . . . . . . . . . . . . . . . . . . . . 32
5.5 Prototype Evaluation Results . . . . . . . . . . . . . . . . . . . . . . 32

5.5.1 Correctness analysis . . . . . . . . . . . . . . . . . . . . . . . 32
5.5.2 Time Effectiveness of serialization and deserialization . . . . . 34
5.5.3 Scalability analysis . . . . . . . . . . . . . . . . . . . . . . . . 35

5.5.3.1 Effect of number and size of stateful sessions . . . . . 35
5.5.3.2 Effect of synchronization of missed service response

messages . . . . . . . . . . . . . . . . . . . . . . . . 36
5.5.4 Memory Utilization . . . . . . . . . . . . . . . . . . . . . . . . 37

6 Discussion 39
6.1 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.2 Added Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.3 Fault Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.4 Memory Utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7 Future Work 43

8 Conclusion 44

Bibliography 45

A Appendix 1 I

x



List of Figures

2.1 Position of RBS [13]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 CAT software components interaction [13] . . . . . . . . . . . . . . . 7
2.3 CAT ‘environment’ [13] . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Future plan for CAT ‘environment’ . . . . . . . . . . . . . . . . . . . 8
2.5 Sample SSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.1 Design research method . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 reference architecture for prototype . . . . . . . . . . . . . . . . . . . 14

5.1 DCI paradagim [28] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2 EIP paradagim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.3 replication architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.4 Run-time situation of replication architecture when the system is not

in switchover process . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.5 Run-time situation of replication architecture when the system is per-

forming serialization in switchover process . . . . . . . . . . . . . . . 23
5.6 Run-time situation of replication architecture when Primary SSC ter-

minate session towards resources in switchover process . . . . . . . . 24
5.7 switchover process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.8 Switchover activity overview . . . . . . . . . . . . . . . . . . . . . . . 26
5.9 Name serving strategy . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.10 Service request handling strategy . . . . . . . . . . . . . . . . . . . . 28
5.11 Object structure of one user in SSC . . . . . . . . . . . . . . . . . . . 29
5.12 Inconsistency of user group state due to different message arrival on

a time unit by the replicas . . . . . . . . . . . . . . . . . . . . . . . . 30
5.13 Inconsistency of user group state due to missing of messages in prepa-

ration phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.14 A sequence diagram to show strategies for handling missing service

response messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.15 correctness test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.16 Time Effectiveness of serialization and deserialization . . . . . . . . . 35
5.17 Effect of Groups and Payloads on Switchover durations . . . . . . . . 36
5.18 Effect of Synchronizing missed message on switchover duration . . . . 37
5.19 Effect of serializing groups individually and all-together on memory . 38

6.1 Start-up state management of SSC replicas . . . . . . . . . . . . . . 40
6.2 Run-time state structure flow by SSC replicas . . . . . . . . . . . . . 41

xi



List of Figures

6.3 Fault management in switchover process . . . . . . . . . . . . . . . . 42

xii



List of Tables

5.1 Switchover process summary . . . . . . . . . . . . . . . . . . . . . . . 33

xiii



List of Abbreviations

CAT Common Architecture Tier
CDMA Code Division Multiple Access
DCI Data Context Interaction
DOD Data Object Library
EIP Ericsson In-house Pattern
GCM Global System for Mobile Communications
LTE Long-Term Evolution
RAN Radio Access Network
RBS Radio Base Station
SSC Stateful Singleton components
WCDMA Wideband Code Division Multiple Acces

xiv



1
Introduction

In modern software systems engineering, analysis of non-functional requirements,
such as availability, as part of the design and implementation is important. Avail-
ability is a way of describing the responsiveness of software systems by measuring
how fast a software system can correctly recover (downtime), and how frequent
failure (system outage) occurs [1, 8].
To secure higher availability, most availability tactics focus on two strategies. As first
strategy, they employ tactics which could help for faster recovery in order to reduce
the downtime. Among tactics for this strategy, replication of system components
is the common one [2,3,4,9,10]. This redundant system components are usually
referred as replicas [3,4,6,10]. This tactic mainly targets on reducing the downtime,
by switching over the system services to another replica, so that the system will be
responsive while the failed replica is being recovered. The second strategy involves
tactics which are used to make system service outage transparent from service users
side [3, 4, 6]. This means that a system service outage will not be noticed from the
user side while the system is undertaking tactics for the first strategy. The second
strategy is particularly important when the system has stateful components.
A stateful component refers to a component which creates and retains active sessions
for each interacting user which could be used for a couple of method invocation for
certain period of time [11]. The stateful component will need to track the state
of each session as long as the sessions are alive. The opposite of such components
are stateless components whereby each invocations from the system user side are
completely independent. An example of such stateful components is Ericsson’s Radio
Base Station (RBS) singleton components. A stateful singleton component (SSC) is
a single threaded stateful component responsible to handle certain functionalities of
Ericsson RBS architecture. This functionalities will only be served by exactly one
SSC executing thread.

1.1 Problem Statement
In this thesis study, the challenges and strategies of replicating SSC in Ericsson AB
Department that develop control software for RBS is studied. As detailed in section
2.2, Ericsson RBS architecture is organised in so called ‘environments’ whereby each
‘environment’ contains many system components, among which is SSC. The main
purpose of the replication is to switchover the services of SSC to backup SSC replica
in another ‘environment’, so that a failed system component in the ‘environment’
where the SSC is executing could easily be maintained by a technician. This means

1



1. Introduction

that the switchover of SSC services is triggered by a technician, unlike the usual
case whereby switchover of a component is triggered by a failure in the component.
The replication of SSC is used as a tactic to increase availability of an ‘environment’
in RBS Architecture.
In order to increase availability, the services of SSC will need to be available during
the switchover to SSC replica , but with degraded responsiveness (services may take
more than the usual response time but still below the specified time-out for the
service). As mentioned before, although there could be two replicas of SSC, only
one of them could serve and manage states of users. This means, in order to stay
being responsive during or after the switchover, it will be important to make sure
sessions and states are synchronized in between the SSC replicas.
Synchronization of sessions and states of SSC in Ericsson RBS is more complex than
other similar strategies used for SSC such as [6]. The complexities are the following:

1. The SSC of Ericsson RBS have significantly longer session duration. This im-
plies that for each session there will be lots of data stored in physical memory.
This data is kept in heap memory that is allocated for an object instance which
encapsulates each sessions. Hence, serialization of object instances, encapsu-
lating the sessions, in strategic manner is important to undertake a correct
switchover in between SSC replicas.

2. In addition to a kind of interaction where the SSC will act as a server, SSC will
also act as a client to communicate with other system components inside or
outside its ‘environment’. Such interactions are mainly triggered from object
instances which encapsulate the sessions when SSC acts as a server. There-
fore, a serialized object instance encapsulating a session will need to continue
any communication which are initiated acting as a client towards other com-
ponents.

3. In order to make SSC responsive during switchover in between SSC replicas,
there need to have strategy to immediately serve or queue invocations (mes-
sages) which are received by SSC during switchover.

From this point forward, we call the SSC replica which is currently handling sessions
and states as primary SSC. The other SSC replica will be called backup SSC.

1.2 Research Question
The main contribution of this study is to design strategies which could efficiently
synchronize (and serialize) run-time information in physical memory, so that ob-
jects in backup SSC would behave correctly after switchover. It contributes also
strategies which are used to keep SSC available with degraded responsiveness dur-
ing switchover, and to present design patterns which would ease switchover from
primary to backup SSC The following are the research questions this study ad-
dresses:

1. Is it possible to have controlled switchover functionality for SSC in RBS to
preserve component functionality and state, and thus increase system avail-
ability?

2. What changes are needed compared to the current way of implementing SSC
to better support switchover?

2



1. Introduction

3. What extra functionality needs to be added in SSC to handle switchover?

1.3 Project Limitation
Due to time limitation, designing strategies to increase availability for situations
such as failure of a primary SSC is not in this study’s scope. In addition, when
technician replaces a failed component in an ‘environment’ whereby the primary SSC
has been communicating with the failed component, it is expected that a strategy
needs to be employed to update the replaced component to the state of the failed
component. However, such situation won’t be in this project’s scope, rather the
project will assume all components which are interacting with SSC are functional
when undertaking the switchover.
On the other hand, as mentioned by [12], the reliability (failure rate) and the time
it takes to detect the failure, of switchover mechanism software, itself, will also con-
tribute in service unavailability of components. Although, an appropriate software
reliability and fault detection analysis will need to be undertaken for the switchover
mechanism, it is assumed to be 100 % successful.

1.4 Report outline
The rest of the paper is organized as follows. In the next section (Section 2) we
explain the theoretical background with emphasis on replication for availability,
and technical background about the responsible department in Ericsson. In section
3, we discuss previous studies that are relevant to this paper. Then, we move on
and describe methodology used to approach our research question (Section 4). We
explain the results of the study on Section 5, and then discuss the implementation
results in section 6. Finally, we conclude as a summary and direction for the future
work in section 7 and 8.

3



2
Background

2.1 Theoretical Background
This section gives the reader theoretical background about availability, replication,
and Stateful software components.

2.1.1 Availability
Service availability represents the extent of readiness of the system to deliver correct
services to the user and it is often measured in downtime minutes, outage duration
and frequency [1] . The formal definition of service availability by TL900 1 is “the
ability of a unit to be in a state ready to perform a required function at a given
instance in time or in any period within a given time interval , assuming the external
resources, if required, are provided”.
Depending upon the critically of the application, requirement of service availability
may differ for different software industries. For example, for non critical application
availability of 95% may be perfectly acceptable, whereas even 99.5% may not be
acceptable for others.
There are different way of increasing service availability; among others duplicating
or replicating software component for availability is a common practice in indus-
tries. The duplicated software component can take over the operation and continue
providing service to the users in case the primary (parent) component fails.

2.1.2 Replication
Replication is a way of maintaining multiple copies of data/components at a repli-
cated server. It is a common technique used to improve the availability of software
services. Replication has advantage of performance and data availability, and dura-
bility over failures. However, it introduces the issue of consistency.
The two most common replication techniques are active and passive replication. The
key concept of active replication is, when a client invokes an operation, each server
replicas receive and process the same sequences of the client request. In this type
of replication technique the server process the request in deterministic way. Since
the client address the server in a group, atomic broadcast protocol is used in active

1TL 9000 is a quality management practice designed by the QuEST Forum in 1998. It was cre-
ated to focus on supply chain directives throughout the international telecommunications industry,
including the USA

4



2. Background

replication to ensure the same inputs are received in the same order in all servers.
The main advantage of active replication is its simplicity and failure transparency
whereas deterministic constraint is the major drawback[2].
In passive replication, when a client invokes an operation, only the primary server
replica receives and process the operation. Then, the primary replica replicate the
operation to the backups in order to update the state changes. In this replication
technique, reliable total ordering multicast protocol or other mechanism must be
used to ensure either the non-primary replica have the update state or none of them
has the update state [2, 3].
The choice of replication technique, active or passive, depends on a number of fac-
tors. Some of the factor that should be consider while choosing the replication
techniques includes communication and computational cost of operation, and size
of the data that needs to be updated for each operation. When we consider passive
replication, since only the primary replica performs the operation there will be less
computational cost. There may also be less communication cost because only the
primary replica responded to each client request. However, the cost of multicasting
the state of primary replica in order to update the non primary replica can be costly
especially if the state information data is large[3].
With Active replication, since each operation is performed in all of the replicas
and all replicas respond to the client, there will be increased computational and
communication cost. However, active replication does not require extensive state
transfer to update the state change at each replica; therefore there is no cost in this
regard unlike passive replication technique [3].

2.1.3 Stateful Software Component Replication

Stateful software components are components that keep state information or status
about each connections for the lifetime of the connection. When the user sends a
request to a stateful software component, connection session information/object in
the form of session Id will be created that trucks the information requested. When
the user sends another request, the request operates on the state from the previous
request. One of the advantage of stateful component replication is to provide reliable
connections.
In passive replication, to provide reliable connectivity, state information of existing
connections from the primary replica should be replicated continuously to the backup
using different stateful replication algorithms[3, 4, 7, 6]. In case the primary fails,
since states are replicated, the backup can easily reconstruct the state and continue
the client connection without service interruptions.

2.2 Technical Background

This section describes about the responsible department in Ericsson whereby this
study is undertaken and the role of SSC in Ericsson RBS architecture.

5



2. Background

2.2.1 Ericsson RBS

Ericsson RBS is one of the core product of Ericsson AB. RBS is a system which
plays important role in between the antennas which receive signals from user ends
and other products which deal with user service rights. Figure 2.1 shows high level
description of Long-Term Evolution (LTE) Radio Access Network(RAN) [14]. The
user ends are shown as UE. The user service rights are handled by Evolved Packet
Core.

Figure 2.1: Position of RBS [13].

2.2.2 Ericsson RBS CAT

Common Architecture Tier (CAT) is a function module in RBS which is used to
group common functionalities used by various implementations of standards for
wireless communications such as Code Division Multiple Access (CDMA), Wideband
CDMA (WCDMA), Global System for Mobile Communications (GSM), and LTE.
There are around 60 teams involved with CAT. Each team has 6-8 people working
as cross-functional teams.
Ericsson RBS CAT is composed of various software components. A software com-
ponent is a package that encapsulates a set of related services. The services are
provided over (a set of) interfaces. A software component consumes functions/ser-
vices from other components over required interfaces. Interoperability is secured by
compatibility of the provided and required interfaces[13].

6



2. Background

Figure 2.2: CAT software components interaction [13]

2.2.3 Ericsson RBS CAT SSC
A group of related software components in Ericsson RBS CAT are hosted by a
hardware system which is known as ‘environment’. Among software components in
as ‘environment’, SSC is one of them. Figure 2.3 shows a scenario of an ‘environment’
in CAT. An ‘environment’ is shown as green boxes. As shown in the Figure, the red
line shows the communication channel toward the core network (which is indicated
as Evolved Packet Core on Figure 2.2). The black lines shows operational status,
accounting, and maintenance channel. This channel is mainly used by Operational
center and technicians (which is shown as Network Management System in Figure
2.3). In this scenario, OAM & Conf component is a SSC.

Figure 2.3: CAT ‘environment’ [13]

As indicated on Figure 2.3, the future goal of the ‘environment’ shown on Figure
2.4 will be to have another replica of an ‘environment’. The OAM & Conf SSC in

7



2. Background

the primary ‘environment’ replica could be switched over to backup ‘environment’
replica.

Figure 2.4: Future plan for CAT ‘environment’

An SSC will interact in various manner (acting as client or server) with various com-
ponents(singleton components or non singleton components). An example scenario
of a sample SSC is depicted in Figure 2.5. Component A is the sample SSC which
will act as a server for interactions with singleton component D, and non singleton
components B; while in case of C, A will act as client. In addition, Component A
will act as a client, using services provided by non-singleton Components E and F.

8



2. Background

Figure 2.5: Sample SSC

All connections to/from Component A in Figure 2.5 are stateful, which means a
connection session will be required to be established before any kind of collaboration
is intended. Under normal circumstances, connection sessions are kept alive as long
as Component A is functioning. In duration of one minute, Component A will
process 5000 messages with a size of 100 bytes per message. Component A saves
or track session and configuration information related to each connection as well as
processed coordination information related to several connections in physical (RAM)
memory. This makes Component A to manage 5 to 50 MB of RAM.

9



3
Related Work

One of the most used methods of achieving availability requirement is replication of
software components. While replication is a choice for availability, handling stateful
sessions and requests at the time of switchover for SSC is an important challenge.
This thesis project is related to Wu, H. & Kemme, B. 2005 [6] and Huaigu Wu
2008 [7] which propose a replication tool that is able to handle stateful sessions
and transaction by the time the primary stateful application server (AS) replica
crashes. The proposed algorithm is based on the Enterprise JavaBean (EJB) in
J2EE architecture.The algorithm by [6,7] has client, primary, backup and fail-over
parts. Each request submitted from client to primary (server) is intercepted by client
replication algorithm and executed at current primary. State changes are recorded
at primary and propagated to the backup once transactions are committed. Upon
a failure exception, the client replication algorithm re-sends client request to the
new primary. When the primary crashes, a backup will take over and becomes
the new primary. After switchover, a client request to the primary will be checked
whether the request has recorded a corresponding response/request pair. If the client
request is recorded the new primary will respond immediately, if not the request will
be processed accordingly.
Even if the algorithm proposed by [6] address similar problem in terms of handling
stateful sessions during switchover, the assumption made by [6] and the platform in
which the tool is based is completely different with this thesis project. The algorithm
by [6] is designed mainly for transaction execution that has external database system
in which the volatile data such as session information are maintained by AS. Once
the transaction is committed the data will be saved in the external database and the
session will be disregarded. But in this thesis project, the singleton component has
no database related transaction execution. Once the connections are established, the
session information and data are maintained by RAM, and this run time information
at the RAM need to be serialized at the primary and deserialized at the backup
during switchover process. On the other hand, singleton components in RBS are
designed by using C++ based platform, unlike the tool proposed by [6] which is
based on J2EE architecture.
This thesis project is also related to [3] that proposes a schemes for both passive
and active replications that allows operations to be performed on an object while a
state is being transferred from primary to backup. In passive replication, while the
states are being transferred the primary will not stop further processing operation.
Instead, the scheme uses Replication Manager that logs a “postimage”, the value of
the updated parts of the state after update, of each update that it performs. Since
updates can be performed at the primary while states are transformed to the backup,

10



3. Related Work

the Replication manager’s first transfers the existing state and then it transfers the
postimage of the update to the new primary. The new primary will reconstruct the
state by applying the postimage to have a consistent states between the replicas.
This state transfer mechanism is conceptually similar to the thesis project except
that instead of logging the state, the primary will forward the state to the backup
and states will be queued until switchover is completed. Once switchover phase is
completed the states will be dequeued and served at the new primary.

11



4
Methodology

This section describes the methodology used, qualitative and design research, to
approach the research questions, and the motivation behind choosing this method-
ology.

4.1 Qualitative methodology

This methodology is employed for two purposes. The first is to discuss design
patterns which could help answer research question 1. The authors have reviewed
literature that provides insight into design patterns to ease switchover process. The
results are discussed on section 5.1.
The second purpose is to provide the design research. For this purpose, the authors
reviewed literature that provides insight mainly into session and state replication
techniques, and object serialization. The main objectives are to investigate the cur-
rent state-of-the-art of designing a replicated SSC and switchover mechanisms, and
to investigate open source solutions which potentially will contribute in synchro-
nization and serialization of sessions and states in C++. Section 5.2 presents the
details about the results in C++ serialization.
The authors has also conducted an interview with a senior architect within Ericsson
in order to gain some insights about pattern and technologies, which are used for
availability that can contribute to the research questions of this study.
The outcome of the study is used as an input for design research.

4.2 Design Research

The authors follow the work of [3] as a guideline to the design research. The purpose
of the design research is investigate answers to research questions 2 and 3. During
this methodology, the authors designed and implemented a best suited replication
and switchover strategy considering Ericsson’s RBS SSC, and evaluate them.

12



4. Methodology

Figure 4.1: Design research method

As can be seen in Figure 4.1 the design research consists of 4 stages.

4.2.1 Stage I (Research Clarification)
The design research starts with research clarification. The main purpose of this
activity is to understand the current architecture of Ericsson RBS SSC. The authors
accomplished this activities as follows:

• Walking through one sample SSC product and documentation, and understand
high level structure of connection sessions and component interactions.

• reviewing communication frameworks, and data communication standards to/from
SSC

4.2.2 Stage II (Descriptive study I)
In Descriptive study I activity, the authors used the outcomes of qualitative research,
research clarification activity, and an empirical analysis from interview and industry
supervisors discussion to understand the existing situation and determine the factors
which should be addressed to attain the desired situation specific to Ericsson RBS
SSC. After undertaking this activity, the authors have determined three factors that
needs to be addressed: (1) name serving of SSCs, (2) handling incoming service
requests during switchover, and (3) handling outgoing service requests (incoming
service response) during switchover.

4.2.3 Stage III(Prescriptive study)
In Prescriptive study , the authors designed detailed specific strategies, and devel-
oped a prototype based on a reference architecture (Figure 4.2). The detailed design
strategies are presented in section 5.3. Before the strategies are implemented, the
reference architecture in Figure 4.2 is implemented. EqCoord is the SSC that needs
to be “moved” from one execution environment to another during switchover. The
main responsibility of this component is to configure available equipment resources
(EqResourceR and EqResourceB) into equipment groups and report its status. Each
EqUser request for creation of its own equipment group (this is the operation which

13



4. Methodology

will trigger creation of new session). Each sessions are encapsulated by using eq-
GroupInstance object instance. The equipment resources assigned to a specific group
report their status (FAULTY, OFFLINE, OPERATIONAL) to the owning session
(eqGroupInstance). eqGroupInstance will, then, compute its group state (FAULTY,
DEGRADED, OPERATIONAL) based on the aggregated states of its equipment
resources. The eqGroupAcceptor is responsible for accepting EqUser group creation
request and creation of unique eqGroupInstance for each request (session). Once
the eqGroupInstance is created, EqUser will subscribe to group status indication
messages by directly communicating eqGroupInstance. Each eqGroupInstance are
uniquely identified in EqCoord, and are responsible for creating EqCoordBasebandR
and EqCoordRadioR. These two types of objects, EqCoordBasebandR and EqCo-
ordRadioR, are responsible in receiving and reporting the status of EqResourceB
and EqResourceR, respectively, back to the eqGroupInstance. There is one exe-
cutable for EqCoord. For each EqUser, EqResourceB, and EqResourceR, there is
one executable per instance. Each executable runs in its own process memory. For
communication between executables, Enea LINX Interprocess Communication [24]
is used. This communication platform guarantees FIFO (first-in-first-out) ordering
of messages (messages from one sender will be delivered in the order they are sent.
However, the order between different senders is not preserved). There is however a
filtering mechanism allowing the receiver to select only specific messages received.

Figure 4.2: reference architecture for prototype

14



4. Methodology

4.2.4 Stage IV (Descriptive study II)
In order to investigate the impact and evaluate the prototype, a Descriptive study
II is performed as next activity. Here, the main evaluation metric was correctness of
whether the new primary is correctly behaving as the old primary after switchover.
This is evaluated by regular test via predetermining the expected behavior during
and after switchover, and confirming if the expected behavior is observed. The
expected behavior are perceived by reading logs from the EqUser and resources.
In addition, the authors has conducted a stress test. The actions involved during
stress test were, mainly, sending a lot of resource intensive messages and observe
the behaviour.
The outcome of these evaluations lead to have iteration from Descriptive study I with
additional empirical analysis; or to have iteration from Prescriptive study where the
factors identified from the evaluation will be used to revise the prototype. Parallel
execution of the activities were performed for more efficient activity execution.

15



5
Results

This section present the results of qualitative and design research.

5.1 Design Patterns

This section describes the result of qualitative research of design patterns which
will best suit in replication and switchover of SSC replicas. The study has mainly
studied the suitability of an Ericsson In-house Pattern(EIP). EIP is hugely inspired
by Data Context Interaction (DCI) pattern [26, 27].

DCI pattern is designed for easing the complexity of object-oriented languages, such
as C++. Traditional object-oriented paradigms have a usual goal of encapsulat-
ing end user mental models with objects, while leaving algorithm implementations
spread out in different objects [26]. This leads to undesirable object cohesion and
complex object interactions. DCI’s main impact would be separation of data mod-
els encapsulating the user mental models from algorithm implementing code. Data
models are designed as simple object that will only focus on what the model is. At
run-time, the system will create a context for certain algorithm implementation (In-
teraction). The context will collect the required Data objects from memory and will
assign them roles, which will interact depending on the behavior of the algorithm
[26, 27]. Figure 5.1 shows simplified version of DCI.

16



5. Results

Figure 5.1: DCI paradagim [28]

Inspired by DCI, EIP has added some more features. As shown in Figure 5.2, it
has four main conceptual components. The service broker follows broker pattern
[29]. The broker will be responsible to publish service request/response callbacks or
endpoints. When a service request is invoked, it will define a run-time context (sim-
ilar to DCI’s context) by which service realization will be executed. The repository
component will act as a service abstraction layer for accessing data store. This is
inspired by repository pattern [30], which will enable the system to have flexibility in
terms of how the domain data entities could be stored(for instance, as list of objects,
or compressed serialized binary data of objects). Service handler component (class
or object) will be a short living run-time context execution for executing service
behavior executions. It will get the data entities required for performing behavioral
executions (DCI’s roles) from repository via service broker. For better organisation,
service handlers sharing a particular data entity object are grouped together. This
will enable repository to hold a cache (for example, object in memory) of the data
entity object, or perform blocking or queueing for a resource limited data entity
object.

17



5. Results

Figure 5.2: EIP paradagim

The authors thought EIP will ease switchover among replicas of SSC. As could be
noted, the relatively long-living objects (data entities) are not spread out in the
system, rather are kept well structured in data store. This will make easy transfer
of state information (object) among SSC replicas during switchover. In addition, it
will ease strategy design for incoming or ongoing services during switching over to
another replica.

5.2 Object Serialization Patterns

This section details object serialization technologies in C++ which are suitable for
this study. Serialization is the process of translating data structures or object state
into a format that can be stored (for example, in a file or memory buffer, or trans-
mitted across a network connection link) and reconstructed later in the same or
another computer environment [15]. The formats which are currently available in
C++ serialization alternatives are binary, ASCII, XML, and JSON.
Serialization in Java and C# is relatively easier since there is a built in support for
reflection. Reflection is the mechanism for encoding execution states as data [16]. A
programming language which supports reflection will have the ability to manipulate
this data which represents the state of the program during its own execution. In
terms of serialization, reflection allows a program to traverse members of a serialized
object and, for each member, it helps identify whether the member is a reference
and what is the type of its target [17]. Standard C++ library does not support
reflection. Therefore, serialization technologies in C++ will need to have strategies
to identify the types of pointer members in application classes during serialization.
There are four technologies which are used in C++ serialization. The technologies
are categorized into two patterns: Data structure focused and object collection
focused serialization. Each are discussed in next sub sections. The chosen technology
for prototyping and its rationale is discussed in section 5.2.3.

18



5. Results

5.2.1 Data structure focused serialization pattern
This pattern uses a generic data structure as library which could be used by ap-
plication programmers. The main objective is to abstract out complexities which
are arised due to not having reflection from application programming. Serialization
technologies will be the one which provide generic data structure and track objects
and references, so that serialization and deserialization code in application programs
could be smooth and simple. Application programs will need to specify and generate
code by using provided interfaces from the serialization technologies.
There are two serialization technologies in C++ which use this pattern. The follow-
ing subsections review the technologies.

5.2.1.1 Data Object Library

C++ Data Object Library (DOL) is a relatively old C++ library which is based
on intrusive data structures [18]. Intrusive data structures have support for bidirec-
tional, many-to-many related object entities [17]. The library has a code generator
called zzprep which will generate the required data structures during preprocessing
stage of code compilation process.
It has a support for binary and ASCII serialization formats. During binary serial-
ization, saving to disk (encoding objects to binary) is relatively fast, because there
is no formatting or massaging of data. Objects are stored as blocks of bytes. When
deserializing the objects from binary data, objects are allocated in new places in
memory, while keeping a table of their old and new address. After all objects are
read to memory, DOL walks through them, and resets the internal pointers to new
values. Although the serializing part is faster in both ASCII and binary formats,
the deserialization takes significantly longer time[17]. The library is licenced under
no-nonsense free-source licence.

5.2.1.2 Protocol Buffers

Protocol buffers are Google’s language-neutral, platform-neutral, extensible mech-
anism for serializing structured data [19]. Application programmers define data
structure in so called .proto file. A code generator will then compile .proto file to
generate code.
Serialization is done via binary wire format. Textual protocol buffer message will
be encoded to binary wire format, where a message just uses the field’s number as
the key. The name and declared type for each field can only be determined on the
decoding end by referencing the message type’s definition. This space efficiency is
possible due to the huge fact that Protocol Buffers enables C++ reflection. Protocol
Buffers is licenced under Apache 2.0 License.

5.2.2 Object collection focused serialization pattern
In this pattern, active object collection will be done, and the objects will be struc-
tured as Graph (where one or more root object(s) will be assigned) [17]. A java

19



5. Results

style Breads-first or depth-first search could be done to access the objects. Serial-
ization technologies which use this pattern usually provide an API to indicate the
root objects. The main challenge in this pattern is to make sure identical objects
are not serialized more than once, which could happen when two object referencing
pointers are pointing towards the same object.
There are two serialization technologies in C++ which use this pattern. The follow-
ing subsections review the technologies.

5.2.2.1 Boost

Boost is a collection which provides free peer-reviewed portable C++ source li-
braries, among which is Boost serialization library [17]. It supports binary, ASCII,
and XML formats. It is distributed under the Boost Software License, Version 1.0.
Application programs needs to provide serialize() function which will list members
to be stored, and invoke serialize() function of base classes. In order to make sure
objects are not serialized multiple times, Boost uses object tracking using memory
address [20]. Performing object tracking requires extra booking, since every object
need to be tracked whether it has already been serialized or not. This comes at
the cost of runtime performance and increases the code complexity of the library
considerably. It also complicates application code since it adds extra considerations
about tracking types.

5.2.2.2 Cereal

Cereal [21] is C++11 header only serialization library. Header only means it will not
add complexity during linking process [22]. It supports compact binary encoding
(binary archives will ignore name-value pairs and only serialize the values), XML,
or JSON. It also has an interface for hybrid solution of saving base64 binary data
in XML format. The binary format makes no attempt to ensure endianness across
different architectures. If data will be read on both little and big-endian machines, a
special format called portable binary should be used, which tracks the endianness of
the saving and loading machines and transforms data appropriately. It has slightly
more overhead than the regular binary format [21].
Likewise as Boost, application object will need to implement a template serialize()
function to list object members which are required to be serialized. However, unlike
Boost, Cereal fully supports serializing classes that use inheritance, via utilizing
cereal:: base-class method to cast the derived class to the base class instead of
calling serialize function directly.
Cereal doesn’t support traditional C style pointer references; rather it only supports
pointer references which are encapsulated by C++11 smart pointers. This feature
enables Cereal to not worry about object tracking techniques.
Based on experiments done by [23], Cereal has a 100% performance advantage over
Boost and Protocol Buffers. Cereal is licensed under the BSD license.

20



5. Results

5.2.3 Serialization technology choice and its rationale

The object structure in RBS SSC mostly use intensive compositional pointers. This
makes this study to mainly focus on utilizing Object collection focused serialization
pattern. The compositional pointers are created by using smart pointers. Due to its
performance advantage over Boost, Cereal is decided to be used as a serialization
technology in prototype implementation.

5.3 Prototype Design

This section describes selected replication and switchover strategies for addressing
factors identified by descriptive study I (section 4.2.2). The duration from the point
in time where the system starts preparing the current primary replica to point in time
where the used to be backup replica has become primary replica (started serving old
and new sessions) will be referred as switchover process. In general, the strategies
are designed with an assumption that there will be three phases during switchover
process: preparation, synchronization, and dequeueing phase. The strategies are
designed with the following assumptions:

• The long living sessions are expressed with the presence of the respective
eqgroupinstance for each EqUser. We can say that ‘EqUserId + EqCoordId’
is our session identifier. It is expected that the switchover activity will result
in change of session identifier. However, this do not implicate that the session
is restarted since the respective eqgroupinstance object for the session is kept
alive.

• LINX guarantees FIFO ordering of messages (messages from one sender will
be delivered in the order they are sent. However, the order between different
senders is not preserved). There is however a filtering mechanism allowing the
receiver to select only specific messages received.

5.3.1 Architectural Design Overview

The strategies are designed and implemented by considering two additional soft-
ware components to the reference architecture: a second SSC (EqCoord) replica,
and HAController. HAController component is responsible to control the phases of
switchover process. It has a dedicated interface towards both replicas (Figure 5.3).

21



5. Results

Figure 5.3: replication architecture
At any point in time one of the replicas will be in primary replica state, while the
other become in backup state. Until switchover process is initiated by HAController,
the backup replica will not receive service requests. In other words, the interface
between the replicas will be used only during switchover process.
Figure 5.4 shows a simplified run-time view of stateful sessions in normal situation,
where no switchover process is active. As pointed before, eqGroupInstance is an
object which encapsulates each stateful session with the user. Each eqGroupInstance
holds a collection of eqCoordR or eqCoordB type object, which each encapsulates
the stateful connections towards each of the configured eqResourceR or eqResourceB
resources for each user.

Figure 5.4: Run-time situation of replication architecture when the system is not
in switchover process

In such scenario, design of the switchover process needs to guarantee that all session
abstracting objects and configurations are synchronised. Such guarantees makes

22



5. Results

sure the backup replica to correctly behave and serve current active users. However,
the switchover process will need to balance two important trade-offs:

• network bandwidth usage: serialization of objects in primary replica, and send-
ing serialized binary data to backup replica. The backup replica will deserialize
and obtain objects.

• computational cost: Instead of serialization, make the backup replica to freshly
create objects by reading some configuration file.

The prototype is designed considering this trade offs. Objects, such as eqGroupIn-
stance, which are computationally costly to be recreated are serialized. On the
other hand, eqCoordR or eqCoordB type objects are designed to be recreated in the
backup replica. This effectively means, after a particular eqGroupInstance object
is successfully deserialized on backup replica, both the objects in the primary and
backup replica will subscribe for their configured resources (Figure 5.5).

Figure 5.5: Run-time situation of replication architecture when the system is
performing serialization in switchover process

However, such duplicated connections will endure higher network bandwidth usage.
Therefore, as depicted in Figure 5.6, as soon as backup replica has guaranteed
any synchronization of required data for each eqGroupInstance, stateful connections
from primary replica towards resources will be terminated.

23



5. Results

Figure 5.6: Run-time situation of replication architecture when Primary SSC
terminate session towards resources in switchover process

5.3.2 Switchover Process Phases

For simplification and management reasons, the activities in switchover process are
categorized into three phases: preparation, synchronization, and dequeueing. Figure
5.7 explains phase transitions during and after switchover process. The main goals
of each phase is indicated below:

• Preparation Phase: system state view consistency between replicas is guar-
anteed during this phase. This means, both replicas will have a consistent
view of current active stateful sessions in primary replica, including sessions
abstracting connections towards resources.

• Synchronization Phase: message consistency is guaranteed during this phase.
Please refer section 5.3.3.3 for details.

• Dequeuing Phase: This phase starts servicing queued messages from resources
while guaranteeing service consistency of the system. Please refer section
5.3.3.3 for details

24



5. Results

Figure 5.7: switchover process

The switchover process phases are controlled by control messages owned by HACon-
troller component. A sequence diagram showing general overview of the switchover
process is shown in Figure 5.8.The HAController get confirmation/rejection for the
three phases. Each proceeding phase is started after all replicas has reported about
finishing preceding phase to HAController .

25



5. Results

Figure 5.8: Switchover activity overview

5.3.3 Prototype Design Decisions
As pointed out in section 4.2.2, the prototype design during prescriptive study stage
of the design research is performed after determining the factors which need to
be addressed by the prototype. Three main factors were determined after careful
qualitative research and non-structured interviews with industry supervisors. The
following subsections clarifies each factor, and presents the design solution imple-
mented on the prototype.

5.3.3.1 Name Serving of Replicas

It is clear from the current reference architecture that, name or address of the SSC
(EqCoord) can be easily hard-coded to user process (EqUser) configurations. This
is possible since there is just one SSC process in the reference architecture. However,
as discussed in section 5.3.1, this solution can’t be used anymore since there will be
two SSC (EqCoord) replicas, whereby at any given time one of them could be the
primary.
The prototype has devised two solutions depending on the state of the system:

• At system initialization state of the reference prototype, users use the name
(address) of the primary SSC replica, which is configured on system configu-
ration file.

• Once the prototype system has initialized, it will be up to SSC replicas to
inform users having stateful sessions about change of address. During syn-
chronization phase of the switchover process, all users which have stateful
sessions in primary SSC replica will be informed by backup SSC replica to
change SSC addressing.

26



5. Results

Figure 5.9 shows the solutions in sequence diagram. The user in the prototype
(eqUser) reads configured primary SSC (EqCoord) replica name (address). Using
that address it sends service request. The user process will cache primary SSC
replica address for future communications. The cache will be updated to the soon
to be primary SSC replica address when it receives a ‘change address’ information
message from backup SSC replica, which will be primary after switchover process.

Figure 5.9: Name serving strategy

5.3.3.2 Service Request Handling

At any point in time, user processes which have stateful sessions with primary SSC
replica will request for services. The main service request operations in the reference
architecture are group creation requests and group state subscription requests. Such
requests have soft real-time properties, meaning that they shouldn’t be rejected or
take longer time than threshold service response time. The service requests can be
categorized into two:

• Non-state changing requests: service request which doesn’t cause state changes
on current sessions (eqGroupInstance objects) on primary SSC replica. For in-
stance, group creation requests [which requests for creation of a new object (eq-
GroupInstance) for encapsulating allocated resources for the requesting user],
will only result in creation of new eqGroupInstance object.

27



5. Results

• State changing requests: service request which result in state changes on cur-
rent sessions (eqGroupInstance objects) on primary SSC replica. Group state
subscription requests, for example, is made to inform the object abstracting
the session of the requesting user process that, it (the requesting user) would
like to receive push notifications whenever the aggregated allocated resources
state changes.

Enabling the primary SSC to continue serving service requests during switchover
process will have various disadvantages. One could disagree, specially for non-state
changing requests, since such requests can be allowed to be serviced by primary
SSC during preparation phase. However, this could result in non-deterministic du-
ration of preparation phase, which could affect the response time of state changing
requests. On the other hand, serving state changing requests during switchover pro-
cess will result in inconsistency of state (for group subscription request, knowledge of
whether or not the respective user has subscribed) between eqGroupInstance object
in primary and, serialized eqGroupInstance object in backup SSC.
To avoid non-deterministic duration of preparation phase and session objects in-
consistencies, service requests will not immediately be served if they are received
during switchover process. Instead, as shown on Figure 5.10, the strategy for ser-
vice requests of both types during switchover process is to seamlessly forward to
the backup SSC. During forwarding, the current primary SSC will keep the sender
address to the requesting user, so that the backup(soon to be primary) SSC will see
the service request message is sent directly to its address.

Figure 5.10: Service request handling strategy

28



5. Results

As could be seen in Figure 5.10, the backup SSC is equipped with a mechanism
which will detect and queue forwarded service requests, while actively responding to
control messages from HAController. The LINX queue guarantees service requests
are serviced in the correct order as they are received in old primary SSC, since there
is a guaranteed FIFO order during forwarding of requests from primary to backup
SSC during switchover process.

5.3.3.3 Service Response Handling

As discussed in section 4.2.3, the main use case in the reference architecture is that
each user with a configured stateful session with SSC will get allocated resources.
The SSC object (G) encapsulating a user’s session will act as a client and configure a
stateful session towards each resource allocated for a user. Each of such sessions will
be encapsulated by an object instance (R1 ... Rn). The state of each user will, thus,
be the aggregated group state, which will be computed by considering the state of all
R type object instances encapsulating stateful sessions towards configured resources
for that user. Whenever their state is changed, each configured resource will send
its current state as a service response message to configure R type object in G type
object. Figure 5.11 shows a scenario for one user with 3 allocated resources.

Figure 5.11: Object structure of one user in SSC

One could notice that the computed group state of G will depend on the arrival
time of service response messages (state update information) from the resources
(which means that there is a probability to get different G state, when we consider
R1 getting update before R2 and R2 getting update before R1). As presented in
section 5.3.1 and 5.3.2, object G will be serialized to backup SSC replica during
preparation phase of the switchover process. After successful deserialization, G will
create a fresh stateful connections towards resources to create its R type objects
(the rationale is discussed in section 5.3.1). This make each resource to have double
stateful session to each replica.
Our study has found that, such double stateful sessions will cause group state incon-
sistency for G object. This is mainly attributed to missing of total order guarantee

29



5. Results

from LINX. Total ordering guarantee that sets of service response messages from
all resources to must be delivered in the same order by both replicas [25]. Figure
5.12 explains how FIFO order from LINX would be problematic during preparation
phase. FIFO order only guarantee ordering of message between two processes. As
shown by numbers in Figure 5.12, service response messages could arrive (deliver)
in different sequence in time by the replicas. This will result in two inconsistent
group state for G in the replicas.

Figure 5.12: Inconsistency of user group state due to different message arrival on
a time unit by the replicas

In addition, even if we assume having total ordering, it is possible that before G is
successfully deserialized in the backup SSC during preparation phase, one or more
service response messages could be received on primary SSC. As shown on Figure
5.13, at time unit 1, R1 in primary SSC have received service response message
before G completed deserialization. This will cause inconsistency between group
state of G, since G in backup SSC will analyse message at time 2 relative to state of
G just before preparation phase, while G in primary SSC analyse message at time
2 relative to the resulting state of G after analysing message at time 1.

30



5. Results

Figure 5.13: Inconsistency of user group state due to missing of messages in
preparation phase

Due to time limitation, this study has mainly focused on designing strategies for se-
curing consistency considering the challenge shown in Figure 5.13. As a solution for
guaranteeing delivery of missing messages to G on backup SSC, sequence numbers
are used. Each service response message from each resource is tagged with sequence
numbers. This helps to uniquely identify each service response message by combin-
ing unique identifier of each resource with sequence numbers. Via implementing a
protocol to synchronize missing service response messages from primary to backup
SSC, consistent group state could be guaranteed.

As could be seen in Figure 5.14, when switchover process is started, primary SSC
begin to store received service response messages in a way that they could be iden-
tified. It could be seen that G on backup SSC has missed sequence number 2 from
resource X. During synchronization phase, the backup SSC informs primary the ear-
liest sequence number it has received for each resource X of each G. The primary SSC
analyses the information and synchronizes any missing service response messages to
the backup SSC. When the synchronization phase is completed and dequeueing is
started, the backup SSC pops service response messages based on their sequence
numbers. As discussed in section 5.3.1, G in primary SSC unsubscribes (terminates
stateful session) towards resources during synchronization phase.

31



5. Results

Figure 5.14: A sequence diagram to show strategies for handling missing service
response messages

5.4 Switchover Process Summary
Table 5.1 summarizes all the activities discussed in section 5.3. The backup SSC
will become officially primary SSC with NORMAL state, when all stored service
response messages are analysed. However, forwarded service requests will be served
when the backup SSC become officially primary SSC.

5.5 Prototype Evaluation Results
This section presents evaluation result of the prototype mainly in the following areas:
prototype correctness, effectiveness of object serialization, memory utilization and
scalability issues.

5.5.1 Correctness analysis
Correctness analysis is performed by predetermining the expected behaviour dur-
ing and after switchover process. In order to observe the expected behavior on
both replicas, the old primary will not terminate sessions towards resources during
synchronization phase.

32



5. Results

Table 5.1: Switchover process summary

Switchover process
phase

Primary SSC Backup SSC

Preparation
Serialization of user
session encapsulating

objects

Deserialization of user
session encapsulating

objects
Store service response

messages
Configure sessions with

resources
Forward service request

messages

Synchronization
Synching of missing
service response

messages

Synching of missing
service response

messages
Store service response

messages
Store service response

messages

Terminate sessions to
resources

Inform each user about
change of primary

address
Forward service request

messages

Dequeuing
Store service response

messages
Store service response

messages
Analyse stored service
response messages

Considering sequence
numbers

33



5. Results

For this analysis 5 groups, each having 2 EqResourceR and 2 EqResourceB resources,
are created. The primary SSC is simulated to receive 2 service response messages
from each resources, which are simulated by the backup SSC to be missed. Other
than that, a couple of service request and service response messages are performed
before, during and after switchover process. As shown in Figure 5.16, both replicas
has proved to result similar states for each group during dequeueing phase and after
switchover process is completed.

Figure 5.15: correctness test

5.5.2 Time Effectiveness of serialization and deserialization

Efficient serialization at the primary and deserialization at the backup has signif-
icant contribution on the switchover process duration; and hence it is important
to measure the time effectiveness of object serialization of the prototype. Fig 5.17
shows the relationship between objects to be serialized and deserialized versus the
time consumption. In this test the authors has increased the numbers of users i.e.
numbers of group instances connected to SSC up to 300 and observe duration of
time for object serialization and deserialization.

34



5. Results

Figure 5.16: Time Effectiveness of serialization and deserialization

5.5.3 Scalability analysis
This is the performance testing to investigate the scalability of the prototype in
terms of switchover process duration considering number of groups(user session),
memory size of each group (user session), and number of missing service response
messages.

5.5.3.1 Effect of number and size of stateful sessions

This analysis shows the relation between numbers of group versus size of each group
versus switchover duration.The analysis is done with assumption that no missing
messages are required to be synchronized during synchronization phase. By size of
each group, we mean added payload string on eqGroupAcceptor and eqGroupIn-
stance. For each group, 2 EqResouceR and 2 EqResouceB resources was assigned.
Each resource sends service response messages in an interval of 5 seconds
Fig 5.17 shows increase of the switchover process duration as the number of groups
and payload increased. There is a observable significant performance effect when
the number of groups are increased but the effect of payload within the group is
not significantly observed. Generally, the author found it difficult to determine the
pattern of payload effect on switchover duration because of unpredictable test result.
For example, when the number of group instances to be serialized are 50 and the
payload is 25 byte the switchover duration is around 4100 milliseconds; but when
the payload is increased to 3000 byte for the same number of group instances, the
switchover duration decrease to ∼ 3100 milliseconds ( but as to the author it is
supposed to increased).

35



5. Results

Figure 5.17: Effect of Groups and Payloads on Switchover durations

5.5.3.2 Effect of synchronization of missed service response messages

This analysis shows the relationship between synchronization of missing service re-
sponse messages versus switchover duration. For this analysis 5 groups are created,
each having 2 EqResouceR and 2 EqResouceB resources. To simulate the analysis,
preparation phase is started without doing serialization. By letting the Primary
to receive the required amount of service response messages (to be sent as missing
later). The switchover process will then continue with serialization, which makes the
backup SSC to request for missing messages during synchronization phase. Figure
5.19 shows the result based on the sample data i.e number of missed message up to
100 and payload up to 100 byte. Based on the result synchronizing missed message
doesn’t have significant performance effect on the prototype.

36



5. Results

Figure 5.18: Effect of Synchronizing missed message on switchover duration

5.5.4 Memory Utilization

The serialization and deserialization of objects is a computational and memory in-
tensive activity. As can be referred in Figure 5.16, the deserialization computation
will require a relatively longer computational time.

To measure the memory utilization efficiency of the prototype, the authors under-
took a test on memory utilization during serialization of objects instance. Object
can be serialized one by one or all group all-together. The result in Figure 5.20
shows that, there is a high memory consumption when serializing groups separately,
while on the contrary serializing groups all together (for example collecting groups
in a vector) reduce the memory consumption.

37



5. Results

Figure 5.19: Effect of serializing groups individually and all-together on memory

38



6
Discussion

6.1 Performance
Performing the switchover process as fast as possible in order to reduce the service
impact on SSC is one of the issue considered in design strategies of this paper.
As the number of users connected to the SSC increases, the object instances of the
corresponding user with its own data that needs to move from primary replica to
backup replica will also increases. This has its own effect on switchover process dura-
tion, and hence we need efficient way of object serialization. As discussed in Object
serialization pattern, (section 5.2), among the other object serialization technologies,
Cereal is chosen and implemented for performance and simplicity reasons.
As seen in the time effectiveness of serialization in Figure 5.16, even if the graph
grows linearly as the number of group increased for deserialization, still the overall
duration of serialization duration is reasonably acceptable . On the other had,
serializing groups (user session objects) all-together has significant improvement
on memory utilization, which indirectly improves the duration of serialization and
deserialization.

6.2 Added Functionality
It is inevitable that extending the reference architecture is required component-wise
and code-wide to implement this study’s design strategies. Component-wise, the
prototype has added two extra components (C++ 11 Executable processes), namely
backup SSC replica and HAcontroller (Figure 5.3). This two added components are
C++ 11 executable processes in which the environment will need to allocate heap
and stack memory (among others) to function correctly. Three interface units are
required also for interactions among the replicas and HAController.
To have a controlled switchover process, SSC replicas and HAController will need to
have computation and management codes. However, considering extendability and
decoupling is important in the code implementation, so that it could be easier to
modify and/or plug the design strategies in other SSCs. To satisfy such properties,
code-wise changes in SSC are performed in the following manner:

• The decision of SSC replicas to act as primary or backup is left to the run-
time system. This will help reduce code by requiring to only add state control
structures.

• Code implementations related to run-time SSC state and switchover process
management are decouple and encapsulate in separate management shared

39



6. Discussion

library. This library will be the owner of published interfaces used to commu-
nicate from/to HAController and partner replica. All computational actions
during switchover process is encapsulated in this library. In addition, it is also
home to data structures used to queue or track messages. ∼ 1000 LOC is
implemented in this library.

• An effort is made to reduce code related to Cereal on object classes. Hence,
for serealization and deserialization purposes only (∼ 5 LOC) will need to be
included in all object class headers which are planned to be serialized.

As shown on Figure 6.1, each replica (EQCOORD) will only be informed about its
state (primary or backup) at system start-up. Its state will then be managed by the
added library. This enables to add only ∼ 100 LOC on the executable main class.

Figure 6.1: Start-up state management of SSC replicas

The state oriented design has simplified the flow of execution when any message
arrive at the executable process of each SSC replica(EQCOORD) during normal or
switchover process (not normal) situation. The full state flow during run-time when
any message arrives is shown on Figure 6.2.

40



6. Discussion

Figure 6.2: Run-time state structure flow by SSC replicas

6.3 Fault Tolerance

During switchover process, as discussed in section 5.3.1, a service request message
arriving at the primary replica is directly forwarded to the backup replica. For
fault tolerant purpose, each forwarded message to the backup will also be stored in
a custom queue at the primary replica. If the backup fails to take over the duty
of primary replica during switchover process, the “old” primary will continue as a
primary by reconstructing(rollback) those message in the custom queue. Except
that, fault tolerance related implementations are not performed in the prototype
since the switchover process is assumed to be 100% successful(section 1.3).
However, extendability for fault tolerance purposes are considered during the design.
As shown on Figure 6.3, the primary SSC replica can terminate the switchover
process and start serving queued service request messages when HAController rejects
the continuation of switchover process.

41



6. Discussion

Figure 6.3: Fault management in switchover process

6.4 Memory Utilization
As mentioned in section 5.5.4, serialization and deserialization of objects are memory
intensive activities. These activities ( referred on Figure 5.17 and 5.20) require extra
memory to be allocated for storing serialized data. For example, for an SSC Replica
handling 3 groups (user sessions) without any added payload, the replica process
will require approximately 130 bytes for serialized data of the groups. In addition,
depending on the maximum size allowed for a message, one or more messages will
be required to send this data to partner replica.
In addition to messages to transport serialized data, if there are X number of re-
sources, it will need 2X messages for configuration, and X number of messages to
be used for informing about sequence numbers. An extra memory and network re-
sources will also be required to synchronise any missing service response messages
by the backup SSC replica. For managing the switchover process, about a couple of
messages will be utilized.
On the other hand, all of extra added functionalities to support the switchover
process will, in some way, have extra burden on the environment, which increase or
complicate the memory utilization.

42



7
Future Work

Given the complexities of SSCs and long-living stateful sessions, this study is a be-
gining (door opening) effort for increasing availability of such systems. The authors
strongly believe more studies will be needed in the future to attain high availability
requirements.
A main focus has been given for correctness during the prototype design, since there
is no point of making a super fast switchover as long as the replicas do not behave
correctly with consistent states. The study has proposed an architecture which has
proven correct behavior after switchover among SSC replicas. The next step with
this regard, would thus be to consider the assumptions(limitations) scoped out from
the study (section 1.3). This will require to widen the scope in ‘environment’ level
considering failure of SSC, failure of other non-singleton components, and failure of
activities in proposed switchover process. Once considering such failures, it would
be possible to measure annual system outage and availability percentile metrics.
In addition, as pointed out in section 5.3.3.3, the prototype has not considered
situations of service responses having different total order in the replicas during
preparation phase of the switchover process. Suitable design strategies would need to
be incorporated with the proposed prototype architectures if total order differences
has higher probability of happening, or if it is a critical business requirement. On
the other hand, it will be important to undertake serious efforts to find suitable
patterns to ease proposed switchover process strategies. An exemplary pattern is
researched and presented in section 5.1. The authors believe revising the study’s
proposed architecture based on EIP would greatly improve the switchover process
duration and other performance metrics.

43



8
Conclusion

Availability of systems such as Ericsson’s RBS software components are becoming
increasingly vital to have higher customer satisfaction. More specifically, availability
of SSC is very important for higher availability of the superset component, which we
call in this study ‘environment’. This is attributed to the fact that state information
and configurations of the ‘environment’ users are by design only kept in memory of
SSC process or thread. Among couple of tactics, replication is a common strategy
for attaining higher availability of software systems. This study has studied the
challenges which arose in implementing replication of SSC for high availability pur-
poses. A design research was employed to factor out critical problems which need to
be addressed via designing strategies in form of prototype. The strategies include
replication fashion, and switchover process strategies among the replicas. In addi-
tion, a qualitative research was, also, performed to find suitable patterns in easing
replication and switchover process, and to find suitable object serialization technolo-
gies. The prototype architecture resulted from the design research was found to be
successful. The replicas has performed correctly as expected after switchover, which
is very important requirement considering the nature of SSC. In addition, a range of
stress testing of the prototype has resulted in pointing out area for improvement for
more faster switchover duration. A reasonable design pattern for easing switchover
process activities were also presented as part of the study. In general, the authors
believe the prototype architecture will be an important cornerstone in securing high
availability of system containers having SSC as one component, such as Ericsson’s
RBS ‘environment’.

44



Bibliography

[1] Malkawi, M.I. 2013, "The art of software systems development: Reliability,
Availability, Maintainability, Performance (RAMP)", Human-centric Comput-
ing and Information Sciences, vol. 3, no. 1, pp. 1-17.

[2] Wiesmann, M., Pedone, F., Schiper, A., Kemme, B. & Alonso, G. 2000, "Un-
derstanding replication in databases and distributed systems", , pp. 464.

[3] Moser, L. E., Melliar-Smith, P. M. and Narasimhan, P. (1998), Consistent
object replication in the Eternal system. Theory Pract. Obj. Syst., 4: 81–92.
doi: 10.1002/(SICI)1096-9942(1998)4:2<81::AID-TAPO3>3.0.CO;2-A

[4] Kistijantoro, A.I., Morgan, G., Shrivastava, S.K. & Little, M.C. 2003, "Com-
ponent replication in distributed systems: a case study using Enterprise Java
Beans", IEEE, , pp. 89.

[5] Feng, Y., Huang, N., Liu, R. & Wu, M. 2007, "Flow Digest: A State Replication
Scheme for Stateful High Availability Cluster", IEEE, , pp. 1298.

[6] Wu, H. & Kemme, B. 2005, "Fault-tolerance for stateful application servers in
the presence of advanced transactions patterns", IEEE, , pp. 95.

[7] Wu, H. 2008, Adaptable stateful application server replication, ProQuest Dis-
sertations Publishing.

[8] Bauer, E. & Adams, R. 2012, "Service Reliability and Service Availability" in ,
1st edn, John Wiley & Sons, Hoboken, NJ, USA, pp. 29-62.

[9] Wang, Z. & Wang, D. 2013, "NCluster: Using Multiple Active Name Nodes to
Achieve High Availability for HDFS", IEEE, pp. 2291.

[10] Guerraoui, R. & Schiper, A. 1997, "Software-based replication for fault toler-
ance", Computer, vol. 30, no. 4, pp. 68-74.

[11] Infocenter.sybase.com. (2016). SyBooks Online. [online] Available at:
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.infocenter.dc00547.0600/html/eascorba/X35856.htm
[Accessed 25 Apr. 2016].

[12] Taylor, Z.& Ranganathan, S. 2013, "Fault Management Architectures" in , 1st
edn, Wiley, Hoboken, NJ, USA, pp. 377-396.

[13] Ericsson, RBS and CAT Quick Introduction, 2016.
[14] Wikipedia. (2016). LTE (telecommunication). [online] Available at:

https://en.wikipedia.org/wiki/LTE(telecommunication) [Accessed 25 Apr.
2016].

[15] Wikipedia. (2016). Serialization. [online] Available at:
https://en.wikipedia.org/wiki/Serialization [Accessed 25 Apr. 2016].

[16] Malenfant, J., Jacques, M. and Demers, F.N., 1996, April. A tutorial on behav-
ioral reflection and its implementation. In Proceedings of the Reflection (Vol.
96, pp. 1-20).

45



Bibliography

[17] Soukup, J., Macháček, P., SpringerLink (Online service), Books24x7 (e-book
collection), SpringerLink (e-book collection) & Books24x7, I. 2014;2013;, Se-
rialization and Persistent Objects: Turning Data Structures into Efficient
Databases, 2013;1;2014; edn, Springer Berlin Heidelberg, Berlin, Heidelberg.

[18] Codefarms.com. (2016). Data Object Library | New Ideas On How To De-
sign Better Software. [online] Available at: http://www.codefarms.com/dol [Ac-
cessed 25 Apr. 2016].

[19] Google Developers. (2016). Protocol Buffers | Google Developers. [online] Avail-
able at: https://developers.google.com/protocol-buffers/ [Accessed 25 Apr.
2016].

[20] Boost.org. (2016). Serialization. [online] Available at:
http://www.boost.org/doc/libs/1-52-0/libs/serialization/doc/index.html
[Accessed 25 Apr. 2016].

[21] Uscilab.github.io. (2016). cereal Docs - Main. [online] Available at:
http://uscilab.github.io/cereal/index.html [Accessed 25 Apr. 2016].

[22] Rubén Torres Bonet. (2014). An overview of data se-
rialization techniques in C++. [online] Available at:
https://rubentorresbonet.wordpress.com/2014/08/25/an-overview-of-data-
serialization-techniques-in-c/ [Accessed 25 Apr. 2016].

[23] GitHub. (2016). thekvs/cpp-serializers. [online] Available at:
https://github.com/thekvs/cpp-serializers [Accessed 25 Apr. 2016].

[24] Enea.com. (2016). Interprocess communication - Enea Software. [on-
line] Available at: http://www.enea.com/solutions/middleware/interprocess-
communication/ [Accessed 25 Apr. 2016].

[25] Défago, X., Schiper, A. & Urbán, P. 2004, "Total order broadcast and multicast
algorithms: Taxonomy and survey", ACM Computing Surveys (CSUR), vol. 36,
no. 4, pp. 372-421.

[26] Reenskaug, T. and Coplien, J.O. (1996) The DCI architec-
ture: A new vision of object-oriented programming. Available at:
http://www.artima.com/articles/dci_vision.html (Accessed: 14 April 2016).

[27] Bluemke, I. & Stepień, A. 2015, "Experiences with DCI pattern", pp. 87.
[28] Reenskaug, T., 2008. The Common Sense of Object Orientated Programming.
[29] Broker pattern (2016) in Wikipedia. Available at:

https://en.wikipedia.org/wiki/Broker_Pattern (Accessed: 17 April 2016).
[30] Microsoft (2016) The repository pattern. Available at:

https://msdn.microsoft.com/en-us/library/ff649690.aspx (Accessed: 16
April 2016).

46



A
Appendix 1

I


	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Problem Statement
	Research Question
	Project Limitation
	Report outline

	Background
	Theoretical Background 
	Availability
	Replication
	Stateful Software Component Replication

	Technical Background
	Ericsson RBS
	Ericsson RBS CAT
	Ericsson RBS CAT SSC


	Related Work
	 Methodology
	Qualitative methodology
	Design Research
	Stage I (Research Clarification)
	Stage II (Descriptive study I)
	Stage III(Prescriptive study)
	Stage IV (Descriptive study II)


	Results
	Design Patterns
	Object Serialization Patterns
	Data structure focused serialization pattern
	Data Object Library
	Protocol Buffers

	Object collection focused serialization pattern
	Boost
	Cereal

	Serialization technology choice and its rationale

	Prototype Design
	Architectural Design Overview
	Switchover Process Phases
	Prototype Design Decisions
	 Name Serving of Replicas
	Service Request Handling
	Service Response Handling


	Switchover Process Summary
	Prototype Evaluation Results
	Correctness analysis
	Time Effectiveness of serialization and deserialization
	Scalability analysis
	Effect of number and size of stateful sessions
	Effect of synchronization of missed service response messages

	Memory Utilization


	Discussion
	Performance
	 Added Functionality
	Fault Tolerance
	Memory Utilization

	Future Work
	Conclusion
	Bibliography
	Appendix 1

