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Abstract 

Recommender systems are widely discussed in literature as they provide a solution to 
problems of information overload in a variety of contexts and application areas. When 
designing such systems, there are a wide range of options regarding what algorithms, 
approaches and techniques to use. This study addresses the problem of making key design 
choices when building candidate recommender systems in the staffing industry. 
Furthermore, the impact of using a variety of metrics to measure different properties of 
recommender systems is addressed. The study applies a design research approach, at a 
company providing an online recruiting platform, in which three different candidate 
recommender systems are implemented and evaluated. The results show that by varying the 
design of a candidate recommender system, different properties, such as accuracy, coverage, 
or diversity of recommendations, can be prioritized. By combining more than one 
recommender system into a larger system, however, many of the weaknesses of applying 
any individual approach can be circumvented. Also, broadening the scope of evaluation to 
include other properties than accuracy increases the ability chose a recommender system 
that performs in a way that is aligned with the business goals. 
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1 Introduction 
Recommender systems are data analytics applications that can provide solutions in a wide 
variety of contexts and application areas where users are exposed to information overload 
(Ricci, et al., 2015; Gunawardana & Shani, 2009). Such systems filter vital information 
from large amounts of data regarding user preferences and behavior, and by doing so, it can 
predict what the user is searching for and produce recommendations accordingly (Isinkaye, 
et al., 2015). For instance, recommender systems can serve as a good complement to search 
engines when these fail to produce promising results from vast amounts of information, by 
supporting users in finding preferred items and deciding about items in a collection (Ricci, 
et al., 2015). 

The concept of recommender systems is widely discussed in the literature, and they have 
proven to be successful in various contexts and among many large information-based 
companies, such as Google, Twitter, and LinkedIn. (Al-Otaibi & Mourad, 2012; Portugal, 
et al., 2015). Since the beginning of the 2000s, the application of recommender systems has 
been profoundly researched, mainly by focusing on the design of new types of algorithms 
and techniques to produce recommendations (Gunawardana & Shani, 2009). Recommender 
systems are generally classified into content-based (CB) and collaborative filtering (CF) 
(Adomavicius, et al., 2007). The former analyzes the similarities between users and between 
items by their descriptions (Pazzani & Billsus, 2007), while the latter analyzes the similarity 
between users’ actions to produce recommendations (Ricci, et al., 2015). Alternative 
approaches such as knowledge- and demographic-based approaches (Burke, 2007), or even 
hybrid variants of all the mentioned approaches have also been studied (Adomavicius & 
Tuzhilin, 2015). As the research around recommender systems has evolved, the use of 
machine learning algorithms in these systems has become one of the main topics due to their 
potential to improve such systems (Portugal, et al., 2015). Since there are a variety of options 
and application contexts, the designer of a recommender system must make decisions about 
the most appropriate techniques and algorithms to use (Gunawardana & Shani, 2009). 

Previous research has been invested into the application of the general concepts of 
recommender systems in specific domains with the objective to test the generalizability of 
those concepts. One of the domains where recommender systems have proven useful is in 
the staffing industry, where it can aid job seekers in finding jobs that they are interested in. 
By several previous studies, it has been shown that hybrid recommender systems have 
outperformed the application of individual techniques in job recommender systems with 
regards to accuracy (Al-Otaibi & Mourad, 2012; Gupta & Garg, 2014; Hong, et al., 2013). 
Furthermore, clustering techniques for grouping users in these systems have also turned out 
to increase the accuracy and effectiveness of such systems (Hong, et al., 2013). However, 
even though research has been invested into understanding the design of recommender 
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systems in the staffing industry, few studies have investigated recommender systems that 
recommend candidates to potential employers, so-called candidate recommender systems. 

When evaluating the performance of recommender systems, there are a range of properties 
to take into consideration, such as accuracy, diversity, novelty, and serendipity 
(Gunawardana & Shani, 2015). Traditionally, research has invested much effort into 
evaluating the accuracy of predictions based on historical data by calculating precision and 
recall. Recently however, more sophisticated metrics of accuracy have been proposed that 
have received less attention in research (Powers, 2011; Schröder, et al., 2011). Furthermore, 
to our knowledge, no comprehensive theory appears to exist regarding how to measure other 
properties of recommender systems and how these properties should be prioritized in 
relation to accuracy. 

The purpose of this study is to evaluate different applications of candidate recommender 
systems. Furthermore, the aim is to assess the applied evaluation metrics in relation to how 
well they reflect the recommender system’s actual performance and business goals. 

The study is carried out through implementation and evaluation of several prototype 
recommender systems at Jappa, a Swedish start-up company providing an online recruiting 
platform. Based on that context, the following questions will be addressed: 

RQ1. What are the key design choices when building a candidate recommender 
system? 

RQ2. What are the most relevant metrics and evaluation methods for assessing the 
performance of the recommender systems in the studied domain? 

In this report, first a brief summary of related work is presented to further introduce the 
landscape of relevant research and findings for candidate recommender systems. Thereafter, 
a more extensive theoretical framework is described, exploring the concepts necessary to 
understand, implement, and evaluate data-driven recommender systems. Then, chapter 4 
explains the methodology for conducting this study. Chapter 5, describes the prototypes that 
have been implemented, and chapter 6 presents the results from the evaluation of those 
prototypes. Finally, a discussion section is presented along with the final conclusions of the 
study. 
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2 Related Work 
This chapter presents a review of the results from the most relevant work related to 
recommender systems and algorithms in the domain of staffing and job recruitment. The 
purpose is to outline the state of the art regarding techniques used for creating job 
recommendations and candidate recommendations respectively. In the end of the chapter, 
the reviewed articles are reflected upon in relation to the problems that are investigated in 
this study. 

1. From a literature review conducted by Al-Otaibi & Ykhlef (2012), it was concluded 
that recommender system technologies have achieved significant success in a broad 
range of applications and contexts.  Within job recruitment, they identified a call for 
improvement in such systems, especially in the candidate-employer matching 
mechanism. They claim that a great potential solution for satisfying these needs lies 
in the application of machine learning algorithms. It was also concluded that hybrid-
based recommender systems, using content-based and collaborative filtering 
approaches, is the best way to undertake the problem of job recommendation in 
general. They stated that this was due to the hybrid approach overcoming the 
limitations of applying any approach individually. 

2. Heap et al. (2014) investigated how a job recommender system could be designed 
to match a candidate profile by using the candidate’s previous job transitions during 
its career. This transition model approach was compared with a more common way 
of producing job recommendations to candidates, using the cosine similarity method 
to measure the suitability of a user profile towards job advertisements. The analysis 
was conducted by examining 2400 LinkedIn users, and the results yielded that the 
transition model outperformed the cosine similarity-based approach in terms of 
successful recommendations.   

3. In a research made by Gupta & Gard (2014), efforts were put on examining the 
strategy of combining the description of a user profile with user preferences and 
behavioral attributes in a hybrid recommender system using both content-based and 
collaborative filtering approaches. The user preferences served as a filter to produce 
job recommendations that excluded the irrelevant jobs for the user. In their case, 
applying these techniques implied a significant increase in prediction accuracy in 
the recommender system.  

4. In the paper of Hong et al. (2013), their investigation of different techniques in 
recommender systems also showed that a hybrid approach produced the best 
recommendations. Besides that, grouping different users using clustering techniques 
in such systems, turned out to increase the accuracy and effectiveness of the system 
that they proposed. 
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5. The research paper by Yu et al. (2011) is, to our knowledge, one of few papers that 
have investigated the application of a candidate recommender system. They 
introduced these types of recommender systems as reciprocal recommender systems 
in the field of recruitment. By combining data about users’ attributes, explicit 
preferences, and implicit preferences, these characteristics supported the 
recommender system in the calculation of similarity between entities in order to 
create recommendations. The researchers showed that applying their proposed 
system in a candidate recruitment context increased the system’s accuracy, in terms 
of precision and recall. 

Considering the research papers reviewed above, it is revealed that the use of hybrid based 
job recommender systems frequently outperforms systems that are implemented using one 
individual approach, for example, a content-based or a collaborative filtering-based 
approach. Like previous research, this study is an attempt of analyzing the performance of 
such techniques, in the specific domain as described earlier. However, there is a conceptual 
difference between most of the recommender systems that appears among literature for job 
and recruitment contexts, and the recommender systems that will examined in this study. 
Just like considered by Yu et al. (2011), instead of producing job recommendations in a 
unidirectional way, from an employer or job posting towards a candidate, this study aims at 
evaluating different algorithms producing recommendations in the opposite direction: 
recommending a candidate to an employer. This practically makes the system a candidate 
recommender system, not a job recommender system. As mentioned earlier, the research 
behind such systems is very limited, and more research is needed to understand the 
appropriate design and evaluation choices in such systems from more perspectives than 
emphasized by Yu et al. (2011).
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3 Theoretical Framework  
This chapter introduces theory from literature related to the area of this study and explores 
concepts necessary to understand, implement, and evaluate data-driven candidate 
recommender systems in the studied domain. 

First, the main concepts of data analytics are presented, and the application of recommender 
systems is defined in relation to the data analytics taxonomy. Thereafter, the main concepts 
of recommender systems, required for performing and understanding this study, are 
explained. Finally, technical aspects regarding the established methods for implementing 
and evaluating recommender systems in the studied domain are presented. 

3.1 Data Analytics 
Data analytics (DA) is the process of activities designed to collect and evaluate data to 
extract useful information (ISACA, 2011). When data sets are so large that they become 
unpractical for manual processing by humans, DA can be applied in different forms. For 
companies and other organizations, DA allows them to make better business related 
decisions (Mujawar & Joshi, 2015). 

In literature, authors normally talk about three types of data analytics: descriptive, 
predictive, and prescriptive (Isson & Hariott, 2015; Delen & Demirkan, 2013). According 
to Isson & Hariott (2015), there is a fourth type called diagnostic analytics. However, only 
the three main types of analytics will be described here, as predictive analytics already 
implicitly includes diagnostic analytics, according to Delen & Demirkan (2013). 

3.1.1 Descriptive 
Descriptive analytics is the most common and basic form of DA. The main purpose of 
descriptive analytics is to provide a static understanding of the present and the past 
(Mujawar & Joshi, 2015) by describing different knowledge patterns using statistical 
methods, e.g. the mean value or the frequency of a certain attribute in a data set. By 
condensing large amounts of data, it can then be transformed into valuable parts of 
information. Applications of descriptive analytics occur in the form of data visualization 
tools such as dashboards, scorecards, KPIs and other reporting methods (Watson, 2014).  

Applying descriptive analytics, the user seeks to aggregate data and transform it to 
information that explains the past, or the present. In other words, it aims at answering the 
following questions: 

1. What happened? 
2. What is happening? 
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For example, an HR-executive can perform retrospective analysis about how much money 
that was spent in hiring people from different occupational groups, regions, or age groups 
(or any other category) during the past years, and set it in relation to the business outcome 
of each group. Another example could, for instance, be to collect and analyze data about 
employers’ daily activities in a “real-time” similar manner, which could support HR-
divisions in their day-to-day operations and decisions. 

3.1.2 Predictive 
Predictive analytics is based on different learning methods that uses the understanding of 
the past, by uncovering relationships and patterns within large volumes of data (Eckerson, 
2007), to make predictions about future events (Mujawar & Joshi, 2015). It can, for instance, 
be applied to make predictions about customers’ behavior, or even when a factory floor 
machine is likely to break. Today, predictive analytics is mostly used within marketing for 
customer acquisition, campaign management, budgeting and forecasting models, cross 
selling etc. (Eckerson, 2007). Predictive analytics is also referred to as exploratory or 
discovery analytics (Watson, 2014). 

By analyzing the past and the present, the user can extend descriptive analytics with 
predictive analytics, which will provide him with possible answers to the questions: 

1. What will happen? 
2. Why will it happen? 

Consider the example given previously about the HR-executive in the context of descriptive 
analytics. By applying predictive analytics, the HR-executive might also predict the future 
business outcome gained from hiring people from a certain group, or the probability that a 
person will leave the company within the next months. 

3.1.3 Prescriptive 
Prescriptive analytics is the most advanced form of DA technologies (IBM Software, 2013), 
and probably the most valuable one. It uses data and mathematical algorithms to determine 
a set of high-value alternative courses-of-actions to help decision-makers perform the best 
actions given a set of desired outcomes (Delen & Demirkan, 2013). These systems can rely 
solely on data, solely on expert knowledge, or by combining both. This technique has 
commonly been studied within operations research or management sciences with the aim of 
optimizing the performance of a system (Sharda, et al., 2013).  

Systems based on prescriptive analytics often include different recommender systems, or 
systems prescribing answers to a yes/no problem. Such system can also prescribe a specific 
“amount-property” of an item, e.g., how many items that should be bought in some context. 
Prescriptive analytics-based systems can even be used for prescribing how to design a plan 
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(e.g. a production plan). The prescriptions produced from these systems can be presented in 
a report, or computer-based user-interface as in the case of a recommendation, or may be 
applied directly through an automated decision rules system, e.g. an airline pricing system 
(Sharda, et al., 2013). 

By applying prescriptive analytics, users’ behavior, decisions and actions could be 
significantly impacted, since the prescriptive system will provide users with answers to: 

1. What should I do? 
2. Why should I do it? 

Once again, consider the example of the HR-executive, in the context of predictive 
analytics. Apart from understanding the future behavior and performance of certain hires, 
the HR-executive will be advised by the system about which types of workers to hire, ideally 
preventing any irrational decisions or actions in the employment process. A high-quality 
candidate recommender system is such an application that could help to achieve this. 

3.1.4 The Relationship Between Different Types of Data Analytics 
The different types of DA are built on one another, and organizations that apply DA usually 
start with descriptive then moves to predictive and finally to prescriptive (Watson, 2014; 
IBM Software, 2013). This progression could be interpreted as an organization’s level of 
maturity in applying DA. Isson & Hariott (2015) mention predictive analytics as an enabler 
of prescriptive analytics, and that they should be used in conjunction. Their view on 
prescriptive analytics, therefore, slightly differs from the view of Watson (2014) and IBM 
Software (2013) by trying to answer the question: “What should you do, knowing what will 
happen?”. Mujawar & Joshi (2015) also emphasizes a similar view to the one of Isson & 
Hariott (2015). They claim that prescriptive analytics requires predictive analytics with two 
additional components: actionable data, and a feedback system from the actions taken. 
Considering the common theoretical frameworks, and their slight differences as described 
by different researchers and authors, our own interpretation of these concepts and 
frameworks are summarized in Figure 1. 
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Figure 1: Framework of data analytics types. 

3.1.5 Recommender Systems in Data Analytics 
Due to the technological advancement in recent years, there has been an exponential rise in 
the use of online recruitment systems (Tripathi, et al., 2016). However, these systems 
commonly suffer the problem of information overload. When search engines fail to produce 
promising results from vast amounts of information, a recommender system is an 
application of data analytics that provides a solution to the information overload problem 
(Ricci, et al., 2015). 

In general, job seekers upload their personal job profile into an online recruitment system, 
and the system then usually applies a filtering mechanism to generate a list of applicable 
jobs to the candidate. However, most of the time, these filtered job lists do not satisfy the 
job seekers needs and expectations (Tripathi, et al., 2016). For companies like Jappa that 
applies a system under the same principle, but from another perspective with employers 
searching for suitable candidates, similar problems arise. Therefore, instead of only 
applying trivial filtering techniques to produce job matchings, a recommender system will 
also take unstructured data into account, such as data derived from users’ behavior in the 
system, to produce better results. The process of building a recommender system is, 
therefore, a data analytics process of collecting, filtering, managing, and transforming data 
using different techniques to produce high-quality recommendations to users. 

3.2 The Concepts of Recommender Systems 
There are many ways to design recommender systems. Entities and recommendation 
approaches are central concepts for understanding how a recommender system is 
constructed. 
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3.2.1 Entities 
In recommender systems literature, researchers typically distinguish between two entities: 
users and items. Items are the objects, or entities, that are being recommended in the system. 
Items can vary in value and complexity and are thereby modeled differently depending on 
the domain (Ricci, et al., 2015). Typical low-complexity and low-value items are: books, 
CDs and movies while high-complexity items include: insurance policies, financial 
investments and jobs (Ricci, et al., 2015). 

A user is an entity that receives recommendations of items from the system. Whenever more 
than one user is involved in the recommendation process, the specific user that receives 
recommendations is referred to as the active user. User profiles may consist of several types 
of information (Pazzani & Billsus, 2007). Information that could be used to model a user is 
age, gender, location and profession but also information about the behavior of the user such 
as ratings and purchases.  

In the domain of this study, a user entity is an employer and an item is a candidate that is 
registered on the platform. When the term entity is used in this report, it can refer to either 
a user or an item. 

3.2.2 Approaches 
The core function of any recommender system is to predict an item that will be found useful 
by a user. The basis for recommendation, however, vary from one recommender system to 
another. There exist several taxonomies to distinguish between different approaches to build 
recommender systems. Ansari et al. (2000) identify two approaches, content-based and 
collaborative filtering, which are the most common in literature. 

A content-based recommender system provides recommendations of items based on 
similarity to other items that a user previously has shown interest in (Ricci, et al., 2015). In 
order to establish similarity of items, these types of recommender systems analyze 
descriptions of items (Pazzani & Billsus, 2007). Content-based systems are therefore not 
dependent on analyzing similarity between users’ and items’ actions or behavior in the 
system, rather it focuses on the attributes that are associated with users and items. A classic 
application of a content-based recommender system aims to match attributes of a profile 
with attributes of other profiles to provide appropriate recommendations (Ricci, et al., 
2015). In a movie database, for instance, content-based recommender systems can 
recommend movies from the same genre as a movie previously viewed or rated. In the 
domain of job seeking and recruiting, Lu et al. (2013) have attempted to create a partly 
content-based recommender system that maps similarity between candidate profiles by 
comparing their resume content. Furthermore, they calculate possible matchings between 
job seekers and jobs based on resume content that matches the job description. 
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A limitation of the content-based recommender systems is the dependence on information 
provided about the items. In many cases, there is not enough information, or attributes, 
assigned to an item to establish similarity. Without enough information, a content-based 
system will not be able to separate between items that a user does like from item that the 
user does not like (Pazzani & Billsus, 2007). Furthermore, the system often requires deep 
domain knowledge as the system developer needs to know what information is relevant to 
capture all aspects of an item (de Gemmis, et al., 2015). 

In collaborative filtering recommender systems, similarity between users is established 
by analyzing the actions that the users have performed in the system (Ricci, et al., 2015). 
That is, the system will recommend items that are liked by other users that have a similar 
purchase or rating history. In the movie database example, the collaborative filtering 
recommender system would assume that two users have similar taste if they watch the same 
movies. Then, the system would use one of the user’s preferences to create 
recommendations for the other user. Collaborative filtering is considered one of the most 
successful approaches for building recommender systems (Al-Otaibi & Mourad, 2012). The 
approach allows the recommender system to find unexpected recommendations that are not 
similar to items already viewed by the user in question (Linden, et al., 2003). As an example, 
a user can be recommended a movie from a genre they have not watched before, as 
recommendations are based on users with similar behavior of movie likings in the past. 

A limitation of recommender systems that are based on collaborative filtering is that 
historical data of user actions and interactions is often sparse, especially in new systems, 
and it can therefore be difficult to make accurate predictions. Also, even if the system has a 
large amount of data as basis for calculation of similarities, the system will struggle to 
provide reliable recommendations for new users for whom it cannot yet establish a profile 
based on behavior (Al-Otaibi & Mourad, 2012). 

Besides these two main approaches, content-based filtering and collaborative filtering, 
Burke (2007) mentions two additional approaches: demographic and knowledge-based. As 
the name suggests, demographic filtering bases recommendations on a demographic profile 
of the user. This is commonly occurring on websites that apply certain personalization based 
on language, country or age (Ricci, et al., 2015). Knowledge-based systems, on the other 
hand, uses domain knowledge on how item features meet customer needs to make 
recommendations. The similarity score in such a system can be interpreted as the utility of 
the recommendation for the user (Ricci, et al., 2015). The nature of knowledge-based 
systems implies that they work well at the beginning of deployment, but that the utility 
decreases if a learning component is not implemented. 
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When designing a recommender system, combination of different paradigms is an option to 
increase the quality of the predictions. These hybrid recommender systems use the 
advantages of one approach to avoid the disadvantages of another (Ricci, et al., 2015). In 
the above-mentioned approaches, the content-based technique’s strength of accurate 
recommendations of new items could be combined with collaborative filtering’s ability to 
learn from user behavior over time. Nilashi et al. (2015) claim that such an approach could 
achieve significant improvement in recommender systems. 

For both content-based and collaborative filtering approaches, two common sub-approaches 
can be applied: user-based or item-based recommendations. Within literature, these two 
concepts originate from the application of collaborative filtering based recommender 
system, as explained by Sarwar et al. (2001). However, we do not see reasons for solely 
including these concepts in collaborative filtering based recommender systems, since they 
are well fitted in content-based approaches as well. 

User-based recommender systems find users that are similar to the active user and then 
produce recommendations based on the preferences of those similar users. The item-based 
approach, instead, produces recommendations to the active user by finding similar items to 
those that the active user previously has expressed preferences for. 

3.3 Data Sources and Categorization 
Data is the foundation of DA (Isson & Hariott, 2015), and therefore represents the backbone 
of recommender systems. By collecting data from various sources, a recommender system 
can learn to make high-quality item suggestions to specific users. A data source could 
basically be any source providing the recommender system with data that helps it to 
determine the relevance score between a user and an item. Different sources are exploited 
depending on the context of the application. The data source to be exploited is also highly 
dependent on which recommender system technique that is used (Ricci, et al., 2015).  

Isson & Hariott (2015) states that there are six major categories of critical data for workforce 
planning analytics in the related domain of talent sourcing and acquisition: talent data, 
market data, business data, economic and industry data, labor statistics data, and university 
graduation data. In this study, the data sources and categories have been divided into two 
main categories: candidate data and employer data. They will be defined and explained in 
the following sections. 

3.3.1 Candidate Data 
Candidate data is any type of data that can describe, or directly be related to, an individual 
candidate. Candidate data is mainly collected by input from the candidate upon registration 
to an online job platform and then stored in a database. The different candidate profile input 
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fields on the platform could be of mandatory or non-mandatory type, and consist of 
candidate attributes (explained in section 3.3.3) or preferences (explained in 3.3.5). Basic 
candidate data consist of personal data about the candidate’s age, gender, education, or work 
experience etc., which provides a static description of the candidate. Additionally, data 
about candidates’ personal traits could be used to enrich the candidate data profiling, as that 
type of data constitutes crucial factors that should be considered when matching candidates 
and employers (Buettner, 2014). 

Data regarding the preferences of candidates is also important as it will provide information 
about the characteristics of a desired employer. Such data entry points could be salary level, 
industry field, or a particular job title. These preferences could for instance act as a filter 
when matching an employer, or a job, with candidates. 

In addition to the personal information and preferences provided to the system by the 
candidate, Isson & Hariott (2015) state that another source of high importance for gathering 
specific candidate information is through the publicly available data, which is not provided 
by the candidate to the online job platform. That type of data includes the digital footprint 
that a candidate leaves on the web, or social media sites like Twitter, Facebook, and 
LinkedIn. According to some studies, 50 percent of the employee attrition could be 
explained by this type of external information (Isson & Hariott, 2015). 

The third data category is transactional data, explained in section 3.3.4. This type of data 
can be collected by the data generated from automatic discovery of user behavior patterns, 
and user interactions with an employment website. This type of data collection and analysis 
is also referred to as Web mining (Srivastava, et al., 2005). The aggregated data about users’ 
transactions from different sources is said to constitute the user model which profiles the 
user candidate (Billsus & Pazzani, 1997; Fisher, 2001). 

3.3.2 Employer Data 
Like candidate data, employer data is any type of data that can describe, or directly be 
connected to, a specific employer. This data includes general company information that has 
been submitted onto the platform. Also in this case, the employer data is mainly collected 
when employers register on an online job platform and specify their company attributes and 
preferences.  A company data profile could consist of, for instance, data points about its 
industry field, geographical location, number of employees, company description keywords 
etc. A preference data point could be a candidate’s years of work experience within a job 
field, gender, or age. 
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3.3.3 Attributes 
Content-based recommendation techniques, in their simplest forms, aim at matching the 
attributes of a user profile with the attributes (and preferences) of an item profile (Ricci, et 
al., 2015). These attributes could be structured data that are explicitly typed into data entry 
fields (age, gender, industry field, company size, location etc.), or consist of keywords that 
are scanned and extracted from profile descriptions. 

Attribute data that is referred to in this study, constitute a static data set, meaning that it 
does not change frequently over time, and thus describes a static view of the user or the 
item. 

3.3.4 Transactions 
In the domain of recommender systems, Ricci et al. (2015) refer to transactions as recorded 
interactions between the user and the recommender system. In contrast to attribute and 
preference data, transactions constitute a dynamic data set, which is highly variable over 
time. They argue that such information is useful to the system when making predictions 
about possible recommendations. The most popular form of transactions that a system 
collects is ratings, either implicitly or explicitly collected (Ricci, et al., 2015). When 
collecting ratings explicitly, a user is asked to provide an opinion on items. Implicit ratings 
on the other hand, is collected by analyzing users’ actions. For example, if a user searches 
for appropriate candidates to certain a job, and then chooses to look more closely at one 
candidate from a long list, that action indicates that the user is interested in that candidate 
to some extent. Transactions can be considered an important complement to attributes and 
preferences when it comes to predicting appropriate recommendations to users, since it 
provides the system with clear indications of what the user likes and does not like. This data 
can help recommender systems to predict users’ preferences in the future. 

3.3.5 Preferences 
In the domain of the study, both candidates and employers can have explicit preferences 
expressed in their profiles regarding what types of matches they are interested in. One 
example is that a candidate can have a preference to work as a machine operator and is 
therefore not interested in job offers in the retail or warehouse sector. Felfernig et al. (2015) 
refer to this type of filtering as constraint-based recommenders, recommenders that take into 
consideration domain knowledge in the form of explicit rules about how to match users and 
items. Like attributes, preferences also belong to the static data set of a user profile. 

There are also implicit preferences, which some CF-based algorithms try to predict and base 
their recommendations on. These implicit preferences are derived from users’ interaction 
history with the system. 
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3.3.6 Context 
Traditional recommender systems have attempted to create recommendations solely based 
on models of users and items, taking characteristics and previous behavior into 
consideration. There are, however, systems that also take the concept of context into account 
to make recommendations more compelling and useful (Linas, et al., 2012). For instance, 
traditional systems might take previous ratings into account when making predictions, while 
a context-aware system would also consider contextual factors, such as time and location of 
a rating. Figure 2 shows how context can affect what item is recommended to a user. 
Without the context (in this case, the day that the user rated the item), the system would not 
be able to know whether to recommend Item B or Item D. By including the contextual 
information of previous ratings, however, the system can provide a suitable 
recommendation depending on what day it is. 

 

Figure 2: Illustration of a context-aware recommender system. 

Adomavicius & Tuzhilin (2015) exemplify this in a case of a movie theater, where a 
customer arguably would like to be recommended one type of movies when looking for 
something to watch on a Saturday night with a date, and another type of movies on a 
weekday with friends. In the domain of staffing and recruiting, a possible application for a 
context-aware system is to consider changes in demand depending on season. 

3.4 Dataset Transformation 
Machine learning algorithms often require input in the form of vectors consisting of 
numerical values. However, features that represent entities are often not numerical, which 
demands a transformation of the data set in order for it to be used in many machine learning 
algorithms. 
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A standard way of classifying text into numerical values is the bag-of-words approach 
(Attenberg, et al., 2009). That approach creates a large vector containing all textual values, 
such as every word in a text, this vector is called the dictionary. Then, each entity is 
represented by an equally large vector of numerical values. In the case of words in a text, 
each value in the entity vector would represent the number of occurrences of a word in the 
dictionary. The method solves the problem of representing textual information in a 
numerical vector with the drawback that each vector will be very sparse as most words do 
not appear in a specific text (Attenberg, et al., 2009). The same principle can be applied for 
categories instead of occurrence of words. Each entry in the dictionary is then a categorical 
value, and once transformed, the entity vector will consist of binary values indicating the 
occurrence of categorical values. 

Another technique that can be applied to represent textual, or categorical, features in a 
numerical vector is referred to as the hashing trick (Attenberg, et al., 2009). In this method, 
the dictionary is removed and instead a function is used that uses hashing to map a string to 
an integer (Ganchev & Dredze, 2008). This reduces the size of the vector but introduces the 
possibility of collisions between mappings (two different features might be randomly 
assigned the same integer). However, Ganchev & Dredze (2008) have shown that this 
approach can drastically limit the vector size with only minor impact on the accuracy of the 
learning algorithm. 

An approach to reduce the size of a vector, after having transformed it into a vector of 
numerical values, is to eliminate features through dimensionality reduction. Amatriain & 
Pujol (2015) define two problems that dimensionality reduction helps to resolve: 

1. Data sparsity, the fact that vectors are huge and mostly empty and thereby taking up 
an unnecessary amount of memory; 

2. The curse of dimensionality, the fact that distance between points in vectors become 
less meaningful as the number of dimensions increase. 

A commonly occurring algorithm to reduce dimensionality in a vector is principal 
component analysis (PCA). PCA is a statistical method to find patterns in high-
dimensionality data sets (Amatriain & Pujol, 2015). The goal of the algorithm is to find how 
much of the variance each feature contributes with. The logic is that if a feature does not 
add variance, it does not explain similarity or dissimilarity between entities and therefore it 
can be eliminated without big impact on the final recommendation. 

3.5 Algorithms and Techniques 
Producing recommendations involves applying statistical and knowledge discovery 
techniques in a database of user data (Sarwar, et al., 2000). There exists a collection of 
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established techniques and algorithms that can be applied to solve the challenges of 
producing useful recommendations to users. In this study, the solution of the problem is 
investigated by the application of different classification, clustering and nearest neighbor-
based algorithms, all which belong to the set of common machine learning (ML) algorithms 
in recommender systems. According to Portugal et al. (2015), ML is about using computers 
to simulate human learning by allowing them to identify and acquire knowledge (learn) 
from the real world. Based on that learning, a computer will improve the performance of a 
task, in this context, a recommendation. 

Depending on the learning type of the applied algorithm, it can be classified into one of four 
main categories (Portugal, et al., 2015): supervised, unsupervised, semi-supervised, and 
reinforcement learning. 

1. Supervised learning is applied when algorithms are provided a training set with input 
values that are mapped to “correct” answers. The training set and the answers are 
used to create a function that can map new input values to any of the existing labels. 

2. Unsupervised learning does not utilize a training set. Based on input data, 
unsupervised machine learning algorithms need to learn from this data set by 
themselves, as there are no “answers” in the data set as for the supervised algorithms.  

3. Semi-supervised algorithms use incomplete training sets from which predictions are 
made. 

4. Reinforcement learning is when learning algorithms produce desired results based 
on external feedback. When the algorithm performs in a certain way, it receives 
either a positive or negative feedback and adjusts its parameters accordingly. 

Through the application of classification algorithms, a model can be built to predict which 
item to recommend for a specific user (Zhang & Iyengar, 2002). In machine learning, 
classification is used to identify a category (class) to which a new entity belongs, based on 
a training data set. Classification can done be via two procedures: binary or multiclass 
classification (Har-Peled, et al., 2002). The former only involves assigning a new entity to 
one of two classes, while the latter is a question of assigning a class to a new entity when 
more than two classes are involved. In the studied domain, classification assigns a candidate 
(item), or a group of candidates, which will be the class, to an employer (user). An entity is 
represented as a feature vector, defining the properties of an entity. Every feature in the 
feature vector can be of binary, integer-valued, real-valued, ordinal, or categorical data type. 
Depending on the algorithm of implementation, discrete or continuous numeral values are 
preferred.  

In the following sections, algorithms and techniques that were implemented and evaluated 
in the study are described in more detail. Three classifiers were chosen: Bayesian, Decision 
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tree, or Nearest neighbor-based classifiers. In recommender system and machine learning 
development, they belong to a set of the most common techniques, due to their recent 
popularity and their relative low complexity in calculation and implementation (Portugal, et 
al., 2015). Clustering algorithms, used to group entities into clusters based on similarity 
(Kim & Ahn, 2008), which supports other algorithms in recommendation tasks, are also 
introduced. Finally, a certain kind of collaborative filtering technique using a user-item 
preference matrix, as described by Sarwar et al. (2000), will be also be presented. According 
to Isinkaye et al. (2015), this is the most common and mature technique for producing 
recommendations. 

3.5.1 K-Nearest Neighbor 
K-nearest neighbor (k-NN) algorithms are unsupervised algorithms, and are very popular in 
recommender systems, due to their simplicity and efficiency (Ricci, et al., 2015). These 
algorithms are applied in both content-based and collaborative-filtering approaches to 
compute and find the most similar entities of a given entity in the system. Let 𝑇 =
𝑒$, 𝑒&, … , 𝑒(  be a set of observations with 𝑒) being an entity consisting of a set of features 
𝑓$, 𝑓&, … , 𝑓(  defined as numeric values. The k-NN algorithm will take a new entity 𝑒 and 

compute the k most similar entities of 𝑒 in T using a similarity function. The results are then 
ranked, and the selected set of k most similar users are called the k-nearest neighbors. 

Common similarity functions used in k-NN algorithms for recommender systems are the 
Euclidean distance, the Cosine similarity, and the Jaccard similarity (Qamar & Gaussier, 
2012). Another popular similarity method used in CF-based recommender algorithms is the 
Pearson correlation (Hahsler, 2011).  

The distance d using the Euclidean distance between a vector 𝑒) and 𝑒  is calculated as:  

 
𝑑,-(𝑒), 𝑒) = 𝑓$ − 𝑓$

&
+ 𝑓& − 𝑓&

& + ⋯+ 𝑓( − 𝑓(
&
 Eq. 1 

When comparing the similarities between two entities, it can be more meaningful to use the 
Normalized Euclidean distance: 

 
𝑑3,- 𝑒), 𝑒 =

𝑑,- 𝑒), 𝑒
|𝑒)|

 Eq. 2 

According to some researchers, the cosine similarity should be preferred over Euclidean 
distance when dealing with non-textual data (Qamar & Gaussier, 2012).  It is calculated by 
applying the following formula: 
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𝑠𝑖𝑚89:)(; 𝑒), 𝑒 =
𝑓<𝑓<<

𝑓<&< × 𝑓<&<
 Eq. 3 

where 𝑠𝑖𝑚89:)(; 𝑒), 𝑒 ∈ [0,1] and 𝑗 being the index of the 𝑗𝑡ℎ	feature of an entity. 

When comparing vectors consisting solely of binary data, it is only interesting to consider 
the intersection of features between entities, then the Jaccard similarity is a favorable 
measure (Hahsler, 2011). It is calculated as: 

 
𝑠𝑖𝑚<G88GHI 𝑒), 𝑒 =

𝑒) ∩ 𝑒
𝑒) ∪ 𝑒

 Eq. 4 

The Jaccard similarity represents the intersection of the entities 𝑒) and 𝑒 in relation to their 
union. 

3.5.2 K-Nearest Neighbor Classifier 
K-Nearest Neighbor classifier (k-NN classifier) is one of the oldest and simplest 
classification rules (Qamar, et al., 2008). It is a non-parametric function (Ouyang, et al., 
2006), meaning that it does not involve estimation of parameters. The k-NN classifier is 
based on the regular k-NN algorithms as described in the previous section, but the two 
should not be confused. The k-NN classifier can be seen as an extension of the regular k-
NN algorithm, by adding a classification rule. K-NN classifiers identify k observations in 
the training data set that are similar to a new observation, and then assign a class to the new 
observation based on the classification of entities in the training set. More formally, that is, 
having a training data set of observations 𝑇 = 𝑒$, 𝑒&, … , 𝑒(  with 𝑒) being an entity with a 
set of features 𝑓$, 𝑓&, … , 𝑓(  defined as numerical values, and each 𝑒) belonging to a class 
𝑐, then we want to assign some class 𝑐 in T to a new observation 𝑒. For example, with 𝑘 =
1 (1-NN) we have the simplest case that finds the single nearest neighbor relative to 𝑒, then 
the class 𝑐 of the single nearest neighbor of 𝑒 will be assigned to 𝑒. 

For the general k-NN case, a class membership c is assigned to 𝑒 by applying a majority 
decision rule. For example, 𝑒 can be classified with respect to the most frequent class among 
its k-nearest neighbors. A weighting scheme can also be applied to the neighbors by giving 
them a weight, e.g., using the relation 1/𝑑, where d is the distance to a neighbor. The 
advantage of this technique is that higher values of k provide smoothing that reduces 
overfitting risks due to noise in the training data set (Ouyang, et al., 2006). In typical 
applications, a value of k in units of tens are preferable. Having a training set of size N, we 
can notice that if 𝑘 = 𝑁, the information from the independent variables will be ignored, 
and 𝑒 will be assigned the class 𝑐 that is most frequently assigned to the observations in 𝑇. 
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An appropriate value of k can be chosen by computing and comparing the error rates for 
different k-values from a training and validation data set. 

3.5.3 Naïve Bayes Classifier 
Naïve Bayes classifiers are probabilistic learning methods based on Bayes Theorem, with 
the “naïve” assumption of independence between features, meaning that one feature does 
not influence another feature. They are suitable for cases with a high input of features. 
Applying a Bayesian classifier, the probability of an entity 𝑒, representing a set of features 
𝑓$, 𝑓&, … , 𝑓( , and belonging to a class	𝑐< is computed as: 

𝑃 𝑐< 𝑒 =
𝑃 𝑐< 𝑃 𝑒 𝑐<

𝑃 𝑒  

⇔ 

𝑃 𝑐< 𝑓$, 𝑓&, … , 𝑓( =
𝑃 𝑐< 𝑃 𝑓$, 𝑓&, … , 𝑓( 𝑐<

𝑃 𝑓$, 𝑓&, … , 𝑓(
= 	
𝑃 𝑐< 𝑃 𝑓) 𝑐<(

)R$

𝑃 𝑓$, 𝑓&, … , 𝑓(
 

Since 𝑃 𝑓$, 𝑓&, … , 𝑓(  is a constant determined by the input of a given entity 𝑒, the following 
classification rule can be used: 

 
𝑃 𝑐< 𝑓$, 𝑓&, … , 𝑓( ∝ 𝑃 𝑐< 𝑃 𝑓) 𝑐<

(

)R$

 Eq. 5 

An estimation for 𝑃 𝑐<  can be computed from a training set 𝑇 of entities as: 

 𝑃 𝑐< = 𝑁8T/𝑁U Eq. 6 

where 𝑁8T is the number of entities 𝑒 in 𝑇 that belongs to a class 𝑐<, and 𝑁U the total number 

of documents in 𝑇. 𝑃 𝑓) 𝑐<  represents the frequency of a feature 𝑓) in a class 𝑐< in relation 
to the number of total features that belongs to a class 𝑐<. There are several different types of 
naïve Bayes classifiers, which mainly differs in their assumptions regarding the distribution 
of the parameter 𝑃 𝑓) 𝑐< . Three common types of naïve Bayesian classifiers used in 
machine learning are Gaussian, Multinomial, and Bernoulli-based types. 

Gaussian implements a naïve Bayesian classifier based on the assumption that the 
occurrence of features for a specific class follow a normal distribution 𝑁(𝜇WT, 𝜎WT). 

Multinomial is used for multinomially distributed data, ideally when it is interesting to 
consider how many times a feature occurs within a document that belongs to specific class. 
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Multinomial naïve Bayes algorithms implements a smoothed version of 𝑃 𝑓) 𝑐< , similar to 
the estimation of 𝑃 𝑐< = 𝑁8T/𝑁U,	to estimate a parametrized distribution represented by 

the vector 𝜃WT = (𝜃8TZ, 𝜃8T[, … , 𝜃8T\), where 𝑛 is the number of features belonging to a class 
𝑐<. The parameters 𝜃WT^ are calculated as: 

 
𝜃WT^ =

𝑁8T^ + 𝛼
𝑁U + 𝛼𝑁8T

		 Eq. 7 

Setting the parameter 𝛼 ≥ 0 will prevent zero-probabilities when a feature is not present in 
the training data. The standard value is 𝛼 = 1, and is called Laplace smoothing. 

Bernoulli is a special case of the multinomial version, and therefore employs the same 
underlying assumptions as for the multinomial classifier. However, the Bernoulli classifier 
applies the logic that every feature has a binary value in a feature vector. Instead of counting 
how many times a feature occurs, it accounts for if a feature occurs or not for a class. The 
decision rule for Bernoulli naïve Bayes is defined as follows: 

 𝑃 𝑓) 𝑐< = 𝑃 𝑖 𝑐< 𝑓) + 1 − 𝑃 𝑖 𝑐< 1 − 𝑓$  Eq. 8 

3.5.4 Decision Tree Classifier 
The decision tree classification method constructs decision trees in order to classify an 
entity, based on its set of features, to a set of predefined classes (Rokach & Maimon, 2007). 
A decision tree classifies instances, which are specific combinations of a feature set 
𝑓$, 𝑓&, … , 𝑓( , by sorting them from a root node to a leaf node that will contain the class of 

that instance (Mitchell, 1997). In other words, each node represents a feature in a feature 
vector 𝑒) and each branch from a node represents a possible value for that feature. Nodes 
and branches are created for every feature and feature value respectively, so that each vector 
can be associated with a leaf in the tree. The class of a vector is then saved in a leaf that the 
vector leads to. The basic principle is that, from a training data set 𝑇,	this process will be 
applied to every feature vector 𝑒) in 𝑇, defining all possible paths from the top root node to 
the leaf nodes. By using a training data set, decision rules can be learned from it, that predicts 
the class of a new test entity 𝑒. Each path from the root node to the leaf node corresponds 
to a conjunction of feature instances, and the tree itself a disjunction of these conjunctions 
(Mitchell, 1997). An example of a compiled decision tree classifier for a training set 𝑇;a as 
defined by Table 1 is illustrated in Figure 3. 
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Table 1: Example of a training set used as input to a decision tree algorithm. 

 

 

Figure 3: Example of a decision tree classifier. 

The decision tree in Figure 3 represents one instance generated from the training set 
example. The representation of the decision tree can be varied by choosing another feature 
for the top root node, and by branching nodes to other nodes in other possible sequences. In 
this case, the subdivision of features was made in the same order as they occur in the feature 
vector 𝑒). 

3.5.5 K-means Clustering 
K-means clustering is a partitioning method that splits a data set of items into an arbitrary 
number of k subsets so that the items in each subset are as close to each other as possible 
and as far as possible from items belonging to other subsets (Amatriain & Pujol, 2015). The 
algorithm is widely used because of its simplicity of application (Kim & Ahn, 2008). Kim 
& Ahn (2008) explain k-means in four iterative steps. 

1. K number of centroids are chosen randomly for the initial clusters. 
2. Each item is assigned to the closest centroid, thus forming k clusters. 
3. For each cluster, a new centroid is calculated based on the items in that cluster. 
4. Step 2 and 3 is repeated until the clusters stop changing or until another stop 

condition is satisfied (such as a pre-defined maximum number of iterations). 
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When the iteration is completed, each cluster is defined by its members and its final centroid 
(Amatriain & Pujol, 2015). Several different distance metrics can be used when computing 
which items are close and which items are far away from each other, such as Euclidean 
distance or cosine similarity. 

Xue et al. (2005) and O'Connor & Herlocker (1999) present two different applications of 
clustering in the context of recommender systems. Xue et al. (2005) use clustering to create 
groups of items while O'Connor & Herlocker (1999) use it as pre-processing step for 
neighborhood formation amongst users. 

3.5.6 Collaborative Filtering Algorithm Using a User-Item Preference Matrix 
The goal of CF-based techniques is to recommend unknown items for a particular user in 
the system, based on the user’s and its similar users’ previous preference data in the system. 
Sarwar, et al. (2001) apply a certain well-established approach of a collaborative-filtering 
based recommender system for achieving this goal, through a user-item preference matrix. 
Having a set of users 𝑈 = {𝑢$, 𝑢&, … , 𝑢k} and a set of items 𝐼 = {𝑖$, 𝑖&, … , 𝑖(}, each user 
vector 𝑢<	contains the user’s preferences for all items in I, while 𝑖n contains all the users’ 
preferences for it. Null valued preferences are included in both sets. A preference from a 
user 𝑢< towards an item 𝑖n is denoted as 𝑝<n. The preference scores are stored in a user-item 
matrix 𝑃 as illustrated in Figure 4, with each row representing a user 𝑢<, and each column 
representing an item 𝑖n. 

 
Figure 4: Illustration of the collaborative filtering user-item matrix. 

Through literature, user preference scores are generally referred to as ratings (Hahsler, 
2011). In this study however, they are called preferences since users’ opinions and 
interactions towards items do not necessarily need to be ratings, as in the case of movie 
recommender systems. Applying CF techniques in the context of this study, a preference is 
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a denotation that a user has explicitly expressed an interest in an item to some degree 
(preference score). The preference score can be a value according to a certain numerical 
scale, indicating the preference strength of a user towards an item, or of Boolean kind, only 
denoting if a user has had a preference or not towards an item. 

The null scored preferences of users, which are the missing values from users, normally 
constitute a large fraction of the total number of cells, since users mostly have preferred 
significantly fewer items than there are available items in the system. 

CF can be applied using either a user-based or an item-based approach, both of which are 
well-established and proven methods in recommender systems (Herlocker, et al., 2004). The 
former is based on the assumption that users with a history of similar preferences also will 
rate and prefer new items in a similar way. The latter CF approach was first introduced by 
Sarwar et al. (2001), and predicts preferences by selecting the most similar items of an active 
item 𝑖G for an active user 𝑢G. Having in mind the matrix in Figure 4, the main difference 
between the two approaches is the application of row-wise or column-wise similarity 
measures for the user-based respectively item-based approach. 

The task of the user-based collaborative filtering recommender algorithm is to predict the 
preference scores for the missing values of an unknown item set 𝐼G to an active user 𝑢G. The 
next step, as emphasized by Sarwar et al. (2001), is to rank the predicted preference scores, 
and then recommend the top-N items to the user. The prediction of preference scores is made 
by first finding the most similar users of an active user, by applying a k-NN algorithm or 
threshold criteria. Different k-NN algorithms as those described in section 3.5.1, can be 
applied. Once the set of 𝑘	most similar users 𝑁 𝑎  is found, the missing ratings of 𝐼G from 
𝑢G are computed by aggregating the preference scores from the users in 𝑁 𝑎 . The simplest 
way to aggregate a prediction preference score 𝑝Gn from a user 𝑢G  towards an unknown 
item 𝑖n, is to average the preference scores of an item 𝑖n from all the similar users, using the 
following formula: 

 	𝑝Gn =
1

𝑁 𝑎 𝑝<n
<∈3 G

	 
Eq. 9 

However, the fact that some users in the neighborhood are more similar to the active user 
than to other users, can be taken into account by introducing weights into Eq. 9 (Hahsler, 
2011) as follows: 

 	𝑝Gn =
1
𝑠G<<∈3 G

𝑝<n𝑠G<
<∈3 G

	 
Eq. 10 
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where 𝑠G< ∈ [0, 1] is the similarity value between the active user 𝑢G and a neighbor user 𝑢< 
in 𝑁 𝑎 .  

An example of the prediction procedure in a user-based approach, using 5 users and 6 items, 
is illustrated in Figure 5. Given the 5×6  users-item preference matrix below, a k-NN 
algorithm is applied to find the most similar users (grayed out rows) to the active user 
(colored row) in the matrix. 

 

Figure 5: User-based collaborative filtering example for predicting a user’s preferences for unknown 
items. 

The k-NN algorithm performs a row-wise similarity comparison of the active user 𝑢G with 
all the other users 𝑢$, 𝑢&, 𝑢h and 𝑢r in the matrix. Setting the 𝑘 = 2, the users 𝑢& and 𝑢r are 
computed as the most similar users to 𝑢G, given their user preference score vectors. The 
missing preference ratings for items 𝑖g, 𝑖r  and 𝑖tare calculated by applying the average 

preference scores method to the active user’s nearest neighbors. This implies 𝑝Gg =
&u$
&

=

1.5, 𝑝Gh =
wu&
&
= 1, and 𝑝Gt =

wuw
&
= 0, which are highlighted as bold values in the matrix. 

Given 	𝑁 = 2 , the algorithm will recommend the two items with highest predicted 
preference scores to the active user, namely item 𝑖g and 𝑖t. 

3.6 System Evaluation 
In literature, there exists a wide range of options for evaluating recommender systems. In 
some cases, a recommender system can be evaluated on basis of how well it achieves its 
overall goals (Gunawardana & Shani, 2015). For instance, a recommender system on an e-
commerce site can be evaluated by measuring the revenue of the platform, with and without 
the implemented recommendation engine. In many cases, however, it is useful to evaluate 
specific properties of recommender systems to compare the performance of different 
algorithms, or to improve properties where algorithms do not perform as well as intended 
(Gunawardana & Shani, 2015). 

In the early days of recommender systems research, much effort was invested into 
measuring the accuracy of predictions (Herlocker, et al., 2004). However, it is now widely 
agreed that while accuracy is a crucial metric, it is insufficient to serve as the only indication 
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of a good recommender system (Gunawardana & Shani, 2015). Other popular metrics, more 
recently discussed in literature include: Coverage, Serendipity, Diversity, Confidence, 
Novelty, Risk, Privacy, Scalability and Attractiveness (Pu, et al., 2011; Adomavicius & 
Tuzhilin, 2015; Gunawardana & Shani, 2015; Ge, et al., 2010). In this study, three properties 
of the systems have been evaluated: Accuracy, Coverage, and Diversity. 

3.6.1 Accuracy 
Accuracy is the most discussed property in recommender systems literature (Gunawardana 
& Shani, 2015). This is because many recommender systems are built on top of a prediction 
engine that is trying to predict whether an item will be liked or not liked by a specific user, 
and recommends items accordingly. When recommending a list of items to a user, a 
common way to calculate the accuracy is to compare the predicted items to a list of items 
that we know that the user likes. When doing such a comparison, each item can be 
categorized into a True-Positive, False-Positive, True-Negative, or False-Negative as 
showed in Table 2. Such a matrix is often referred to as a confusion matrix (Burke, et al., 
2011).  

Table 2: Confusion Matrix 

From the confusion matrix, two metrics can be calculated that indicates how well the system 
performs in terms of accuracy: 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝 Eq. 11 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑛 Eq. 12 

As can be derived from Eq. 11 and Eq. 12, precision measures the proportion of the 
recommended items that are considered useful to the user. Therefore, in systems where each 
recommendation is an investment of time or resources for the user, or where it for other 
reasons is important not to show irrelevant recommendations, the precision metric can be 
an important indication of the system’s performance. In other systems, the users might not 
mind looking through a longer list of irrelevant items before finding one that is of their 
liking. In those cases, recall can be a better choice of metric as it measures the fraction of 
items liked by the user that the recommender system is able to find. 

 Recommended Not Recommended 

Good Recommendation True Positive (tp) False Negative (fn) 

Bad Recommendation False Positive (fp) True Negative (tn) 
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When producing recommendation, the strongest recommendation, based on some criteria, 
is often the first one to be recommended. This means that the larger the list of 
recommendations is, the weaker the recommendations in the list become. So, while recall 
always increases with increased number of recommendations, precision tends to decline for 
larger values of N. Therefore, when comparing the performance of different algorithms, they 
should be compared for equal values of N (Gunawardana & Shani, 2015).  

The F-measure summarizes the precision-recall performance into a single metric and is used 
to find the harmonic mean of the equally weighted precision and recall (Ge, et al., 2010).  

 𝐹 =
2 ⋅ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙  Eq. 13 

When using the F-measure to evaluate the accuracy of different algorithms, or systems, it is 
important to notice that the metric does not take into consideration the quantity of the true 
negatives. Davis & Goadrich (2006) reflects over this fact but concludes that this is not an 
issue as long as there is a fixed number of positive and negative samples for all algorithms 
that are to be evaluated. Their logic is that if the number of positive and negative samples 
are fixed, the false negatives can be uniquely determined given the three other entries in the 
confusion matrix. However, this does not hold true when the evaluated algorithms do not 
have the same number of positive and negative samples which often is the case. 

An illustration of the problem from another context is: Say that your mission is to blindly 
pick green balls from a pool consisting of both green and red balls. In a scenario where you 
pick five balls in total, precision would measure the fraction of the balls you picked that 
were indeed green while recall would measure how many of the green balls in the pool you 
were able to find. The problem here is that without knowing how many red balls were in the 
pool to begin with, it is hard to say whether your precision and recall were good or bad.  

In order to work around this problem, Powers (2011)  proposes two complementary metrics: 
inverse precision and inverse recall. The two metrics are given by Eq. 14 and Eq. 15.  

 𝐼𝑛𝑣𝑒𝑟𝑠𝑒	𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑛

𝑓𝑛 + 𝑡𝑛 Eq. 14 

 𝐼𝑛𝑣𝑒𝑟𝑠𝑒	𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑛

𝑓𝑝 + 𝑡𝑛 Eq. 15 

Inverse precision can be expressed as the probability that an item which is not recommended 
is indeed irrelevant and inverse recall as the probability that an irrelevant item is indeed not 
recommended (Schröder, et al., 2011). In the same scenario as before, a way to paraphrase 
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your mission is to say that you are to blindly pick five balls and your mission is not to pick 
any red balls. It then makes sense to measure inverse precision as the fraction of balls left 
in the pool that is indeed red and the inverse recall as the fraction of the red balls that you 
managed not to pick. 

So, by looking at precision and inverse precision at the same time, we can evaluate how 
well the system can predict negatives or positives. In the same way, by looking at both recall 
and inverse recall we can draw conclusions of how well the system performs in terms of 
finding a user’s preferred or not preferred items. Powers (2011) suggests that precision and 
inverse precision are combined into markedness, and recall and inverse recall are combined 
into informedness as: 

 𝑀𝑎𝑟𝑘𝑒𝑑𝑛𝑒𝑠𝑠 = 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝐼𝑛𝑣𝑒𝑟𝑠𝑒	𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 − 1

=
𝑡𝑝

𝑡𝑝 + 𝑓𝑝 +	
𝑡𝑛

𝑓𝑛 + 𝑡𝑛 	− 1 Eq. 16 

 𝐼𝑛𝑓𝑜𝑟𝑚𝑒𝑑𝑛𝑒𝑠𝑠 = 𝑅𝑒𝑐𝑎𝑙𝑙	 + 𝐼𝑛𝑣𝑒𝑟𝑠𝑒	𝑅𝑒𝑐𝑎𝑙𝑙 − 1

= 	
𝑡𝑝

𝑡𝑝 + 𝑓𝑛 +	
𝑡𝑛

𝑓𝑝 + 𝑡𝑛 − 1 Eq. 17 

Finally, in an attempt to combine all aspects of accuracy into one unbiased metric, the 
Matthews correlation coefficient, MCC, combines markedness and informedness by 
calculating their geometric mean, ranging between -1 and +1. A value of +1 represents a 
perfect prediction and -1 represents a total disagreement between the observation and the 
prediction (Schröder, et al., 2011). 

 𝑀𝐶𝐶 = 	± 𝐼𝑛𝑓𝑜𝑟𝑚𝑒𝑑𝑛𝑒𝑠𝑠 ⋅ 𝑀𝑎𝑟𝑘𝑒𝑑𝑛𝑒𝑠𝑠 = 

=	
𝑡𝑝 ⋅ 𝑡𝑛 − (𝑓𝑝 ⋅ 𝑓𝑛)

𝑡𝑝 + 𝑓𝑛 𝑓𝑝 + 𝑡𝑛 𝑡𝑝 + 𝑓𝑝 (𝑓𝑛 + 𝑡𝑛)
 

Eq. 18 

Matthews correlation coefficient can be compared to the F-measure in the way that they 
strive to provide a single metric to evaluate the accuracy of predictions in a recommender 
system. MCC, however, has the advantage of avoiding the introduction of underlying biases 
into the results (Powers, 2011; Schröder, et al., 2011). 

3.6.2 Coverage 
While accuracy measures the system’s ability to predict user preferences, it is important to 
take coverage into account when evaluating the results. Some recommender systems can 
provide highly accurate recommendations, but only for a small portion of the items, often 
due to lack of data (Gunawardana & Shani, 2015). Other systems can recommend all items 
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but only to a small number of users, users that have multiple recorded interactions with the 
system. These two types of coverage are referred to as item space coverage and user space 
coverage. 

Item space coverage, also referred to as prediction coverage, can be explained as the 
proportion of available items that the system is able to recommend (Ge, et al., 2010). It can 
be calculated as:  

 𝐼𝑡𝑒𝑚	𝑠𝑝𝑎𝑐𝑒	𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =
𝐼𝑡𝑒𝑚𝑠	𝑡ℎ𝑎𝑡	𝑡ℎ𝑒	𝑠𝑦𝑠𝑡𝑒𝑚	𝑐𝑎𝑛	𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑

𝐴𝑙𝑙	𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒	𝑖𝑡𝑒𝑚𝑠  Eq. 19 

Item space coverage is highly dependent on the design of the recommendation engine (Ge, 
et al., 2010). For instance, a collaborative filtering system that requires user interaction with 
items before they can recommend them is likely to have a lower item space coverage than 
a content-based system that can recommend items based on preexisting attributes. 

User space coverage can be defined as the proportion of all users that the system can provide 
recommendations for (Gunawardana & Shani, 2015).  

𝑈𝑠𝑒𝑟	𝑠𝑝𝑎𝑐𝑒	𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =
𝑈𝑠𝑒𝑟𝑠	𝑡ℎ𝑎𝑡	𝑐𝑎𝑛	𝑟𝑒𝑐𝑒𝑖𝑣𝑒	𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛𝑠

𝐴𝑙𝑙	𝑢𝑠𝑒𝑟𝑠  Eq. 20 

Much like item space coverage, user space coverage varies with the technique and design 
of the recommender system. Once again, systems that require more user interactions to map 
behavior is more likely to have a lower user space coverage.  

There exists a potential trade-off between systems with high coverage and high accuracy 
(Gunawardana & Shani, 2015). By lowering the threshold of data required to make 
recommendations a system can increase its coverage but the accuracy is likely to suffer as 
a result. 

3.6.3 Diversity 
In general, diversity is defined as the opposite of similarity (Gunawardana & Shani, 2015). 
In the context of recommender systems, sometimes it is desirable that the system 
recommends items with high diversity when making multiple recommendations. Diversity 
is most often calculated as the sum, average, min, or max distance between item pairs in a 
list of recommendations (Gunawardana & Shani, 2015). Furthermore, Gunawardana & 
Shani (2015) state that the item-item similarity measure used to calculate the diversity can 
be different from the one possibly used to create the list of recommendations. This means 
that both algorithms that use item-item similarity when providing recommendations and 
those which do not can be compared using the same method. 
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Increased diversity may come at the expense of decreased accuracy (Zhang & Hurley, 2008) 
and, therefore, the trade-off between the two measures can be an interesting one to observe. 

3.7 Ethical Considerations 
In Sweden, processing of data is regulated by the Personal Data Act (Datainspektionen, 
1998). The intent of the Personal Data Act is to protect people against violation of personal 
integrity by processing of personal data. In this context, processing means everything one 
does with personal data, such as: collection, registration, storage, disclosure by transfer, 
compilations, or joint processing.  

The act covers processing of data, with aid from computers, of information that is directly 
or indirectly referable to a living person. The act does not, in principle, cover journalistic, 
artistic, or literary activities. Certain subsets of personal data are considered sensitive data 
and more strict regulations apply to processing of such information. Without explicit 
consent, or previous publication, it is prohibited to process data that discloses race or ethnic 
origin, political opinions, religious or philosophical convictions, membership of trade 
unions or data related to health or sexual life. Furthermore, it is prohibited for bodies other 
than authorities to process data regarding violations of laws, judgment in criminal cases, 
penal procedural coercive measures, or administrative deprivations of liberty. 

Personal data, of non-sensitive nature, may be processed with the consent of the person if: 

1. the process is lawful; 
2. the process is in accordance with good practice; 
3. the use is not incompatible with that for which the data was gathered; 
4. the process is necessary; 
5. the data is up-to-date; 
6. the data is gathered for specific purposes; 
7. and if the data is not kept for a longer period than necessary. 

In conclusion, data of non-sensitive nature may be processed with permission from the user, 
but for sensitive data, as defined by Datainspektionen (1998), more strict regulations apply. 
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4 Methodology 
The following chapter explains the research methodology used in this study. First, the 
chosen research approach is presented. Then follows a description of how the feature 
selection, algorithm selection, and model evaluation were conducted. Finally, the data set 
used for testing and evaluation is described. 

4.1 Design Research 
The most appropriate way to approach the identified problem, and answer the research 
questions is by conducting a design study. Design science is a part of the information 
systems research cycle that creates and evaluates IT artifacts intended to solve identified 
organizational problems (Hevner, et al., 2004). The key difference between a design 
research study and routine design of applications and systems is the identification of a 
contribution to the archival knowledge base of foundations and methodologies (Hevner, et 
al., 2004), in this case the application of recommender systems. 

  

Figure 6: Overview of research approach based on a framework for design research studies by 
Hevner et. al (2004, p.80). 

Hevner et al. (2004) suggest a framework for conducting design science research. An 
adoption of this framework is shown in Figure 6. By combining existing knowledge from 
relevant research with the identified business need, a prototype can be developed and 
evaluated. The results can then be applied in the organization and contribute to the existing 
knowledge base. By performing a literature review of relevant research and best practices 
in similar domains, the existing knowledge base will serve as basis for how a prototype can 
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be developed. This is an important part of the study, as rigor in design research is achieved 
by applying existing foundations and methodologies (Hevner, et al., 2004). 

The business need behind the research topic is investigated at a Swedish start-up company 
called Jappa. As a company in the staffing industry who provides an online recruiting 
platform, Jappa has identified potential benefits of implementing a candidate recommender 
system. 

The review of the existing knowledge base and environmental factors indicated that the 
remaining part of the study could be divided into three parts: feature selection, algorithm 
selection, and model evaluation. In order to quickly identify risks and difficult parts of 
developing a prototype (Ries, 2011), a minimum viable product (MVP), was created early 
in the project. The MVP was then incrementally extended until a final prototype was ready 
for final evaluation.  

4.2 Feature Selection 
In this study, the feature selection was carried out in three phases in order to exhaustively 
collect all features that could be used to define the entities used in the recommender system. 
The first phase was an inspection of the company’s service that was carried out to 
understand what information the employers and candidates passed on to the system and 
what interactions with the system that could be recorded as a basis for recommendation. 
The second phase was an inspection of the database where all currently existing data was 
stored. The third phase was a workshop designed as a brainstorming session including eight 
employees of the company. The participants in the workshop were three developers, two 
members of the sales organization, a project manager, a business developer and the vice 
president of the company. The intention was to further extend the list of possible features, 
not limited to data that Jappa were collecting at the time, and without consideration taken 
to how difficult the data would be to collect. 

When an exhaustive list of possible features had been compiled, all features were labeled 
using the following coding: 

1. the entity the feature was associated with; 
2. whether the feature was an attribute, preference or a transaction; 
3. whether data about the feature was collected today; 
4. whether data about the feature could be collected automatically or must be entered 

manually into the system; 
5. and whether the feature was categorical, numerical, boolean, or textual type. 

A complete list of the collected features can be found in Appendix A (candidate features) 
and Appendix B (employer features). A limited set of features was selected for the 
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development of an MVP.  Initially, three features were selected to represent each entity, 
with consideration taken to the availability of data and ease of implementation. Features 
with high availability of data were features that were already collected and stored in a 
database, and that had a high volume of entries. Features that were considered easy to 
implement were features that did not require a high degree of preprocessing. After the MVP 
had been implemented, additional features were added incrementally, once again with 
consideration taken to the availability of data, ease of implementation and relevance to 
recommendations. 

4.3 Algorithm Selection 
Since the purpose of this study was to evaluate different implementations of recommender 
systems, as a way of increasing the knowledge of applying such techniques in the domain, 
a set of interesting algorithms and techniques had to be selected for implementation and 
evaluation. Algorithm selection requires an understanding of the factors that affect the 
performance of an algorithm on a specific problem in order to make the decisions that the 
algorithm selection problem requires (Kotthoff, et al., 2012). 

The selection was conducted by identifying and selecting a handful set of different 
algorithms though as having a reasonable application potential within the scope of the study. 
It was conducted by identifying the most common algorithms and techniques used in 
recommender systems from a general perspective across different domains. The systematic 
review studies by Portugal et al. (2015) and Jannach et al. (2012), which investigate existing 
trends and application areas of recommender algorithms, provided directions for defining 
the scope of interesting algorithms to be studied. 

The following algorithms and techniques were chosen: a naïve Bayes classifier, a decision 
tree classifier, a k-means clustering algorithm, and a nearest neighbor-based algorithm. The 
algorithms were applied in different content-based, collaborative filtering, or hybrid 
approaches when building the recommender systems. Through the set of selected algorithms 
and techniques, the following recommender systems were implemented: 

1. System 1. A hybrid recommender system combining CB and CF approaches using 
both item- and user-based techniques. A clustering algorithm is used to categorize 
similar items into clusters and a classifier is then used to predict the most appropriate 
cluster for the active user, based on preferences of similar users.  

2. System 2. A hybrid and pure item-based recommender system. An item, previously 
preferred by the user, is chosen and a neighborhood algorithm is then applied to find 
similar items that can be recommended to the user. 
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3. System 3. A pure CF and user-based recommender system using a user-item 
preference matrix. A cosine similarity function is used for comparing the similarity 
of users. 

4.4 Model Evaluation 
In this study, two types of experiments were performed to evaluate the performance of the 
different recommender systems, offline experiments and a user study.  

An offline experiment is a relatively inexpensive way of evaluating recommender systems, 
typically evaluating systems based on historical data of recorded user interactions with the 
system (Gunawardana & Shani, 2009). The drawback of offline experiments is that they 
cannot directly measure the perceived quality of evaluations from a user perspective. 
Gunawardana & Shani (2015) state that offline experiments typically answer a very limited 
set of questions and that the goal of such experiments, therefore, should be to filter out 
inappropriate approaches, leaving a smaller set of algorithms to be tested by user studies. 

User studies are conducted by recruiting test subjects and letting them interact with the 
recommender system while recording behavior or asking qualitative questions regarding the 
system’s performance (Gunawardana & Shani, 2015). User studies are expensive to 
conduct, but in return, assumptions about user preferences is not necessary, as it is in offline 
experiments (Gunawardana & Shani, 2015). 

4.4.1 Offline Experiments 
To evaluate different algorithms using offline experiments, the established method of 
dividing the data set into a training set 𝑇�HG)()(�  and a test set 𝑇�;:�   was applied when 
evaluating the recommender systems, as proposed by several studies (Hahsler, 2011; 
Sarwar, et al., 2001; Herlocker, et al., 2004). The training/test data set ratio during the 
evaluation experiments was chosen to 2/1. Given that training/test data set proportion, 
training and test data sets were randomly selected, and the algorithms were executed to 
produce a list of top-N recommendation items based on the training set from which the 
model was built on. 

The evaluation procedure was executed in 10 replications for every algorithm and 
configuration (algorithm parameter settings), due to the randomness associated with each 
evaluation. The results from the 10 replications were aggregated to compute the mean score 
of the applied offline metrics: Accuracy, Coverage and Diversity.  

As described in section 3.6.1, in order to apply metrics for measuring the accuracy, a 
confusion matrix must be created for each test user that receives recommendations from the 
system. A recommendation was categorized as a good recommendation (preferred) if the 
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user previously had expressed some kind of preference for the candidate. The criteria for if 
a user had expressed an explicit preference for an item were if a user had: 1) bookmarked a 
candidate; 2) booked a meeting with a candidate; 3) sent a job offer to a candidate; or 4) 
hired a candidate. For every test user, the components of the confusion matrix shown in 
Table 3 were calculated. 

Table 3: Confusion matrix used in offline experiments. 

For each recommender system and test user, a list of N recommendations was produced with 
N varying between 1 and 10. The list of recommendations Cr was then compared to a 
validation set, consisting of a set of candidates Cp that the test user previously had expressed 
preferences for, and which were not used for building the models. The quadrants in the 
confusion matrix can be calculated by the following equations: 

 𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 = 𝐶H ∩ 𝐶� Eq. 21 

 𝐹𝑎𝑙𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 = 𝐶H − 𝐶� Eq. 22 

 𝐹𝑎𝑙𝑠𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 = 𝐶� − 𝐶H Eq. 23 

 𝑇𝑟𝑢𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 = 𝐴𝑙𝑙	𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑏𝑙𝑒	𝑖𝑡𝑒𝑚𝑠 − (𝑡𝑝 + 𝑓𝑝 + 𝑡𝑛) Eq. 24 

From the resulting confusion matrix, the precision, inverse precision, recall, inverse recall 
and the Matthews correlation coefficient was calculated for each user. Finally, for each 
system, the average of each metric was calculated at every value of N. 

The item space coverage and user space coverage for each system were calculated using the 
formulas presented in section 3.6.2. 

The diversity was calculated, for each value of N, using the normalized Euclidean distance 
between all pairs of recommended candidates. Each feature of the items was transformed to 
a value in the range [0,1] so that each feature would contribute equally to the Euclidean 
distance between each pair. The diversity in a list containing a single recommendation (N = 
1) will, therefore, be 0. 

 Recommended Not Recommended 

Preferred True Positive (tp) False Negative (fn) 

Not Preferred False Positive (fp) True Negative (tn) 
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4.4.2 User Study 
The user study involved four users who were all familiar with Jappa’s platform. A unique 
questionnaire was then created for every user. The questionnaire contained links to a number 
of candidate profiles on Jappa’s platform and the user was prompted to rate the relevance 
of each candidate based on the content of that profile. The rating was an ordinal scale from 
1 to 4, 1 indicating that the candidate was “not at all relevant” and 4 indicating that the 
candidate was “very relevant”.  

Each system recommended four candidates, with whom the company had had no earlier 
interactions, and for each system, another four candidates that the system had not 
recommended were randomly chosen. Therefore, in total 24 candidates were presented to 
each user. If a user did not meet the requirements necessary to receive four 
recommendations from a system, that user received a shorter list of recommendations. 
Based on the ratings provided by each user, a confusion matrix was created, as shown in 
Table 4, and each candidate in the questionnaire was categorized into one of the four 
quadrants. 

Table 4: Confusion matrix used in user studies. 

From the resulting confusion matrix, the precision, inverse precision, recall, inverse recall 
and the Matthews correlation coefficient was calculated for each user, as in the case of the 
offline experiments.  

4.5 The Data Set 
The experimental data used for building the models and performing the evaluations were 
solely based on data from a database snapshot of Jappa’s online platform for candidate 
recruitment (www.jappa.jobs). The data was filtered, transformed, and transferred to an ad-
hoc Elasticsearch database, containing only the required data for performing this study. The 
ad-hoc database consisted of 11 249 employee and 226 employer data profiles at the time 
of the evaluations. The selected data set was the result of the conducted feature selection 
phase as described in section 4.2. In Table 4, the elements of candidates’ and employers’ 
data profiles that were used are described. 

  

 Recommended Not Recommended 

Rated 3-4 True Positive (tp) False Negative (fn) 

Rated 1-2 False Positive (fp) True Negative (tn) 
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Table 5:Overview of Candidates' and employers' data profiles. 
Profile Data 
Candidate Industry affiliation, Age, Education, Work Availability (day, night, 

evening, weekend), Rating, Driver License, Truck license, Years of 
experience 

Employer Search behavior (city, region, industry), Location (city), Industry affiliation, 
Salary history, Bookmarking, Job offerings, Previous hiring   
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5 Implementation 
All algorithms in this study were implemented using Scikit-learn, a collection of machine 
learning libraries for Python. Scikit-learn is built on NumPy, SciPy and matplotlib, popular 
Python libraries for scientific and mathematical computing and visualization. Scikit-learn 
contains tools for classification, regression, clustering, data pre-processing, dimensionality 
reduction and model evaluation. 

Three recommender systems were implemented and each type had several variations. The 
following sections explain each system and the difference in implementation that existed 
within each type. For a more detailed explanation of how the algorithms were configured, 
see Appendix C. 

5.1 System 1 
The first system uses a collaborative filtering approach in combination with a content-based 
approach to produce recommendations. It also combines user-based and item-based 
techniques. The system starts by clustering all available items into k number of clusters, 
based on similarity of the item features shown in Table 6. Thereafter, a bridge is used to 
map each user, in a list of users, to clusters. An example of a bridge can be that a user has 
hired a candidate that belongs to a certain cluster, identified by a cluster number in the range 
[1 – k]. A classification algorithm is then used to predict the most appropriate cluster for the 
active user. From the predicted cluster, N number of recommendations is chosen based on 
an attribute that is introduced as profileStrength. Profile strength is a score associated with 
each user based on the completeness of their profile on the platform. An overview of how 
System 1 works can be seen in Figure 7.  

   

Figure 7: Overview of System 1. 
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In the system, both users and items are represented in vector forms, where each vector 
represents a set of features associated with either a user or an item. The features used to 
describe a user and an item can be found in Table 6 and Table 7 respectively. Both the user 
vectors and the item vectors consist of a combination of attribute features and transactional 
features. In this system, the transactional information has been aggregated into features that 
represent a behavior. For instance, locational search history of an employer has been 
aggregated to mostSearchedCity. This differs from the approach used in System 3 where, 
for a type of action, all transactions are taken into account when modeling a behavior.  

The vectors are two-dimensional as some features can contain multiple values. For instance, 
an item can belong to more than one industry and can have more than one type of driving 
license while a user can have a mean wage for more than one industry. However, before the 
vectors can be used to train a classifier or clustering algorithm they must be transformed 
into one-dimensional vectors containing only numerical values. In this implementation, the 
bag-of-word approach is used for transformation as described in section 3.4. 

Table 6: Item features. 

The item vectors are used for partitioning all items into k number of clusters. The k-means 
clustering algorithm takes a set of all items in vector form and creates an optimal partitioning 
as described in section 3.5.5. When evaluating the system, three different values of k were 
tested: 60, 100 and 140. 

As described above, a list of users is selected that have some connection to a candidate in a 
cluster via a bridge. Just as the number of clusters varied, the bridge used for this association 
also varied. Bridges used in the experiments were bookmarks, booked meetings, sent job 
offers and hires of candidates. Variants of the system were evaluated by implementing one 
of these bridges individually, or by combining them into a single bridge. A user could appear 

Feature Name Feature Type Data Type 
Industries Attribute Categorical 

Age Attribute Numerical 

upperSecondaryEducation Attribute Boolean 
universityEducation Attribute Boolean 

worksDay Attribute Boolean 
worksNight Attribute Boolean 

worksEvening Attribute Boolean 
totalAvailability Attribute Numerical 
averageRating Transaction Numerical 

drivingLicenses Attribute Categorical 
truckLicenses Attribute Categorical 

yearsOfExperience Attribute Numerical 
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more than one time in the list if he or she had expressed preferences for several candidates. 
An example of how such a mapping, via a bridge, could look is shown in Figure 8. 

  

Figure 8: User-Cluster mapping via a bookmark bridge. 

The mapping from a user to a cluster is then used to train a classifier so that the classifier 
will be able to make predictions regarding what cluster a certain user will prefer. Three 
different classifiers were used in the experiments: k-nearest neighbor, decision tree, and 
naïve Bayesian. Each user was represented by a vector 𝑢) containing the features described 
in Table 7, and each cluster was represented by the cluster number 𝑐< assigned by the k-
means algorithm. 

Table 7: User features. 

In conclusion, when the system makes a recommendation for an active user ua, the 
classification algorithm first chooses an appropriate cluster based on the preferences of other 
similar users. Then N number of recommendations are chosen from the cluster given by the 
classification algorithm. In the offline evaluation, 45 variants of this system were tested, 
testing every combination of number of clusters (60, 100, 140), bridges (bookmark, 
meeting, job offer, job), and classification algorithms (k-nearest neighbor, decision dree, 
naïve Bayesian). 

5.2 System 2 
The second system is also a hybrid system; it uses a collaborative filtering approach in 
combination with a content-based approach to make recommendations. It uses a purely item 
based technique, not taking similarity between users into consideration. From an active user 
𝑢G , a bridge is used to select an active item 𝑖G , and then N number of items that are 

! = {$%,$', $(,… ,$*}

, = {-%,-', -(,… , -*}

Bridge	=	Bookmark

Feature Name Feature Type Data Type 
mostSearchedIndustry Transaction Categorical 

mostSearchedCity Transaction Categorical 
city Attribute Categorical 

mostSearchedIndustry Transaction Categorical 
meanWagePerIndustry Transaction Numerical 

industries Attribute Categorical 
poolsCreated Transaction Categorical 
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considered similar to the active item is recommended to the active user. An overview of 
how the system works can be displayed in Figure 9. 

 

Figure 9: Overview of System 2. 

The idea behind this algorithm is to select an active item that the active user has expressed 
a preference for in the past. In the experiments, five different bridges were used to select the 
active item: 

1. a random candidate that the user had bookmarked; 
2. the candidate that the user had booked the most meetings with; 
3. the candidate that the user had sent most job offers to; 
4. the candidate that the user had hired most times; 
1. and a combination of all bridges where the strongest available indication of 

preference was chosen for each user. A hire was considered the strongest preference, 
then job offer, then booked meeting, and finally a bookmark.  

When an item has been selected, the k-nearest neighbor algorithm is used to create a 
neighborhood of items based on item similarity. The neighborhood is constructed using the 
brute force version of the k-NN algorithm, which means that similarity is calculated for 
every pair of items. The features that are used to describe an item can be seen in Table 8. 
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Table 8: Item features. 

As in the case of System 1, each item was represented in the form of a vector that was 
transformed into a one-dimensional numerical vector using the bag-of-words approach 
described in section 3.4. When calculating distances between vectors, standardized 
Euclidean distance was used as the distance metric. When producing the recommendations, 
the k nearest neighbors of the active item were selected and recommended to the active user.  

5.3 System 3 
The third system is a “pure” collaborative filtering system based on the principle of using a 
user-item preference matrix as described in section 3.5.6. The chosen implementation was 
a user-based version of the system. The possibility of successfully implementing an item-
based version of this CF system was discarded due to data sparsity problem in this case, 
since that approach would have required that every item (candidate) would have been 
preferred by many companies, which was not the case in this study. In other words, it is 
more likely that a company has preferences towards many items than many companies 
having preferences towards a single item, why the user-based approach was more 
preferable. 

As described in section 3.5.6, first a user-item preference matrix is built in the system. The 
criteria for a user being part of the matrix was that it had at least one preference data point. 
A preference in the matrix is defined in terms of a preference score on an ordinal scale from 
1-4. The value of each preference score corresponds to an explicitly expressed user 
preference per the criteria defined in section 4.4.1 and is showed in Table 9. 

  

Feature Name Feature Type Data Type 
Industries Attribute Categorical 

Age Attribute Numerical 

upperSecondaryEducation Attribute Boolean 
universityEducation Attribute Boolean 

worksDay Attribute Boolean 
worksNight Attribute Boolean 

worksEvening Attribute Boolean 
totalAvailability Attribute Numerical 
averageRating Transaction Numerical 

drivingLicenses Attribute Categorical 
truckLicenses Attribute Categorical 

yearsOfExperience Attribute Numerical 
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Table 9: Scores assigned for different types of preferences. 

A simplified version of the implemented user-item preference matrix is illustrated in Figure 
10. Note that the preference scores in Figure 10 do not represent the real data values in the 
system, but is only used for demonstration purposes. 

 

Figure 10: User-item preference matrix for the implemented system. 

The cosine similarity function that computes weighted similarity is applied for performing 
the row-wise comparison of the user vectors, using the brute force method (computing 
similarity with all other users in the matrix). The parameters to be determined include the 
k-value, the number of most similar users to make predictions from, and the N-value, 
defining the length of the recommendation list to a user. 

Preference 
ID Preference Criterion Preference 

Score 
1 Has bookmarked employee 1.0 

2 Has sent meeting request to 
employee 2.0 

3 Has sent job offer to employee 3.0 
4 Has hired employee 4.0 
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6 Results 
This chapter presents the results from the conducted evaluations of the implemented systems 
and their variants. First, the results from the offline experiments are presented for each 
system and its variants, followed by the results of user study. Key results from the two 
evaluation methods are then emphasized in a separate section, comparing the theoretical 
results of the offline metrics with the empirical results of the user tests. Finally, the research 
questions of the study are addressed in the light of the presented results. 

6.1 Offline Tests 
In this section, the results from the offline experiments evaluating System 1, 2, and 3 are 
presented in separate sections for each system. It is then followed by a summarizing section 
comparing the results from all the system evaluations. Within each system, different variants 
are evaluated and compared to each other. 

All systems were evaluated using the common offline metric framework presented in 
section 4.4.1. However, depending on the type of system, specific validation procedures had 
to be performed to avoid biases in the evaluation. The systems’ specific evaluation 
procedures are described in the beginning of each system’s evaluation section. As a recap, 
three properties were evaluated for each system: accuracy, coverage, and diversity. The 
metrics used for measuring accuracy were precision, inverse precision, recall, inverse recall 
and the MCC. Item space coverage and user space coverage were used for measuring 
coverage, and diversity was measured as the standardized Euclidean distance between the 
recommended items’ in vector form.  

6.1.1 System 1 
To avoid biases in the classification and prediction of users’ cluster preferences, a training 
set of users 𝑇UHG)()(� = 𝑢$, 𝑢&, … , 𝑢(  with the corresponding training set of clusters 
𝐶UHG)()(� = 𝑐$, 𝑐, … , 𝑐(  were used to train model. The system was then evaluated using 
users from a test set 𝑇U;:� = 𝑢$, 𝑢&, … , 𝑢k . 230 users were included in the test and training 
set. 

In total, 45 variants of System 1 were evaluated. The number of variants was given by the 
combination of: the number of clusters, the classification model, and the bridge that were 
used.  
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#𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑠 =
140
100
60

×
𝐾𝑁𝑁

	𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛	𝑇𝑟𝑒𝑒
𝑁𝑎ï𝑣𝑒	𝐵𝑎𝑦𝑒𝑠

	 ×

	𝑏𝑜𝑜𝑘𝑚𝑎𝑟𝑘	
𝑚𝑒𝑒𝑡𝑖𝑛𝑔
𝑗𝑜𝑏	𝑜𝑓𝑓𝑒𝑟
ℎ𝑖𝑟𝑒
∗

= 45 Eq. 25 

The configurations for the five best performers, according to the MCC are displayed in 
Table 10. Out of the five best performers, all variants divided the items into 100 clusters, 
while both the bridge and classifier varied. The k-NN classifier, however, was the most 
frequently occurring classification model amongst the best performing variants. 

Table 10: Configurations for five best performers in the Matthews correlation metric. 

Figure 11 displays the Matthew correlation coefficient for every value of N for the variants 
1.1 – 1.5. The results show that there is very little variation, both between the variants and 
between the different numbers of recommendations. All variants lie between 0 and 0,08 for 
all values of 𝑁. For different values of N, different variants of the system have the best 
accuracy. Variant 1.3 however, has the best accuracy for all 𝑁 > 4.  

 
Figure 11: Matthews correlation coefficient for the five best performing variants.  
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Variant 1.2 100 K-Nearest Neighbor Job 
Variant 1.3 100 Naïve Bayes Meeting 
Variant 1.4 100 K-Nearest Neighbor * 
Variant 1.5 100 K-Nearest Neighbor Job Offer 
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Figure 12 shows the precision and inverse precision for variants 1.1 – 1.5, indicating how 
well the variants predict the preferences of a user.  

 

 
Figure 12: Precision and inverse precision for variants 1.1 – 1.5. 

The precision varies amongst variants, with variant 1.3 having the highest score for all 
values of N. A trend can be spotted, indicating that the precision slightly declines for higher 
values of N, this is true for all variants. The inverse precision is close to 100% for all variants 
of the system, a result of many negative samples in relation to N. That is, only a small 
number of recommendations are being produced in relation to the total number of available 
items. A similar pattern can be seen in Figure 13, which shows the recall and inverse recall 
for the same variants. The large number of negative samples in relation to N causes a low 
recall and high inverse recall for all variants. When looking at the scores in tabular form, a 
trend of increased recall and decreased inverse recall with higher number of N is prominent. 
Furthermore, it becomes visible that 1.2, 1.4 and 1.5 outperform the others in recall while 
performing equally well in inverse recall. 

 

 
Figure 13: Recall and inverse recall for variants 1.1 – 1.5.  

Table 11 shows the variants’ user space coverage and item space coverage. Due to the usage 
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are 100%, independently of which configuration that is used. The result is not surprising as 
for every user, a cluster can be predicted based on similarity to other users and every item 
belongs to a cluster. 

Table 11: User space coverage and item space coverage for variants 1.1 – 1.5. 

Figure 14 shows the diversity in the produced recommendations for every variant. Two 
things can be noticed in the graph. Firstly, there is very little difference in diversity between 
the system variants and secondly, the diversity seems to be higher for smaller values of N. 

 
Figure 14: Diversity of recommendations for variants 1.1 – 1.5. 

6.1.2 System 2 
Five variants of System 2 were tested and evaluated. The five variants were evaluated for 
all 230 users in the system. The varying factor was how the active item was selected. As 
described in section 5.2, the active item is always selected based on the user’s earlier 
preferences, however, the type of preferences taken into account varied. The configurations 
of the different system variants are shown in Table 12. 
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Variant 1.2 100% 100% 
Variant 1.3 100% 100% 
Variant 1.4 100% 100% 
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Table 12: Configurations for the five variants of System 2. 

The Matthews correlation coefficient for all five variants and are shown in Figure 15. As in 
the case of System 1, the MCC varies only slightly depending on which variant of the system 
that is tested or the number of recommendations that are produced. The metric is between 0 
and 0,06 for all variants. The graph indicates that variants 2.3 and 2.4 performs better than 
other variants for values of N > 4.  

 
Figure 15: Matthews correlation coefficient for all five variants 2.1 – 2.5. 

The precision and inverse precision curves, shown in Figure 16, show that variant 2.3 and 
variant 2.4 have the best performance in terms of precision while all variants perform well 
in inverse precision due to the large number of negative samples in relation to N. 
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Figure 16: Precision and inverse precision for variant 2.1 – 2.5. 

Recall and inverse recall, shown in Figure 17, are again heavily influenced by the high 
number of negative samples. However, when looking more closely at the results, variant 2.3 
and variant 2.4 performs better in the recall metric, especially for values of N > 3, with 
approximately the same performance in the inverse recall. This partially explains why these 
two variants have a better MCC for higher values of N. 

 

 
Figure 17: Recall and inverse recall for variant 2.1 – 2.5. 

As can be seen in Table 13, the user space coverage varies greatly between the different 
variants. 

Table 13: User space coverage and item space coverage for variants 2.1 – 2.5. 
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Name User Space Coverage Item Space Coverage 
Variant 2.1 37,6% 100% 
Variant 2.2 4,9% 100% 
Variant 2.3 13,3% 100% 
Variant 2.4 11,5% 100% 
Variant 2.5 38,5% 100% 
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The component that influences the user space coverage, in this case, is the bridge used in 
the system. When a certain bridge is used, only users who have performed that specific 
action in the system can be provided recommendations for. For instance, if job offer is used 
as the bridge, a user is required to have sent at least one job offer to a candidate in order to 
receive recommendations of other similar candidates. Therefore, variant 2.5 has the greatest 
user space coverage as it uses all recorded actions as bridge. Variant 2.1 also has high user 
space coverage, indicating that many of the users in the system have used the bookmark 
function. The item space coverage, however, does not vary between the variants since all 
variants are able to recommend all candidates in the database.  

As can be seen in Figure 18, the diversity of recommendations does not vary for the different 
variants of System 2. Furthermore, it stays constant for all values of N. 

 
Figure 18: Diversity of recommendations for variants 2.1 – 2.5. 

6.1.3 System 3 
The evaluation of System 3, the CF technique based on a user-item preference matrix, 
followed the guidelines for evaluating such systems as described by Herlocker et al. (2004) 
and Hahsler et al. (2011). The data set was also divided into training and test sets like in the 
case of System 1, but a different approach was taken to validate the recommended items. 
Since preferences scores of a test user vector are used to train the CF algorithm to produce 
recommendations, a set of preference scores was hidden for every active test user during 
the evaluation. Breese et al. (1998) introduced a method for this called the Given x protocol. 
For the Given x protocol, x values (preference scores) are randomly selected in the test user 
vector and the remaining preference scores in the vector are hidden for the CF algorithm. In 
this study, a similar approach was applied, but we applied the “hidden x protocol” instead, 
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meaning that x number of preference scores were hidden in the active test user vector. Three 
preference scores were hidden for every active test user, implying the minimum amount of 
required preference scores among the test users to be 4, and thus giving a user-item 
preference matrix consisting of 24 users and 397 items. This discrimination criterion was 
considered reasonable since it implied an average number of preferences per user of 23, 33 
and a median value of 8. If the recommender system succeeded to recommend a hidden 
preference, then it counted as a TP. Having the confusion matrix in mind for this scenarios 
during the evaluation, the row of preferred items constituted the set of all hidden preference 
scores of an active test user. 

System 3 was evaluated by varying the k-NN parameter. K-values of 1-3 were tested, as 
shown in Table 14.  

Table 14: Configurations for the three variants of System 3. 

Testing System 3 for ten values of N, the MCC curves were computed as shown in Figure 
19. 

 
Figure 19: Matthews correlation coefficient for variants 3.1 – 3.3. 

The MCCs reveal that System 3 performs optimally when using a single nearest neighbor 
(k = 1), this is true for all values of N. It can also be seen that increasing k will make System 
3 perform worse in terms of MCC. The curve reaches its optima when the size of the 
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recommendation list is set to N = 4 for the k = 1 case. Selecting N = 1, all the system 
configurations perform almost equally with an MCC value close to 0,15. An optimal value 
of N seems to increase as the k-value increases, reaching an optimal value for k = 2 when N 
= 4, and for k = 3 when N = 10 for respectively. 

The precision and inverse precision, shown in Figure 20, indicates the same performance 
ranking among the different variants, giving a maximum precision of about 55% for the k 
= 1 variant when N = 3. This optimal N-value of precision slightly differs from the optimal 
N-value in the MCC curve. The inverse precision curves, follow an almost constant line 
close to 100% for all variants and every N. However, looking at the raw data, it shows that 
the inverse precision decreases as N increases. The characteristics of the inverse precision 
curves are due to the of number negative samples being significantly higher than the number 
of recommended items for all values of N. 

 

 
Figure 20: Precision and inverse precision for variants 3.1 – 3.3. 

The recall curves in Figure 21: Recall and inverse recall for variants 3.1 – 3.3. show that 
recall values increase as N increases, and once again, higher 𝑘-values lead to a worse recall 
for all the variants. Also, in this case, the system performs well in this metric for 𝑁 = 4. 
The curves derivative, in the 𝑘 = 1 case, has a high positive value in the interval 0 < 𝑁 <
4, and then decreases for 𝑁 > 4. From these curves, it can be that revealed that almost 80% 
of the hidden item preference scores (totally 4 hidden preferences) were recommended at 
most. At 𝑁 = 4, more than 70% of the hidden items were recommended. For the inverse 
recall curves, their characteristics showed similar results as for the inverse precision curves, 
an almost straight line with minimal decrease as the 𝑁-value increases. This is also due to 
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the number negative samples being significantly higher than the number of recommended 
items for all values of 𝑁. 

 

 
Figure 21: Recall and inverse recall for variants 3.1 – 3.3. 

The user and item space coverage, shown in Table 15, explain that System 3 excludes many 
users in the system that do not fulfill the requirements for gaining a recommendation from 
this type of system. This threshold was set to a minimum of four unique preferences per 
user towards an item for it to be included in the user-item matrix. The low user space 
coverage therefore means that the system had many inactive users. In this case, the low user 
space coverage also had a negative impact on the item space coverage, since many items 
have been preferred by users that do not fulfill the requirements, and are therefore excluded 
from the system’s set of recommendable items. 

Table 15: User space coverage and item space coverage for variants 3.1 – 3.3. 
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Figure 22 shows the diversity in recommendations for the different variants.  

 
Figure 22: Diversity of recommendations for variants 3.1 – 3.3. 

There is little to no variation in diversity between variants, and diversity seems to increase 
slightly for greater values of 𝑁. 

6.1.4 Summary of Offline Test Results 
In this section, one variant from each system was chosen and the three variants were 
compared to each other. Variants were chosen that performed well in terms of MCC for N 
= 4, the N-value used in the user study. Furthermore, the results were compared to two 
different random algorithms. The first random algorithm recommended candidates 
randomly from the complete item space, and the second recommended random candidates 
from the industry that was associated with the active company’s profile.  Variants of each 
system showed little variation in the terms of accuracy. When comparing between systems, 
however, there was a significant difference. As Figure 23 shows, variant 3.1 outperforms 
both other systems for every value of 𝑁. All algorithms have better accuracy, MCC, at all 
values of 𝑁 than both random algorithms used for comparison. 
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Figure 23: The Matthew correlation coefficient for the chosen variant of each system. 

Variant 3.1 also has the highest precision for values of 𝑁 > 1 while there is only a small 
difference in inverse precision performance. That is, variant 3.1 is better in predicting 
preferred items, while the systems perform similarly in terms of predicting not preferred 
items. There is a slight decrease in precision for all variants as N increases. Inverse precision 
performance is high in all variants, once again an expected result due to N being small in 
relation to the item space of each system. Even the random algorithms show strong 
performance in the reverse precision, however, they have worse precision than all system 
variants.  

 

 
Figure 24: Precision and inverse precision for the chosen variant of each system. 

Figure 25 shows the recall and inverse recall for the three systems. Variant 3.1 has 
significantly higher recall than other system variants for all values of N. Furthermore, it 
increases at a greater rate than variants from the other systems. Variant 1.3 and 2.3 performs 
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slightly better in the inverse recall. However, all systems have an inverse recall higher than 
97%. As in the case of precision and inverse precision, the random algorithms perform well 
in the inversed metric due to a large number of negative samples, but all systems variants 
have higher recall scores than the random variants. 

 

 
Figure 25: Recall and inverse recall for the chosen variant of each system. 

As shown in Table 16 variant 1.2 has the best overall coverage with a user space coverage 
and item space coverage of 100%. Variant 2.3 is able to recommend all items but the 
available data is only sufficient to provide recommendations for 13,3% of the users. Variant 
3.1 has a better user coverage than variant 2.3, 38,5% of the users can receive 
recommendations from that system. The item space coverage of variant 3.1, however, is 
very low at 3,5%, meaning that only a small number of the available items can be 
recommended to the users.  

Variant 3.1 had the best MCC but had low coverage, especially item space coverage. The 
results indicate that there is a trade-off between the performance of the system and its item 
space coverage. These results, however, are not so surprising as variant 3.1, and System 3 
in general, is more restrictive in terms of which users it includes, in combination with the 
low activity of users towards items (user preferences) in the system. 

Table 16. User space coverage and item space coverage for the chosen variant of each system. 
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1.5 shows the greatest diversity of recommendations. However, the graph results indicate 
that the diversity for that variant declines for larger values of 𝑁. Variant 2.3 has the lowest 
diversity of recommendations and the diversity for that variant seems to be constant for 
different values of N. The diversity of variant 3.1 seems to increase slightly for larger values 
of N. 

 
Figure 26: Diversity of recommendations for the chosen variant of each system. 

6.2 User Study 
The variants more closely examined in section 6.1.4 were also evaluated in a user study. In 
the user study, the variants were evaluated for N = 4. The results, see Table 17, show that 
variant 1.5 and variant 3.1 both had significantly higher MCC than variant 2.3. 

Table 17: Results from the user study, N = 4. 
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recall was significantly lower for all variants than in the offline experiments, possibly due 
to a smaller number of negative samples in relation to N in the user study.  
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6.3 Addressing the Research Questions 
Based on the presented results obtained from the offline experiments and the user study, this 
section will provide answers to the research questions of this study. 

RQ1. What are the key design choices when building a candidate recommender system? 

The key design choices behind an implementation of a candidate recommender system are 
highly dependent on the system adapter’s business goals, and the conditions in terms of data 
availability of users and items in the system. To achieve specific goals, different algorithms, 
techniques, and features can be selected and combined in different ways to build a candidate 
recommender system. 

Applying classifiers and clustering in a hybrid and user-based approach (variant 1.5) was 
confirmed to be a viable way of producing recommendations in this context, as well as 
applying a pure collaborative filtering technique using a k-NN algorithm and a user-item 
preference matrix (variant 3.1). Variant 1.5 performed worse than variant 3.1 in terms of 
accuracy in the offline experiments, but turned out to produce a high degree of relevant 
recommendations in the user study. In contrast, variant 3.1 showed high accuracy scores, 
both during the offline and user evaluations. In this case, it was achieved at the expense of 
lower user and item space coverages, caused by a stricter discrimination criterion for users, 
which required a larger amount of recorded interactions with the system. 

During this study, a new concept, referred to as a bridge, was introduced. A bridge connects 
a user to an item in the system, and the system’s performance can differ a lot depending on 
the choice of bridge, which therefore makes it a key factor when designing a candidate 
recommender system. In conclusion, the candidate recommender system designer must 
choose appropriate algorithms and techniques, depending on the desired levels of accuracy, 
coverage, and diversity that reflects the recommender system’s business goals.  

RQ2. What are the most relevant metrics and evaluation methods for assessing the 
performance of the recommender systems in the studied domain? 

As emphasized by the answers to RQ1, the choice of metrics when designing a candidate 
recommender system is very important, since they reflect different aspects of the system’s 
performance and satisfy different business goals. To assess the performance of 
recommender systems, offline experiments is an effective way of choosing the right set of 
recommender systems to evaluate before release, when there are a variety of alternatives 
available. However, it should be followed up by a user study, since the offline evaluation 
might not always reflect the real accuracy of the systems. The accuracy was mainly assessed 
by the MCC score, that turned out be a trustworthy metric in most cases during offline 
evaluation when comparing to the user study results. Because, in the case of variant 1.5, the 
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MCC metric showed an underestimated result in terms of its accuracy to recommend 
relevant items to users in the offline experiments compared to the user study. If the results 
instead had been overestimated, the MCC metric’s credibility could have been questioned. 

Measuring the systems user and item coverages is also relevant during evaluation. The 
systems accuracy must be set in relation to its coverages, especially when comparing 
evaluations of different systems, to make a more comprehensive comparison. The metric 
used to measure diversity of recommendations is also an important aspect, since it 
introduces a new way to evaluate the systems in relation to their business goals. The results 
showed that the different systems were differentiable in terms of diversity and therefore 
introduced a new dimension to the complete assessment of the systems.  
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7 Discussion 
The results from the evaluation of the three proposed systems, using offline experiments 
and a user study, revealed interesting insights regarding the systems’ performance. The most 
prevalent trend, both in the offline experiments and in the user study, is the strong 
performance in terms of accuracy for System 3, a pure collaborative filtering algorithm. In 
previous research, pure collaborative filtering algorithms have been proven to be the most 
successful approach in several contexts (Al-Otaibi & Mourad, 2012), mainly by 
emphasizing the systems’ accuracy (Herlocker, et al., 2004). By considering these studies, 
in could have been directly concluded that System 3 is the superior system in the context of 
this study. However, taking more properties of the recommender system into consideration 
highlights the complexity of recommender systems evaluation. System 1 has significantly 
higher coverage compared to System 3, both when measuring user space coverage and item 
space coverage. High item space coverage could potentially be a desirable property in the 
studied domain. Because, in contrast to a movie recommender system or an e-commerce 
recommender system, each item in a candidate recommender system has limited work 
availability and can, therefore, only be utilized by a single user, or few users, at any given 
time. Rather, recommending the same items to users in such a system, or recommending a 
candidate already employed by one user, might cause a lower perceived quality of the 
service as a whole. Furthermore, as the items in a candidate recommender system are real 
people who also might abandon the platform if it fails to create value for them, a 
recommender system that manages to engage a greater proportion of the available 
candidates could be desirable from a business point of view. However, even though System 
1 has significantly higher coverage than System 3, it is important to note in this discussion 
that System 3 still has a high theoretical coverage but is highly dependent on the availability 
of data gained from users’ interaction with the system. With more recorded interactions, the 
difference in coverage between the systems might have been less prominent. 

From the results, a likely trade-off between a system’s accuracy and coverage is observable, 
in accordance with the results previously revealed by Gunawardana & Shani (2015). A 
candidate recommender system designer must consider this trade-off, and determine an 
optimal point between maximum accuracy or maximum coverage, depending on the 
domain’s business goals. In a recruitment context, a candidate recommender system will 
support a recruiter in finding relevant candidates effectively with respect to time, which 
makes the time factor a critical aspect when assessing the system’s utility. Having this 
business goal in mind, high accuracy will prevent users (recruiters) from spending time in 
inspecting non-relevant candidate recommendations. High accuracy is therefore of high 
importance in such contexts. However, when optimizing the candidate recommender system 
to perform in terms of accuracy, it should not discriminate its platform users and items to 
the extent that it will harm the platform provider’s business goals. A way of circumventing 



   60 

the dilemma between, optimal accuracy or coverage, would be to implement parallel 
recommender systems that direct recommendations towards users based on their “data 
profile maturity levels”. A low maturity level would mean that a specific recommender 
system is triggered in the platform for a user that has a limited amount of data in it profile. 
For the high-level maturity case, a threshold can be set, like in the case of System 3, that 
specifies the minimum data requirements for a user profile for it to become a target to the 
recommender system. Applying this approach, the system as a whole would imply a higher 
coverage of its users and items while keeping its ability to produce more accurate 
recommendations for users with high maturity levels. 

Another noteworthy result is that the diversity of recommendations seems to vary only 
slightly between different configurations for each system, but a clear difference between the 
systems prominent. It is not surprising that System 2 seems to produce least diverse 
recommendations as the recommendations are produced based on item similarity. However, 
more unexpected is that System 1, which takes item similarity into considerations when 
creating clusters, seems to produce more diverse recommendations than System 3 which 
recommends items solely based on users’ interactions with the items. This indicates that if 
diversity of recommendations is desirable from a business perspective, higher diversity can 
be achieved through a combination of a user-based classifiers and item-based clustering 
than with a purely item-based system or a pure collaborative filtering system. Comparing 
diversity to accuracy and coverage, it is harder to define what systems performed well in 
terms of diversity as good diversity is more subjective. Some companies might prefer more 
diverse recommendations while others less so. Therefore, further research is needed in order 
to establish what levels of diversity that are desirable in this context.  

Comparing the results of the offline experiments and the user study, the systems showed 
better accuracy in the user test. A reasonable explanation is that the number of preferred 
candidates in the offline experiments were underestimated. When using historical data as 
criteria for validating a good recommendation, an underlying assumption is that all 
recommendations for which there are no earlier recorded expressions of preference for, are 
bad recommendations. The weakness in this assumption has been identified by 
Gunawardana & Shani (2015) and the results in this study seems to confirm that. However, 
with the knowledge in mind that the number of preferred candidates might be 
underestimated, the result indicate that offline evaluation does provide some insight. The 
ranking of the systems remained the same with System 3 having the best accuracy in 
performance both in the offline experiments and in the user study. Therefore, companies in 
the studied domain who wishes to improve and evaluate recommender systems can consider 
offline experiments a reliable option for conducting non-expensive comparisons between 
systems. 
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When optimizing recommender systems, attention also needs to be paid to the ethical 
aspects of the system. Awareness of the importance of personal integrity in this matter has 
caused governments and regulatory bodies to take legislative actions to make sure that data 
is collected and processed in a controlled fashion. In terms of recommender systems, such 
regulations could potentially affect the performance negatively due to less availability of 
data. However, in the studied domain candidates agree to submit data in order for employers 
to find them on the platform. In this case, the purpose for which non-sensitive data is 
processed in the recommender system is aligned with the motive for which the users agreed 
to submit the data, namely expose the candidate profile to employers. Therefore, no further 
caution needs to apply when using data in a recommender system compared to other 
processing of the data done in the system. Regarding sensitive data however, as described 
by Datainspektionen (1998), more strict regulations apply. Most of such sensitive data, such 
as political opinions or philosophical convictions, could be discarded anyways as irrelevant 
for a candidate recommender system, thereby not limiting the quality of recommendations.  
Sensitive data that could possibly be of interest in recommender systems in this context is 
trade union memberships and health information prohibiting the candidate from working in 
certain environments. Without access to data that could potentially filter out candidates, the 
accuracy could suffer and the users of the system might require a manual check-up to ensure 
that recommended candidates are able to work for them. However, the importance of 
personal integrity is high and regulations and guidelines regarding data security should be 
treated as preconditions that must be considered when designing recommender systems. 

The threats to validity in this study are mainly limited to the sample size of data, in the 
offline experiments, and test subjects, in the user study. The limited availability of recorded 
interactions with the system caused low coverage, which in turn meant that the systems 
could only be evaluated for a limited number of users, especially in the case of System 3. 
Furthermore, as users in general had only explored a small number of the available items 
on the platform, the number of preferred items could have been underestimated in the offline 
experiments, leading to reduced precision. Due to time constraints only four test subjects 
were included in the user study and, therefore, those results should be seen as indications 
rather than proof, or ground truth, of system performance. Furthermore, the users were asked 
to rate 10 negative samples for each algorithm, which only represent a small portion of the 
actual negative samples. Therefore, the proportion of false negatives and true negatives runs 
a risk of not reflecting the real values. Also, just as in the case of offline experiments, the 
user study relies on an assumption, the assumption that the users’ ratings of the candidates 
indicate the true quality of the recommendations. This assumes that users, with great 
certainty, know which candidates are relevant to them and which are not. To strengthen the 
assessment of the systems, further studies evaluating the systems in an online environment 
should be conducted. 
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This study has identified a number of guidelines for any software engineer who attempts to 
design and implement a recommender system. Firstly, it has highlighted the importance of 
combining different approaches and system variants in order to circumvent disadvantages 
of using any single approach. Secondly, it has shown that when evaluating the performance 
of different systems, applying offline experiments to measure the Matthews correlation 
coefficient can provide a good indication of performance in terms of accuracy. However, 
one should be aware that the metric can be underestimated, as users might have preferences 
for items that are not included by the criteria of preferred items in the experiments. Finally, 
by also taking coverage and diversity into account software engineers can get a more 
comprehensive understanding of the systems overall performance. 
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8 Conclusions 
A recommender system is a viable option for dealing with information overload in several 
contexts, including identifying appropriate candidates for employers on a recruitment 
platform. Through implementation of three prototype recommender systems, this study has 
shown that by combining different approaches, such as content-based or collaborative 
filtering, when implementing candidate recommender systems, companies in the studied 
domain can overcome the limitations of using any single approach. Furthermore, 
broadening the scope of evaluation to include other properties than accuracy, such as 
coverage and diversity, increases the ability to build and select a recommender system that 
is better aligned with common business goals in the domain. A recommender system 
designer must, however, be aware of the possible trade-offs between these properties when 
optimizing the recommender system to perform with respect to certain business goals. 



   64 

9 Bibliography 
Adomavicius, G., Kamireddy, S. & Kwon, Y., 2007. Towards more confident 

recommendations: Improving recommender systems using filtering approach based on 
rating variance. s.l., Proc. of the 17th Workshop on Information Technology and 
Systems. 

Adomavicius, G. & Tuzhilin, A., 2015. Context-Aware Recommender Systems. In: 
Recommender Systems Handbook. s.l.:Springer, pp. 191-226. 

Al-Otaibi, T. S. & Mourad, Y., 2012. A Survey of Job Recommender Systems. International 
Journal of Physical Sciences, 7(29), pp. 5127-5142. 

Amatriain, X. & Pujol, J., 2015. Data Mining Methods for Recommender Systems. In: 
Recommender Systems Handbook. s.l.:Springer US, pp. 227-262. 

Ansari, A., Essegaier, S. & Kohli, R., 2000. Internet recommendation systems.. Journal of 
Marketing, 37(2000), pp. 363-375. 

Attenberg, J. et al., 2009. Collaborative email-spam filtering with the hashing trick. s.l., s.n. 

Attenberg, J. et al., 2009. Feature hashing for large scale multitask learning. s.l., ACM. 

Billsus, D. & Pazzani, M., 1997. Learning probabilistic user models. [Online]  
Available at: http://www.dfki.de/~bauer/um-ws/ 

Breese, J., Heckerman, D. & Kadie, C., 1998. Empirical analysis of predictive algorithms 
for collaborative filtering. s.l., Proceedings of the Fourteenth on Uncertainty in Artificial 
Intelligence., pp. 43-52. 

Buettner, R., 2014. A Framework for Recommender Systems in Online Social Network 
Recruiting: An Interdisciplinary Call to Arms. s.l., System Sciences (HICSS), 2014 47th 
Hawaii International Conference, pp. 1415-1424. 

Burke, R., 2007. Hybrid Web Recommender Systems. In: The Adoptive Web. s.l.:Springer 
Berlin Heidelberg, pp. 377-408. 

Burke, R., O'Mahony, M. P. & Hurley, N. J., 2011. Robust Collaborative Recommendation. 
In: Recommender systems handbook. s.l.:Springer US, pp. 805-835. 

Datainspektionen, 1998. The Personal Data Act. [Online]  
Available at: http://www.datainspektionen.se/in-english/legislation/the-personal-data-
act/ 
[Accessed 17 February 2017]. 



   65 

Davis, J. & Goadrich, M., 2006. The relationship between Precision-Recall and ROC 
curves.. s.l., ACM. 

de Gemmis, M. et al., 2015. Semantics-Aware Content-Based Recommender Systems. In: 
Recommender Systems Handbook. s.l.:Springer US, pp. 119-159. 

Delen, D. & Demirkan, H., 2013. Data, information and analytics as services. Decision 
Support Systems, Volume 55, pp. 359-363. 

Eckerson, W. W., 2007. PREDICTIVE ANALYTICS: Extending the Value of Your Data 
Warehousing Investment, s.l.: The Data Warehouse Institute (TDW). 

Felfernig, A., Friedrich, G., Jannach, D. & Zanker, M., 2015. Constraint-Based 
Recommender Systems. In: Recommender Systems Handbook. s.l.:Springer US, pp. 161-
190. 

Fisher, G., 2001. User modeling in human-computer interaction. User Modeling and User-
Adapted, 11(1-2), pp. 65-86. 

Ganchev, K. & Dredze, M., 2008. Small statistical models by random feature mixing. s.l., 
s.n., pp. 19-20. 

Ge, M., Delgado-Battenfeld, C. & Jannach, D., 2010. Beyond Accuracy: Evaluating 
Recommender Systems by Coverage and Serendipity. s.l., ACM, pp. 257-260. 

Gunawardana, A. & Shani, G., 2009. A Survey of Accuracy Evaluation Metrics of 
Recommendation Tasks. Journal of Machine Learning Research, pp. 2935-2962. 

Gunawardana, A. & Shani, G., 2015. Evaluating Recommneder Systems. In: Recommender 
Systems Handbook. s.l.:Springer US, pp. 265-308. 

Gupta, A. & Garg, D., 2014. Applying data mining techniques in job recommender system 
for considering candidate job preferences. s.l., Advances in Computing, 
Communications and Informatics (ICACCI, 2014 International Conference on. IEEE. 

Hahsler, M., 2011. recommenderlab: A Framework for Developing and Testing 
Recommendation Algorithms, s.l.: Southern Methodist University. 

Har-Peled, S., Roth, D. & Zimak, D., 2002. Constraint Classification for Multiclass 
Classification and Rankning. Urbana, 51(2002), p. 61801. 

Heap, B., Krzywicki, A., Wobcke, W. & Compton, P., 2014. Combining Career 
Progression and Progression and Profile Matching in a Job Recommender System. s.l., 



   66 

Pham DN., Park SB. (eds) PRICAI 2014: Trends in Artificial Intelligence. PRICAI 2014. 
Lecture Notes in Computer Science,. 

Herlocker, j. L., Konstan, J. A., Terveen, L. G. & Riedl, J. T., 2004. Evaluating 
Collaborative Filtering Recommender Systems. ACM Transactions on Information 
Systems, 22(1), pp. 5-53. 

Hevner, A. R., March, S. T., Park, J. & Ram, S., 2004. Design Science in Information 
Systems Research. MIS Querterly, March, 28(1), pp. 75-105. 

Hong, W., Zheng, S. & Wang, H., 2013. A Job Recommender System Based on User 
Clustering. Journal of Computers, 8(8), pp. 1960-1967. 

IBM Software, 2013. Descriptive, predictive, prescriptive: Transforming asset and 
facilities, Somers, NY: IBM Corporation. 

ISACA, 2011. Data Analytics - A Practical Approach, Rolling Meadows, IL: ISACA. 

Isinkaye, F. O., Folayami, Y. O. & Ojokoh, B. A., 2015. Recommendation systems: 
Principles, methods and evaluation. Egyptian Informatics Journal, 16(3), pp. 261-273. 

Isson, P. J. & Hariott, S. J., 2015. People Analytics in the Era of Big Data: Changing the 
Way You Attract, Acquire, Develop, and Retain Talent. s.l.:Wiley. 

Jannach, D., Zanker, M., Ge, M. & Gröning, M., 2012. Recommender Systems in Computer 
Science and Information Systems - a Lanscape of Research. Vienna, Austria, 13th 
International Conference on Electronic Commerce and Web Technologies, Springer. 

Kim, K.-j. & Ahn, H., 2008. A recommender system using GA K-means clustering in an 
online shopping market. Expert Systems with Applications, Volume 34, p. 1200–1209. 

Kotthoff, L., Gent, I. & Miquel, I., 2012. An evaluation of machine learning in algorithm 
slecetion for search problems. AI Communications, 25(2012), pp. 257-270. 

Linas, B., Bernd, L., Peer, S. & Ricci, F., 2012. Context Relevance Assessment and 
Exploitation on Mobile Recommender Systems. Personal and Ubiquitous Computing, 
16(5), pp. 507-5266. 

Linden, G., Smith, B. & York, J., 2003. Amazon.com recommendations: Item-to-item 
collaborative filtering. IEEE Internet computing, 7(1), pp. 76-80. 

Lu, Y., El Helou, S. & Gillet, D., 2013. A Recommender System for Job Seeking and 
Recruiting Website. s.l., ACM, pp. 963-966. 



   67 

Mitchell, T., 1997. Machine Learning. Burr Ridge, IL: McGraw Hill. 

Mujawar, S. & Joshi, A., 2015. Data Analytics Types, Tools and their Comparison. 
International Journal of Advanced Research in Computer and Communication 
Engineering, pp. 488-491. 

Nilashi, M., Haniza Sarmin, N. & bin Ibrahim, O., 2015. A multi-criteria collaborative 
filtering recommender system for the tourism domain using Expectation Maximization 
(EM) and PCA–ANFIS. Electronic Commerce Research and Applications, Volume 14, 
pp. 542-562. 

O'Connor, M. & Herlocker, J., 1999. "Clustering items for collaborative filtering.. Berkeley, 
UC Berkeley. 

Ouyang, D., Li, D. & Li, Q., 2006. Cross-validation and non-parametric k nearest-neighbour 
estimation. Econometrics Journal, 9(2006), pp. 448-471. 

Pazzani, M. J. & Billsus, D., 2007. Content-based recommendation systems. In: The 
adaptive web. s.l.:Springer Berlin Heidelberg, pp. 325-341. 

Portugal, I., Alencar, P. & Cowan, D., 2015. The Use of Machine Learning Algorithms in 
Recommender Systems: A Systematic Review, s.l.: arXiv preprint arXiv:1511.05263. 

Powers, D., 2011. Evaluation: From Precision, Recall and F-Measure to ROC, 
Informedness, Markedness & Correlation. Journal of Machine Learning Technologies, 
2(1), pp. 37-63. 

Pu, P., Chen, L. & Hu, R., 2011. A user-centric evaluation framework for recommender 
systems.. s.l., ACM, pp. 157-164. 

Qamar, A. & Gaussier, E., 2012. RELIEF Algorithm and Similarity Learning for k-NN. 
International Journal of Computer Information Systems and Industrial Management 
Applications, 4(2012), pp. 445-458. 

Qamar, A.-M., Gaussier, E., Chevallet, J.-P. & Lim, J., 2008. Similarity Learning for 
Nearest Neighbor Classification. s.l., Data Mining, 2008. ICDM'08. Eighth IEEE 
International Conference, IEEE, pp. 983-988. 

Ricci, F., Rokach, L. & Shapira, R., 2015. Recommender systems: Introduction and 
challenges.. In: Recommender Systems Handbook. s.l.:Springer US, pp. 1-34. 

Ries, E., 2011. The lean startup: How today's entrepreneurs use continuous innovation to 
create radically successful businesses. s.l.:Crown Business. 



   68 

Rokach, L. & Maimon, O., 2007. Introduction to Decision Trees. In: Data Mining with 
Decision Trees: Theory and Applications:. s.l.:World scientific, p. 264. 

Sarwar, B., Karyois, G., Konstan, J. & Riedl, J., 2000. Analysis of Recommendation 
Algorithms for E-Commerce. s.l., Proceedings of the 2nd ACM conference on Electronic 
commerce. 

Sarwar, B., Karypis, G., Konstan, J. & Riedl, J., 2001. Item-based collaborative filtering 
recommendation algorithms. Hong Kong, Proceedings of the 10th international 
conference on World Wide Web, pp. 285-295. 

Schröder, G., Thiele, M. & Lehner, W., 2011. Setting Goals and Choosing Metrics for 
Recommender System Evaluations. Chicago, ACM. 

Sharda, R., Asamoah, D. & Ponna, N., 2013. Business Analytics: Research and Teaching 
Perspectives. Int. Conf. on Information Technology Interfaces, Volume 35. 

Srivastava, J., Desikan, P. & Kumar, V., 2005. Web Mining - Concepts, Applications, and 
Research. In: Foundations and advances in data mining. s.l.:Springer Berlin Heidelberg, 
pp. 275-307. 

Tripathi, P., Agarwal, R. & Vashishtha, T., 2016. Review of job recommender system using 
big data analytics. s.l., Computing for Sustainable Global Development (INDIACom), 
2016 3rd International Conference on. 

Watson, H. J., 2014. Tutorial: Big Data Analytics: Concepts,Technologies, and 
Applications. Communications of the Association for Information Systems, 34(1), pp. 
1247-1268. 

Xue, G.-R.et al., 2005. Scalable collaborative filtering using cluster-based smoothing. 
Salvador, ACM. 

Yu, H., Liu, C. & Zhang, F., 2011. Reciprocal Recommendation Algorithm for the Field of 
of Recruitment. Journal of Information & Computational Science 8, 16(2011), pp. 4061-
4068. 

Zhang, M. & Hurley, N., 2008. Avoiding monotony: improving the diversity of 
recommendation lists.. s.l., ACM, pp. 123-130. 

Zhang, T. & Iyengar, V. S., 2002. Recommender Systems Using Linear Classifiers. Journal 
of Machine Learning Research, 2(2002), pp. 313-334. 



 

 I 

Appendix A – Candidate Features 

Feature Data 
Category Date Type Collection Method 

[Manual/Automatic] 
Is collected 

today Entity Type 

Driver license Categorical String Automatic Yes Candidate Attribute 

Truck License Boolean Boolean Automatic Yes Candidate Attribute 

Certificate Categorical String Automatic Yes Candidate Attribute 

Current Employment status Categorical String Automatic Yes Candidate Attribute 

Student Boolean Boolean Automatic Yes Candidate Attribute 

Skills/Competencies Categorical String[] Automatic Yes Candidate Attribute 

Education Categorical String[] Automatic Yes Candidate Attribute 

Description (Keywords) Text String Automatic Yes Candidate Attribute 

Age Numerical Integer Automatic Yes Candidate Attribute 

Gender Categorical String Automatic Yes Candidate Attribute 

School grades Numerical  Automatic No Candidate Attribute 

Work experience/Roles Categorical String[] Automatic Yes Candidate Attribute 

Location Numerical Float[2] Automatic Yes Candidate Attribute 

Languages Categorical String[] Automatic Yes Candidate Attribute 

Psykometrika Numerical  Automatic No Candidate Attribute 

Available days Categorical Numerical[][] Automatic Yes Candidate Attribute 

Degree of availability (nr of 
hours per week) Numerical Float Automatic Yes Candidate Attribute 

Jappa contract status Boolean Boolean Automatic Yes Candidate Attribute 

Current School Categorical String Automatic Yes Candidate Attribute 

Nr of votes Numerical Integer Automatic Yes Candidate Attribute 

Rating Score Numerical Float Automatic Yes Candidate Attribute 

Tags Categorical String[] Automatic Yes Candidate Attribute 

Profile Quality Numerical  Automatic No Candidate Attribute 

Reviews (Keywords) Text  Automatic No Candidate Attribute 

Flexible Boolean  Automatic No Candidate Attribute 

Allergies Categorical  Automatic No Candidate Attribute 

Access to own car Boolean  Automatic No Candidate Attribute 

Job/Title Categorical String Automatic Yes Candidate Preference 

Industry Field Categorical String[] Automatic Yes Candidate Preference 

Salary Numerical Integer Automatic Yes Candidate Preference 



   II 

Work hours Numerical Integer Automatic Yes Candidate Preference 

Time to time report Numerical Float Automatic Yes Candidate Transaction 

Occupancy Numerical  Automatic No Candidate Transaction 

Name of pools Categorical String[] Automatic Yes Candidate Transaction 

Number of pools Numerical Integer Automatic Yes Candidate Transaction 

Chat Behavior Categorical  Automatic No Candidate Transaction 

Flexibility (Short notice) Numerical  Automatic No Candidate Transaction 

Platform Categorical String Automatic Yes Candidate Transaction 

Ratings Numerical  Automatic No Candidate Transaction 

Previous Assignments Categorical String[] Automatic Yes Candidate Transaction 

Employment Length (Per 
Job) Numerical Float[] Automatic Yes Candidate Transaction 

Nr of worked hours (per 
week) Numerical Float Automatic Yes Candidate Transaction 

Average Salary Numerical Float Automatic Yes Candidate Transaction 

Visited company page Categorical  Automatic No Candidate Transaction 

Response time Numerical Float Automatic Yes Candidate Transaction 

  



   III 

Appendix B – Employer Features 

Feature Data 
Category 

Data 
Type 

Collection Method 
[Manual/Automatic] 

Is collected 
today Entity Type 

Description (Keywords) Text String Automatic Yes Employer Attribute 

Industry Field Categorical String[] Automatic Yes Employer Attribute 

Location (City) Categorical String Automatic Yes Employer Attribute 

Pay Scale Numerical Integer Automatic Yes Employer Attribute 

Company Structure Categorical String Automatic Yes Employer Attribute 

Nr of votes Numerical Integer Automatic Yes Employer Attribute 

Rating Score Numerical  Automatic No Employer Attribute 

Special Needs Text  Automatic No Employer Attribute 

Unsocial Hours Numerical  Automatic No Employer Attribute 

Branding Categorical  Automatic No Employer Attribute 

Position (Title) Categorical  Automatic No Employer Attribute 

Reviews (Keywords) Text  Automatic No Employer Attribute 

Allergies Categorical  Automatic No Employer Attribute 

Age Numerical  Automatic No Employer Preferences 

Gender Numerical  Automatic No Employer Preferences 

Work Experience Categorical  Automatic No Employer Preferences 

Current employer status Boolean  Automatic No Employer Preferences 

Availability Categorical  Automatic No Employer Preferences 

Skills Categorical  Automatic No Employer Preferences 

Driver license Categorical  Automatic No Employer Preferences 

Certificate Categorical  Automatic No Employer Preferences 

Personality Categorical  Automatic No Employer Preferences 

Title/Role Categorical  Automatic No Employer Preferences 

Alerts Categorical String Automatic Yes Employer Transaction 

Candidate profile view Categorical  Automatic No Employer Transaction 

Contract (time) Numerical Float Automatic Yes Employer Transaction 

Rating Numerical Float Automatic Yes Employer Transaction 

Previous Offers Categorical String[] Automatic Yes Employer Transaction 

Candidate Hires Categorical String[] Automatic Yes Employer Transaction 

Candidate Bookmarks Categorical String[] Automatic Yes Employer Transaction 

Search History Categorical String[] Automatic Yes Employer Transaction 



   IV 

Item Tags Categorical String[] Automatic Yes Employer Transaction 

Add to Pool Categorical String[] Automatic Yes Employer Transaction 

Meeting Categorical String[] Automatic Yes Employer Transaction 

Tags Categorical String[] Automatic Yes Employer Transaction 

Recommend candidate to 
other branch Categorical  Automatic No Employer Transaction 

Non-Occupied Work Shifts Categorical  Automatic No Employer Transaction 

Response to recommendation Categorical  Automatic No Employer Transaction 

Denied Time Report Numerical Float Automatic Yes Employer Transaction 

Platform Categorical String Automatic Yes Employer Transaction 
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Appendix C – System Configurations 

System 1 Configuration 

Algorithm Parameter Setting 

K-means Clustering 

Variant Auto 
Max Iterations 300 
n_init 10 
Tolerance 0.0001 

Nearest Neighbor Classifier 

Variant Brute 
n_neighbors 5 
Similarity Function (Metric) Standardized Euclidian Distance 
Weighted False 

Decision Tree Classifier 

Max depth none 
Max features none 
Min_impurity_split 10-6 
Min_samples split 2 
Min_weight_fraction_leaf 0.0 
Presort false 
Splitter best 

Multinomial Naïve Bayes 
Alpha 1 

Class_prior none 

Fit_prior true 

 

System 2 Configuration 

Algorithm Parameter Setting 

K-Nearest Neighbor 
Brute Auto 
Similarity Function (Metric) Standardized Euclidian Distance 
Weighting False 

 

System 3 Configuration 

Algorithm Parameter Setting 

K-Nearest Neighbor 
Variant Brute 
Similarity Function (Metric) Cosine Similarity 
Weighting True 

 


