
Big Bang Nucleosynthesis

A thesis for the degree Bachelor of Science

Joakim Brorsson, Johan Jacobsson & Anton Johansson

Supervisor: Christian Forssén
Examiner: Gabriele Ferretti
Department of Fundamental Physics
Chalmers University of Technology
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SUMMARY
The fundamental physical processes that govern the Big Bang nucleosynthesis
(BBN) have been studied. BBN refers to the production of predominantly
light nuclei in the early Universe, which occurs on the time scale of a few
minutes after the bang. An initial intensive literature study was carried out,
followed by computer simulations with the scientific code NUC123.

The aim of the literature study was to build a theoretical basis from
which observational support of BBN and key estimates of parameters could
be understood, and in the case of the latter also reproduced. The emphasis
has been placed on the time leading up to BBN, specifically the relation
between time and temperature, the universal expansion and the baryon-to-
photon ratio, in order to determine the onset of BBN.

Additionally, different simulations, based on models with varying degrees
of complexity, have been performed in order to verify the theoretical work and
the estimates of key parameters. By mass the most important abundances
were found to be 75.2 % 1H and 24.8 % 4He with help of the NUC123 software.

These abundances were found to agree well with both observations and
simulations referred to in literature. One important exception is 7Li for
which the calculated abundance differs significantly from the observational
values. Even though the over all good agreement is a strong evidence for the
standard models for both BBN and the Big Bang, this discrepancy points
to shortcomings in the theory. Simply put, neither of these models can be
completely wrong, though they do not paint the whole picture either.

Keywords: BBN, big bang nucleosynthesis, early Universe, nuc123, primor-
dial nucleosynthesis.



Contents

1 Introduction 1
1.1 Specific Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 The Standard Model of Particle Physics 4
2.1 Hadrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Leptons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Bosons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 The Expansion 7
3.1 Hubble expansion . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Relativistic Model of the Expansion . . . . . . . . . . . . . . . 8

4 The Early Universe 9
4.1 The Very Early Universe . . . . . . . . . . . . . . . . . . . . . 9
4.2 The Early Universe . . . . . . . . . . . . . . . . . . . . . . . . 10
4.3 Freeze-out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5 Energy Density 19
5.1 The Baryon to Photon Ratio . . . . . . . . . . . . . . . . . . . 19

6 Relating Time and Temperature 23
6.1 Simple Model for Relating Time and Temperature . . . . . . . 23

7 Big Bang Nucleosynthesis 25
7.1 The Physical Process . . . . . . . . . . . . . . . . . . . . . . . 25
7.2 The Impact of η . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.3 Calculating the Fraction of High Energy Photons . . . . . . . 36

8 Simulations 38
8.1 Calculation of Tfreeze-out . . . . . . . . . . . . . . . . . . . . . . 38
8.2 Simple Predictions . . . . . . . . . . . . . . . . . . . . . . . . 38
8.3 Big Bang Nucleosynthesis Using NUC123 . . . . . . . . . . . . 40
8.4 Simulation of the Time Evolution of BBN . . . . . . . . . . . 42
8.5 BBN Calculations for a Range of Value on η . . . . . . . . . . 44

9 Discussion 49

Bibliography 52

A Glossary 56

v



B List of Symbols 60

C Elaborate Deduction of t(T ) 62
C.1 t(T ) for Temperatures 1012 K > T > 5.5 · 109 K . . . . . . . . . 62
C.2 t(T ) for Temperatures 5.5 · 109 K > T > 109 K . . . . . . . . . 73

D Evaluation of Important Integrals 78
D.1

∫∞
0

x2e−x2
dx . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

D.2
∫∞

0
xm−1dx

ex±1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

E Programs 81
E.1 bbn.f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
E.2 manyruns.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
E.3 analyzedata.m . . . . . . . . . . . . . . . . . . . . . . . . . . 81
E.4 analyzematdata.m . . . . . . . . . . . . . . . . . . . . . . . . 81
E.5 analyzeautodata.m . . . . . . . . . . . . . . . . . . . . . . . 81
E.6 analyzeautomatdata.m . . . . . . . . . . . . . . . . . . . . . 81
E.7 partphotons.m . . . . . . . . . . . . . . . . . . . . . . . . . . 81
E.8 freezeout.m . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
E.9 TempofTime.m . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
E.10 Blackbody.m . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
E.11 canon.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

List of Figures

1 Abundances in the solar system . . . . . . . . . . . . . . . . . 3
2 nn/np as a function of T . . . . . . . . . . . . . . . . . . . . . 17
3 Relation between time and temperature . . . . . . . . . . . . . 25
4 Small reaction network . . . . . . . . . . . . . . . . . . . . . . 27
5 Binding energies of nuclei . . . . . . . . . . . . . . . . . . . . 29
6 The evolution of nD/(nn · np) with temperature . . . . . . . . 33
7 Fraction of high energy photons . . . . . . . . . . . . . . . . . 39
8 Large reaction network . . . . . . . . . . . . . . . . . . . . . . 41
9 Abundances relative to hydrogen . . . . . . . . . . . . . . . . 43
10 Abundances in mass percentage . . . . . . . . . . . . . . . . . 43
11 Abundances as a function of η . . . . . . . . . . . . . . . . . . 45
12 Abundance of 7Li as a function of η . . . . . . . . . . . . . . . 46
13 Abundances as a function of η in mass percentage . . . . . . . 47
14 Onset of BBN as a function of η . . . . . . . . . . . . . . . . . 48

vi



List of Tables

1 The four forces. . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 Properties of quarks. . . . . . . . . . . . . . . . . . . . . . . . 5
3 Properties of leptons. . . . . . . . . . . . . . . . . . . . . . . . 6
4 Prediction of relative abundances . . . . . . . . . . . . . . . . 36
5 Final abundances after decay . . . . . . . . . . . . . . . . . . 44
6 Simple estimates of light element abundances by mass. . . . . 44
7 Observed and calculated abundances. . . . . . . . . . . . . . . 50

vii



1 Introduction

Big Bang nucleosynthesis, often abbreviated BBN, refers to the network of
nuclear reactions governing the formation of light elements, most significantly
2H, 3He, 4He and 7Li, in the early Universe [1]. More precisely, BBN is
thought to begin 0.01 seconds after the big bang before coming to an end
about 30 minutes thereafter [1]. It is also estimated that the rapidly expand-
ing Universe, filled with a dense gas of particles and radiation, cooled from
about 1011 to 109K during this time [1].

Remarkably, the primordial nucleosynthesis is one of the most easily sim-
ulated processes in the entire field of astrophysics [2]. As such, computational
models of BBN yield results that are quite accurate compared to inherent
errors in the observational and experimental data that are put into the equa-
tions [1, 2]. Many of the physical constants of importance for this process can
be accurately measured in laboratories, because the relevant energy ranges
are obtainable in a laboratory environment [1]. Consequently, modern BBN
calculations for determining the abundances of light elements are carried out
with only a single parameter, the baryon density [1].

These easily achievable precision calculations, under the assumption that
the standard model of the Big Bang holds true, has and hopefully will help
to shed light on both the preceding and following history of the Universe [1].
Indeed, “there are presently three observational evidences for the Big-Bang
model: the universal expansion, the Cosmic Microwave Background (CMB)
radiation and Primordial or Big-Bang Nucleosynthesis (BBN)” [3].

In 1929 Edwin Hubble and Milton Humason discovered that the velocity
at which galaxies travel away from the earth is proportional to the distance
between the earth and the galaxy. This means that the Universe is expand-
ing, and it confirmed what Georges Lemâıtre had proposed two years earlier
in his “hypothesis of the primeval atom” which later was termed the Big
Bang theory. At present the Universe is large and cold, but because of the
expansion we can extrapolate backwards to when the Universe was very hot
and dense.

The idea of the primordial nucleosynthesis, that is the creation of nuclei
before the galaxies were formed, first appeared in the 1940s in the work
of Gamow and his collaborators [4]. Despite some errors with regards to
the physics involved in the process, they were able to predict the existence
of cosmic background radiation, which after it was discovered in 1965 gave
essential evidence not only for BBN but the big bang model as a whole [4].
Since that time the subject has evolved significantly both with regard to
the underlying theory and the computational models. During the last three
decades BBN calculations has been able to determine the above mentioned
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baryon density with an unprecedented accuracy [1].
Further evidence of BBN, as a theory, comes from the fact that the ratio of

1H and 4He, predicted abundances of the light elements, 2H, 3He, 4He and to
a lesser extent 7Li, agrees very well with observational measurements[1, 2].
This despite of the fact that these values spans nine orders of magnitude,
since the ratio of the mass density of 7Li to 4He is in the order of 10−9 [1, 2].

Such comparisons, however, have relied heavily upon the contemporary
understanding of the chemical evolution, that is the constant change in the
chemical composition of matter because of nuclear transformation in for ex-
ample stars [1]. This predicament stems from the fact that the abundance
measurements can only be compared with the output from standard BBN cal-
culations once they have been extrapolated to primordial abundances [1, 2, 3].

The situation has since changed entirely in light of new precise measure-
ments of the CMB, which have been used to fix the baryon density [1, 3].
Thus, the last unknown in BBN calculations has been deduced, which in
turn determines the primeval abundances of the light elements. Therefore,
it is now possible to use these exact calculations to research the chemical
evolution that has since taken place [1, 2]. Even so, it should be noted that
the discrepancy between 7Li abundances as calculated with BBN and the ob-
served values remains quite large [2, 3]. While there exists many suggested
explanations for this result, no clear solution to this problem has emerged as
of yet [2, 3].

The success of the standard model for BBN has enabled it to be used
as a tool for probing new physics, such as alternative theories of gravity or
the existence of new light particle species [1, 2]. For instance, calculations
on primordial nucleosynthesis used to give the best possible constraint on
the number of neutrino flavors, before being overtaken by precise laboratory
measurements in the late 1980’s [1]. However, now that the baryon density
has been fixed it would be possible, if the uncertainties in determination of
the 4He abundance can somehow be reduced, for BBN calculations to put
a comparable limit on the number of neutrino flavors, thereby cooperating
with laboratory experiments to put bounds on new physics [1]. This prospect
serves to exemplify how the BBN theory will continue to nurture the bond
that it had previously helped forge between cosmology and nuclear and par-
ticle physics [1].

With regards to the amount of time and resources that is put into re-
searching the big bang and its implications, it is apparent that the interest
for these events within the scientific community is quite substantial. More-
over, the diverse stories of creation that appears in scripture are a testimony
to the fact that the origin of humanity has been an ever present subject
within the minds of scholars and philosophers for thousands of years. With-
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Abundances In the Solar System

Figure 1: Abundances of elements in the solar system, data taken from [5].

out doubt, this will remain true at least for the foreseeable future and in
so doing propel mankind to delve ever deeper into the story of the early
Universe.

1.1 Specific Aims

The project aim is to study BBN and the formation of the light atomic nuclei,
and consists of two main parts. The first part consists of a literature study
to find the main observations that support the Big Bang theory in general
and BBN in particular. The goal is also to find, understand and be able to
reproduce the main parameters and conditions that describe the Universe
prior to BBN. Mainly because these properties are essential for any effort to
determine the outcome and the duration of BBN. Important aspects of these
quantitative estimates is the time frame of BBN and the production of key
isotopes.

The second part is to be based upon calculations with a computer model
using the parameters and key estimates made from literature as input data.
As the reaction networks that describe the BBN process are complex an avail-
able scientific code will be used to calculate the abundances. Hopefully, these
calculations will help to explain the measured abundances of the elements.
For instance, these ought to yield some clues to why the elemental abun-
dances in the solar system have been observed to be distributed according to
figure 1 and [5].
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2 The Standard Model of Particle Physics

As explained in [6] the theory came out of advances made in physics in
the 20th century. Dirac combined quantum mechanics, electromagnetism
and special relativity in his famous equation forming the first step towards
quantum field theory. The first interaction to be successfully described within
a field theory was that between the electron and the electromagnetic field.

According to the standard model there are four fundamental forces, or
interactions, in nature [7]. These are gravity, the weak nuclear force, the elec-
tromagnetic force and the strong nuclear force. Each type of interaction has
its own associated particles, called bosons, as outlined in table 1. Particles
in a quantized interaction field will, in other words, interact by exchanging
bosons. The members of this group of particles are characterized by having
integer spins and that they obey Bose-Einstein statistics. Particles that have
half integer spins are instead called fermions and obey Fermi-Dirac statistics.

Table 1: The four forces.

Force Boson Spin

gravity gravitons (hypothetical) 2
weak nuclear force W+,W−,Z 1
electromagnetic force photons 1
strong nuclear force gluons 1

Particles are divided into groups depending on which force that they can
interact with. On the scale that concerns particles, gravity plays a minor role
and it will not be dealt with any further. Charged particles, such as electrons,
interact with the electromagnetic force, while The weak force interact with
all particles. The strong force however, only interact with at particular set
of different species. Specifically, particles that can interact with the strong
force are called hadrons and those that do not are called leptons.

2.1 Hadrons

Hadrons are particles formed from quarks that interact with the strong force.
The quarks are in turn elementary particles that can not exist freely and
hence have to be combined. These are termed elementary since they can not
be divided into smaller particles. There are six different types of quarks that
all have corresponding anti particles, the properties of which are shown in
table 2, as can be read in [7].
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Table 2: Properties of quarks.

Quark Symbol Mass [MeV/c2] Charge [e] B Anti particle

up u 5 +2/3 +1/3 ū
down d 10 −1/3 +1/3 d̄
charm c 1500 +2/3 +1/3 c̄
strange s 200 −1/3 +1/3 s̄
top t 1.7·105 +2/3 +1/3 t̄
bottom b 4300 −1/3 +1/3 b̄

Quarks can be combined in two ways, either three quarks taken together
or one quark and one anti quark. The former combination forms a group
called baryons and the latter forms mesons. The most familial baryons, that
is the proton and the neutron, both consists of up and down quarks, with the
proton having (uud) and neutron (udd) [6]. Since a certain anti quark have
the same mass as the corresponding quark but negative baryon number and
charge, the baryon numbers of baryons and mesons are 1 and 0 respectively.
This follows since, to our current knowledge, all reactions conserve the baryon
number.

2.2 Leptons

The first elementary particles to be discovered was the electrons, which are
part of the group of particles named leptons, as described in [6]. There are
three families of leptons, each of which consists of a particle and an accom-
panying neutrino as well as the corresponding anti-particles. The properties
of each member of the above mentioned families are shown in table 3. It
shall also be noted that both particles in an particle-antiparticle pair have
the same mass and spin, yet opposite charge.

As in the case of baryons, there exists a so called lepton number, which
equals 1 for leptons, -1 for their corresponding antiparticles and 0 for non-
leptons. Like the baryon number, both lepton number and electric charge
are conserved in any reaction.

2.3 Bosons

As was mentioned earlier, each type of fundamental interaction in nature can
be described as an exchange of bosons. The weak force is carried by W+,W−

and Z bosons, the first two are charged and forms a particle-antiparticle

5



Table 3: Properties of leptons.

Particle Symbol Mass [MeV/c2] Charge [e] Anti particle

Electron e− 0.511 −1 e+

Electron neutrino νe < 1 · 10−7 0 ν̄e

Muon µ− 105.7 −1 µ+

Muon neutrino νµ < 1 · 10−7 0 ν̄µ

Tau τ 1777 −1 τ̄
Tau neutrino ντ < 1 · 10−7 0 ν̄τ

pair while Z is uncharged [7]. As a result of the uncertainty principle, these
particles, with masses between 80-90 GeV/c2, are very short ranged [6].

On the other hand photons, like gluons, are massless and thus expected to
have infinte range. The latter species are carriers of the strong force and are
therefore responsible for making the quarks stick together as well as getting
protons and neutrons to combine to form nuclei.
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3 The Expansion

3.1 Hubble expansion

In 1929 Edwin Hubble noted that all distant galaxies in all directions seemed
to be moving away from us [8], and even more remarkably, that their velocities
were directly proportional to the intermediate distance. In short, the velocity
was found to be described by Hubbles law (3.1.1) [8]:

v = HR (3.1.1)

where H is the Hubble parameter and R is the relative distance between the
two objects. Furthermore, the current value of H is often referred to as the
Hubble constant, H0, which in turn is sometimes expressed in terms of the
dimensionless Hubble parameter, h, in accordance with (3.1.2) [9, 10].

H0 = h · 100km/(sMpc) ≈ 100h

3.0857 · 1019
m/(sm) ≈ 3.241 · 10−18 · h m/(sm)

(3.1.2)
as derived from the latest WMAP measurements, since 1 pc = 3.0857 ·1016 m
[11, 12].

If distant objects seem to be moving away from Earth in all possible
directions it might be assumed that the earth would be in the very center of
the visible Universe[8]. Although this would undoubtedly be remarkable, the
truth is even more so. Even though it may appear as if distant objects move
away relative to the earth, it is in fact space itself that stretches between the
earth and the objects [8]. This means that neither of them actually moves [8].
To illustrate this effect it is possible to paint spots on a half inflated balloon
and watch how the spots appear to move away from each other as the balloon
is filled with air. Alternatively, one can drink a shrinking potion, like Alice
did in wonderland. As one shrinks together with Alice it may appear as if
she is moving away, when in actuality both are standing still.

With this new view on the expansion it is now possible to regard R from
(3.1.1) as a cosmic scale function [8]. Since (3.1.1) is linear, there is no reason,
if neglecting gravitational effects, to think that the Hubble constant, and thus
the expansion rate, has changed from the time of the early Universe[8]. If
this assumption holds true it would be possible to find an upper limit on the
age of the Universe(3.1.3)[8].

t = R/v

= R/H0R

= 1/H0 (3.1.3)
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With H0 = 71.0±2.5 km/(sMpc) ≈ 71.0 km/s/Mpc ≈ 71.0/3.0857·1019 m/s/m ≈
2.3009 · 10−18 m/s/m, since 1 pc = 3.0857 · 1016 m, one finds that t ≈ 13.78
billion years [12].

3.2 Relativistic Model of the Expansion

As it turns out, the Universe does not behave as linearly as one would as-
sume, for which reason it is necessary to involve general relativity[8]. In the
following reasoning, taken from D.E. Neuenschwander[8], the main ideas of
this approach are discussed. Most importantly, the model as defined must
be able to predict the behaviour and the end of the Universe. In relativity
one must thus define an invariant distance between points in space time, so
that there exists a proper time between nearby events in space time. This
distance, dtp, is given by:

dt2p = dt2 − (dx2 + dy2 + dz2) (3.2.1)

where the speed of light, c, is set to unity. Furthermore, equation (3.2.1) can
be written in spherical coordinates as:

dt2p = dt2 − (dr2 + r2dω2) (3.2.2)

where dω2 ≡ dθ2 + sin2 θdφ2.
By mixing the equations above with the scale function R(r) and by al-

lowing space to be non-Euclidian one arrives at:

dt2p = dt2 −R2(r)

[(
dr2

1− kr2

)
+ r2dω2

]
(3.2.3)

Here k is the curvature parameter, which has three possible values.

• Case 1: k = −1 Space is hyperbolic.

• Case 2: k = 0 Space is Euclidean.

• Case 3: k = 1 Space is elliptic.

Case 1: Space will continue to expand forever with a non-vanishing ve-
locity. This leads to what is called an “open Universe”

Case 2: The expansion velocity of space will decrease towards zero until
equilibrium is reached with regards to the gravitational potential, at which
point the Universe will have reached a fixed size.

Case 3: The gravitational potential is larger than the kinetic energy and
will hence pull the Universe together again, resulting in what is usually called
the “big crunch”

8



4 The Early Universe

4.1 The Very Early Universe

The time period lasting from the beginning of time, t = 0, until approxi-
mately one second after the bang, often referred to as the very early Universe,
can roughly be broken down into the following epochs [13, 14, 15]:

• Planck epoch, 0 s < t < 10−43 s.

• Grand Unification, 10−43 s < t < 10−35 s.

• Inflation & Baryon genesis, 10−35 s < t < 10−33 s.

• Separation of the weak and electromagnetic forces, 10−33 s < t < 10−5 s.

• Protons and neutrons are created, 10−5 s < t < 1 s.

The first of these eras, the Planck epoch, is framed by two fundamental
points in time, specifically the birth of the Universe in the form of a singu-
larity at t = 0 s and the Planck instant at t ≈ 10−43 s. The latter marks the
moment after which quantum effects no longer dictates all physical processes,
which follows from the fact that the general theory of relativity breaks down
during the Planck epoch. The physics of this era is largely unknown, partly
because of the high temperature, T ≈ 1032 K.

Although equally difficult to imagine, the physics of the following era,
The Grand Unification, is more in line with classical theory [14]. Yet, the
temperature was still high enough, that is ∼ 1029 K, for all fundamental
forces apart from gravity to be indistinguishable, which therefore is true for
a number of particle species as well [14].

The Universe continues to grow and cool however, and eventually reaches
a temperature just below 1028 K. As this occurs, the strong force begins to
dominate over the other interactions, which in turn influences strongly on the
nature of matter [14]. More to the point, the separation of forces shifts the
equilibrium for the composition of matter, thereby provoking what can be
described as a phase transition [14]. During this period 10−36 s < t < 10−33 s
called the inflation the universal expansion takes place at an exponential rate
[14]. Remarkably, by the end of this time period the Universe has expanded
by a factor of approximately 1025 [14].

At t ≈ 10−9 s the temperature in the Universe has dropped to about
1015 K and the electromagnetic and weak forces start to separate, while si-
multaneously becoming significantly decoupled from the strong nuclear force
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[14]. Though less potent than the inflation, this later shift of the fundamen-
tal forces results in a perturbation of the matter content by introducing a
small, yet significant, asymmetry in the number of particles as compared to
antiparticles [14].

The ratio of the number of baryons and leptons is conserved during the
later stages of the Universe, as these amounts are thought to have been, al-
most, fixed during the baryon genesis, at t ≈ 10−34 s, and the electro-weak
transition, at t ≈ 10−10 s, respectively [14]. Additionally, the number of lep-
tons per baryon is related to the number of photons per baryon since photons
were created as a result of the annihilation of leptons at high temperatures
[14]. The latter quotient is in turn a measure of the entropy per particle [14].

As was mentioned in the previous section, hadrons are composed of
quarks, held together by gluons associated with the strong nuclear force
[14]. These two particles species did not begin to form into hadrons until
t ≈ 10−5 s, though [15]. Previously, that is from the baryon genesis and
forwards, the Universe is filled with a quark-gluon plasma that also contains
electron-positron pairs, neutrinos and photons [14, 15]. During the phase
transition that follows, bubbles of hadron gas forms and grows in what is
best described as a sort of nucleation process. At t ≈ 10−4 s small droplets of
gluons and quarks remain in the, at this point, dominating gas of hadrons and
leptons [15]. When this period comes to an end, the protons and neutrons
contained within the hadron gas are in thermal equilibrium [14].

4.2 The Early Universe

Before delving into the details of the final era of the very early Universe, that
is the time period 0.01 s < t < 1.9 s, it is helpful to present, as a reference, a
list of events to be discussed, together with the approximate times at which
they are thought to have begun [15].

• Neutrino oscillations are initiated, t ≈ 0.1 s.

• The neutrinos decouple, t ≈ 1 s.

• Simultaneously, the neutrons freeze-out, t ≈ 1 s.

With reference to the first of these happenings, it is important to keep
in mind that its occurrence is not predicted by the standard model for cos-
mology, since it includes the assumption that all neutrinos are massless [10].
In the present day model for particle physics however, no conflict exists[10].
Specifically, there are no theoretical restraints that compels the neutrino
masses to be either zero or non-zero [10]. Given that the latter holds true,
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it would be possible for the weak eigenstates of the neutrinos to be formed
from linear combinations of mass eigenstates, thereby providing a route for
transitions between different neutrino flavors, often referred to as neutrino
oscillations [10].

Neutrinos, after photons, are the most abundant particle species in the
Universe [10]. Therefore it is not far fetched to assume that a non-zero neu-
trino mass, together with oscillations, would severely effect the cosmological
evolution [10]. Indeed, the first of these deviations from the standard model
would alone result in a profound contribution to the total energy density of
the Universe [10]. Furthermore, neutrino oscillations is bound to have af-
fected the universal expansion rate, neutrino densities and energy spectrum
together with the asymmetry between neutrinos and anti-neutrinos as well
as the neutrino dependent cosmological processes [10].

Before discussing further the implications of neutrino oscillations, one
would benefit from having a rough estimate of the upper bound for the neu-
trino masses. This is possible, thanks to the requirement that the total mass
density for all neutrino species should be less than equal to that of matter,
ρm, as stated in (4.2.1). ∑

ρνf
≤ ρm. (4.2.1)

For these calculations it will be assumed, in agreement with present day
observations, that the non relativistic matter density in the Universe, ρm,
is less than 30% of the so called critical mass density, ρc, defined by (4.2.3)
[1, 3, 10].

ρc =
3H2

0

8πG
(4.2.2)

where G is Newtons gravitational constant and H0 is the Hubble constant.
Before continuing with this discussion it is convenient to introduce the prop-
erty Ωi, which represents the contribution of species i, by fraction, to the
critical mass density [1, 3]. Thus, it is related to ρc by equation (4.2.4),
where ρi is the mass density for species i [1, 3].

Ωi =
ρi

ρc

(4.2.3)

By combining (4.2.2) and (4.2.3) one can easily derive the expression
(4.2.4) for ρi [3].
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Ωi =
ρi

ρc

= ρi
8πG

3H2
0

⇔ ρi =
3H2

0Ωi

8πG
(4.2.4)

By substituting ρm in (4.2.1) for (4.2.4) one thus arrives at the inequality
in (4.2.5). ∑

ρνf
≤ Ωm ·

3H2
0

8πG
(4.2.5)

The procedure necessary to arrive at a precise limit for the sum of the
neutrino masses,

∑
mνf

, is a bit to involved to be attempted here, as such
only the result (4.2.6) shall be stated [10].∑

mvf
. 94 eV/c2 · Ωmh2 (4.2.6)

As was stated above, it has been inferred that ρm < 0.3 · ρc or equally
that Ωm < 0.3. Additionally, it will be assumed that the Hubble parameter
h = 0.7, in agreement with section 3. Upon inserting the above values into
(4.2.6) one finally arrives at the sought limit, (4.2.7) [10].∑

mvf
≤ 15 eV/c2 (4.2.7)

Even so, there exists much more precise limits on the neutrino masses
as obtained from observations, experiments and BBN calculations [10]. For
example, some measurements indicate that massive neutrinos could be can-
didates for hot dark matter if mvf

∼ 5 eV, which suggests that the usefulness
of the estimate presented above is perhaps limited [10].

The kinetic decoupling of the neutrinos can be described as a decrease
in thermal contact between these particles and the rest of the plasma. The
process begins when t ≈ 0.12 s at a temperature of T ≈ 3 · 1010 K and then
comes to a close ∼ 1.1 s after the bang [13]. Specifically, this means that the
rates of the weak interactions, such as e++e− � ν+ν̄, whereby the neutrinos
are kept in thermal equilibrium with the plasma drops below the expansion
rate of the Universe [16, 17]. Afterward, the neutrinos only influence the
cosmological evolution by their addition to the total mass-energy density of
the Universe [13].

Lastly, it shall be noted that during the entirety of the time period that
has been discussed the Universe is filled predominantly with photons, neu-
trinos and antineutrinos together with electron-positron pairs [13]. The neu-
trons, protons and electrons meanwhile are mixed into the primordial gas only
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in trace amounts [13]. Furthermore, the temperature, ranging from 1011 K at
t ≈ 0.01 s to T . 1010 K once t . 1.9 s, is sufficiently high for e± pairs to be
produced. As such the particles within the gas mixture are relativistic and
the total behaviour of the fluid resembles more that of radiation than matter
[13].

4.3 Freeze-out

Since the neutron number greatly influences the outcome of BBN, it is impor-
tant to be able to calculate, at least approximately, the time for the neutron-
to-proton freeze-out. Similarly to the neutrino decoupling, this freezeout is
assumed to have occurred when the overall interconversion rate of protons
and neutrons λn,p fell below the universal expansion rate, due to decreasing
temperature [3]. Specifically, it would seem likely that as the average time
between collisions, that is reciprocal of the conversion rate, grows compared
to the time scale in the Universe, as measured by 1/H, these events will oc-
cur ever more seldom. One would thus expect the n-to-p interconversion to
become more ineffective to sustain the equilibrium that had existed between
the two species before the freeze-out [4]. It is therefore not unreasonable to
assume an estimate temperature at the neutron freeze-out would correspond
to the time at which the equality λn,p = H was satisfied.

Before continuing with this discussion however, it is of the essence to
describe the relationship between neutrons and protons at times when these
were still kept in chemical equilibrium through the reactions in (4.3.1), (4.3.2)
and (4.3.3),

n + e+ 
 p + ν̄e (4.3.1)

n + νe 
 p + e− (4.3.2)

n → p + e− + ν̄e (4.3.3)

The fact that the mass difference between the species, Q = mnc
2−mpc

2 ≈
1.293 MeV, is greater than zero implies that there were fewer neutrons than
protons in the early Universe, or equally that nn/np < 1 [2]. Yet, the ratio
of the neutron to proton number densities, is predicted to approach unity as
the temperature goes to infinity, at least according to (4.3.4) [13].

nn

np

= exp

(
−Q

kBT

)
(4.3.4)

In deriving equation (4.3.4), one proceed by first finding suitable expres-
sion for the neutron and proton number densities. As is shown in appendix
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C, the number of particles of species i per unit volume and with momentum
in the interval [q,q + dq] is given by equation (4.3.5).

ni(q)dq =
4πgi

h3

q2dq

exp
(

Ei(p,q)−µi

kBT

)
± 1

(4.3.5)

Both protons and neutrons have half integer spins and are thus fermions,
for which reason the variant of (4.3.5) with a plus sign on the right hand side
applies [11]. Furthermore, it can be assumed that both protons and neutrons
were non-relativistic at the time of the n-to-p freeze-out, which shall later
be shown to have occurred when T ≈ 1010 K [13, 18, 19]. This assumption
is justified by the fact that the electrons and positrons, with masses three
orders of magnitude less than the nucleons, seized to be relativistic at similar
temperatures [13, 19]. It follows that the energy of these particles, Ei(p,q) in
(4.3.5), can be written on the form (4.3.6) [11, 18].

Ej(q) = mjc
2 +

q2

2mj

(4.3.6)

where the subscript j has been included to distinguish the nucleons from the
relativistic particles discussed in section C, with j = n for neutrons and j = p
for protons. Most importantly, the chemical potentials, compared to those
of positrons and electrons, do not vanish in this case. By proceeding in a
manner identical to when deriving equation (C.1.29), µ−+µ+ = 0, in section
C one ought to be able to prove that µp = µn = µ. For example, one could
substitute N− for Nn and N+ for Np and then use the fact that the chemical
potentials of each of the species e−, e+ and ν, which appear in reactions
(4.3.1) to (4.3.3), are zero. In other words, what would be shown is that the
chemical potentials are additively conserved in each of the named reactions,
which in fact generally holds true [13]. Lastly, nucleons, being fermions with
spin 1/2, have two spin degrees of freedom, gj = 2.

With the above statements taken into account the expression (4.3.7), for
the total number of particles j per unit volume, results when integrating
(4.3.5) .

nj =

∫ ∞

0

nj(q)dq =

∫ ∞

0

4π · 2
h3

q2dq

exp
(

mjc2+q2/(2mj)−µ

kBT

)
+ 1

⇔ nj =
8π

h3

∫ ∞

0

q2dq

exp
(

mjc2−µ

kBT
) exp( q2

2mjkBT

)
+ 1

(4.3.7)
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In order to ascertain an analytical solution to (4.3.7) it can be assumed
that the exponential term in the denominator is much larger than unity,
effectively inferring that the nucleons follow Maxwell-Boltzmann statistics.
The assumption is the most critical for particles with small momentum q,
for which exp[q2/(2mjkBT )] ≈ 1. Therefore, ensurance that the magni-
tude of the factor exp[(mjc

2 − µj)/(kBT )] is high enough for an appropriate
temperature is sufficient evidence to validate this approximation. To show
that this factor is indeed large compared to 1, without taking the chem-
ical potential into account, one can determine the magnitude of the term
mjc

2/(kBT ). For this purpose, the temperature can be taken to be 1010 K.
With very simple estimates of the physical constants, one thus finds that
mjc

2/(kBT ) ≈ 10−27 · 1017/(10−23 · 1010) = 10−27+17+23−10 = 103 [11]. As
exp[mjc

2/(kBT )] ≈ e1000 � 1 unarguably, the stated assumption ought to
be justified for all q, under which (4.3.7) will now be shown to reduce to the
form (4.3.8). Note that the integral on the right hand side of (4.3.7) was
evaluated with help of formula (D.1.3), derived in appendix D.1.

nj ≈
8π

h3

∫ ∞

0

q2dq

exp
(

mjc2−µ

kBT

)
exp

(
q2

2mjkBT

)
=

8π

h3
exp

(
µ−mjc

2

kBT

)∫ ∞

0

q2 exp

(
− q2

2mjkBT

)
dq

=

{
x =

q√
2mjkBT

⇔
√

2mjkBTx = q ⇒ dq =
√

2mjkBTdx

}

=
8π

h3
exp

(
µ−mjc

2

kBT

)∫ ∞

0

(2mjkBT )x2e−x2√
2mjkBTdx

=
8π

h3
exp

(
µ−mjc

2

kBT

)
(2mjkBT )3/2

∫ ∞

0

x2e−x2

dx

⇔ nj ≈
8π

h3
exp

(
µ−mjc

2

kBT
)(2mjkBT

)3/2 √
π

2

⇔ nj ≈
4(2πkBT )3/2

h3
exp

(
µ

kBT

)
m

3/2
j exp

(
−mjc

2

kBT

)
(4.3.8)

The expression (4.3.9) is obtained by forming the ratio nn/np and then
introducing (4.3.8). Finally, (4.3.4) stated earlier follows from (4.3.9), by
inferring that the smallness of the neutron to proton mass difference means
that mn/mp ≈ 1.
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nn

np

≈
(

mn

mp

)3/2 exp
(
−mnc2

kBT

)
exp

(
−mpc2

kBT

)
⇒ nn

np

≈
(

mn

mp

)3/2

exp

(
−Q

kBT

)
(4.3.9)

As mentioned though, equation (4.3.4) is only applicable at thermal equi-
librium, times preceding the neutron to proton freeze-out. Thereafter, the
number of neutrons decreases because of beta decay, according to the reaction
in(4.3.10) [2].

n → p + e− + ν̄e (4.3.10)

Given that the neutrons in a particular system is neither consumed nor
created by any reaction except (4.3.10) one can calculate the number of
neutrons at any time t, later than t0, from (4.3.11).

Nn = Nn,0 exp

(
−(t− t0)

τn

)
, (4.3.11)

where Nn,0 = Nn(t0) is the, known, number of neutrons at a particular
time t0, for example the time at the neutron to proton freeze-out, and τn ≈
885.7± 0.8 s is the mean neutron life time [11, 19].

Figure 2 shows the preditcted evolution of the neutron-to-proton ratio for
a decreasing temperature based on the previous discussion. Specifically, the
temperature dependence of this ratio is governed by (4.3.9) for T < Tfreeze-out

and by (4.3.11) for T > Tfreeze-out .
From the statement above the simple relation (4.3.11) ceases to hold when

the Universe has become cool enough for the nucleosynthesis to begin [2].
During this era most neutrons are fused into different nuclei, primarily 4He
[2]. Once the BBN process has come to an end however, the conditions
for the neutrons return to those that persisted just before the onset and
the remaining neutrons are thus comparably slowly converted into protons,
through reaction (4.3.10), as time progresses [2].

With the above discussion in close mind, it is convenient to return the
problem of calculating the temperature at the nucleon freeze-out. As was sug-
gested earlier one ought to be able to estimate this temperature by solving
the equation obtained by setting the Hubble parameter equal to the neutron
to proton conversion rate. In order to achieve this however, one must first
find an expression for the conversion rate and the Hubble parameter H as
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Figure 2: The evolution the neutron to proton ratio as a function of
temperature before the Big Bang Nucleosynthesis, specifically (4.3.9) for
T < Tfreeze-out and (4.3.11) for T > Tfreeze-out . The asterisk, ∗, marks the
point that corresponds to the n-to-p freeze-out, as calculated from equation
(4.3.14). Before the freeze-out the ratio is just a function of the canonical
ensemble and thereafter only of neutron decay.
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functions of time. Because time and temperature of the early Universe are
tightly linked, an almost equivalent approach would be to determine the tem-
perature below which the protons and neutrons are no longer in equilibrium.
Deducing equation (4.3.12), that shall be used for this comparison, is far
beyond the scope of this text though, and as such it will be stated without
proof [18].

λn,p =
255

τnx5

(
12 + 6x + x2

)
, x =

Q

kBT
(4.3.12)

Moving on to the Hubble parameter, one have by definition H = Ṙ/R.
With the help of expressions (C.1.6) and (C.1.38) derived in C, it is therefor
possible to arrive at the formula (4.3.13) for H(T ). 1

Ṙ

R
=

√
8πG

3c2
ε (C.1.6)

ε ≈ 43

8
aT 4 (C.1.38)

⇒H =
Ṙ

R
=

√
8πG

3c2
ε ≈

(
8πG

3c2

43

8
aT 4

)1/2

⇔H(T ) ≈
(

43πaG

3c2

)1/2

T 2 (4.3.13)

An estimate of the temperature at the nucleon freeze-out can be calcu-
lated solving the equation,(4.3.14) , by setting the Hubble parameter equal
to the neutron to proton conversion rate.

H(T ) = λn,p

⇔
(

43πaG

3c2

)1/2

T 2 =
255

τnx5

(
12 + 6x + x2

)
, x =

Q

kBT
(4.3.14)

With numerical values for the physical constants appearing in (4.3.14),
the temperature below which the neutrons and protons were no longer in
equilibrium is calculated to be Tfreeze-out ≈ 7.8965 · 109 K , as explained in
section 8.1.

1As was mentioned previously, (C.1.38) differs from equation 8.62 deduced by Islam
since the contribution of the τ neutrino and its corresponding antiparticle has not been
taken into account in the latter case [13]. Also, in deriving the same expression Islam has
set the speed of light equal to unity, c = 1 [13]
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5 Energy Density

5.1 The Baryon to Photon Ratio

Over the years accurate and independent experimental measurements have
successively improved the estimates of the original input parameters to Big
Bang Nucleosynthesis simulations. Eventually, these were pinned to within
ranges that essentially promoted BBN to a model with a sole parameter,
namely the baryon to photon ratio η [3].

Thanks to the Wilkinson Microwave Anisotropy Probe satellite, WMAP,
this situation has recently changed rather dramatically [2]. After its launch
by NASA in 2001, WMAP has mapped the cosmic microwave background,
CMB, over the entire sky in great detail [20]. Specifically, multi-parameter
expressions have been fitted to the observed anisotropy of the background
radiation [21, 22]. The errors in the predicted values on these parameters
has been further refined through comparison with other observational data
[21, 22]. The baryon density was one of those chosen parameters and has, as
such, been determined with an unprecedented accuracy [22].

As will be shown it is possible to deduce the photon number density given
the black-body temperature that correspondence to the cosmic background
radiation, 2.743 K [11]. This deduction will be based upon the assumption
that radiation energy density of CBR follows Planck’s radiation law, both in
terms of frequencies (5.1.1) and wavelengths (5.1.2) [11]. Indeed, this is also
what has been observed, mind the small fluctuations mentioned above [23].

du =
8πh

c3

ν3dν

exp
(

hν
kBT

)
− 1

(5.1.1)

du =
8πhc

λ5

dλ

exp
(

hc
kBTλ

)
− 1

(5.1.2)

The formulas (5.1.1) and (5.1.2) give the energy content per unit volume
of black body radiation in the intervals [ν, ν +dν] and [λ, λ+dλ] respectively.
Thus, the total energy density of the radiation emitted by a black body of
temperature T can be deduced by integrating (5.1.1) over all frequencies ν
according to (5.1.3).
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u =

∫ ∞

0

8πh

c3

ν3dν

exp
(

hν
kBT

)
− 1

⇔ u =
8πh

c3

∫ ∞

0

ν3dν

exp
(

hν
kBT

)
− 1

(5.1.3)

The relation (5.1.3) can be rearranged into the form (5.1.4), where x =
hν

kBT
, that is more easily solvable.

u =
8πh

c3

∫ ∞

0

(
kBT

h

)3(
hν

kBT

)3
1

exp
(

hν
kBT

)
− 1

kBT

h

hdν

kBT

⇔ u = 8π
(kBT )4

(hc)3

∫ ∞

0

x3

ex − 1
dx (5.1.4)

The integral on the right hand side of (5.1.4) has, as shown in appendix
D.2, the solution (5.1.5). This result can be inserted into (5.1.4) to yield the
formula (5.1.6) for the CMB energy density [24].

(m− 1)!
∞∑

n=1

1

nm

∣∣∣∣
m=4

= 6 · π4

90
=

π4

15

⇒
∫ ∞

0

x3dx

ex − 1
=

π4

15
(5.1.5)

⇒ u =
8π5

15

(kBT )4

(hc)3
(5.1.6)

Equally, (5.1.2) can be rewritten in terms of the number density of pho-
tons, Nγ, thus yielding the equation (5.1.7) since the photon energy equals
hν = hc/λ and u = hν ·Nγ.

dNγ =
du

hν
=

λ

hc
du =

λ

hc

8πhc

λ5

dλ

exp
(

hc
kBTλ

)
− 1

⇔ dNγ =
8π

λ4

dλ

exp
(

hc
kBTλ

)
− 1

(5.1.7)

Expression (5.1.8) for the total number density of photons follows from
(5.1.7) by integrating both sides of the equation over all wavelengths.
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Nγ =

∫ ∞

0

8π

λ4

dλ

exp
(

hc
kBTλ

)
− 1

⇔ Nγ = 8π

∫ ∞

0

λ−4dλ

exp
(

hc
kBTλ

)
− 1

(5.1.8)

By the same token as (5.1.4), (5.1.9) represents a form of (5.1.8) that is
more readily solvable, where y = (hc)/(kBTλ) ⇒ dy = −(hc)/(kBT )λ−2dλ.

Nγ = 8π

∫ ∞

0

(
kBT

hc

)2(
hc

kBTλ

)2
1

exp
(

hc
kBTλ

)
− 1

kBT

hc

hc

kBT
λ−2dλ

⇔ Nγ = 8π

(
kBT

hc

)3 ∫ ∞

0

y2

ey − 1
dy (5.1.9)

Though the integral on the right hand side of (5.1.9), compared to that in
(5.1.4), cannot be obtained as an precise number, it can still be evaluated in
the same manner as before. This results in the estimate (5.1.10), with which
the final relation (5.1.11) is obtained [24].

(m− 1)!
∞∑

n=1

1

nm

∣∣∣∣
m=3

≈ 2 · 1.202 ≈ 2.404

⇒
∫ ∞

0

x2dx

ex − 1
≈ 2.404 (5.1.10)

⇒ Nγ ≈ 2.404 · 8π
(

kBT

hc

)3

⇒ Nγ ≈ 60.42 ·
(

kBT

hc

)3

(5.1.11)

Hence, the photon number density in the cosmic background radiation
is found, by evaluating (5.1.11) for T = 2.743 K [11]. Combined with the
WMAP data this yields the following result.

Nγ ≈ 60.42 ·
(

1.381 · 10−23 · 2.743

6.626 · 10−34 · 2.998 · 108

)3

⇒ Nγ ≈ 4.190 · 108 m−3
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Yet to find the sought baryon to photon ratio, one must first deduce the
baryon number density nb. Given the baryon mass density density ρb, the
number density is most easily calculated by assuming the mass per baryon
to be equal to that of a proton, mb ≈ mp ≈ 1.6726216 · 10−27 kg [11, 13].
The main problem is therefore determining ρb. Fortunately, the baryon mass
density can be calculated from the dimensionless number Ωb that has been
accurately fitted to the WMAP observations, as mentioned above. As was
discussed in section 4.2 Ωb is by definition the baryonic contribution, by
fraction, to the so called critical mass density ρc, defined by (4.2.2) [1, 3].
Furthermore, this property conveniently appears in the expression (5.1.13)
for the baryon mass density density, obtained simply by substituting the
index i for b in (4.2.4) [3].

Ωb =
ρb

ρc

(5.1.12)

⇒ ρb =
3H2

0Ωb

8πG
(5.1.13)

The gravitational constant will be taken as G = 6.6726 · 10−11 Nm2/kg2

while the most up to date WMAP measurements give Ωbh
2 = 0.02258+0.057

−0.056

[11, 12]. With H0, given by (3.1.2), one can thus calculate the baryon number
density from (5.1.14).

nb =
ρb

mb

=
3H2

0Ωb

8πGmb

(5.1.14)

⇒ nb =
3 · (3.241 · 10−18 · h)2 · 0.02258/h2

8π · 6.6726 · 10−11 · 1.6726216 · 10−27

⇒ nb =
3 · (3.241 · 10−18)2 · 0.02258

8π · 6.6726 · 10−11 · 1.6726216 · 10−27
≈ 0.2536 m−3

The sought baryon to photon ratio, η = nb/nγ, is thus found to be

η =
0.2536

4.190 · 108
≈ 6.1 · 10−10.
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6 Relating Time and Temperature

6.1 Simple Model for Relating Time and Temperature

The Hubble parameter H0 does not remain constant on large time scales and
it is therefore necessary to find how H(t), now without the subscript, varies
with the expansion. A much more thorough derivation than what is below is
found in appendix C. Intuitively a relation to a radius would be practical, but
since the Universe lacks one the scale factor R will be used instead [25]. This
parameter only depends on time and thus the distance between two point in
space can be predicted given an expression for R(t) and the magnitude of
this distance at some arbitrarily time t0 [26]. The relation between H and R
is [25]

H =
1

R

dR

dt
. (6.1.1)

To obtain the relation for the time evolution of H the tensor equation of
the theory of general relativity needs to be solved. The result is stated below
[25].

H2 =
(dR/dt)2

R2
=

8πG

3
ρ(t)− kc2

R2
+

Λ

3
, (6.1.2)

where G is the gravitational constant, ρ(t) is the sum of the mean mass and
the energy density of the Universe, k is the curvature parameter the value
of which depends on whether the Universe is open, closed or flat, as was
discussed in section 3. Lastly, Λ is the cosmological constant which will be
ignored from this point onwards. Furthermore, the Universe will be assumed
to be flat, which simplifies the calculations since the geometrical factor k is
zero in this case.

In order to integrate (6.1.2) the dependence of ρ on R is needed. The
early Universe was dominated by radiation as well as particles moving at
relativistic speeds, for which reason it can be assumed that the radiation-like
relationship E = hc/λ was obeyed. Hence, one can use the radiant energy
density ρR, which represents the energy content of the radiation per unit
volume. In turn ρR is equal to the cross product of the energy per quantum
and the number of quanta per unit volume [25]

ρR =
energy

volume
= energy per quantum× quanta per volume.

The energy per quantum is proportional to 1/R and the quanta per unit
volume is proportional to 1/R3 [25]. ρ in (6.1.2) will therefore be assumed to
have the form ρR = C/R4, with C a constant that will be shown to disappear
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in the calculations below. An approximate form for (6.1.2) is thus

H2 =

(
1

R

dR

dt

)2

=
8πG

3

C

R4

⇔ H =
1

R

dR

dt
=

√
8πGC

3

1

R2
, (6.1.3)

which can be integrated to yield

t =

√
3C

32πGR4
=

√
3

32πGρR

. (6.1.4)

To arrive at the desired relation between time and temperature the tem-
perature dependence of ρR is required. As was previously mentioned, the
early Universe was dominated by radiation and relativistic particles. There-
fore the energy density ρR can be taken as that of black body radiation for
a radiating system, u(T ), at temperature T [25]

u(T ) = σT 4, (6.1.5)

where σ is the Stefan-Boltzmann constant. The relation between tempera-
ture, in Kelvins, and the elapsed time since the big bang , in seconds, is

T =

(
3

32πGσ

)1/4

· 1

t1/2
, (6.1.6)

which reduces to (6.1.7) upon inserting numerical values for the physical
constants.

T ≈ 1.5 · 1010

t1/2
K · s1/2. (6.1.7)

The relation in (6.1.7) is shown in figure 3.
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Figure 3: .Relation between time and temperature in the radiation dominated
era.

7 Big Bang Nucleosynthesis

7.1 The Physical Process

The Big Bang Nucleosynthesis represents an era in the history of the Universe
that is said to have lasted from about a second until thirty minutes after the
Big Bang [1, 4]. During this process protons and neutrons were combined, as
governed by a complex reaction network, to form a multitude of light nuclei
[1, 4].

Before moving on to discuss the details of the primordial nucleosynthesis,
it is convenient to discuss this and similar events in the early Universe in
more general terms. Most importantly, the processes that have been or shall
be described neither ceases nor are initialized at specific times, or temper-
atures. Indeed, regarding any changes as momentaneous, though helpful as
a simplification for calculation and modeling purposes, is inherently flawed.
Therefore, the specific times or temperatures related to these events, in many
cases, represent points marking a shift in dominance of one physical property
over another. For instance, the time for the neutron freeze-out is calculated
by comparing the rate of the neutron to proton conversion and the expansion
of the Universe respectively. This could falsely lead to the conclusion that
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no protons were converted into neutrons once the point of intersection had
been reached. In reality though this process did occur, be it at an ever slower
pace.

The value of the neutron to proton ratio at the beginning of BBN is one
of the key factors that determines its outcome [9]. It is therefore convenient,
given the previous example, to return to the era at hand. Nontheless, in order
to fully appreciate the impact of the most crucial parameters, such as the
n-to-p ratio, on the primordial nucleosynthesis a qualitative understanding
of the underlying physics is required.

During the period at hand the Universe was still quite dense, with regards
to the total energy content per unit volume, and the temperature correspond-
ingly high [4, 13]. Furthermore, the Universe was predominantly inhabited
by photons and the recently decoupled neutrinos, while the protons, neu-
trons and electrons were present only in trace amounts [4, 13]. It thus seems
reasonable that the only nuclear reactions of interest would have involved
interactions between, at most, two particles [4]. By the same token, it can
be assumed that the more complex nuclei than D, could only have formed
through a chain of two-body collisions [4]. This suggests that the formation
of the lightest nuclei, the deuteron, could be regarded as the beginning of
BBN. Indeed, the starting point for the primordial nucleosynthesis is often
referred to as the time when the rate of deuterium nuclei formation, through
(7.1.2), exceeded that of the reverse reaction [2].

Also, the right hand side of (7.1.2) suggest that the destruction of d
was, at this stage, primarily due to photodissociation. The vast number of
photons per baryon meant that this process was highly effective in hindering
the deuterium nuclei to survive long enough for it to take part in other
nuclear reactions [2]. This deadlock prevails long after the temperature,
or rather kB · T , has dropped below the binding energy of the deuteron,
Bd ≈ 2.23 MeV. Specifically, the Big Bang Nucleosynthesis is estimated to
have begun in earnest when kB · T ≈ 0.080 MeV [2].

The nucleosynthesis then proceeded through a intricate network of reac-
tions, of which (7.1.1) to (7.1.11), shown in figure 4, represented the twelve
of these with highest significance [2, 3].
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Figure 4: The twelve most important reactions in the reaction network that
governs the BBN process. The reactions represented by numbers are repro-
duced in equations (7.1.1) – (7.1.11).

1. n → p + e− + ν̄e (7.1.1)

2. p + n → d + γ (7.1.2)

3. d + p →3 He + γ (7.1.3)

4. d + d →3 He + n (7.1.4)

5. d + d → t + p (7.1.5)

6. t + d →4 He + n (7.1.6)

7. t + 4He →7 Li + γ (7.1.7)

8. 3He + n → t + p (7.1.8)

9. 3He + d →4 He + p (7.1.9)

10. 3He + 4He →7 Be + γ (7.1.10)

11. 7Li + p →4 He + 4He (7.1.11)

12. 7Be + n →7 Li + p (7.1.12)

In discussing nuclear reactions, it is sometimes useful to examine the
nuclear binding energies, defined as the difference in mass between a nucleus
and the sum of its individual nucleons. Specifically, the comparison of this
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property, evaluated for different nuclei, yields an important estimate of their
relative stabilities. Given values for the binding energy per nucleon for the
lightest elements it is thus possible to make qualitative predictions on BBN
with regards to both the physical process and its outcome. Most importantly,
in going from d through 3He and T to 4He the degree of binding increases,
even though the tritium nuclei is in actuality unstable and later decays to
3He [3, 11, 18].

By the same logic used to assess the starting point for BBN, it could
be inferred that each nuclear species with a binding energy higher than
the deuteron would in fact have been stable at temperatures higher than
0.080 MeV [13]. More precisely, in the sense that not enough energetic pho-
tons would have been available to photo fission them efficiently [13]. It is
therefore helpful to think of the formation of d as a sort of bottleneck that
delayed the nucleosynthesis. In addition, the tighter binding of the, slightly,
more massive nuclides meant that these would be expected to have readily
formed once this barrier had been breached [13].

It seems likely that most neutrons, which were outnumbered by the pro-
tons by a factor of at least 6, would have been incorporated into the most
stable nuclei [1, 13]. Because of the mass gaps at A = 5 and A = 8, the
most tightly bound nuclide produced during the primordial nucleosynthesis
was 4He [13]. Specifically, 4He constitutes a local maximum for the binding
energy per nucleon as a function of the nucleon number, A, as is seen in
figure 5 [18, 27].

Comparison of reactions (7.1.10) and (7.1.7) with those higher up in the
list suggests that particles with higher positive charge, that is at least one
with charge +2e instead of +e, must have collided in order for the heavier
nuclei, A = 7, to have formed. Since the radius of these light particles
are in the order of a few fm, the interactions through which 7Li and 7Be
were created would most definitely have involved significantly higher coloumb
barriers [11, 13]. Additionally, the continuous expansion of the Universe
rapidly drained away the energy that was needed to surmount these barriers.
Therefore reactions (7.1.10) and (7.1.7) ought to have given birth to no more
than trace amounts of A = 7 nuclei [1]. It would thus be expected that most
neutrons were bound in 4He once BBN had come to a close [1]. This nuclear
freeze-out, occurred when kBT ≈ 0.1 MeV corresponding to t ≈ 30 min, after
which time no further nuclear reactions took place [1, 2]. Yet, both 7Be and
T as well as the neutron were unstable and continued to decay into 7Li, 3He
and protons respectively [3]. Following the primordial nucleosynthesis the
Universe ought to have contained, based on the previous discussion, primarily
hydrogen-1 and helium-4 in addition to small remnants of unburned d, 3He
and 7Li [1].
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Figure 5: Maximum binding energies as a function of number of nucleons, A,
[27]. Worth noting is that 8Be has a very short half-life, and α-decays almost
instantly into two 4He.
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7.2 The Impact of η

With the framework in place it is convenient to turn to the physical param-
eters that have the largest impact on the predicted result of the Big Bang
Nucleosynthesis. Principally these are the nuclear cross sections that deter-
mine the nuclear reaction rates, the neutron lifetime, the baryon to photon
ratio as well as the number of neutrino species [1]. Since the latter three
have already been under scrutiny, in sections E.8, 5.1 and 4.2 respectively,
while giving a meaningful introduction to cross sections is beyond the scope
of this text, there shall be no effort to explain the underlying principles for
these parameters.

The range of plausible values for η has, until very recently, been rather
wide compared to those of the other physical properties, previously men-
tioned [3]. Indeed, BBN calculations, with the observed values for the pri-
mordial abundances used as input data instead of η, used to give the best, if
not the only, estimates for the baryon density [2, 3]. It is therefore prudent,
not only for historical reasons, to assess the dependence of the final number
fractions of the light elements as well as the progression of the primordial
synthesis on the baryon to photon ratio.

The photodissociation, responsible for delaying the formation of the deuteron
and thus BBN as a whole, should in all likelihood have a rather sharp de-
pendence on η [2, 9]. Although bold, this statement shall now be justified
by analyzing the Boltzmann equation for the system of particles included in
(7.1.2) [18].

As with most expressions involving the the cosmic scale factor R(t), the
complexity of the underlying theory regretfully means that it will be stated
without proof. Furthermore, the form (7.2.1) used in the following derivation
is approximate and only applicable for a system composed of particles 1, 2,
3 and 4 [18].

R−3 d

dt
(n1R

3) = n
(0)
1 n

(0)
2 〈σν〉

{
n3n4

n
(0)
3 n

(0)
4

− n1n2

n
(0)
1 n

(0)
2

}
(7.2.1)

Here ni is the number density of particle type i, while the superscript
(0) indicates that the latter should be evaluated at equilibrium conditions
[18]. Also, by stating this formula it has been inferred that the only reaction
involving the species of interest, 1, is 1 + 2 � 3 + 4 [18].

In (7.2.1) the nature of the interconversion process is taken into account
by inclusion of the thermally averaged cross section 〈σν〉 [18]. Though highly
significant for modeling not only the system at hand but the Big Bang Nu-
cleosynthesis as a whole, giving a qualitative description of these factors is
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beyond the scope of this text. However, by regarding the particle collisions in
a macroscopic sense, at least a basic degree of understanding for the under-
lying physics can be achieved [28]. Classically, both the rates and likelihoods
of such impacts are dependent on the sizes of the interacting particles, a
property measured by for example their cross sectional areas [28]. Even so,
the nuclear cross sections are immensely more intricate and depends on a far
greater number of physical properties [18].

The term on the left hand side in (7.2.1) ought to represent the total rate
of change in the number density for particle 1 [18]. From the definition of
R(t) given in the introductory chapter and the results in section C, this term
can be seen to take into account the decrease of n1 through the expansion of
the Universe [18]. Moving on to the right hand side, n

(0)
2 〈σν〉 should qualify

as the rate of reaction [18]. The factor within the curly brackets, in turn,

vanishes if the particles are in equilibrium, that is if ni = n
(0)
i ∀ i, and should

hence give an estimate of the departure from equilibrium.
Since the Hubble parameter H = Ṙ/R, or rather H−1, is a measure of

the cosmological time-scale, it is plausible that the magnitude of the term
∂(n1R3)

∂t
is in the order of H1n1 [18]. Thus, if the rate of conversion n

(0)
2 〈σν〉 is

significantly greater than the expansion, the sum of the terms inside the curly
brackets must be very small for the equality (7.2.1) to hold. One would in
other words require the condition in (7.2.2), often referred to as the definition
for chemical equilibrium, to be approximately true [18].

n1n2

n
(0)
1 n

(0)
2

=
n3n4

n
(0)
3 n

(0)
4

(7.2.2)

Because the photons greatly outnumber the nucleons, η ≈ 1010, in the
early Universe, it seems reasonable that the number density of the photons
nγ ≈ n

(0)
γ [18]. Equation (7.2.2) therefore takes on the form (7.2.3) for the

system at hand [18].

nDnγ

n
(0)
D n

(0)
γ

=
nnnp

n
(0)
n n

(0)
p

⇒ nD

nnnp

=
n

(0)
D

n
(0)
n n

(0)
p

(7.2.3)

In deriving formula (4.3.8) it was shown that the protons and neutrons
could, with good approximation, be described by Boltzmann statistics. More-
over, this assumption was partly justified by comparing energies equivalent
to the masses of these particles and the temperature respectively. For this
reason, the same arguments should be applicable to the even more massive

31



deuteron. Consequently, each of the number densities appearing in (7.2.3)
could be replaced by (7.2.4), which is a more general form of formula (4.3.8)
[18]. More precisely, the former follows from the latter by replacing a factor
of 2, given by the number of spin degrees of freedom for the nucleons, with
gj and the nucleon chemical potential µ with µj.

nj ≈
2gj(2πkBT )3/2

h3
exp

(
µj

kBT

)
m

3/2
j exp

(
−mjc

2

kBT

)
(7.2.4)

What is more, at equilibrium conditions the chemical potentials vanish
and equation (7.2.4) takes on the form (7.2.5) for all relevant species.

n
(0)
j ≈ 2

(2πkBT )3/2

h3
· gjm

3/2
j exp

(
−mjc

2

kBT

)
(7.2.5)

The approximate form (7.2.6) is obtained by introducing of (7.2.5) into
the right hand side of (7.2.3).

nD

nnnp

=
n

(0)
D

n
(0)
n n

(0)
p

=
2(2πkBT )3/2/h3

(2(2πkBT )3/2/h3)2

gDm
3/2
D exp

(
−mDc2

kBT

)
gnm

3/2
n exp

(
−mnc2

kBT

)
· gpm

3/2
p exp

(
−mpc2

kBT

)
=

1

2(2πkBT )3/2/h3

gD

gngp

(
mD

mnmp
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exp

(
−c2(mD −mn −mp)

kBT

)
⇔ nD

nnnp

=
gD

gngp

h3

2

(
mD/mnmp

2πkBT

)3/2

exp

(
c2(−mD + mn + mp)

kBT

)
(7.2.6)

This equation can be further simplified, however. As was mentioned in
section 4.3 both neutrons and protons are fermions and hence have spin 1/2
corresponding to gn = gp = 2 [18]. The deuteron, on the other hand, has
gD = 3 [18]. With these numbers, the ratio of the species spin degrees of
freedom that appears on the right hand side of (7.2.6) is easily evaluated
to be gD/(gngp) = 3/4. By inserting this result into the previous equation
(7.2.6), one yields the expression (7.2.7) [18].

nD

nnnp

=
3h3

8

(
mD

2πmnmpkBT

)3/2

exp

(
c2(−mD + mn + mp)

kBT

)
(7.2.7)
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Figure 6: The graph shows the temperature dependence of the ratio
nD/(nn · np).

It will also be assumed that the small differences in mass, between on
one hand the proton and the neutron and on the other the deuteron and its
constituents, are negligible, or equivalently that mD = mn + mp ≈ 2mn ≈
2mp, in the quotient on the right hand side of (7.2.7). In addition, the
nominator in the exponential is substituted for the binding energy of the
deuterium nuclei, −Q = −mDc2 +(mnc

2 +mpc
2). As such, (7.2.7) is reduced

to the form (7.2.8), which corresponds to the graph in figure 6.

nD

nnnp

=
3h3

8

(
2mp

2πmpmpkBT

)3/2

exp

(
−Q

kBT

)
⇒ nD

nnnp

=
3h3

8

(
1

πmpkBT

)3/2

exp

(
−Q

kBT

)
(7.2.8)

Furthermore, nucleons are baryons by definition and it therefore seems
likely that both the proton and neutron number densities are proportional
to the number of baryons per unit volume, nb [18]. Also, in section 5.1 an
equation, (5.1.9), was derived, which shows that the the number density of
the photons is proportional to the temperature cubed, nγ ∝ (kBT )3. By
implication, these statements together with the above expression (7.2.8) lead
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to the proportionality in (7.2.9) [18].

nD

nnnp

∝ nD

nbnb

⇒ nD
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∝ nbh
3 (kBT )3

(kBT )3

(
1

(mpkBT
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exp
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∝ h3 nb
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kBT

mp

)3/2

exp

(
−Q

kBT

)
⇒ nD
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∝ ηh3

(
kBT

mp

)3/2

exp

(
−Q

kBT

)
(7.2.9)

Because of the smallness of the baryon to photon ratio, the prefactor
will dominate over the exponential as long as the quotient Q/(kBT ) is not
very large [18]. For example, at T = 1010 K the exponent Q/(kBT ) ≈
106 eV/(10−4 · 1010 eV) = 1 [11]. In agreement with previous assessments,
this result suggests that the numerosity of the photons hinders the deuterium
nuclei from forming until the temperature, kBT , is a few orders of magnitude
lower than the binding energy of the deuteron, Q.

As mentioned the deuterium nuclei combined to form heavier nuclei shortly
after having been created and it might thus be expected that these species
would show a similar dependence on η. This is indeed true, at least to some
extent. Still, the intricacy of the network of nuclear reactions governing
the interactions results in a much more complex dependence. What shall
also be mentioned, is that relation (7.2.8) only gives the equilibrium ratio
nD/(nnnp), based soley on the reaction (7.1.2), and not the final abundance
of D. Nonetheless, it is the dependence of the amounts of the different species
produced on the baryon to photon ratio that shall henceforth be discussed.
Also, to simplify the comparison with the results obtained from simulations,
most importantly figures 9 and 10, the conclusions presented below are sum-
marized in table 4.

Turning first to 4He, it can be inferred that this species should be rather
insensitive to η [4, 9]. This is due to the fact that the binding energies of the
light nuclei were independent of the baryon to photon ratio, wherefore most
neutrons would have been fused into 4He, regardless of the precise value on
η. The extent of the helium-4 production would accordingly have been de-
termined, to a large extent, by the total content of neutrons in the Universe
when the BBN process was initialized. In turn, this number depends on the
temperature at which the neutron freeze-out occurs and thus on the compe-
tition between the rate of the n-to-p conversion and that of the expansion
[9]. Still, for a large baryon to photon ratio the D-bottleneck ought to have
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been breached earlier [9]. This results in an increase in both the tempera-
ture as well as the total number neutrons at the onset of BBN, since fewer
of them would have had time to decay in this case. One would thus expect
that slightly more 4He would have been produced for a greater value on the
η[9]. However, the previous discussion suggests that the rate of increase, with
respect to η, ought to be low. For similar conditions, this implies that lesser
amounts would have remained of the species, specifically D and 3He, that
collided to form helium-4 nuclei for a higher baryon to photon ratio [4, 9].

The A = 7 nuclides, lastly, are of particular interest as there existed two
dominant paths for 7Li production [3, 9]. On one hand, these nuclei could
have been created directly via reaction (7.1.7), a route that is assumed to
have been favoured for a low baryon to photon ratio [3, 9]. This follows from
the fact that a higher baryon density would have resulted in a greater number
of protons able to destroy 7Li nuclei through (7.1.11) [3, 9]. On the other
hand, 7Be have a higher binding energy per nucleon and should therefore be
more stable with regards to such collisions [3, 9]. Consequently it ought to
have been produced to a larger extent if η was high [3, 9]. These nuclei were
unstable however and later decayed into 7Li through the absorption of an
electron [2, 3, 9].

The analysis given is made more complicated by (7.1.12), which suggests
that the indirect route for lithium-7 synthesis ought to have been plausible
even at a lower baryon to photon ratio [3]. Particularily, (7.1.12) was limited
by the amount of neutrons present during the primordial nucleosynthesis,
a number that would have been enhanced for lower values on η [3]. Yet,
simulations in which the baryon to photon ratio is varied, such as figure 12 in
section 8.4, reveals a minimum in the 7Li production for intermediate η values
[3]. This implies that there should indeed have existed two separate modes
for lithium-7 creation in the early Universe and that the relative dominance
of these ought to have dependended on the value of η [3]. Alternatively, one
can infer, based on the previous discussion on the synthesis of A = 7 nuclei,
that 7Li would have been produced primarily via (7.1.7) for low η instead
of (7.1.10) for a given temperature. This conclusion stems from the fact
that the latter reaction is a two-body collision between particles with higher
positive charge, that is one more particle with q = +2e instead of q = +e.

35



Table 4: Prediction of relative abundances at different values of η.

η Low Intermediate High
4He slightly lower increases slightly slightly higher

d higher decreases lower
3He higher decreases lower
7Li higher minimum higher

7.3 Calculating the Fraction of High Energy Photons

Photons follow a black body spectrum, the number of photons per unit vol-
ume with energy between E and E + dE is [25]

n(E)dE =
8πE2

(hc)3
· 1

exp(E/kT )− 1
dE. (7.3.1)

where n(E) is the fraction of photons of energy E. To get the number of
photons with energy greater than E◦, (7.3.1) is integrated from said energy
to infinity

8π

(hc)3

∫ ∞

E◦

E2 exp(−E/kT )dE = n(E > E◦), (7.3.2)

where the approximation

1

exp(E/kT )− 1
≈ exp(−E/kT ), (7.3.3)

has been introduced, which is good for E � kT . The integral in (7.3.2) is
solved through integration by parts

(hc)3

8π
n(E◦ > E) =

∫ ∞

E◦

E2 exp(−E/kT )dE

= −kTE2 exp(−E/kT )

∣∣∣∣R→∞
E◦

+ 2kT

∫ ∞

E◦

E exp(−E/kT )dE

= kTE2
◦ exp(−E◦/kT )− 2(kT )2E exp(−E/kT )

∣∣∣∣R→∞
E◦

+2(kT )2

∫ ∞

E◦

exp(−E/kT )dE

= exp(−E◦/kT )(kTE2
◦ + 2(kT )2E◦)− 2(kT )3 exp(−E/kT )

∣∣∣∣∞
E◦

= (kT )3 exp(−E◦/kT )

[(
E◦

kT

)2

+
2E◦

kT
+ 2

]
,
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it follows that

n(E > E◦) =
8π

(hc)3
(kT )3 exp(−E◦/kT )

[(
E◦

kT

)2

+
2E◦

kT
+ 2

]
. (7.3.4)

To calculate the fraction of photons with energy greater than E◦, f(E >
E◦), here done by dividing the result in (7.3.4) by the integral from zero to
infinity in (7.3.1), which has been evaluated with Matlab

8π

(hc)3

∫ ∞

0

E2

exp(E/kT )− 1
dE =

[
x = E/kT

]
=

8π

(hc)3
(kT )3

∫ ∞

0

x2

exp(x)− 1
dx ≈ 1

0.42

8π

(hc)3
(kT )3. (7.3.5)

Finally (7.3.4) is divided by the result in (7.3.5)

f(E > E◦) = 0.42 exp(−E◦/kT )

[(
E◦

kT

)2

+
2E◦

kT
+ 2

]
. (7.3.6)
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8 Simulations

8.1 Calculation of Tfreeze-out

Another estimate of interest is the temperature at the time of the neutron
freeze-out. In section 4.3 equation (4.3.14), that is restated below for conve-
nience, was derived based on the initial assumption that the chemical equi-
librium between neutrons and protons ceases when the expansion rate of the
Universe equals the n-to-p conversion rate.

H(T ) = λn,p(T )(
43πaG

3c2

)1/2

T 2 =
255

τnx5

(
12 + 6x + x2

)
, x =

Q

kBT

In order to solve the above algebraic equation the textscMatlab routine
fsolve.m was applied to the stated problem. As a starting guess Tguess = 1010K
was chosen, in agreement with the most frequently occurring estimates of
Tfreeze-out in literature [3, 4, 13]. These mathematical statements, together
with numerical values on the relevant physical constants, are included in the
textscMatlab function-file, 4.3 in Appendix E.

On a final note, the solution Tfreeze-out ≈ 7.8965 · 109 K, presented in
section 4.3 was used in the program partphotons.m, described in section
8.2, to calculate the number of neutrons remaining at the time of the n-to-p
freeze-out.

8.2 Simple Predictions

In the program partphotons.m, to be used with Matlab, the abundance of
4He and 1H are calculated according to a very simple model. In this model
it is assumed that at freezeout, when neutrons and protons no longer are in
thermal equilibrium, the only reaction mechanism at work is the beta decay
of the neutrons, see equation (4.3.3) in section E.8 . The program thus only
needs to calculate the elapsed time from freezout to the start of BBN in order
to determine the number of neutrons that have had time to decay.

For BBN to start deuterium nucleus must not only have begun to form,
but accumulate as well. This is only possible when the number of photons
with energy equal to, or greater than, the binding energy of deuterium be-
comes less numerous than the number of deuterium nuclei that are being
formed. This follows because in the formation of a deuteron a photon is cre-
ated according to (8.2.1). Another photon can reverse the reaction, however,
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Figure 7: The graph shows the temperature dependence of the fraction of
photons with energy greater than the binding energy of the deuteron. The
asterisk,∗ , marks the point at which this fraction is equal to η.

and the onset for BBN is therefor approximately taken as the point in time
when the fraction of photons, with enough energy, is equal to the baryon-
to-photon ratio. In the model at hand it is also inferred that all neutrons
and an equal number of protons combine to form 4He, while the remaining
protons end up as 1H.

p + p 
 d + γ (8.2.1)

Given a value on the baryon-to-photon ratio, the program also calcu-
lates the time and temperature at the onset of BBN. This is done in the
following manner. First, the fraction of photons with energy greater than
the binding energy of deuterium for a particular temperature, f(E > E◦),
is calculated, the time evolution of which is depicted in figure 7. More pre-
cisely, the program evaluates (7.3.2), without the approximation in (7.3.3).
To find f(E > E◦) for a certain temperature, this result is then divided by
the integral of (7.3.1), taken from zero to infinity. Lastly, the textscMatlab
routine fzero.m is used to solve for which temperature f(E > E◦) equals the
baryon-to-photon ration, corresponding to the point marked with an asterisk,
∗, in figure 7.
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In order to convert the temperature at the onset of BBN to a correspond-
ing time, equation (C.2.14) is implemented. Thereafter, the time span from
freeze-out to BBN, tspan, can be used to obtain the number ratio of remaining
neutrons to protons, given the initial value, Nn,0, for this quotient and the
mean life time of the neutron, τ , as was discussed in section 4.3.

Nn = Nn,0 exp(−tspan/τ). (8.2.2)

In the program Nn,0 is calculated, beforehand, with help of equation
(4.3.4). Since the mass of the neutron and proton are almost equal, the
mass percent of 4He is taken as two times Nn, while that of 1H is assumed
to be given by the remainder, Nn,0 −Nn.

The most probable values for the onset of BBN and the abundances of
4He and H ought to be obtained with the value on the baryon to photon
ratio presented in section 5.1, mind the simplicity of this pedagogical model.
As was pointed out in section 7, however there is much insight to be gained
from analyzing the results of such simulations for a range of different values
on η. In this case the code described above can easily be used to perform
such calculations, for example by evaluating the function in a loop where the
baryon to photon ratio is set to a new value at the start of each new iteration.
The result of such a procedure, specifically the time for the onset of BBN as
a function of η, is represented by the thick line in figure 14.

8.3 Big Bang Nucleosynthesis Using NUC123

It is difficult to find good experimental data to support the previously pre-
sented estimations. Therefore, the results are compared to the output of
the state-of-the-art software NUC123, written by Lawrence Kawano[29], al-
though the majority of the code stems from the work of R.V. Wagoner.

NUC123 solves the coupled ordinary differential equations related to the
nucleosynthesis reaction network using the Runge-Kutta approximation, which
is the same method as Matlab uses to solve ordinary differential equations.
All of the reactions within this network that NUC123 takes into account are
included in figure 8[29].

Within the program, specifically with help of the user interface, it is also
possible to change the model parameters of the standard model, specifically:

• Newton’s gravitational constant

• the neutron lifetime

• the number of neutrino species

40



p d t

n

3He 4He

6Li 7Li 8Li

7Be 8Be

8B 10B 11B 12B

11C 12C 13C 14C

12N 13N 14N 15N

14O 15O 16O

p,γ

α,n

α,γ

α,p

n,γ

β+

n,p

n,α

p,α

p,n

β−

d,p

d,n

(3He,2p)

(n
,p

α
)

(d
,p

α
)

(p,dα
)

(d,nα
)

(p,nα)

(n
,2
α

)

(2
α
,γ

)

(p,
2α

)

(α
,nγ

)

Figure 8: All of the reactions in the reaction network that NUC123 simulates,
that is 26 nuclides and 88 reactions.

41



• the final baryon to photon ratio

• the cosmological constant

• the possibility for neutrino degeneracy

Most of these are either accurately known today or very hard to motivate
changes to based on the present accepted theories. For this reason the only
parameter to be varied is the different baryon to photon ratio. More precisely,
the program will be evaluated for a range of different values on the former,
so as to determine its impact on the final abundances.

These calculations are simplified by the fact that modern personal com-
puters are many times more powerful than the computers that NUC123 was
originally written for. This enables the use of wrapper software and data
analysis using Matlab. Specifically, the wrapper script runs NUC123 like
any normal user, that is by giving certain commands in the user interface,
and varies the final baryon to photon ratio in controlled steps. All avail-
able data is written onto the disc and finally analyzed using matlab. These
scripts can be found in appendix E.

All of the data concerning the light elements generated by NUC123 are
presented in number densities relative to the number density of hydrogen,
except for 4He and p which are presented in mass percentage. This means
that these abundances have to be converted to mass percentage as well. Even
though this conversion cannot be done exactly, a good approximation is that
all nuclei, created in the physical process, is included in the output of the
NUC123 program.

8.4 Simulation of the Time Evolution of BBN

Figure 9 presents the results of a run of BBN123 using η = 6.1 · 10−10[12],
while all other parameters were set to their standard values. In figure 11
the final abundances relative to hydrogen can be seen and in figure 10 the
change in the abundance of hydrogen is visible. As is indicated by these
figures, all simulations stop 28 days after the big bang. Even though there
is no reason, with regards to the physical process, for the evaluations to
seize when t ≥ 28 days, this choice does make it possible to illustrate the
abundance of free neutrons before they finally decayed. Furthermore, the
values obtained, except 7Li, agree well with observed values [3].

The data previously shown is only valid just after the Big Bang Nucle-
osynthesis has ended, however some elements like tritium or free neutrons are
unstable. For comparison, a list with final abundances after a majority of
the synthesized neutrons and tritium have decayed are presented in table 5.
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Table 5: Table of final abundances after decay, η = 6.1 · 10−10

Element Mass percentage Particles per hydrogen
H 75.2 1
n 0 0
d 3.90E-03 2.58E-05
t 0 0
3He 2.40E-03 1.04E-05
4He 24.8 0.0825
6Li 5.06E-12 1.12E-14
7Li 1.50E-08 2.85E-11
8Li 7.40E-13 1.23E-15
7Be 2.21E-07 4.20E-10

These results have been obtained from a single run of the NUC123 software
by only taking into account the predicted values on the elemental abundances
after the last time step. Also, the final time has been chosen sufficiently large
for the above mentioned species to have decayed though less than ∼ 300000
years. This upper limit follows from the fact that the 7Be nuclei becomes
unstable once formed into atoms, which in turn is assumed to have occurred
around this point in time [9, 14].

Estimates, comparable to those in table 5, can also be obtained based on
the calculations presented in 8.2. Specifically, the values in table 6 from part
of the output from partphotons.m, described in appendix E.7.

Table 6: Simple estimates of light element abundances by mass.

1H 81.80 %
4He 18.20 %

8.5 BBN Calculations for a Range of Value on η

Since the baryon to photon ratio,η, is well determined[12], it might seem
unnecessary to regard it as a variable parameter. Even so, the final elemental
abundances for a sweep over η is presented in figure 11. While on the subject,
the graph in figure 11 corresponding to 7Li is displayed by itself in figure 12
to ease the comparison with the discussion in section 7. Since the abundances
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Figure 11: Abundances relative to Hydrogen as a function of baryon to pho-
ton ratio.

of 4He and H are significantly greater than those of the other elements, the
results for these species are also shown separately in figure 13. The latter
diagram also includes graphs, that is the dashed lines, corresponding to the
abundances of 4He and H respectively calculated with help of partphotons.m
for a similar range of values on η.

As became apparent in section 7.3, the nucleosynthesis should start at
an earlier time for a greater value on baryon to photon ratio. Remarkably,
if the onset of nucleosynthesis is defined as the point in time where there is
the highest quantity of deuterium this trend becomes apparent even though
there is a large oscillation around the onset time, see figure 14. The thick
line in figure 14 represent the corresponding onset times given by the simple
estimations done in partphotons.m, see section 8.2.
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9 Discussion

Generally, any efforts to describe and make predictions on physical phenom-
ena, assumptions are necessary both in order to get a qualitative understand-
ing of the process and to be able to perform relevant calculations. Obviously,
this is also the case for this report. However, to assess the validity for a given
simplification one is required to have a deeper understanding of the process
or to possess a significant quantity of data, measured with a precision that
makes it possible to make valid comparisons with the simulations. For the
model at hand, there exists some evidence, namely the 7Li discrepancy dis-
cussed below, to suggest that some of the simplifications might be flawed.
However, the degree of understanding of the authors of this report is con-
fined to the physics that has been presented so far. It is therefore difficult to
point towards particular simplifications that would be less likely to hold if put
under scrutiny. Still, an effort shall be made to indicate which assumptions
was found to be the most astonishing.

With regards to the primordial nucleosynthesis, the most profound as-
sumption that is probably that all particles, that have not yet decoupled, are
in thermal equilibrium. Additionally, no effort has been made to take into
account possible concentration gradients and thus the entire Universe has,
in fact, been inferred to act as a perfectly stirred reactor. These assump-
tions seem plausible however given the high kinetic energies of the particles
involved in the process and the smallness of the anisotropy in the cosmic
background radiation models as well as the fact that none of the alterna-
tive models presented so far significantly improves on the standard model
predictions [4]. As of yet though, it is not possible to entirely disregard the
plausibility that some of these simplifications are inherently flawed.

Another interesting simplification is the assumption that the baryonic
content of the Universe only consists of protons and neutron. What is more,
this is inferred without giving any compelling reason for why it ought to hold.
The same is true for leptons, since the only species under consideration in
addition to electrons are the neutrinos and anti-neutrinos.

Moving on to the presented results, what is the most surprising is the
accuracy with which the amounts of most light elements created in the nu-
cleosynthesis can be calculated. The degree of correspondence between the
very simple calculations, described in sections 8.2, and the more accurate sim-
ulations performed by the NUC123 software is also remarkably high, given
the roughness of the simplifications in the former. Specifically, a comparison
of tables 6 and 5 in section 8.4 reveals that the error in the estimates of
4He and H are in the order of a few mass percent. This is not surprising
since the NUC123 simulations, presented in figure 9 and table 5, shows that
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elements other than H and 4He were only synthesized to a very small extent.
In addition, the graphs in figures 13 and 14, in 8.5, that represent calcula-
tions with NUC123 and partphotons.m respectively are in good agreement
as well, perhaps to a less degree with regards to the latter diagram. It is also
important to note that the predicted mass percent of 4He at the end of the
BBN process is underestimated in the simplified calculations, even though
the opposite might be expected given the assumption that all neutrons are
fused into 4He nuclei. One plausible explanation for this result could be that
textttfreezeout.m predicts the n-to-p freeze-out to have occurred at a later
time compared to NUC123, in which case fewer neutrons survive long enough
to take part in the nucleosynthesis process.

While on the subject, one shall not fail to mention that the conclusions
drawn regarding the dependencies of the elemental abundances in η discussed
in section 7, particularly with respect to table 4, also agrees with the behav-
iors shown in figure 9 and 12.

In table 7 the output from the NUC123 software are presented together
with the primordial abundances given by observations and recent calculations
with the latest data on nuclear reaction rates, more precisely cross section
measurements [30].

Table 7: Observed and calculated abundances.
Coc et al. 2010 Calculated Observed Factor

4He 0.2486± 0.0002 .248 0.232-0.258 ×100

D/H 2.49± 0.17 2.58 2.82+0.20
−0.19 ×10−5

3He/H 1.00± 0.07 1.04 0.9-1.3 ×10−5

7Li/H 5.24+0.71
−0.67 0.285 1.1± 0.1 ×10−10

When the columns in the above table are compared, the most noticeable
discrepancies are seen to concern 7Li. Most importantly, the abundance of
7Li obtained as an output to NUC123 lies one order of magnitude lower than
both the results presented by Coc and Vangioni, as well as the observational
averages [30]. Yet, it is also obvious that even these most recent simulations,
with the baryon-to-photon ratio taken from the WMAP observations, still fail
to comply with the observed 7Li abundances. This oddity is very important as
it may point to errors in NUC123 or even the standard model itself. The poor
agreement between the two simulations however, could perhaps be explained
by the fact that the results given in the second column are based on more
recent estimates of the relevant physical parameters, most importantly the
nuclear cross sections [30]. Additionally, the system of differential equation
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was solved using a more sophisticated computer program, specifically with
the help of Monte-Carlo calculations [30].

On a final not, it might appear as if the standard model for the Big
Bang, as in the case of classical physics in the 19th century, gives an almost
complete description of the underlying physics of the processes it describes.
It is furthermore often indicated that the few flaws that do exist are only
minor in nature. Still, one is compelled to draw a comparison between the
7Li deficiency and the problem with the black body radiation in classical
physics. Thus, it seems likely that the present theory for the standard Big
Bang model in general and BBN in particular will change rather dramatically
sometime in the not so distant future.
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A Glossary

BBN Big Bang nucleosynthesis (also primordial
n.), refers to the synthesis of light ele-
ments a few minutes after the Big Bang.

CBR Cosmic background radiation, a cosmic
electromagnetic radiation that is found
throughout the Universe.

CMB Cosmic microwave background, the CBR
at its present temperature.

Helmholtz energy The amount of useful work obtainable
from a closed system.

Planck epoch The very earliest time period of the Uni-
verse lasting from the bang to 10−43 s.

Planck instant When t = 10−43 s, that is when the Planck
epoch was over.

QCD Quantum chromodynamics, a theory for
the strong interaction (or force) that de-
scribes the interactions of quarks and glu-
ons.

annihilation When matter and anti matter react to
form photons.

antimatter Matter that has the same properties as
regular matter but when it comes in con-
tact with regular matter both annihilates
to photons.

baryon Hadrons that are made from three quarks.
baryon density The density of baryons in the Universe,

usually protons and neutrons.
baryon genesis/baryogenesis The process through which an asymme-

try between baryons and anti-baryons was
created to favor regular matter that make
up the universe today.

baryon number A quantum number, the quarks have
baryons number 1/3 and anti quarks have
-1/3, the baryon number is conserved in
all reactions.

boson Particles that carry the four forces, have
whole integer spin and follow Bose-
Einstein statistics.
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chemical evolution The evolution of the composition of mat-
ter in the Universe through nucleosynthe-
sis, both in the early Universe and in stars.

cosmological principle A principle which states that the universe
is homogeneous and uniform, and that an
observer sees the same object regardless of
vantage point and that the physical prin-
ciples hold true in the whole Universe.

decoupling A process during which a type of parti-
cle that can interact ceases to do so be-
cause the rate of the interaction drops be-
low that of the universal expansion.

electromagnetic force Also the electromagnetic interaction. It
is a fundamental force through which
charged particle interact by exchanging
photons in electromagnetic fields.

electron-positron pair A pair that consists of an electron and its
anti particle, the positron.

energy density The amount of energy of a system divided
by its volume.

exotics Physics that is not included in any theory
generally accepted by the scientific com-
munity.

fermion A particle with half integer spin and that
follows Fermi-Dirac statistics.

fundamental forces A force that can not be described in terms
of other forces.

fundamental particle Particle that can not be divided further
into smaller particles.

gluon Boson for the strong interaction.
graviton Hypothetical boson for gravity.
gravity A fundamental force that acts on all mas-

sive particles.
hadron Particles that can interact with the strong

force.
hadron gas A gas of hadrons, that is baryons and

mesons.
kinetic energy The energy of an object related to its

speed.
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latent heat The energy change that a chemical sub-
stance emits or absorbs when going
through an isothermal phase transition.

lepton Particles that can not interact with the
strong force.

light elements Usually refers to hydrogen, helium and
lithium.

mesons Hadrons that are made from one quark
and one anti quark.

muon An unstable massive lepton that is not as
unstable as the tauon and can replace elec-
trons in ordinary matter.

neutrino Fundamental particle, each family of lep-
tons has a neutrino species, or flavour, as-
sociated with it.

neutrino flavors/species In the standard model the leptons have
three families of particles, each with
an associated neutrino. In other non-
standard models the number of families,
and thereby the number different kinds of
neutrinos, may be different.

nuclear reactions A reaction between nuclei or other sub-
atomic particles.

particle Refers to elementary particles such as pho-
tons, electrons, protons, neutrons, etc.

phase transition When matter goes from one phase to an-
other such as ice melting to water.

physical constant A constant, such as Planck’s constant or
the speed of light, which are thought to be
universal and non-transient.

primeval abundances The abundances of elements created in
BBN.

primordial nucleosynthesis see BBN
quantum effects Phenomena at the subatomic level ex-

plained only by quantum mechanics, such
as tunneling.

quantum gravity An effort to try to unite quantum mechan-
ics and general relativity in consistent the-
ory.
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quark Fundamental particles that are the build-
ing blocks of hadrons.

quark-gluon plasma A phase in QCD that existed at very high
temperatures in which quarks and gluons
could exist freely without having to form
baryons and mesons..

radiation The transportation of energy with parti-
cles such as photons, alpha particles, elec-
trons, neutrons, etc.

relativistic particles A particle whose speed is or is close to that
of light.

scale factor A transient function that scales distances
in the universe at different times with re-
spect to to distances in the present.

strong force The strong force (also strong interaction
or strong nuclear force) is a fundamental
force that holds protons and neutrons to-
gether in a nucleus as well as the protons
and neutrons themselves. At sufficiently
low energies it is the strongest force.

tauon A very massive lepton that is unstable.
Also, the only lepton that can decay into
hadrons.

transient scalar field A scalar field that changes with time. A
scalar field is a field that associates a
scalar value to every point in a predefined
domain, such temperature or pressure.

universal expansion The expansion of the Universe, that is the
expansion of space itself.

W+,W−,Z Bosons for the weak interaction.
weak force Also the weak interaction or the weak nu-

clear force. A fundamental force that,
among other things, is responsible for beta
decay.
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B List of Symbols

Latin symbols
a Stefan’s constant
A nucleon number
c speed of light in vacuum
E energy
F Helmholtz energy
g number of degrees of freedom
G gravitational constant
h dimensionless Hubble constant, Planck’s constant
H Hubble parameter
H0 Hubble constant
k curvature parameter
kB Boltzmann’s constant
mb mass per baryon
mn mass of neutron
mp proton mass
mvf

mass of neutrino
nb baryon number density
ni number density of species i
n̄i mean occupation number of species i
Nγ number density of photons
p pressure
q particle momentum
Q massdifference between the proton and neutron in eV
R scale factor
s entropy density
S entropy
t time
T temperature
u energy density of photons
U internal energy
V volume
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Greek symbols
ε energy density of the Universe
η baryon-to-photon ratio
λ wavelength, conversion rate
Λ cosmological constant
µ chemical potential
ν frequency
ρ sum of the mean mass and energy density of the Uni-

verse
ρb baryon mass density
ρc critical mass density
ρR energy content of radiation per unit volume
σ Stefan-Boltzmann constant
τ mean lifetime
Ωm critical density
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C Elaborate Deduction of t(T )

C.1 t(T ) for Temperatures 1012 K > T > 5.5 · 109 K

According to the cosmological principle the Universe can be regarded, on
sufficiently large scales, as a perfect fluid [13, 31, 32]. Specifically, the latter
is defined as a distribution of matter in which a co moving observer, at rest
with respect to the overall motion of the fluid, would regard each direction
drawn from its position as equivalent [13, 31, 32]. Under this assumption, it
is possible to derive a relation, (C.1.1), between the energy density, pressure
and expansion rate of the Universe from Einsteins equations [13].

ε̇ + 3(p + ε)
Ṙ

R
= 0, (C.1.1)

where ε and p are the energy density and pressure of the Universe respectively,
whereas R is the so called scale factor [13]. Even though the nature of the
latter is still unknown, one can describe it as the time dependent part of the
distance between any two points of the Universe [13]. In other words, one
can define the distance between any two points A and B moving with the
expanding Universe as fABR(t) where fAB is independent of time [13].

It is possible to rewrite (C.1.1) into (C.1.3) for times when the energy
density of the Universe was dominated by the contributions from radiation
and relativistic particles, since (C.1.2) holds true under such condition [13].
2

p =
1

3
ε (C.1.2)

0 = ε̇ + 3(p + ε)
Ṙ

R
= ε̇ + 3

(
1

3
ε + ε

)
Ṙ

R

⇔ ε̇ + 4ε
Ṙ

R
= 0

⇔ Ṙ

R
= −1

4

ε̇

ε
. (C.1.3)

Deducing (C.1.1), (C.1.2) and (C.1.4) requires the application of Ein-
stein’s equations within the Friedmann models, a procedure that is far be-
yond the scope of this text and as such shall not be attempted. Even so, it is

2In actuality, (C.1.2) follows from a more general equation of state p(ε) such that
p(ε) → 1

3ε as R → 0 [13].
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of importance that the final steps of the derivation rests on the assumption
that R small, which in turn infers that t ≈ 0 [13]. In other words, (C.1.4)
holds true only in the early Universe [13]. What is more, the terms multiplied
by the factor k, that defines the curvature of space, drops out of the original
expressions if R → 0 and as such does not appear in (C.1.4) [13]. Thus, the
expansion in the early Universe is independent of whether the Universe is
open or closed [13].

Next, given (C.1.4) one can replace the left hand side of (C.1.3) by (C.1.6)
and thus ascertain (C.1.7) [13].

Ṙ2 =
8πG

c2
εR2 (C.1.4)

⇔ Ṙ2

R2
=

8πG

c2
ε (C.1.5)

⇔ Ṙ

R
=

√
8πG

3c2
ε, (C.1.6)

−1

4

ε̇

ε
=

Ṙ

R
=

√
8πG

3c2
ε

⇔ ε̇ = −4

(
8πG

3c2
ε

)1/2

ε

⇔ ε̇ = −4

(
8πG

3c2

)1/2

ε3/2. (C.1.7)

where, G ≈ 6.6726 · 10−11 Nm2/kg2 is Newtons gravitational constant and
c = 299792458 m/s the velocity of light, in vacuum [11, 13]. Also, notice
that (C.1.6) is taken to be the non negative solution of (C.1.5). This is
the only plausible choice given the above mentioned definition of R and the
assumption that the Universe is constantly expanding, whereby we must have
R > 0 and Ṙ = ∂R

∂t
> 0.

From (C.1.7) one can deduce (C.1.8) by first separating variables and
then integrating both sides of the equation.
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ε̇ =
∂ε

∂t
= −4

(
8πG

3c2

)1/2

ε3/2

⇔ ε−3/2∂ε

∂t
= −4

(
8πG

3c2

)1/2

⇒
∫

ε−3/2dε =

∫
−4

(
8πG

3c2

)1/2

⇔ ε−1/2

−1/2
+ const. = −4

(
8πG

3c2

)1/2

t

⇔ t =

(
3

32πG

)1/2

cε−1/2 + const.. (C.1.8)

Though (C.1.8) is an explicit expression for the time t after the big bang,
the temperature dependence is as of yet hidden inside the energy density
ε(T ). As such, one now seek to replace ε with an equivalent function of T .

During the time period when 1012 K > T > 5.5 ·109 K the greatest contri-
bution to the total energy density came from relativistic species [13]. Specifi-
cally, the plasma consisted mainly of photons, electron-positron pairs as well
as electron- and muon-neutrinos together with their antiparticles, denoted
by γ, e−, e+, νe, νµ, ντ , ν̄e, ν̄µ and ν̄τ respectively [13]. Fortunately, only
negligible quantities of protons, neutrons and electrons, lacking positron part-
ners, were mixed into the relativistic gas [13]. Therefore, these latter three
need not be taken into account when calculating the energy density of the
Universe, obtained by summing the individual contributions (C.1.9) for each
species i [13].

εi =

∫ ∞

0

Ei(q)ni(q)dq. (C.1.9)

where the integral is taken over the entire momentum space [13]. This
requires however that the number densities ni(q) for each type of relevant
particle is known for an arbitrary particle momentum, q, and temperature
respectively. 3

By definition ni(q)dq equals the total number of particles i per unit vol-
ume with a momentum in the interval [q,q + dq]. Additionally, if the gas can
be regarded as an ideal, that is if the particle interactions can be neglected,
each particles species can be described as a grand canonical ensemble. That

3Note that the derivation that follows has been based solely on fundamental equations
in statistical physics and furthermore has , as of yet, not been verified in its entirety.
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is, a system with a non-constant number of particles held at a particular
temperature T , where the mean number of particles is approximately given
by (C.1.10) [11].

N̄i =
∑

n̄i,j ≈
g

h3

∫∫
n̄idqdp, (C.1.10)

where the integrals are taken over the generalized one-particle momentum
and spatial coordinates q and p respectively, while g is the number of degrees
of freedom in the system [11].

The assumption of gas ideality allows one to predict the distribution of
states for fermions and bosons by Fermi-Dirac and Bohr-Einstein statistics
respectively [11]. Specifically, the mean occupation numbers, that is the
average number of particles in a state j defined by a certain one-particle
energy εj, at a specific temperature T are given by (C.1.11) for bosons and
(C.1.12) for fermions. Here µ is the chemical potential of the species and kB

the Boltzmann constant.

n̄i,j =
1

exp

(
Ei,j − µi

kBT

)
− 1

, (C.1.11)

n̄i,j =
1

exp

(
Ei,j − µi

kBT

)
+ 1

. (C.1.12)

Although the energy levels, Ei,j, are discrete, these shall be substituted
for a continuous distribution Ei(p,q). Admittedly, this approach is somewhat
flawed, but in return greatly simplifies the calculations since all particles of
interest behave relativistically and as such have energies given by (C.1.13)
[13].

Ei(p,q) = c(q2 + m2
i c

2)1/2. (C.1.13)

It is convenient to introduce an approximate and continuously distributed
mean occupation number, (C.1.14), as a function the generalized coordinates,
p, and momentum, q.

n̄i(p,q) =
1

exp

(
Ei(p,q)− µi

kBT

)
± 1

. (C.1.14)

where the plus sign is for fermions and the minus sign for bosons. Since
no particular restraints has been put on the system in defining the problem
at hand, the system can be described in terms of Cartesian coordinates [33].
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Accordingly (C.1.10) can be written as (C.1.15), where the dVr and dVq are
infinitesimal volume elements in the spatial coordinate space and momentum
space respectively.

N̄i ≈
g

h3

∫∫
n̄idVrdVq. (C.1.15)

The total energy in (C.1.13) is independent of the spatial coordinate, r,
and depends only on the magnitude of the momentum, q = |q|. Therefore
the mean number density distribution should, by (C.1.14), show a similar de-
pendence. , Formula (C.1.15) can hence be rewritten into the form (C.1.16),
where the system volume Vr =

∫
dVr has been introduced.

N̄i ≈
g

h3

∫∫
n̄i(q)dVrdVq

⇔ N̄i =
g

h3

∫
dVr

∫
n̄i(q)dVq

⇔ N̄i =
g

h3
Vr

∫
n̄i(q)dVq

⇔ N̄i

Vr

=
g

h3

∫
n̄i(q)dVq, (C.1.16)

The volume element, with regards to the integral over momentum space, is
given by dVq = dqxdqydqz in Cartesian coordinates, that is if q = qxêx+qyêy+
qzêz. Nevertheless, it is convenient to transform the problem into spherical
coordinates. In so doing, the the volume element must be substitute for its
spherical equivalent, dqxdqydqz = q′2sin(θ)dq′dθdφ. As mentioned, n̄i(q) is
independent of the angular coordinates, θ and φ, for which reason (C.1.17)
follows from (C.1.16) almost by default.

N̄i(q)

Vr

=
gi

h3

∫ 2π

φ=0

∫ π

θ=0

∫ q

q′=0

n̄i(q
′)q′2sin(θ)dq′dθdφ

⇔ N̄i(q)

Vr

=
gi

h3

∫ 2π

φ=0

dφ ·
∫ π

θ=0

sin(θ)dθ ·
∫ q

q′=0

n̄i(q
′)q′2dq′

⇔ N̄i(q)

Vr

=
gi

h3
2π · 2 ·

∫ q

q′=0

n̄i(q
′)q′2dq′

⇔ N̄i(q)

Vr

=
4πgi

h3

∫ q

q′=0

n̄i(q
′)q′2dq′. (C.1.17)
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From the expression for the average number of particles in the Universe
per unit volume, (C.1.17), one finds ni(q)dq by differentiating (C.1.17) with
respect to q, finally arriving at (C.1.18) after substituting n̄i(q) for (C.1.14).4

ni(q)dq =
∂

∂q

N̄i(q)

Vr

dq =
4πgi

h3
n̄i(q)q

2dq

⇔ ni(q)dq =
4πgi

h3

q2dq

exp

(
Ei(p,q)− µi

kBT

)
± 1

. (C.1.18)

The formula (C.1.19) for εi is then obtained by introducing (C.1.18) in
(C.1.10), together with (C.1.13).

εi =

∫ ∞

0

c(q + mic
2)1/24πgiq

2dq

h3 exp

(
c(q + mic

2)1/2 − µi

kBT

)
± 1

. (C.1.19)

The most immediate concern at this point, with regards to the evalua-
tion of (C.1.19), is to find suitable expressions fort the chemical potentials.
Firstly, both the photon and the different neutrino flavours have zero chemi-
cal potential, under the assumption that the standard model holds and that
these species are in thermal equilibrium [13, 34]. This follows from the fact
that there are no conservation laws that governs the number of such particles
in a particular system, unlike for instance electrons and positrons [13, 34, 35].
In other words, the reactions through which these species are created, or de-
stroyed, take place simply if there is sufficient energy available for such tran-
sitions. These processes are for example not constrained by a requirement
that charge be conserved [34, 35].

In proving this statement one can analyze a system of volume V held at
a temperature T containing a total of N particles. Without any conversion
laws, N would take on a value that minimizes the free, Helmholtz, energy F
of the system and thus (C.1.20) must hold true [34].(

∂F

∂Nγ

)
T,V

= 0. (C.1.20)

By definition, the chemical potential is the amount by which the internal
energy changes when a particle is added to the system. As a result, the

4Note that Islam presents an equation, 8.35, that , in comparison to 8.52a and 8.52b
derived therefrom and most critically (C.1.18) in this text, lacks an exponent −1 on the
right hand side [13].
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second and third laws of thermodynamics takes on the form (C.1.21) when
the number of particles N in the system is non constant [34].

dU = TdS − pdV + µdN. (C.1.21)

From the definition of the Helmholtz energy, F = U − TS, and (C.1.21)
one finds that a differential change, dF , of the same can be written as (C.1.22)
[34].

dF = −SdT − pdV + µdN. (C.1.22)

Hence, the expression (C.1.23) for µ, for a system with fixed volume and
temperature, can be deduced [34].

µ =

(
∂F

∂Nγ

)
T,V

. (C.1.23)

According to (C.1.20) and (C.1.23), particle species not governed by any
conservation laws must have zero chemical potential, µγ = 0 [34]. This does
not hold true for electrons and positrons, however. Instead, it will be shown
that it is reasonable to assume that the chemical potentials of both species
vanish [13].

Fundamentally, these particles are being annihilated and created through
the reaction (C.1.24) [34, 35].

e− + e+ � γ (C.1.24)

This conversion is further constrained by the conservation of charge N+−
N− = N0, where N0 is constant, while N+ and N− are the number of positrons
and electrons respectively [34, 35].

In turn, the free energy of the Universe depends on T and V , both of
which are held constant. Furthermore, this energy can be chosen to depend
explicitely on any pairwise combination of N0, N− and N+, since these are
not independent variables [35]. As such one can state the conservation law
on the form (C.1.25) [35].

F (T,V,N0,N+) ≡ F (T,V,N0,N−) ≡ F (T,V,N−,N+ = N− −N0). (C.1.25)

If the system is at equilibrium, the Helmholtz energy must be minimal
with respect to N−, or equally N+, as stated in (C.1.26) [34, 35].(

∂F

∂N−

)
T,V,N0

= 0. (C.1.26)
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In addition, F ought to be a sum of two terms corresponding to the
positron and electron contributions to the free energy respectively, F (T,V,N−,N+) =
F+(T,V,N+) + F−(T,V,N−) [35]. Furthermore, this equality implies that
(C.1.27) holds true, since both F+ = F+(T,V,N+ = N0 − N−) and F− =
F−(T,V,N− = N0 −N+ only depend on N0 implicitely.5

(
∂F

∂N−

)
T,V,N+

=

(
∂F−
∂N−

)
T,V,N+

=

(
∂F−
∂N−

)
T,V,N0

,(
∂F

∂N+

)
T,V,N−

=

(
∂F+

∂N+

)
T,V,N−

=

(
∂F+

∂N+

)
T,V,N0

. (C.1.27)

With (C.1.27) and the fact that N+ = N− − N0, one can then deduce
(C.1.28) from (C.1.26) [34, 35].

0 =

(
∂F

∂N−

)
T,V,N0

⇔ 0 =

(
∂F−
∂N−

)
T,V,N0

+

(
∂F+

∂N−

)
T,V,N0

⇔ 0 =

(
∂F−
∂N−

)
T,V,N0

+

(
∂F+

∂N+

)
T,V,N0

dN+

dN−

⇔ 0 =

(
∂F−
∂N−

)
T,V,N+

+

(
∂F+

∂N+

)
T,V,N−

dN+

dN−
,

{N+ = N− −N0 ⇒
dN+

dN−
= 1},

⇔
(

∂F

∂N−

)
T,V,N+

+

(
∂F

∂N+

)
T,V,N−

= 0. (C.1.28)

Next, (C.1.28) is reduced to (C.1.29) by applying (C.1.23) [34, 35].

µ− + µ+ = 0. (C.1.29)

where µ+ and µ− are the chemical potential of positrons and electrons
respectively.

5Note that neither (C.1.27) nor (C.1.28), which is shown to follow from the former
by implication, has been adopted from any reference. Instead, these merely state that F
should be a sum of two terms, one for the electron and positron respectively, and that
(C.1.28) must therefore be correct [34, 35]
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There must have been a excess of electrons compared to positrons, since
otherwise no atoms would have been able to form after the e+-e− pair an-
nihilation. However, as mentioned earlier such electrons were very rare at
the relevant temperatures [13]. As such, it is not far fetched to assume
that the chemical potentials of both species vanish [13]. Specifically, this
would mean that the number densities of positrons and electrons were ap-
proximately equal. This statement in turn can be shown to imply that
µ− ≈ µ+ ≈ 0. Specifically, one first form the equality n+ ≈ n−, then
substitute n for (C.1.18) before introducing (C.1.29).

n+dq = n−dq

⇒ 4πg+

h3

q2

exp

(
E+(p,q)− µ+

kBT

)
+ 1

=
4πg−
h3

q2

exp

(
E−(p,q)− µ−

kBT

)
+ 1

,

{g+ = g−},

⇒ 1

exp

(
E+(p,q)− µ+

kBT

)
+ 1

=
1

exp

(
E−(p,q)− µ−

kBT

)
+ 1

⇒ exp

(
E+(p,q)− µ+

kBT

)
+ 1 = exp

(
E−(p,q)− µ−

kBT

)
+ 1

⇒ exp

(
E+(p,q)

kBT

)
exp

(
−µ+

kBT

)
= exp

(
E−(p,q)

kBT

)
exp

(
−µ−
kBT

)
,

{E−(p,q) = E+(p,q)},

⇒ exp

(
−µ+

kBT

)
= exp

(
−µ−
kBT

)
,

{µ+ = −µ−},
⇒ µ+ = µ− = 0.

Additionally, the highly relativistic nature of these particles at the tem-
perature at hand means that they can be regarded as being approximately
massless [13]. More to the point, the magnitudes of the momentas of both e+

and e− are very high, since particle speeds are close to that of light, during
the times considered. Consequently, the term mc2 is negligible compared to
q2 on the right hand side of equation (C.1.13) for the relativistic energy. The
same holds true for photons and neutrinos, at least according to the standard
particle model, though not by approximation /citeIslam.

For the reasons given above, (C.1.19) reduces to (C.1.30) for each particle
species so far considered.
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εi =
4πcgi

h3

∫ ∞

0

q2(q2 + m2
i c

2)1/2dq

exp(c(q2 + m2
i c

2)1/2 − µi)/kBT )± 1

⇒ εi =
4πcgi

h3

∫ ∞

0

q3dq

exp(cq/kBT )± 1
. (C.1.30)

In further rewriting (C.1.30), one obtains a more easily evaluated expres-
sion for the energy densities εi, specifically (C.1.31) where x = cq/kBT ⇒
dx = cdq/kBT .

εi =
4πcgi

h3

∫ ∞

0

(kBT/c)3(cq/kBT )3(kBT/c)(cdq/kBT )

exp(cq/kBT )± 1

⇔ εi =
4πcgi

h3

(
kBT

c

)4 ∫ ∞

0

x3dx

ex ± 1

⇔ εi =
4πgik

4
B

(ch)3
T 4

∫ ∞

0

x3dx

ex ± 1
. (C.1.31)

The integral on the right hand side of (C.1.31) can be evaluated by ap-
plying (D.2.3) and (D.2.4), deduced in appendix D.2, with m − 1 = 3 for
fermions and bosons respectively. With help of, for example, a suitable table
of sums, this results in the final expressions (C.1.32) for bosons and (C.1.33)
for fermions [11].

∞∑
n=1

1

nm

∣∣∣∣
m=4

=
π4

90

⇒ m!
∞∑

n=1

1

nm

∣∣∣∣
m=4

= 6 · π4

90
=

π4

15

⇒
∫ ∞

0

x3dx

ex − 1
=

π4

15
(C.1.32)

⇒
∫ ∞

0

x3dx

ex + 1
=

7

8

π4

15
. (C.1.33)

Lastly, one must take into account the number of spin degrees of freedom,
gi, for the relevant species. Reasonably, gi = 2 for both e− and e+, since both
have spin 1/2 [13]. Conversely, neutrinos although fermions have only one
spin degree of freedom, gν = 1 [13]. By convention the term helicity is used
instead of spin for massless particles. Furthermore, neutrinos with helicity
−1/2 are termed “left handed” whereas the corresponding “right handed”
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antineutrinos have helicity +1/2 [16]. Photons on the other hand, have gγ =
2. This is one degree less than what would be predicted given only that
s = 1, since a helicity of zero is not allowed for massless particles [36].

It is now possible to deduce a formula for the energy density in the early
Universe as a function of temperature only. More precisely, ε is obtained
by summing the contributions (C.1.35) through (C.1.37) for the relativistic
particles present at those times, γ, νe, ν̄e, νµ, ν̄µ, ντ , ν̄τ as well as e− and
e+ [13].6. However, it is convenient to first introduce Stefan’s constant, as
defined by (C.1.34), in the energy density expressions. This yields the formula
(C.1.35) for εγ that is more easily recognized as Stefan-Boltzmann law [11].

a =
4

c
σ =

8π5k4
B

15(hc)3
, (C.1.34)

εγ =
4πgγk

4
B

(ch)3
T 4

∫ ∞

0

x3dx

ex − 1

⇔ εγ =
8πk4

B

(ch)3

π4

15
T 4

⇔ εγ = aT 4, (C.1.35)

εν̄ = εν =
4πgνk

4
B

(ch)3
T 4

∫ ∞

0

x3dx

ex + 1

⇔ εν̄ = εν =
4πk4

B

(ch)3

7

8

π4

15
T 4

⇔ εν̄ = εν =
7

16
aT 4, (C.1.36)

εe+ ≈ εe− ≈
4πge−k4

B

(ch)3
T 4

∫ ∞

0

x3dx

ex + 1

⇔ εe+ ≈ εe− ≈
8πk4

B

(ch)3

7

8

π4

15
T 4

⇒ εe+ ≈ εe− ≈
7

8
aT 4, (C.1.37)

ε = εγ + ενe + εν̄e + ενµ + εν̄µ + εντ + εν̄τ + εe− + εe+ ,

⇒ ε ≈ (1 + 6
7

16
+ 2

7

8
)aT 4

⇔ ε ≈ 43

8
aT 4. (C.1.38)

6Notice the difference between (C.1.38) and equation 8.40 presented by Islam, where
the contribution of the tau-neutrino, and its anti-particle, has not been included [13]. The
main reason for this is presumably that at the time of writing, that particular neutrino
flavour had just been discovered [13]
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Finally, by combining (C.1.38) with equation (C.1.8), one yields the ex-
plicit relation (C.1.39) between age of the Universe t and the temperature T
[13].

t =

(
3

32πG

)1/2

cε−1/2 + const. ≈
(

3

32πG

)1/2

c

(
43

8
aT 4

)−1/2

+ const.

⇒ t ≈
(

3

172πaG

)1/2

cT−2 + const., 1012 < T < 5.5 · 109. (C.1.39)

For clarity, it should be noted that (C.1.39) is not valid for temperatures
above 1012 K since it is only at later times that the matter content of the
Universe exists mainly in the form of non-relativistic hadrons [15]. By the
same token, equation (C.1.39) seizes to hold once electron-positron pairs have
annihilated, an event that is thought to have occurred around a temperature
of 5 · 109 K [13].

C.2 t(T ) for Temperatures 5.5 · 109 K > T > 109 K

For later times, one must also take into account the effects of the neutrino
decoupling. It is therefore convenient to assign the neutrinos a temperature
Tν that evolves differently from that of the Universe T [13]. Obviously, in
order to deduce an expression similar to (C.1.39) one must first find the
relation between Tν and T . This task is most easily achieved by considering
the entropy density in the Universe. As of yet though, one lacks an expression
for the latter.

Since it has been assumed that all relativistic particles species in the
Universe can be described as a grand canonical ensembles, (C.2.1) applies
[11]. From this equation the entropy in the Universe is found to be given by
(C.2.2).

U − TS − µN̄ = −PV (C.2.1)

⇔ S =
U

T
+

pV

T
− µN̄

T
. (C.2.2)

In accordance with the arguments presented above, it is reasonable to
assume that the term containing the chemical potential, which represents
the contributions from each particle species, is negligible. The approximate
expression (C.2.3) for the entropy density s can thus follows by dividing
(C.2.2) with the volume V and omitting the above mentioned term [18].
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s ≈ ε + p

T
. (C.2.3)

However, it is already known that the pressure is simply related to the
energy density, (C.1.3), at times when the latter was dominated by contribu-
tions from radiation and relativistic particles. Consequently, (C.2.3) can be
rewritten in terms of the energy density only. When combined with a formula
for ε(T ), similar to (C.1.38), what results is a relation between the entropy
and the temperature on the form s ∝ T 3. Still, in deducing the neutrino
temperature will prove to be fruitful to take the ratio of the temperature
before and after the annihilation of e±-pairs. As such, the exact nature of
the formula for s(T ) is not of importance.

At this point it is convenient to introduce a property geff,i = g1,ig2,ig3,i,
defined as the contribution from particle species i to the total effective number
of spin degrees of freedom geff [13]. Here, g1,i counts the number of spin
orientention available to the species i. In turn g2,i takes into account the
contribution of a eventual antiparticle, equaling two if such a particle exists
and unity otherwise. Lastly, g3,i is a statistic mechanical factor that takes
on the value 7/8 for fermions and unity for bosons [13]. Note that each of
these factors are included in the prefactor on the right side of (C.1.39). In
this case g1,i is identical to gi, and therefore g1,i · g2,i represents the sum of
the equal contributions of particle i and its antiparticle ī. In other words
g1,i · g2,i = gi + gī. The factor g3,i, meanwhile, can be seen to have arisen
naturally in the calculations by comparing (C.1.32) and (C.1.33) [13]. From
this definition, together with (C.1.3), (C.1.34), (C.1.38) and (C.2.3), it seems
reasonable that the only factors in the resulting formula for s that change
with time are geff and the temperature T . Nonetheless, the entropy averaged
over the entire Universe must remain constant over time [13, 18]. Indeed, it is
possible to show that s is scaled by a factor R(t)−3, why the product sR(t)3

should be time independent [18].
In deducing the sought relation (C.2.7), one proceed by first rewriting

(C.1.3) into the form (C.2.4), from which (C.2.5) follows by implication.
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Ṙ

R
= −1

4

ε̇

ε

⇔ Ṙε = −1

4
ε̇R

⇔ −4Ṙε ·R3 = ε̇R ·R3 =

⇔ 0 = 4R3Ṙε + R4ε̇ =

(
∂

∂t
R4ε

)
(C.2.4)

⇒ R4ε = const. ⇔ ε ∝ R−4. (C.2.5)

When combined with (C.1.38), (C.2.5) leads to (C.2.6).

T 4 ∝ ε ∝ R−4 ⇒ (TR)4 = const.

⇒ TR = const. ⇒ T ∝ R−1. (C.2.6)

Since, as stated above, s ∝ ε/T , one finds (C.2.7) from (C.2.5) and
(C.2.6).

s ∝ ε

T
∝ R−4

R−1
= R−3

⇒ sR3 = const.. (C.2.7)

Adding all results of the above discussion together, one finally arrives at
the relation (C.2.8) [13].

geffT
3R3 = const.. (C.2.8)

Since the neutrinos went out of thermal equilibrium before the annihila-
tion of electron-positron pairs, geff must be given by (C.2.9) at times just
before, t1, and after, t2, this event respectively [13].

geff (t1) = geff,γ + geff,e− = 2 · 2 · 7

8
+ 2 =

11

2
,

geff (t2) = geff,γ = 2. (C.2.9)

By taking the ratio of the left hand side of (C.2.8), evaluated at t1 and
t2 respectively, one finds (C.2.10) once (C.2.9) has been taken into account.
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1 =
(geffT

3R3)|t1
(geffT 3R(t)3)|t2

=
(11/2)T (t1)

3R(t1)
3

2T (t2)3R(t2)3
,(

T (t1)R(t1)

T (t2)R(t2)

)3

=
4

11

⇔ T (t1)R(t1)

T (t2)R(t2)
=

(
4

11

)1/3

. (C.2.10)

The increase in temperature implied by (C.2.10) was due to the energy
released during the pair annihilations that reheated the Universe [4, 13].
However, none of this energy was absorbed by the neutrinos since these were
kinetically decoupled from the other particles in the Universe at this time
[4, 13]. Therefore, it ought to be possible to regard the neutrinos as a separate
closed system with a temperature Tν , scaled by R−1 [13]. Also, Tν should
be equal to T at times preceeding the annihilation. Taken together these
assumption suggest that (C.2.11) holds true [13].

Tν(t2)R(t2) = Tν(t1)R(t1) = T (t1)R(t1). (C.2.11)

By combining (C.2.10) and (C.2.11) one can deduce (C.2.12) that relates
the two temperatures of interest.

T (t2)

Tν(t2)
=

T (t2)R(t2)

Tν(t2)R(t2)
=

T (t2)R(t2)

T (t1)R(t1)
=

(
4

11

)−1/3

⇔ T (t2)

Tν(t2)
=

(
11

4

)1/3

⇔ Tν(t2) =

(
4

11

)1/3

T (t2). (C.2.12)

After the annihilation of e±-pairs, but before the shift from radiation to
matter dominance, the only significant contributions to the energy content
of the Universe came from photons and neutrinos[13]. Similarily to earlier
times, the total energy density in the Universe can be calculated by summing
the contributions of every particle species present. In this case though, one
must also take the difference in temperature between the photons and the
neutrinos into account. Proceeding as when deducing (C.1.39), and with the
additional help of (C.2.12), as well as (C.1.35) and (C.1.36), one can derive
(C.2.11).
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ε ≈ εγ + ενe + εν̄e + ενµ + εν̄µ + εντ + εν̄τ

⇒ ε ≈
(

aT 4 + 6
7

16
aT 4

ν

)
=

(
aT 4 +

21

8
a(

4

11
)4/3T 4

)
⇔ ε ≈

(
1 +

21

8

(
4

11

)4/3
)

aT 4. (C.2.13)

Lastly, the relation between time and temperature in (C.2.14), by the
same token as when deriving (C.1.38), is deduced by substituting ε in (C.1.8)
for (C.2.13).7

t =

(
3

32πG

)1/2

cε−1/2 + const.

≈
(

3

32πG

)1/2

c

[(
1 +

21

8

(
4

11

)4/3
)

aT 4

]−1/2

+ const.

⇒

t ≈

(
1 +

21

8

(
4

11

)4/3
)−1/2(

3

32πaG

)1/2

cT−2 + const.,T < 109 K.(C.2.14)

As of yet, one lacks a formula for t(T ), comparable to (C.2.14) and
(C.1.38), that is applicable for 5.5 · 109 > T > 109 K, during which era
all e+ and most e− underwent pairwise annihilations. The main difficulty
in deducing such an equation stems from the fact that the electrons and
positrons are non-relatistic during at least some part of this time period [13].
The formula (C.1.38) for the energy density in the Universe is thus incorrect,
for which reason there will be no effort to derive a relation between time and
temperature for this period [13].

7Notice that, similarly to (C.1.38), equation (C.2.13) derived in this text differs from
8.43, presented by Islam, since the contribution of the τ -neutrino has not been taken into
account in the latter case [13].
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D Evaluation of Important Integrals

D.1
∫∞

0 x2e−x2

dx

The integral expression (D.1.1), that appears in the derivation of (4.3.8) in
section 4.3, will be shown to reduce to (D.1.3).∫ ∞

0

x2e−x2

dx (D.1.1)

Firstly, an expression, (D.1.2), for x2e−x2
must be deduced.

d

dx
e−x2

= −2xe−x2

⇒ d2

dx2
e−x2

= −2e−x2

+ 4x2e−x2

⇔ x2e−x2

=
1

4

d2

dx2
e−x2

+
1

2
e−x2

(D.1.2)

By applying (D.1.2) one can then evaluate (D.1.1) and thereby ascertain
the sought formula (D.1.3).

⇒
∫ ∞

0

x2e−x2

dx =

∫ ∞

0

(
1

4

d2

dx2
e−x2

+
1

2
e−x2

)
dx

⇔
∫ ∞

0

x2e−x2

dx =
1

4

∫ ∞

0

d2

dx2
e−x2

dx +
1

2

∫ ∞

0

e−x2

dx

⇔
∫ ∞

0

x2e−x2

dx =
1

4

[
d

dx
e−x2

]∞
0

+
1

2

√
π

⇔
∫ ∞

0

x2e−x2

dx =
1

4

[
−2xe−x2

]∞
0

+

√
π

2

⇔
∫ ∞

0

x2e−x2

dx =

√
π

2
(D.1.3)
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D.2
∫∞

0
xm−1dx
ex±1

Equations (D.2.1) and (D.2.2) represent more general forms of the most fre-
quently occurring integral expressions in the theory sections, that is (D.2.1)
and (D.2.2) with either m− 1 = 2, m− 1 = 3 or m− 1 = 4.

∫ ∞

0

xm−1dx

ex + 1
(D.2.1)∫ ∞

0

xm−1dx

ex − 1
(D.2.2)
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∫ ∞

0

xmdx

ex − 1
=

∫ ∞

0

xm

ex − 1

e−x

e−xdx
=

∫ ∞

0

xme−x 1

1− e−x
dx

=

{
1

1− ξ
= (1 + ξ + ξ2 + ... + ξn + ...), |ξ| < 1

}
=

∫ ∞

0

xme−x(1 + e−x + e−2x + ... + e−nx + ...)dx

=

∫ ∞

0

xme−xdx +

∫ ∞

0

xme−2xdx + ... +

∫ ∞

0

xme−(n+1)xdx + ...

⇔

{
integration by parts∫ ∞

0

xme−(n+1)xdx =
xme−(n+1)x

−(n + 1)

∣∣∣∣∞
0

−
∫ ∞

0

mxm−1e−(n+1)x

−(n + 1)

0 +
m

n + 1

∫ ∞

0

xm−1e−(n+1)x = ...

=
m!

(n + 1)m

∫ ∞

0

e−(n+1)x =
m!

(n + 1)m+1

}

⇔
∫ ∞

0

xmdx

ex − 1
= m!

∞∑
n=0

1

(n + 1)m+1

⇒
∫ ∞

0

xmdx

ex − 1
−
∫ ∞

0

xmdx

ex + 1
=

∫ ∞

0

(
xm

ex − 1
− xm

ex + 1
)dx

=

∫ ∞

0

xm(ex + 1)− xm(ex − 1)

(ex − 1)(ex + 1)
dx =

∫ ∞

0

xm

e2x
2dx

= {χ = 2x ⇔ x = χ/2 ⇒ dχ = 2dx}

=

∫ ∞

0

1

2m

χm

eχ
dχ =

1

2m

∫ ∞

0

xm

ex
dx

⇔
∫ ∞

0

xmdx

ex + 1
=

2m − 1

2m

∫ ∞

0

xmdx

ex − 1
,

Thus if one substitutes m for m − 1, the sought expressions for (D.2.1)
and (D.2.2) are obtained.

∫ ∞

0

xm−1dx

ex − 1
= (m− 1)!

∞∑
n=1

1

nm
, (D.2.3)∫ ∞

0

xm−1dx

ex + 1
=

2m−1 − 1

2m−1
(m− 1)!

∞∑
n=1

1

nm
. (D.2.4)
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E Programs

All files are available upon request.

E.1 bbn.f

The NUC123 fortran source code. Needs to be compiled on every worksta-
tion.

E.2 manyruns.sh

This script will run NUC123 with standard settings only varying eta, with
exponential spacing and store outputted data file in data/ and name set to
the current eta value. manyruns.sh requires the subdir data to exist, and
preferably be empty.

E.3 analyzedata.m

Will read and analyze data output from manyruns.sh, which runs NUC123
many times .

E.4 analyzematdata.m

labelanalyzematdata Will read and analyze matlab data files from analyze-
data.m and produces nice graphics.

E.5 analyzeautodata.m

Will read and analyze data output from manyruns.sh, which runs NUC123
many times. The contents of data/ is analyzed and stored as a matlab data
environment file, ’autodata.mat’, to be plotted with analyzeautomatdata.m.

E.6 analyzeautomatdata.m

Will read and analyze data output from analyzeautodata.m and produce nice
graphics.

E.7 partphotons.m

Plots the abundance of helium and hydrogen with all parameters based on
previously presented calculations.
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E.8 freezeout.m

Calculates the freeze-out temperature.

E.9 TempofTime.m

Plots the temperature as a function of time.

E.10 Blackbody.m

Shows the ratio of high energy photons, E > 2.2 MeV, as a function of
temperature or time.

E.11 canon.m

Plots the behaviour of the canonical distribution before freeze-out and neu-
tron decay thereafter.
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