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Abstract
For analysing a complex system such as the brain mathematical modeling and sim-
ulation are increasingly important tools. This analysis can be performed on scales
ranging from the neuron to so called neural mass models simulating whole brain
regions. By using the computational framework for whole-brain modeling called
Neurolib we have combined its cortical and thalamic models into a single model
which we call the thalamocortical model. This model was 12 times faster than the
previous Neurolib implementation. Neurolib provides structural data which made it
possible to create models with biologically informed connectivity. With this data we
created a two-node model (a single thalamic and cortical node) and an 80+1-node
model (80 cortical nodes). Through various simulations and analysing both models
we found satisfactory points in the parameter space which gave rise to qualitative
behaviour associated with both a sleeping brain and an awake brain, the behaviours
in question include phenomena such as slow oscillations and sleep spindles.

Keywords: Computational neuroscience, neural mass models, sleeping stages, tha-
lamocortical model
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1
Introduction

1.1 Background

The objective of this project was to create a model of the brain and have it replicate
both a brain in an awake state and a sleeping state. In order to achieve this objective
it is of course not feasible to simulate each of the brain’s 86 billion neurons where
every neuron then averages 7000 synaptic connections. Instead one can use a neural
mass model, that is using a low-dimensional model representation of the activity
of large populations of neurons and synapses. In much the same way, instead of
simulating every region of the brain one can simulate the regions of interest with
added noise approximating the input from the non-included brain regions. In this
case the regions of interest — that is the regions showing particular activity in sleep
— are the cortex together with the thalamus.

Neurolib is an open-source simulation framework containing several neural mass
models implemented in Python including a cortical and a thalamic model. The
Neurolib framework also includes a way of running a cortical model connected with
a thalamic model, a so called thalamocortical model. This can be achieved by using
an included framework called multimodel which makes it easy to combine different
neural models. The problem is that the ease of use comes with some performance
drawbacks, especially noticeable when one wants to not only simulate a single cor-
tical unit but 80 separate cortical nodes representing different brain areas. This
motivates a faster implementation of the thalamocortical model.

The two central questions which we answer in this report are “How well did the
implemented thalamocortical model replicate the sleeping and awake state of real bio-
logical brains?” and “How exactly is the thalamocortical neural model constructed?”.
Corollary questions demanding answers are: what are the central characteristics of
sleeping and awake brains relevant for our simulations, what type of empirical data
is used, what is the motivation behind using a low-dimensional representation of the
brain?
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1. Introduction

1.2 Related work
This project is based on the results and methodologies of four papers, three of which
establish the neural models used and one of which gives the relevant parameters to
examine in order to model sleeping and awake brain states.

1.2.1 ALN
In ‘Biophysically grounded mean-field models of neural populations under electrical
stimulation’ by Cakan and Obermayer [13] they set about the problem that large
spiking neural networks are hard to simulate and analyze when investigating the
effects of electrical stimulation. They investigated if a mean-field model of adaptive
exponential integrate-and-fire (AdEx) neurons could be a solution to this problem.
In the paper they present results showing that the created model has some desired
qualities and that it gives good predictions of the behaviour of a spiking network of
individual AdEx neurons. The model implemented is the model that we use in this
project to simulate cortical neural populations.

1.2.2 80-node model
In ‘Spatiotemporal patterns of adaptation-induced slow oscillations in a whole-brain
model of slow-wave sleep’ [11] Cakan et al. – instead of a model consisting of a sin-
gle ALN node – evaluate a model consisting of 80 connected ALN nodes. They use
evolutionary optimization to fit the model to human EEG and fMRI data. It is
shown that the model can produce realistic local and global slow oscillations (SOs).
They conclude that the traveling global waves are caused by the connectome, i.e.
the different connection strengths between the nodes. The 81-node model used in
this project is equivalent to the 80 node model used by Cakan et al. if the thalamic
node is removed.

1.2.3 2-node model
Jaycay et al. are investigating a thalamocortical model in the paper ‘Cross-Frequency
Slow Oscillation–Spindle Coupling in a Biophysically Realistic Thalamocortical Neu-
ral Mass Model’ [20]. They couple a thalamic model with an ALN node to investigate
SOs and sleep spindles. By varying different parameters in the model they find that
the model can produce experimentally observed interactions between SOs and spin-
dles. The equations defining the two-node model in our project are the same as in
this paper by Jaycay et al.

1.2.4 Parameters
Krishnan et al. investigates the effect of neuromodulators on a thalamocortical
model in the paper ’Cellular and neurochemical basis of sleep stages in the thalam-
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1. Introduction

ocortical network’ [23]. By exploring different parameters they find a set of param-
eters that when varied can generate characteristic brain EEG rhythms for different
states (different sleeping states and awake state). The parameters investigated in
our project are based on the parameters found by Krishnan et al.

1.3 Limitations
For simulating such a complex system as the brain there are a set of limitations
one has to adhere to for it to be feasible. Individual neurons are not simulated but
instead models which approximate whole populations of neurons through mean-field
theory are used. All of the constituent parts of the brain are not taken into account,
instead only the cortex and the thalamus are included in simulations since a sleeping
brain’s activity mainly stems from these two. In this model the input coming from
the rest of the brain to the cortex and thalamus is approximated as noise.

For simulating a sleeping state we did not include all the sleeping stages but instead
only the N2/N3 sleep stages grouped together as one and we did not include all
the characteristics of those stages either but had a goal to find a state containing
sleep spindles and slow oscillations. For the awake state we limited our search for
characteristics to be an alpha peak and no spindling. Finally the model parameters
examined for state changes are limited to the parameters examined by Krishnan et
al [23].

5



1. Introduction

6



2
Theory

2.1 The biological brain

The human brain is a highly complex system consisting of heterogeneous interact-
ing parts on multiple scales. This includes different types of neurons all the way
up to different regions of the brain specialising at certain tasks. In the following
sections we present some fundamental requisitory knowledge about relevant regions
and mechanisms.

2.1.1 Neurons & synapses

The basic building block of all parts of the brain is the neuron. In this section the
neuron will be described on a level of abstraction sufficient for understanding the
mechanisms relevant to this project.

The functions that are important are the ability to receive signals from other neu-
rons, process these signals non-linearly and emit signals to other neurons [17]. The
principal parts of neurons are the dendrites, the soma and the axon (see Figure 2.1).
The soma is the cell’s body containing the machinery needed for the cell to survive
including genetic material and mitochondria, dendrites receive signals and axons are
the exit terminal connecting to the dendrites of other neurons.

7



2. Theory

Figure 2.1: Figure of the basic components of a neuron (from [3]).

The output of a neuron is an electrical signal called a spike or an action potential.
When a neuron receives enough input it will generate a spike. As mentioned above
however it is not a linear function. It does not only depend on the amplitude of
the membrane potential and the exact behaviours are not completely understood.
And it is not the spike in itself that carries the information, but the frequency and
timing of the spikes.

The spike travels through the axon to other neurons. The site where neurons
connect is called the synapse. The most common form of synapses are chemical
synapses. They transmit the signal by releasing neurotransmitters that then gener-
ates an electrical signal in the postsynaptic cell. In the brain there are also so called
neuromodulators present which regulate the behaviour of populations of neurons,
common examples of neuromodulators include acetylcholine, histamine, GABA and
serotonin.

2.1.2 Cerebral cortex
The cerebral cortex is the most highly developed part of the human brain and
is responsible for higher-level cognitive functions such as perceiving, thinking and
understanding language. It is an on average 2.5 mm thin layer of grey matter
covering all of the cerebrum which is the largest and uppermost portion of the brain
made up of the two cerebral hemispheres. The cerebral cortex still makes up around
two thirds of the brains total mass (which in total weighs about 1336 grams in males
and 1198 grams in females)[18, 21]. It is a highly folded sheet with its bulges being
called gyri and fissures called sulci. The folding adds to the surface area which adds
more gray matter thereby increases the information it can process. The folding
creates separate brain regions and it is the basis for the division in the AAL2 atlas
which divides the cerebral cortex into 80 separate nodes and is the data used in the
brain simulation framework Neurolib (see Section 2.3.3) as well as in our thesis for
simulation of the cerebral cortex [29].
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2. Theory

2.1.3 Thalamus

As with most parts of the brain the thalamus has multiple functions such as roles
in motor activity, emotion and memory. It is however classically know for relaying
sensory impulses from various parts of the body to the cerebral cortex. A sensory
impulse would travel from the body’s surface to the thalamus where it is received
as a sensation to be passed to the cerebral cortex for interpretation as temperature,
touch or pain. It is crucial for perception as all sensory input is relayed by it with
the sole exception of smell. The thalamus is located near the center of the brain
with connections out to the cerebral cortex in all directions [4, 1].

2.1.4 Neuroimaging

Neuroimaging is the process of recording different aspects of the brain. It provides
quantitative data which links computational neuroscience to the real world and is
therefore necessary to the field. There exists many different technologies that differ
in spatial and temporal resolution. The data relevant to this study is Electroen-
cephalography (EEG).

2.1.4.1 EEG

Electroencephalography (EEG) measures voltage variations resulting from ionic cur-
rent within the brain’s neurons. This is done by placing electrodes on the scalp and
these types of measurements of electrical activity on tissue are called electrograms
(see Figure 2.2 and Figure 2.3) [8]. The simplicity of the technique allows for a very
high temporal resolution while it has a relatively low spatial resolution, and it can
only measure the activity on the surface layer of the brain. EEG recordings are
typically analysed by calculating what is called the power spectrum of the signal or
signals (see Section 3.5.2 for description).

Figure 2.2: Subject ready for EEG recording (from [22]).

9



2. Theory

Figure 2.3: Sample EEG from human (from [14]).

2.2 The sleeping brain

The sleeping brain’s activity is characterized by different types of oscillations in its
thalamocortical and hippocampal networks. The oscillations include, among others,
so called slow waves, sleep spindles, alpha and theta waves (see below for defini-
tions). These oscillations in the brain’s activity are so central to sleep that they are
the basis for the classification of sleep into its different sleep stages. The latest revi-
sion to the system of sleep stages was 2007 and comes from the America Academy
of Sleep Medicine which devised a system consisting REM sleep and three stages of
Non-REM sleep (N1-N3) [6, 27].

The first and shortest sleep stage is the N1 stage. In the N1 sleep the body transi-
tions from wakefulness to sleep. The stage lasts several minutes and is marked by
slowing down of the heartbeat, breathing and eye movement and relaxation of the
muscles [1]. The brain transition from alpha waves (8-12 Hz) to theta waves (4-8 Hz).

Following the N1 Stage is the N2. Theta waves are observed and alpha waves
are diminished or disappear. This sleep stage makes up around 45-55 % of sleep. In
this stage there is also another type of oscillation called sleep spindles wherein the
thalamus and cortex together give rise to alternations between high and low activity
states called UP and DOWN states. These spindles can range in frequency from 7
to 15 Hz.

In the third non-REM sleep stage, also called deep sleep or slow-wave sleep there are
delta waves ranging from 0.5-2 Hz. The sleeper is less responsive to the environment
in this stage.

In rapid-eye-movement sleep (REM sleep), as the name implies, the eyes move
rapidly (all the muscles under conscious control are paralysed except for the eye
muscles). It is in this stage that the sleeper may have vivid dream.

Sleep typically consists of 4 to 5 sleep cycles, as mentioned N1 is the stage in which
the subject is falling asleep and thereafter the progression of sleep stages in each
cycle is the following:
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N2 → N3 → N2 → REM.

2.3 The simulated brain

Mathematical models and computer simulations are key tools for reaching a better
level of understanding of such a complex system as the brain. Examples of this
include studying the differential effects of neuromodulators [15], studying the role of
transmission delays between brain areas [10], explaining features of electroencephalo-
gram [16] and explaining the propagation of of brain waves [28]. There exists a wide
variety of brain models on different scales ranging from the singular neuron to the
macroscopic scale called neural mass models which approximate large populations of
neurons. The Python framework for brain simulations Neurolib (see Section 2.3.3)
works on the macroscopic scale of brain modelling. The different brain regions are
coupled through long-range axonal connections. Computationally these regions will
also be referred to as nodes.

2.3.1 Neuron models

Both of the thalamic and cortical brain models used in this report have their foun-
dation in simpler neuron-level models. This section is dedicated to describing those
neuron models starting from the simple Leaky integrator up until the Hodgkin-
Huxley and Adaptive Exponential integrate-and-fire model which are the foundation
for the models used in this report.

2.3.1.1 Leaky integrator / passive membrane

The Leaky integrator can be modeled through electronics laws [17] (see Figure 2.4).
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Figure 2.4: Electronics representation of a leaky integrator.

We call the potential over the cell membrane of a neuron its membrane potential
u(t). When there is no external input to the neuron the potential will be at its
resting potential urest which can be modeled with a battery. When a current I(t) is
injected to the neuron the membrane potential will deviate from its resting potential
and the membrane acts as a capacitor C which is charged. The membrane is not a
perfect insulator and the leak can be modeled by a resistance R. We can split the
current into the current passing the resistor IR(t) = uR(t)/R = (u(t) − urest)/R and
the current that charges/discharges the capacitor IC(t) = dq/dt = Cdu/dt. This
results in

I(t) = IR(t) + IC(t) = u(t) − urest

R
+ C

du

dt
(2.1)

With the membrane time constant τ = RC we get the standard form of the leaky
integrator (or the equation of a passive membrane):

τ
du

dt
= − [u(t) − urest] + RI(t). (2.2)

2.3.1.2 Leaky integrate-and-fire model (LIF)

The LIF is just a leaky integrator in which an action potential is generated when
the voltage u(t) goes above a certain threshold uT [25, 5]. Then the potential is
reset to a subthreshold value ur. This is what ‘fire’ in the name of the model refers
to.

2.3.1.3 Exponential integrate-and-fire model (EIF)

In the EIF an exponential term is added:
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τ
du

dt
= − [u(t) − urest] + ∆T exp

(
u(t) − ϑrh

∆T

)
︸ ︷︷ ︸

Depolarizing non-linearity

+RI(t) (2.3)

where ∆T is the sharpness of action potential initiation and ϑrh is the intrinsic
membrane potential threshold. Just like in the normal integrate-and-fire model there
is also a numerical threshold uT at which the potential is reset to ur. However the
value of of uT does not matter if it is sufficiently high since the potential approaches
infinity very fast.

2.3.1.4 Adaptive Exponential integrate-and-fire model (AdEx)

In the AdEx an adaptation variable is added [9]:

τ
du

dt
= − [u(t) − urest] + ∆T exp

(
u(t) − uT

∆T

)
+ RI(t) −Rw︸ ︷︷ ︸

Adaptation

(2.4)

τ
dw(t)

dt
= −a [u(t) − urest] − w + bτδ

(
t − tf

)
(2.5)

where w is the adaptation current and a and b are the coupling parameters. tf

is the firing time and the δ-function increases the adaptation current by b when
it fires. The AdEx model is relatively simple given the amount of firing patters it
can generate. For example initial bursting which is when a neuron with a constant
input current fires more rapidly in the beginning but then starts firing with a lower
frequency. In a biophysical neuron adaptation current can be interpreted as certain
ions entering the membrane more rapidly during a spike and therefore affects the
ion currents after the spike.

2.3.1.5 Hodgkin-Huxley Model

The Hodgkin-Huxley model is similar to the leaky integrator but contains multiple
resistor-potential pairs (with the difference that some resistances can be opened or
closed depending on voltage) and the equation can be derived in the same way [19].
See Figure 2.5 for the electronics representation where the arrows over the resistors
represent that they can be opened or closed. The original Hodgkin-Huxley model
takes into account sodium and potassium ion currents plus another unspecified ion
current:

I(t) = C
du

dt
+ gK (u − VK) + gNa (u − VNa) + gl (u − Vl) (2.6)

where gk, gNa and gt are the conductances. Vk, VNa and Vl are the reversal potential.
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Figure 2.5: Electronics representation of a Hodgkin-Huxley model.

2.3.2 Whole-brain models
A whole-brain model is a model consisting of coupled brain regions. The strength
of the coupling between the regions are based on empirical data of the brain usually
obtained from diffusion tensor imaging (DTI) which works by measuring the diffusion
of water molecules in the brain and is based on the fact that diffusion tends to happen
along the direction of axons.

2.3.2.1 Mean-field models

Mean-field theory comes from statistical mechanics and is used to approximate high-
dimensional systems through a lower-dimensional one. It is the same idea as having
the scalar temperature for a gas instead of keeping track of the kinetic energy of
every single particle. The mean-field approach is a crude approximation in the sense
that one assumes that every particle in the system only experiences the average be-
haviour of its neighbours. This average is bound to be different from the actual value
which will fluctuate. According to the central limit theorem of statistics however,
the more neighbours there are interacting the less the average will fluctuate and the
closer the approximation will get to the truth.

Mean-field theory has successfully been used in neuroscience with one of the ex-
amples being the cortical model used in this report where a mean-field approxima-
tion has been applied on the Adaptive exponential integrate-and-fire neuron model
resulting in the so called ALN model. There are a series of conditions that need
to be fulfilled for the construction of this mean-field model: all the neurons within
each population need to have the same properties, there needs to be a very large
number of neurons and the connectivity needs to be sparse and random within each
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population. For the derivation and additional assumptions see Cakan et al. [13].

2.3.3 Neurolib
Neurolib is an open-source framework for whole-brain modeling written in Python
[12]. It provides several neural mass models, among them the cortical and thalamic
models used in this report and soon the thalamocortical model which we have created
by combining the two former mentioned models. The brain regions are connected
to each other informed by empirical diffusion tensor imaging data [12]. Neurolib
also contains many tools for extensive model analysis and optimization such as an
evolutionary optimization module and a parameter exploration module.
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All code in this project have been run using Python version 3.7.0 and Neurolib
version 0.6.1.

3.1 Cortical model
The cortical model in neurolib is derived from applying mean-field theory to the ex-
ponential integrate-and-fire (AdEx) neurons which are explained in Section 2.3.1.4.
The resulting model is called the ALN model and is represented by a node with an
excitatory (E) and an inhibitory (I) population. In the following describing equa-
tions of the ALN model a general population is represented with an α ∈ {E, I}.
The output of interest from each population is the population spike rate rα which
is the average neural spiking for a population. It is computed for each timestep
with a pre-computed transfer function rα = Φr (µα, σα) with the dependent vari-
ables µα, which is the total mean membrane current and σα which is the membrane
current variance. The dynamics of the membrane currents are given by the following
equations:

τα
dµα

dt
= µsyn

α (t) + µext
α (t) + µou

α (t) − µα(t) (3.1)

σ2
α(t) =

∑
β∈{E,I}

2J2
αβσ2

s,αβ(t)τs,βτm

(1 + rαβ(t)) τm + τs,β

+ σ2
ext,α (3.2)

Equation 3.2 describes the dynamics of the variance σ2
α of the membrane currents

containing the input-dependent adaptive timescale τα = Φτ (µα, σα) which is cal-
culated from a precomputed transfer function (see [11]). In equation 3.1 we have
µα which is the total mean membrane current, µext

α the currents from external in-
put sources, µou

α the external noise input and µsyn
α the currents induced by synaptic

activity. The dynamics of this synaptic current µsyn
α are in turn given by:

µsyn
α (t) = JαE s̄αE(t) + JαI s̄αI(t) (3.3)

The parameters Jαβ determine the maximum synaptic current when all synapses
from population β to population α are active and s̄αβ represents the mean of the
fraction of all active synapses bounded between 0 (no active synapses) and 1 (all
synapses active). Like α, β is either E or I. The synaptic dynamics are given by:
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ds̄αβ

dt
= τ−1

s,β ((1 − s̄αβ(t)) · rαβ(t) − s̄αβ(t)) , (3.4)

dσ2
s,αβ

dt
= τ−2

s,β

(
(1 − s̄αβ(t))2 · ραβ(t) + (ραβ(t) − 2τs,β (rαβ(t) + 1)) · σ2

s,αβ(t)
)

. (3.5)

At every timestep – taking into account the input delay between nodes – one has
the mean rαβ and the variance ραβ of the effective input rate from population β to
α for a spike transmission delay dα given by:

rαβ(t) = cαβ

Jαβ

τs,β

Kβ · rβ (t − dα) + δαEδβE · Kgl

N∑
j=0

Cij · rβ (t − Dij)
 , (3.6)

ραβ(t) =
c2

αβ

J2
αβ

τ 2
s,β

Kβ · rβ (t − dα) + δαEδβE · Kgl

N∑
j=0

C2
ij · rβ (t − Dij)

 . (3.7)

rα(t) is the instantaneous population spike rate, cαβ defines the amplitude of the
post-synaptic current caused by a single spike, Kgl is the global coupling strength
parameter, Ci,j gives the connection strength from region j to region i. and Di,j

in the same way gives the delay from region j to region i. The Kronecker deltas
restrict the inter-areal coupling to only be between excitatory subpopulations since
the summation term is only is non-zero when α = β = E =⇒ δαEδβE = 1.

3.1.1 Noise input µou
α in cortical model

As can be seen in equation 3.1 every population α contains a contribution from
µou

α (t) which is an independent noise input. It represents other not included neural
sources such as subcortical brain areas and it is modeled as an Ornstein-Uhlenbeck
process with a zero mean:

dµou
α

dt
= −µou

α

τou

+ σou · ξ(t), (3.8)

where ξ(t) is a white noise process sampled from a normal distribution with zero
mean and unit variance.

3.2 Thalamic model
The thalamic model consists of two populations, the excitatory thalamocortical neu-
rons (TCR) and the inhibitory thalamic reticular nucleus (TRN). Like the cortical
model the variable which is iterated over is the mean membrane potential which
then is converted to firing rate with the following sigmoidal transfer function,

r(V ) = rmax

1 + exp(−(V − θ)/σ) , (3.9)
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containing the maximum firing rate rmax, firing threshold θ, and gain coefficient σ.
For a thalamic population α ∈ {t, r}, the mean membrane potential Vα is given by

τ V̇α = − (Vα − Eleak) − weseα (Vα − Ee) − wisiα (Vα − Ei) − C−1
m τI intrinsic. (3.10)

where we, wi are the synaptic input rates scaling the corresponding synaptic inputs
se, si for excitatory (e) and inhibitory (i) synapses. Ee, Ei are the Nernst reversal
potentials. The final term contains the additional intrinsic currents present, with
τ being the membrane time constant and Cm the membrane capacitance. The
additional intrinsic currents vary slightly between TCR and TRN, both of them
include a potassium leak current

ILK = gLK (V − EK) , (3.11)
and a T-type calcium current,

IT = gT m2
∞h (V − ECa) (3.12)

In these equations gLK and gT are the conductances of each intrinsic current, EK

and ECa their Nernst reversal potentials and m2
∞ and h are the gating functions

of the T-type calcium current. Additionally the TCR population contains what is
called an anomalous rectifying current Ih:

Ih = gh (mh1 + gincmh2) (V − Eh) (3.13)
where gh is its conductance, Eh its Nernst reversal potential, mh1 and mh2 the gating
functions and finally the conductivity scaling ginc. This rectifying current Ih gives
rise to the waxing and waning of spindle oscillations in a single isolated thalamus.
So taken altogheter I intrinsic = ILK

t + IT
t + Ih for TCR and I intrinsic = ILK

r + IT
r for

TRN.
The synaptic transmission from the firing population k′ to the receiving population
k in the thalamic model is described by

slk(t) =
∑
k′

αl(t) ⊗ Nkk′rk′(t) + ϕ′(t) (3.14)

here l ∈ {e, i} where l = e corresponds to being an excitatory AMPA synapse whilst
l = i corresponds to an inhibitory GABA synapse. Nkk′ is the connection strength
from population k′ to k, ϕ′(t) is bakground noise input and ⊗ is the convolution
operator. αl(t) is an alpha function representing the synaptic response to a single
spike, it is given by

αl(t) = γ2
l · t · exp (−γlt) (3.15)

where γl is the decay constant of the synaptic response. The convolution in equation
3.14 is replaced by a second-order ordinary differential equation for easier numerical
calculation which results in:

s̈lk = γ2
l

(∑
k′

Nkk′rk′(t) + ϕ′(t) − slk(t)
)

− 2γlṡlk(t) (3.16)

Its background noise input ϕ′(t) is modeled as an Ornstein-Uhlenback process with
zero drift and finite variance. As in the cortical model the noise represents other
neural processes not accounted for in the model such as input from other brain
regions. [30, 20]
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3.3 Thalamocortical model
This section shows the equations for how the thalamus and the cortical model were
connected in order to create the thalamocortical model.

3.3.1 Connection thalamus → cortex
The firing rate of the thalamus enters the cortical model in equation 3.6 and 3.7
where the summation now goes over the N cortical nodes and finally also the tha-
lamic node with index N + 1 giving rise to the slightly modified equations 3.6’ and
3.7’:

rαβ(t) = cαβ

Jαβ

τs,β

Kβ · rβ (t − dα) + δαEδβE · Kgl

N+1∑
j=0

Cij · rβ (t − Dij)
 , (3.6’)

ραβ(t) =
c2

αβ

J2
αβ

τ 2
s,β

Kβ · rβ (t − dα) + δαEδβE · Kgl

N+1∑
j=0

C2
ij · rβ (t − Dij)

 . (3.7’)

3.3.2 Connection cortex → thalamus
The firing rate of the cortical nodes enters the thalamus in equation 3.16 in the
excitatory case (l = e) for both the excitatory (k = t) and inhibitory (k = r)
population:

s̈et = γ2
e

∑
k′

Ntk′rk′(t) + ϕ′(t) +
N∑

j=0
Cij · rβ (t − Dij) − set(t)

− 2γeṡet(t) (3.16t)

s̈er = γ2
e

∑
k′

Nrk′rk′(t) + ϕ′(t) +
N∑

j=0
Cij · rβ (t − Dij) − ser(t)

− 2γeṡer(t) (3.16r)

where the new summation term is added including the firing rate from the N cortical
nodes (N = 1 or N = 80).

3.4 Node connections in a 80+1-node whole-brain
model

In order to simulate an 80 + 1-node model the connectivity (i.e. weighting of input)
and delay from each node to every other node needs to be specified. A practical
way of encoding this information is through 81×81 connectivity and delay matrices,
where element of index i, j represents the connection strength/delay from the jth
node to the ith node. Such a connectivity and delay matrix are included in Neurolib.
This structural connectivity and delay is based on a probabilistic DTI tractography
and the different regions defining each node are based on the AAL2 atlas. The AAL2
atlas — and therefore also the data available in Neurolib — contains two thalamic
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nodes corresponding to the left and right side of the thalamus. The computational
model of the thalamus we have used is a single node model of the complete thalamus,
to reconcile this we have therefore averaged the connections and delays of the two
thalamic halves to get the connections and delays for our single thalamic node.

3.5 Signal analysis
The output data analysed was a time series of mean firing rate which both was
converted into its power spectrum and searched for different characteristics, the
tools and techniques for doing this are described in more detail below.

3.5.1 EEG Dataset
The MPI-LEMON EEG dataset was used to make comparisons between simulated
data and data from real humans [7]. The dataset is publicly available and contains
data from 227 participants. The participants were both men and women of different
ages (see description paper [7] for more detailed information).

3.5.2 Power spectrums
Power spectrums (or power spectral density) were approximated from the firing rates
using the scipy implementation of Welch’s method with parameter window set to
"hanning". The power spectral density is the Fourier transform of the autocorrela-
tion function [26].

The power spectrums were compared in different ways. They were compared qual-
itatively, for example by looking at the shape and peaks of the spectrum. They
were also compared quantitatively by calculating the correlation between the power
spectrum retrieved from the dataset and the power spectrum retrieved from the
simulations. Lastly they were also compared quantitatively by detecting peaks in
the power spectrums and comparing the frequency and height of the peaks. In the
last case the find_peaks function from scipy was used with a threshold on the lowest
accepted prominence.

3.5.3 Summary statistics
A number of values were calculated from the time series and from the power spec-
trums for the analysis. The ones that are presented in the results are the difference
between the minimum and maximum value of a time series, the mean value of a time
series and The prominence of peaks. Prominence is defined as the vertical distance
between a peak and its lowest contour line.

3.5.4 Spindles
To detect spindles the same technique as in Jaycay et al. [20] was used. In other
words the A7 spindle detection algorithm described in Lacourse et al. [24] with the
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same modifications as in Jaycay et al.

3.6 Parameter search
In order to understand how different parameters affected the output of the model
parameter searches were run. To be able to visualize them in a reasonable way, only
parameter searches involving one or two parameters were run. The parameters that
were examined in the parameter searches were b, wr

e, wr
i , wt

e, wt
i and gLK and the

choice of parameters was based on the findings of Krishnan et al.
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4.1 Thalamocortical implementation

The thalamocortical model implemented in this project was 12 times faster than the
already existing thalamus-cortex model in Neurolib implemented in the Neurolib
framework ‘Multimodel’. For the benchmarking the models were setup to run a
simulation of 10000 ms with a timestep of 0.01 ms. After 100 runs the mean and
standard deviation of the thalamocortical model were 252 ms with 0.688 ms standard
deviation whilst the multimodel implementation had a mean runtime of 3040 ms
with a standard deviation of 11.4 ms. The benchmarking was performed on a AMD
Ryzen 9 5900HX processor.

Figure 4.1: Runtimes of the existing thalamus-cortex implementation in Neurolib
Multimodel compared to the implemented thalamocortical model. The thalamo-
cortical model was an order of magnitude faster taking only 8.3% of the time the
multimodel took with the runtime mean and standard deviations being 252 ± 0.688
ms compared to 3040 ± 11.4 ms. The runtime statistics were calculated after 100
runs with the models running a 10000 ms simulation with the timestep of 0.1 ms.
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4.2 2-node model

4.2.1 Sleeping state

The results in this section are generated using parameters from tables A.1, A.2 and
A.3 in Appendix A.1 which are based on the results of Jaycay et al. [20].

A 20 second time excerpt of the firing rate of the excitatory population in the
cortical node and the thalamocortical relay population in the thalamic node are
shown in Figure 4.2 and 4.3 respectively. The power spectrum of the firing rate of
the excitatory population in the cortical node from a 120 second simulation is shown
in Figure 4.4.

Figure 4.2: The figure shows a 20 second time excerpt of the firing rate of the
excitatory population in the cortical node. The simulation was run with one cortical
and one thalamic node with parameters from tables A.1, A.2 and A.3 in Appendix
A.1.

Figure 4.3: The figure shows a 20 second time excerpt of the firing rate of the
thalamocortical relay population in the thalamic node. The simulation was run
with one cortical and one thalamic node with parameters from tables A.1, A.2 and
A.3 in Appendix A.1.
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Figure 4.4: The figure shows the power spectrum of the firing rate in the excitatory
population from a 120 second simulation. The simulation was run with one cortical
and one thalamic node with parameters from tables A.1, A.2 and A.3 in Appendix
A.1.

4.2.2 Awake state

In this section results from the attempts to simulate the model in an awake state
using one cortical and one thalamic node will be presented. All parameter searches
in this section uses parameters from tables A.1, A.2 and A.3 in Appendix A.1 which
are based on the results of Jaycay et al. [20] as starting point.

4.2.2.1 Exploration of individual parameters

Results in this section are from parameter searches where only one parameter were
varied at a time.

Graphs showing the frequency of the most prominent peak in a power spectrum
between 7.5 Hz and 15 Hz of the firing rate in the excitatory population in the
cortical node from a 120 second simulation for varying values of wr

i and wt
i are

shown in Figure 4.5 and 4.6 respectively.
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Figure 4.5: The figure shows the frequency of the most prominent peak in a power
spectrum between 7.5 Hz and 15 Hz of the firing rate in the excitatory population
in the cortical node from a 120 second simulation for varying values of wr

i . The
simulations were run with one cortical and one thalamic node with parameters from
tables A.1, A.2 and A.3 in Appendix A.1 as starting point. Note that the frequency
of the peak varies substiantially over the range.

Figure 4.6: The figure shows the frequency of the most prominent peak in a power
spectrum between 7.5 Hz and 15 Hz of the firing rate in the excitatory population
in the cortical node from a 120 second simulation for varying values of wt

i . The
simulations were run with one cortical and one thalamic node with parameters from
tables A.1, A.2 and A.3 in Appendix A.1 as starting point. Note that the frequency
of the peak varies substiantially over the range.

A 20 second time excerpt of the firing rate of the thalamocortical relay population
in the thalamic node with wr

i = 0.5 is shown in Figure 4.7. The power spectrum,
from a 120 second simulation, of the firing rate of the excitatory population in the
cortical node is shown in Figure 4.8.
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Figure 4.7: The figure shows a 20 second time excerpt of the firing rate of the
thalamocortical relay population in the thalamic node. The simulation was run
with one cortical and one thalamic node with wr

i = 0.5. The rest of the parameters
are from tables A.1, A.2 and A.3 in Appendix A.1.

Figure 4.8: The figure shows the power spectrum of the firing rate in the excita-
tory population in the cortical node from a 120 second simulation. The simulation
was run with one cortical and one thalamic node with wr

i = 0.5. The rest of the
parameters are from tables A.1, A.2 and A.3 in Appendix A.1. Note the peak at
about 10 Hz.

4.2.2.2 Exploration of two parameters at a time

The difference between the maximum and the minimum value of the firing rate
of the thalamocortical relay population in the thalamic node is shown in Figure
4.9. The average spindle amplitude of the firing rate of the thalamocortical relay
population in the thalamic node is shown in Figure 4.10. The prominence of the
most prominent peak in a power spectrum between 8 Hz and 12 Hz of the firing
rate in the excitatory population in the cortical node is shown in Figure 4.11. All
of these values were calculated from 120 second simulations for varying values of wr

i

and wt
i .
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Figure 4.9: The figure shows the difference between the maximum and the mini-
mum value of the firing rate of the thalamocortical relay population in the thalamic
node from a 120 second simulation, for varying values of wr

i and wt
i . The rest of the

parameters are from tables A.1, A.2 and A.3 in Appendix A.1. wt
i = 1.27, wr

i = 0.5
is marked with a green star.
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Figure 4.10: The figure shows the avarage spindle amplitude of the firing rate
of the thalamocortical relay population in the thalamic node from a 120 second
simulation, for varying values of wr

i and wt
i . The rest of the parameters are from

tables A.1, A.2 and A.3 in Appendix A.1. wt
i = 1.27, wr

i = 0.5 is marked with a
green star.
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Figure 4.11: The figure shows the prominence of the most prominent peak in
the range 8Hz to 12Hz in a power spectrum of the firing rate in the excitatory
population in the cortical node from a 120 second simulation, for varying values of
wr

i and wt
i . The rest of the parameters are from tables A.1, A.2 and A.3 in Appendix

A.1. wt
i = 1.27, wr

i = 0.5 is marked with a green star.

A 20 second time excerpt of the firing rate of the excitatory population in the cortical
node and a 20 seccond time excerpt of the thalamocortical relay population in the
thalamic node are shown in Figure 4.12 and 4.13 respectively. The power spectrum
of the firing rate of the excitatory population in the cortical node from a 120 second
simulation is shown in Figure 4.14. All were run with wt

i = 1.27, wr
i = 0.5.
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Figure 4.12: The figure shows a 20 second time excerpt of the firing rate of the
excitatory population in the cortical node. The simulation was run with one cortical
and one thalamic node with wt

i = 1.27, wr
i = 0.5. The rest of the parameters are

from tables A.1, A.2 and A.3 in Appendix A.1.

Figure 4.13: The figure shows a 20 second time excerpt of the firing rate of the
thalamocortical relay population in the thalamic node. The simulation was run
with one cortical and one thalamic node with wt

i = 1.27, wr
i = 0.5. The rest of the

parameters are from tables A.1, A.2 and A.3 in Appendix A.1.

Figure 4.14: The figure shows the power spectrum of the firing rate in the excita-
tory population in the cortical node from a 120 second simulation. The simulation
was run with one cortical and one thalamic node with wt

i = 1.27, wr
i = 0.5. The rest

of the parameters are from tables A.1, A.2 and A.3 in Appendix A.1. Note the peak
at about 10 Hz.
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4.3 81-node model

The results in this section are generated using parameters from Table A.4 in Ap-
pendix A.1.1 which are based on the results of Cakan et al. [11]. The other pa-
rameters are from tables A.1, A.2 and A.3 in Appendix A.1 which are based on the
results of Jaycay et al. [20]. All simulations in this section are run with scaling
values of connection strengths cctx−ctx = 1, cctx−thal = 2, cthal−ctx = 10.

4.3.1 Sleeping state

The spindling frequency (the frequency of UP states) of the firing rates of thalam-
ocortical relay population in the thalamic node is shown in Figure 4.15. The mean
value in the range 7.5 Hz to 15 Hz of the mean power spectrum of the firing rates
of the excitatory populations in the cortical nodes is shown in Figure 4.16. All of
these values were calculated from 60 second simulations for varying values of b and
µE.
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Figure 4.15: The figure shows the spindling frequency of the firing rates of tha-
lamocortical relay population in the thalamic node from a 60 second simulation,
for varying values of b and µE. Parameters are from Table A.4 in Appendix
A.1.1. The other parameters are from tables A.1, A.2 and A.3 in Appendix A.1.
mue_ext_mean = 2.5, b = 2.3 is marked with a blue star.
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Figure 4.16: The figure shows the mean value in the range 7.5Hz to 15Hz of
the mean power spectrum of the firing rates of the excitatory populations in the
cortical nodes from a 60 second simulation, for varying values of b and µE. Table
A.4 in Appendix A.1.1. The other parameters are from tables A.1, A.2 and A.3 in
Appendix A.1. mue_ext_mean = 2.5, b = 2.3 is marked with a blue star.

A 20 second time excerpt of the average firing rate of the excitatory populations
in the 80 cortical nodes and a 20 second time excerpt of the thalamocortical relay
population in the thalamic node are shown in Figure 4.17 and 4.18 respectively.
The mean power spectrum of the firing rate of the excitatory populations in the 80
cortical nodes from a 120 second simulation is shown in Figure 4.19.

34



4. Results

Figure 4.17: The figure shows a 20 second time excerpt of the mean of the firing
rate of the excitatory population in all 80 cortical nodes. The simulation was run
with 80 cortical nodes and one thalamic node with parameters from Table A.4 in
Appendix A.1.1. The other parameters are from tables A.1, A.2 and A.3 in Appendix
A.1.

Figure 4.18: The figure shows a 20 second time excerpt of the firing rate of the
thalamocortical relay population in the thalamic node. The simulation was run
with 80 cortical nodes and one thalamic node with parameters from Table A.4 in
Appendix A.1.1. The other parameters are from tables A.1, A.2 and A.3 in Appendix
A.1.
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Figure 4.19: The figure shows the mean power spectrum of the firing rate in
the excitatory population in all cortical nodes from a 120 second simulation. The
simulations were run with 80 cortical nodes and one thalamic node with parameters
from Table A.4 in Appendix A.1.1. The other parameters are from tables A.1, A.2
and A.3 in Appendix A.1. Note the peak at about 10 Hz.

4.3.2 Awake state

A 20 second time excerpt of the average firing rate of the excitatory populations
in the 80 cortical nodes and a 20 second time excerpt of the thalamocortical relay
population in the thalamic node are shown in Figure 4.20 and 4.20 respectively.
The mean power spectrum of the firing rate of the excitatory populations in the 80
cortical nodes from a 120 second simulation is shown in Figure 4.22. All were run
with wt

i = 1.27, wr
i = 0.5.

Figure 4.20: The figure shows a 20 second time excerpt of the mean of the firing
rate of the excitatory populations in all 80 cortical nodes. The simulation was run
with 80 cortical nodes and one thalamic node with wt

i = 1.27, wr
i = 0.5 and with

parameters from Table A.4 in Appendix A.1.1. The other parameters are from tables
A.1, A.2 and A.3 in Appendix A.1.
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Figure 4.21: The figure shows a 20 second time excerpt of the firing rate of the
thalamocortical relay population in the thalamic node. The simulation was run
with 80 cortical nodes and one thalamic node with wt

i = 1.27, wr
i = 0.5 and with

parameters from Table A.4 in Appendix A.1.1. The other parameters are from tables
A.1, A.2 and A.3 in Appendix A.1.

Figure 4.22: The figure shows the mean power spectrum of the firing rate in the
excitatory populations in all cortical nodes from a 120 second simulation. The simu-
lation was run with 80 cortical nodes and one thalamic node with wt

i = 1.27, wr
i = 0.5

and with parameters from Table A.4 in Appendix A.1.1. The other parameters are
from tables A.1, A.2 and A.3 in Appendix A.1. Note the peak at 10 Hz.
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5
Discussion

5.1 2-node model

5.1.1 Sleeping state
The parameters to generate the sleeping state were taken from Jaycay et al. [20].
The figures 4.2, 4.3 and 4.4 look qualitatively similar to the results in Jaycay et al.
There are similar downstates observable in the cortical firing rates. The spindles in
the thalamic firing rates are similar in height, frequency and length. And the power
spectrum of the cortical firing rates have similar shape and peaks.

5.1.2 Awake state
The major feature we were looking for when trying to model the neural dynamics
in an awake state was an alpha peak. Parameter searches were carried out for this
purpose. The parameters that we chose to investigate were the parameters that
were changed in Krishnan et al. [23] to perform state changes of their model.

5.1.2.1 Exploration of individual parameters

We were looking for parameters that when changed would generate an alpha peak in
the power spectrum of the cortical firing rates and/or generate non-spindling firing
rates in the thalamic node. No parameters on their own would generate both of
these phenomena. However a number of them strongly affected the spindling or the
frequency of the peak. b affected spindling. wr

e, wr
i , wt

e and wt
i affected the frequency

of the peak. gLK affected the spindling.

Two parameters were found to generate an alpha peak. wt
i and wr

i shifted the peak
observable in Figure 4.2 horizontally. This is visualized in Figures 4.5 and 4.6.
However like mentioned changing these parameters did not generate a non-spindling
state. An example of this is shown in Figures 4.7 and 4.8 where one can see a clear
alpha peak in the power spectrum of the cortical firing rates but also spindling in
the thalamic firing rates.

5.1.2.2 Exploration of two parameters at a time

When running parameter searches of two parameters at a time we were looking for
the same state. To see where in parameter space spindling was occurring it was
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helpful to look at the difference between the maximum and the minimum value of
the thalamic firing rates (see Figure 4.9) and the average amplitude of the spindles
(see Figure 4.10). To detect an alpha peak the prominence of the most prominent
peak in the range 8Hz to 12 Hz was plotted for each pair of parameters (see Figure
4.11).

Not all possible pairs of parameters were investigated, only the ones that during the
exploration of individual parameters showed to generate an alpha peak or a non-
spindling state. The pair that was found to generate the clearest example of the
desired features were wt

i and wr
i . As can be seen in Figures 4.9, 4.10 and 4.11 there

is a large region where there is no spindling in the thalamic node while a strong
alpha peak is visible in the power spectrum of the cortical node.

A point from the interesting region wt
i = 1.27, wr

i = 0.5, marked with a green star
in Figures 4.9, 4.10 and 4.11.) is presented in more detail in Figures 4.12, 4.13 and
4.14. One can see that there is no spindling in the thalamic firing rates and that
there is a clear peak in the correct range in the power spectrum of the cortical firing
rates. However the peak is very thin and very prominent which is not how they look
in a realistic power spectrum.

5.2 81-node model

5.2.1 Sleeping state
When trying to simulate the 81-node model in a sleeping state we had the same
goals as in the two-node model. Parameters for the cortical nodes was taken from
Cakan et al. [11] while parameters for the thalamic node was taken from Jaycay
et al. [20], both of which modeled a sleeping state. However since the mean of the
firing rates of the 80 cortical nodes was largely different from the one cortical node
in the two-node model we started by finding reasonable values for the connection
strengths. This was done by increasing the connection strength from thalamus to
cortex until one could see a peak in the region 7.5 Hz to 15 Hz (the spindling fre-
quency). Then increasing the connection strength from cortex to thalamus until one
could see an effect on the spindles from the cortical nodes.

Then it was desired to increase the frequency of the spindles in the thalamic node as
well as to get more clear SOs in the cortical node. Based on results in Caglar et al.
and Jaycay et al. we chose to investigate only parameters b and µE to induce more
down states in the cortical node and consequently more spindles in the thalamic
node. Looking at the parameter searches in Figures 4.15 and 4.16 we looked for
regions where there were a higher frequency of thalamic spindling while still hav-
ing high values in the power spectrum of the firing rates of the cortical node. An
example of that is the blue point in the figures. This point is further visualized in
Figures 4.17, 4.18 and 4.19.

One can note that the firing rates of the cortical node looks very different from the
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two-node model. This is expected from the results of Jaycay et al. and Cakan et
al. The cortical rates in Jaycay et al. when a thalamic node is connected looks very
different from Cakan et al. with only a cortical node. However slow oscillations can
be seen in both cases.

5.2.2 Awake state
When trying to simulate the 81-node model in an awake state we only applied the
same changes as in the two-node model. The reasoning was that the thalamic node
is the same in both models and only changes in the thalamic model was made. As
seen in Figure 4.20, 4.21 and 4.22 we get similar results as in the two-node model.
Except that the firing rates of the cortical node look drastically different. As in the
sleeping state this was expected.
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6
Conclusion

A biophysically realistic thalamocortical neural mass model has been implemented.
The model is a large improvement in speed compared to the previous model used
by Jaycay et al. [20]. The model also simplifies further development and testing
of the such a model, for example by varying the number of thalamic or cortical nodes.

Both the 2-node and 81-node model were simulated in a sleeping and an awake state.
They both showed the desired behaviour. E.g. SOs in the cortical node (however
not very clear in the two node model) and sleep spindles in the thalamic node in the
sleeping stage while generating an alpha peak in the cortical node and no spindling
in the thalamic node in the awake state.

The points found in parameter space for the different stages are not perfect. For
example the alpha peaks in the awake stage have very large amplitude and are very
thin which is not similar to the alpha peaks seen in experimental data. This is
partly due to the complexity of quantitatively defining the desired states. Only two
parameters were changed to generate the awake state, in order to get more satisfac-
tory results it is probable that more parameters need to be varied.
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A
Parameters

A.1 Model Parameters

Parameter Value Description Code
Cm 1µ F/cm2 membrane capacitance C_m

τt, τr 20 ms membrane time constant of TCR and TRN tau
rmax

t , rmax
r 0.4 kHz maximal firing rate of TCR and TRN Q_max

θ −58.5 mV firing threshold (half activation) theta
σt, σr 6 mV inverse neural gain sigma

γe 0.07 kHz synaptic rate constant of AMPA synapses gamma_e
γi 0.1 kHz synaptic rate constant of GABA synapses gamma_r

Ntr 5 connectivity constant TRN → TCR N_tr
Nrt 3 connectivity constant TCR → TRN N_rt
Nrr 25 recurrent connectivity constant in TRN N_rr

wt
i = wr

i , wt
e = wr

e 1 ms synaptic weights g_GABA_t/r,g_AMPA_t/r?
gT

t 3 mS/cm2 conductance of Ca current in TCR g_T_t
gT

r 2.3 mS/cm2 conductance of Ca current in TRN g_T_r
gh [0.0 − 0.08] mS/cm2 conductance of rectifying current in TCR g_h=0.062

gLK [0.0 − 0.08] mS/cm2 conductance of K leak current in TCR and TRN g_LK_t=g_LK_r=0.032
Eleak −70 mV Nernst reversal potential for leak channels E_L
Ee 0 mV Nernst reversal potential of AMPA channels E_AMPA
Ei −70 mV Nernst reversal potential of GABA channels E_GABA

ECa 120 mV Nernst reversal potential of Ca channels E_Ca
EK −100 mV Nernst reversal potential of K channels E_K
Eh −40 mV Nernst reversal potential of rectifying channels E_h
αCa −51.8 · 10−6 mM/mAms Ca influx rate alpha_Ca
τCa 10 ms Ca time constant tau_Ca

[Ca0] 2.4 · 10−4 mM Ca resting state concentration Ca_0
k1 2.5 · 107 kHz reaction velocities of rectifying current k1
k2 4.0 · 10−4 kHz reaction velocities of rectifying current k2
k3 1.0 · 10−1 kHz reaction velocities of rectifying current k3
k4 1.0 · 10−3 kHz reaction velocities of rectifying current k4
nP 4 number of Ca binding sites n_P
ginc 2.0 conductivity scaling of rectifying current g_inc

Table A.1: thalamic parameters
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A. Parameters

Parameter Value Description Native
σext 1.5mV/ms standard deviation of external input sigmae_ext,sigmai_ext
KE 800 number of excitatory inputs per neuron Ke
KI 200 number of inhibitory inputs per neuron Ki

KE,global 250 number of excitatory inputs from each global area Ke_gl
cEE, cIE 0.3 mV/ms maximum AMPA PSC amplitude cee,cie
cII , cEI 0.5 mV/ms maximum GABA PSC amplitude cii,cei
cglobal 0.4 mV/ms postsynaptic PSC amplitude for global connectome c_gl
JEE 2.43 mV/ms maximum synaptic current E→E Jee_max
JIE 2.6 mV/ms maximum synaptic current E→I Jie_max
JEI −3.3 mV/ms maximum synaptic current I→E Jei_max
JEE −1.64 mV/ms maximum synaptic current I→I Jee_max
τs,E 2 ms excitatory synaptic time constant tau_se
τs,I 5 ms inhibitory synaptic time constant tau_si
dE 4 ms synaptic delay to excitatory neurons de
dI 2 ms synaptic delay to inhibitory neurons di
τm C/gL = 20 ms membrane time constant C / gL
a 0 nS subthreshold adaptation conductance a
b 15 pA spike-triggered adaptation increment b

EA −80 mV Nernst reversal potential for adaptation current EA
τA 1000 ms adaptation current time constant tauA

Table A.2: cortical parameters

Parameter Value Description Native
Nctx→thal 1.2 connectivity strength cortex → thalamus Cmat[1,0]
Nthal→ctx 0.12 connectivity strength thalamus → cortex Cmat[0,1]
dctx→thal 13 ms synaptic thalamocortical delay lengthMat/signalV

τOU 5 ms time-scale of the Ornstein-Uhlenbeck process tau_ou
σE 0.05 mV/ms3/2 noise variance for the cortical E population sigma_ou
σI 0.05 mV/ms3/2 noise variance for the cortical I population sigma_ou

σT CR [0.0 − 0.005] mV/ms3/2 noise variance for the thalamic TCR population Not present
µE 3.3 mV/ms mean drift of the OU process for cortical E population mue_ext_mean
µI 2.0 mV/ms mean drift of the OU process for cortical I population mui_ext_mean

µT CR 0mV/ms mean drift of the OU process for thalamic TCR population Not present
ξ ∼ N(0, 1) Gaussian white noise process N/A

cctx−ctx 1 Scale factor of connection strength from cortex to cortex nodes scale_ctx_to_ctx
cctx−thal 1 Scale factor of connection strength from cortex nodes to thalamus node scale_ctx_to_thal
cthal−ctx 1 Scale factor of connection strength from thalamus node to cortex nodes scale_thal_to_ctx

Table A.3: Connected model parameters
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A. Parameters

A.1.1 Parameters from Cakan et al. [11]

Parameter Value
µE 2.7
µI 3.7
b 3.2

τA 4765
σE, σI 0.37
Cglobal 0.3

Table A.4: Parameters from Cakan et al. for 80 node model
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