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Deep Learning Methods and Applications
Classification of Traffic Signs and Detection of Alzheimer’s Disease from Images
LINNÉA CLAESSON, BJÖRN HANSSON
Department of Signals and Systems
Chalmers University of Technology

Abstract
In this thesis, the deep learning method convolutional neural networks (CNNs) has
been used in an attempt to solve two classification problems, namely traffic sign
recognition and Alzheimer’s disease detection. The two datasets used are from
the German Traffic Sign Recognition Benchmark (GTSRB) and the Alzheimer’s
Disease Neuroimaging Initiative (ADNI). The final test results on the traffic sign
dataset generated a classification accuracy of 98.81 %, almost as high as human
performance on the same dataset, 98.84 %. Different parameter settings of the
selected CNN structure have also been tested in order to see their impact on the
classification accuracy. Trying to distinguish between MRI images of healthy brains
and brains afflicted with Alzheimer’s disease gained only about 65 % classification
accuracy. These results show that the convolutional neural network approach is very
promising for classifying traffic signs, but more work needs to be done when working
with the more complex problem of detecting Alzheimer’s disease.

Keywords: Convolutional neural networks, deep learning, machine learning, traffic
sign recognition, Alzheimer’s disease detection, GTSRB, ADNI, CNN
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1
Introduction

Machine learning has in recent years gained an upswing in the amount of interest it
has received, specifically the subfield that is deep learning. The industry is screaming
for knowledge and expertise, and universities are not far behind. More and more
start offering various machine learning or artificial intelligence courses, to meet the
demands of the industry and interest of students.

This work aims to contribute further to the field of deep learning, by exploring
the possibilities of using it to classify image data.

1.1 Background
This thesis has been conducted at Chalmers University of Technology, at the depart-
ment of Signals and Systems, in Gothenburg. It investigates deep learning methods
and their applications. Main focus has been on classifying traffic signs, using con-
volutional neural networks (CNNs) and analysis of the performance. Such a system
can be used for both autonomous and assisted driving.

To further investigate the performance and capability of CNNs, another dataset
consisting of Magnetic Resonance Images of both healthy brains and brains with
Alzheimer’s disease was used. This was done in order to investigate whether CNNs
can be trained to detect if a person has Alzheimer’s disease or not.

1.2 Goals
This thesis aims to explore the field of deep learning, specifically CNNs. The goal
was to build two well-performing systems, which both make use of CNNs. One
to classify traffic signs, and one to distinguish between healthy brain images, and
images of brains with Alzheimer’s disease.

1.3 Constraints
CNNs can be used for other purposes than classification, e.g. segmentation, which
can be seen as another form of classification. For the sake of this study however, only
standard classification has been taken into consideration, due to time restrictions.
For the traffic sign recognition system, one constraint that has been set is to use
images which have been constructed in such a way that they contain one traffic sign

1



1. Introduction

only. The sign is centered and takes up most of the space of the image, i.e. the
problem of detecting traffic signs has already been solved earlier when the dataset
was created.

The aim of studying the performance on the Alzheimer’s dataset was not to
create a perfect solution, but to examine whether it might be possible to detect
Alzheimer’s disease using CNNs.

1.4 Problem Formulation
This report aims to investigate the field of deep learning by answering the following
questions:

• How well can CNNs perform on traffic sign recognition?
• Is it possible to use CNNs to detect Alzheimer’s disease from brain images?
• What are the main advantages and disadvantages of CNNs?
• What is the impact of changing the hyperparameters of a CNN?

1.5 Disposition
The disposition of this report generally follows that of a standard technical report.
Section 2 relays the background and theory necessary to understand the framework
of the performed study. The experimental setup can then be found in section 3.
Since the work has been carried out mainly in two parts, one concerning traffic sign
recognition and one on detection of Alzheimer’s disease, they have been granted
one section each, namely sections 4 and 5 respectively. Both sections follows the
same structure, starting with an explanation of the methods used, presentation of
experimental results and performance evaluation, and finally a general discussion of
the results. Thereafter follows a section discussing the important questions of ethics
and sustainability the technology raises, section 6. Finally in section 7, conclusions
drawn from this study are presented.

2



2
Background

This section aims to describe both the theory needed to fully understand the work
conducted, as well as introduce related work that can be found interesting for this
thesis. It starts off with introducing machine learning and the theory this work
is built upon. Thereafter, a section on autonomous driving and the challenges of
traffic sign recognition today follows, along with a short description of detection
of Alzheimer’s disease from MRI images. Lastly, different software libraries useful
for implementing machine learning algorithms, as well as what to consider when
choosing the appropriate hardware for these kinds of problems are discussed.

2.1 Machine Learning and Deep Learning

Machine learning has been at the foundation of this thesis, particularly deep learning
and CNNs. The theory and necessary background information needed to understand
the work is described in this section, starting with a general introduction to machine
learning and then building upon that to eventually explain how CNNs operate.

2.1.1 General Introduction

Machine learning is a subfield of artificial intelligence which is becoming increasingly
more popular, and is widely used out in the industry to solve various tasks. However,
artificial intelligence is not a new term within computer science, it all started when
Alan Turing proposed the question "Can machines think?"[9]. Since Turing came
up with his Imitation Game, the focus of artificial intelligence has shifted around
between various areas. Given the enormous amounts of data available today, it is no
wonder that the data-driven approach of machine learning has become so popular.

So, what constitutes learning for a machine? Mitchell in his book defines learn-
ing as follows: "A computer program is said to learn from experience E with respect
to some class of tasks T and performance measure P, if its performance at tasks in
T, as measured by P, improves with experience E"[10]. To put this into context, the
classical spam filter example can be used. The task here is to predict if an email
is spam, the experience is the data set used for training, and performance can be
measured as the ratio of correctly classified emails. Other popular areas of use are
recommender systems, "If you liked this, you might also like this...", and social net-
working sites also use machine learning techniques to, for example, predict people
you might know on the site.

3



2. Background

2.1.2 Neural Networks

One area of machine learning that has oscillated in popularity over the years since
the 1940’s, and gained a recent upswing, is neural networks[11]. They are inspired
by the biological neural networks in the brain and try to mimic their behaviour.
Neural networks consist of an input, one or more hidden layers, and one output
layer. When one talks about an N-layer neural network, what is generally referred
to is the number of hidden layers plus the output layer. In a feed-forward network,
the input does not perform any computations and does therefore not count as a
layer[11]. An example of a three-layer neural network can be seen in figure 2.1.

Input Hidden
layer 1

Hidden
layer 2 Output

Figure 2.1: Example of a neural network with two hidden layers.

The neurons in a neural networks are fully connected and all have learnable weights
and biases. Neural networks are capable of approximating non-linear functions,
but are basically just a black box between the input and output and are therefore
difficult to analyse. They also do not scale well for the use of images as input, since
the number of weights would increase drastically because each pixel would count as
a neuron in the input layer.

2.1.3 CNNs

One type of neural network that specialises in input data with a grid-like struc-
ture, such as images, are CNNs. They have been proven tremendously success-
ful in practical applications. As the name indicates, the mathematical operation
called convolution is used in at least one of its layers, instead of general matrix
multiplication[12].

2.1.3.1 Workings of a CNN

CNNs are very similar to regular neural networks, but arranges its neurons in three
dimensions – width, height, and depth. A neuron inside a layer is also only connected
to a small region of the layer before it, called the receptive field, and not fully
connected as in a regular neural network.
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The architecture of CNNs consists of several different types of sequential layers,
some of which will also be repeated. Below are some of the most common types
described:

Convolutional layer As the name implies, this is the core building block of a CNN.
It consists of a set of filters that are convolved across the width and height
dimensions of the image. The filters with which the image is convolved has
the same number of dimensions as the image, each with the same depth (e.g.
three if RGB image) but smaller width and height, commonly used spatial
sizes are e.g. 3 × 3 or 5 × 5. The output width and height depends on the
size of the filter, the stride (number of pixels the filter is moved between each
computation, usually one or two), and the amount of zero-padding around the
image. The output depth will be the same as the number of filters applied.

The convolution process supports three ideas that can help improve a
machine learning system, namely sparse interactions, parameter sharing, and
equivariant representation[12]. Additionally, it also to some degree makes it
invariant to shifts, scaling, and distortions[3].

The output from a convolution of the input and one filter is called a
feature map, or sometimes an activation map. There will be one feature map
generated by each filter in the layer, and together they make up the output
depth. The spatial size of each feature map is dependent on the input image
size, padding, filter size, and stride. The fact that the filter is smaller than
the input leads to sparse interactions. Each unit on a feature map has n2

connections to an n× n area in the input, called the receptive area. Compare
this with regular neural networks, where every input is connected to every
output. For example with image processing, this means that small, meaningful
features, such as edges, can be detected and fewer parameters need to be
stored[12].

Each unit on the feature map has n2 trainable weights plus a trainable
bias. All units on a feature map share these same parameters, it can be
interpreted as if a feature map is, as the the name suggests, detecting different
features such as horizontal or vertical edges, it makes it independent of where
in the input the edges are detected. Instead, it is their relative positioning that
is of interest. This parameter sharing saves a significant amount of memory[3].
However, the separate feature maps will not share parameters, since they are
detecting different features.

Additionally, this form of parameter sharing in the case of convolution
makes the function equivariant to translation, i.e. if the input changes the
output will change in the same way[12].

Rectified linear units layer, ReLU Increases non-linearity by applying the ele-
ment wise non-saturating activation function f(x) = max(0, x). An illustra-
tion of how this works can be seen in figure 2.2.
It has been shown that the network can train several times faster using this
non-saturating function, as compared to using saturating functions such as
f(x) = tanh(x), or the sigmoid function, f(x) = 1

1+e−x [4]. Spatial size is left
unchanged. A small, non-zero gradient, α, for negative numbers can also be
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used, as in (2.1).

f =
{
x, x > 0
αx, otherwise

(2.1)

Figure 2.2: Example of how a rectified linear units layer works. All the negative
valued numbers in the left box have been set to zero after the rectifier function has
been applied, all other values are kept unchanged[1].

Pooling layer Non-linear down sampling of the volume by using small filters to
sample for example the maximum or average values in a rectangular area of the
output from the previous layer. Pooling reduces the spatial size, to reduce the
amount of parameters and computations, and additionally avoids overfitting,
i.e. high training accuracy but low validation accuracy. It is displayed in
figure 2.3 how pooling layers operate.

Figure 2.3: Examples of how max pooling operates, the box to the left has been
downsampled by taking the maximum value of each 2× 2 sub-region[2].

Normalisation layer Different kinds of normalisation layers have been proposed
to normalise the data, but have not proven useful in practice and have therefore
not gained any solid ground[13].

Fully connected layer Neurons in this layer are fully connected to all activations
in the previous layers, as in regular neural networks. These are usually at the
end of the network, e.g. outputting the class probabilities.
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Loss layer Often the last layer in the network that computes the objective of the
task, such as classification, by e.g. applying the softmax function, see equa-
tion (2.2).

σ(z) = ezj∑K
k=1 e

zk
forj = 1, ..., K (2.2)

A combination of the described layers can be used to form a CNN architecture.
Below can be seen a typical architecture pattern for a CNN[13]:

Input→ [[Conv → ReLU ] ∗N → Pool?] ∗M → [FC → ReLU ] ∗K → FC

The ∗ represents repetition, N , M , and K are integers greater than zero. N is
generally less than or equal to three and K strictly less than three. Pool? indicates
that the pooling layer is optional. It is often a good idea to stack more than one
convolutional layer before the pooling layer for larger and deeper networks, since
the convolutional layer can detect more complex features of the input volume before
the destructive pooling operation[13].

It is common to apply dropout during training on the fully connected layers.
Dropout rate is a simple way to reduce overfitting. During training, individual nodes
are deactivated with a certain probability 1 − p, or kept active with probability p.
The incoming and outgoing connections to a deactivated node are also dropped.
In addition to reducing overfitting this also lowers the amount of computations
required and allows for better performance. During testing however, all nodes are
activated[14].

When initialising the weights of the network, it is important not to set all of
them to zero, since this can lead to unwanted symmetry in the updates. Instead it is
usually a good idea to set them to small, random numbers, for example by sampling
them from a Gaussian distribution.

For training, a loss expression to minimise needs to exist, e.g. by computing
categorical cross-entropy between the predictions and targets, as described by equa-
tion 2.3. For each instance i, the cross-entropy between the prediction probabilities
in pi, which could be e.g. the softmax output, and target value ti is calculated. The
objective is then to minimise this loss expression during training of the network.

Li = −
∑

j

ti,j log(pi,j) (2.3)
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2.1.3.2 Existing Networks

Several designs of CNN architectures have already been created, some of them will
be described here.

LeNet, 1998 LeCun was first with successfully implementing an application of
a CNN, the most notable one being LeNet from 1998 used for handwriting
recognition. Figure 2.4 shows the architecture of LeNet-5. It consists of seven
layers, not counting the input layer. The input images used were of size 32×32.
The first layer consists of six 5 × 5 filters, which after the convolution brings
down the size to 28 × 28. Following the convolution comes a sub-sampling
layer implementing max pooling and then another sixteen 5× 5 filters for the
second convolution layer, followed by the final sub-sampling layer. The feature
maps have now been brought down to a size of 5× 5, before entering the fully
connected layer[3].

Figure 2.4: Architecture of LeNet-5, 1998[3].

AlexNet, 2012 AlexNet was the winner of the ImageNet ILSVRC challenge in
2012, by a large margin[15]. The architecture for AlexNet can be seen in
figure 2.5 (the unfortunate cropping at the top stems from the original article),
it was named after Alex Krizhevsky, one of its creators. The input used was
images of size 224× 224 and the first convolutional layer used 96 filters of size
11×11 with stride four, whereas the rest of the convolutional layers use filters
of size 3 × 3. The full architecture will not be described here, but compared
to LeNet the main differences are that it is a bigger and deeper network, it
uses ReLU layers, and trained on two GPUs using more data[4]. Noteworthy
is also that they used a normalisation layer, which was very popular at the
time but is not commonly used anymore[13].
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Figure 2.5: Architecture of AlexNet, 2012. The cropping on the top of the image
stems from the original article[4].

GoogLeNet, 2014 The winner of the ILSVRC challenge in 2014 was GoogLeNet, a
22 layers deep network. The structure of the network can be seen in figure 2.6.
It introduced an inception model, "network in network", and uses a twelfth of
the number of parameters AlexNet used[5].

Figure 2.6: Network structure of the very complex GoogleNet[5].

VGGNet, 2014 In figure 2.7 the configuration of VGGNet is shown, which also
entered the ILSVRC challenge in 2014 and generalises very well to other data
sets[6]. The configurations range from 11 to 19 weight layers, i.e. convolutional
and fully connected layers, with a total number of 133 million weights for the
smallest configurations, to 144 million weights in the largest. Even though
GooGleNet outperformed VGGNet, this is still a very common architecture to
use due to it being much less complex than GoogLeNet.
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Figure 2.7: Configurations of the CNNs of VGGNet, shown in the columns. The
depth increases from left to right and the added layers are shown in bold[6].
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2.1.4 3D CNNs
CNNs are usually constructed to be used on two dimensional images, but can be
extended to work on three dimensional images, such as on MRI images. It works
in basically the same way as with regular two dimensional images, but the filters
for the convolutional and pooling layers are extended into three dimensional filters
instead of just two, and then the calculations can be carried out in the same manner
as before, but now in three dimensions.

2.1.5 Ensemble Learning
To improve upon the results when solving a machine learning problem, an ensemble
may be used. Ensembles make use of several individually trained classifiers or models
and then combine their results to classify new instances. Basically any type of
classification model can be used to create ensembles, such as neural networks or
classification trees[16].

Bagging and Boosting are two ensemble techniques. Bagging, or Bootstrap
Aggregating, creates an ensemble by training each model individually, with a ran-
domly drawn subset of the training data. For classification, the models then vote
with equal weight to determine the classes of the instances. Boosting on the other
hand builds entirely new models to try to more accurately classify previously mis-
classified instances.

2.1.6 Data augmentation
One of the major problems faced when training neural networks is the need for a
large amount of training data. Collecting a large amount of data is often very time-
consuming and cumbersome. Sometimes it may not even be possible to collect more
data and one has to make do with what is available. To solve this problem a method
called data augmentation is often used.

Data augmentation means that the same images are used several times but are
deformed in various ways to make them different from the original. This means that
a dataset can be inflated to several times its original size, which can lead to better
training of the network. It has also been shown to reduce overfitting in networks[17].
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2.2 Traffic Sign Recognition for Autonomous Ve-
hicles and Assistance Driving Systems

Traffic sign recognition systems are implemented today both to assist human drivers
and enable the future of autonomous driving. This section discusses challenges faced
by traffic sign recognition and the state of autonomous driving today.

2.2.1 Challenges of Traffic Sign Recognition for Computers
Traffic signs are an essential tool for anyone traveling in modern traffic. They
provide direct information on which rules currently apply, and by extension how one
is supposed to act and can expect others to act. Traffic signs are very reliable and,
as opposed to for example traffic lights, they are not dependent on any external
support to operate. This means traffic signs represent a well known and reliable
system to provide drivers of vehicles with information, and will remain the standard
for the foreseeable future.

Since this is the case, those who strive to create autonomous vehicles capable of
safely and efficiently traversing in modern traffic must be able to use this system in
order to operate properly. This is a task humans are very well suited for, since traffic
signs are designed to be easily recognizable by a human observer[18]. For computers
this is a more complex task as there are almost endless variations to how signs will
be perceived, depending on angles, light and weather conditions, partial occlusion
by other objects etc. This means that a system must be able to handle a large
degree of variation in the images supplied, but still provide a correct interpretation,
which is no simple task[18].

Computers do however have advantages their human counterparts lack, one of
them being the ability to quickly access large databases that contain detailed infor-
mation about the surroundings they are driving in[7]. With this information they
do not only know what the current conditions should be, but also what they can
expect further down the road, in theory allowing for better planning. In figure 2.8
an intersection that has been pre-mapped for Google Incs self-driving cars is illus-
trated. Allowing this information to be shared between vehicles means that there
is a continuous update of changes that otherwise would be unknown until directly
observed[7].

Regardless of how much these systems know beforehand, all information is at
some point recorded for the first time. As such, the systems must be able to han-
dle changes without prior warning. Thus some method of computer vision need
to be used to allow for a correct interpretation of the surroundings. There is no
universal method for identifying certain objects in images and options include near-
est neighbour[19], random forests[20], support vector machines[21][22], and neural
networks[23]. All of these are different examples of machine learning techniques used
to enable a computer to identify an object.

A system that correctly identifies traffic signs is not just valuable for self-driving
cars but can be of assistance to human drivers as well. The ability to quickly and
easily find out the speed limit or other rules in place by simply glancing at the
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dashboard can make it easier for human drivers, e.g. in case they missed a sign or
are simply feeling unsure of what the current situation is. Systems like these are in
fact already offered by car manufacturers today[24][25][26].

Figure 2.8: An intersection that has been mapped to provide important informa-
tion for self driving cars in advance[7].

2.2.2 Autonomous Vehicles
Autonomous vehicles have in recent years become an area of high interest, spurring
research and technological development[27][28][29]. The high interest in this tech-
nology is not surprising as there are great benefits to reap from a successful imple-
mentation of autonomous vehicles, such as making transportation more accessible
and more efficient[30][31]. Driving is a complex procedure and consists of taking in
a large amount of information while simultaneously handling a moving vehicle in
real-time. It demands an ability to adjust to changing circumstances and sometimes
also predicting what will be required next. In other words, it is a great challenge
to create a system capable of performing on the same level as a human driver. The
technology has seen great strides being made since the first modern implementa-
tions started appearing in the 1980’s. As of March 2016, Google Inc. announced
that their fleet of self-driving cars had traveled over 2,410,000 km autonomously,
equal to approximately sixty laps around the equator[7]. Arguments are often made
that self-driving cars actually can be safer than those controlled by humans, since a
computer will not get tired or otherwise distracted[32].

Though the public availability of autonomous vehicles seem more a matter of
time than anything else, there are still several hurdles that needs to be overcome
before the technology can be considered ready, not all of which are technical. Several
ethical aspect must be addressed as well, such as who will be liable in case the system
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causes an accident. In addtion to that, how a system should act and prioritize if it
is forced to choose between putting either its passengers or other road-users at risk
also needs to be determined[33][34][35][36]. This is necessary since no autonomous
vehicle system ever can be truly considered 100 % safe, but on the other hand,
neither can human drivers.

2.3 Detection of Alzheimer’s Disease from MRI
images

One of the most common causes of dementia is Alzheimer’s disease (AD). First
described in 1906 by Alois Alzheimer, it has since then become a very common
disease in the older population, afflicting as many as one out of every eight people
above the age of 65, and nearly half the people over age 85[37]. Globally it is
believed to afflict 35 million people. The world population is ever growing, and
combined with longer life-expectancy, it is has been predicted by the World Health
Organization that over 100 million people be will be suffering from AD by the year
2050[38].

AD is most easily observable as a gradual loss in cognitive functions with symp-
toms such as memory loss, confusion, irritability and sensitivity to stress being very
common. Trouble with language and mobility have also been observed. Apart from
these behavioral symptoms AD, can also be detected with changes to proteins in
brain cells and structural changes in the patient’s brain[37]. The structural changes
can be observed using Magnetic resonance imaging (MRI). MRI is commonly used in
medicine since it can produce images of the inside of the body. Observable changes
due to AD can be atrophy of brain and inflated ventricles[39].

2.4 Libraries

In order to simplify the process of implementing machine learning algorithms, sev-
eral software libraries have been developed. These provide tools that automatically
execute many of the tasks required to set up, among other things, a functional neural
network. Though the libraries are based on the same theoretical machine learning
models, they differ in their approach on how to implement them. Below are short
summaries of some of the more commonly used libraries.

2.4.1 Theano

Theano is a Python library for mathematical expressions in Python, developed with
the goal of facilitating research in deep learning[40]. With Theano you can define,
optimize, and evaluate mathematical expressions efficiently, using multi-dimensional
arrays. Its syntax is similar to NumPy and this combined with optimized native
machine code makes Theano a powerful tool, especially when implementing machine
learning algorithms.
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Theano optimizes the choice of expressions before computation and can then trans-
late it either to C++ or CUDA, depending on if the program will be run on the
CPU or GPU. Bergstra et al. showed in 2010 that implementing common machine
learning algorithms using Theano are between 1.6× and 7.5× faster than compet-
itive alternatives when compiled to run on a CPU and from 6.5× up to even 44×
faster when compiled for the GPU[41].

2.4.2 Lasagne
Lasagne is a Python library meant to simplify the process of building and training
machine learning algorithms with Theano. However, Lasagne is imported alongside
Theano (and NumPy) and is not meant as a substitute. Some simple Theano code
will usually be used as well as Lasagne, which is primarily a helpful tool.

2.4.3 Keras
Just like Lasagne, Keras is a high-level wrapper which runs on top of Theano.
Additionally, it is also able to run on top of Tensorflow. Unlike Lasagne, which
always uses some Theano code, Keras will not show any of the underlying work. It
is designed to minimise overhead, to allow for fast and easy prototyping of machine
learning algorithms.

2.4.4 Tensorflow
Originally developed by Google as part of the Google Brain project, Tensorflow was
made open source in late 2015. Tensorflow is a Python library and stands apart
by being the only one of the major libraries developed from the ground up by a
major corporation, while the others have their origin in the research community.
Tensorflow has some integrated quality of life tools such as TensorBoard, which
allows the user to easily produce graphs visualizing things such as learning rate,
model weights, loss functions and more. Tensorflow is also the only library that can
distribute the workload not just across GPUs on the same device but on several
connected devices, which can be a major computational advantage.

2.4.5 Caffe
Caffe was created by Yangqing Jia during his Ph.D in U.C Berkeley and though
it is a C++ library, it uses python as its API. Caffe is excellent at implementing
feed-forward networks and it is actually possible to do this without writing any code.
This allows for quick testing and tuning when using existing networks[42].

2.4.6 Torch
Torch originated from NYU and is written in C and Lua. It is used by, among others,
Facebook, Twitter, and the DeepMind project to implement neural networks. Since

15



2. Background

Lua is a high-level interface for C it optimizes the code and allows for things such
as for-loops to run much faster when compared to Python[42].

2.5 Deep Learning and Choice of Hardware

Given the size and large number of parameters a deep learning algorithm can contain,
training often takes a very long time and the choice of hardware is therefore of
utmost importance. This section aims to shed some light on the options available
and discusses CPU versus GPU.

2.5.1 Central Processing Unit

Traditionally, neural networks have been trained primarily on a computer’s Central
Processing Unit (CPU). The CPU is often labeled as the ’brain’ of a computer and
operates by sequentially performing calculations sent to it. This forms the basis of
how a computer works and the faster a CPU can perform its calculations, the faster
it will finish the tasks given to it. Sometimes a program has different tasks that can
be computed independently of each other. In order to optimize the time it takes
to finish all tasks many CPUs have multiple cores that can perform calculations in
parallel. This allows for tasks to finish quicker since they will not have to wait for
the availability of a single core.

2.5.2 Graphics Processing Units

A Graphics Processing Unit (GPU) is a specialized kind of processor that excels
at parallel computing. CPUs in consumer computers usually have between one and
four cores and high-end server CPUs can have upwards of sixteen cores. GPUs make
these numbers pale in comparison as they boast thousands of cores in top of the line
GPUs.

GPUs are slower at sequential operations when compared to their CPU counter-
parts, but shines when given tasks that can be executed in parallel. This is common
in 3D graphics, where a 3D landscape stored in the memory must be projected onto
a 2D image to be shown on a display. As the name suggests GPUs were, and still
are, primarily meant to be used to display 3D graphics.

Modern CPUs often have a GPU integrated into them but it can also be a
separate chip on its own, this is often called a dedicated GPU. When a GPU is
integrated it shares the system memory with the CPU and is allocated a part of it
to use. When it is dedicated it usually has its own memory which is faster than
the system memory and thus speeds up the operations. Laptops commonly have
integrated GPUs but there are also models where a separate GPU is used. Desktop
computers usually have a separate GPU available as a graphics card that can be
inserted and removed from the computer. Sometimes both an integrated GPU
and separate GPU can be used by the same computer for power-saving features.
Since a dedicated GPU has a higher power consumption than the integrated GPU,
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the integrated GPU is used until the computer needs to perform more intensive
calculations, then it switches to the dedicated GPU.

Since the operations required in training a deep learning algorithm can be made
in parallel, GPUs have risen to become a a highly valuable tool as they make the
training several times faster than by using CPU alone. This does however require
the ability to program the GPU to run different code, and must be supported by
the manufacturers. In the high-end graphics card market today, realistically only
two major manufacturers exist – AMD and NVIDIA. Of these two, NVIDIA have
invested a lot into its CUDA language, which is designed to allow code to be run on
their GPUs. As an alternative it is possible to use OpenCL which is used for parallel
computing on most common types of processors from many manufacturers. OpenCL
is maintained by The Khronos Group which is a non-profit consortium who creates
open standard application programming interfaces (API)[43]. While the general
applicability of OpenCL is very desirable, CUDA has been around longer and has
better support by machine learning software. NVIDIA cards have thus become by
far the most commonly used graphics card when working with machine learning
algorithms[44].

Given the great interest in recent years many actors are working with the goal
to have a part of this emerging new market. Intel has been tweaking their server
CPUs to perform better with machine learning[45]. Google has been developing
a chip that will perform machine learning tasks energy efficiently[46]. AMD has
even announced a new line of GPUs designed specifically for machine learning to
be released in 2017, along with software tools to facilitate better performance[47].
This indicates that the choice of hardware suited for machine learning is expanding
rapidly, and leaves it up to speculation what choice will be best in the future.
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3
Experimental Setup

All experiments were conducted on a custom built desktop computer running Linux.
The computer specifications can be found in table 3.1 and the versions of the soft-
ware libraries used in table 3.2. Short descriptions of the machine learning specific
software libraries used can be found in section 2.4. For more information on the im-
pact the choice of hardware can have on machine learning projects, see section 2.5.

Table 3.1: Computer specifications for this project.

CPU AMD Phenom II X6 1055T
RAM 12 GB DDR3
GPU NVIDIA GeForce GTX 970 4 GB
SDD Intel 330 Series 180 GB

Linux kernel 4.4.0-21-generic

Table 3.2: Software libraries for deep learning used in this thesis.

Python 2.7.12 Theano 0.9.0.dev2
Lasagne 0.2.dev1 Keras 1.2.0

Nvidia driver 367.48 CUDA release 8.0, V8.0.44
cuDNN 5.1 —
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4
Traffic Sign Recognition

This section describes the work of the primary focus of this thesis, namely traffic
sign recognition. It begins by describing the methods investigated in this thesis in
section 4.1, which is then followed by a section containing the experimental results
and performance evaluation, section 4.2. Finally, a short discussion of the results
can be found in section 4.3.

4.1 Methods Investigated in this Thesis

The main focus throughout this thesis has been the problem of designing a system
to correctly classify images of traffic signs. The outline for training and testing using
the German Traffic Sign Recognition Benchmark dataset (GTSRB) is explained in
this section. First, the details of training, validation and testing are explained,
followed by a description of the characteristics of the dataset itself. Lastly, a short
description of the implementation is given.

4.1.1 Training, Validation, and Testing

For the initial setup, a simple baseline CNN architecture was designed and a number
of test cases constructed. The test cases can be seen as consisting of three parts.
The first part was a systematic and quantitative setup, were one hyperparameter
was alternated at a time, to test its impact on accuracy and run time of the training
process. The second part consisted of taking the best results from the first part
and combining them into an optimal network. Finally, for the third part the ex-
periences from the quantitative testing was combined with recommendations found
when studying previous work done, to try to come up with an even better system.

All test cases were run using 10-fold cross validation, i.e. the training set was
split into ten equal sized parts and one part was used for validation, while the other
nine were used for training. This was repeated ten times, ten folds, until each
part had been used for validation, the validation accuracy then being the average
accuracy from each fold. Each fold was run for ten epochs, one epoch being a full
run through of the dataset. Their ability to generalise onto new datasets was then
tested using the test set. The hyperparameters that generated the best results on
the validation data were also tested one more time, but now running for 500 epochs
instead of ten. This in order to see the results when the network was allowed to
converge.
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Two different data sets where used from the GTSRB, more thoroughly described in
section 4.1.2, one large data set containing about 39,000 images used for training
and validation, and one that was solely used for testing, containing about 10,000
images[48]. The two datasets are completely separate, meaning that if several pic-
tures exists of the same sign from different distances and angles, they are not shared
between the datasets.

The baseline architecture with the details of its design can be seen in figure 4.1.
The input to the network consists of RGB images of size 32 × 32 pixels. The first
layer is a convolutional layer with 32 filters of spatial size 5 × 5, applied with a
stride of one and zero padding of two. This is followed by a rectifier that applies the
function f = max(0, x). The input has now been transformed to 32 feature maps of
spatial size 32 × 32, and the color channels have been merged in the convolutional
layer, meaning the feature maps can now only be viewed as grayscale, not RGB. Max
pooling is then applied, using spatial filter size 2 × 2 and stride two (no padding),
which halves the width and height of the feature maps.

After the pooling layer, another convolutional layer, rectifier, and additional
pooling layer follows, all with the same respective hyperparameters as their first
respective instance. The feature maps are now down to a spatial size of 8× 8, while
remaining 32 in number. Next comes two fully connected layers, both applying
a dropout rate of 0.5 during training. The first applies another rectifier and out-
puts 256 units, the second applies the softmax function and outputs the 43 class
probabilities.
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Input: RGB image, size 32× 32

3

Convolution: 32 filters, spa-
tial size 5 × 5, zero padding 2,
stride 1
ReLU: f = max(0, x)
Outputs 32 feature maps of spa-
tial size 32× 32

32 MaxPool: spatial size 2× 2, no
padding, stride 2
Outputs 32 feature maps of spa-
tial size 16× 16

32
Convolution: 32 filters, spa-
tial size 5 × 5, zero padding 2,
stride 1
ReLU: f = max(0, x)
Outputs 32 feature maps of spa-
tial size 16× 16

32 MaxPool: spatial size 2× 2, no
padding, stride 2
Outputs 32 feature maps of spa-
tial size 8× 8

32
FC: 0.5 dropout rate
ReLU: f = max(0, x)
Outputs 256 units

256
FC: 0.5 dropout rate, softmax
Outputs 43 units (class probabili-
ties)43

Figure 4.1: Initial baseline architecture used. Hyperparameters were changed one
at a time during the quantitative testing in order to determine how they affect the
accuracy.

For the quantitative test cases, the baseline architecture was used as the foundation
and different hyperparameters were altered during each test case, to examine the
impact of it on accuracy and run time. The constructed test cases are listed below:

Number of epochs The number of epochs for which the network was trained was
alternated, from just once up to 2000 times. This was done to determine a
reasonable amount of epochs for the network to converge properly. One epoch
is one complete run through of the dataset.
Baseline architecture: Ten
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Number of filters The number of filters in the convolutional layers were alter-
nated, from 2 up to 512, using powers of 2.
Baseline architecture: 32 filters

Dropout rate Different dropout rates from 0.0 to 0.9, using increments of 0.1.
Baseline architecture: 0.5

Spatial filter size Spatial filter size for the convolutional layers was changed to
3× 3 and 7× 7 and tested both with and without padding.
Baseline architecture: 5× 5, with padding

Depth The impact of the depth was tested by adding convolutional layers, from
using one up to twenty. This was done twice, once with two max pool layers
and once with three. Adding more pooling layers would decrease the size of
the images too much.
Baseline architecture: Two convolutional layers, two pooling layers

Gradient Non-zero gradient, 0.01 and 0.33, was applied on the rectifiers after
the convolutional layers. For details on gradient, see equation (2.1) in sec-
tion 2.1.3.1.
Baseline architecture: 0.0

Max pool Spatial filter size of the max pool layers was changed to 1 × 1, i.e. no
down sampling, and 4× 4.
Baseline architecturee: 2× 2

Learning rate Learning rate was alternated from 0.001 to 1.0 in steps by a factor
of 3.
Baseline architecture: 0.01

Batch size Different batch sizes were tested, from 1 up to 2000.
Baseline architecture: 500

Input image size Sizes 8× 8, 16× 16, 32× 32, 64× 64, and 128× 128 was used.
Baseline architecture: 32× 32

The best results from the quantitative testing of the hyperparameters were then used
to modify the baseline architecture, setting the hyperparameters to the ones that
produced the best results during the quantitative testing, this in order to optimise
both the accuracy and run time. Only the validation accuracies were taken into
consideration, and not the test accuracies.

Additional architectures were also created, based on experiences from the quan-
titative testing and research done for the background section, to evaluate other net-
work designs. Due to time constraints these networks were initially only allowed to
train for 100 epochs. Their designs are listed below:

Architecture 1 The structure of the network is the same as in the baseline archi-
tecture outlined in figure 4.1, with an additional convolutional layer stacked
before each pooling layer. The number of epochs was increased to 100 per
training fold, to allow the network enough time to converge.

Architecture 2 Exactly the same as Architecture 1, except for one more additional
convolutional layer before each pooling layers, making it three convolutional
layers stacked before the pooling layers.
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Architecture 3 The same as Architecture 1 with two stacked convolutional layers
before the pooling layers. The first two convolutional layers makes use of
32 filters and the last two has 64 filters. Image input size was increased to
43 × 43, dropout lowered to 0.3 before the fully connected layers.

Architecture 4 The same as architecture 2, with three stacked convolutional layers
before each pooling layer. The difference being that the number of filters in
the convolutional layers are increasing with the depth of the network. The
first three stacked convolutional layers have 32, 64, and 128 filters respectively
and the three convolutional layers before the second pooling layer each has
256 filters.

4.1.2 Dataset
The dataset used for traffic sign recognition was the German Traffic Sign Recognition
Benchmark (GTSRB)[48]. The images all contain one traffic sign only. They have
all been cropped in a way that leaves some background noise, but the sign is in
the center and takes up the majority of the space, as can be seen in figure 4.2,
which shows example images from each class in the dataset. The GTSRB dataset
contains 43 different types of traffic signs, which have been assigned as different
classes numbered 1-43. Figure 4.3 shows the distribution of the different classes, for
both the training and test sets.

The images vary in size and shape, but the absolute majority are roughly square,
as can be seen in figure 4.4, which shows the relationship between the sides of the
images, as the ratio of the larger over the smaller side of each image. The distribution
of image sizes can be seen in figure 4.5. If a square shape is assumed they have a
median value of 43 × 43, and a mean value of 56 × 56 pixels. The median value
is considered to be the most representative as a small number of images with a
comparatively large size inflate the mean value.

The data consists of two parts, one for training and validation, and one for
testing. Many images are actually photos of the same sign from different distances, so
there is a correlation between the images used for training and validation. However,
the training and test datasets do not share any images of the same signs and are
completely separate. When the training set is loaded all images are loaded into
memory in order of class. After this they are randomly shuffled, then split into ten
different parts to be used for 10-fold cross-validation. After loading the dataset, the
only pre-processing done was changing the pixel values from integer values in range
0− 255 to floating point precision with range 0− 255/256.
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Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8

Class 9 Class 10 Class 11 Class 12 Class 13 Class 14 Class 15 Class 16

Class 17 Class 18 Class 19 Class 20 Class 21 Class 22 Class 23 Class 24

Class 25 Class 26 Class 27 Class 28 Class 29 Class 30 Class 31 Class 32

Class 33 Class 34 Class 35 Class 36 Class 37 Class 38 Class 39 Class 40

Class 41 Class 42 Class 43

Figure 4.2: Examples of traffic sign images and their respective class numbers.
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Figure 4.3: Percentage of the total number of images in the sets for each class.

Figure 4.4: Distribution of image shapes in the GTSRB dataset, as the ratio of
the longer over the shorter side of each image.
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Figure 4.5: Distribution of image sizes in the GTSRB dataset. The x-axis shows
the square root of the number of pixels in the images in order to better illustrate
their approximate size, since the absolute majority of the images are roughly square
as seen in figure 4.4. For example, when the x-axis shows 50 pixels, the images are
assumed to be approximately 50× 50 pixels in size.
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4.1.3 Implementation
For the implementation, the example program mnist.py from the Lasagne reposi-
tory on GitHub was used as a base for this project[49]. It was modified to be able
to load the dataset, 10-fold cross-validation and additional functionality relevant to
this project was implemented, including the design of the network. Cross-entropy
was used as the loss expression to minimise during training, and the initial weights
were randomly sampled from a uniform distribution.

4.2 Results and Performance Evaluation
The results from training and testing using the traffic sign dataset are presented
here. Section 4.2.1 contains the results from the optimised networks and section 4.2.2
contains the quantitative test results.

4.2.1 Optimised Networks
In this section the test results and performance evaluation generated after train-
ing the optimised network structures, as described in section 4.1.1, are outlined.
Section 4.2.1.1 contains the best results found in this study, which were found by
combining the quantitative test results in section 4.2.2 with the results from the
larger architecture designs in section 4.2.1.2.

4.2.1.1 Optimised Networks Based on Quantitative Test Results

The best results found in this study can be seen in table 4.1, the highest test accuracy
achieved was 98.81 %, almost as good as human performance at 98.84 % on the same
dataset[18]. The reason for the human performance not being 100 % is that some of
the images are sometimes very small and blurry, making it difficult even for humans
to visually recognise the signs correctly.

The first column in the table names the architecture, the details of which are
described below. The second column contains the validation accuracy when running
10-fold cross validation, the third the test accuracy when using another dataset than
the one used for training and validation, and finally the fourth column contains the
training time for the network, not including the time for starting the program,
loading images from the hard drive etc.

Additionally, the results of the best performing machine learning model of the
International Joint Conference on Neural Networks, IJCNN, 2011 competition "The
German Traffic Sign recognition Benchmark" has also been added for comparison in
the table. It makes use of several deep CNNs, a committee, to classify the traffic
signs correctly by averaging. The much more complex model took 37 hours to train
on four GPUs, which type and model were not stated in the article, as compared to
the models in table 4.1 which only took a few hours using just one GPU[50].
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Table 4.1: Results for the optimised networks, based on results from quantitative
testing in section 4.2.2 and larger architecture designs in section 4.2.1.2. The details
about the architectures are listed below. 10-fold cross validation was used, with
training for 500 epochs in each fold. The best results found were almost as good as
human performance on the same dataset.

500 epochs
Architecture Validation acc. Test acc. Training time

Mod. Architecture 1 99.85 % 98.02 % 8 h 15 m 49 s
Ensemble mod. A1 – 98.81 % –

Opt. baseline p 99.83 % 97.11 % 3 h 15 m 54 s
Opt. baseline no p 99.83 % 97.70 % 2 h 3 m 7 s
Ensemble opt. bc – 98.38 % –

Human performance[18] – 98.84 % –
Committee of CNNs[50] – 99.46 % –

The network that performed the best, an ensemble of the modified Architecture 1,
is a combination of the larger architectural structures tested, results found in next
section, and the optimal results found in the quantitative testing. Below are the
network structures in table 4.1 described:

Mod. Architecture 1 Out of the larger architectures tested in section 4.2.1.2,
when taking both run time and validation accuracy into consideration, Archi-
tecture 1 was the most suitable for further testing. The modifications were
derived from the optimal settings found when doing the quantitative testing
in section 4.2.2. The structure of the network is the same as in the base-
line architecture outlined in figure 4.1, with an additional convolutional layer
stacked before each pooling layer. The number of epochs was increased to 500
per training fold and learning rate was set to 0.03, additionally padding was
only used for the second and fourth convolutional layer.

Ensemble mod. A1 The ten models trained during the 10-fold cross validation
of the modified Architecture 1 were combined into an ensemble, to vote on
what the signs should be classified as. This was the structure that generated
the best results, with a test accuracy of 98.81 %, which can be compared with
human performance at 98.84 %[18].

Opt. baseline p/no p The structure of the network was the same as for the base-
line architecture in figure 4.1, with the addition of the optimal settings found
from the quantitative testing. It was trained for 500 epochs in each fold, in-
stead of ten, and the learning rate was increased from 0.01 to 0.03. It was
tested both with and without padding for the convolutional layers. No other
changes to the baseline architecture in the quantitative testing increased the
accuracy and thus they were left unchanged.

Ensemble opt. bc Additionally, the ten trained models (one from each fold of
the 10-fold cross validation) when not using padding were used to create an
ensemble classifier. The ten models voted to classify the traffic signs, to try
to further improve the results.
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Figure 4.6 and 4.7 contain the confusion matrix for the ensemble classifier of the
modified Architecture 1 in table 4.1. Each column represents the true class number,
and each row the predicted class. In the matrix, the ratio with which the actual class
in column j gets predicted as the class in row i can be found, between 0 and 1.00.
Each column should sum to 1.00, the total probability. However, due to rounding
of the rates, this is not always the case. The matrix only displays the results when
sign j was classified as sign i at least 0.5 % of the times, otherwise it is shown as
zero. If one sign is misclassified as several different signs but each only a few times,
these values will not appear in the matrix, and therefore the sum may be slightly
less than 1.00 in some instances.
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Figure 4.6: Part 1 of the confusion matrix generated by the ensemble classifier of
the modified architecture 1 in table 4.1. This part shows what the classes numbered
1 − 22 were classified as. The columns represent the actual class and the rows the
predicted class, the value being the rate which the class given by the column is
being predicted as the class given by the row. The misclassifications are rounded
to nearest full percent, meaning only misclassifications above 0.5 % are shown. The
second part of the matrix is found in figure 4.7.

32



4. Traffic Sign Recognition

Figure 4.7: Part 2 of the confusion matrix generated by the ensemble classifier of
the modified architecture 1 in table 4.1. This part shows what the classes numbered
23− 43 were classified as. The columns represent the actual class and the rows the
predicted class, the value being the rate which the class given by the column is being
predicted as the class given the row. The misclassifications are rounded to nearest
full percent, meaning only misclassifications over 0.5 % are shown. The first part of
the matrix is found in figure 4.6.
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It is often difficult to understand just how a deep neural network attains its results.
The features that the network learns to identify is far from always easy to discern for
humans, which means errors can be difficult to explain since it is not immediately
apparent how they arise. Perhaps the biggest issue with both CNNs and regular
neural networks is that they are difficult to analyse, they are basically a black box
with an input and an output.

Looking at the confusion matrix in figure 4.6 and 4.7 it can be seen that the
network is better at identifying some classes than others. Eleven classes are some-
times misclassified as another class at least 0.5 % of the time or more. These classes
are class 4, 7, 13, 19, 25, 28, 31, 40, 41, 42 and 43. Examples of how they look can
be found in figure 4.8.

Class 4 Class 7 Class 13 Class 19 Class 25

Class 28 Class 31 Class 40 Class 41 Class 42 Class 43

Figure 4.8: The eleven traffic signs that have misclassifications over 0.5%, for the
modified architecture 1 ensemble classifier in table 4.1.

Class 4 is 3 % of the time misclassified as class 6, both can be seen in figure 4.9.
This is quite easy to explain since the signs share the same shape and color scheme,
as well as similar the center markings.
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Actual class

Class 4
Misclassification

Class 6

Figure 4.9: Example of Class 4 and its most common misclassification.

Looking at class 7 with its 92 % accuracy, it is most commonly misclassified as
classes 33, 39, and 43 at 3 %, 2 % and 2 % respectively, which can all be seen in
figure 4.10. The signs represented by classes 33 and 43 share similar features with the
misclassified sign. The shape and colors are identical while the markings are much
the same, so it is easy to see how these could be mixed up. The last misclassification,
class 39, is quite a bit harder to understand as the only clearly common feature is the
round shape of the signs. Otherwise both colors and markings differ significantly.

Actual class

Class 7
Misclassifications

Class 33 Class 39 Class 43

Figure 4.10: Example of Class 7 and its three most common misclassifications.

Class 13 stands out in the dataset as it shares neither shape nor color scheme with
any other class. Intuitively this makes one think that it would be easy to classify
because of the unique features, but it is not necessarily how the CNNs works. Class
13 has 98 % accuracy, the majority, 1 %, consisting of class 16 which can be viewed
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as somewhat similar, as both lack inner markings and are bordered, examples can be
found in figure 4.11. It is possible that since the network has been trained with many
more signs that share shapes and color schemes, it has become better at discerning
those types of signs, and have not become good at detecting the unique features of
class 13. This is of course just speculation since there is no way to really discern
what features the networks pick out.

Actual class

Class 13
Misclassification

Class 16

Figure 4.11: Example of Class 13 and its most common misclassification.

Class 19 is misclassified as classes 2, 26, and 27 at 2 %, 1 %, 2% respectively, they
can be seen compared in figure 4.12. Classes 26 and 27 can be seen as quite similar
when taking shape and colors into consideration. It is noteworthy that the center
markings of class 27 are of a different color scheme, yet it is one of the more common
misclassifications, why is unclear though. It is more difficult to understand why it is
being misclassified as class 2, since while it shares the same color scheme, its shape
is determinedly different. Additionally, it is not misclassified as any other speed
limit sign, just this one.
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Actual class

Class 19
Misclassifications

Class 2 Class 26 Class 27

Figure 4.12: Example of Class 19 and its three most common misclassifications.

Class 25 is most commonly misclassified as class 30, this happens 1 % of the time,
they can be seen in figure 4.13. Just why class 30 stands out and no other signs
with the same shape is not immediately apparent as the center markings are quite
dissimilar.

Actual class

Class 25
Misclassification

Class 30

Figure 4.13: Example of Class 25 and its most common misclassification.

Class 28 stands out with the lowest accuracy at only 50 %. Virtually all of the
misclassifications are as class 2. Example images of the classes can be seen in
figure 4.14. Class 2 differs in shape and center markings from class 28 visually, but
still it is obvious the network has trouble distinguishing between the two classes, as
half the time it detects class 28 as class 2, it does however not have the same problem
the other way around. It is also interesting to note that it is only misclassified as
class 2, the 30 speed limit sign, and not other speed limit signs, that to a human eye
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appear very similar to each other. No other class comes even near this low accuracy,
and when looking further at the training and test dataset a possible explanation
is found. When looking at class 28 in the test set half the images are of a sign
that is partly covered by a shadow, this images was chosen as the example image
in figure 4.14. The effect seems to somehow confuse the network causing it to
classify the image incorrectly- This shows that a CNN cannot discern on its own
which features are of importance to the subject at hand. It merely finds similarities
between the images it is trained.

Actual class

Class 28
Misclassification

Class 2

Figure 4.14: Example of Class 28 and its most common misclassification.

Class 31 is most commonly misclassified as class 21 at 1 % and as class 24 at 3 %,
the classes can be seen in figure 4.15. Again, these classes share similar features
in shape and color. When looking at the confusion matrix in figure 4.7 it can be
seen that the column values only add up to 0.98, i.e. 2 % of the classifications are
"missing". This means that a few misclassifications have been distributed over other
classes but make up less than 0.5 %. These are not displayed, since it is not known
which classes they are.
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Actual class

Class 31
Misclassifications

Class 21 Class 24

Figure 4.15: Example of Class 31 and its two most common misclassifications.

The most common misclassification of class 40 is class 34 at 1 %, examples of the
classes can be seen in figure 4.16. The signs can be seen to share shape and color
scheme. The markings are also somewhat similar, though they differ in orientation.

Actual class

Class 40
Misclassification

Class 34

Figure 4.16: Example of Class 40 and its most common misclassification.

Class 41 is misclassified as class 36 and class 38, they each make up 1 % of the
cases, examples of the classes can be seen in figure 4.17. Class 40 shares shape and
color schemes with its misclassifications. The orientation, shape, and number of
markings differ quite a bit, but they all show arrows, so it is possible the network
cannot properly discern different arrows and their orientations properly.
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Actual class

Class 41
Misclassifications

Class 36 Class 38

Figure 4.17: Example of Class 41 and its two most common misclassifications.

The most common misclassification of class 42 is class 10, this happens in 2 % of
the instances. The classes can be seen in figure 4.18. Though they do not share
the same color scheme, the shape is the same and the center markings very similar.
This is the likely reason why the network has them mixed up.

Actual class

Class 42
Misclassification

Class 10

Figure 4.18: Example of Class 42 with its misclassification.

Finally Class 43 is 1 % of the instances misclassified as class 42, examples of the
classes can be seen in figure 4.19. The signs are very similar with the only difference
being part of the inner markings. This makes it easy to see how the network could
mix them up.
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Actual class

Class 43
Misclassification

Class 42

Figure 4.19: Example of Class 43 and its most common misclassification.

As could be seen from this section, it is not always evident why a sign is misclassified
as another. It is virtually impossible to analyse how a CNN makes its decisions,
which is one of its drawbacks, but it definitely does not yet see things the same way
as we humans do. Noise in the images, such as shadows and obstructing objects, can
hinder the classification. This is particularly apparent when the dataset contains
several images of the same sign, just from slightly different angles, and not always
many truly different versions of the sign, which was the case for the dataset used in
this study and a likely cause for some of the misclassified instances.

4.2.1.2 Additional Architectures Tested

In this section, the results from testing on the additional network designs are pre-
sented, i.e. those derived from experiences from the quantitative testing in combi-
nation with research done prior to this study, which resulted in section 2.1 in the
background section. The belief was that these larger network designs would generate
better results, details about the architectures can be found in section 4.1.1, which
are presented in table 4.2. The first column names the architecture, per definitions
in section 4.1.1, the second the validation accuracy generated by 10-fold cross vali-
dation, the third the test accuracy on the separate test set, and the fourth column
the training time. Training was run for 100 epochs in each fold.

When comparing the results of Architecture 1 in table 4.2 to the results of the
baseline architecture with 100 epochs in the table in figure 4.21 there is an increase
in test accuracy of 1 %. This is interpreted to mean that the extra convolutional
layers provide better accuracy, at least for this amount of training.

Architecture 2 stacks even more convolutional layers, but here it appears that a
limit has been reached in the increase of accuracy. Test accuracy is only marginally
higher when compared to Architecture 1. This suggests that extra convolutional
layers no longer extract any better information for the network to process and the
added complexity is unnecessary.
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Table 4.2: Results for the optimised networks, details in section 4.1.1. 10-fold cross
validation was used, each network was trained for 100 epochs during each fold.

100 epochs
Architecture Validation acc. Test acc. Training time

1 99.70 % 96.70 % 2 h 19 m 3 s
2 99.70 % 96.94 % 3 h 45 m 41 s
3 99.68 % 95.95 % 5 h 45 m 25 s
4 99.73 % 95.91 % 32 h 43 m 16 s

The results of Architecture 3 performs slightly worse than Architecture 1. The im-
age size used has been increased to match the median image size but does not lead
to better performance when compared to Architecture 1. This can be taken to mean
that increased image size simply leads to faster convergence and thus matters less
when using more epochs. Architecure 3 also uses more filters in the later convo-
lutional layers, which when looking at the table in figure 4.22 appears to increase
accuracy. This seems to indicate that it may only converge faster, and not in fact
generate the better accuracy that was observed earlier. The worse results can also
be due to the lowered dropout rate, it is difficult to tell exactly what generated these
results when several hyperparameters were changed simultaneously.

Architecture 4 was designed to see if an even larger network would produce
a better accuracy. In practice this was not the case and in the end it only took
much more resources to produce similar results. The total run time when training
the network was over 33 hours, which was the result of using both more layers
and filters. Training this network using 500 epochs instead of 100 epochs, as was
done for the best performing networks, would increase the training time to over a
week. A vastly increased number of filters would in theory give the network more
ability to adjust and provide more accurate results. However, there is also always
the possibility of a more complex model introducing overfitting.

4.2.2 Quantitative Test Results
This section displays the results when varying the different hyperparameters of the
baseline architecture, as described in section 4.1.1. This part of the thesis was
undertaken primarily to examine the impact of the hyperparameters on the accuracy
and run time of a CNN.

4.2.2.1 Initial Setup and Baseline Architecture

The test results on the baseline architecture can be seen in table 4.3. The baseline
architecture, with its initial settings, was chosen for its simplicity and fast training,
to be able to generate a lot of test data in a short amount of time. It is not meant
to be used as a traffic sign classifier, but rather as a benchmark to investigate the
impact of changing the settings of the various hyperparameters.
Since a CNN with self learned features alters its input when it travels through the
layer it gets progressively harder to discern what the features it uses actually are.
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Table 4.3: Validation and test accuracies of the baseline case, described in sec-
tion 4.1.1, in addition to training time for running 10-fold cross validation on the
training data set. Each fold is run for ten epochs.

Architecture Validation acc. Test acc. Training time
Baseline architecture 90.44 % 83.48 % 3 m 55 s

In figure 4.20 the feature maps obtained after sending a picture through the first
convolutional layer in the baseline architecture is shown. It can be seen that even
though this is the first layer, the actual features found are not readily apparent.

Figure 4.20: Feature maps obtained after the image in the top left has been run
through the first convolutional layer in a trained baseline architecture network.

The figures and tables that display the results are all structured in the same way. The
first column describes the changes compared to the baseline architecture, e.g. in the
table in figure 4.21 the number of epochs are changed while all other hyperparameters
are kept the same, therefore the first column contains the number of epochs used for
each test. The second column shows the validation accuracy on the validation data
set using 10-fold cross validation during training, and the third column the results
after testing on the previously unseen test data set, both display the accuracy as ratio
of correctly predicted images in percentage. The fourth and final column contains
the training time, meaning only the time it takes to train the network, not any
additional time spent on, for instance, starting the program or loading input into
memory. Additionally, some tables have been visualised graphically, by displaying
the validation and test accuracy as functions of the alternated hyperparameter for
the specific test instance, these graphs also show how the time to train a network
varies.

4.2.2.2 Epochs

The impact of changing the number of epochs used in each fold during training can
be found in figure 4.21, note that the instance with 10 epochs marked in bold is
the same as the baseline architecture in table 4.3. For one epoch, the fold accuracy
varied with almost ten percentage units. This decreased to almost four percentage
units when running for ten epochs and for fifty or more epochs, the fold accuracies
were almost constant. Not surprisingly, with more epochs the accuracy increases.
Interestingly however, is the fact that already somewhere between ten and fifty
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epochs, the accuracy starts to converge. Training time appears to increase linearly
with the number of epochs, which makes sense since the run time for an epoch is
mostly constant. This means there is a trade-off between training time and accuracy.

Epochs Validation acc. Test acc. Training time
1 14.27 % 14.40 % 24 s
10 90.44 % 83.48 % 3 m 55 s
50 99.05 % 94.48 % 19 m 19 s
100 99.53 % 95.65 % 38 m 37 s
500 99.77 % 96.62 % 3 h 13 m 29 s
1000 99.78 % 96.76 % 6 h 31 m 33 s
2000 99.85 % 96.86 % 13 h 0 m 45 s

Figure 4.21: The impact on accuracy and training time by varying the number of
epochs in the baseline architecture. The table shows the absolute time values with
the baseline case of ten epochs shown in bold. In the graph the training times are
shown as time relative to the baseline architecture, 235 seconds, for easy comparison.

Ten epochs, which was the initial setting for all test cases, was too short an amount
of time for the network to converge and often the accuracy would vary with up to a
few percentage units between each fold, e.g. for the baseline architecture validation
it varied between 88.60 % and 92.23 %. Only the average accuracy over all folds
are shown for easier comparison between the different cases. For some test cases,
the accuracies would vary even more, for example when using only two filters the
accuracy would vary between 5.5 % and 60.5 % for the separate folds. This is
important to take into consideration when looking at the results, which should be
viewed as a guide to what happens early in the training.

Longer runs, i.e. more epochs, could show that what appears like poor per-
formance early on in the training for some set of hyperparameters might actually
converge to a higher accuracy in the end, if allowed to train for long enough. There-
fore, the values of the hyperparameters tested that were considered best when run
for ten epochs, were also tested using 500 hundred epochs, to see its possible impact
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on accuracy when allowed more time to converge. 500 epochs was chosen since it
had a good balance between the attained accuracy and the time it took to train the
network. It was also the amount of epochs used in the optimized network whose
results can be viewed in table 4.1

4.2.2.3 Number of Filters in Convolutional Layers

The results of changing the number of filters can be seen in figure 4.22. The accura-
cies for each fold when using just two filters varied greatly, from 5.5 % up to 60.5 %,
this variation decreased as the number of filters increased. Four filters generated a
variance in accuracy from 20.17 % to 67.54 % and 256 filters a very low variance,
from 95.17 % to 96.63 %.

As can be seen seen in the table in figure 4.22, increasing the number of filters
in each convolutional layer seems to increase the accuracy on both the training data
and also unseen test data when training using ten epochs. However, when increasing
the number of epochs the impact of increasing the number of filters seems to have
virtually no impact in accuracy. Interestingly, the test accuracy even decreases a
little. Why is unclear, but it suggests that a very complex network is not necessary
to solve the problem at hand.

It can also be observed that the time it took to train the network increases
exponentially. The run time is very dependant on the hardware used. Since a
relatively powerful GPU was used in this study, it made it possible to efficiently run
the computations in parallel, because they are independent of each other. But with
more added filters there are more computations and eventually it will not be able
to parallelize all of them optimally. This is speculated to be the reason why the run
time does not increase linearly with more filters. The results are not surprising, with
more filters more information or features can be extracted from the input and yield
more accurate results. These tests also show a limitation of the test setup, as in the
case when using 512 filters. When the amount of data required to train the dataset
for one epoch does not fit into the graphics memory and the program cannot run.
This can however be alleviated by using smaller batches in order to lower the size
of data handled during one epoch.
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10 epochs
No. of filters Validation acc. Test acc. Training time

2 32.58 % 29.95 % 1 m 6 s
4 49.33 % 45.50 % 1 m 18 s
8 69.74 % 63.01 % 1 m 38 s
16 84.74 % 77.28 % 2 m 23 s
32 90.44 % 83.48 % 3 m 55 s
64 93.82 % 86.82 % 8 m 51 s
128 95.35 % 88.19 % 22 m 27 s
256 95.90 % 88.08 % 1 h 10 m 14 s
512 Out of memory

500 epochs
No. of filters Validation acc. Test acc. Training time

32 99.77 % 96.62 % 3 h 13 m 29 s
128 99.78% 96.05% 18 h 39 m 31 s

Figure 4.22: Validation and test accuracy, along with training time, when alter-
nating the number of filters in the baseline architecture, which is displayed in bold
in the top table. The graph visualises the top table, training time is here displayed
as relative to the baseline architecture, 235 seconds. 10-fold cross validation was
used and each fold was run for ten epochs. The bottom table shows the results
when running with 500 epochs instead of ten.

4.2.2.4 Dropout Rate

Figure 4.23 contains a table and graphic visualisation of the results when changing
the dropout rate on the last two fully connected layers in the baseline architecture.
The dropout rate always is kept the same for both layers in these tests. Note that
0.5 dropout rate is the baseline architecture. The accuracy of each fold varied with
just 1-2 % for a dropout rate of 0.4 or less, and then it started to slowly increase. In
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this implementation, due to how the dropout layer is implemented in Lasagne, the
dropout rate is given as the probability a node will be deactivated during training.

10 epochs
Dropout rate Validation acc. Test acc. Training time

0.0 94.94 % 82.68 % 3 m 50 s
0.1 95.76 % 85.21 % 3 m 53 s
0.2 95.54 % 86.45 % 3 m 55 s
0.3 94.65 % 86.65 % 3 m 55 s
0.4 93.32 % 85.72 % 3 m 53 s
0.5 90.44 % 83.48 % 3 m 55 s
0.6 83.45 % 76.10 % 3 m 53 s
0.7 68.98 % 63.37 % 3 m 53 s
0.8 45.86 % 42.14 % 3 m 53 s
0.9 9.07 % 9.02 % 3 m 50 s

500 epochs
Dropout rate Validation acc. Test acc. Training time

0.3 99.68 % 94.77 % 3 h 15 m 30 s
0.5 99.77 % 96.62 % 3 h 13 m 29 s

Figure 4.23: Validation and test accuracy, along with training time, when running
the tests with different values of the dropout rate. The dropout is applied to the two
fully connected layers at the end of the network, and denotes the probability with
which each node is deactivated during training. Dropout rate 0.5 was used in the
baseline architecture, which can be seen in the top table, which contains the results
when running each fold in the 10-fold cross validation for ten epochs. The bottom
table contains the results when increasing the number of epochs to 500. The graph
visualises the results from the top table.

The extremely low results for a high dropout rate, as can be seen in the table in
figure 4.23 are expected, if the nodes are discarded during training 90 % of the time,
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they will almost never get a chance to learn. A dropout rate of 0.5 is often suggested
and used, although the results from this study when training for ten epochs suggests
that perhaps 0.2 or 0.3 could potentially be better. However, when increasing the
number of epochs to 500 the more commonly used dropout rate of 0.5 outperforms
the lower dropout rate of 0.3. The training time is virtually unaffected by different
dropout settings. This makes sense since dropout is only used in the fully connected
layers. The convolutional layers require more computations and the gains from using
a higher dropout rate are therefore not measurable.

4.2.2.5 Spatial Filter Size and Zero Padding

Removing the zero padding of the two convolutional layers in the baseline architec-
ture generated the results found in table 4.4. Padding of the baseline architecture
was two and fold accuracy varied with just a couple of percentage units. The models
were trained for both ten and 500 epochs.

Table 4.4: Test results when varying the zero padding in the convolutional layers
of the baseline architecture, using 32 filters of spatial size 5 × 5. Padding of the
baseline architecture is two. The top table displays the results when running each
fold for ten epochs in the 10 fold-cross validation, the bottom when the number of
epochs are increased to 500.

10 epochs
Padding Validation acc. Test acc. Training time

0 90.54 % 85.30 % 2 m 26 s
2 90.44 % 83.48 % 3 m 55 s

500 epochs
Padding Validation acc. Test acc. Training time

0 99.76 % 97.49 % 1 h 59 m 42 s
2 99.77 % 96.62 % 3 h 13 m 29 s

Not using padding did not have much impact on the accuracy during these tests, but
more on the training time due to it decreasing the size of the images as they move
through the network, leading to less computations. Padding is more important for
deeper networks, so as not to lose too much information with the convolutions. For
just two convolutional layers, as was used here, the pixels on the borders are mostly
part of the background and do therefore not contain any important information to
correctly classify the signs.

To test the effects of the filter size the spatial filter size in the convolutional
layers was changed to 3 × 3 and was tested both with and without padding, the
results of which can be found in table 4.5. The same was also done for a spatial
filter size of 7×7, as can be seen in table 4.6. The tests were run for both ten epochs
in order to see what happens early in the training during training, and for 500 epochs
in order to compare the final accuracy when the networks have been allowed to fully
converge. The padding was chosen so as to keep the size of the input the same, one
and three for the 3 × 3 and 7 × 7 filters respectively. When training the networks
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for 10 epochs the fold accuracy varied less when using 7× 7 filters, just 1-2 %, than
when using filters of size 3×3, which varied with almost 10 % for the separate folds.
The results were similar both with and without padding.

Table 4.5: Results when using filters of spatial size 3 × 3 for the convolutional
layers, both with and without padding. The top table displays the results when
running each fold in the 10-fold cross validation for ten epochs, the bottom when
the number of epochs are increased to 500.

10 epochs
Padding Validation acc. Test acc. Training time

0 83.22 % 75.78 % 2 m 14 s
1 81.62 % 72.96 % 2 m 37 s

500 epochs
Padding Validation acc. Test acc. Training time

0 99.71 % 96.71 % 1 h 54 m 48 s
1 99.73 % 95.30 % 2 h 11 m 53 s

Table 4.6: Results when using filters of spatial size 7 × 7 for the convolutional
layers, both with and without padding. The top table displays the results when
running each fold in the 10-fold cross validation for ten epochs, the bottom when
the number of epochs are increased to 500.

10 epochs
Padding Validation acc. Test acc. Training time

0 90.64 % 86.63 % 2 m 21 s
3 92.19 % 85.42 % 6 m 44 s

500 epochs
Padding Validation acc. Test acc. Training time

0 99.67 % 97.32 % 1 h 58 m 12 s
3 99.77 % 96.34 % 5 h 14 m 44 s

Varying the spatial filter size of the convolutional layers appears to have some im-
pact. The baseline architecture used a spatial filters size of 5 × 5, table 4.5 and
table 4.6 contain the results of using spatial filter size 3× 3 and 7× 7 respectively.
Decreasing the size generates a slightly worse performance, independent of using
padding or not, whereas increasing the filter size generates performance comparable
to the baseline architecture, but not better. Filter size also affects the run time since
smaller filters means fewer computations than larger filters.

4.2.2.6 Depth of Network

Figure 4.24 displays the results when increasing the depth of the network. The
structure was kept the same, but for each added convolutional layer a ReLU and a
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MaxPool layer was also added, up to and including depth two. After that additional
layer, no more MaxPool layers where added to keep the minimum size of the images
at 8×8. Similarly, in figure 4.25, the results can be seen when adding a MaxPool layer
also after the third convolutional layer, decreasing the minimum image size to 4×4.
The fold accuracy varied more with deeper networks, with just a few percentage
units for the shallower networks. At nine layers for the network in table 4.24 and
six layers for the network in table 4.25, the fold accuracies started to vary greatly
with more than 10 % for each fold. Using twenty layers gave the same poor results
for each fold.

The tables in figures 4.24 and 4.25, contain the results of changing the number of
convolutional layers, with two and three max pooling layers used respectively. When
using just two pooling layers, the results are similar up to a depth of around eight
convolutional layers, and then the accuracy starts to decrease drastically. When
using three pooling layers, the results almost immediately starts to decrease. The
training time increases linearly in both cases since adding more layers means a set
amount of extra computations. The slope is less steep when using three pooling
layers, this is assumed to be due to the smaller size of the feature maps. The poor
performance for deeper layers does not necessarily mean that they are objectively
worse, just that they perform worse with these settings. The reason for the poor
performance when going deeper is probably that ten epochs are too few to train
the network, since with an increased depth more trainable weights are added and
therefore increasing the complexity of the network. This was tested by running the
networks for 500 epochs with depths 3, 5, and 10, greatly increasing the accuracy,
which was expected. It did however not yield any better results when compared to
the baseline architecture using just 2 convolutional layers.
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10 epochs, 2 pooling layers
Conv. layers Validation acc. Test acc. Training time

2 90.44 % 83.48 % 3 m 55 s
3 92.83 % 85.14 % 4 m 23 s
4 93.22 % 86.21 % 4 m 51 s
5 93.81 % 87.13 % 5 m 20 s
6 93.07 % 86.74 % 5 m 48 s
7 92.18 % 85.57 % 6 m 18 s
8 92.34 % 85.94 % 6 m 45 s
9 84.65 % 79.03 % 7 m 17 s
10 75.88 % 70.45 % 7 m 45 s
20 5.76 % 5.91 % 12 m 30 s

500 epochs, 2 pooling layers
Conv. layers Validation acc. Test acc. Training time

2 99.77 % 96.62 % 3 h 13 m 29 s
3 99.69 % 96.11 % 3 h 39 m 37 s
5 99.51 % 95.15 % 4 h 29 m 28 s
10 99.24 % 94.20 % 6 h 26 m 19 s

Figure 4.24: Impact of increasing the number of convolutional layers in the baseline
architecture, by stacking them after the second pooling layer. No more pooling layers
are added, to keep the minimum spatial size to 8×8. The top table shows the results
when running each fold in the 10-fold cross validation for ten epochs, and is also
visualised in the graph, while the bottom table contains the results when increasing
the number of epochs to 500. The top table also contains the baseline architecture
results, which is shown in bold.
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10 epochs, 3 pooling layers
Conv. layers Validation acc. Test acc. Training time

2 90.44 % 83.48 % 3 m 55 s
3 82.17 % 74.16 % 4 m 18 s
4 84.09 % 76.38 % 4 m 30 s
5 82.26 % 74.46 % 4 m 44 s
6 76.51 % 69.91 % 4 m 58 s
7 62.17 % 57.10 % 5 m 13 s
8 31.59 % 29.16 % 5 m 24 s
9 15.53 % 15.12 % 5 m 38 s
10 8.08 % 8.38 % 5 m 53 s
20 5.64 % 5.89 % 8 m 6 s

500 epochs, 3 pooling layers
Conv. layers Validation acc. Test acc. Training time

2 99.77 % 96.62 % 3 h 13 m 29 s
3 99.69 % 96.64 % 3 h 37 m 7 s
5 99.24 % 93.91 % 3 h 49 m 41 s
10 98.96 % 93.17 % 4 h 54 m 24 s

Figure 4.25: Test results when increasing the depth of the network, baseline ar-
chitecture being two convolutional layers. A pooling layer is added after each of the
first three convolutional layers 8there are only two pooling layers in the instance with
just two convolutional layers), but not after the following layers, to keep minimum
size of images to 4×4. The top table contains the results when running the network
for ten epochs in each fold of the 10-fold cross validation, and is also visualised in
the graph above. The bottom table contains the test results from increasing the
number of epochs to 500 for each fold.
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4.2.2.7 Linear Rectifier

Table 4.7 shows the results of applying a non-zero gradient for negative input ac-
cording to equation (2.1) in section 2.1.3.1. This is applied to the rectifiers after the
two convolutional layers and fully connected layers. The fold accuracy varied with
just a couple of percentage units.

Table 4.7: The results when applying a non-zero gradient for negative input to the
rectifiers after the convolutional layers and the fully connected layers at the end.
For details on rectifiers, see equation (2.1) in section 2.1.3.1. The top table contains
the results when running each fold in the 10-fold cross validation for ten epochs, the
bottom when increasing the number of epochs to 500.

10 epochs
Gradient Validation acc. Test acc. Training time

0.00 90.44 % 83.48 % 3 m 55 s
0.01 90.11 % 82.84 % 3 m 57 s
0.33 93.72 % 87.16 % 3 m 55 s

500 epochs
Gradient Validation acc. Test acc. Training time

0.00 99.77 % 96.62 % 3 h 13 m 29 s
0.33 99.69 % 96.59 % 3 h 16 m 53 s

Introducing a gradient for negative input to the rectifiers in the convolutional and
fully-connected layers appears to have an impact, but only when using a high gradi-
ent of 0.33 and the gain is only a few percentage units, as can be seen in table 4.7.
When the number of epochs is increased to 500 during training, the impact of the
rectifier is almost non-existent, meaning it only seems to make the network converge
faster, not achieve a better results when converged. Using a gradient requires very
few extra calculations and training time is not affected.

4.2.2.8 Pooling Layer

In table 4.8 the results of alternating the filter size of the pooling layers can be seen.
The stride is the same as the filter size and no zero padding is added. The baseline
architecture is size 2×2. Also note that size 1×1 is the same as no pooling, i.e. the
layer outputs the input unchanged. Fold accuracy varied with just a few percentage
units for the two smaller filter sizes and a little more for filter size 4× 4, with 5 %.

Pooling layers are used to downsample the feature maps, which decreases train-
ing time and potentially avoids overfitting, table 4.8 shows the effect of alternating
the filter size of the pooling layers in the baseline architecture. This is a destructive
operation, which can clearly be seen when using 4 × 4 filter size, the results are
significantly worse than when using 2× 2, as in the baseline architecture. Not sur-
prisingly, the validation accuracy is really high after just ten epochs when using a
filter size of 1×1, which is the same as not applying a pooling layer. No information

53



4. Traffic Sign Recognition

Table 4.8: Results of using different filter sizes for the max pool layers, stride is
the same as the size and no zero padding is added. Size 1 × 1 will have the same
effect as no pooling, i.e. outputs the image unchanged, and the baseline architecture
is 2 × 2. The top table contains the results when training for ten epochs for each
fold in the 10-fold cross validation, and the bottom when increasing the number of
epochs to 500.

10 epochs
Size Validation acc. Test acc. Training time
1× 1 98.16 % 91.56 % 11 m 59 s
2× 2 90.44 % 83.48 % 3 m 55 s
4× 4 52.71 % 48.16 % 2 m 12 s

500 epochs
Size Validation acc. Test acc. Training time
1× 1 99.55 % 95.18 % 10 h 1min 38 s
2× 2 99.77 % 96.62 % 3 h 13 m 29 s

is lost, but training time increases since the image size is kept the same, thus lead-
ing to more computations throughout the network. When the network is allowed to
converge better while running for 500 epochs the accuracy without pooling layers
decreases. This is expected as pooling layers should help prevent overfitting.

4.2.2.9 Learning Rate

Figure 4.26 displays the impact alternating the learning rate had. The fold accuracy
varied the least for a learning rate of 0.03. The fold accuracy for a learning rate
of 0.1 varied between 88.46 % and 98.86 %. Loss functions for learning rate 0.03
and 1.0 can be seen in figure 4.27, which is the categorical cross-entropy, defined in
section 2.1.3.1 as equation (2.3).

Higher learning rate can increase the speed of learning. The learning rate
determines the magnitude of the updates the network should make after each batch,
so a larger learning rate takes bigger steps in the "right direction". However, using
a learning rate that is too large can cause the loss function to never converge to
a minimum, which is probably the case for learning rates 0.3 and 1.0 in the table
in figure 4.26. It takes too great steps in the right direction and overshoots the
optimal values. In figure 4.27 it can be observed how the loss function of a high
learning rate never changes while a lower learning rate gradually converges. For this
network, a learning rate of 0.03 seems to lead to quick convergence and significantly
improves the results compared to the baseline architecture after just ten epochs.
The holds true for an increased number of epochs, the network converges to a higher
accuracy with the higher learning rate. The time to train is constant since no extra
calculations are made.

54



4. Traffic Sign Recognition

10 epochs
Learning rate Validation acc. Test acc. Training time

0.001 20.48 % 20.24 % 3 m 53 s
0.003 51.98 % 47.13 % 3 m 53 s
0.01 90.44 % 83.48 % 3 m 55 s
0.03 97.58 % 92.69 % 3 m 53 s
0.1 96.87 % 91.79 % 3 m 50 s
0.3 5.55 % 5.79 % 3 m 50 s
1.0 5.34 % 5.67 % 3 m 48 s

500 epochs
Learning rate Validation acc. Test acc. Training time

0.01 99.77 % 96.62 % 3 h 13 m 29 s
0.03 99.83 % 97.11 % 3 h 15 m 54 s

Figure 4.26: Test results for various learning rates, using 10-fold cross validation.
The top table contains the results when running each fold in the 10-fold cross val-
idation for ten epochs, and contains the baseline architecture in bold. It is also
visualised in the graph above, where training time is shown as relative to the base-
line architecture. The bottom table contains the results when increasing the number
of epochs to 500.
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Figure 4.27: Loss functions for learning rate 0.03 and 1.0 using the baseline archi-
tecture. Categorical cross-entropy was implemented as loss function, details can be
found in section 2.1.3.1.
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4.2.2.10 Batch Size

In figure 4.28, the results of varying the batch size used for training can be found.
The fold accuracy varied the least for a batch size of 60, 125, and 250, with just
1-2 percentage units.

10 epochs
Size Validation acc. Test acc. Training time
1 5.55 % 5.65 % 54 m 34 s
10 18.14 % 17.33 % 8 m 44 s
60 98.90 % 95.02 % 4 m 44 s
125 98.48 % 93.98 % 4 m 14
250 96.60 % 91.27 % 4 m 2 s
500 90.44 % 83.48 % 3 m 55 s
1000 67.73 % 60.39 % 3 m 48 s
2000 37.70 % 35.07 % 3 m 36 s

500 epochs
Size Validation acc. Test acc. Training time
60 97.27 % 91.97 % 3 h 58 m 22 s
500 99.77 % 96.62 % 3 h 13 m 29 s

Figure 4.28: Accuracy and relative run time for various batch sizes, the top table
contains the results when training for ten epochs, which are also visualised in the
graph above, and the bottom when running for 500 epochs. Baseline architecture is
shown in bold in the top table.

The table in figure 4.28 contains the quite interesting results of alternating the batch
size, a smaller batch size appears to generate better results when training for ten
epochs. When it gets too small however, the accuracy deteriorates drastically. For
large batches, the program is constructed in such a way that for the last batch, if the
images do not make up a full batch the remaining images are discarded, therefore
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Figure 4.29: Loss functions for batch sizes 60 and 500 when run for 500 epochs.
Batch size 60 shows clear evidence of overfitting.

losing some information (images), leading to worse performance. Another reason
for smaller batch size generating better results after the same number of epochs is
assumed to be due to the fact that the weights are updated more often during each
epoch. If the batch size is too small the updates are more random since they will only
adjust for very few images that might not be representative of the whole dataset,
and the adjustments might therefore not be necessarily statistically accurate. Using
smaller batch sizes means the weights are updated more often, requiring additional
computations. This is assumed to be the reason why the training time is higher
with smaller batch size.

When increasing the number of epochs to 500, the larger batch size generates
significantly better results. The accuracy when using the smaller batch size has
actually decreased, particularly the test accuracy. This can in part be because it
only updates the network after using 60 images, meaning it is unlikely that all
classes are represented in each update. But when looking at figure 4.29 where the
loss function for 60 epochs is compared with the loss function for 500 epochs, it can
be seen that the loss function first converges before starting to diverge. This is a
clear indication that overfitting has occurred where the network has become over-
specialised on the training images, and no longer works well on other images it has
not been trained on. The reason it happens for batch size 60 and not 500 is since the
updates on the network occurs more often, this makes the network converge faster,
but also causes it to diverge earlier.

4.2.2.11 Input Image Size

Table 4.9 displays the impact of alternating the size of the input image. The larger
image sizes showed smaller variance for the fold accuracies when run for ten epochs,
with less than one percentage unit for image size of 64× 64.
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Table 4.9: Results of varying image input size, the top table when training for ten
epochs and the bottom when training for 500 epochs. baseline architecture is shown
in bold in the top table.

10 epochs
Size Validation acc. Test acc. Training time
8 32.21 % 29.06 % 28 s
16 62.34 % 56.17 % 1 m 3
32 90.44 % 83.48 % 3 m 55 s
64 97.93 % 91.81 % 15 m 19 s
128 Out of memory

500 epochs
Size Validation acc. Test acc. Training time
32 99.77 % 96.62 % 3 h 13 m 29 s
64 99.74 % 96.56 % 12 h 55 m 6 s

It can be observed in table 4.9 that image size greatly affects both training time and
accuracy. When downscaling images, information is lost with the lowered resolution,
it is therefore not strange that the performance declines. However, with too large
images, mainly memory but also training time become issues to consider when build-
ing a CNN. Enlarging the images also means that their properties change, which
can alter the way the convolutional layers view them. For example edges become
more diffuse, meaning filters of small size could have a harder time detecting them.
The largest image size that could be tested without running into memory issues was
64× 64 pixels. This is reasonably close to the median and average sizes of 43× 43
and 56× 56 pixels respectively. Distortion by enlarging the images have thus been
kept quite low and the results indicate that the performance increases due to the
extra information available with larger image sizes.

When training for 500 epochs, the image size seems to not matter greatly. The
smaller image size even generated slightly better results, and this combined with the
significantly increased training time makes larger image sizes very disadvantageous
to use in comparison with a smaller size.

4.2.3 Dataset Analysis
An observation that can be seen in virtually all of the test cases is that the validation
accuracy is notably higher than the test accuracy. The reason behind this is most
likely because the dataset actually contains many images of the same signs from
different distances and angles, but with the same weather conditions and surrounding
noise, such as background and objects partly blocking view of the signs. This means
the images can be very similar, especially with regards to lighting and background
noise. When the dataset is loaded, all the images are randomly shuffled to attain
a mix of classes in the training and validation sets. Because of this, the validation
data is likely to contain images correlated to images used for training, leading to
higher accuracy since the network has been trained on very similar images. This is
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not the case with the testing data, which stems from a completely separate set of
images of other traffic signs, and thus the accuracy is considerably lower but can be
viewed as the ability of the network to generalise to previously unseen datasets.

4.3 Discussion
The best results achieved, 98.81 %, were generated by creating an ensemble out of
the best performing network, which was a slightly larger network than the baseline
architecture, in addition to making use of longer training runs and a slightly larger
learning rate than in the initial design. The performance was just below that of
humans on the same dataset, 98.84 %, which shows how powerful even a relatively
simple CNN can be.

Of course it is always possible (in theory at least) to conduct further testing
to try to improve the results, and this is no exception. The results for class 28 for
example, show that CNNs can detect features that are not important to the subject
at hand. This can be alleviated by some form of pre-processing to remove unwanted
features. It would also be possible to add handcrafted features as input in addition
to the images. All hyperparameters could be more finely tuned or combined in other
ways to see if any small changes would yield better results. Using a different, perhaps
larger, baseline architecture might also generate different results that may (or may
not) be worth looking into. If time permits, running training for more epochs is also
desirable since this should increase the accuracy at least some, as long as it does
not introduce overfitting. By analysing the loss function it would be possible to see
how far the network can be pushed, i.e. for how many epochs it can run, before
overfitting becomes an issue.

Due to the nature of CNNs it is often difficult to understand why they get the
results they do, and by extension how they best can be improved upon. Often it is
impossible to know what changes need to be made, and the only way to find out is to
test extensively, which quickly becomes time consuming. A good plan to structure
training and testing, as well as being aware of if the plan at some point should be
deviated from, is highly recommended. A decent GPU definitely helps as well.
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5
Detection of Alzheimer’s Disease

This section aims to describe how the detection of Alzheimer’s disease from MRI
images was conducted, beginning with a description of the investigated methods in
section 5.1, followed by the results and performance evaluation in section 5.2 and a
general discussion of the results in section 5.3.

5.1 Methods Investigated in this Thesis
Diagnosing Alzheimer’s disease is no trivial task. This section aims to describe
how a deep learning classification system for attempting to do just that was set up,
beginning with how training and testing was conducted, followed by an explanation
of the datasets used, and lastly a short description of the implementation of the
program itself.

5.1.1 Training, Validation, and Testing
The dataset used stems from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
as i described more indepth in section 5.1.2. Testing on the ADNI dataset was not
as extensively conducted as for the GTSRB dataset, described in section 4. The
network structure used was very similar to the baseline architecture described in
section 4.1.1 and can be seen in figure 5.1. The biggest difference between the two
structures is that the input images are three dimensional MRI images instead of reg-
ular RGB images, leading to three dimensional computations. The input consists of
one channel (gray scale) MRI images that have been rescaled to size 64×64×64 vox-
els (3D pixel). It was sent into the network in batches of only two at a time due to
memory constrainst preventing larger batches from being used. First comes one 3D
convolutional layer with 32 5× 5× 5 filters, zero padding is two on all sides of the
image (cube) to maintain the size after convolution. A stride of one is used in each
dimension. The convolutional layer is then followed by a linear rectifier and a max
pooling layer, with spatial filter size 2×2×2, which downsamples each dimension to
half its size, i.e. the output is now 32 feature maps of spatial size 32×32×32. Then
another 3D convolutional layer, a linear rectifier, and one more pooling layer with
the same settings follows. The feature maps are now of spatial size 16 × 16 × 16.
Finally, the network ends with two fully connected layers, the first with 128 units
and the second with two output units (the class probabilities), with a linear rectifier
between them. During training, dropout rate of 0.5 is applied on both layers. The
final output layer applies the softmax function to calculate the class probabilities.
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Input: MRI image,
size 64× 64× 64

3D Convolution: 32 filters,
spatial size 5 × 5 × 5, zero
padding 2, stride 1
ReLU: f = max(0, x)
Outputs 32 feature maps of spa-
tial size 64× 64× 64

×32
MaxPool: spatial size 2× 2× 2,
no padding, stride 2
Outputs 32 feature maps of spa-
tial size 32× 32× 32

×32
3D Convolution: 32 filters,
spatial size 5 × 5 × 5, zero
padding 2, stride 1
ReLU: f = max(0, x)
Outputs 32 feature maps of spa-
tial size 32× 32× 32

×32 MaxPool: spatial size 2× 2× 2,
no padding, stride 2
Outputs 32 feature maps of spa-
tial size 16× 16× 16×32

FC: 0.5 dropout rate, ReLU
Outputs 128 units

128 FC: 0.5 dropout rate, softmax
Outputs 2 units (class probabili-
ties)

Figure 5.1: Baseline architecture used for training and testing on the ADNI
dataset.

All tests were run for 50 epochs, using one training set and one validation set, no
cross-validation was applied. Testing was done using both the original images and
slightly cropped images, with the aim of focusing more on the brain and minimizing
the surrounding skull and eyes etc. The cropping was done non-uniformly, since
the images themselves are not uniform. The zero rule, ZeroR, was also applied for
comparison. ZeroR classifies everything as the majority class of the training example
and is a simple classification method often used as a benchmark for classification.
It has higher accuracy on a binary classification problem than simply tossing a coin
(which should have 50 % accuracy, if the coin is fair), how high depends on the class
distributions, but the chosen classification method should at least generate as high
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accuracy as that of ZeroR, otherwise the chosen method can be deemed useless.

5.1.2 Dataset
The dataset used in this thesis was obtained form the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) database (adni.loni.usc.edu). ADNI is a global project
that makes reliable clinical data available to researchers of Alzheimer’s disease. It
was launched in 2003 as a public-private partnership, led by Principal Investiga-
tor Michael W. Weiner, MD. ADNI aims to test if it is possible to combine serial
magnetic resonance imaging (MRI), positron emission tomography (PET), other bi-
ological markers, and clinical and neuro-psychological assessment to examine and
measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s
disease. The data itself is collected, validated, and utilized by ADNI researchers[8].

Two different types of MRI images are used in this thesis to train the network
separately. The first type is regular MRI with T1 weighing. They provide a full
picture of the body clearly showing both bone and softer tissue. The second type is
Diffusion Tensor Imaging (DTI). These images shows the diffusion of water in tissue
and thus highlight the brain more, since ample diffusion takes place there.

Both of the image types are split into one training and one validation set. The
sets are split in such a way that no patient exists both in the training and the
validation set, in order to avoid correlation between the sets. Since several patients
have images taken at different visits over the years, images of the same patient
can exist within either the training or validation sets, but never in both. The DTI
dataset also has multiple images of the same patient taken at the same visit and
therefore the full dataset was split into both a larger and a smaller dataset. In the
smaller dataset only one image from each visit was used and in the larger all images
from the visits were used.

In total 826 regular MRI images were used, 77 % (634) of them for training
and the remaining 23 % (189) for testing. For the DTI images 378 images made up
the smaller dataset, 75 % (282) of them were used for training and 25 % (96) for
testing, and 10, 886 made up the larger dataset, which was split up into 77 % (8410)
for training and 23 % (2476) for testing. The distribution of AD and normal images
in the different sets used can be viewed in figure 5.2

Figure 5.3 shows the center slices of two example images from the regular MRI
dataset, one from a patient diagnosed with Alzheimer’s disease and one from a
healthy person. As mentioned, the images were also cropped, an example of which
can be seen in figure 5.4 where the examples images from figure 5.3 have been
cropped to remove some of what is not a part of the brain itself.

Figure 5.5 displays DTI images of a healthy brain and one afflicted by AD. As
can easily be observed the brain is much better highlighted when compared to the
images in figure 5.3
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Figure 5.2: Distribution of images showing brains with and without AD in the
used datasets. Distribution is shown in percentage. The total number of MRI
images used are 826, the small DTI dataset consists of 378 images, and the large of
10,886 images.
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(d) MRI images from a patient with Alzheimer’s disease.

(h) MRI images from a healthy person.

Figure 5.3: Example MRI images from the ADNI dataset, one with Alzheimer’s
disease (top) and one healthy person (bottom)[8].

65



5. Detection of Alzheimer’s Disease

(d) MRI images from a patient with Alzheimer’s disease.

(h) MRI images from a healthy person.

Figure 5.4: Example of how the images were cropped to enable the brain itself to
take up a larger part of the image.
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(a) DTI image of brain with AD (b) DTI image of healthy brain

Figure 5.5: Examples of DTI images from the ADNI dataset[8].
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5.1.3 Implementation
For the implementation of this system, the code used for the traffic sign recognition
part was modified to be able to load the dataset using the Python library NiBabel.
The network itself was also modified to be able to handle three dimensional images,
as well as designed to classify the new images.

For this implementation, the Keras library was used instead of Lasagne. Keras
allows for fast and easy prototyping, and like Lasagne uses Theano, which made
it appropriate to use for this problem and greatly simplified the implementation
process.

5.2 Results and Performance Evaluation
The results from testing described in section 5.1 are presented in tables 5.1 and
5.2, when using the regular MRI images and DTI images respectively. The first
column is the name of the test, the second the accuracy on the dataset used for
training, and the third column the test accuracy on the completely separate test
dataset, both after 50 epochs of training. The network structure used is described
in figure 5.1 in section 5.1.1. Cropping of the regular MRI images and the small
dataset of DTI images was conducted non-uniformly, i.e. differing amounts for each
dimension of the images, to better fit the brains in the images. The large dataset of
DTI images was not cropped. In the tables can also the benchmark results obtained
from applying the zero rule, ZeroR, be found, which is also described in section 5.1.1.

Table 5.1: Results when using regular MRI images from the ADNI dataset, both
when using the original images, slightly cropped images, and compared to the bench-
mark given by the zero rule, as explained in section 5.1.1, where also a detailed
description of the network used can be found. Training accuracy is the accuracy on
the dataset used for training, while test accuracy is the accuracy on a completely
separate dataset. All training was run for 50 epochs.

50 epochs
Architecture Train acc. Test acc. Training Time

MRI 97.79 % 58.20 % 1 h 28 m
MRI Cropped 98.90 % 58.73 % 1 h 28 m

ZeroR 62.73 % 64.02 % –
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Table 5.2: Results when using the DTI images from the ADNI dataset, one small
dataset containing only one image from each patient and one larger containing mul-
tiple images from the same patient. The images in the smaller dataset were also
cropped for one test case. Comparison with the benchmark accuracy obtained from
applying the zero rule can also be seen, which is described in section 5.1.1, where
also a detailed description of the network structure can be found. Training accuracy
is the accuracy on the dataset used for training, while test accuracy is the accuracy
on a completely separate dataset. All training was run for 50 epochs.

50 epochs
Architecture Train acc. Test acc. Training Time
DTI small 92.20 % 59.38 % 40 m

DTI small cropped 91.13 % 53.12 % 43 m
DTI small ZeroR 67.37 % 70.83% –

DTI large 99.98 % 65.19 % 19 h 36 m
DTI large ZeroR 50.01 % 50.00 % –

5.3 Discussion

Table 5.1 and table 5.2 both show that detection of AD is a much more complex
task, compared to classifying traffic signs. ZeroR actually outperforms the trained
network in all cases but one and overfitting of the network is obvious, which can be
seen when comparing the accuracies on the training sets and test sets. One reason
behind the poor results can be the network structure, due to limitations in hardware
a larger network could not be tested. Another probable reason is the small number
of images in the datasets used, CNNs are known for needing big quantities of images
to be able to train properly. It can be observed that in the case when many images
were available for training, as was only the case for the large DTI dataset, the
network accuracy beat the ZeroR accuracy by 15.19 percentage units, showing clear
signs that it was able to learn at least some differences between a healthy brain and
one with AD. Even though many of the images in this dataset were very similar,
as several scans of the same patient were recorded during the visits, the extra data
appears to have helped train the network better. However, when separating the
datasets into training and testing, it was made sure that no patients would appear
on both, so as not to create any correlation between the datasets.

Other things that can be seen is that trimming the images to show primarily
the brain actually has either no or even a detrimental effect on the results. This
would suggest that having a large blank space in the images does not affect the
results very much.

No larger differences are observed between using regular MRI or DTI images
except for the large DTI dataset, the main cause of this is probably the number of
images. But since no more regular MRI images were available it could not be tested
to see if the results would have been comparable. Intuitively, the DTI images would
appear to be better suited for the task, since they highlight the brain better and
thus provide a clear area of interest for the network. However, CNNs are not easily
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analyzed and the network could be able to identify features not clearly visible to the
human eye.

Using Keras instead of Lasagne revealed some limitations with the library. The
system quickly ran out of memory when trying out larger network designs, which
limited the size of networks that could be tested. The larger size of the input data to
the network also contributed to this. Since input size of the images were both higher
resolution and in 3D, compared to the traffic signs, it was very time consuming to
train the network. Even the small DTI dataset consisting of just under 400 images
took around 40 minutes to train on the relatively simple network, and this was only
for a single run over data, not 10 as was done for the traffic signs. Because of this,
10-fold cross-validation was not used as it was deemed too resource intensive and did
not provide enough of an advantage to justify the extra costs in run time. The large
DTI dataset would have taken over a week to train using 10-fold cross validation,
which was not considered justified. Note that only the training time for the network
is shown in the tables, not including loading and reshaping the images. It took
considerably longer time to transform and load the larger 3D images into memory
when compared to the traffic sign dataset. In the case of the large DTI dataset it
took close to two hours for this process, the traffic sign dataset took under a minute.
This can of course be alleviated by storing the matrices containing the transformed
image data as binary files ready to be loaded into python quickly. This would have
been almost a necessity if further testing on the subject had been done.

The explanation for ZeroR receiving a higher test accuracy than training accu-
racy, which is generally not possible with machine learning algorithms, is because
it only takes which class is the majority class in the training dataset into consider-
ation, and then classifies everything in the test dataset as this class. This means
the accuracy is only dependant on the distribution of the majority class in the two
sets, which usually differs and in this case the majority class of the training dataset
makes up a larger part of the test dataset. The class distributions can be seen in
figure 5.2 in section 5.1.2.

To summarise, the results are not excellent but lays the ground for further
research. The tests were performed mainly to see whether a simple network has
the potential to solve this type of classification problem, not with the intention of
creating a perfectly functioning system. The indications are that larger datasets,
and probably deeper networks, would be the best candidates to test in future work.
However, this would also require a much more powerful computer than used in this
study. Additionally, it would also be interesting to investigate detection of early
signs of Alzheimer’s, which are more subtle and difficult to distinguish, but could
prove extremely beneficial for the research community if successful.
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Ethical Aspects and Sustainability

In this section ethical aspects and sustainability is discussed. Present and future
issues that can arise concerning machine learning and its applications are brought
to light, along with problems it may solve.

6.1 Machine Learning and Artificial Intelligence
The digitalised society has led to an enormous amount of data becoming available
for analysis. Data is collected all the time when we use our phones and computers,
both in ways we are aware of and in ways we may not be. Companies like Facebook
and Google use this today to map our interests and provide us with services that
tailors to these interests. Though this clearly has advantages it also causes concerns
for how it affects our integrity. How much information should be collected, who can
use it and in which ways? Do the benefits of the developed system always justify
the costs, e.g. on personal integrity? These are important questions that should
always be considered when working with personal data.

6.2 Traffic Sign Recognition and its Areas of Use
There are several aspects to consider regarding ethics and sustainability of traffic
sign recognition and its potential uses. What kind of data is collected and how is it
used? If images are collected by the vehicles, not only traffic signs will be present
but also people, registration plates, etc. How this information is stored and who has
access to it is important to be aware of for the integrity of those present along the
road.

Another important ethical aspect is who is liable if or when something goes
wrong, e.g. the speed limit is displayed inaccurately in an assistance driving pro-
gram, can the developers behind the system be held liable for fines received while
driving over the speed limit? More serious or even fatal situations can arise when
autonomous driving systems are being used, can the creators behind the vehicle be
held liable then? Or is it the sole responsibility of the person behind the wheel,
even though that person was not in actual control of the vehicle? These are impor-
tant questions to consider before putting these kinds of systems to use, both for the
companies developing them, legislators, and end users of such systems and products.

From a sustainability viewpoint, perhaps autonomous driving can be an im-
provement on the environment, if it can better plan its driving than humans. Trans-
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port can also be done cheaper and any time of day, any time of the week. How this
will affect the job market however, is a whole other matter to consider.

6.3 Alzheimer’s Disease Detection and Medical
Applications

The average age of the population in the industrialized world is ever increasing. This
will lead to more people requiring medical attention, which will strain the health
care of today. A change to make health care more efficient is required and automated
systems that can either do complete diagnosis, or just assist in doing so would be
tremendously beneficial. It is also possible that computers in many regards could
be more reliable since they do not tire and never forget. They can make use of huge
amounts of data in their analysis and would be able to perform better with more
experience.

Apart from performing the analysis done today, new types of diagnosis might
become available to detect diseases at an early stage allowing, for faster and better
treatment and preventing complications that would arise if the disease is allowed to
progress. This would mean better quality of life for the patients and a lower cost
for the treatments. Since machine learning algorithms often can find correlations
humans cannot this is not outside the realm of possibility and would be vary valuable.

There is always the question of responsibility, which is even more present in
the health care sector where the lives of people are directly affected. If a person
is harmed due to a computer error, who is to be held liable? Even if a computer
just assists a doctor, what if a diagnosis is made based on erroneous results, can
the doctor be held responsible for trusting the system? Or the developers behind
the system? These questions are very central and have no simple answers. Since
deep learning algorithms can be difficult to analyse there is the added factor that
one might not know exactly how the computer acquires its results and therefore it
might be hard to prevent errors from happening again. There is much work to be
done here in order to protect both the patients, but also the individual doctors using
the systems.
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Conclusions

To sum up the findings of this thesis, relatively simple CNNs perform well on traffic
sign classification, but not as well on Alzheimer’s disease detection. The differences
in performance could be attributed both to the amount of data available, and also
to that AD is a more complex classification problem due to the visual differences
being more subtle. To further study this problem, a deeper network is suggested
to be used. This could potentially increase the performance, however, this would
also require significantly more computational power. Additionally, a larger dataset
would likely increase performance and reduce overfitting. It is well known that for
deep learning problems, a large dataset is needed to accurately train the weights of
the algorithm used.

Alternating the hyperparameters can be beneficial to finding an optimal net-
work structure, but also time-consuming and should be done with care. One must
also consider that the network finds all types of similarities between the training
images, not just the ones relevant to the problem at hand. Testing showed that
performance gains were relatively minor when comparing larger networks to smaller
ones on the traffic sign classification problem. There needs to be a balance be-
tween computational cost, i.e. run time and available memory, and the network
performance.

Even though it is difficult to analyse what really happens between the input
nodes and output nodes of a CNN, their use is of great advantage for image analysis
since they scale well when compared to other available machine learning algorithms.
There have been great advancements in the field of deep learning in recent years,
the reason being both the amount of data readily available and increase in computer
power. It is a technology already used by major corporations today and will likely
remain so for the foreseeable future.
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