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Sweden
Telephone + 46 (0)31-772 1000



Abstract

Bordered pits connect adjacent tracheid cells in softwoods and enable water transport between
them. The pits are interruptions in the cell wall, consisting of a permeable margo with a cen-
tered impermeable torus and the cell wall overarching the margo and part of the torus.

Knowledge of how large molecules (such as hemicelluloses and enzymes) are transported
through pits is important for effectively extracting biopolymers from wood. Biopolymers can
be used to produce renewable products, e.g. bioplastics, which can replace fossil fuel based
materials.

The main transport mechanism for large dissolved molecules through bordered pits is diffu-
sion. This work aims to find effective diffusion coefficients for large molecules through a pit
and to determine the pit component’s individual contribution to the diffusive resistance.

To achieve this, three models of a bordered pit was developed and the lattice Boltzmann
method was used to simulate diffusion through these models. Molecular weights between 1
and 40 kDa were examined, since this is the molecular weights of interest during extraction.

It was found that the effective diffusion coefficient is 16.9 times smaller than the free diffusion
coefficient. The borders, torus and margo constitutes 98.8, 1.1 and 0.1 % of the total resis-
tance to diffusion respectively. To increase the diffusive mass transfer rate through pits it is
therefore necessary to partially or entirely remove the borders.
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1 Introduction

Global warming is a major contemporary environmental concern. It is likely that
the reason is increased atmospheric concentration of greenhouse gases, largely due
to human use of fossil fuels. [1] This has strengthened the incentive to consider more
sustainable raw materials for production of chemicals and value-added products. A
promising alternative is lignocellulosic materials [2].

Lignocellulosic biomass is mainly comprised of complex networks of cellulose, hemi-
cellulose and lignin. In a material-driven biorefinery, extraction of these components
as long polymers is desired, but the entangled structure aggravates the separation.
The extraction can be enhanced by adding enzymes to cut crucial bonds in the
network. For the large enzymes to effectively reach the reaction sites the wood
structure has to be loosened up. [3] Mild steam explosion is a pretreatment method
which increases the cross-sectional area available for diffusion by introducing cracks
in the wood structure [4].

For biorefinery products to be competitive with the fossil alternatives the cost effi-
ciency has to be improved. The pretreatment and enzyme addition are expensive [5]
and knowledge of the mechanisms occurring in those production steps are important
for designing efficient overall processes.

In softwoods, most of the biopolymers and lignin are found in tracheid cell walls [6].
Tracheids transport water and provides stability and strength to the tree [7]. Ad-
jacent tracheids are connected by bordered pits, as shown in fig 1. The pits are
interruptions in the cell wall, consisting of a permeable margo with a centered im-
permeable torus and the cell wall overarching the margo and part of the torus (fig
3). [8]

Behr et al [9] used an experimental approach to study diffusion of sodium chloride
and naphthalene through wood. Diffusion of water vapor through pits was modelled
using the finite difference method by Wadsö [10]. Valli et al [11] used the lattice
Boltzmann method to simulate water flow through bordered pits, but the membrane
was modelled as a porous medium. Schulte [8] and Schulte et al [12] developed de-
tailed models of bordered pits and utilized computational fluid dynamics to study
water flow through them.

The diffusive behavior of large molecules in pits has not been investigated, but is
an important field of study in understanding how biopolymers and enzymes move
through the wood structure. This work aims to find effective diffusion coefficients
through conifer bordered pits for biopolymers and enzymes and to determine the pit
component’s individual contribution to the diffusion resistance. Molecular weights
between 1 and 40 kDa were examined, since this is the molecular weights of interest
during extraction [13].

1



2 Background

In this section a brief introduction to the structure of conifers is given, as well as
an in-depth description of bordered pits. Thereafter, the mechanism for diffusion of
mass and the lattice Boltzmann method for simulating diffusion is described.

2.1 Structure of conifers

Softwoods are comprised of longitudinal and radial tracheid and parenchyma cells.
Tracheids transport water and provide stability and strength to the tree. Parench-
yma cells produce extractives, stores starch and surrounds resin canals. [7] More
than 90 % of the total volume is longitudinal tracheids. Their length is commonly
between 1.2 and 7.5 mm and the diameter is approximately 1 % of the length. [6]
Earlywood tracheids are formed during the first part of the growth season and have
large cell lumens and thin walls compared to tracheids in latewood. [14] Earlywood
constitutes 40 - 80 % of conifer width and accounts for up to 90 % of the water
flow path [15]. Figure 1 shows longitudinal tracheids in earlywood and latewood in
Norway spruce (Picea abies).

Figure 1: A confocal fluorescent scanning laser microscopy (CFSLM) image of longitudinal tra-
cheids in earlywood and latewood in Norway spruce (Picea abies). Two bordered pits are circled.
Courtesy of P. Kvist.

Neighboring tracheids are connected by bordered pits, as shown in fig 1. The pits
are interruptions in the cell wall, consisting of a permeable margo with a centered
impermeable torus and the cell wall overarching the margo and part of the torus.
Figure 3 shows the general structure of a bordered pit. The margo and torus (to-
gether called membrane) in a bordered pit in Grand fir (Abies grandis) are shown
in figure 2.

2



Figure 2: Margo and torus in a bor-
dered pit. Based on a SEM image of
an earlywood bordered pit in Grand fir
(Abies grandis) by Petty [16].

Figure 3: Structure and nomenclature of a bordered
pit.

Pits enable transport of water between tracheids. Air embolisms are inhibited to
spread since their presence aspirates the pits by displacing the torus to the borders.
The aspiration impedes water transport between adjacent tracheids. [8]

Hacke et al [17] studied bordered pits in 16 different conifers and found the diame-
ter to vary between 6 and 20 μm. Siau [6] state pit diameters to commonly range
from 6 to 30 μm and earlywood pits to be larger and have a less compact margo
than latewood pits. Pit dimensions and margo structure are also dependent on tree
species and growth conditions [8, 18], but variations are large even within the same
tree [12, 19,20].

The diameter of the aperture is about 50 % of the torus diameter, which usually is
33 to 50 % of the pit diameter [6]. Reported values for torus thickness vary between
0.3 and 1.0 μm [6, 21]. The margo is approximately 0.025 to 0.5 μm thick [6, 8].
Schulte [8] and Schulte et al [12] state values for pit depth between 2.28 and 4.57
μm, and that is supported by Petty [16] and Wadsö [10].

The margo strands consist of cellulose, and the torus and cell wall are comprised of
cellulose, hemicellulose and lignin [6]. Cellulose is the most abundant component in
softwood, as it constitutes approximately 42 wt-%. Hemicellulose and lignin make
up about 27 and 28 wt-% respectively. Extractives and inorganic compounds are
mainly found in the cell lumen and accounts for the remaining 3 wt-%. [22]

Cellulose is a polysaccharide made up by thousands of glucose monosaccharides. Up
to 40 cellulose polymers are arranged into crystalline microfibrils. The microfibrils
are thin and long and provide tensile strength to the tree. Lignin is an irregularly
structured polymer comprised of hundreds of aromatic phenylpropane units. Lignin
inhibits both deformation of microfibrils and biodegradation. Hemicellulose is an
umbrella term for several polysaccharides. They have a random structure [23],
are smaller than cellulose and consist of glucose but also other monomers, such
as xylose, mannose and arabinose. Glucomannan and arabinoglucoronxylan are
the most abundant hemicelluloses in softwoods. The function of hemicelluloses is
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ambiguous, but most probable is that they tie lignin and cellulose together. [22]

2.2 Diffusion of mass

Diffusion is a process where random movement of individual molecules occur con-
current with a net movement of molecules from a zone of high concentration to a
zone of low concentration. A mathematical description of diffusion for an isotropic
system with constant temperature and pressure is given in rectangular coordinates
by eq 1.

∂C1

∂t
= D12

(
∂2C1

∂x2
+
∂2C1

∂y2
+
∂2C1

∂z2

)
(1)

where C1 is the concentration of specie 1, D12 is the diffusion coefficient of specie 1
in specie 2 and t is the time. The diffusion is assumed to occur in three dimensions
and x, y and z represent the directional axes. [24–26] The diffusive flux of specie 1,
J1, is described by Fick’s first law (eq 2) [26].

J1 = −D12∇C1 (2)

The diffusion coefficient is generally high for gases, low for liquids and very low
for solids. It is dependent on temperature, pressure and concentration, but also on
size and form of the diffusing specie. There are numerous ways of estimating this
coefficient, both experimentally and theoretically. The Stokes-Einstein equation (eq
3) determines diffusion coefficients of large rigid spherical molecules in dilute liquids
with a precision of 20 %. [25]

D12 =
kBT

6πµR0

(3)

kB is the Boltzmann’s constant, T is the temperature, μ is the viscosity of the
solvent and R0 is the radius of the diffusing molecule. [26] Dissolved enzymes com-
monly forms spherical globules [27] which enables the use of eq 3. If the assumption
of sphericity is not valid the radius in eq 3 can be replaced with an equivalent radius.
This is necessary for dissolved polymers, since they are not spherical but more or
less stretched out. [25]

If the solution is constrained by a complex geometry the rate of diffusion is decreased.
The geometry act as an obstacle, forcing the diffusing specie to travel longer distance.
To take this into account the free diffusion coefficient is modified into an effective
diffusion coefficient. [25] There are several ways to do this, but commonly it includes
scaling with the tortuosity and porosity. The tortuosity is defined as the ratio of
the length of the path for hindered diffusion to the length of the path for free
diffusion. [28]

2.3 Lattice Boltzmann method for diffusion

The lattice Boltzmann method is an algorithm applicable to simulating diffusion. It
solves the diffusion equation (eq 1) by modelling fluid molecules as rigid particles,
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and a statistical approach is used to avoid individual tracing of the particles. [29] This
section describes the lattice Boltzmann method and explain why it is the preferable
method for simulating diffusion in complex geometries.

2.3.1 The Boltzmann transport equation

The Boltzmann transport equation (eq 4) is the foundation of the lattice Boltzmann
method.

∂f

∂t
+ c∇f +

F

m

∂f

∂c
= Ω (4)

where f is the velocity distribution function for molecules confined by r and r +
∂r at time t. c is the particle velocity, F is an external force (e.g. gravity) acting
on the particles, m is the molecular mass and Ω is the collision operator. [29]

Particles influenced by an external force are accelerated or decelerated. If the force
and the distribution function is known at time t and the particles do not collide, it
is possible to find the distribution function at time t + dt. This process is called
streaming and is described by the left side of eq 4. The right side of eq 4 incorporate
the collisional effect into the model by accounting for the change in the distribution
function when particles streaming towards a certain position collide and end up
somewhere else. [30]

The collision operator is dependent on the distribution function in a complex way,
which makes the Boltzmann transport equation difficult to solve. By replacing it
with the Bhatnagar-Gross-Krook approximation (eq 5) the computational cost is
reduced. [29]

Ω =
1

τ
(f eq − f) (5)

The main idea behind the approximation is that collisions occur because the distri-
bution function deviates from equilibrium. f eq is the local equilibrium distribution
function towards which the distribution function is relaxed. The relaxation rate
is determined by the relaxation factor τ. [31] There are schemes utilizing two or
more relaxation factors (two- and multi-relaxation-time schemes), by splitting the
distribution function into two or more parts [32]. Higher order schemes have higher
accuracy and stability than the simpler Bhatnagar-Gross-Krook approximation. [29]

All parameters are dimensionless and the dimensionless domain is discretized by
dividing it into equal sized lattices [33]. Particles are allowed to occupy a number
of points at the lattice surface and interior. For 3D simulations the D3Q19 setup is
commonly used. It assigns 19 points to each lattice, as visualized by fig 4. [29]
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Figure 4: A lattice and the computational points in a D3Q19 setup.

The discrete Boltzmann transport equation with the Bhatnagar-Gross-Krook ap-
proximation is shown in eq 6.

fi(r + ci∆t, t+ ∆t)− fi(r, t) +
∆t

Nc2
ciFi(r, t) =

∆t

τ
(f eq

i (r, t)− fi(r, t)) (6)

where subscript i ranges from 1 to 19, denoting each of the lattice points. N is a
constant depending on the lattice pattern and Δt is the time step [34].

Particle collisions are assumed to only occur at the lattice sites, while streaming
moves particles between them [29]. Therefore, the solving procedure of eq 6 is di-
vided into two steps: first the right side is calculated to account for collisions, after
which the left hand side is computed to account for streaming. [35]

The main difference in solving eq 6 for various problems lays in the equilibrium
distribution function. For diffusive problems the equilibrium distribution function
is given by eq 7.

f eq
i = Φwi (7)

where Φ is the concentration and wi is the weighting factor in the i direction. Over
a computational lattice site the weighting factors sum to one and the equilibrium
distribution functions sum to the dependent variable. [29]

2.3.2 Complex geometries

The wall boundary conditions are implemented by allowing particles at the lattice
nodes located closest to the solid-fluid interface only stream to sites inside the fluid
domain and not to sites in the solid [35,36]. This is a simple and cost efficient method
of implementing the wall boundary conditions and gives the lattice Boltzmann an
advantage over traditional computational fluid dynamics methods for simulation of
diffusion in complex geometries [34,37].
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3 Methodology

This section describes the bordered pit models used in the simulations and how
biopolymers and enzymes were modeled using model molecules. The simulation set-
tings and resolutions are presented, as well as how the effective diffusion coefficient
was obtained and how the resistances of the individual pit components were deter-
mined. A theoretical expression for the effective diffusion coefficient through a pit
is used to validate the simulation results. The derivation of this expression and the
validation procedure are also described in this section.

3.1 Models of the bordered pit

The membrane structure was based on a scanning electron microscope (SEM) im-
age of an earlywood bordered pit in Grand fir (Abies grandis) by Petty [16]. The
SEM image was imported into Inkscape 0.91, a graphics editor. The trace bitmap
command was used to vectorize the image based on the shade of the pixels. The
vectorized two-dimensional membrane was imported into AutoCAD 2016, where it
was extruded to three dimensions. AutoCAD was further used to create rest of the
pit and a hollow square box surrounding it. Average pit dimensions were chosen
based on literature values [6, 8, 10, 12,16,17,21].

Three pit models were developed - representing an entire pit, a pit without margo
and a pit without both margo and torus (tab 1).

Table 1: Components accounted for in each model.
Model Included components

A borders, torus, margo
B borders, torus
C borders

Model A, B and C are visualized in fig 5, 6 and 7.

Figure 5: Model A. The bor-
ders are partially removed for
illustrative purpose.

Figure 6: Model B. gggg
ggggggg gg ggg gggg gggg
ggggg gggggg g ggggggg

Figure 7: Model C.gggg
ggggggg gg ggg gggg gggg
ggggg gggggg g ggggggg

Table 2 shows the dimensions of the bordered pit. The nomenclature is same as in
fig 3.
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Table 2: Dimensions of the bordered pit.
Pit component dimension Size [μm]
Margo thickness 0.05
Torus thickness (center) 0.50
Torus diameter 7.45
Pit diameter 16.10
Aperture diameter 3.70
Aperture depth 0.63
Pit depth 4.00

The simulation box dimensions are shown in tab 3, where z is the depth of the box
and x and y are the cross-sectional components.

Table 3: Dimensions of the simulation box.
Box dimension Length [μm]

x 12.00
z 20.00
y 20.00

3.2 Model molecules

The polysaccharide dextran was used as model molecule for the biopolymers, since
free diffusion coefficients and equivalent radiuses are not available for them. Dextran
and the biopolymers are both comprised of long chains of sugar monomers and the
diffusive behavior of the two polymers is therefore expected to be similar. Arrio-
Dupont et al [38] has determined free diffusion coefficients of dextran of various sizes
in water (fig 8).

Figure 8: Free diffusion coefficients of dextran in water. [38]

The model enzyme is assumed to be spherical, which enables the use of eq 3 to
calculate the free diffusivity and eq 8 to compute the radius required in eq 3.

8



R0 = 0.066M1/3 (8)

where M is the enzyme weight in Dalton and R0 is the radius in nanometer [27]. Fig-
ure 9 shows the free diffusion coefficient of the model enzyme in water for molecular
weights between 1 and 40 kDa.

Figure 9: Free diffusion coefficients of the model enzyme in water.

The model molecules are assumed not to get stuck in the margo. This is confirmed
by comparing the average radius of 0.12 μm for the margo pores in Grand fir (Abies
grandis), reported by Petty [16], with the equivalent radius of a 40 kDa dextran
molecule (calculated from eq 3, with the free diffusion coefficient from fig 8) and the
radius of a 40 kDa enzyme (computed from eq 8), as shown in eq 9a and 9b.

rpore
R0,dextran

= 19.5 (9a)

rpore
R0,enzyme

= 53.2 (9b)

Since the ratios in eq 9a and 9b are much larger than 1, the pit membrane pores
are significantly larger than the largest polymer and enzyme used in this work. The
assumption is therefore valid.

3.3 Simulations

The pit models in fig 5, 6 and 7 were imported into Gesualdo 1.3.2 - a software
for lattice Boltzmann simulations. The effective diffusion coefficient was computed
by first solving eq 1 with the free diffusion coefficient (from fig 8 and 9) to steady
state and thereafter solving eq 2 for the effective diffusion coefficient. This section
describes the simulation settings and resolution.
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3.3.1 Settings

To initiate the simulations a dimensionless concentration difference of the diffusing
specie was specified. The concentration in the inlet and outlet was set to 1.05 and
1.00 respectively and the initial concentration profile was linear between the inlet
and outlet concentration.

Cell walls, borders, margo strands and the torus were treated as impenetrable walls.
The simulations were carried out with a D3Q19 lattice set-up and a two-relaxation-
time scheme. It was assumed that no external force affects the system and that the
solution is dilute so the diffusing molecules do not interact with each other.

3.3.2 Resolution

The simulations were carried out with six different resolutions - labelled S1, S2 and
so on. Table 4 shows the number of lattices in the entire simulation box and in the
x, y and z directions for each of the six cases.

Table 4: Number of lattices in the z, x and y directions and in entire simulation box.
Number of lattices

Resolution 1111 x 1111 1111 z 1111 1111 y 1111 111111 total 111111
S1 286 500 500 71.50 · 106

S2 257 450 450 52.04 · 106

S3 229 400 400 36.64 · 106

S4 200 350 350 24.50 · 106

S5 172 300 300 15.48 · 106

S6 143 250 250 8.94 · 106

By dividing the simulation box dimensions (tab 3) with the number of lattices in
each direction (tab 4) the lattice size is obtained (tab 5).

Table 5: Dimensions of the lattices.
Lattice size

Resolution 11 x [μm]11 11 z [μm] 11 11 y [μm] 1 11 volume [μm3 · 104] 11
S1 0.042 0.040 0.040 0.67
S2 0.047 0.044 0.044 0.92
S3 0.052 0.050 0.050 1.31
S4 0.060 0.057 0.057 1.96
S5 0.070 0.067 0.067 3.10
S6 0.084 0.080 0.080 5.37

The results in section 4 were obtained with the S1 resolution, while S2 - S6 were
used in section 4.3.4 to investigate the grid dependence.

3.4 Resistance to diffusion

The pit component’s individual contribution to the resistance to diffusion was com-
puted by first relating the effective diffusion coefficient to the free diffusion coefficient
for each model i (A, B or C), as shown in eq 10.

xi = 1− Deff,i

D12

(10)
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where xi is the normalized decrease of the free diffusion coefficient due to the ob-
stacles imposed by model i. The part of the decrease accredited the borders are
calculated by relating the normalized decrease of the model containing only the
borders to the normalized decrease of the full pit model (eq 11).

Rborders =
xC
xA

(11)

The only difference between model B and C is the presence of a torus in B but not
in C. The torus resistance is therefore obtained as in eq 12.

Rtorus =
xB − xC
xA

(12)

The margo resistance is calculated according to eq 13.

Rmargo =
xA − xB
xA

(13)

3.5 Theoretical model

In this section a theoretical expression for the effective diffusion coefficient through
model A (fig 5) is derived and the data used when calculating the effective diffusion
coefficient with this model is reported.

3.5.1 Derivation

By integrating eq 2 along the x direction - assuming diffusion in one direction only
- and multiplying both sides with the cross-sectional area available for diffusion, an
expression for the diffusive molar flow is obtained (eq 14).

n1 = −D12A
∆Ci

∆x
(14)

where n1 is the molar flow of specie 1 and A is the cross-sectional area available for
diffusion. ∆C1 is the concentration difference of 1 and ∆x is the distance of diffusion.

Equation 14 assumes free diffusion but by introducing an effective diffusion coeffi-
cient it can be applied to an entire pit (eq 15).

n1 = −Deff,tĀ
Cin − Cout

∆x
(15)

The cross-sectional area for diffusion in eq 15 is taken as a weighted mean area for
the entire simulation box, where the area available for diffusion in each part of the
box (aperture, chamber, membrane, box lumen) is weighted with the ratio of the
length of that part to the total box length, as shown in eq 16.

Ā = 2Aa
∆xa
∆x

+ 2Ac
∆xc

∆xpit
+ Am

∆xm
∆x

+ 2Al
∆xl
∆x

(16)
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The molar flow through each part of the pit is identical. By using eq 14 for each of
the components the molar flow can be expressed as in eq 17a - 17g.

n1 = −D12Aa
C0a1 − Ca1

∆xa
(17a)

n1 = −D12Aa
C0a2 − Ca2

∆xa
(17b)

n1 = −D12Ac
C0c1 − Cc1

∆xc
(17c)

n1 = −D12Ac
C0c2 − Cc2

∆xc
(17d)

n1 = −D12Al
C0l1 − Cl1

∆xl
(17e)

n1 = −D12Al
C0l2 − Cl2

∆xl
(17f)

n1 = −D12Am
C0m − Cm

∆xm
(17g)

Subscript a1 and a2 denotes the first and second aperture, c1 and c2 the chambers,
l1 and l2 the box lumens and m the membrane.

An expression for the concentration difference over the apertures, chambers, box
lumens and membrane is obtained by rearranging eq 17a - 17g into eq 18a - 18g.

C0a1 − Ca1 =
n1∆xa
−D12Aa

(18a)

C0a2 − Ca2 =
n1∆xa
−D12Aa

(18b)

C0c1 − Cc1 =
n1∆xc
−D12Ac

(18c)

C0c2 − Cc2 =
n1∆xc
−D12Ac

(18d)

C0l1 − Cl1 =
n1∆xl
−D12Al

(18e)

C0l2 − Cl2 =
n1∆xl
−D12Al

(18f)

C0m − Cm =
n1∆xm
−D12Am

(18g)

The concentration difference over the entire pit is obtained by rearranging eq 15 into
eq 19.

Cin − Cout = − n1∆x

Deff,tĀ
(19)
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The concentration difference in eq 19 can be expressed by adding the concentration
differences for each pit part in eq 18a - 18g, as shown in eq 20 and 21a - 21h.

Cin − Cout = (C0l1 − Cl1) + (C0a1 − Ca1) + (C0c1 − Cc1) +

(C0m − Cm) + (C0c2 − Cc2) + (C0a2 − Ca2) + (C0l2 − Cl2)
(20)

since

Cin = C0l1 (21a)

Cl1 = C0a1 (21b)

Ca1 = C0c1 (21c)

Cc1 = C0m (21d)

Cm = C0c2 (21e)

Cc2 = C0a2 (21f)

Ca2 = C0l2 (21g)

Cl2 = Cout (21h)

By using eq 20 and the right hand side of eq 18a - 18g the concentration difference
over the entire pit can be expressed as in eq 22.

Cin − Cout = − n1

D12

(
2

∆xa
Aa

+ 2
∆xc
Ac

+
∆xm
Am

+ 2
∆xl
Al

)
(22)

Combining eq 19 and 22 and solving for the effective diffusion coefficient gives a
theoretical expression for the effective diffusion coefficient (eq 23).

Deff,t =
D12∆x

Ā
(

2∆xa

Aa
+ 2∆xc

Ac
+ ∆xm

Am
+ 2∆xl

Al

) (23)

Equation 23 assumes the torus and margo are of equal thickness and does not take
the complex structure of the margo into account.

3.5.2 Data

Table 6 and 7 shows the data used in calculating the theoretical effective diffusion
coefficient in eq 23. The dimensions are same as in the pit model used in the
simulations (tab 2 and 3). The membrane area is obtained from the model in
AutoCAD, by isolating the voids and calculating their area. The chamber area is
taken as the average of the aperture area and the area of a circle with the same
diameter as the membrane.
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Table 6: Lengths used in the theoretical model.
Dimension Length [μm]

∆xa 0.63
∆xl 3.37
∆xc 1.98
∆xm 0.05
∆x 12.00

Table 7: Areas used in the theoretical model.
Dimension Area [μm2]

Aa 10.75
Al 400.00
Ac 107.14
Am 40.49
Ā 261.32

3.6 Validation of results

This section describes how the theoretical model derived in section 3.5 was used for
validation of the simulation results.

3.6.1 Effective diffusion coefficient

The effective diffusion coefficient obtained from the simulations was compared with
the theoretical effective diffusion coefficient according to eq 24.

Deff,t

Deff

(24)

This ratio should be larger than 1 since the theoretical expression only consider
the change in cross-sectional area available for diffusion across the pit and not the
rapid geometrical changes between the pit components, the net-like structure of the
margo or the blocking effect of the torus. A ratio larger than 10 implies a theoretical
effective diffusion coefficient an order of magnitude larger than the effective diffusion
coefficient obtained from the simulations. Such a large difference would be difficult
to justify.

3.6.2 Resistances to diffusion

The part of the total theoretical resistance ascribed the membrane is computed
according to eq 25.

Rmembrane,t =
∆xm/Am

2∆xa

Aa
+ 2∆xc

Ac
+ ∆xm

Am
+ 2∆xl

Al

(25)

and is compared with the membrane resistance from the simulations (eq 12 and 13),
as shown in eq 26.

Rmargo +Rtorus

Rmembrane,t

=
Rmembrane

Rmembrane,t

(26)

The contribution of the borders (eq 27) is obtained by adding the contribution of the
apertures, chambers and box lumens. The box lumens are included in the border
resistance since the borders act as a bottleneck between the lumens and the pit.

Rborders,t =
2∆xa

Aa
+ 2∆xc

Ac
+ 2∆xl

Al

2∆xa

Aa
+ 2∆xc

Ac
+ ∆xm

Am
+ 2∆xl

Al

(27)
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The border resistances in eq 11 and 27 are compared according to eq 28.

Rborders

Rborders,t

(28)

3.6.3 Membrane thickness and area

Varying the membrane thickness and area in eq 23 gives an indication of how sensi-
tive the results are to a deviation from the used parameters. The total box length
is kept same as in the base case (tab 6) as the membrane thickness is altered. To
achieve this, the chamber length is adjusted.
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4 Results

In this section the effective diffusion coefficients through a bordered pit for various
sizes of dextran and enzymes are presented and the pit component’s individual
contribution to the total diffusive resistance is reported. Furthermore, the validity
of the results was examined by using the theoretical model from section 3.5 and 3.6
and the information from the simulations with different resolutions (tab 4).

4.1 Effective diffusion coefficient

The simulation procedure described in section 3.3 resulted in effective diffusion co-
efficients 16.9 times smaller than the corresponding free diffusion coefficients. The
effective diffusion coefficients of dextran and the enzymes is plotted against the
molecular size in fig 10.

Figure 10: Effective diffusion coefficients of dextran and enzymes through a bordered pit.

The effective diffusion coefficient of dextran varies with the molecular weight as
shown in eq 29.

Deff,dextran =
101.2350

W 13/25
(29)

where the unit of the effective diffusion coefficient is μm2/s and the molecular weight,
W , is in kDa. The effective diffusion coefficient of the enzyme vary with the size as
in eq 30.

Deff,enzyme =
101.3412

W 1/3
(30)

Equation 29 and 30 are valid for molecules sizes between 1 and 40 kDa.
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4.2 Resistance to diffusion

By using eq 11, 12 and 13 the resistance of the individual pit components was de-
termined to

• Borders: 98.8 %

• Torus: 1.1 %

• Margo: 0.1 %

Thus, the borders constitute most of the resistance to diffusion and the resistances
imposed by the torus and margo are negligible in comparison.

4.3 Validation of results

This section presents the outcome of the validation of the simulation results, as
delineated in section 3.6.

4.3.1 Effective diffusion coefficient

Equation 24 was used to compare the effective diffusion coefficient from the simu-
lations with the theoretical diffusion coefficient in eq 23. The result is shown in eq
31.

Deff,t

Deff

= 4.5 (31)

The ratio in eq 31 is larger than 1 but smaller than 10 and therefore falls within the
expected interval, as described in section 3.6.1.

4.3.2 Resistance to diffusion

The theoretical contribution of the borders and membrane to the total resistance to
diffusion was computed using eq 25 and 27.

• Borders: 99.3 %

• Membrane: 0.7 %

The theoretical resistances was compared with the resistances in section 4.2 using
eq 26 and 28, resulting in eq 32 and 33.

Rborders

Rborders,t

= 99.5 % (32)

and

Rmembrane

Rmembrane,t

= 167.6 % (33)

4.3.3 Membrane thickness and area

How the theoretical effective diffusion coefficient of a 10 kDa dextran polymer varies
with the membrane thickness is shown in fig 11.
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Figure 11: The effective diffusion coefficient of a 10 kDa dextran polymer at different membrane
thicknesses.

Figure 11 indicates a 2.9 % decrease of the effective diffusion coefficient for an in-
crease of the membrane thickness from 50 to 500 nm. A decrease of the membrane
thickness from 50 to 25 nm increases the effective diffusion coefficient with 0.2 %.

At a membrane thickness of 500 nm the theoretical contribution of the borders and
membrane to the total resistance to diffusion is 93.1 and 6.9 % respectively. At a
thickness of 25 nm the corresponding values are 99.6 and 0.4 %.

Figure 12 shows the theoretical effective diffusion coefficient of dextran at various
cross-sectional areas of the membrane.

Figure 12: The effective diffusion coefficient of a 10 kDa dextran polymer at different membrane
areas.
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A twenty-fold increase of the cross-sectional membrane area from the used value (tab
7) results in a 0.7 % larger effective diffusion coefficient, and the membrane does
not make up any resistance to diffusion at all. A twenty-fold decrease of the area
reduces the effective diffusion coefficient with 12.0 %, but increases the contribution
of the membrane to the total resistance to 12.6 %.

4.3.4 Grid dependence

Figure 13 shows the effective diffusion coefficient through pit model A (tab 1) for a
10 kDa dextran polymer at the six simulation resolutions specified in tab 4 and 5.

Figure 13: The effective diffusion coefficient of a 10 kDa dextran polymer at different resolutions
(tab 4 and 5), through model A (tab 1).

A 10.6 % decrease of the resolution from S1 to S2 reduces the effective diffusion
coefficient with 2.4 %. Reducing the resolution with 50 % (from S1 to S6) decreases
the effective diffusion coefficient with 10.1 %.
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5 Discussion

Values reported in the literature indicate that the pit structure varies depending on
tree species and growth conditions, but variations are large even within the same
tree. This suggests that the effective diffusion coefficients and diffusive resistances
for a pit with different dimensions probably differ from those found in this work.

The pit dimensions are based on average values reported in the literature. The effec-
tive diffusion coefficients and resistances are therefore supposed to represent values
relatively close to what would be obtained if an average for all earlywood pits in a
conifer were calculated. However, an average of the membrane structure is difficult
to determine. Varying the thickness and area of the membrane in the theoretical pit
model (section 3.5 and 3.6) indicates that neither the thickness nor the area have
any large impact on the results, unless the membrane is far thicker and denser than
what have been reported in the literature.

An investigation of the grid dependence was carried out in section 4.3.4. It was
found that the changes in the effective diffusion coefficient were small compared
to the changes in resolution. Any large improvement of the results with increased
resolution is therefore not likely. The sudden jump in effective diffusion coefficient
between S3 and S4 in fig 13 is probably due to that the thin membrane is not suffi-
ciently resolved in S4, S5 and S6.

It is not possible to verify the results with experimental data, due to the small size
of pits. The order of magnitude of the effective diffusion coefficients was however
confirmed by comparing them with those obtained from the theoretical model for
diffusion through a pit. Furthermore, the pit component’s individual resistances
showed good agreement with the resistances from the theoretical model.

Schulte [8] modelled water flow through bordered pits and reported that the margo
and torus together constitutes more than 80 % of the flow resistance. Valli et al [11]
ascribed 38 % of the flow resistance to the margo. The membrane resistance for
diffusion of large molecules was found to be 1 % in this work. The difference in re-
sistances might partially be due to that the water was stagnant in the diffusion study.
The frictional stresses on the torus and margo walls are zero in the diffusion case but
non-zero in the flow case, resulting in a larger membrane resistance for the flow case.

By using the lattice Boltzmann method the diffusing molecules are modelled as rigid
particles. Polymers and enzymes are not rigid, but were assumed not to entangle
in each other or the margo pores, enabling the lattice Boltzmann approach. At
a certain concentration and molecule size the polymers and enzymes cannot be
modelled as rigid particles without accounting for the entanglement. To investigate
such conditions was outside this work’s scope.
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6 Conclusions and future work

This work has determined effective diffusion coefficients of large molecules in a
conifer earlywood bordered pit, as well as the pit component’s individual contri-
bution to the total resistance to diffusion. It was found that the effective diffusion
coefficients are 16.9 times smaller than the free diffusion coefficients and that the
borders constitutes 99 % of the resistance to diffusion. To increase the diffusive mass
transfer rate through pits it is therefore necessary to partially or entirely remove the
pit borders.

Even though dimensions varies from pit to pit, the border resistance is so much
greater than the other resistances that it is unlikely that the margo or torus will
impose the largest diffusive resistance if another pit was investigated. Future work
could investigate this further by simulating diffusion through pits with a large vari-
ety of dimensions and margo structures.
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