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Göteborg, Sweden 2011



Automatic Detection of 3D Breast Lesions in Dynamic Contrast-Enhanced
MR Images
Master of Science Thesis in Communication Engineering
JONATHAN ARVIDSSON
Master of Science Thesis in Biomedical Engineering
FREDRIK JOHANSSON
Department of Signals and Systems
Division of Biomedical Engineering
Chalmers University of Technology

Abstract

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is being in-
creasingly used in the clinic as an adjunct to x-ray mammography and ultrasound for
the detection and characterisation of breast cancer. The technique involves acquiring
T1-weighted volume images of one or both breasts before and at several time points
after the injection of a contrast agent. Interpretation of this 4D data is a complex
task for the radiologist and is becoming more so with developments of higher field-
strength MRI scanners and associated increases in spatial, temporal and contrast
information. Several commercial computer-assisted detection/diagnosis (CAD) sys-
tems for breast MRI have been developed in recent years to help radiologists with
this task. However, these systems at present fall short of automatically locating
and classifying malignant lesions. It is not surprising, therefore, that the efficacy of
breast MRI CAD remains an open question. A recent review concluded that breast
MRI CAD needs to be based on “quantitative features extracted preferably from the
automatically segmented 3D lesion”.

This thesis deals specifically with the problem of automatically segmenting (i.e.
delineating) 3D lesions in breast DCE-MRI data. In particular it reviews existing
approaches and proffers a novel approach based on voxel-wise classification. The
new approach involves assigning a “suspiciousness” score to each voxel using features
extracted from its time series, and then computing the spatial co-occurrence of this
score in a neighbourhood including the voxel. The thesis also presents an empirical
evaluation of the efficacy of this technique versus a competing method based on multi-
spectral co-occurrence. The evaluation was performed on real clinical breast MRI
data for 32 subjects. The results demonstrate that the proposed method achieves
a comparable level of performance (AUC of 0.8989± 0.0021 versus AUC of 0.9330±
0.0018). However the advantage of the proposed method over the competing method
is that it does not require subjective specification of feature ranges for computing
co-occurrence.

Keywords: Breast Magnetic Resonance Imaging, Automatic segmentation, Computer Aided
Detection, Mammography, 3-D grey level co-occurrence, Lesion detection, Pattern recog-
nition, Dynamic Contrast Enhanced MRI, GLCM
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1 Introduction

The research described herein was undertaken in the MedTech West1 centre located at
Sahlgrenska University Hospital in Gothenburg, Sweden between May and October 2011.
It constitutes part of a larger research project seeking to develop image analysis tools to
assist radiologists with the task of interpreting magnetic resonance (MR) images of the
breast and prostate. Such images are used in the detection and characterisation of both
breast cancer and prostate cancer. In particular they are used for staging the cancer (i.e.
staging the degree of progression), determining the most appropriate treatment and for
follow-up after cancer treatment.

The need for objectivity, together with the desire to simplify for the radiologist the
increasingly complex task of interpreting MR data, has spawned research and develop-
ment of computer-assisted detection/diagnosis (CAD) systems for breast MRI including
several commercial systems such as CADstream R©2 and DynaCAD R©3. These systems at
present fall short of automatically locating and classifying malignant lesions. Instead they
automate many of the image processing and analysis functions that would otherwise have
to be performed manually and visualise the data to aid interpretation. It is perhaps not
surprising, therefore, that a meta-study published in March of this year [1] concluded that
“commercial CAD systems for breast MRI do not improve the accuracy of experienced
radiologists” and so their interpretation remains essential. This is in stark contrast to
CAD for x-ray mammography which has been shown to increase the number of detected
cancers by approximately 10%. This corresponds to the accuracy obtained when two ra-
diologists analyse the DCE-MRI data [2]. A 2009 review of breast MRI CAD concluded
that such systems need to be based on quantitative features preferably extracted from the
automatically segmented three dimensional (3-D) lesion [3]. For these reasons the research
presented in this thesis specifically concerns the development and evaluation of algorithms
and software for automatically segmenting (i.e. detecting and delineating) tissue in breast
MR images that is suspicious for malignancy.

1.1 Background

The most frequently diagnosed cancer in women today, in both the world’s developed and
developing regions, is breast cancer. It is also the cause of most cancer-related deaths in
women, closely followed by lung cancer [4].

The key strategy for improving survival rates is early detection of the disease. For this
reason, screening programs have been introduced worldwide based on x-ray mammography.
Nevertheless the technique has some well known limitations including low specificity (i.e.
certainty that what was detected is cancer), problems with the detection of lesions in dense
breast tissue as well as the fact that the technique yields two-dimensional projections
of inherently 3D tissue [5]. This has, in part, prompted the exploration of alternative
imaging modalities such as magnetic resonance imaging (MRI), sonography (ultrasound)
and nuclear medicine (PET and SPECT) imaging [6]. These modalities are typically used
in patients with known or suspected breast cancer [7] or in the screening of high risk
patients [8]. Of these modalities MRI shows the most promise for improved screening of
high risk women [9].

Modern breast MR imaging is based on dynamic contrast-enhanced (DCE) MRI. The

1MedTech West partners are Chalmers University of Technology, Gothenburg University, the University
of Bor̊as, Sahlgrenska University Hospital and the Region of Västra Götaland.

2CADstream website: http://www.gehealthcare.com/euen/mri/products/applications/breast/cadstream.html
3DynaCAD website: http://www.invivocorp.com/avs/dynacad.php
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technique involves the acquisition of three-dimensional T1-weighted images of one or both
breasts before and several times after the injection of a gadolinium-containing contrast
agent. A typical clinical DCE-MRI scan comprises a precontrast volume followed by four
to six contrast-enhanced volumes. Each volume, containing a large number of 2D slice
images, is acquired in intervals about 60 to 120 seconds [10].

The shape of the signal-intensity time curve is an important criterion for discriminating
benign and malignant lesions. This curve typically demonstrates early rapid uptake after
contrast injection for cancers. This yields high sensitivity (i.e. ability to detect cancer) as
reported by Kuhl et al. [11]. Moreover the nature of the post-initial enhancement can be
useful in determining whether a tumour is malignant or benign: the curve may plateau,
decline, or continue to increase more slowly with a delayed washout [11]. However given
that many benign lesions demonstrate similar enhancement to malignant lesions, and that
some malignant cancers are characterised by shallow or absent enhancement, the specificity
of the technique is at best moderate [10].

In addition to the time intensity characteristics of a lesion, its morphology is an im-
portant criterion for classification. For example malignant lesions often exhibit spiculated
margins [12]. The Breast Imaging-Reporting and Data System (BIRADS), published by
the American Collage of Radiology (ACR) [12], is a lexicon devised to help radiologists
report breast MRI findings in a consistent and standardised way.

The advantages of DCE-MRI as compared to x-ray mammography are among others
its high sensitivity, the possibility to obtain both morphological and functional features
related to tumour malignancy for analysis, the non-ionising4 character of the modality and
its ability to provide high resolution images [13]. Volume estimates of tumours have also
been shown to be more accurate when performed with MRI than when performed with
x-ray mammography or sonography [14, 15].

Integrating and evaluating all the information from the multi-temporal image sequence
provided by a DCE-MRI scan is a labour intensive task for radiologists [16]. It is also
subjective. For example random variations up to 29% of the tumour size between manual
delineation and true volume have been reported in inter- and intraobserver analyses [14].
Automatic segmentation has been shown to be far less time consuming and can provide
objective and reproducible results because of its operator-independency [13]. Comput-
erised techniques may thus be a way to improve the objectivity, consistency as well as
the efficiency of breast lesion segmentation in line with what has been achieved for x-ray
mammography [17, 18]. Nevertheless DCE-MRI presents a number of challenges for au-
tomatic segmentation including the variation in both temporal and spatial contrast agent
distributions in suspicious tissue for a single patient, as well as between patients [19], and
that the observed MR signal cannot be easily calibrated (in contrast to CT imaging).

A few automatic methods for segmenting lesions in DCE-MRI data have been proposed.
These are reviewed in Chapter 3 wherein it is concluded that textural analysis by co-
occurrence in a voxel-wise fashion, as a basis for automatic segmentation of lesions, is one
of the more promising approaches to the problem of characterising spatial and temporal
intensity variation.

4Ionising radiation is composed of particles that individually have high enough energy to remove an
electron from an atom or molecule. Exposure may cause cell damage, depending on dose. As opposed
to modalities such as PET, x-ray mammography and nuclear medicine, MRI does not utilise ionising
radiation.
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1.2 Hypothesis

The hypothesis underlying this research is that it is possible to automatically and accu-
rately segment 3D lesions in DCE-MRI breast data by means of voxel-wise classification
based on quantitative features that describe both spatial and temporal change in contrast
enhancement.

1.3 Aim and Objectives

The aim of this research was to explore the validity of this hypothesis by:

1. Developing a spatio-temporal segmentation method for 3D breast lesions based on
characterising the spatial co-occurrence of enhancement; and

2. Evaluating the performance of the new method using real clinical breast MRI data.

1.4 Scope

The focus of this research was only on the development of 3D lesion segmentation in breast
DCE-MRI data. A complete CAD system would additionally include steps for extracting
quantitative features for detected lesions and automatic classification of these lesions; e.g.
into benign and malignant. These steps are not considered herein.

, Signals and Systems, Master of Science Thesis 2011 3



2 Background and theory

This chapter presents the necessary background and theory needed for the remainder of
the thesis. The first four sections cover breast cancer, magnetic resonance imaging (MRI),
dynamic contrast-enhanced MRI, and the analysis of contrast enhancement in DCE-MRI.
The remaining sections cover aspects of statistical pattern recognition, types of classifiers,
and texture analysis by co-occurrence.

Throughout the thesis scalars are denoted by italics (x ) and vectors are denoted by
bold face (x). Sets are designated by capital letters (X). Matrices and higher dimensional
arrays are denoted by bold face and capital letters (X). A bar (x̄) denotes an average and
estimates are denoted by a hat (x̂). Spaces are written in calligraphy (X ). This thesis
concerns several disciplines of engineering, thus variable notations may occur several times
in different contexts.

2.1 Breast cancer

Cancer originating from breast tissue is termed breast cancer. The most common breast
cancers originate from either the milk ducts or the lobules that supply them with milk. The
former are termed ductal carcinomas and the latter lobular carcinomas. If the tumour has
not spread from the originating tissue it is termed in-situ. If it has it is termed invasive.
More commonly breast lesions are benign in nature. Benign lesions include fibroadenoma,
composed of epithelial and stromal tissue, and intraductal papillomas which may occur
anywhere within the breast ductal system [20]. Examples of malignant lesions are ductal
carcinoma in situ, which still has not spread to surrounding tissue and invasive ductal
carcinomas that have infiltrated through the wall of the ducts [21].

The majority of breast cancers present symptomatically, although screening programs
have led to an increased proportion of asymptomatic detection. Evaluation of breast abnor-
malities should be performed by triple assessment including: clinical examination, imaging,
and tissue sampling [20]. When evaluating images, different characteristics are visually in-
spected in order to differentiate between malignancy and benignity [20].

2.2 Breast MRI

The hydrogen nucleus, or proton, is used in MR imaging because of its high concentration in
biological tissues such as fat and water. Proton T1 and T2, the longitudinal and transversal
relaxation times differ between various tissue types and can also be altered by disease [22].
Studies in the early 1980s sought to differentiate benign and malignant breast lesions based
on the intrinsic contrast given from T1 and T2 relaxation times. However these studies
were unable to demonstrate reliable differentiation [22]. As a consequence MR imaging of
the breast was at first not widely accepted. Modern MRI of the breast stems from several
developments in the mid-1980s including the development of fast gradient-echo imaging
sequences with small flip angles, the introduction of gadolinium based contrast agents and
the introduction of dedicated surface coils [22].

2.3 Dynamic contrast-enhanced magnetic imaging of the breast

In early studies in the field of breast DCE-MRI, images were acquired at least five min-
utes apart and with a slice thickness of 5 mm. It had previously been shown that breast
carcinomas showed significant enhancement in the early phases after contrast agent ad-
ministration [10]. Subsequent studies analysed also the intermediate and late phases of

4 , Signals and Systems, Master of Science Thesis 2011



the enhancement pattern and showed that important information for lesion discrimination
is contained here [11]. As faster pulse sequences were developed, the possibility to image
the whole breast at shorter time intervals became feasible [10]. These techniques allowed
characterisation of lesion enhancement over shorter periods of time. By use of this data, a
signal intensity curve (or time intensity curve) can be generated and its properties analysed
in order to extract valuable information for distinguishing between malignant and benign
tissue. As experimental observations have shown that the contrast agent concentration is
proportional to the relative signal increase, the signal increase relative to the image volume
before injection of contrast agent is calculated [23]

C(t) =
It − I0

I0
, (2.1)

where It represents the post-contrast volumes and I0 the pre-contrast volume. To acquire
what is called a subtraction image, the division with pre-contrast volume is omitted.

(a) Pre-contrast image. (b) Post-contrast image.

Figure 2.1: Enhancement of a benign lesion in the right breast after injection of a contrast
agent. Note also the considerable enhancement within the chest cavity.

2.3.1 Pathophysiological basis of contrast enhancement and lesion character-
istics

Lesion morphology, enhancement intensity and kinetics differ between benign and ma-
lignant lesions. For instance round or oval shapes of masses, see Figure 2.1, are highly
indicative of benignity [10] whilst indistinct or ill-defined margins raises concern about a
lesion infiltrating surrounding tissue [12] (see Figure 2.2). Qualitative analyses have con-
cluded that the signal intensity in malignant tissue generally peaks early compared with
normal tissue, in part because of increased vascularisation and tumour vessel leakiness [24].
Nevertheless, an overlap exists between the enhancement curves for many benign lesions
and malignant lesions, making the analysis more difficult [10].

The importance of tumour angiogenesis (growth of new blood vessels) for tumour
growth is well known. To experimentally describe micro-vessel structure and function,
MRI is used [25]. The results from Gibbs et al. [26] showed that there are significant dif-
ferences in texture between benign and malignant tissue. From the field of computer image
analysis, various textural algorithms have been proposed for quantifying these properties.

, Signals and Systems, Master of Science Thesis 2011 5



(a) Post-contrast image. (b) Post-contrast image with ROI superimposed.

Figure 2.2: A malignant lesion with irregular shape and non-enhancing regions.

2.4 Enhancement curve analysis

Non-model-based features such as signal-enhancement ratio or initial percentage enhance-
ment can be extracted directly from raw data. Model-based features require parametric
models to which the raw data is fitted. Several parametric models for describing contrast
enhancement in breast MRI data have been proposed in literature. These models can be
divided into subgroups of pharmacokinetic models and empiric parametric models.

2.4.1 Pharmacokinetic models

Models based on pharmacokinetics aim to describe the time-varying distribution of contrast
agent in different tissue compartments in the body[27]. It is therefore necessary to relate
the observed signal intensity increase to the contrast agent concentration. Previous studies
show experimentally that this relation is linear in blood [28] and soft tissues [29]. The
standard two compartmental model used in DCE-MRI has the form

C(t) = Ktrans

t∫
0

Cp(t
′)exp

(
−Ktrans(t− t′)

ve

)
dt′, (2.2)

where C is the contrast agent concentration in the tissue as a whole, Cp is the concentration
of contrast agent in the blood plasma, vp is the fraction of the tissue volume occupied by
blood plasma, ve is the fraction occupied by the extracellular space extravascular space,
and Ktrans is the volume transfer constant relating vp to ve [27]. The basis for this model
is illustrated in Figure 2.3.

Pharmacokinetic models require an accurate pre-measurement of the arterial input
function along with an accurate quantisation of the signal intensity. Given that typical
dynamic breast MRI data consists of less than ten time points and are often influenced by
noise, fitting such a complex model to this data may be ambitious [19].
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Figure 2.3: Illustration of two compartmental model. [27]

2.4.2 Empirical parametric models

Describing the contrast enhancement pattern based on empiric parametric models does
not require any pre-measurements of physical properties. These models simply describe
the shape of the enhancement curve.

As shown in Mehnert et al. [27] simple empiric parametric models such as the Linear
Slope model and the Ricker model can be fitted to the data points using linear least squares.
This means that fitting these models to the data can be done very fast and thereto without
the need of specifying starting values for parameters, performing pre-measurements of
physical properties of tissue or dealing with convergence issues. The results of Mehnert et
al. [27] also show that the Linear Slope shows a higher goodness of fit to real clinical data
than the more sophisticated pharmacokinetically inspired model by Hayton. The Ricker
model showed a remarkably good fit to the data given that it has two rather than three
parameters.

2.5 Statistical pattern recognition

Statistical pattern recognition is a broad term that comprises several concepts ranging from
data collection and discrimination to interpretation of results. The field originated from
multiple disciplines, including: statistics, engineering, computer science and psychology.
The term pattern is refers to the entity or object of interest [30], e.g. an MR image, a
human face or a speech signal. The recognition problem is often posed as a categorisation
task, where a pattern is assigned a predefined class (supervised classification) or learned
based on similarities of patterns (unsupervised classification) [31]. Measurements, more
commonly termed features, are used to characterise each pattern, including e.g. quantita-
tive measurements of object descriptors and derived numerical parameters [30].
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2.5.1 The curse of dimensionality

Typically when adding features to a statistically based classifier the additional features
should improve the classification performance due to the increased amount of information
they hold. However a consequence of the increased dimensionality is that the observations
in each class become less representative of that class. In other words, if the number of
samples stay constant as new features are added the feature space will grow more and
more sparse. In order to form a representative sample in this higher dimensional space
more observations are needed. As more features are added, the classification performance
on the training set will increase but the performance on unseen data will decrease [30]. This
phenomena is referred to as the ”curse of dimensionality”. A rule of thumb for avoiding
the curse of dimensionality is to use at least ten times as many training instances per class
as the number of features.

2.5.2 Feature selection strategies

Feature selection strategies address the following problem: ”given a set of d features, select
the subset of size m that leads to the smallest classification error” [31]. A set that contains
d features will have 2d − 1 possible subset candidates, without considering the case of
choosing zero features [30]. In general the exponential increase in the number of candidate
subsets as d increases makes an exhaustive search unfeasible, except in cases where only
a small total number of features is considered. Many methods for feature selection have
been presented in the literature. For an overview, see [31]. The methods used in this thesis
are discussed below.

A feature selection algorithm typically consists of four steps. A choice of initial feature
set, a criterion for evaluating the discriminatory power of a feature subset, a strategy for
adding or removing features from the subset or from the feature set and finally a stopping
criterion to decide when to stop the algorithm [31]. The criterion used to evaluate the
performance of the feature set can either be formulated in a statistical sense, by adding
the feature that is most statistically significant. Or it can be done in a heuristic sense
by adding the feature that together with preceding features gives the best classification
result on a training data set. Naturally each feature selection method therefore has its
own properties, which depending on the nature of the features and the particular pattern
recognition problem may result in a different final set of features and ultimately different
classification performances.

The sequential forward selection strategy is one of three basic traditional approaches for
feature selection, the other two being sequential backward selection and stepwise selection.
The strategy of sequential forward selection is to start out without any features, then
adding the best single feature according to a certain criterion function. Further features
are then added, one at a time. The feature that together with the previously chosen feature
or subset of features that performs best according to the criterion function, is the one that
is added to the feature subset [31]. Sequential backward selection is performed in a similar
fashion, but starts out with all features and successively deletes one feature at a time.
Stepwise selection methods starts with a set of features, either the entire set or a subset.
In each iteration of the algorithm a feature is either added or removed from the feature
subset. More sophisticated methods such as the ”Plus l - take away r” strategy have been
found to outperform the more simple straight sequential searches on large feature selection
problems [31]. The forward search, however, is computationally attractive and does not
require a selection of l and r [31].
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2.5.3 Cross-Validation

Rotation estimation or k-fold cross-validation, is an error estimation technique used to
asses how well the results from a statistical analysis generalise to unseen data [31]. A
dataset D, containing vectors of observations, is randomly split into k number of subsets
(folds) D1, ..., Dk of approximately equal size. For each fold n ∈

{
1, 2, ..., k

}
the classifier

is trained on D \ Dn and tested on Dn. The estimate of error or accuracy rate can be
evaluated in terms of the number of incorrect/correct classifications for each subset Dn,
divided by the total number of instances in that same set [32], or the AUC (see 2.5.5).
Stratified cross-validation is when the folds contain roughly the same proportion of labels
as the full training set D.

Other error estimation techniques include the leave-one-out method where the classifier
is trained n times on (n − 1) samples and evaluated on the remaining sample, where the
training set and test sample is rotated over the full set. This can be viewed as an extreme
case of k-fold cross-validation. Another technique is the holdout method, where, for in-
stance, half the data is used for training and the remaining data as test set [31]. The k-fold
cross validation approach has lower bias than the holdout method and is computationally
less expensive than the leave-one-out method [31].

2.5.4 Model selection

Model selection generalises the concept of feature selection to include the selection of the
type of classifier as well. Ideally these steps should not be considered independently of
each other [30]. The idea behind these concepts is to make full use of the available training
data [31], without overfitting to it and thus reducing performance on unseen data.

2.5.5 Evaluating classifier performance

Several ways to quantify the performance of a classifier exist. The receiver operating
characteristic (ROC) curve is a plot of the probability of detecting a false positive (1-
specificity) against the probability of detecting a true positive (sensitivity) over the range
of all possible classifier threshold values. The ROC curve always passes through the two
points (0,0) and (1,1) and the straight line through these points is the ROC of a classifier
that does no better than random (see Figure 2.4).

The Area Under the Curve (AUC) refers to the area under the ROC curve. The AUC
represents a summary measure of sensitivity and specificity over all possible classification
thresholds [33]. With the shape of the ROC curves in mind, an AUC value above 0.5
means a performance better than that of a random classifier. A higher AUC value indicates
better performance, where a perfect classifier has an AUC value of 1. A method used for
computing the standard error of the AUC is to compute the standard error of the Wilcoxon
statistic as follows [34]:

ŜE =

√
θ(1− θ) + (np − 1)(Q1 − θ2) + (nn − 1)(Q2 − θ2)

npnn
, (2.3)

where θ = AÛC (the estimate of the AUC), Q1 = (2 − θ), Q2 = (2θ2)/(1 + θ), np is the
number of positive examples, and nn is the number of negative examples.

2.6 Classification approaches

Given a classification problem, several different approaches can be taken where classifiers
using different design principles are constructed. Three different approaches are identified
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Figure 2.4: A comparison between a classifier with fair performance and a random one.

by Jain et al. [31]; concepts based on measures of similarity, probabilistic approaches and
classifiers that construct decision boundaries. There is no context- or usage-independent
reasons to choose one classification method over another [35]. Here, the three different
classification methods used in this thesis are presented; k-nearest neighbour classification,
logistic regression and support vector machines.

2.6.1 k-Nearest Neighbours classifier

The k-nearest neighbour (k-NN) rule is an extension of the nearest neighbour rule for a
set of n pairs (x1, y1), . . . , (xn, yn), where the xi’s take values in a metric space X (e.g.
Euclidean) and yi’s take values from a set of labels n ∈

{
1, 2, . . . ,M

}
. Given a new

instance (x, y), where x is observable, it is desired to predict y from the set of known pairs
by assigning, according to a metric (e.g Euclidean, Mahalanobis or Chebychev distances),
the label of the closest neighbour in that space [36].

Extending this rule to the k-nearest neighbours of x, this observation is assigned to
label yi if a majority of its nearest neighbours are members of this class [37]. Figure 2.5
illustrates how the observed instance will be assigned a different label, depending on how
many neighbours are taken into consideration.
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Figure 2.5: Distribution of features in a 2-dimensional k-NN classification scenario. The
label of the unknown instance will be different, depending on how many neighbours that
are considered. The square in the centre will be classified as a triangle if k = 3, but as a
circle if k = 9 (assuming that Euclidian distance is used as the metric).

2.6.2 Linear and Logistic Regression classifiers

In linear regression, a linear model is used in order to identify the relationship between the
predictors and the outcome. Given a set of known data x, the model can be expressed as
[38]

z = α0 + x ·α+ ε, (2.4)

giving a model for estimating variables in a continuous range. Here, α is a vector containing
what are called the regression coefficients, which influence how each predictor affects the
outcome. These coefficients are estimates using the least squares method [30]. The error
term, ε, captures influence on z other than that from the predictors.

The linear concept can be extended to that of logistic regression. Elaborating on the
details a bit further, this is a parameter-free discriminative classification method that,
given a set of instance-label pairs (xi, yi), i = 1, ..., n where xi ∈ Rd and y ∈

{
0, 1
}

,
builds a model approximating the posterior distribution P (y|x). Logistic regression can be
expressed on a functional form P (y|x) = f(z), with z given from (2.4).

As in the case with linear regression, the vector α holds the regression coefficients of
x, although usually determined by maximum-likelihood estimation based on the dataset
[33, 30] and α0 is where all independent variables are zero. Each of these coefficients can
be considered as weights on how much each of the variables, or features, are allowed to
influence the outcome. The model calculates the probability of a certain class membership
by use of the logistic function

f(z) =
1

1 + e−z
= P (1|z), (2.5)

and P (0|z) = 1 − P (1|z). The model complexity is low, consequently overfitting is less
likely to occur than for more flexible models [33]. Relating back to 2.5.2, these methods
can be used in a stepwise manner for feature selection. In regression based feature selec-
tion methods the feature that produces the greatest statistically significant (for a certain
confidence interval) change in a criterion function relative to a model not containing the
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feature is selected [39]. Or, expressed in other terms; investigating the influence on a cri-
terion, by adding or removing the regression coefficients, a heuristically deduced model is
found. Normally the feature subset tends to grow larger and larger, because more infor-
mation is included for each feature added. However, it is possible that a smaller subset of
features can produce a sufficiently accurate classifier. By penalising the fit by a measure
of complexity of the model, for example the number of features in the subset, the smallest
adequate model may be chosen [40].

When predicting probabilities or outcomes in the range zero to one [39], logistic re-
gression models are commonly used as they map values from minus to plus infinity to
this interval. The linear and logistic models are used in a stepwise fashion with the same
motivation; to find the estimators that agree most closely with the observed data, x.

2.6.3 Support Vector Machines

In the case of a two-class (binary) classification problem, given a set of instance-label pairs
(xi, yi), i = 1, ..., n where xi ∈ Rd and y ∈

{
1,−1

}n
(or possibly y ∈

{
1, 0
}n

), the support
vector machine (SVM) is a concept for assigning a new unknown instance x to one of
these classes [41]. Algorithms operating in feature spaces generally use the idea: the data
x1, ...,xn ∈ Rd is via a nonlinear mapping,

Φ : Rd → F

x 7→ Φ(x)

mapped to a higher or potentially infinite [41] dimensional feature space F . Given a
learning problem, the same algorithm is considered in F instead of in Rd, which means
that one works with the sample

(Φ(x1), y1), . . . , (Φ(xn), yn) ∈ F × y.

Behind this is the motive to find, given this mapped representation, a simple classification
or regression in F [42]. For the SVM, the aim is to find a linear separating hyperplane
in this higher dimensional space, which maximizes the margin of classification. In the
non-separable case, i.e. when points might end up on the wrong side of the hyperplane,
this requires a solution to the optimisation problem [42, 43, 41]:

minw,b,ξ
1

2
〈w,w〉+ C

n∑
i=1

ξi

subject to yi(w
TΦ(xi) + b) ≥ 1− ξi,

ξi ≥ 0, i = 1, . . . , n,

(2.6)

where C > 0 is a penalty parameter of the error term [41] and ξi slack variables introduced
to relax the hard-margin constraints by allowing for some classification error [42].

The mapping Φ is never explicitly calculated because of the possibly high dimension of
this space, which would require complex computations, but rather using a kernel function,
K(xi, xj) ≡ Φ(xi)

TΦ(xj) [44], with which a scalar product can implicitly be calculated in
F with feature values as input [42, 43, 45]. This idea is often termed the ”Kernel Trick”
[43]. The inner product in (2.6) is then replaced by a kernel K(xi, xj) which allows for the
construction of classifiers that are linear in the feature space, although they are non-linear
in the original space [43]. Solving for Lagrange multipliers αi, a maximal margin separating
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hyperplane in F defined by the kernel, can be obtained. The classifier has then a decision
function given by [42, 44]:

f(x) = sgn

(
n∑
i=1

yiαiK(x, xi) + b

)
(2.7)

New kernels are being proposed by researchers, but four basic kernels commonly used
are [41]:

• linear: K(xi, xj) = xTi xj.

• polynomial: K(xi, xj) = (γxTi xj + r)l, γ > 0.

• radial basis function (RBF): K(xi, xj) = exp(−γ
∥∥xi − xj∥∥2), γ > 0.

• sigmoid: K(xi, xj) = tanh(γxTi xj + r).

Here, γ,r and l are kernel parameters.

In essence what the support vector machine does, is to maximise the margin between
separable classes (see Figure 2.6). As classes seldom are completely separable, the regu-
larisation term C is introduced. This parameter controls how many samples are allowed
to be misclassified and consequently the smoothness of the decision boundary. The ra-
tional behind this is to avoid a classifier with bad generalisation ability, that overfits to
training data [45]. The SVM is a deterministic optimisation problem i.e. the same data,
regularisation term and kernel parameters will always produce the same result [45].

The performance of the SVM depends strongly on the choice of kernel and kernel
parameters. A commonly used strategy for this model selection step is to start out with
the Radial Basis function (RBF) kernel and then perform a grid search in order to find
the best values for the parameters C and γ [41]. One motivation for using this kernel is
that it nonlinearly maps samples into a higher dimensional space, which means that it can
handle cases when the relation between the class labels and attributes is nonlinear [46].

2.7 Texture analysis by co-occurrence

Several methods for analysing texture exist including Fractal methods, Markov random
field models as well as grey-level co-occurrence matrices (GLCM) [26]. Here, the traditional
method of in-plane grey-level co-occurrences is described followed by an extension of this
concept to 3-D.

2.7.1 Traditional grey-level co-occurrence

The GLCM approach was introduced by Haralick et al. [47] for grey-scale images. It
is based on estimating the joint probability density function Fα1,α2(α1, α2; d, θ). Each

F̂α1,α2(α1, α2; d, θ) is the estimate of the probability of going from grey-level α1 to grey-
level α2 or from α2 to α1, given that the inter sample spacing is d and the direction is
given by the angle θ [48]. This is illustrated by an example in Figure 2.7 where d = 1
and θ = 0. The co-occurrence matrix is then obtained from the relative frequencies in the
count matrix by dividing each element by the total number of counts.
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Figure 2.6: An example of a separating hyperplane in two dimensions. The support vectors,
marked with grey squares, define the margin of largest separation. The orientation of the
hyperplane is given by (w, b).

Count M atrix

Figure 2.7: Illustration showing the principle of grey level co-occurrence. Co-occurrences
with d = 1 and θ = 0 are put into a count matrix.

Numerous features can be extracted from the resulting matrix, the most commonly
used being the Haralick features. One of the Haralick features is entropy, defined as
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Entropy = −
Ng∑
i=1

Ng∑
j=1

F̂i,j(i, j; d, θ) log (F̂i,j(i, j; d, θ)). (2.8)

For more details on the Haralick features see [47].

2.7.2 Multispectral co-occurrence

Kale et al. [48] extended the idea of GLCM to multispectral co-occurrence in 3-D. In
this approach it is the co-occurrence of three different parameter values that is considered.
This can be thought of as e.g. RGB values where each voxel has three values (R,G,B).
Co-occurrence is considered over the three parameter planes in a window about a given
voxel.

Figure 2.8: Illustration of one sample of co-occurring parameters within a volume.

By considering co-occurrences between three parameter planes, this extends the concept
of the co-occurrence matrix to three dimensions. Each dimension of the 3-D co-occurrence
array corresponds to the grey-level intensities of each parameter value. In a similar fash-
ion to that of traditional grey-level co-occurrence, an entry in the co-occurrence array,
F̂i,j,k(i, j, k) is given from dividing the corresponding element in the 3-D count array by

the total number of counts. F̂i,j,k(i, j, k) is then the relative frequency of the RGB-triplet
(i, j, k) or in other words an estimate of the probability of encountering this triplet within
the RGB image. Features are extracted from the co-occurrence array in a similar fashion
as in traditional co-occurrence. For example the feature Entropy is formulated

Entropy = −
Ng∑
i=1

Ng∑
j=1

Ng∑
k=1

F̂i,j,k(i, j, k) log(F̂i,j,k(i, j, k)). (2.9)

For the complete set of features and their mathematical formulations, the reader is referred
to Kale et al. [48].

, Signals and Systems, Master of Science Thesis 2011 15



3 Literature review

This section briefly reviews the existing literature on the topic of automatic segmentation
of lesions in breast MRI. The study was conducted using resources made available through
Chalmers Library and The Gothenburg University Library. These resources were mainly
articles from scientific databases, such as IEEE Xplore, Medline and Inspec, but also books
and dissertations. Only a handful of studies had previously been conducted in the field
of automatic segmentation of breast lesions, although there existed several solutions for
semi-automatic approaches. These solutions, semi-automatic as well as automatic, were
evaluated in terms of limitations, how well they compared against other methods and how
they could be improved.

Numerous approaches on semi-automatic segmentation exist. A selection are presented
in Table 3.1. These approaches were either utilise a manually selected seed-point or a
region of interest as the starting point for the segmentation procedure. Such methods,
therefore, are not easily adapted to perform automatic segmentation.

Table 3.1: An overview of selected articles using semi-automatic approaches for lesion
segmentation.

Title Year Segmentation method Results

A Fuzzy C-Means (FCM)-
based approach for com-
puterized segmentation of
breast lesions in Dynamic
Contrast-Enhanced MR Im-
ages [5]

2006 Fuzzy C-Means segmen-
tation

Correct segmentation
of 98.7% of the ma-
lignant lesions and
93.2% of the benign
(overlap threshold of
0.4).

Computer-aided diagnosis
and visualization based on
clustering and independent
component analysis for
breast MRI [49]

2008 Independent Component
Analysis

Best AUC: 0.8388.

Malignant lesion segmenta-
tion in contrast-enhanced
breast MR images based on
the marker-controlled wa-
tershed [7]

2009 Marker controlled water-
shed transform

Overlap ratio (Jaccard
index) of 64.3±10.4%
with two ground truth
segmentations.

Robust segmentation of
mass-lesions in Contrast-
Enhanced dynamic breast
MR Images [50]

2010 Automatic intensity
threshold estimation and
connected component
analysis

64% overlap with
manual segmentation.

Two main categories of automatic methods were identified: those using enhancement
characteristics only and those using co-occurrence analysis in combination with voxel-wise
classification. These are exemplified by the methods listed in Table 3.2. The traditional
way to execute this co-occurrence analysis is by extracting in plane co-occurrences and
extracting statistical features, as defined by Haralick et al. [47] (see Section 2.7), from
the whole lesion. Although shown to produce good results, delineation of the lesion is
needed before undertaking this study, and it is also evident that this strategy would be
problematic for textural analysis of smaller secondary lesions [26]. The strategies of voxel-
wise segmentation overcome these issues and are suitable for automation.
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Table 3.2: An overview of selected articles using automatic approaches for lesion segmen-
tation.

Title Year Segmentation method Results

Malignant-lesion segmenta-
tion using 4D co-occurrence
texture analysis applied
to Dynamic Contrast-
Enhanced Magnetic Res-
onance breast image data
[51]

2007 Voxel-wise classification
using a co-occurrence-
based texture analysis
method

True positive fraction
of 0.96 for a given
false positive fraction
of 0.0015.

Providing context for tumor
recognition using the wrap-
per framework [16]

2007 Minimisation of distance
to a priori classes using
k-NN in an iterative pro-
cedure

92% correct classifica-
tion of tumour types.

Texture analysis of lesion
perfusion volumes in dy-
namic contrast-enhanced
breast MRI [52]

2008 Three-time-point curve
classification and tex-
tural analysis by co-
occurrence on the
resulting labels

Best feature accuracy:
74.3%.

Multispectral co-occurrence
with three random variables
in Dynamic Contrast En-
hanced Magnetic Resonance
Imaging of breast cancer
[48]

2008 Voxel-wise classification
using 3D co-occurrence
analysis on the parame-
ters of a pharmacokinetic
model

True positive fraction
of 0.8079 for a given
false positive fraction
of 0.0018.

A fully automatic lesion de-
tection method for DCE-
MRI fat suppressed breast
images [13]

2009 Lesion detection using
contrast uptake and co-
variance analysis

93% sensitivity.

In a study by Woods et al. [51], an automatised approach was proposed using the
concept of a local 4D window (including the time dimension) co-occurrence texture analysis
on the raw MR data. An artificial neural network (ANN) classifier was used to classify
each voxel as malignant or non-malignant. Performance comparable to that of an analysis
conducted by a human, using a pharmacokinetic two-compartment model as aid, was
presented. As the classifier was applied to raw data, the classifier would have to be retrained
for each new pulse sequence and hardware/software combination.

A similar concept using co-occurrence of three random variables was explored by Kale
et al. [48]. The distributed statistical co-occurrence of three parameters from a phar-
macokinetic two-compartment model, at matched spatial positions, was used to provide
information on the tissue vascularisation properties. By scanning a 3-D local spatial win-
dow of observation for each voxel, a co-occurrence array was acquired for each position.
3D co-occurrence features were calculated in a similar fashion as the traditional ones. An
ANN was used to classify voxels as either malignant or benign. This study used the pa-
rameters from the pharmacokinetic model as basis for the co-occurrence matrices and its
performance was tested only on invasive ductal carcinomas. By use of the model parame-
ters as input the problem of restricting these values to a limited range occurs. This must
be done carefully in order to avoid letting outliers in the data govern the resolution of the
co-occurrence analysis. Further, as the parameters were the sole basis for the analysis,
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much temporal information was left unexplored.
From the literature study it was concluded that textural analysis by co-occurrence in a

voxel-wise fashion is a promising approach to automatic segmentation of lesions. Further it
was concluded that the use of a voxel score or probability between zero and one, based on
the information from several temporal features, would be suitable for use in co-occurrence
analysis. This would overcome the problem of truncating the parameters or features and
provide flexibility, because the same co-occurrence procedure can be performed indepen-
dently of which features are used to compute this probability. The proposed segmentation
algorithm is presented in Section 4.
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4 Proposed segmentation method

This section presents the new algorithm, developed by the authors, for automatically seg-
menting lesions in DCE-MRI data. The algorithm is hereinafter referred to as the TSC
(temporal score co-occurrence) method. A flowchart showing the individual steps that
make up the TSC algorithm is shown in Figure 4.1. The algorithm takes as input a set of
DCE-MRI volumes {V0, . . . , Vn} and the corresponding set of acquisition times {t0, . . . , tn}.
The steps are as follows:

1. Preprocessing steps include mean filtering the raw data and converting the data to
relative enhancement.

2. A parametric model (e.g. Tofts model) is fitted to the data to yield a set of p
parameter volumes {P1, . . . , Pm} where m is typically 2 or 3.

3. For each voxel, features that characterise the voxel’s temporal characteristics are
extracted. These features are extracted both from raw MR data and from the inten-
sity curve given from the parametric model. The result is a set of temporal feature
volumes {Ft1,...,Ftl} .

4. A (pre-trained) classifier is applied voxel-wise to each set of temporally based features
to yield a volume of posterior probabilities of suspiciousness (i.e. each probability
reflects the likelihood that the fitted model is that of a suspiciously enhancing tissue).

5. For each voxel in this probability volume, the co-occurrence of probabilities in a neigh-
bourhood around this voxel is computed and then used to compute l co-occurrence
features. The end result is a set of co-occurrence feature volumes {Fc1,...,Fcm} .

6. The final set of features is comprised of the temporal and co-occurrence features
together, yielding a set of l+m features.

7. A second (pre-trained) classifier is applied voxel-wise to each (l+m)−tuple of features
to yield a single binary volume S containing 3D connected components that locate
the suspicious tissues.

Figure 4.1: Flow chart of proposed segmentation method
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5 Empirical evaluation using real clinical data

This section describes an empirical evaluation of the efficacy of the proposed new features
(and segmentation method) for segmenting (voxel-wise classification) suspicious tissue in
real clinical DCE-MRI data. Here “suspicious tissue” refers to voxels that an interpreting
radiologist labelled as suspicious for malignancy and not tissue subsequently confirmed
by cyto- or histopathology to be malignant. The evaluation was done in two stages. In
the first stage the aim was to identify the most discriminatory subset of features from
among the proposed new features and features extracted from only a single voxel time
series (enhancement curve). In the second stage the aim was to compare the classification
performance of a classifier based on this subset of features relative to one based on only
the competing features of Kale [48].

5.1 MR image data

The DCE-MRI image data used for the evaluation originates from clinical breast exami-
nations of 32 subjects. The data contains 45 lesions marked as suspicious by the reporting
radiologist. Cytology or histology findings were available for all but one lesion confirming
that 28 were malignant and 16 were benign.The DCE-MRI data were acquired on a 1.5T
Signa HDxt (GE medical systems), at Queensland X-ray, Queensland, Australia. Pulse-
echo time was 3.412 ms, repetition time 6.516 ms and flip angle 10 degrees. The data
comprises axial slice images of size 512 × 512 pixels covering both breasts acquired using
a fast spoiled gradient-recalled sequence. The in-slice resolution is typically 0.625 mm and
slice thickness varies from 1-1.4 mm. Images in the data sets were fat-suppressed. Each
DCE-MRI data set comprises a single pre-contrast volume and 4-5 post-contrast volumes.
A subset of the DCE-MRI data sets (15) provided for the study had been preprocessed to
correct for patient motion. Each lesion was located and segmented manually by an expert
reader. This was performed using the region-growing tool in OsiriX. More specifically the
tool was used to define a volume of interest (VOI) in the first difference volume (subtraction
of the pre-contrast volume from the first post-contrast).

5.2 Pre-processing steps: filtering, normalisation, segmentation

In order to mitigate the influence from noise and mild motion artefacts in the raw MRI
data sets, a local 3 × 3 mean filter was applied to each slice of each image volume. The
chest-wall and breast-air boundaries were segmented as well, in order to reduce the data
volume. The relative enhancement maps were computed from the raw MR data, using
Equation 2.1.

5.2.1 Manual segmentation of the chest wall using OsiriX

The chest-wall boundary was segmented using OsiriX5. For a given DCE-MRI data set a
3D maximum intensity projection was computed for the precontrast volume and the scissor
tool applied interactively to cut away the chest cavity. The remaining non-zero voxels were
used to define a binary mask which was then applied to the remaining volumes in the data
set. This procedure is illustrated in Figure 5.1.

5OsiriX is an image processing software dedicated to DICOM images, URL: http://www.osirix-
viewer.com/
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(a) Raw MR image (b) Manual mask (c) Masked result

Figure 5.1: The manual masking procedure, removing enhancing tissue inside of the chest
wall.

5.2.2 Automatic segmentation of the breast-air boundary

The breast-air boundary was automatically segmented in each volume using the alogrithm
proposed by [53]. The implementation of this algorithm in MATLAB was courtesy of
Darryl McClymont, School of ITEE, The University of Queensland, Brisbane, Australia.
Figure 5.2 shows a typical result.

(a) Manual segmentation result (b) Hayton mask (c) Final breast segmentation re-
sult

Figure 5.2: The automatic masking procedure, removing noise outside of the breasts.

5.3 Partitioning into training and validation sets

The data were divided into two disjoint sets: one for training the classifiers (training set)
and one for validating the performance of each on unseen data (validation set). The training
set was constructed using stratified random sampling, so that each set had approximately
the same ratio of malignant to benign voxels. Approximately two-thirds of the data were
used to define the training set as shown in Table 5.1.

5.3.1 Selection of suspicious and non-suspicious voxels for feature selection
and classifier training

The smallest VOI in the training set comprises 54 voxels. Thus to ensure that each VOI
had equal contribution to the class of suspicious voxels it was decided to sample only 54
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Table 5.1: Cyto-/histopahtology status of the lesions in the training and validation sets

Training set (22 subjects) Validation set (10 subjects)
Malignant 19 9
Benign 12 4
Unknown 1 0

voxels from each. First all voxels not enhancing 50% or more in at least one post-contrast
volume were excluded from the VOIs (this is the rate of enhancement that a radiologist
typically considers when looking for suspicious tissue). Then for each VOI, 54 of the
remaining voxels were selected for inclusion in the class of suspicious voxels. In the case of
the smallest VOI only 52 of the 54 voxels passed the enhancement criterion. Consequently
the class of suspicious voxels contained 54× 31 + 52 = 1726 voxels. Voxels comprising the
non-suspicious class were randomly sampled from regions within the breasts of slices with
no VOI. The partitioning of the training data is shown in Table 5.2.

Table 5.2: Number of training samples in the two classes.

Class Number of training examples
Suspicious (class label 1) 1726
Non-Suspicious (class label 0) 1738

5.3.2 Selection of suspicious and non-suspicious voxels for classifier validation

All voxels demonstrating negative relative enhancement or negative raw MR values at any
time point were excluded from the VOIs in the validation set. All of the remaining VOI
voxels were then used to define the class of suspicious voxels. All of the remaining voxels in
the breast tissue were used to define the class of non-suspicious voxels. These two classes
are hereinafter referred to as the full validation data set. A reduced version of this data
set, hereinafter referred to as the reduced validation data set, was defined by removing the
data for two of the subjects (two malignant lesions). The need for this reduced data set is
explained in Section 5.6. The partitioning of the validation data is shown in Table 5.3.

Table 5.3: Number of validation samples in the two classes for the full and reduced vali-
dation data sets.

Class
Number of validation examples
Full Reduced

Suspicious (class label 1) 22130 9490
Non-Suspicious (class label 0) 33941654 28145930

5.4 Fitting of parametric models of enhancement

Three different parametric models of enhancement were fitted to the normalised data.
These models were the Hayton model, the Linear Slope model and the Ricker model shown
in Table 5.4. The different shapes of the model curves are shown in Figure 5.3 where these
models have all been fitted to the same voxel. For more detailed descriptions of these
models the reader is referred to Appendix A or [27].

22 , Signals and Systems, Master of Science Thesis 2011



Table 5.4: The utilised parametric models listed.

Model Mathematical formulation
Hayton model

C(t) = A
a−b(e

−bt − e−at)

Linear Slope model

C(t) =

{
β1t if t ≤ α

β1α + β2(t− α) if t > α

Ricker model
C(t) = ate−bt
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Figure 5.3: All considered models fitted to the same data points.

5.4.1 Fitting the parametric models

The Hayton model was fitted voxel-wise to each DCE-MRI data set using the function
lsqcurvefit in Matlab and the non-linear least squares (NLS) trust region reflective
algorithm. Starting values for the model were those recommended by Hayton [53].

The Linear Slope model was fitted using a finite number of linear least squares (LS)
fits as described in [54].

The Ricker model was implemented using LS.

5.5 Feature extraction: Temporal-score co-occurrence method

TSC features were extracted separately for each of the three fitted parametric models.
For a given model the extraction of these features involved five steps. In the first step,
features from the signal-intensity time curve and raw data were extracted. In the second
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step stepwise multilinear regression was used to select a subset of these features. In the
third step these features were used to define a feature space. A k-NN classifier was used to
generate a score, representing degree of suspiciousness, for each voxel. In the fourth step a
grey-level co-occurrence matrix was computed for each voxel (or rather a neighbourhood
about the voxel) in the resulting score volume. Finally, in the fifth and last step, each
GLCM was used to compute several GLCM features per voxel. See Figure 5.4 for an
overview of the complete implementation. As shown in this flow chart, the signal-intensity
time curve and raw features were also passed on to the final classification step without
processing.

Figure 5.4: Flow chart of the implemented segmentation method.

5.5.1 Step 1: Signal-intensity time curve and raw data features

Signal-intensity time curve and raw data features, hereinafter denoted as the trivial fea-
tures, were extracted for the training data set. Table C.1 and Table C.2 of Appendix C
lists all trivial features.

5.5.2 Step 2: Feature selection by stepwise linear regression

Trivial features with low probability of influencing the predictive power of the k-NN models
positively, were excluded using a stepwise multilinear regression method. This was done
using Matlab’s stepwise regression function, stepwisefit, starting with an empty model.
An F-statistic was computed to test the models with and without a potential term.

5.5.3 Step 3: Temporal score extraction

For each fitted enhancement model a k-NN classifier was used to generate a probability of
suspiciousness (i.e. of membership of the suspicious class) for each voxel. This probability
was defined to be the proportion of the k nearest neighbours that have the label suspicious.
The features remaining after the linear regression step were used as input to the k-NN
classifier. Features were not scaled before use in this procedure.

An example of what this score map produced by the k-NN classifier may look like for
one slice is given in Figure 5.5, where higher intensities represent a higher score.
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Figure 5.5: An example of resulting scores from applying the k-NN step.

The resolution of the score feature was limited by the number of neighbours, k. This
number, k, and the distance metric used were selected via an exhaustive leave-one-out
strategy. For evaluating k and distance metrics, correct classification rate (CCR) was used
as performance measure at a cut-point of 0.5. The range of k was [1, 100] and the distance
metrics tested were the default ones present in Matlab’s knnsearch implementation, e.g.
Euclidean, Mahalanobis and Chebyschev. The k-value resulting from this procedure was
set as the maximum resolution for the construction of the GLCM from values, by quantising
score data into this number of bins.

5.5.4 Step 4: Spatial co-occurrence feature extraction

The textural characteristics surrounding each voxel were quantified by evaluating the co-
occurrence of scores within a window containing the current voxel. In order for the window
to be as close as possible to the shape of a cube, the in-plane dimensions of the window
was 5× 5 voxels and the through-plane dimension was 2. This was due to the anisotropic
voxel size, in other words, the slice thickness being greater than the in-plane dimensions.
See Figure 5.6 for an illustration of this window.

Figure 5.6: Illustration of window, were the red element is representing the centre voxel.

For all voxels that fulfilled a criterion, textural features were extracted. This criterion
stated that the relative enhancement was to be positive at all post-contrast injection time
points and that the pre-contrast intensity raw-value was to be larger than zero. In order
to extract features from the window each voxel inside the window needed to be assigned a
score from the k-NN step. For voxels within the window that did not fulfil the criterion the

, Signals and Systems, Master of Science Thesis 2011 25



score was set to zero. Textural feature extraction was not made in cases were the boundary
of the acquisition volume was within the window.

Figure 5.7: Illustration of in-plane co-occurrence directions 0, 45, 90, 135 degrees, for one
voxel.

For each slice within the current window, texture analysis based on co-occurrence was
performed as described in 2.7. Co-occurrence analysis was performed on the two slices
separately, considering in-plane directions 0, 45, 90 and 135 degrees and the distance 1.
Figure 5.7 shows an illustration of these co-occurrence directions. The resulting count
matrices from the two slices of the window were pooled into one matrix containing all
in-plane counts within the window. The total number of counts in this matrix was 288,
since counts were given for moving in both directions between voxels.

5.5.5 Step 5: GLCM features

Features were extracted from the resulting co-occurrence matrix using standard Haralick
features. A list of these features can be found in Table 5.5. For a further description of
these features and a mathematical formulation see Haralick et al. [47].

Table 5.5: Textural features extracted from the 3D co-occurrence matrix; TSC method.

Textural Features, TSC
X1. Energy
X2. Entropy
X3. Contrast
X4. Variance
X5. Sum Mean
X6. Inertia
X7. Cluster Shade
X8. Cluster Tendency
X9. Cluster Shade
X10. Homogeneity
X11. MaxProbability
X12. Inverse Variance

5.6 Feature extraction: Multispectral co-occurrence method

The feature extraction for the MSC method was performed in two steps. The first step
limited the span of model parameter values by setting outliers to the limit value. Both
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training and validation data was subject to this truncation step. The implementation of
the multispectral method differed in several respects from the original one. However the
second step, feature extraction, remained unchanged but utilised parameter values from
the Hayton and Linear Slope enhancement models used as input.

5.6.1 Step 1: Truncation of parameters

In order to make sure that outliers among the parameter values would not dictate the
span of values, the parameters were truncated. This truncation was conducted for each
parameter by observing the parameter values from five slices of two patients and the
corresponding parameter values from within the pre-segmented VOIs of these patients in
a box-plot. These two patients were selected from the full validation data set. In order
to avoid bias in the classification result by including these patients in the final evaluation,
these subjects were removed from this data set. See Table 5.3 for the partitioning of this
reduced data set. Figure 5.8 shows an example of this for the β2 parameter of the Linear
Slope model. The whiskers of these box-plots were set so that for normally distributed
sets 99.3 % or ±2.7σ of the parameter values were within the whiskers. The number of
voxels in the set containing parameters from five slices of the two patients was significantly
higher than the set containing parameters from the VOI. Therefore, in order not to remove
valuable parameters, the whiskers that spanned the largest values of the breast and VOI
parameters was chosen as the limit of the parameter. Values outside of this limit were
considered outliers. The truncation was performed for the training data set and the reduced
validation set.

−3 −2 −1 0 1 2 3 4

Breast Data

VOI

Figure 5.8: A boxplot of the β2 parameter of the Linear Slope model, parameters from five
slices of the breast and parameters from only within the VOI.
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5.6.2 Step 2: Implementation of the MSC method

The implementation of multispectral co-occurrence analysis of this study was influenced
by that of Kale et al. [48]. The model selection steps used together with the MSC feature
extraction method was the same as that used with the TSC feature extraction method, see
Figure 5.9 and Figure 5.4. For the theoretical methodology of multispectral co-occurrence
analysis, see 2.7.2.

Figure 5.9: Flow chart of the implemented segmentation method.

The MSC method utilised the three parameter planes from the Hayton and the Linear
Slope model. The size of the window on which the multispectral co-occurrence was applied
was 5 × 5 × 2 voxels. The size of the co-occurrence array was set to 32 × 32 × 32 in
accordance with the method of Kale et al. [48]. This size dictated the number of bins
that the parameter values were quantised into. The co-occurrence array thus consisted of
a total of 323 = 32768 cells. An illustration of a parameter triplet giving rise to a count in
the count array is given in Figure 5.10.

Figure 5.10: Illustration of one sample of co-occurring parameters within a window of size
5× 5× 2.

The features extracted from the co-occurrence array are stated in Table 5.6, for the
complete mathematical formulation of these features, see Kale et al. [48].
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Table 5.6: Textural features extracted from the 3D co-occurrence matrix; MSC method.

Textural Features, MSC
XK1. Angular Second Moment
XK2. Central Moment
XK3. Sum Average
XK4. Sum Central Moment
XK5. Sum Entropy
XK6. Entropy
XK 7,8,9. Contrast
XK 10,11,12. Inverse Difference Moment
XK 13,14,15 Correlation
XK 16,17,18 Difference Variance
XK 19,20,21 Difference Entropy

5.7 Feature selection

Two feature selection strategies were used, sequential forward selection and stepwise logistic
regression in order to find the most discriminatory feature subset. In the feature selection
process of the TSC method, the trivial features were reintroduced.

5.7.1 Feature selection using Sequential Forward Selection

The sequential forward selection (SFS) method chose the feature that increased the AUC
measure most, and added it to the previously selected ones. The AUC was evaluated using
a logistic regression classifier with 10-fold cross-validation. This procedure was repeated
until all features had been selected. At this point all best performing feature sets, over the
full range of features, had a corresponding AUC value. For the TSC method six features
were selected for all different time-curve models. The AUC values had for this number
reached a point where adding more features had only marginal influence on the result. For
the MSC method ten features were selected for both the time-curve models, with the same
motivation.

5.7.2 Feature selection using Stepwise Logistic Regression

In order to avoid choosing too large feature sets, the Bayesian information criterion which
applies a logarithmic penalty as features are added, was used. This procedure was coded
in the statistically oriented programming language R, code is given in Appendix B. The
model was trained using all features, and features were added and removed iteratively.

5.8 Model selection

The model referred to in this section is the final set of features given by the feature selection
step and the final classifier. Two different types of classifiers were used6, one from the family
of SVM classifiers and one logistic regression classifier. As the logistic regression classifier
does not require any tuning of parameters, this section primarily concerns the SVM.

6The classifiers were implemented in Matlab using PRTools (URL: http://www.prtools.org/) and
LIBSVM (URL: http://www.csie.ntu.edu.tw/∼ cjlin/libsvm/).
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5.8.1 Feature scaling

Large feature scale differences can have a great effect on the performance of the SVM. All
features were thus scaled by subtracting the mean of that particular feature and dividing
by its standard deviation. Even though this is not required for logistic regression, the same
step was performed in order to be consistent.

5.8.2 Kernel and parameter choice for the SVM

As mentioned in 2.6.3, the strategy of choosing kernel and kernel parameters was made
according to Hsu et al. [41]. The RBF kernel had two tuning parameters, (C, γ).

In order to reduce the risk of overfitting kernel parameters to the training data, 5-
fold cross-validation was used along with the grid search. Initially parameter pairs were
selected as all combinations of the exponentially growing sequences C = 2−5, 2−3, ..., 215

and γ = 2−15, 2−13, ..., 23. For each tested parameter pair, the performance of the classifier
was evaluated by averaging together the AUC over each of the five folds. When the best
combinations of C and γ were found in the initial grid, the resolution of the grid was
increased and the performance for each parameter pair was evaluated. This procedure
continued until the values had stabilised within the current grid.

5.9 Evaluating classifier performance

The measure used for evaluating the segmentation performance of the competing methods
was the AUC. Evaluation of the final models was performed by use of the validation data
set, for which each voxel was classified.

5.10 Results

In this part the results from the feature and model selection strategies, as well as the
classification results from the final model, are presented. The performance measure under
which the models were evaluated, was the area under the receiver operating characteristic
curve, in short AUC.

5.10.1 Feature extraction; Temporal score co-occurrence method

By the result from the stepwise linear regression step, the trivial features T14 and T15 (see
Appendix C) for the Hayton model were not included in the k-NN model. Features TL2
and TL3 for the Linear Slope model and T2, T4, T7, T9, T10, T11, T13 for the Ricker
model were not included in their respective k-NN model. See Table 5.7 for a summary of
these results.

Table 5.7: Resulting features from the stepwise linear regression step:

Model Selected Features

Hayton T1, T2,T3,T4,T5,T6,T7,T8,T9,T10,T11,T12,T13
Linear Slope TL1,TL4,TL5,TL6,TL7,TL8,TL9

Ricker T1,T3,T5,T6,T8,T12,T14

The results from the exhaustive search for a distance metric and optimal number of
neighbours are presented in Table 5.8. In comparison to the MSC method which had a
resolution of 32 grey-levels, these k-values are more than a halving in resolution.
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Table 5.8: Resulting distance metrics and neighbours from the leave-one-out cross-
validation for each model:

Model Distance Metric Neighbours (k)

Hayton Mahalanobis 13
Linear Slope Mahalanobis 13
Ricker Mahalanobis 7

5.10.2 Feature selection using Sequential Forward Selection

From the sequential forward selection method, six and ten features were selected for the
TSC and MSC models respectively. No trivial features were selected for either of the TSC
models. The textural features that were selected, were frequently appearing for all the
three different enhancement models. Half of the features for the MSC model were common
to both the Hayton and Linear Slope models. See Table 5.9 for complete results from the
SFS strategy.

Table 5.9: Features selected by SFS, in order of selection:

Model Selected Features AUC ± ŜE
Hayton (TSC) X7, X5, X12, X4, X9, X6 0.9395 ± 0.0037
Linear Slope (TSC) X7, X5, X12, X11, X9, X6 0.9423 ± 0.0032
Ricker (TSC) X7, X5, X12, X4, X9, X6 0.9312 ± 0.0016

Hayton (MSC) XK11, XK3, XK16, XK21,
XK10, XK19, XK20, XK8,
XK9, XK17

0.8972 ± 0.0016

Linear Slope (MSC) XK9, XK16, XK3, XK5,
XK10, XK18, XK7, XK12,
XK20, XK14

0.8953 ± 0.0012

5.10.3 Feature selection using Stepwise Logistic Regression

By the stepwise logistic regression feature selection method, similar textural features were
extracted for the TSC method. Trivial features were also included, in contrast to the SFS
strategy. No strong tendency to choose the same features as the SFS method was observed.
For the MSC method, half of the features were consistent between the Hayton and Linear
Slope model, as for the SFS strategy. A large overlap of selected features can be observed
between the feature selection methods for the MSC method. See Table 5.10 for complete
results from the SLR feature selection strategy.

5.10.4 Model selection

Three grid searches per model were conducted in order to get adequate resolution. The
γ-parameter tended to move towards the upper bounds of the grid search, while no clear
behaviour was observed for C. The values of C and γ ranged from 0.125 to 2218.7 and 3.04
to 8 respectively, for the TSC method. For the MSC method, C and γ ranged from 912 to
14564 and 5.45 to 7.53. Table 5.11 summarises the results.

A typical grid surface is illustrated in Figure 5.11. A steep change between two plateaus
was a characteristic behaviour for the AUC surface of the initial search area. AUC values
stabilised quickly as the resolution of the search grid was increased.
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Table 5.10: Features selected by SLR, in no particular order:

Model Selected Features

Hayton (TSC) X1, X2, X4, X6, X7, T4, T10, T11
Linear Slope (TSC) X1, X4, X6, X7, TL1, TL4, TL8, TL9
Ricker (TSC) X1, X4, X6, X7, T1, T3, T4, T9, T10, T14

Hayton (MSC) XK1, XK3, XK4, XK5, XK7, XK8, XK9,
XK12, XK16, XK17, XK18, XK21

Linear Slope (MSC) XK1, XK3, XK5, XK7, XK8, XK9, XK10,
XK12, XK13, XK14, XK19

Table 5.11: Resulting RBF kernel parameters:

Model CSFS γSFS AUCSFS ± ŜE CSLR γSLR AUCSLR ± ŜE
Hayton (TSC) 0.125 7.55 0.9300 ± 0.0045 512 3.04 0.9447 ± 0.0040
Linear Slope (TSC) 2218.7 6.6 0.9301 ± 0.0045 554.7 5.3 0.9538 ± 0.0037
Ricker (TSC) 0.292 8 0.9256 ± 0.0047 424.89 7.69 0.9287 ± 0.0046

Hayton (MSC) 14564 7.53 0.9237 ± 0.0047 912 5.45 0.9387 ± 0.0042
Linear Slope (MSC) 3297.55 6.22 0.9316 ± 0.0045 3236.55 6 0.9297 ± 0.0046
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Figure 5.11: Example of grid search surface from the initial coarse grid using the Linear
Slope model features from forward selection, to train the SVM.

5.10.5 Performance of the TSC-classifiers on the full validation set

The results from computing the AUC measure from the ROC curves for all different models,
on the ten patient validation set, is presented in Table 5.12.
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Table 5.12: Resulting AUC values from validation set containing ten patients, for the TSC
models:

AUC

Model:
SFS SLR

SVM LR SVM LR
Hayton 0.8472± 0.0016 0.8788 ± 0.0015 0.5394 ± 0.0020 0.8683 ± 0.0016
Linear Slope 0.7280± 0.0019 0.8271 ± 0.0017 0.6844 ± 0.0015 0.8260 ± 0.0017
Ricker 0.8638 ± 0.0016 0.8748 ± 0.0015 0.6254 ± 0.0020 0.6172 ± 0.0026

5.10.6 Performance of the TSC-classifiers and MSC-classifiers on the reduced
validation set

The resulting AUC values for all models are shown in Table 5.13. The best classifiers in
terms of the AUC value were a logistic regression classifier used on SLR features from the
Linear Slope model (AUC=0.8989±0.0021) for the TSC method, and a logistic regression
classifier used on SFS features from the Linear Slope model (AUC=0.9330±0.0018) for the
MSC method. How the performance for each of these models at different operating points
varied, given in terms of sensitivity, specificity and CCR, is shown in Table 5.14 and Table
5.15. The corresponding ROC-curves are shown in Figure 5.12.

Table 5.13: Resulting AUC values from validation set containing eight patients:

AUC

Model:
SFS SLR

SVM LR SVM LR
Hayton (TSC) 0.8621±0.0024 0.8964±0.0022 0.5995±0.0027 0.8957±0.0022
Linear Slope (TSC) 0.8345±0.0026 0.8801±0.0023 0.7441±0.0020 0.8989±0.0021
Ricker (TSC) 0.8747±0.0023 0.8877±0.0022 0.6185±0.0026 0.7000±0.0030

Hayton (MSC) 0.8383±0.0026 0.9279±0.0019 0.7298±0.0030 0.9243±0.0019
Linear Slope (MSC) 0.8178±0.0027 0.9330±0.0018 0.8671 ±0.0024 0.9266±0.0019

Table 5.13 shows that for eight test patients and for the TSC method, the Ricker model
was the best model for SFS and SVM, the Hayton model for the SFS and LR, whilst the
Linear Slope was the best model for SLR and LR. The logistic classifiers for all MSC models
performed similarly on all feature sets and outperformed the SVM. The best model was
logistic regression in combination with SFS, for the MSC method.

5.10.7 Visual assessment of segmentation result

Segmentation results are presented for two different patients, at cut-point levels 0.7, 0.9
and 0.99. Under the 0.7 level, considerable over-segmentation was observed. For the first
example, segmentation results for the TSC and MSC methods are presented in Figure 5.13
and 5.14. For the second example, segmentation results for the TSC and MSC methods
are presented in Figure 5.15 and 5.16. True Positives (TP) are colour coded as green, false
positives (FP) are coded as yellow, false negatives (FN) are coded as red and true negatives
(TN) are coded in grey-scale.
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Table 5.14: Classification summary for the best performing logistic classifier using features
from the TSC method:

Cut-point Sensitivity Specificity CCR (%)

0.0 1.00 0.00 0.03
0.1 0.98 0.18 18.29
0.2 0.97 0.30 29.88
0.3 0.96 0.39 39.05
0.4 0.94 0.46 46.22
0.5 0.93 0.52 52.32
0.6 0.92 0.58 57.97
0.7 0.90 0.64 63.63
0.8 0.88 0.70 69.80
0.9 0.84 0.78 77.59
1.0 0.00 1.00 99.97

Table 5.15: Classification summary for the best performing logistic classifier using features
from the MSC method:

Cut-point Sensitivity Specificity CCR (%)

0.0 1.00 0.00 0.03
0.1 1.00 0.12 12.10
0.2 0.99 0.25 24.74
0.3 0.99 0.36 36.14
0.4 0.98 0.46 46.10
0.5 0.96 0.54 54.16
0.6 0.95 0.61 61.36
0.7 0.93 0.68 68.31
0.8 0.90 0.76 75.61
0.9 0.86 0.84 84.19
1.0 0.00 1.00 99.97
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Figure 5.12: ROC-curves for the best performing logistic classifiers using TSC and MSC
methods for feature extraction.
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Figure 5.13: Example 1 of segmentation results from the TSC method at cut-point levels
0.7, 0.9 and 0.99, from top to bottom. The lesion segmentation is magnified at the bottom,
at a cut-point level of 0.99 (TP = green, FP = yellow, FN = red, TN = greyscale).
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Figure 5.14: Example 1 of segmentation results from the MSC method at cut-point levels
0.7, 0.9 and 0.99, from top to bottom. The lesion segmentation is magnified at the bottom,
at a cut-point level of 0.99 (TP = green, FP = yellow, FN = red, TN = greyscale).
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Figure 5.15: Example 2 of segmentation results from the TSC method at cut-point levels
0.7, 0.9 and 0.99, from top to bottom. The lesion segmentation is magnified at the bottom,
at a cut-point level of 0.99 (TP = green, FP = yellow, FN = red, TN = greyscale).
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Figure 5.16: Example 2 of segmentation results from the MSC method at cut-point levels
0.7, 0.9 and 0.99, from top to bottom. The lesion segmentation is magnified at the bottom,
at a cut-point level of 0.99 (TP = green, FP = yellow, FN = red, TN = greyscale).
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5.11 Discussion

In this section the the results and findings are discussed, as well as the choices made in
the empirical evaluation.

5.11.1 Results

Selection of features with stepwise linear regression for the k-NN classifier resulted only in
a small reduction of features for the Hayton and Linear Slope model, as seen in Table 5.7.
For the Ricker model, a subset including half of the features was selected. As the trivial
features were defined in the exact same way for the Ricker and Hayton model, and the
enhancement curves show similar behaviour, the cause of this difference is unclear.

The results from Table 5.8 show that the Mahalanobis distance was the best metric
and that a low number of nearest neighbours, k, was favoured over a high. One reason
for why the Mahalanobis distance was favoured over other distance metrics may be that it
takes correlation between features into consideration.

From the results in Table 5.9, it is clear that the SFS method favoured the proposed
spatio-temporal features, for the TSC models. The TSC models showed an overall higher
AUC score than the MSC models. Table 5.9 and 5.10 show that larger subsets were selected
by the SLR feature selection step than for SFS. However for the SFS method the number
of features was chosen manually by finding at what number of features the performance
did not improve. In the SLR method the number of features selected was governed by the
BIC.

The grid searches for RBF kernel parameters show similar AUC results for both the TSC
and MSC models, as observed in Table 5.11. A small tendency for the models including
SLR features to perform better is observed. Figure 5.11 show an AUC-surface for the grid
searches where the strongest influence on the AUC is governed by the γ-parameter. This
behaviour is connected to the observed values in Table 5.11, where the γ-parameters tend
to take values close to the upper search bound.

The results from using the TSC-classifiers, shown in Table 5.12, on the full validation
set show that the Hayton models based on LR performed best overall, but the Linear Slope
models was the most consistent across all models. An other observation is that the SVM
classifiers with SLR features produced overall poorer results. This is in contrast to the
model selection step, where these models performed best. This is perhaps indicative of
these models being too tightly fitted to the training data.

In the comparison between the performance of the TSC- and the MSC-models on the
reduced validation set, presented in 5.13, the Linear Slope model using MSC-features
performs best overall and most consistently across all models. The Hayton model using
MSC-features does however produce similar results. Using the SFS feature sets and the
SVM as classifier, the Ricker model using TSC-features resulted in highest AUC, despite
the lower flexibility of this enhancement model (because it has two rather than three
parameters).

Observing the classification summaries in Table 5.14 and Table 5.15, both the best
performing TSC- and MSC-classifier show similar values of sensitivity. The specificity is
higher for lower cut-points for the TSC-model compared to the MSC-model, but lower for
higher cut-points. As the reduced validation set contained significantly fewer observations
of the ”non-suspicious” class, the CCR closely follows the specificity. The AUC is a better
measure of performance in the sense that it is independent of class prior probabilities. The
ROC-curves for the best performing TSC- and MSC-classifiers in Figure 5.12 shows that
for the MSC-classifier the curve is closer to the upper left corner, a behaviour which is
reflected in the higher AUC.
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Figures 5.13, 5.14, 5.15 and 5.16 show that the clustering of the segmented pixels seems
to be more clearly grouped into well defined regions with the MSC method.

5.11.2 Pre-processing

The use of the 3 × 3 mean filter in order to mitigate noise is a simple and effective.
Nevertheless extreme values within the filter window (due to noise) centred on a given
voxel can have a great influence on the value assigned to that voxel and hence can impact
local texture. Moreover because it is a low-pass filter high frequencies are attenuated
which also has an impact on local texture. This may have had a negative impact on the
discriminatory power of the co-occurrence features computed for both the TSC and MSC
methods. A more advanced noise reduction method could have been used, e.g. the dynamic
non-local means algorithm [55], but would have required significantly more computational
time.

Hayton’s algorithm for segmentation of the breast-air boundary in many cases yielded
an over-segmentation. This is possibly due to MR intensity inhomgeneities due to the bias
field. Consequently many noisy voxels will have been included in the training and test
data likely leading to reduced performance. Better results may have been obtained if bias
correction had been included in the preprocessing steps.

5.11.3 Partitioning into training and validation sets

Radiologists typically review tissue that exhibits 50% or higher relative enhancement. This
threshold was applied to the suspicious voxels of the training set (see Section 5.3.1). A
refinement to the selection of non-suspicious voxels for the training data set is to apply
this same threshold for these voxels and also for all voxels of the validation set. The
segmentation method would then only discriminate between suspicious and non-suspicious
voxels that enhance 50% or more. This would not only reduce the amount of data to be
processed but is likely to improve classification performance.

5.11.4 Feature extraction

The decision to include both malignant and benign lesions in a single ”suspicious” class
may have had a negative impact on classification performance for both methods. The
reason for this is that a benign lesion will typically have a homogenous texture whilst a
malignant lesion will have a heterogenous texture. In particular this may have affected
the discriminatory power of the spatial co-occurrence features used in both methods. In
the case of the TSC method this issue may have negatively influenced the performance of
the k-NN classifiers. This is because some voxels in an enhancing malignant lesion may
exhibit enhancement characteristic of ”non-supicious” tissue and yet be assigned a class
label of ”suspicious”. Kale et al. [48] considered only invasive ductal carcinoma tumours
in their study and their reported results and segmentation examples have less false positive
classification errors than for the data in this study. Thus the performances of both the
TSC and MSC methods for segmenting malignant-only lesions remains an open question.

5.11.5 Fitting of parametric models of enhancement

Given that the Linear Slope model and the Ricker model were able to be fitted using LS,
this could be done considerably quicker than for the Hayton model, which was fitted using
NLS. On an Intel Core i5 (2.5GHz) processor, a single slice was processed in a matter of
seconds for the Ricker model, minutes for the Linear Slope model and could range to well
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over an hour for the Hayton model. As a typical volume consisted of 110-170 slices, this
must be considered for most practical applications.

5.11.6 Temporal-score co-occurrence method

A k-NN classifier was used here because of its simplicity and because it does not make
any assumptions about the underlying distribution of the data. The features used in the
k-NN classifiers were not scaled which potentially means that the some features may have
dominated feature space. Whether or not feature scaling would have influenced the overall
performance of the TSC method thus remains an open question.

5.11.7 Multispectral co-occurrence method

The truncation of the enhancement curve parameter values was not discussed in the original
paper of Kale et al. [48]. This is an important consideration in the binning of each
parameter for the purposes of computing co-occurrence. Clearly the choice of range and
bin-widths here can impact on the overall performance of the MSC method.

5.11.8 General comments

For the MSC method, the features extracted were the ones described in the original paper,
albeit derived from different underlying parametric models of enhancement. The MSC
method yielded a very sparse GLCM matrix with only 50 counts distributed over 323

elements. As a comparison the TSC method had a co-occurrence matrix consisting of 72

(Ricker) and 132 (Hayton, Linear Slope) elements. Each window yielded a total number of
288 counts. This implies that the sparsity of the MSC method’s GLCM was significantly
higher than that of the TSC. It is possible that this difference in sparsity of the GLCM
may have impact on the discriminatory power of the co-occurrence features.

The choice of window size used in the MSC method represents a trade-off between the
sparseness of the resulting co-occurrence matrix and the need of sufficient localisation [48].
A larger window size is beneficial in the sense that the co-occurrence matrix contains more
counts. However the resulting textural features then come from a larger window and have
less to do with the local texture. Kale et al. [48] used a window size of 5× 5× 2 (i.e. 5 by
5 in-plane window over two slices). The proportions between in-plane and through-plane
resolution of our data sets coincided with the proportions of that of Kale et al. such that
the window size of 5× 5× 2 voxels were the proportions closest to a cube shaped window.
This window size also led to the same localisation and sparsity trade-off. The impact that
this window size has on the performance of both methods remains an open question.

5.11.9 Feature selection

Only two different feature selection strategies were considered: step-wise logistic regression
based on the BIC, and logistic regression with SFS. Logistic regression was chosen because
it is a simple linear classifier that does not have any tuning parameters. A stop criterion
or maximum number of features allowed, should have been defined in order to avoid the
need of deciding what number of features to include from the method. As the Bayesian
information criterion was used for the SLR method, small models were favoured, thus
reducing the risk of overfitting.
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5.11.10 Model selection

The grid search method for tuning the SVM kernel parameters requires user input (number
of levels in the resolution pyramid) and is thus not objective. To get adequate resolution,
only three grid searches had to be conducted but as this might not be the case, an automatic
search method might be attractive in order to save time. As cross-validation was used in
several steps, large parts of the model selection could have been done in a nested manner
instead of a sequential manner.

5.11.11 Evaluating classifier performance

The ground truth data for this thesis was acquired by manual segmentation of an expert
reader. Given that this data was segmented in a subjective fashion, there is a certain
possibility of individual voxels being incorrectly segmented by the reader (at the very least
at the border of lesions). Incorrectly labeled voxels suffer great risk of being incorrectly
segmented by the proposed method since the temporal features extracted for these voxels
will show non-lesion characteristics.

5.11.12 Trade-off between sensitivity and specificity

The resulting voxel-wise specificity and sensitivity is naturally dependent on the choice of
cut-point for the final classifier. In general a high sensitivity is of importance for lesion
segmentation applications. However, the importance of specificity may vary depending
on the specific application. If the application aims at assisting a radiologist in terms of
verifying suspicious lesions, high specificity is the first priority. If the application on the
other hand is functioning as a pre-screener (e.g. for high risk women) a high sensitivity is
necessary. Specificity increases with increasing thresholds as seen in Table 5.14 and visual
examples of this can be seen in Figures 5.13, 5.14, 5.15 and 5.16. As the specificity of the
voxel-wise segmentation increases, the sensitivity declines leading to a trade-off between a
useful segmentation and the risk of missing lesion voxels. One way of handling the trade-off
between sensitivity and specificity, may be to include a slider with which the radiologist
can vary the threshold as preferred or to plot the score of the final classifier using a heat
map with transparency on top of the original image.
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6 Summary and Conclusions

This chapter briefly reviews the thesis, summarises the key contributions and findings,
outlines the limitations of the research undertaken, and discusses opportunities for future
research.

6.1 Thesis summary

Chapter 1 provided an introduction to the field of the research and a statement of the
hypothesis underlying the research; i.e.

-that it is possible to automatically and accurately segment 3D lesions in
DCE-MRI breast data by means of voxel-wise classification based on quantitative
features that describe both spatial and temporal change in contrast enhancement.

It was stated that the aim of this research was to explore the validity of this hypothesis
by:

1. Developing a spatio-temporal segmentation method for 3D breast lesions based on
characterising the spatial co-occurrence of enhancement; and

2. Evaluating the performance of the new method using real clinical breast MRI data.

Chapter 2 provided the necessary background and theory needed for the remainder of
the thesis. This included material on breast cancer, magnetic resonance imaging (MRI),
dynamic contrast-enhanced MRI, the analysis of contrast enhancement in DCE-MRI, sta-
tistical pattern recognition, and texture analysis by co-occurrence.

Chapter 3 presented a review of the literature dealing with the automatic segmentation
of lesions in breast MRI. The review concluded that voxel-wise textural analysis by co-
occurrence is one the best approaches for characterising the spatio-temporal enhancement
of lesions and thus for automatically segmenting them. It was noted that a limitation of
existing co-occurrence approaches is that it is necessary to truncate co-occurrence values
in order to construct co-occurrence matrices. This decision is somewhat arbitrary. This
then was the motivation for the new method proposed in Chapter 4.

Chapter 4 presented the proposed method based on first converting each voxel-wise time
series to a single probability-like score (between 0 and 1) and then extracting co-occurrence
features for each voxel in the resulting probability volume.

Chapter 5 presented an empirical evaluation of the performance of the proposed method
relative to the competing method of Kale [48].

6.2 Key contributions and findings

This research proffers a new method (voxel-wise classifier) for automatically segmenting
3D lesions in breast DCE-MRI data suspicious for malignancy. It also provides addi-
tional evidence in support of the underlying hypothesis. In particular the empirical results
demonstrate that it is possible to automatically differentiate between suspicious and non-
suspicious tissue in the breast, by combining both spatial and temporal information using
the notion of co-occurrence originating from classical texture analysis. The empirical re-
sults demonstrate that the proposed method achieves a level of performance comparable to
the selected benchmark method (AUC of 0.8989 ± 0.0021 versus AUC of 0.9330 ± 0.0018).
The advantage of the proposed method over the competing method is that it does not re-
quire subjective specification (truncation) of feature ranges for computing co-occurrence.
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The empirical results also suggest that a simple empirical model of contrast-enhancement
(linear-slope model) can be used in lieu of more complicated pharmacokinetically inspired
models. The advantage of this model is that it can be fitted rapidly using simple least
squares.

6.3 Opportunities for further research

The proposed segmentation method may potentially be improved by alternating several
implementation steps. A weakness in the empirical evaluation of the proposed method is
that it was used to discriminate suspicious and non-suspicious tissue. The suspicious class
included both benign and malignant lesions. Given that benign lesions tend to be more
homogeneous in enhancement than malignant this may have impacted on the quality of
discrimination that could be obtained using the co-occurrence texture features. Future
work could consider discriminating malignant from all other tissue.

The heterogeneity of malignant tissue also suggests that the generation of a single
temporal score for each voxel may not be the best approach. An alternative approach
would be to consider the use of regular co-occurrence features extracted for each model
parameter volume separately.

Future work could also consider the combination of features from additional MR tech-
niques such as diffusion weighted MRI and MR spectroscopy.

6.4 Limitations

In this project several limitations were encountered, these included:

• The empirical evaluation performed was limited to segmenting suspicious lesions, i.e.
discriminating both benign and malignant tissue from all other tissue. It did not
consider the problem of discriminating malignant tissue from all other tissue.

• In the empirical evaluation no bias field correction or motion correction was performed
(although a subset of the data provided for this study had already been motion
corrected).

• The “ ground truth ” segmentations used in the study originate from a single ex-
pert reader’s manual segmentation. Ideally several independent experts should have
segmented the same data to be able to account for intersubject variability.
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Appendices

A Parametric models of contrast enhancement

A.1 Hayton model

The Hayton model is a two-compartment model based on a pharmacokinetic model for
measurements on the blood-brain barrier using MR, initially proposed by Tofts and Ker-
mode. Unlike the model of Toft and Kermode as well as other traditional pharmacokinetic
models, the Hayton model does not attempt to assess enhancement pixels based on abso-
lute enhancement characteristics. Rather than this the model aims at finding regions of
tissue that enhances significantly more than healthy tissue, which mimics the way dynamic
MR sequences are interpreted by radiologists [53].

Optimally the contrast agent is injected into the bloodstream instantaneously, this
would give an exact starting time (t = 0) for the model. However in practice, due to the
viscosity of the contrast agent, it is necessary to inject the agent under a short time period.
Hayton’s model is based on the assumption of instantaneous injection since this injection
model has the fewest unknown parameters [53]. The resulting model function is

C(t) =
A

a− b
(e−bt − e−at), (A.1)

where A, a, and b are parameters representing the original compartmental variables
from the two-compartment model.

Since the model is the sum of two exponential terms, a non-linear least squares algo-
rithm must be used to fit the parameters A, a and b. The model fitting algorithm requires
initial parameter values and a limit on the number of iterations allowed. By its iterative
nature, these fitting methods are computationally expensive [27]. Recommendations on
starting values for these parameters are given by Hayton [53].

A.2 Linear Slope model

The linear slope model has its origins in plant and soil sciences, it’s model function is

C(t) =

{
β1t if t ≤ α

β1α + β2(t− α) if t > α,
(A.2)

where α, the abscissa, is the point in time where the two straight lines meet. β1 and β2
are the slope of the first and second straight line respectively. Since this is a linear model
it can be fitted in a least squares sense.

A.3 Ricker model

The Ricker model comes from literature on fisheries [27], it has the form

C(t) = ate−bt, (A.3)

where the parameters a and b are real parameters. In order to fit the model in a least
squares sense, the model can be rewritten into y = αt+ β by taking the logarithm of both
sides. Here y = log(C(t))− log t), α = −b and β = log a [27].
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B R program for Stepwise Logistic Regression

rm (list=ls())

library(MASS)

raw.data<-read.csv("Features_Labels.csv",header=FALSE)

# Create a model expression of the form V29~V1+V2+....+V27, depending on features

#features.to.keep<-seq(1,27)

#my.formula <- formula(paste("V29 ~",paste("V",features.to.keep,sep="", collapse=" + ")))

#my.glm <- glm(V29~1, family=binomial(link=logit), data=raw.data)

my.glm <- glm(my.formula, family=binomial(link=logit), data=raw.data)

my.step <- stepAIC(my.glm, scope=my.formula, k=log(nrow(raw.data)),direction = "both")
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C Temporal kinetic features for the Linear Slope, Hay-

ton and Ricker enhancement models

Table C.1: Temporal kinetic features extracted for the Linear Slope model.

Temporal Kinetic Features Description
TL1. Peak value The maximum value of the curve.

Set to zero if the model did not
peak within 6.5 minutes.

TL2. Last value of the curve The last value of the curve.
TL3. Ratio between first and second slope The first slope divided by the sec-

ond slope, set to zero if the second
slope had zero inclination.

TL4. The area under the model curve (Analytical) The area under the model curve
up to 6.5 minutes.

TL5. Initial Percentage Enhancement (Raw) The first post-contrast value sub-
tracted and divided by the pre-
contrast value, PE = I2−I1

I1
.

TL6. Signal enhancement ratio (Raw) The ratio between the enhance-
ment to first post-contrast value
divided by the enhancement to
the last, SER = I2−I1

Ilast−I1
. The last

post-contrast within the time in-
terval was used.

TL7. First model parameter The slope from 0 minutes to the
abscissa of the joint point.

TL8. Second model parameter The slope from the abscissa of the
joint point to 6.5 minutes.

TL9. Third model parameter The abscissa of the joint point.

52 , Signals and Systems, Master of Science Thesis 2011



Table C.2: Temporal kinetic features extracted for Hayton and Ricker models.

Temporal Kinetic Features Description
T1. Time to peak The time for the curve to reach its

maximum value, normalised over
the time interval. Set to zero if
the model did not peak within 6.5
minutes.

T2. Time to reach half of the peak value The time for the curve to reach
half of its maximum value, nor-
malised over the time interval.
Set to zero if the model did not
peak within 6.5 minutes.

T3. Peak value The maximum value of the curve.
Set to zero if the model did not
peak within 6.5 minutes.

T4. Last value of the curve The last value of the curve.
T5. Maximum value of the derivative (Analytical) Analytically derived maximum

derivative. Set to zero if the value
did not occur within 6.5 minutes.

T6. Mean wash-in slope The value where the curve peaks
divided by the time to peak.

T7. Mean wash-out slope The value where the curve peaks
divided by the time to the last
curve value.

T8. Ratio between wash-in and wash-out slopes Wash-in slope divided by wash-
out slope.

T9. Numeric approximation of the integral Numerical approximation of the
integral by use of the trapezoidal
method.

T10. Numeric approximation of the derivative The maximum difference between
two subsequent curve values di-
vided by the time difference.

T11. Initial percentage enhancement (Raw) The first post-contrast value sub-
tracted and divided by the pre-
contrast value, PE = I2−I1

I1
.

T12. Signal enhancement ratio (Raw) The ratio between the enhance-
ment to first post-contrast value
divided by the enhancement to
the last, SER = I2−I1

Ilast−I1
. The last

post-contrast within the time in-
terval was used.

T13. First model parameter First model parameter, for Hay-
ton or Ricker model.

T14. Second model parameter Second model parameter, for
Hayton or Ricker model.

T15. Third model parameter Third model parameter, for Hay-
ton model only.
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