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Implementation of an adaptive equalizer based on machine learning for real-time
coherent optical receivers

Boyang Zheng
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
An adaptive equalizer is used to compensate for polarization mode dispersion (PMD)
in polarization multiplexed (PM) optical communication systems. The PMD is not
only influenced by the optical fiber but also affected by the fiber non-linear effects.
Furthermore, the non-linear effects will be more and more severe with the increase
of the channel’s data throughput. However, traditional algorithms, such as the
constant modulus algorithm (CMA) and decision-directed Least Mean Square (DD-
LMS), only focus on compensating the PMD, and are not efficient for the non-linear
effects. We try to apply machine learning-neural networks (ML-NNs) algorithm
in the adaptive equalizer to deal with non-linear effects and more complex PMD.
We also compare the ML-NNs and the CMA algorithm both in the software and
hardware performance.
In this project, we improve the traditional ML-NNs structure based on the cascade
multiple-input multiple-output (MIMO) filter theory so that the ML-NNs adap-
tive equalizer could be implemented in a real-time system more efficiently. MAT-
LAB simulations are used to compare the software performance between the two
algorithms via the effective signal-to-noise ratio (SNR). The two algorithms are
re-written to the very-high-speed integrated circuit hardware description language
(VHDL) format to compare the field-programmable gate array (FPGA) resource
utilization. In addition, we extract information on how the number of taps in the
ML-NNs equalizer influences the FPGA resource utilization.
We verified that the two types of equalizers have the same MATLAB software per-
formance in terms of effective SNR. We also conclude that the FPGA is a good
choice for implementing the forward propagation of the ML-NNs equalizer. How-
ever, it is not suitable for implementing backpropagation because of the high degree
of multipliers required and the complexity of calculating derivatives.

Keywords: Adaptive equalizer, CMA, Machine-learning, Matlab, FPGA, VHDL,
Coherent optical receivers.
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1
Introduction

With the rapidly increasing demand [1] for data transmission, high capacity and re-
liable optical fiber communication systems are becoming more critical. Developing a
next-generation optical communication system will be a most challenging problem in
the next few years. Nowadays, optical communication systems usually use advanced
modulation formats [2] and polarization multiplexing (PM) [3] to maximize chan-
nel spectral efficiency and increase channel capacity. However, these technologies
simultaneously lead to extra system complexity and make the system suffer from
impairments in the optical channel.
Advanced modulation formats will increase the complexity of transceivers directly [4],
and the tolerance to optical channel impairments will also decrease significantly. The
simplest example is that the 16 quadrature amplitude modulation (16QAM) format
will require a higher signal-to-noise ratio (SNR) compare to quadrature phase shift
keying (QPSK) modulation formats to ensure it can be demodulated [5]. Polar-
ization multiplexing increases channel capacity without significantly increasing the
complexity of the transceiver. However, an optical fiber is always slightly elliptical
and birefringent which means different index of refraction for the x and y polariza-
tions, and results in a different delay for each polarization, which is also known as
polarization-mode dispersion (PMD) [6].
The group velocity dispersion (GVD) and PMD are important limitations for the
optical channel capacity. We already have several solutions such as chromatic dis-
persion (CD) equalizer [7] in the digital signal processing (DSP) or dispersion com-
pensation fiber (DCF) to compensate GVD. For the PMD, we commonly use an
adaptive equalizer based on the constant modulus algorithm (CMA) and decision
directed least mean square (DD-LMS) [8] to compensate it.
However, the PMD is a more complex problem that is not only influenced by fiber’s
physical characteristics [9] but also affected by non-linear effects; there has already
been some research about the interaction between PMD and nonlinearity [10]. Tra-
ditional algorithms such as the CMA and DD-LMS can effectively track polarization
changes and compensate polarization mode dispersion with complex calculations and
significant hardware resources. However, they are not very efficient for non-linear
impairments such as the fiber Kerr effect [11]. In this case, we want to expand the
traditional adaptive equalizer so that it can be efficient for PMD and non-linear
effects simultaneously.
As one of the most popular technologies, machine learning (ML) has been considered
for signal recovery [12]. In this thesis, we consider applying machine learning-neural
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1. Introduction

networks (ML-NNs) as a potential solution to expand the traditional adaptive equal-
izer, which has been discussed in the literature [13]. We not only do simulate the
software layer and compare it with the CMA equalizer, but we also consider the
hardware implementation. Furthermore, utilization of hardware resources is also an
aspect that we are interested in. However, we will primarily concentrate on the ML
algorithm for compensating the PMD and compare the primary performance and
field programmable gate array (FPGA) resource utilization with the CMA. Then
we will try to conclude how the ML layers and the number of taps will influence the
hardware resource consumption. Finally, as a future direction, we point out that
the equalizer could be expanded to contain a non-linear compensation module.
The following report covers the process and results of the master thesis project. The
introduction chapter mainly discusses the work background and goals, followed by a
chapter introducing the basic concepts of optical transmission, the CMA algorithm,
and the traditional ML-NNs algorithm. The next chapter concentrates on the simu-
lation of the CMA adaptive equalizer, the ML-NNs adaptive equalizer, also verifies
that the two equalizers have the same software performance based on effective SNR.
Then the fourth chapter is used to describe the hardware implementation and com-
pares the FPGA resource utilization between the two types of equalizers. Finally,
this report ends with the work results and conclusion.
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2
Theory

2.1 Optical transmission
An optical transmission link diagram is shown in Figure 2.1. Ideal polarization
multiplexing-quadrature phase shift keying (PM-QPSK) symbols ut are sent out
from the Transmitter (Tx) block. Polarization rotation and PMD will be added to
the symbols when the ut pass the optical channel. An adaptive equalizer is used in
the receiver to compensate for the rotation and the PMD. What we expect is that
the output uo from the equalizer would be ideal transmitted symbols plus the added
noise.

Tx
(Ideal symbols)

Channel
ur = R·ut + n

2×2 MIMO FIR

CMA
(ML-algorithm)

ur = [xr;yr] uo = [xo(k);yo(k)]ut = [xt;yt]

Figure 2.1: Simplified optical transmission system diagram.

2.1.1 Transmitter module
The ideal modulation symbols are transmitted out from the transmitter block. The
PM-QPSK modulation format is used in this project. Figure 2.2 shows the compar-
ison between the transmitted PM-QPSK symbols and received symbols with added
noise. The signal-to-noise ratio (SNR) is defined by

SNR(dB) = 10 · log10
Psignal

Pnoise

. (2.1)

Here Psignal is the signal power and the Pnoise is the noise power. In Figure 2.2, we
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2. Theory

used 10 Gbaud as the rate of the transmitter, which means the number of symbols
the transmitter should send out every second is 10 · 109.
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Figure 2.2: Top row: the transmitted PM-QPSK symbols and noise; Bottom row:
the received symbols with SNR = 15 dB.

2.1.2 Channel model
This project uses two types of channel models based on the same equation

ur = R · ut + n. (2.2)

The first is the rotation channel which is used to check the accuracy of the calculation
process of the algorithms:

ur = U · ut + n, (2.3)

where the R = U , which the U is a rotation matrix

U = [cosα − sinα; sinα cosα]. (2.4)

Here, α is a rotation angle, n is the additive white Gaussian noise (AWGN), ut is the
transmitted symbols, and ur is the received symbols. Figure 2.3 shows an example
where the constellation contains both the polarization rotation α = 0.36π and noise.
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Figure 2.3: Symbols after a polarization rotation channel with SNR = 15 dB.

The PMD can be added to the channel in the frequency domain, as

Ur(w) = R(w) · Ut(w) + n, (2.5)

where Ut(w) is the Discrete Fourier Transform (DFT) of the transmitted symbols.
Ur(w) is the DFT of the received symbols. The R(w) is

R(w) = U ·D(w) · U−1, (2.6)

where U is a rotation matrix and D(w) is

D(w) = [exp(i · w · T0/2) 0; 0 exp(−i · w · T0/2)]. (2.7)

Here, the T0 is the differential group delay. Figure 2.4 shows an example, with T0
= 10 ps, of a constellation diagram containing both PMD and noise.

2.1.3 Equalization module
In optical communication systems, an adaptive equalizer is commonly used to com-
pensate for the PMD. Generally, a two by two multiple-input multiple-output (MIMO)
finite impulse response (FIR) filter [14] is used to construct the adaptive equalizer.
For simplicity of explanation of the MIMO FIR, the filter process can be described
as a matrix calculation.
If we consider the MIMO FIR as an N tap filter, the input matrix should be
ui(k)=[Xi(k) ; Yi(k)] where

Xi(k) = [xi(k);xi(k − 1); ...;xi(k −N)] (2.8)

Yi(k) = [yi(k); yi(k − 1); ...; yi(k −N)], (2.9)
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Figure 2.4: Symbols after a polarization PMD channel with with SNR = 15 dB.

Xi(k), Yi(k) are the input samples for the x, y polarization. As a result, the ui(k)
should be a column vector with a length of 2N . From now on, we will use k to
denote the symbol index.
The output of the MIMO filter is

xo(k) = hH
x (k) · ui(k) (2.10)

yo(k) = hH
y (k) · ui(k), (2.11)

where hx, hy are column vectors of length 2N representing the filter tap weights for
the response to x and y polarization, and ()H denotes the conjugate transpose.

2.2 Introduction to the CMA
The constant modulus algorithm (CMA) algorithm attempts to minimize the error
in a mean square sense to make all of the symbols distributed close to a circle. For
instance, with reference to the equation (2.3), the CMA algorithm aims at finding
U ’s inverse and retrieve ut.

2.2.1 Error function
The error function is used to estimate the difference of the power between the output
symbols and the ideal symbols, and it is given by:

ξx(k) = A2 − |xo(k)|2 (2.12)

ξy(k) = A2 − |yo(k)|2, (2.13)

6



2. Theory

where A is a real-valued constant given by the amplitude of the transmitted symbol:

A = |ut|, (2.14)

where ut is the transmitted symbols.

2.2.2 Update equation
The coefficients update equation is used to calculate the new coefficients and update
for the next input sequence, and it is given by [8]:

hx(k + 1) = hx(k) + µ · ξx(k) · xo(k)∗ · ui(k) (2.15)

hy(k + 1) = hy(k) + µ · ξy(k) · yo(k)∗ · ui(k), (2.16)

where µ is the step size parameter, which will determine whether the CMA algorithm
would converge and the speed of the convergence, and ()∗ denotes the conjugate.

2.2.3 The CMA equalization process
Each input sequence ui(k) will be used to calculate one output based on the formulas
(2.10) (2.11). The error function uses this output to calculate the corresponding
error result. The update formulas will calculate the new coefficients for the next
input sequence based on the formulas (2.15) (2.16). When new coefficients have
been updated, it means finishing one iteration and this equalization process means
the CMA adaptive equalizer will update coefficients for every symbol.

As mentioned before, the CMA adaptive equalizer only tries to find the inverse of
U . It means the error signal would always contain noise. We expect the error curve
to decrease with the number of iteration; however, the noise will never become zero
but fluctuate. When the error curve has fluctuated in a certain range, it could be
considered converged.

2.3 Introduction to the ML-NNs
Machine learning-neural networks (ML-NNs) are algorithms that try to mimic the
brain. The primary process of ML-NNs contains several steps. Many training sam-
ples should be collected first, followed by unique mark labels in the training samples.
Finally, training is carried out on all of the coefficients based on the labeled training
samples [15]. The main target is trying to extract the feature of training samples
and conclude the main features to several coefficient matrices. Forward propagation
will calculate the output to be the same as the features based on the coefficient
matrices. An example of basic network structure is shown in Figure 2.5.
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X1

a3

X2

X3

a2

a1

Y

Input Layer Hidden Layer Output Layer

Θ1 Θ2

Figure 2.5: An example of basic neural networks structure.

2.3.1 Forward propagation
Data propagation from the input layer to the output layer is called forward propa-
gation. For the hidden layer in our example

a1 = f(θ1 11 ·X1 + θ1 12 ·X2 + θ1 13 ·X3) (2.17)

a2 = f(θ1 21 ·X1 + θ1 22 ·X2 + θ1 23 ·X3) (2.18)

a3 = f(θ1 31 ·X1 + θ1 32 ·X2 + θ1 33 ·X3), (2.19)

where the θ1 is coefficient matrix with a size of 3×3 and f is the activation func-
tion [16].
For the output layer

Y = f(θ2 11 · a1 + θ2 12 · a2 + θ2 13 · a3), (2.20)

where θ2 is coefficient matrix with a size of 1×3. The whole process could be
simplified to

Y = f(θ2 · f(θ1 ·Xi)). (2.21)

Here, Xi = [X1;X2;X3] is one input training sample.

8



2. Theory

2.3.2 Cost function
The cost function is mainly used to estimate the mean square error between the
forward propagation outputs and training samples.

L(θ1, θ2) = 1
m
·

m∑
i=1

(yi − Yi)2, (2.22)

where m is the number of total training samples, yi is the labeled training sample,
and Yi is the forward propagation output.

2.3.3 Back propagation
The back propagation process is mainly responsible for the gradient calculation
and coefficient update. The stochastic gradient descent [17] algorithm, which is a
commonly used algorithm in ML-NNs to minimize the cost function, is considered
to be the first choice in this project. The cost function is given in formula (2.22),
and the gradient is derivative of L(θ1, θ2)

d(L)/d(θ1 i,j) (2.23)

d(L)/d(θ2 i,j), (2.24)

where i and j are the row and column indices. The typical update formula in ML is

θ1i,j = θ1i,j − µ · dL/d(θ1i,j) (2.25)

θ2i,j = θ2i,j − µ · dL/d(θ2i,j), (2.26)

where µ is the learning rate, also called stepsize, which will influence the convergence
behavior of the iteration process.

2.3.4 The ML-NNs calculation process
In the calculation process, the corresponding input samples X and output labels
yi should be prepared first. Moreover, m input samples could obtain m forward
propagation outputs Yi based on section 2.3.1. The next step is to calculate the
average cost function via section 2.3.2. Finally, update the new coefficient matrices
based on section 2.3.3. When new coefficient matrices are generated, it means that
finished one iteration, and each iteration uses the same training samples as before.
In general, more number iterations mean higher accuracy of the ML-NNs system.
However, it also means more time is consumed.

9
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3
MATLAB Software
implementations

3.1 System parameters overview
Table 3.1 shows the overview of the basic system parameters. The PM-QPSK mod-
ulation format is chosen in our simulation and verification system and sets the SNR
to 15 dB. A step size related to 1/2p (p is a natural number) is used in the system
for more efficiency in the very-high-speed integrated circuit hardware description
language (VHDL) implementation. We set the CMA adaptive equalizer to have 17
filter taps. 16 bit word lengths are also used in this project.

Table 3.1: Basic System Setup

Modulation format PM-QPSK
SNR 15 dB
Symbol rate 10 GBaud
Stepsize 0.03125(1/32)
Taps of CMA equalizer 17
Differential group delay 10 ps
Word length 16 bits

3.2 The CMA adaptive equalizer in Matlab
Figure 3.1 shows the error signal of two polarizations as achieved in the equations
(2.12-2.13); it is the same as our expected results. The error value will fluctuate in a
particular range depending on the noise level. Figures 3.2 and 3.3 are shown for the
CMA equalizer’s constellation output. It is easy to find that the Figure 3.2 and 3.3
are the same as the Figure 2.2. All of the equalizer’s output symbols are distributed
to the position of the ideal symbols contains noise. As a result, we could consider
that the CMA equalizer works as expected.

3.3 The ML-NNs adaptive equalizer in Matlab
It is challenging to implement the same processes mentioned in section 2.3 in real-
time signal processing. The most important problem in a real-time project is la-
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Figure 3.1: Error curve of the CMA adaptive equalizer, Matlab simulation.
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Figure 3.2: The CMA equalizer’s output in x polarization, Matlab simulation.
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Figure 3.3: The CMA equalizer’s output in y polarization, Matlab simulation.

tency [18]. For instance, the ML-NNs system needs some time to collect samples and
label the samples. Moreover, the number of training samples would influence the
time consumption of the above two steps. At the same time, it also hard to estimate
how many training samples and iterations are needed for each training process. All
of the above steps and problems will result in significant delays and affect hardware
requirements.
An expansion of the CMA equalizer as a potential ML-NNs is investigated in this
project. The rough design diagram is shown in Figure 3.4. The H1 and H2 are
the coefficient matrices of size 2×2N . It should be noticed that we first remove the
activation function f to check if the new structure could compensate for the PMD,
which is a linear effect.

Xi(k)

Yi(k) a2

a1 Xo(k)

Input Layer1 Hidden Layer Output Layer

Yo(k)

H1

FIR 
fliter _1(2×2 
MIMO filter)
(N taps)

H2

FIR 
fliter _2(2×2 
MIMO filter)
(N taps)

Figure 3.4: Design structure of the ML-NNs adaptive equalizer.

3.3.1 Forward propagation
For the forward propagation, the main calculation process is the same as traditional
ML-NNs. First, we define every input training sample just as for the input of the
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CMA equalizer as given in the formulas (2.8) (2.9).

Then, by matrix multiplication we calculate the hidden layer:

A1 = H1 · ui(k), (3.1)

where A1 = [a1; a2] is a column vector of length 2.

It should be noticed that every input sequence with length 2N will obtain an output
vector with length 2 for the first FIR filter. However, we still need an input sequence
with length 2N for the second FIR filter. This case could be easily considered as
it should run the first FIR filter N times to collect 2N outputs as the input to the
second FIR filter. As a result, N number of A1 should be reshaped to a column
vector A′1 with size 2N . Finally, for the output layer, we use the same calculation
process:

uo(k) = H2 · A′1, (3.2)

where uo(k) = [Xo(k);Yo(k)] is a column vector of length 2.

3.3.2 Cost function
The cost function is built based on the error function of the CMA and equation
(2.22). It will try to distribute all of the symbols close to a circle.

LH1,H2(k) = (A2 − |Xo(k)|2)2 + (A2 − |Yo(k)|2)2, (3.3)

where A is the same as the CMA shows in equation (2.14), the optimum H1 and
H2 are obtained via minimizing the cost function based on the stochastic gradient
descent algorithm.

In this part, we have several improvements from the traditional ML-NNs structure.
If we compare formula 3.3 to formula 2.22, we set m to 1, which means every
iteration will only use a single training vector. This improvement could avoid the
latency which because of collecting training samples. Moreover, we also use the
same label A as in the CMA instead of the labeled samples yi. This improvement
could eliminate the latency which results from labeling the training samples.

3.3.3 Back propagation
The backpropagation process is responsible for the gradient calculation and coeffi-
cient update. This project uses the same equations which are shown in (2.23-2.26)
to construct the backpropagation process. The cost function is LH1,H2 as defined in
equation (3.3), and we need to calculate the derivative of each of the elements in
the coefficient matrices.
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3.3.4 Simulation results
In the simulation step, we could notice that two cascaded FIR filter with N taps
would have the same channel memory as one 2N − 1 tap FIR filter. As Table 3.1
shows, we have set the CMA equalizer to 17 taps. We need to set the taps of the
ML-NNs equalizer to 9 taps that could make sure the ML-NNs equalizer has the
same channel memory as the CMA equalizer. All of the other parameters should be
kept the same as in Table 3.1.

Figure 3.5 shows the cost curve of the ML-NNs adaptive equalizer; it is the same as
our expected results. The cost value will fluctuate in a certain range depending on
the noise level. Figures 3.6 and 3.7 show the constellation output from the ML-NNs
equalizer, compare with Figure 2.2 what means the ML-NNs equalizer could work
as we expected.
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Figure 3.5: Cost curve of the ML-NNs equalizer, Matlab simulation.

3.4 The effective SNR of the ML-NNs equalizer
and the CMA equalizer

The effective SNR(SNReff ) will be used to represent the performance of the adaptive
equalizer. To verify that the ML-NNs equalizer has the same performance as the
CMA equalizer, the effective SNR is calculated for the two equalizers and plotted in
the same diagram for comparison. The formula for calculating the effective SNR is

SNReff = |uo|2

|ut − uo|2
, (3.4)
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Figure 3.6: The ML-NNs equalizer in x polarization, Matlab simulation.
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Figure 3.7: The ML-NNs equalizer in y polarization, Matlab simulation.
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where uo is the output symbol from the equalizer, and ut is the ideal transmitted
symbols. Figure 3.8 shows the effective SNR curve for the 17 taps CMA equalizer
and the two 9 taps ML-NNs equalizer based on the same system setup. Moving
average calculation is used in the diagram to keep the curve more readable, and the
moving window size is 300.
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Figure 3.8: Comparison of the SNReff between the ML-NNs and CMA.

In the diagram, we compare the 17 tap CMA equalizer with two 9 tap ML-NNs
equalizer. As the results curve shows, the two equalizers have the same maximum
effective SNR, which means that they have the same software performance. However,
the curve also shows that the ML-NNs have a faster convergence than the CMA
equalizer. It should be noticed that the start SNR of the ML-NNs equalizer is
higher than the CMA equalizer in the diagram. This is because the curve is built
on moving average calculation; the two starting points are the same when setting
the window size to 0.
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Hardware implementations

4.1 Verification methods

4.1.1 Verification process
The verification structure diagram is shown in Figure 4.1. In the verification pro-
cess, Matlab and VHDL simulators are combined to use for checking verification
simulation results. In the first step, the test symbols ur are generated from Mat-
lab and provided as input ".vec" files. Then, a specific testbench is written with
VHDL for scanning input ".vec" files as the adaptive equalizer’s input and writes
the equalizer’s output uo to output ".vec" files. Finally, the output ".vec" files will
be imported into Matlab, where the results are plotted and results are checked.

Matlab: 
export “.vec” file

DSP block(VHDL)
Adaptive Equalizer

Matlab:
Import “.vec” file

“.vec”  file “.vec”  file

Figure 4.1: Verification process diagram.

4.1.2 Generation of test symbols from Matlab
The fractional number multiplication calculation will be used in the whole verifi-
cation process, where all of the multipliers will only deal with fractional numbers.
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As a result, we need to ensure that all input data are less than 1. The transmitted
symbols ut which are shown in Figure 2.2 only contain fractional parts. The symbols
in Figure 2.3 only contain a polarization rotation channel, and Figure 2.4 contains a
PMD channel. It is easy to find that the symbols ur contain integer and fractional
parts at the same time. However, the integer part of the symbols ur in Figures 2.3
and 2.4 are still not greater than 2. For keeping that all of the test symbols only
contain fractional parts, a scale with 1/2.4 is used to scale down the symbols ur.

A word length of 16 bits is used in this project. The most significant bit means a
sign bit, the remaining 15 bits mean a fractional number. In general, 15 bits binary
data should be representative of an integer. However, in VHDL, we could consider
that the 15 bits binary integer is equal to a fractional number, and the value of the
fractional number is

Vf = int(B15 bits)
215 , (4.1)

where Vf is the value of fractional number, and the int(B15 bits) means to transfer
the 15 bits binary data to an integer. Test data with integer format can be generated
from Matlab based on this theory. After the ur has been scaled down with the factor
1/2.4, we can ensure that all of the ur are fractional numbers. Then, change the
format of (4.1)

int(B15 bits) = Vf · 215, (4.2)

where Vf = ur. Finally, the test data with integer format will be written into the
".vec" files.

4.2 The CMA adaptive equalizer in VHDL

4.2.1 Block diagram of the CMA equalizer
A pipeline design is employed to have parallelization implemented more conveniently.
The design block diagram is shown in Figure 4.2. The "FIR Filter" block is used as a
filter process. The "Error" module is in charge of calculating the error signals based
on the formulas (2.12) (2.13). The "Gradient_calculation" block will calculate the
coefficients weight with the formula (2.15) (2.16), which will be utilized for updating
the filter coefficients. The "coefficient_update" only finishes the process of updating
coefficients. In the Figure 4.2, we use [15:0] to represents the 16-bit data used
throughout the design.

There should be noticed that for corresponding to the coherent receiver, we use the
I and Q components separately as the input and output. As a result, in the design,
the adaptive equalizer should be a 4×4 MIMO filter. In addition, we added the
error value as the output port for more convenience to check the error curve.
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Figure 4.2: Block diagram of the CMA equalizer VHDL design.

4.2.2 Implementation of the CMA equalizer

As shown in the block diagram, the combinational logic circuit would be the pri-
mary choice for implementing the CMA equalizer. However, the "FIR Filter" and
"Coefficients_update" blocks are also dependent on the previous values. These two
modules should be built on the sequential logic circuit.

In VHDL, the fractional number multiplication could be calculated directly. How-
ever, if one of the fractional constant is close to a particular format such as 1/2p,
where p is a natural number, the bits shift operation in VHDL would be more ef-
ficient. E.g., the stepsize in the project is 0.03125(1/32 = 1/25), 5 bits right shift
would consume less resources than a direct multiplication.

4.2.3 Verification of the CMA equalizer

The output ".vec" files from the VHDL simulator will be imported into Matlab
which then plots the results diagram directly. Figure 4.3 shows the error curve
of the CMA adaptive equalizer. The result diagrams show that the error curve
converges as expected.

The resulting constellation of x and y polarization is shown in Figure 4.4 and Figure
4.5. The CMA adaptive equalizer in the VHDL appear to work as expected because
it does find the output symbols distributed similarly as in Figures 2.6 and 2.7.
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Figure 4.3: Error curve of the CMA adaptive equalizer, VHDL verification.
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Figure 4.4: The CMA equalizer in x polarization, VHDL verification.
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Figure 4.5: The CMA equalizer in y polarization, VHDL verification.

4.2.4 Evaluation of FPGA resource utilization of the CMA
equalizer

The FPGA named "XC7VX690TFFG1761-1 [19]" was used to build the Vivado
project based on the CMA adaptive equalizer code and finished the synthesis process.
Table 4.1 shows some basic hardware information about the chip that was used in
the project.

Table 4.1: Basic resource information of XC7VX690TFFG1761-1

Slice LUTs 433200
DSPs 3600
BUFGCTRL 32
Slice Registers 866400
Slice 108300
LUT as Logic 433200

Table 4.2 shows the hardware consumption information about the CMA adaptive
equalizer. This report is extracted from the "Utilization report" when the Vivado
project finished the "implementation" process.
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Table 4.2: FPGA utilization information of the 17 taps CMA adaptive equalizer

Name Topfile FIR Filter Gradient_cal Coe_update Error
Slice LUTs(433200) 1.54% 0.52% 0.75% 0.26% <0.01%

DSPs(3600) 15.33% 7.56% 7.67% 0% 0.11%
BUFGCTRL(32) 3.13% 0% 0% 0% 0%

Slice Registers(866400) 0.39% 0% 0% 0.25% 0%
Slice(108300) 1.92% 0.53% 0.75% 0.53% <0.01%

LUT as Logic(433200) 1.54% 0.52% 0.75% 0.26% <0.01%

From the table, we see that all of the resource utilization is lower than 20%. The
"DSPs" resource should be focused on because it has the highest consumption and
has reached 15.33%. However, this value is still reasonable. The utilizations for
all other resources are lower than 5%, which is a good situation. If any resource
utilization is above 20%, it means that maybe we need to consider how to improve
our design.

4.3 The ML-NNs adaptive equalizer in the VHDL

4.3.1 Block diagram of the ML-NNs equalizer
The design block diagram for the ML-NNs adaptive equalizer is shown in Figure
4.6. The most significant difference with the CMA adaptive equalizer is that the
one 2N-1 taps FIR filter is divided into two FIR filters with N taps; the rest of the
modules are the same as the CMA structure.

4.3.2 Implementation of the ML-NNs equalizer
The implementation principle is the same as the CMA adaptive equalizer mentioned
in section 4.2.2. However, two N -taps FIR filters have the same channel memory
as the single 2N − 1 taps FIR filter. Even though the input sequence for each
polarization of the first FIR filter is N -length, a vector for each polarization with a
length of 2N − 1 is still needed to be collected for the gradient calculation process.

4.3.3 Verification of the ML-NNs equalizer
The same system parameters as given in table 2.1 are used in the VHDL ML-
NNs equalizer to avoid extra variable difference. Figure 4.7 shows the cost signal
generated from the VHDL simulator. It is not exactly the same as shown in Figure
3.2 because of the lower resolution of the VHDL hardware model. However, the
primary convergence behavior is similar.
Figure 4.8 and 4.9 show the result constellation diagram that was generated from
VHDL simulator. The constellation diagram could be considered the same as a
simulation in Matlab. As an early observation, the ML-NNs equalizer in VHDL
could work for compensating the PMD.
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Figure 4.6: Design diagram of the ML-NNs adaptive equalizer
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Figure 4.7: Cost curve of ML-NNs adaptive equalizer, VHDL verification.
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Figure 4.8: The ML-NNs equalizer in x polarization, VHDL verification.
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Figure 4.9: The ML-NNs equalizer in y polarization, VHDL verification.
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4.3.4 Evaluation of FPGA utilization of the ML-NNs equal-
izer

Table 4.3 shows the FPGA resource utilization for each module. It should be realized
that more multiplication means more "DSPs" resources are occupied.

Table 4.3: FPGA utilization information of the 9 taps ML-NNs equalizer

Name Topfile Filter1 Filter2 Cost_cal Gradient_cal Coe_update
Slice LUTs(433200) 7.54% 0.39% 0.39% 0.01% 6.06% 0.54%

DSPs(3600) 90.28% 4.00% 4.00% 0.28% 82.00% 0%
BUFGCTRL(32) 3.13% 0% 0% 0% 0% 0%

Slice Registers(866400) 0.57% 0.22% 0.07% 0% 0% 0.27%
Slice(108300) 9.22% 1.26% 0.61% 0.01% 6.57% 0.56%

LUT as Logic(433200) 7.54% 0.39% 0.39% 0.01% 6.06% 0.54%

The FPGA utilization of the forward propagation is the same as the CMA equalizer
shown in the table. It means that FPGA should be an excellent choice to implement
the complex NNs equalizer if we only focused on the forward propagation.

However, the "DSPs" resource consumption should be noticed in the project. In
the results table, the "DSPs" resource of the "gradient calculate" module is in the
highest consumption degree because the calculation uses many multiplications. The
main serious problems are not only the consumption of "DSPs" resources but also
the "Gradient calculate" module is the most difficult to implement because it needs
to calculate the derivative of the cost function.

In addition, more hidden layers mean more complex derivatives. However, no ex-
isting function or IP core could be used to calculate the derivative automatically in
VHDL. That means the derivative formula needs to be calculated by other tools or
ourselves first and then written in the VHDL format.

4.4 FPGA utilization comparison between the CMA
and ML-NNs

Table 4.4 shows the total resource utilization in the FPGA for the CMA equalizer
and the ML-NNs equalizer. From the result table, the "DSPs" resource are sig-
nificantly different. The ML-NNs consume six times more "DSPs" resources than
the CMA equalizer, even though the ML-NNs equalizer only contains one hidden
layer. However, the other kinds of resources are not significantly higher in the CMA
equalizer than the ML-NNs equalizer.
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Table 4.4: FPGA utilization of The 17 taps CMA equalizer vs 9 taps ML-NNs
equalizer

Name The CMA equalizer(17 taps) The ML-NNs equalize(9 taps)
Slice LUTs(433200) 1.54% 7.54%

DSPs(3600) 15.34% 90.28%
BUFGCTRL(32) 3.13% 3.13%

Slice Registers(866400) 0.39% 0.57%
Slice(108300) 1.90% 9.27%

LUT as Logic(433200) 1.54% 7.54%

4.4.1 The number of taps vs FPGA utilization
Figure 4.10 shows the results of how the number of taps influences the FPGA re-
source utilization. It shows that only the "DSPs" resource has a quick increase with
the taps. The other kinds of resources do not increase much totally, and could be
considered stable.
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5
Conclusions and outlook

We have proposed a machine-learning structure that could compensate for the PMD
in optical links. We verified that the two types of equalizers have the same soft-
ware performance based on comparing the effective SNR results. The hardware
implementation for the two types of adaptive equalizers are based on FPGA and
extraction of the consumed FPGA resources allows a side-by-side comparison. The
forward propagation of the two equalizers have the same hardware consumption, as
we verified from the utilization report.
The back propagation of the two equalizers has a significantly difference in the
"DSPs" resource consumption. The gradient calculation module of the ML-NNs
equalizer consumes most of the "DSPs" resource ; this module consumes much more
resources that the corresponding module of the CMA equalizer. Another problem
in the gradient calculation is that no existing function or IP core can automatically
calculate the derivative in the VHDL design. this means each derivative needs to be
calculated by other tools or externally. The complexity of this calculation will also
increase with the number of hidden layers.
In conclusion, if we focus on "DSPs" resource consumption and calculation complex-
ity, FPGA could be a very good choice to implement forward propagation of the
ML-NNs adaptive equalizer. However, it is not suitable for back propagation be-
cause of too high "DSPs" resource utilization, and it can not calculate the derivative
automatically.
As an expanded work of the ML-NNs equalizer in the future, the activation function
could be replaced by the non-linear effects equation so that the equalizer could
compensate also for the non-linear effects.
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