

Energy efficient data synchronization in
mobile applications

A comparison between different data synchronization
techniques

Master of Science Thesis in Computer Science and Engineering

MAGNUS LARSSON
MARCUS STIGELID

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
Gothenburg, Sweden, September 2015

The Author grants to Chalmers University of Technology the non-exclusive right to
publish the Work electronically and in a non-commercial purpose make it accessible
on the Internet. The Author warrants that he/she is the author to the Work, and
warrants that the Work does not contain text, pictures or other material that
violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for
example a publisher or a company), acknowledge the third party about this agree-
ment. If the Author has signed a copyright agreement with a third party regarding
the Work, the Author warrants hereby that he/she has obtained any necessary per-
mission from this third party to let Chalmers University of Technology store the
Work electronically and make it accessible on the Internet.

Energy efficient data synchronization in mobile applications
A comparison between different data synchronization techniques

MAGNUS LARSSON
MARCUS STIGELID

c© MAGNUS LARSSON, September 2015
c© MARCUS STIGELID, September 2015

Examiner: PHILIPPAS TSIGAS

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden September 2015

Abstract

The mobile phone is the most widespread computing platform in today’s society,
having over 2 billion users. With each year mobile devices becomes increasingly
powerful and are also able to synchronize more data. However, the battery ca-
pacity of a device remains the same, thus limiting the time of use. This thesis
investigates the energy efficiency of different network synchronization techniques
to reduce energy consumption when synchronizing data between a mobile phone
and a data provider. Prototypes implemented using different network synchro-
nization techniques are used to evaluate which technique is the most energy effi-
cient. Furthermore, the prototypes are implemented using different frameworks,
user interfaces, and update frequencies to find how other factors affect energy
consumption in comparison to network data retrieval.

The results show that using a network protocol with a smaller header consumed
less energy. It is also shown that using a constantly open connection is the most
energy efficient choice of network technique compared with techniques that fre-
quently opens new connections. However, when the frequency of creating new
connections decreases it is more energy efficient to close the connections. Fur-
thermore, it is demonstrated that the energy consumption of a mobile application
mainly depends on the frequency with which the phone updates the graphical user
interface. Another important factor is a graphical interface, which consumes more
energy than network data retrieval does. The thesis is concluded with a sugges-
tion that to reduce energy consumption, a mobile application should optimize its
update interval for which data is visualized.

Keywords: Energy efficiency, energy consumption measurement, mobile applica-
tions, computer networks, data synchronization

Acknowledgements

We would like to thank our academic supervisor Aras Atalar for his useful feedback
and constructive support. We would also like to thank our examiner Philippas Tsi-
gas. Furthermore, we send a thank you to our supervisor at i3tex, Per Lundberg,
for his technical expertise as well as his commitment and dedication during the
course of this thesis. We are also grateful for all the help, support, and positive
comments we have received from other people at i3tex. Lastly, we would like to
send a thank you to the people who supported us from Volvo; Erik Israelsson for
implementation details and feedback, and Karl-Johan Jönsson for his technical
expertise and help with debugging as well as technical features.

Magnus Larsson and Marcus Stigelid, Gothenburg, September 2015

Dictionary

.NET A software framework used to develop applications.

API Application Programming Interface. An interface that
a programmer can use to call underlying system func-
tions.

GUI Graphical User Interface. An interface consisting of
graphical components that handles input and output
in an application.

IDE Integrated Development Environment. An environ-
ment where a programmer can write code, debug and
release an application.

IP The Internet Protocol is a network protocol for send-
ing data from a source to a destination.

JavaScript An interpreted computer programming language used
mainly for interactive web content.

PCL A Portable Class Library is a library that contains
code that can run on multiple platforms.

SDK Software Development Kit. A set of tools that enables
the creation of applications for a specific development
platform.

TCP Transmission Control Protocol. A network protocol
for reliable packet transmission.

UDP User Datagram Protocol. A protocol for sending net-
work packets without delivery guarantees.

Contents

1 Introduction 1
1.1 Purpose . 2
1.2 Problem description . 3

1.2.1 Energy efficiency . 3
1.2.2 Challenges in prototype design 4
1.2.3 Functionality and energy efficiency trade-off 4

1.3 Limitations . 5
1.4 Structure of report . 5

2 Related work 6

3 Background 8
3.1 Platforms . 8

3.1.1 Android . 8
3.1.2 iOS . 9

3.2 Frameworks . 9
3.2.1 Native applications . 9
3.2.2 Frameworks using web technology 10
3.2.3 Xamarin . 11
3.2.4 Corona . 12

3.3 Electrical theory . 13
3.3.1 Measuring power . 13
3.3.2 Calculating energy consumption 14

3.4 Network protocols . 15
3.4.1 TCP . 15
3.4.2 UDP . 16

4 Methodology 17

i

CONTENTS CONTENTS

4.1 Energy measurement approach . 17
4.1.1 Hardware logging . 18
4.1.2 Sanity checks . 19

4.2 Implementation approach . 20
4.2.1 Data synchronization techniques 21
4.2.2 Prototypes . 21
4.2.3 Consistency . 22

4.3 Acquiring the results . 22
4.3.1 Prototypes . 23
4.3.2 Energy measurement protocol 24
4.3.3 Models . 25

5 Design and Implementation 26
5.1 Mobile application . 26

5.1.1 Architecture of the mobile application 26
5.1.2 Base prototype . 27
5.1.3 Prototype 1 . 27
5.1.4 Prototype 2 . 28

5.2 PowerLogger . 30
5.2.1 Functionality . 30
5.2.2 User Interface . 32

5.3 Data provider . 33

6 Result 36
6.1 Energy measurement . 36

6.1.1 Base prototype . 37
6.1.2 Prototype 1 . 38
6.1.3 Prototype 2 . 40

6.2 Factors affecting energy consumption 41
6.2.1 Update frequency . 42
6.2.2 Graphical user interface . 43
6.2.3 Frameworks . 44

6.3 Energy models . 45
6.4 Additional findings . 46

7 Discussion 49
7.1 Results . 49
7.2 Cross-platform frameworks . 51
7.3 Measuring energy . 53
7.4 Mobile application . 55
7.5 Future work . 55

ii

CONTENTS CONTENTS

8 Conclusion 56

References 58

Appendix A Related projects I

Appendix B Requirements IV
B.1 Functional requirements . IV
B.2 Nonfunctional requirements . V

iii

List of Figures

1 The architecture of mobile applications using web technologies . . . 11
2 Shared runtime on top of Android’s Linux kernel 12
3 Scheme for measuring current through current resistive sensing . . . 13
4 Example of power consumption for a Samsung GT-S7275R 14

5 Hardware logging setup . 19
6 Sample log from sanity check . 20

7 Prototype 1 . 29
8 Prototype 2 . 30
9 User interface for the mobile part, with settings and main view . . . 32
10 Output for original (left) and smoothed graph (right) 33
11 Relation between a running process and energy consumption 34

12 Relationship between synchronization techniques in Prototype 1 . . 39
13 Relationship between synchronization techniques in Prototype 2 . . 41
14 Difference in energy consumption between factors 43
15 Energy consumption of graphical user interfaces and network tech-

niques . 44
16 Energy consumption in different frameworks shown as average power. 45
17 Average power for different frequencies 46
18 Start and tail energy . 47
19 Start and tail energy stacked on run time energy 48

iv

List of Tables

1 Sanity check results . 20
2 Samsung GT-S7275R hardware specification 23
3 Prototypes divided into different factors 23
4 Prototypes with techniques and update intervals 24

5 Energy consumption of the base prototype shown as average power
(W) . 37

6 Energy consumption in Prototype 1 shown as average power (W) . 39
7 Energy consumption in Prototype 2 shown as average power (W) . 40
8 Constant values for start and tail energy (Wh) 48

v

1

Introduction

A few decades ago, a mobile phone was nothing more than an embedded device.
Dimarzio describes the community of mobile application developers as a small sect,
and states that development was difficult because ”embedded device manufacturers
were notoriously stingy on feature support” [1]. Over the course of the last ten
years, the mobile phone has evolved from a static machine to an almost full-fledged
computer. This has been made possible through extensive development of mobile
platforms and frameworks, as well as through adding sensors for additional input.
The rapid change in functionality and usability has made mobile phone application
development increasingly popular. Today, the mobile phone is the most widespread
computing platform in the world with over 2 billion users [2]. As the market for
mobile applications continues to expand, more applications retrieve data through
mobile phone components such as WiFi or 3G [3].

Because of the mobile nature of a phone, it needs to be powered by a battery.
This severely limits the computational power since energy resources are finite.
According to Moore’s law, the processing power of a mobile device is doubled
every two years, which can be compared with the capacity of the battery which is
doubled every ten years [4]. This means that an application has the possibility to
run heavy calculations, but doing so carelessly will drain the battery. In addition
to this, using components such as WiFi or 3G consumes a lot of energy [5]. This
puts constraints on each individual application to use the phone’s resources in the
most conservative manner possible. One way of minimizing energy consumption
is to make sure that the used synchronization techniques, which are different ways
for an application to retrieve data through a component, are as energy efficient as
possible.

1

CHAPTER 1. INTRODUCTION 1.1. PURPOSE

The main goal when creating energy efficient mobile applications is to increase the
user experience by extending the battery life. However, energy efficiency is not
only useful as a way of improving user experience but also as a way of making
sure that a user can use an application as much as possible. Thus, there is a need
from a developer’s perspective that all applications should use the mobile phone’s
energy resources sparingly.

There exists a number of studies in energy efficiency targeting the two most pop-
ular mobile operating systems, Android and iOS [6]. These studies [7–10] show
different coarse-grained ways of measuring power consumption in a mobile phone.
However, Li et al. [11] describe that it is difficult for a developer to easily find
“quantitative and objective information about the behavior of apps with respect
to energy consumption”.

1.1 Purpose

This thesis aimed to develop a number of mobile networking application proto-
types, each using a different synchronization technique. The prototypes have been
developed at the company i3tex AB and have been used in real-world scenarios at
Volvo Cars to visualize sensor data from a car in real time. Together with Volvo
Cars requirements have been developed, and both Volvo and i3tex have supported
this thesis with feedback as well as testing equipment.

The prototypes were used to evaluate the main purpose of this thesis, which is to
investigate the energy efficiency of different data synchronization techniques. A
comparison between the techniques was made in order to determine which tech-
nique is more energy efficient. To gain further insight of different synchronization
technique’s impact on energy consumption, the general elements of a mobile net-
working application were used to determine other possible factors.

As different synchronization techniques have different advantages and drawbacks,
the functionality of a mobile application can prove to be the decisive factor when
deciding which technique to use. Another purpose was therefore to investigate the
correlation between an application’s functionality and its energy efficiency. Each
prototype application will thus include different functionality so that a comparison
between the prototypes and their respective energy consumption can be made.

Another aim of the project was to investigate different frameworks that can cross-
compile code written in one language into code for different platforms. Since
developing native applications for different platforms takes a lot of time [12], it
is interesting to investigate if these tools can be used to create energy efficient,

2

CHAPTER 1. INTRODUCTION 1.2. PROBLEM DESCRIPTION

complex applications. It is also interesting to compare the accuracy in functional-
ity, and its correlation to energy efficiency, provided by different cross-compilation
frameworks. The investigation of frameworks with respect to energy efficiency is
discussed in Section 7.1, and the frameworks themselves are discussed in Section
7.2.

1.2 Problem description

The main problem that this thesis aims to solve is to find a relationship between
different synchronization techniques, describing which technique is more energy
efficient. In the following sections some of the subproblems that arise from the
main problem are discussed.

1.2.1 Energy efficiency

The problem of comparing energy efficiency of different synchronization techniques
is not a trivial task. Much of today’s measuring equipment consists of either
expensive power meters [8,13], or complex statistical models that target a specific
phone running a specific operating system [3, 11]. To be able to evaluate whether
an application is energy efficient or not, a subproblem was defined by which tools
to use when measuring energy efficiency. As a developer, finding energy critical
parts of an application can be hard due to the multiple levels of middleware that
exists between an application and the hardware. The problem exists both when
measuring energy as well as when predicting energy consumption using energy
models, as the energy cost from the middleware is unknown [14].

As different phones have different characteristics, there existed a problem to deter-
mine which phone to use when investigating the main problem. A phone’s under-
lying operating system, hereby referenced as platform, manages the resources of
the phone in a specific way. How well resources are managed depends on both the
phone’s hardware as well as the platform executing the application code. Thus, an
application running on one platform might be considered energy efficient but when
it is running on another platform it might not. The code in a mobile application
are the instructions the platform executes to determine what hardware to use and
how to use it. The content of the instructions depends on the tools used to create
the application, which in turn are often provided by a framework. Depending on
which framework a developer uses, the code that the mobile application will consist
of may look and function differently. Therefore, the energy efficiency of a mobile

3

CHAPTER 1. INTRODUCTION 1.2. PROBLEM DESCRIPTION

application does not only depend on the platform that is used to run the app, but
also on the framework used to implement it.

The problem of determining which phone to use was solved by investigating a
number of platforms and frameworks. The investigation included the creation
of prototypes implemented using multiple frameworks for multiple platforms, to
determine the suitability of platform and framework when measuring energy con-
sumption. The desired properties for a phone was that it uses a platform with a
large user base, while it also supported tools to measure and improve energy per-
formance. Examples of such tools are energy monitors and functions provided by
the platform that can measure different values in relevant hardware components,
such as battery or CPU.

1.2.2 Challenges in prototype design

The most prominent issue when implementing a prototype was how to connect it
to a data provider that streams real time data. When developing the application, a
connection needed to be simulated so that functionality could be evaluated without
having to be in a car. To solve this issue, a computer was used to emulate the
sensors and protocols used in the communication with the app.

Another problem with the prototype design was the consistency of data. If the
application lost the connection to the sensor, data may have become obsolete. Data
may also have been delayed or re-sent which made it arrive later than expected,
thus producing a faulty output. Therefore, an investigation in consistency models
was carried out to determine how to handle the case when a prototype lost its
input stream.

1.2.3 Functionality and energy efficiency trade-off

A problem when creating energy efficient applications was to find the most energy
efficient version of a specific feature. It is possible for a developer to create a
working mobile application which seems to work fine, even though it is energy
consuming. An example of this is an email application which asks a server if new
emails has arrived every second. Since it is highly unlikely that a user receives
an email every second, the application can ask the server less frequently. The
trade-off with lowering the time between synchronizations is that though saving
battery, there may be a delay between the time that the email arrives to the server
and the time that the application retrieves it. Thus, to lower energy consumption
an application developer needs to find an optimized synchronization delay. To

4

CHAPTER 1. INTRODUCTION 1.3. LIMITATIONS

investigate the correlation between functionality and energy efficiency, different
features will be implemented in different prototypes.

1.3 Limitations

This thesis only considers synchronization techniques that can be used when re-
trieving data through WiFi. This rules out other energy consuming components,
but within the given time frame, focusing on only WiFi can provide a more de-
tailed study of energy efficiency in connected mobile applications. Since an in-
creasing number of applications build their main functionality around synchronized
data [13], the result of this study could prove useful for developers and researchers
in this area.

The prototypes will only be tested on a limited number of mobile phones. The
desired properties for a phone is described in Chapter 1.2.1, and defines that the
phone should support tools to measure and improve energy performance.

The amount of features possible to implement in a prototype will also be limited.
Therefore application features will be implemented based on a priority scheme,
where the functionality that is the most important will be implemented first. The
implementation process will also be divided into different phases to ensure that
the creation of each prototype is as efficient as possible.

1.4 Structure of report

The rest of the report will be structured as follows. Chapter 2 describes related
work and Chapter 3 outlines the theories used in this project, ranging from different
mobile platforms to electrical theory. The methodology as well as the motivations
for choices made in the project are described in Chapter 4. Following this, Chapter
5 provides details about the design and implementation of the mobile application
prototypes and the energy measurement techniques. The results are presented
in Chapter 6 which is then followed by a discussion in Chapter 7. Finally, the
conclusion of the thesis is given in Chapter 8.

5

2

Related work

There are previously published works within the area of energy measurement that
are related to this thesis. Hao et al. have published work that uses program analy-
sis to estimate the amount of energy an application consumes during execution [15].
This is done through a CPU profile which contains functions for determining the
energy cost on a method level. By applying a set of use cases to the implementa-
tion of an application they find which methods that are called, which is used as
input to the CPU profile. By summing the cost of each called function the total
energy consumption of an application is found.

Hao et al. have also produced three other papers where they build and improve
a method for measuring energy consumption. In the first paper [16], they show
a method that estimates energy consumption at runtime for each line of code
in a mobile application. By applying a number of use cases to a graph-based
data structure, which is created from the byte code of an application, the path
that is traversed through each method when executing the use cases is created.
Using an energy profile consisting of functions for calculating energy consumption
for different byte-code instructions, the energy consumption of each instruction
in the path can be calculated. This method is further improved in [3], where a
high-precision energy platform replaces the energy profile used to determine the
energy consumption of specific source lines. In this paper robust linear regression
analysis is also added to adjust incorrect values. Finally, the work presented in [11]
uses their previous work to evaluate different mobile phone components and their
energy consumption in relation to each other.

In [17], Liu et al. discuss energy and performance bugs that developers of mobile

6

CHAPTER 2. RELATED WORK

applications introduce during development. They identify three types of bugs that
affect the energy efficiency and performance of applications: energy leak, GUI
lagging, and memory bloat bugs. Finding these types of bugs is not trivial, they
may only occur in specific usage scenarios that require complex user interactions.
The authors discuss various techniques and tools that can identify these bugs but
notes that none of the techniques completely solves the problem, and that there
are still questions to answer.

In [2], Rice et al. measure energy consumption in a networking application for
the Android operating system. The application downloads a test script from a
server, runs it and uploads a log to the server. To measure the energy usage of
the application the authors use fine-grained hardware equipment which makes it
possible to see the energy consumption of events running for a very short time,
such as receiving a data packet. They also discuss the importance of aligning the
recorded times when using fine-grained metrics, as for instance transmitting a data
packet might be done within a few milliseconds.

Carvalho et al. [4] describe a project in which they study energy efficiency in TCP.
The study uses a DC current sensor and an Arduino board to measure energy con-
sumption. A mobile application, implemented with either TCP push or TCP pull,
fetches data from a server. The authors run the application for one hour and use
different update frequencies when pulling data to determine in which cases either
technique is more energy efficient. The paper concludes that pulling data consumes
less energy. Burgstahler et al. [13] created a similar project but attained different
results than Carvalho et al. According to the authors, a push-based approach
consumes less energy than an approach where data is pulled frequently. Despite
the differences in the results, both papers state that the application scenario is
the most important reason for choosing a specific synchronization mechanism, as
differences in energy consumption are negligible.

7

3

Background

The following sections describe the theoretical background for the mobile platforms
and development frameworks that were used for the project. Energy measurement
as well as network protocols are described.

3.1 Platforms

This section covers the two, in terms of market share [6], biggest mobile operating
systems that are available on the market today. An operating system will hereby
be referred to as a platform.

3.1.1 Android

Android is an open source platform originally developed by Android Inc., which
was later purchased by Google. It is based on the Linux kernel and is used in per-
sonal computers as well as in mobile phones [18]. The platform was released for the
first time in the fall of 2008 [19], and has grown ever since. Android is currently
the most used mobile operating system in the world [6]. During the launch of An-
droid, Google created the Open Handset Alliance (OHA), a consortium between
Google and 65 companies working in the mobile phone sector to ensure that the
Android OS is well supported. The companies that are members of the OHA in-
clude hardware companies, software companies, and mobile operators. As different
phones from different vendors work in different ways, many Android applications

8

CHAPTER 3. BACKGROUND 3.2. FRAMEWORKS

need temporary solutions to work equally well on all supported devices. Thus,
functionality that is provided in one device might not be provided in another [20].

The main programming language for Android applications is Java, but since the
platform is written in the language C, applications can also be partly written in
this language. The Android platform provides a framework for developers, called
Android SDK, that includes features such as 2D and 3D graphics, multi-touch
input, and APIs for accessing networks. The platform also supports multitasking
and threading [20].

3.1.2 iOS

iOS is a closed source mobile platform created by Apple Inc, which is used in all of
Apple’s mobile products such as the iPod, iPad and iPhone. To develop a mobile
application for an iOS supported device the iOS SDK is required, which can only
be used on a Macintosh computer [21].

iOS applications can be written in Objective-C or in Apple’s new programming
language Swift [22]. Developers can test their applications using the emulator
provided in the Xcode IDE. However, in order to test an application on a real
device a membership in Apple’s Developer Program is required, at an annual cost
of $99. The iOS SDK agreement also states that when publishing an application
to the Apple App Store it needs to be validated and approved by Apple before it
is publicly released [23]. Examples of what causes an app to be rejected includes
bugs, placeholder content, or usage of non-public APIs [24].

3.2 Frameworks

In the following sections the software frameworks used in this thesis will be pre-
sented. The first section describes native applications for both Android and iOS.
Following that are sections describing different cross-platform application frame-
works, where each section is based on the application creation technique that the
frameworks use.

3.2.1 Native applications

Applications written using the official framework of a platform are called native
applications. Depending on the underlying platform a native application will look

9

CHAPTER 3. BACKGROUND 3.2. FRAMEWORKS

and function differently. Native applications are implemented in their platform’s
native programming language [25].

Writing a native application ensures that users get a native experience on their
device. As a platform is mainly optimized for the native language, performance
could also be a reason to choose native instead of another application development
technique [25]. Another advantage with native applications is that the official
development kit together with the native language is optimized for working with
internal sensors and hardware. A disadvantage of developing a native application
is that it only runs on one platform. To reach more users developers need to have
separate code bases that cannot be shared between platforms. Thus, maintaining
a native app for several platforms might be more costly and more complex [26].

3.2.2 Frameworks using web technology

There exist a number of frameworks that use different web techniques as their
primary source for building cross-platform mobile phone applications. Examples
of popular frameworks are Apache Cordova (former PhoneGap), Ionic, Appgyver
Supersonic, and Titanium [27–30]. Some of these frameworks provide an inte-
grated development environment (IDE) that can be used to quickly utilize the
functionality of the frameworks [12].

An application based on web technology is structured in the same way regardless
of which framework is used; the logic of the application is created in a scripted
language, and the graphical user interface is written in a markup language. The
scripted language is usually JavaScript and the markup language is one that is used
on the web, for instance HTML or XML. Using JavaScript with a markup language
is one of the main features that the frameworks provide, since this makes it possible
to run the application on several platforms using the same code. Furthermore,
most frameworks provide plugins or an Application Programming Interface (API)
that lets developers interact with the underlying system and its functions such as
networking, graphics, and threads [31].

Figure 1 shows an overview of how mobile applications based on web technology
are structured and how they can interact with the underlying system. The appli-
cations run in a special container called a web view which is a feature provided by
the platform that uses the same rendering engine as the platform’s web browser.
This means that the web view is able to both view web pages as well as execute
scripted code written in JavaScript. The application’s JavaScript logic can change
an HTML view dynamically to add data to the view in real time. In order to
run the application on a mobile device, the application is packaged into the native

10

CHAPTER 3. BACKGROUND 3.2. FRAMEWORKS

Plugins/API

Web View

Application

Native container

Operating System

Figure 1: The architecture of mobile applications using web technologies

application container for each specific platform so that it can be installed [32].

3.2.3 Xamarin

Xamarin is a framework that is developed by the company Xamarin. The frame-
work is similar to other cross-platform application frameworks in that it allows
developers to create mobile applications that can run on multiple platforms, while
only using one programming language. The language of an application imple-
mented with Xamarin is C#, but during compile time the code is translated into
platform specific native code [33].

There are two different ways to share code between platforms in Xamarin: Shared
Asset Projects (SAP) and Portable Class Libraries (PCL). Shared code must be
able to run on all targeted platforms. This means that the platform with the most
restrictions set the boundaries for which functionality the shared code can support.
An example of such a boundary involves threading, which on some platforms only
can be used through a severely restricted API. Native C# threads are therefore
not supported in shared code, and to use threads a developer needs to develop own
code that provides the same functionality as the thread API [34].

When compiling an application with Xamarin, an intermediate language is used
before compiling into native code. For some platforms, like Android, not all code
can be translated into pure native code. Thus, a shared runtime called Mono that

11

CHAPTER 3. BACKGROUND 3.2. FRAMEWORKS

runs alongside the Java engine must be installed on the Android device [34]. The
relation between Mono and Java can be seen in Figure 2, where the framework
topology of an application implemented with Xamarin is shown. Xamarin uses the
Android bindings on top of Mono to call Android specific functionality, but also
uses the .NET APIs that Mono provides for .NET functionality.

Java.*

Mono Dalvik

Linux Kernel

Android.*
Android
Binding

.NET APIs

Figure 2: Shared runtime on top of Android’s Linux kernel

Being able to bind to Android, a developer has access to all native APIs. This
enables the possibility to use third party libraries written in a platform specific
language together with C# code. It also ensures that the graphical user interface
looks the same as the user interface in a native application [34].

3.2.4 Corona

The Corona framework, or Corona SDK, is a framework developed by Corona
Labs. The main feature of the Corona framework is that an application can run
on multiple platforms using the same code. This is possible through the use of a
virtual machine together with the embedded scripting language Lua. The Corona
framework provides libraries which are built to run Lua code on each specific target.
When deploying an application, Corona adds the libraries to the application to
make sure that it can run on the targeted platform. The libraries also contain
native graphical components, so that the app’s user interface looks like a native
graphical interface on each device. Thus, an application built with the Corona
framework can look and function just like a native application [35].

Apart from the already existing functionality of the language, the Corona SDK
provides different APIs written in native Lua. The APIs include functionality such
as networking, graphics, and multithreading [36].

The Corona framework is mainly built for mobile games. As many games have
moving objects, most graphical components are added to the screen using coor-
dinates. Creating an application that supports many different screen resolutions

12

CHAPTER 3. BACKGROUND 3.3. ELECTRICAL THEORY

means a lot of code is needed to translate fixed pixels to pixels relative to width
and height of the device. Font size is also an issue, as a font may be too small or
too large for text to fit on the screen [35].

3.3 Electrical theory

The following sections describe the electrical theory that was used to measure the
energy consumption of the prototypes. The first section describes how to measure
and calculate power and the second section focuses on energy calculation based on
values of instant power.

3.3.1 Measuring power

Power (P) is measured in the unit watt, and depends on both the voltage (V) as
well as the current (I). The formula to calculate instant power is:

P = V · I (1)

Voltage can be measured with a multimeter connected to the positive and negative
terminal on the battery. The current can be measured by using resistive current
sensing, in which a resistor is connected in series between a battery terminal and
the terminal on the phone [37]. This is visualized in Figure 3.

Current ’I’

Resistor ’R’

Voltage

V = I × R

Figure 3: Scheme for measuring current through current resistive sensing

The voltage drop across the resistor is, by Ohm’s law, proportional to the current
flowing through it. Thus, the formula for calculating the current is:

13

CHAPTER 3. BACKGROUND 3.3. ELECTRICAL THEORY

I =
V

R
(2)

3.3.2 Calculating energy consumption

As the energy consumption of a mobile phone constantly changes depending on the
workload, the overall consumption is computed over multiple instances of instant
power. The unit used when measuring the capacity of a mobile phone battery is
therefore not watt but watt-hours, the amount of power consumed during a given
time. For instance, one watt-hour is either equal to using one watt for one hour
or two watts for half an hour.

In Figure 4, an example of energy consumption for a Samsung GT-S7275R mobile
phone is shown. The figure shows 700 milliseconds of data during which approxi-
mately 60 measurements were logged.

Figure 4: Example of power consumption for a Samsung GT-S7275R

The total energy consumption can be obtained by integrating power over time,
as defined in Equation 3. As can be seen in Figure 4, the power that is used by
the phone is discontinuous. Thus, a number of points are sampled for some time.
These points are then used to approximate the integral numerically.

14

CHAPTER 3. BACKGROUND 3.4. NETWORK PROTOCOLS

E =

∫
P (t)dt (3)

3.4 Network protocols

This section covers the theoretical background of the network protocols used in
this thesis. The data synchronization techniques derived from the protocols are
also described.

3.4.1 TCP

The Transmission Control Protocol (TCP), is a network protocol for end-to-end
communication that is implemented on top of the IP protocol. When a client
wants to connect to another client through TCP, a three-way-handshake is used
to establish the connection. TCP offers reliable data transfer which means that
packets are delivered to an application in the order that they were sent, and lost or
corrupt packets are re-sent until all data is delivered. TCP also implements flow
control and congestion control, which are mechanisms that ensure that neither the
network nor the end hosts are flooded with data. The protocol should be used in
applications that require point-to-point communication where it is important that
data is delivered reliably [38].

To further enhance the usage of reliable communication between two end hosts, two
different data synchronization techniques can be used which are hereby referred to
as TCP push and TCP pull. TCP push and TCP pull are often used in protocols
that are built on top of TCP, such as HTTP, but can also be used directly with
TCP [39].

With TCP push, a connection is always open and the end hosts can send data
to each other instantly. As operating systems can close connections that are not
used, so called heart-beat messages are sent periodically to tell the OS that the
connection is still in use [40]. By using TCP push, an end host can send data
in real-time to another host that is available, and operations that can be energy
expensive such as establishing a connection is only done once. With TCP pull, an
end host needs to periodically pull data from another end host by creating a new
connection within a defined update interval. As a result, the connection is only
open during data transfer and is then closed and disposed. Therefore, no data is
sent or received between update intervals [39]. However, pulling data frequently

15

CHAPTER 3. BACKGROUND 3.4. NETWORK PROTOCOLS

might consume more energy due to the fact that many new connections need to
be established.

3.4.2 UDP

The User Datagram Protocol (UDP), is a network protocol that is implemented on
top of the IP protocol. UDP is connectionless, which means that no connection in-
formation is stored. There is no initial establishment and no acknowledgements are
sent, thus no guarantees can be made that the data that is sent has arrived. UDP
is therefore suitable for time-sensitive applications, as packet loss is better than
violating the time constraints. Since there is no handshake and no re-transmission
of data, UDP requires less packets than other protocols such as TCP. Less packets
also means that data can be delivered faster through UDP [38].

16

4

Methodology

The project began with a literature study, where papers that covered topics of en-
ergy measurement and networking in mobile applications were read and reviewed.
A selection of the most relevant papers to this thesis can be found in Chapter 2.
From related papers, a table was compiled consisting of key elements used when
measuring energy. The table can be found in Appendix A, and consists of platform,
application type, and logging equipment.

4.1 Energy measurement approach

To determine a suitable approach the table in Appendix A was reviewed, to find
common denominators in the various projects. A common denominator that was
found was that all reviewed projects used the Android platform. The papers de-
scribe that Android was used since it is open source and thus modifiable, which in
many cases suited the authors’ needs. With this in mind, a comparison between
an Android phone and an iPhone was made, and it was decided to use Android as
platform for energy measurements in this project as well. This was due to the fact
that the battery of an iPhone is integrated and not so easily removed, in combina-
tion with the iOS SDK only providing information about the battery percentage
left. Combining the lack of energy measurement features with the restrictions of
the platform described in Section 3.1.2, the iOS platform did not match the de-
sired characteristics previously mentioned in Section 1.2.1. The Android phone, a
Samsung GT-S7275R running Android 4.2.2, had a battery that could easily be
removed and also contained a built-in current sensor. Together with a fine-grained

17

CHAPTER 4. METHODOLOGY 4.1. ENERGY MEASUREMENT APPROACH

API for reading voltage, the Android phone did not only fit better for this the-
sis than the iPhone, but did also match the desired characteristics. Therefore,
the results presented in this thesis are energy consumption logged in prototypes
implemented with cross-platform frameworks compiled for Android only.

Another common denominator that was found was that logging equipment often
consisted of expensive hardware components. No project logged energy through
a software-centered approach based on a mobile app, but since both current and
voltage values were accessible on the phone used for testing, such an approach
would be possible by using the theory described in Section 3.3. Therefore, an
energy logging application called PowerLogger was created, which is described in
detail in Section 5.2. To assess whether the energy consumption values measured
with PowerLogger were consistent with the results of a hardware-based approach,
an Intab AAC-2 PC-logger provided by i3tex was used to check the validity of
PowerLogger. By connecting the phone to the hardware logger as described in
Section 4.1.1, a number of sanity checks were performed which are further described
in Section 4.1.2.

4.1.1 Hardware logging

To measure energy through hardware, the setup shown in Figure 5 was used. From
the positive terminal on the battery a wire was connected, and the end of the wire
was connected to a 0.2 Ohm resistor. On the other side of the resistor, another
wire was connected to the positive terminal on the phone. By putting a piece
of tape between the positive terminal on the battery and the positive terminal
on the phone, the current flowed through the resistor. A red and a black wire,
representing positive and negative current, were soldered to the wires that were on
either side of the resistor shown in Figure 5.

By connecting the positive and negative wires to the PC logger the voltage across
the resistor can be measured. When the voltage across the resistor was known,
Equation 2 in Section 3.3.1 describing current resistive sensing could be used to
find the relationship between voltage, current, and resistance. As the resistance
was a constant of 0.2, the current I was calculated by I = V/0.2. To match the
logged values from software logging described in Section 5.2.1, a pair consisting of
timestamp and current was extracted from the logger. The voltage was read from
the internal voltage sensor in the phone, and by using Equation 1 in Section 3.3.1
the power was calculated.

18

CHAPTER 4. METHODOLOGY 4.1. ENERGY MEASUREMENT APPROACH

PC Logger

 0.2 Ω

+ -

Figure 5: Hardware logging setup

4.1.2 Sanity checks

A number of sanity checks were performed to validate the results from PowerLog-
ger. Each sanity check was performed by connecting the phone to a hardware
logger as described in Section 4.1.1, and then starting the PC-logger and Pow-
erLogger simultaneously. The PC-logger produced very fine-grained results but
could only log one value per second. PowerLogger was set to log 20 values per
second. One log record spanned a maximum of 95 seconds, as this was the maxi-
mum time the PC-logger could store values, and during the logging period a user
interacted with the screen starting apps such as flashlight, web browser, and a
map application. Five different logs were sampled and one of the logs, displayed
as a graph, is shown in Figure 6. Each value in the hardware log corresponds to
a value in the software log, but due to the hardware logger’s lower log frequency
the figure shows the hardware log (red line) as an average of the software log (gray
line).

The total amount of energy for each software and hardware log was compared,
calculated using the methodology described in Section 3.3.2. The results are shown
in Table 1. The difference between the total energy consumption logged by the
software and hardware-based approach was 0.1 mWh, with a maximum difference
of 1.6 mWh. Comparing the difference of 0.1 mWh to the total energy measured by
the software approach, the difference was approximately 0.1%. A fraction as small
as 0.1% is small enough to be considered noise, which resulted in the sanity checks
showing that the software-based approach worked just as well as the hardware-
based approach.

19

CHAPTER 4. METHODOLOGY 4.2. IMPLEMENTATION APPROACH

Figure 6: Sample log from sanity check

Table 1: Sanity check results

Log Run time (s) Software (Wh) Hardware (Wh) Difference (Wh)

1 95 0.0198974 0.0193471 +0.0005

2 92 0.0259503 0.0275873 -0.0016

3 76 0.0187794 0.0192907 -0.0005

4 88 0.0224319 0.0210263 +0.0014

5 90 0.0240841 0.0237465 +0.0003

Total 441 0.1111431 0.1109979 +0.0001

4.2 Implementation approach

The following sections describe the approach used when implementing the pro-
totypes. In the first subsection, the data synchronization techniques UDP, TCP
push, and TCP pull are discussed. Following this is a description of the imple-
mentation goals together with additional details of the implemented prototypes.
In the last subsection, the consistency model that was used in each prototype is
explained.

20

CHAPTER 4. METHODOLOGY 4.2. IMPLEMENTATION APPROACH

4.2.1 Data synchronization techniques

To be able to evaluate the purpose described in Section 1.1, data synchronization
techniques were needed. The chosen techniques were TCP push, TCP pull, and
UDP, which are described more in detail in Section 3.4.1 and in Section 3.4.2.
These techniques were chosen based on their respective protocol’s position in the
OSI model as well as the API support that existed in the Android platform. Both
TCP and UDP are located in the transport layer of the OSI model [41], which
indicates that they are suitable for data transportation. The protocols of the
network layer, the layer below the transport layer, did not provide functionality
useful to any of the implemented prototypes and were thus not used. Many of
the protocols in the layers above the transport layer are based on TCP or UDP,
meaning that such protocols would have an added complexity overhead, making
them unfit for comparison to TCP and UDP. Those protocols were therefore not
used in this thesis.

4.2.2 Prototypes

Each implemented prototype was able to communicate with a data provider through
either a TCP or UDP connection. The development was divided into three mile-
stones that were implemented in consecutive order. Each milestone represented a
major change in functionality which was used to investigate the correlation between
different factors and energy efficiency. The milestones were also implemented to
meet specified requirements from Volvo, which are available in Appendix B.

For the first milestone, the goal was to receive real-time data from a provider,
without displaying the data. The goal of the second milestone was to display data
received from a connection in text form. For the third and last milestone, the goal
was to process the received data before showing it in the form of a graph. The
reason for splitting the milestones into the specified prototypes was comparability.
As each new milestone added an extra feature, differences in energy consumption
could be linked to implementation changes.

To evaluate the question concerning whether different frameworks consume differ-
ent amounts of energy, each prototype was implemented multiple times, each time
with a different framework. The frameworks that were used were Ionic, Corona,
and Xamarin. These frameworks were chosen mainly because of the fact that
they all provide a way to write an application that can run on multiple platforms.
Another aspect was based on the fact that, as described in Section 3.2, the frame-
works use different techniques to achieve a cross-platform implementation. The

21

CHAPTER 4. METHODOLOGY 4.3. ACQUIRING THE RESULTS

ability to test different application creation techniques made it possible to inves-
tigate whether one framework was more energy efficient than another. A fourth
framework, Appgyver Supersonic, did also match the desired characteristics but
no implementation was completed using this framework. The reason for this was
the tedious and complicated application build process, as well as problems with
using third-party plugins that were required.

4.2.3 Consistency

To handle various network problems such as packet loss, a consistency model was
created. The model was developed in collaboration with Volvo Cars and the focus
was to provide as high usability to the end user as possible. As the data provider,
described in Section 5.3, sent data points each 20 milliseconds the prototypes
were classified as real-time streaming applications. As such, some packet loss was
deemed to be acceptable as the data provider sent more data than an end user
could possibly view. When a connection was lost the application was halted, and
if a graphical user interface was implemented a blank screen was shown to indicate
that the connection had been closed. As each prototype only received data, a
closed connection signaled that the data provider had dropped the connection and
needed to be restarted. Thus, no attempts to restart the connection were made
from a prototype as the provider would be unreachable.

4.3 Acquiring the results

To evaluate energy efficiency, the energy measurement approach was applied to
the implementation. Energy consumption was logged on a Samsung GT-S7275R
running the Android OS, version 4.2.2. The key components of the phone are
listed in Table 2.

The prototypes were split into as small pieces as possible to enable comparisons
between different components, which is described in Section 4.3.1. The energy
consumption of each component was logged by using the protocol described in
Section 4.3.2. Finally, the factor that affected energy consumption the most was
modeled using the previously logged data to gain a deeper understanding of its
correlation to energy consumption.

22

CHAPTER 4. METHODOLOGY 4.3. ACQUIRING THE RESULTS

Table 2: Samsung GT-S7275R hardware specification

Component Specification

Chipset Qualcomm MSM8930 Snapdragon 400

CPU Dual-core 1.2 GHz Krait

GPU Qualcomm Adreno 305

Memory 8 GB

RAM 1 GB

Display LCD, TFT capacitive 480 × 800

WiFi 802.11 b/g/n 2.4GHz

GPS A-GPS, GLONASS

Bluetooth v4.0, A2DP

Radio Stereo FM radio with RDS

Battery 1800 mAh (6,84 Wh), 3,8 V Li-ion

4.3.1 Prototypes

To investigate how different elements affect energy consumption, the mobile appli-
cation was divided into a number of factors, which can be seen in Table 3. First,
three different prototypes were developed: the base prototype, Prototype 1, and
Prototype 2. Each prototype implemented a specific milestone, and did thus dif-
fer in functionality when compared with the other prototypes. The functionality
difference depended on the complexity of the graphical user interfaces. Each pro-
totype was split into three parts, where the different parts were defined by which
framework was used. Lastly, each framework was implemented with the three data
synchronization techniques TCP push, TCP pull, and UDP.

Table 3: Prototypes divided into different factors

Prototype functionality Network only Simple GUI Complex GUI

Framework Corona Ionic Xamarin

Synchronization technique TCP push TCP pull UDP

To enable further comparisons, each data synchronization technique used a set of
update intervals, which depended on the prototype. The interval values can be
seen in Table 4. TCP pull used update intervals of 100, 500, and 1000 milliseconds
regardless of prototype. The different update intervals were used to find a correla-

23

CHAPTER 4. METHODOLOGY 4.3. ACQUIRING THE RESULTS

tion between the frequency of performing a set of tasks and energy consumption.
For the base prototype the defined task was to pull data, and for Prototype 1 and
Prototype 2 the tasks were to both pull data and to update the graphical user
interface.

Neither TCP push nor UDP used an update interval for the base prototype. As
a TCP push or UDP connection is always open, data will be received without
actively checking the connection. For Prototype 1, both TCP push as well as
UDP used update intervals 100, 500, and 1000 milliseconds as delay intervals
between updating the screen with received data. This was used to investigate
the energy efficiency when adding a graphical user interface, and the different
update intervals were used to see if redrawing data more or less frequently made a
noticeable impact on energy consumption. For Prototype 2, TCP push and UDP
updated the screen using intervals of 100, 500, and 1000 milliseconds, in order to
compare the difference in energy consumption between the simple user interface of
Prototype 1 with the more complex GUI in Prototype 2.

Table 4: Prototypes with techniques and update intervals

Prototype Synchronization technique Update intervals

Base

TCP push N/A

TCP pull 100, 500, 1000

UDP N/A

Prototype 1

TCP push 100, 500, 1000

TCP pull 100, 500, 1000

UDP 100, 500, 1000

Prototype 2

TCP push 100, 500, 1000

TCP pull 100, 500, 1000

UDP 100, 500, 1000

4.3.2 Energy measurement protocol

An energy logging protocol, based on the typical use of the prototypes, was created
to be able to compare energy consumption. The protocol defined the screen to be
on during a log session, and the brightness of the screen to be set to 50%. Each
log file spanned 120 seconds with 20 logged power values per second, thus each log
file contained 2400 power values.

24

CHAPTER 4. METHODOLOGY 4.3. ACQUIRING THE RESULTS

The different prototypes were bundled as tuples where each tuple consisted of a
prototype, a framework, a synchronization technique, and an update interval. The
energy consumption for each tuple was logged ten times and was normalized by
using the average from these ten different log files. The normalization removed
energy spikes and noise, while still preserving the overall energy consumption.

4.3.3 Models

When the energy consumption of all prototypes had been measured, the most
influential factor could be found. To gain a deeper understanding of how the
energy consumption was affected, a number of models describing the correlation
between the factor and the consumption were created.

Each model was based on a function with the influential factor as the key param-
eter. By plotting the measured energy consumption reported in Chapter 6, the
characteristics of the data could be found. This was contrasted with the char-
acteristics of different mathematical functions to find a correlation between the
plotted data and a function. When a function was decided, the curve fitting tool
available in MATLAB was used to find the coefficients. Finally, by comparing
all models with each other it was possible to see if a general conclusion could be
drawn about the factor’s significance for energy consumption. The result from the
model creation is shown in Section 6.3.

25

5

Design and Implementation

This chapter describes the design and implementation of the different prototypes,
together with the chosen frameworks. Furthermore, the energy measurement app
that was used is explained in detail. The chapter is concluded with a section
describing the data providers sending real-time data.

5.1 Mobile application

The following sections describe the implementation and design of the three mobile
application prototypes that were created during the course of this thesis. Each
prototype received data tuples consisting of one friction value and one quality
value from a data provider, where quality refers to the certainty that the friction
value is correct. Both the data and the data providers are described in further
detail in Section 5.3.

5.1.1 Architecture of the mobile application

The prototypes that were developed using Xamarin are modeled after the Model-
View-Controller (MVC) architecture pattern. This is used to separate business
logic and data, which is represented by the model, from the user interface, which
is represented by the view. The controller handles input, notifies the model, and
sometimes also changes the view. The prototypes that were implemented with

26

CHAPTER 5. DESIGN AND IMPLEMENTATION 5.1. MOBILE APPLICATION

Corona were very simple with no particular architectural pattern utilized for their
creation.

The Ionic framework is built around the JavaScript framework AngularJS which
is designed using the Model-View-ViewModel (MVVM) pattern, which is derived
from MVC. MVVM is focused on separating the UI code from the business logic
of an application. This enables UX designers to create the design in a markup
language, while other developers can create data bindings to the view-model. The
view-model in AngularJS applications is a special object denoted as $scope. This
was used in the prototypes to handle data by having the logic to receive data in
the controller, and then push it to the views. The $scope object can also handle
inputs from the views so that the model, in this case the controller, can be updated
from the views.

5.1.2 Base prototype

The purpose of the base prototype was to implement an application which received
real-time data from a data provider without parsing or displaying the data. As
soon as data was received it was discarded. This made it possible to measure energy
with emphasis on network data, without other energy consuming components such
as graphics included. As an application always has a user interface, a black screen
was shown to the user. The base prototype was implemented using three different
frameworks: Ionic, Corona, and Xamarin. Each framework implemented the three
different data synchronization techniques described in Section 4.2.1: UDP, TCP
push, and TCP pull. However, given the difference in how the frameworks are
designed the implementation differed for each one.

In order to get network socket support with Ionic, a third-party Cordova plugin
was required. In Ionic it is not possible to access the sensors and other functions
of the underlying platform without plugins. For the Xamarin version the network
functionality was implemented using a third-party library that acted as an interface
to Xamarin’s native network socket support. Using the library makes it possible to
write shared code which then calls the correct functions for the different platforms
Xamarin supports. Corona provides an API for creating sockets as part of the
framework, and thus no external libraries were needed.

5.1.3 Prototype 1

Prototype 1 was an extension of the base prototype, and was also implemented
to receive real-time data from a data provider. The functionality of the prototype

27

CHAPTER 5. DESIGN AND IMPLEMENTATION 5.1. MOBILE APPLICATION

was fairly limited; the received data was parsed and displayed as text. Adding a
graphical user interface made it possible to compare Prototype 1 with the base
prototype, to determine the correlation between a user interface and energy con-
sumption. Prototype 1 was implemented with the frameworks Ionic, Corona, and
Xamarin, and each framework implemented different versions that used UDP, TCP
push, and TCP pull.

Since the Ionic framework is based on web technology, the graphical interface was
created using HTML and styled with CSS. By default, the framework provides a
CSS file that can be used to further design the layout. The default styles can be
overridden by using SASS, a CSS extension language, to customize the look of an
app. For this project, SASS was only used to override the default background color
to a dark one instead of the default white background. The rest of the interface
was created by using Ionic’s custom HTML components with their default styles.

The GUI in Xamarin was implemented using Xamarin.Forms, an API for creating
native looking apps in C# with shared code. With Xamarin.Forms the entire
graphical interface for Prototype 1 was written to be shared between Android and
iOS without any platform specific modifications. The graphical interface in Corona
was built through the already existing graphics API, which provided functionality
to write text to the screen with a certain color at a specific coordinate.

User Interface

The main goal for Prototype 1 was to be able to print out any received data on the
screen. Figure 7 shows the text view on a 7 inch tablet running Android 5.1. The
values for the friction and the quality are displayed with different colors depending
on how high the quality is. If the quality is low (less than 4), then the color of the
text is changed to indicate that the estimation may not be accurate.

5.1.4 Prototype 2

In Prototype 2, a graph displaying friction and quality values parsed from the real-
time data was added in order to measure energy consumption in a more complex
graphical user interface. Both friction and quality values were shown on the y-
axis, and each data point was tagged with a timestamp so that the x-axis of
the graph showed the elapsed time since the application started. Prototype 2
was implemented with the framework Xamarin, and each version used UDP, TCP
push, and TCP pull. The other two frameworks, Corona and Ionic, were deemed
to be unfit for further use. As mentioned in Section 3.2.4, Corona is mainly

28

CHAPTER 5. DESIGN AND IMPLEMENTATION 5.1. MOBILE APPLICATION

Figure 7: Prototype 1. A received data point from the data provider displayed as
text.

designed for creating games, which turned out to be problematic for creating this
prototype. The framework lacked many features for normal applications that the
other frameworks provided. The reason to stop using Ionic was due to lack of
documentation in graph libraries as well as time constraints.

User Interface

The graphical user interface of Prototype 2 was implemented using the cross-
platform plotting library OxyPlot. OxyPlot supports a variety of different plotting
tools empowering the developer to build complex charts. Some of the features that
were used were a plot with different colors depending on which data was added,
different axes that were connected to different graph lines, and an x-axis denoting
time that removed old data points so that only the latest, most relevant data was
shown. Using a cross-platform library made it possible to implement the graph in
a shared project and then use it for both Android and iOS, without any platform
specific modifications.

The user interface of Prototype 2 is shown in Figure 8, which is a snapshot of
the prototype installed on a 7 inch tablet running Android 5.1. The blue graph
line together with the right y-axis represents the friction, and the pink graph line
together with the left y-axis represents the quality. If the quality decreases below
a predefined threshold, both graph lines are shown in gray to indicate that the
values are inaccurate.

29

CHAPTER 5. DESIGN AND IMPLEMENTATION 5.2. POWERLOGGER

Figure 8: Prototype 2. Received data points from the data provider displayed in
a graph.

5.2 PowerLogger

To be able to log energy through software, an application called PowerLogger was
created. PowerLogger was divided into two different parts, one mobile application
that logged power on a mobile device and one desktop application that processed
the logged power information and calculated energy consumption. Splitting the
application in two parts was done due to the fact that the mobile application
should be as energy efficient as possible to remove as many sources of error as
possible. Thus, the computationally heavy part where data is processed and eval-
uated was instead implemented in a desktop version. The mobile application was
implemented in Java in order to run on the Android operating system. The desk-
top application was implemented in Python 2.7 in order to run on any operating
system.

5.2.1 Functionality

The purpose of the mobile application was to log power on a mobile phone. The
functionality was implemented by measuring current and voltage, which were used
to calculate the power by using Equation 1 in Section 3.3.1. The voltage was re-
trieved from the Android system’s battery manager and the current was retrieved
by reading the output of a current sensor located inside the phone. The retrieved
current, voltage, and power values, together with the system’s timestamp and the
battery percentage, were written to a log file. The logging process was automati-
cally started and stopped when entering or exiting the main view.

30

CHAPTER 5. DESIGN AND IMPLEMENTATION 5.2. POWERLOGGER

In order to enrich the functionality and ease the use of the application, a few user-
controlled settings were added. The application was configured so that the user
could adjust the frequency with which the app retrieved values from the system.
Monitoring energy consumption more frequently can yield greater accuracy but
may also induce a larger energy overhead, so depending on use case a certain up-
date frequency may be more or less suitable. Such a use case could for instance
occur when measuring the energy of an energy efficient app. If PowerLogger’s
energy consumption accounts for a greater part of the energy consumption it can
be difficult to distinguish how much energy that the other application consumes.
Furthermore, the user could choose to log the currently running applications. This
is useful when visualizing the log file, as an increase or decrease of energy con-
sumption could be directly connected to a specific process.

The purpose of the desktop application was to process and visualize the log file
created by the mobile application. The functionality was implemented by parsing
the log and splitting the data into lists of the different logged types: date, current,
voltage, power, battery percentage and running processes. The list of dates was
recalculated into relative values, where each element represented a time difference
from the start of the log file, measured in milliseconds. The recalculation enabled
the possibility to create a more fine-grained log by aggregating multiple log files.
When the log file was processed the desktop application calculated the total energy
consumption in watt-hours by using the methodology described in Section 3.3.2
and printed it, together with the total running time, to the standard output. The
energy data in the lists was used to create a graph where the x-axis represented
the relative time since the start of the log. The corresponding values for current,
voltage, and power were plotted in the graph.

To enhance usability, a number of input parameters were added. The user could
choose between plotting current, voltage, and power. A smoothing option, where
the plotted values for a certain graph were smoothed using linear regression was
also created. The smoothing factor, given as an integer value, determined the
number of neighboring data points to use as the base when recalculating each data
point. Finally, a choice to show different processes’ runtime was implemented. The
user was prompted to choose one or more processes that were running during the
time the energy was logged. The chosen processes were added to a subplot below
the main graph, so that a connection could be drawn between energy consumption
and active processes.

31

CHAPTER 5. DESIGN AND IMPLEMENTATION 5.2. POWERLOGGER

5.2.2 User Interface

Both the mobile as well as the desktop part of PowerLogger implemented a graph-
ical user interface. The interfaces, which were used to visualize the output of both
application parts, are described in the following sections.

Mobile application

To minimize the complexity of the mobile application, the user interfaces were
implemented with as few features as possible. This is shown in Figure 9. To the
left in the figure is the settings view where the user can configure the functional
settings described in the previous section. To the right in the figure is the main
view, shown while the system is logging energy values.

Figure 9: User interface for the mobile part, with settings and main view

Desktop application

The user interface for the desktop application was provided through a terminal
window. Using the parameters described in Section 5.2.1 the user could change
the visual output of the program. One of the visual changes that could be made
was to smooth a graph. Since a log file can contain many data points or a lot of

32

CHAPTER 5. DESIGN AND IMPLEMENTATION 5.3. DATA PROVIDER

noise, a smoothed graph can be used to give an overview of the data representation.
This is shown in Figure 10, where the right graph is a smoothed version of the left
graph. The log used to visualize Figure 10 uses input parameters that smooths
the power values just enough to contain the main features such as maximums and
minimums of the original graph, while still preserving the overall data distribution.
The y-axis of the graph shows watt for the blue graph line, ampere for the green
graph line, and voltage for the red graph line.

Figure 10: Output for original (left) and smoothed graph (right)

To find the correlation between a specific application and changes in energy con-
sumption, a subplot showing running processes was added. This is shown with an
example in Figure 11, where the subplot displays the process com.devuni.flashlight
together with the power consumption. It can be seen in the same figure that the
power consumption increased from approximately 1.6 to 2.2 watt as the same time
as the process started. This fact could be used to draw the conclusion that starting
the flashlight application momentarily increased the energy consumption with 0.6
watt.

5.3 Data provider

To be able to measure energy efficiency during data synchronization, two data
providers were created, each sending data through a different network protocol.
Both providers sent a pair of values: one floating point value representing friction
data, and one integer value representing the quality of the data. The values were
sent in JSON format, which resulted in a payload size of 38 bytes. Quality of data
refers to the certainty that the data is correct. For example, a sensing application

33

CHAPTER 5. DESIGN AND IMPLEMENTATION 5.3. DATA PROVIDER

Figure 11: Relation between a running process and energy consumption

in a car could use a quality variable to define the accuracy of data, where good
quality would represent data collected and verified by a number of sensors and bad
quality would represent data that is unverifiable. The network protocols used by
the data providers were TCP and UDP. The delay between each transmission was
20 milliseconds.

The provider that sent values through TCP was implemented in Java in order to
run on any operating system. The TCP provider listened to a specific IP address
and port, and when an application connected to the provider it started sending
data. The initial data values were chosen at random. The quality was represented
internally as a floating point value, which was rounded to the closest integer value
when sent. At each transmission, a certain offset was added to both the data as
well as the quality, to emulate a change in sensor data. The quality offset was
chosen so that it would take a minimum of one second to increase or decrease the
quality value by one. As the delay between each transmission was 20 milliseconds,
the maximum value of the offset could be at most 20/1000 = 0.02 seconds. Each
quality offset was therefore chosen at random from a range between -0.02 and 0.02.
For simplicity, the data offset was chosen from the same range.

The UDP provider, which sent data through UDP, was implemented in C++ in
order to run in an embedded operating system. The provider was connected to a
car to fetch friction and quality values from one or more sensors, but could also be
connected to a computer via USB and in this case the data was emulated. Each

34

CHAPTER 5. DESIGN AND IMPLEMENTATION 5.3. DATA PROVIDER

data pair was sent to a specific port on the network broadcast address so that
any device connected to the same network as the provider could read the data by
listening to the specified port. The UDP provider was implemented and managed
by Volvo.

35

6

Result

This chapter is structured as follows. The first section presents the energy con-
sumption for different prototypes. In the next section, energy consumption values
of elements in a mobile application are compared to find which factors influence
energy consumption. This is followed by a section describing energy models of the
most influential factor, which are created based on the measured data. Finally,
the last section presents additional findings.

6.1 Energy measurement

In this section, the three subsections present and comment on the energy con-
sumption in the different prototypes with focus on data synchronization tech-
niques. The presented results are energy consumption logged in prototypes that
are implemented with cross-platform frameworks and compiled for Android only,
as described in Section 4.1. All energy consumption values are shown as average
power consumption and thus the unit displayed in the tables is watt. The values
are, as described in the energy logging protocol in Section 4.3.2, based on log files
spanning 120 seconds. All values are normalized by taking the average based on
ten different log files.

The reason for displaying energy consumption as average power is based on the
fact that the time parameter is removed, and it is therefore easier to compare
the values with each other as well as to other projects’ values. The presented
energy consumption is the energy used during the application’s run time only, the

36

CHAPTER 6. RESULT 6.1. ENERGY MEASUREMENT

consumption when starting and stopping an application where the user interacts
with the screen has been excluded. The energy consumption for starting and
stopping an application is instead described in Section 6.4.

6.1.1 Base prototype

For the base prototype, the energy consumption of the three different network
techniques were logged. As described in Section 5.1.2, the prototype received data
through a network connection, but the data was neither processed nor displayed.
The techniques that were logged were UDP, TCP push, and TCP pull. TCP pull
used three different delay intervals between pulling data: 100, 500, and 1000 mil-
liseconds. As TCP push and UDP had constantly open connections they received
one data point every 20 milliseconds, as described in Section 5.3. The prototype
was implemented with three different frameworks: Corona, Ionic, and Xamarin.
The result of the energy measurements for the base prototype is shown in Table 5.

Table 5: Energy consumption of the base prototype shown as average power (W)

Corona Ionic Xamarin

Push 0.73481 0.72964 0.69697

Pull 100 0.76818 0.77152 0.74040

Pull 500 0.68540 0.67470 0.67945

Pull 1000 0.63377 0.62584 0.61706

UDP 0.65555 0.60019 0.56196

In Table 5, it can be seen that the most energy efficient synchronization techniques
are TCP pull that fetches data every 1000 milliseconds and UDP, depending on
which framework is used. The small deviations make it hard to know whether the
frameworks implement the various techniques differently or if the difference is a
coincidence. Therefore, both TCP pull 1000 and UDP are seen as equally energy
efficient.

The reason for the low energy consumption for TCP pull which receives data once
per second might be due to that each connection is closed and disposed when data
transmission is finished. Thus, the mobile phone is able to sleep between updates
and does not need to handle an incoming stream of packets as frequently as for
instance TCP push. The low energy consumption in UDP is likely to be based on
the fact that UDP is connectionless and has a smaller header to process.

37

CHAPTER 6. RESULT 6.1. ENERGY MEASUREMENT

Despite the fact that the frameworks sometimes differ in amount of consumed
energy for a specific technique, TCP pull which pulls data every 100 milliseconds
is consistently the most energy consuming data synchronization technique. TCP
push is the second most energy consuming technique, consuming less energy than
TCP pull that updates every 100 milliseconds but more than the other techniques.
This might depend on the fact that TCP push maintains one open connection
throughout the whole logging period, and as the data provider sends 50 data
points each second, TCP push consumes more energy as it needs to process a lot
of incoming packets.

6.1.2 Prototype 1

Prototype 1 was implemented with three different frameworks: Corona, Ionic,
and Xamarin. For each framework three different synchronization techniques were
used: UDP, TCP push, and TCP pull. Each synchronization technique used the
update intervals 100, 500, and 1000 milliseconds. Due to the fact that Prototype 1
implemented a graphical user interface, the update intervals of TCP pull was used
both for data retrieval and for updating the GUI. The update intervals in TCP
push and UDP were solely used for updating the screen.

The result of the energy measurements can be seen in Table 6. Each row in the ta-
ble represents the energy consumption of a synchronization technique implemented
with different frameworks, and the columns of the table represent the energy con-
sumption of a framework implementing different techniques. Lastly, the table is
grouped by the delay between updates for different synchronization techniques.

From Table 6, it can be seen that TCP pull and UDP, both with an update interval
of 1000 milliseconds, were the synchronization techniques that consumed the least
amount of energy. Just like in the results from the base prototype, the most energy
efficient technique differs depending on which framework is used. As described in
Section 6.1.1, the reason for this difference can depend on the fact that an app
created in one framework is implemented differently than an app implemented in
another framework.

Independent of framework, the least energy efficient synchronization technique
was TCP pull 100, and the second least energy efficient technique was TCP push
100. These results show the same relationship between different techniques as the
results in the base prototype in Section 6.1.1. Thus, the results in Table 6 indicates
that adding a graphical user interface consumes energy that is equivalent to some
constant. The relationship between the different synchronization techniques in
Prototype 1 is further visualized in Figure 12.

38

CHAPTER 6. RESULT 6.1. ENERGY MEASUREMENT

Table 6: Energy consumption in Prototype 1 shown as average power (W)

Corona Ionic Xamarin

Push 100 0.83369 0.94376 0.86024

Pull 100 0.90548 0.98874 0.88863

UDP 100 0.75703 0.78720 0.74847

Push 500 0.74460 0.82022 0.74505

Pull 500 0.72988 0.80721 0.73136

UDP 500 0.66190 0.66480 0.67508

Push 1000 0.72524 0.77319 0.72266

Pull 1000 0.67058 0.67089 0.64412

UDP 1000 0.63884 0.63883 0.64756

100 500 1000

A
v
e
ra

g
e
 p

o
w

e
r

(W
)

0

0.2

0.4

0.6

0.8

1
Push

Pull

UDP

Update interval (ms)

Figure 12: Relationship between synchronization techniques in Prototype 1

In Figure 12 it is shown that when the update interval is equal to 100 milliseconds,
TCP push is more energy efficient than TCP pull. However, as the update interval
increases TCP pull becomes more energy efficient than TCP push. When updating
every 100 milliseconds, TCP pull needs to open and close a lot of connections
while TCP push keeps an open connection. The action of opening and closing
connections frequently can thus be explaining the difference in energy consumption.
In the same manner, when the interval between updates increases TCP pull does
not need to open as many connections. As TCP push still keeps an open connection
it receives many more packets than TCP pull, which can explain the fact that TCP

39

CHAPTER 6. RESULT 6.1. ENERGY MEASUREMENT

pull becomes more energy efficient than TCP push.

6.1.3 Prototype 2

The energy measurement was only performed for the Xamarin framework since
it was the only framework that was used to implement this prototype, which is
described in further detail in Section 5.1.4. Three synchronization techniques were
used to retrieve data: UDP, TCP push, and TCP pull. Each synchronization
technique used update intervals of 100, 500, and 1000 milliseconds. For TCP pull,
the update intervals were used for both data synchronization and screen updates.
For TCP push and UDP, the update intervals were used only to update the screen.
The total energy consumption for Prototype 2 is shown in Table 7.

Table 7: Energy consumption in Prototype 2 shown as average power (W)

Xamarin

Push 100 1.07767

Pull 100 1.13540

UDP 100 1.02482

Push 500 0.82110

Pull 500 0.80229

UDP 500 0.69578

Push 1000 0.72013

Pull 1000 0.65804

UDP 1000 0.62966

The results in Table 7 shows that UDP that updates the screen every 1000 millisec-
onds is the most energy efficient data synchronization technique. The least energy
efficient synchronization technique is TCP pull which pulls data and updates the
screen every 100 milliseconds. As the relationships between all techniques are con-
sistent with the relations presented for the base prototype in Section 6.1.1 and
for Prototype 1 in Section 6.1.2, the results indicate that the functionality added
in Prototype 2 adds some constant energy. The results in Table 7 are further
visualized in Figure 13. The colored bars in the chart represents the different syn-
chronization techniques and the bars are grouped by the interval in milliseconds
used to update the screen.

40

CHAPTER 6. RESULT 6.2. FACTORS AFFECTING ENERGY CONSUMPTION

100 500 1000

A
v
e
ra

g
e
 p

o
w

e
r

(W
)

0

0.2

0.4

0.6

0.8

1

1.2
Push

Pull

UDP

Update interval (ms)

Figure 13: Relationship between synchronization techniques in Prototype 2

As can be seen in Figure 13, the main difference between the synchronization
techniques is that when using an update interval of 100 milliseconds TCP push
consumes less energy than TCP pull. When the interval between updates increases,
TCP pull becomes more energy efficient than TCP push. This relation, which was
also shown for Prototype 1 by using Figure 12, suggests that when retrieving data
very frequently it is more energy efficient to keep a connection continuously open
than to keep opening and closing it. It also indicates that when receiving data less
frequently, it is more energy efficient to close each connection. Differences between
TCP and UDP are possibly explained by the smaller overhead in UDP packets,
which would mean that less energy is needed to process incoming data.

6.2 Factors affecting energy consumption

To further investigate the result from Section 6.1, different factors that might af-
fect the energy consumption were compared. The factors, which were based on
the general characteristics of a mobile networking application, were: synchroniza-
tion technique, framework, and functionality. Functionality was implemented by
graphical user interfaces of varying complexity. As both Prototype 1 and Proto-
type 2 implemented a graphical user interface on top of the network functionality,
the energy consumption of the base prototype was subtracted from these proto-
types to be able to compare the energy consumption of network techniques with
the energy consumption of GUIs of varying complexity. Furthermore, the energy
consumed when running only PowerLogger was determined to be equal to 0.51033

41

CHAPTER 6. RESULT 6.2. FACTORS AFFECTING ENERGY CONSUMPTION

watt, and this constant value was subtracted from each data point to remove the
energy overhead of PowerLogger.

An additional factor, update interval, was discovered during the course of the the-
sis. To provide a clearer picture, the update interval was converted into update
frequency to see the number of updates per second instead of number of millisec-
onds between each update. Both the update frequencies for retrieving data as
well as the update frequencies for updating the screen are investigated in Sec-
tion 6.2.1. The comparison of the factors was done based on the results given in
Section 6.1, and therefore each factor was contrasted against the network synchro-
nization techniques. The results showed that the order of the factors, sorted from
most influential energy consumption factor to the least, was: update frequency of
graphical user interface, graphical user interface, data synchronization technique,
and framework.

6.2.1 Update frequency

Figure 14 shows the relation in energy consumption between different factors and
frequency. The blue line represents the network synchronization technique TCP
pull, the red line the simple graphical user interface, and the yellow line the complex
graphical user interface. TCP pull is shown in the figure since it is the only data
synchronization technique that uses a frequency to retrieve data.

From Figure 14, several different relationships can be seen. The energy consump-
tion of the network technique increases between values of 1 and 10 updates per
second, but for frequencies higher than 10 the consumption levels off. As the dif-
ference in energy consumption between the lowest and highest frequency is small,
it can be said that the frequency with which data is pulled does not influence the
energy consumption very much.

This can be contrasted with the energy consumption of the GUIs of varying com-
plexity. Adding a graphical user interface with a low frequency consumes very little
energy but, as Figure 14 shows, an increase in update frequency largely impacts
the energy consumption. This relation applies to both the simple as well as the
complex GUI, with the difference that the complex GUI is more affected by the
frequency than the simple GUI is. It can thus be concluded that the frequency
with which a graphical user interface is updated influences the energy consumption
more than just the interface itself.

42

CHAPTER 6. RESULT 6.2. FACTORS AFFECTING ENERGY CONSUMPTION

Updates per second

0 5 10 15 20 25 30 35 40

A
v
e
ra

g
e
 p

o
w

e
r

(W
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Network

Simple GUI

Complex GUI

Figure 14: Difference in energy consumption between factors

6.2.2 Graphical user interface

As described in the previous section, the graphical user interface is a smaller factor
than the GUI update frequency when considering energy consumption. Thus, the
GUI update frequency has to be included when comparing the energy consumption
of graphical user interfaces to the energy consumption of network synchronization
techniques. However, as shown in Section 6.2.1, the update frequency of the syn-
chronization techniques does not impact energy consumption very much. There-
fore, the network frequency can be replaced with a constant indicating the energy
consumption. This constant is the maximum energy consumption of all network
techniques and all frequencies to consider the worst case. The energy consumption
for graphical user interfaces and network synchronization techniques is visualized
in Figure 15.

Figure 15 shows that determining which of graphical user interface and network
synchronization technique that affects energy consumption the most depends on
the frequency of the graphical user interface, as the frequency and GUI cannot
be separated. Based on Figure 15, the complex graphical user interface consumes
more energy than the network synchronization techniques when updating 5 or
more times per second, and the simple GUI consumes more energy than the net-
work techniques when updating more than 20 times per second. Since the energy
consumption increases when considering varying complexity of graphical user in-

43

CHAPTER 6. RESULT 6.2. FACTORS AFFECTING ENERGY CONSUMPTION

Updates per second

0 5 10 15 20 25 30 35 40

A
v
e
ra

g
e
 p

o
w

e
r

(W
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Network

Simple GUI

Complex GUI

Figure 15: Energy consumption of graphical user interfaces and network techniques

terfaces and the energy consumption of the network techniques can be seen as a
constant, the graphical user interface is a bigger factor of energy consumption than
the synchronization technique is.

6.2.3 Frameworks

From the results in Section 6.1, it can be concluded that the differences between
the frameworks are very small. This is further shown in Figure 16, where the data
from the base prototype is plotted in a bar chart. The values on each bar represents
the average power for a certain framework and a certain synchronization technique.
The figure shows that there exists a difference in energy consumption between the
frameworks. However, the numbers denoting the consumption indicate that the
difference is insignificant.

Considering the worst case, the maximum difference between two frameworks in
Figure 16 is 0.13 watt. This can be compared with the maximum difference for
synchronization techniques for the same prototype. The data in Table 5 in Section
6.1.1 shows that the maximum difference ranges between 0.13 watt and 0.18 watt
depending on which framework is considered. Thus, a conclusion can be drawn
that the framework used to implement a mobile application is a smaller or equally
big energy factor as the synchronization technique that is used to retrieve data.

44

CHAPTER 6. RESULT 6.3. ENERGY MODELS

Pull 100 Pull 500 Pull 1000

1.07

1.13

1.02

0.82 0.80

0.69 0.72

0.66
0.63

Corona

Ionic

Xamarin

A
v
e
ra

g
e
 p

o
w

e
r

(W
)

Figure 16: Energy consumption in different frameworks shown as average power.

6.3 Energy models

From the comparison between different influential factors in Section 6.2, it could be
seen that the update frequency with which the graphical user interface was updated
was the factor that affected energy consumption the most. To understand how
update frequency influences energy consumption, different models were created.
Each model was based on a mathematical function. The range of each model was
given by the set of natural numbers larger than 0 but smaller or equal to 50, since
it was not possible to measure 0 updates per second and 50 updates per second
was the maximum update frequency due to 50 data points being sent each second.

By plotting average power consumption of a prototype based on different frequen-
cies a pattern emerged which is visualized in Figure 17. In the figure it can be seen
that the average power increases up until a frequency of 10 updates per second.
When the frequency exceeds 10 updates per second, the average power stagnates.
The figure shows data from Prototype 1 implemented with the Xamarin frame-
work, retrieving data through TCP push. Each prototype that included an update
frequency could be modeled in the same way.

Pavg(freq) =

a1 ∗ freq + b1 if freq is in the range of (0-10]

a2 ∗ freq + b2 if freq is in the range of [10-50]
(4)

The function describing the average power for a specific frequency is shown in
Equation 4. The equation is split into two parts dependent on the frequency: one
part for frequency values between close to 0 and 10, and a second part for frequency

45

CHAPTER 6. RESULT 6.4. ADDITIONAL FINDINGS

0 5 10 15 20 25 30 35 40 45 50
0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

Update frequency

A
v
e
ra

g
e
 p

o
w

e
r

(W
)

Figure 17: Average power for different frequencies

values between 10 and 50. From Figure 17, it can be seen that the values for a1 is
the slope of the first part and b1 denotes the start of the first part. Similarly, as the
second line is almost a constant, a2 will approach 0 and b2 will be a constant. This
is further demonstrated by the values used to produce the figure. Here, a1 is equal
to 0.014, the slope of the first part, and b1 is equal to 0.711, the starting value.
Furthermore, a2 is equal to 0.0007 which is a value approaching 0, and b2 is equal
to 0.845 which is approximately the value of all points of the second part. The a
and b values for each model were found using the curve fitting tool in MATLAB.

Other functions were considered but did not model the system as well as Equation
4. One of the tested functions was a simple linear equation for all points. However,
as the second part resembles a constant, a linear equation did not fit well to most
of the data points. Instead, the linear equation gave a very brief overview of the
model as a whole.

6.4 Additional findings

When the energy consumption of all prototypes was logged, different log files were
plotted to find additional connections between prototypes and energy consump-
tion. The connection that was found is shown in Figure 18, where the energy
consumption data for the base prototype implemented with the Xamarin platform

46

CHAPTER 6. RESULT 6.4. ADDITIONAL FINDINGS

is plotted. The graph lines represent different techniques with different update
intervals.

Figure 18: Start and tail energy

From the figure it can be seen that there are two clearly defined areas, the start
and tail, which consume nearly the same amount of energy regardless of which
technique or update frequency is used. The same pattern also appeared when
plotting every prototype implemented with each framework. The reason for the
start energy starting at a high value and then dropping might be due to the fact
that the phone needs to load the application into memory, and then start it. This
operation can be energy consuming, hence when the phone is finished starting the
application the energy consumption decreases. The same reason might explain the
tail energy; when the application is exited, the phone needs to stop the process by
disposing old objects and stop running threads, and therefore needs to consume
more energy. The only difference that was found was that different frameworks
consumed different amounts of start and tail energy. Thus, these areas could be
expressed as a constant value dependent on which framework was used. Table
8 shows the constant energy in watt-hours for starting an application in each
framework, and also the total constant calculated by adding the start and the tail
energy.

As Table 8 shows, the difference of the total constant between each framework is
very small, making the constant negligible in normal use. This is further visualized

47

CHAPTER 6. RESULT 6.4. ADDITIONAL FINDINGS

Table 8: Constant values for start and tail energy (Wh)

Start Tail Total constant

Corona 0.00060 0.00172 0.00232

Ionic 0.00148 0.00144 0.00292

Xamarin 0.00195 0.00173 0.00368

in Figure 19, where the start and tail energy are stacked on top of run time
energy. The run time energy is calculated by taking the average power of the base
prototype synchronizing data through TCP push implemented with three different
frameworks, and multiplying it with a specified time to convert watt into watt-
hours. In Figure 19, the time that has been used is 120 seconds, which is equal
to the time of a log file. As can be seen in the chart, the start and tail energy
represented in the stacked bars accounts for a very small part of the total energy
consumption, which strengthens the earlier statement that these values can be
disregarded. As a side note, if the application would run for a very short time,
the start and tail energy would account for a larger percentage of total energy
consumption. For instance, if using the data in Figure 19, the application can run
for a maximum of 18 seconds for the start and tail energy to be equivalent to the
run time energy. However, as a run time as short as 18 seconds is not the normal
case, it is still motivated that the start and tail energy are insignificant.

Corona Ionic Xamarin
0

0.01

0.02

0.03
Run time energy

Start energy

Tail energy

E
n
e
rg

y
 (

W
h
)

Figure 19: Start and tail energy stacked on run time energy

48

7

Discussion

In this chapter the results, mobile application, energy measurement approach, and
the chosen frameworks are discussed and evaluated. The chapter is concluded with
a section about possible future work.

7.1 Results

From the data presented in Chapter 6, two main results could be found; the rela-
tionships between different synchronization techniques and their energy consump-
tion, and which of the four affecting factors influenced energy consumption the
most.

The results showed two different relationships between synchronization techniques:
UDP consumes less energy than TCP, and the difference between TCP push and
TCP pull depends on the frequency with which data is pulled. Since UDP is a
lighter protocol than TCP, with no connections, handshakes, or retransmissions,
the energy consumption can be reduced since it does not need to process as much
data as TCP does. As the only thing that is required from UDP is to process data
received to a certain port, the results showing that UDP consumes less energy than
TCP are well backed by theory.

The influential factors that were investigated, sorted from largest energy consump-
tion factor to the smallest, are: update frequency of graphical interface, graphical
user interface, data synchronization technique, and framework. These results are
also well backed by theory.

49

CHAPTER 7. DISCUSSION 7.1. RESULTS

The two largest impacting factors, the update frequency of a graphical user inter-
face and the GUI itself, suggests that it is energy consuming to draw objects on the
screen. The more often the screen is redrawn, the more energy is consumed, thus
making the update frequency the larger of the two factors. The reason that the
energy consumption depends more on the update frequency might also depend on
the fact that when the mobile phone needs to operate more frequently it consumes
more energy. A lower update frequency can thus reduce the energy consumption
since the phone can be idle for longer periods of time. The results also showed that
it was hard to separate the graphical user interface from the update frequency, as
there was no use case when the GUI was static. Therefore, the comparison with the
data synchronization techniques depended partly on the frequency. As the energy
consumption of the data synchronization techniques could be seen as a constant
and the energy consumption of the GUI was fluctuating depending on complexity,
the graphical user interface was considered the bigger factor. Even so, there are
simple graphical user interfaces updated with a low frequency that consume less
energy than some network synchronization techniques do.

The third factor of energy consumption, data synchronization techniques, did not
vary much. The only small difference that could be found was that the energy
consumption increased when pulling between 1 and 10 times per second. However,
as the differences were so small, the energy consumed when retrieving data is
negligible compared with the graphical user interface.

Lastly, the factor that mattered the least was which framework that was used.
The differences in energy consumption between the three used frameworks were
minimal, and the only observation that was made was that the Ionic framework
used a bit more energy than Corona and Xamarin when a graphical user inter-
face was added. This could indicate that frameworks targeting web technologies
use more energy when displaying data, or it could indicate that since the Ionic
framework was a beta release during the development period it consumed more
energy. Both the Corona and Xamarin versions were major releases and could thus
have more optimized processes for handling energy consuming GUI components.
It could also be interesting to compare the frameworks used in this thesis with a
native framework, and see if there is a difference in energy consumption.

The most influential factor was used in Section 6.3 to create simple models, in order
to further investigate how energy consumption was affected by the factor. The
models showed that the largest factor, the update frequency of the graphical user
interface, affected the consumption the most when updating the screen between
1 and 10 times per second. With frequencies bigger than 10 times per second,
the energy consumption was close to a constant. The characteristics of these
models are reasonable and indicates that when updating 10 or more times per

50

CHAPTER 7. DISCUSSION 7.2. CROSS-PLATFORM FRAMEWORKS

second the phone needs to operate so often that it never goes to sleep. Thus, the
energy consumption is fairly the same for all such frequencies. However, when the
update frequency is bigger than 0 but smaller than 10, the phone is able to sleep
between updates and does thus not consume as much energy. Therefore, a change
in frequency in the range between 0 and 10 impacts energy consumption more than
it does for frequencies where the phone never sleeps.

As the results presented in this thesis were collected using a software-based ap-
proach, it might be hard to compare the obtained values with the energy consump-
tion shown in other papers. All other reviewed projects have used a hardware-based
approach and do therefore not contain the energy overhead induced by an energy
logging app. However, by removing the static energy of the PowerLogger like in
Section 6.2.1, the energy consumption differences can be discussed.

Though the projects differ in payload size and data delivery, the results presented
by Burgstahler et al. [13] are of the same magnitude as the ones presented in this
thesis. Both this thesis and their paper note that using a pull-based approach
is slightly more energy efficient than a push-based approach when using a delay
interval of approximately 1 second between data retrieval. The work performed
by Carvalho et al. [4] uses a longer logging period, encrypted packets, and sends
data less frequently, and therefore the energy consumption values are not directly
comparable to those presented in this thesis. However, the results of this thesis
and their paper show that the difference between TCP push and TCP pull de-
creases as the delay between data pulls increases. Both projects conclude that if
new data needs to be synchronized often, TCP push is the most energy efficient
technique, otherwise TCP pull is the better choice. Differences in energy consump-
tion between the projects also indicate that there might be a correlation between
the amount of data that is sent and the threshold in time for when TCP push or
TCP pull is more energy efficient. This could explain the fact that the project
by Carvalho et al., which uses less data synchronized less frequently, has a higher
threshold value.

7.2 Cross-platform frameworks

As previously mentioned in Chapter 5, three frameworks were initially reviewed
and tested. As this project required socket support and the ability to show a graph,
some other frameworks were deemed to be unable to fulfill the requirements. They
lacked either required functionality or were not documented enough which made
it difficult to know what could be accomplished by using them. Many of the cross-
platform frameworks rely on web technology such as HTML, CSS, and JavaScript

51

CHAPTER 7. DISCUSSION 7.2. CROSS-PLATFORM FRAMEWORKS

and for this thesis, Ionic was selected since it seemed to have a better community
support and documentation than other frameworks.

Despite being in beta during the time of this thesis, Ionic seems to be one of the
most mature frameworks that uses web technology to create mobile apps. It has
one of the more active development teams and the utilization of plugins is easier
than in other frameworks. There is no built-in support for creating graphs so in
order to implement such a feature, developers are required to use third-party graph
libraries or build their own. For this project’s application, several different graph
libraries were tested. However, due to lack of documentation of the libraries it was
difficult to create the type of graph needed for the mobile application. With this
being said, for developers that do not need specialized plugins or libraries Ionic
could be a viable alternative to native development for creating apps.

Xamarin was the framework that best suited the requirements for the application.
It is well documented and has a large user community. As described in Section
3.2.3, Xamarin can bind directly to a platform like Android which means that
native features can be used. Thus, Xamarin applications can use features that
applications written with other frameworks need third-party plugins for. The
downside is that while many other cross-platform frameworks are free, Xamarin
requires users to subscribe to one of their paid plans if they want to create relatively
big apps. There is a free plan but it is limited in the size of the application that can
be compiled and no external libraries can be added. Furthermore, users of the free
plan cannot use Xamarin Forms, a GUI framework that simplifies implementation
of graphical components for Xamarin’s supported platforms. The company offers
a free student license which was used in this project, but for companies and other
developers the license cost is something that needs to be taken into account when
deciding if Xamarin should be used for a project.

The Corona framework was very convenient to work with as examples and APIs
were well described. The framework provides many built-in features such as net-
working and graphics which together with Lua, the programming language used
in the framework, makes retrieving and displaying data from a data provider easy.
However, as mentioned in Section 3.2.4, all graphical elements in an application
needs to be positioned at a specific coordinate on the screen which makes program-
ming the graphical interface a tedious task. Adjusting the graphical interface to fit
devices with different screen sizes is also an issue that made app implementation
complicated.

To conclude this subsection, all frameworks that have been tested have their own
strengths and weaknesses. As this thesis considered a real-time streaming app
that required a graph, neither Ionic nor Corona were the best choice of framework.

52

CHAPTER 7. DISCUSSION 7.3. MEASURING ENERGY

However, for other types of applications, such as an application showing web-based
content or a game, Ionic or Corona would fit well. The Xamarin framework was
the best framework for this type of project but with another type of project it
might also lack important features, thus making it unfit for use. A suggestion
to other developers is therefore to choose a framework that supports sought-after
features, since all frameworks have their pros and cons.

7.3 Measuring energy

When measuring energy in a complex system, no matter which approach is used,
there will always be a problem of determining which process uses what part of the
total energy consumption. As described in Section 3.1.1, the Android operating
system supports multitasking and background threads which makes it hard to pin-
point the exact amount of energy a specific app consumes. In some of the research
papers described as related work in Chapter 2, as well as in this thesis, differences
in energy have been used to draw the conclusion that one application uses more or
less energy than another. An issue with this approach is that the Android system
itself can start processes such as other applications or alarms, which induce extra
energy.

There are two ways of removing the energy overhead of extra processes. The first
approach solves the issue by letting the energy logger be aware of which processes
are running in order to detect changes. Whenever a new processes is started during
a logging session, the logged values are considered invalid as it is impossible to know
which process consumed which amount of energy. The second approach is to shut
off as many applications as possible, and cancel alarms and background processes
to minimize the risk that a process is started. By logging several times, the data
in the logs can be normalized by either taking the median or average value, which
removes extra energy induced by other processes that might have been started.
The second approach, which was used in this thesis, produces results that can be
easily verified. By looking at which processes are running while logging energy
as well as plotting each individual log file, it can be seen that the values are of
the same magnitude and shape in all log files. The downside is that to be able
to normalize the log files, a lot of energy measurement logs are required. Thus,
the first approach might be faster in terms of hours spent on logging, but the
verifiability of the second approach made it more fitting for this thesis.

As stated in Section 3.1.1, not all Android phones provide the same functionality.
Measuring energy through software might therefore be possible on one device but
not on another, since not all devices have a built-in current sensor. As of Android

53

CHAPTER 7. DISCUSSION 7.3. MEASURING ENERGY

5.0 the SDK provides an API for retrieving current, enabling easy access for devel-
opers to create an energy logging application. However, without a current sensor
the value provided by the API will always be 0, yielding the logging application
useless.

Another issue when logging energy is how fast the used measurement technique
is. In this thesis an update frequency of 20 times per second has been used for
the energy logger. As the maximum update frequency of each prototype is 10
times per second, the energy logger could log energy at least twice as fast as the
prototypes received data. However, since TCP push and UDP have constantly
open connections these techniques receive data 50 times per second, which means
that the energy logger does not capture all packet receiving events. When deciding
upon the update frequency for the energy logger, a few tests were run to see if it
would make a difference logging energy 20 or 50 times per second. The outcome
of the tests was that the energy consumption is the same regardless of frequency.
As there was no difference between the frequencies plus the fact that, as stated
in Section 5.2.1, a higher update frequency might consume more energy, the lower
frequency was chosen. An additional detail is that since it was only the relationship
in energy consumption between different prototypes and not the exact values that
were compared, a higher update frequency would be required if it had yielded a
different relationship.

Related to this is the issue described in Section 4.1.2, where the PC-logger was used
to show that the software-based energy logger works just as well as a hardware-
based approach that updates once per second. A hardware logger that is able to
log more frequently would have been preferred, but since fast, fine-grained energy
loggers are often very expensive, the only machine that was available was the one
used in this thesis. A fast hardware logger would have enabled the possibility to
create energy consumption models for smaller parts of a mobile application. For
instance, as mentioned in Chapter 2, Rice et al. [2] were able to log the energy
when receiving a single packet. It would also have been possible to log tail energy
of the WiFi module or the energy consumption when the screen was off. Such
models, which are not possible to create with PowerLogger, could have provided
more reference values that could have been compared with the energy consumption
of the prototypes with. Moreover, as previously mentioned in Section 5.2.1, extra
applications that are running, such as the PowerLogger, induce an energy over-
head. Thus, the only conclusion that can be drawn is if one prototype uses more
energy than another. With a hardware logger capable of logging more frequently,
the energy consumption of the prototypes could have been measured with more
certainty and it would have been easier to precisely define the amount of energy
each prototype used.

54

CHAPTER 7. DISCUSSION 7.4. MOBILE APPLICATION

7.4 Mobile application

The mobile application prototypes in this thesis were developed with the sole pur-
pose of measuring energy consumption. Thus, the code was split into parts that
were easily divided into different prototypes. However, when developing an appli-
cation without energy efficiency in mind, it can be hard to extract and compare
different prototypes the way it was done in this thesis. Without the extraction
it would therefore be hard to know which elements of an application should be
improved to decrease energy consumption.

Another issue with the mobile application that can be improved is the consistency
model. As this model was developed together with Volvo, improvements could only
be made when both parties had time. The advantage of the simple consistency
model that is used is that the application does not need to keep track of consistency
variables. One of the desired features in the model was UDP data with timestamps
so that the data can be presented in the order that the packets are sent. However,
without this feature it was easier to log energy, as there was no need to take the
consistency variables into account when investigating the energy consumption.

7.5 Future work

The work in this thesis provides a good foundation for further work. As previously
mentioned in Section 7.3, it would be interesting to log energy with a fast and
fine-grained hardware logger to retrieve the energy consumption of more parts of
a mobile application. The energy consumption of such components could then be
used to find which components account for a larger amount of consumed energy.
Both Rice et al. [2] and Xu et al. [8] are able to log energy in WiFi with a logger
precise enough to see the start and tail energy of the WiFi module. Being able
to log the different states of the WiFi could provide a detailed insight about the
energy consumption in different network protocols.

Other components of the phone could also be monitored to find more factors of
energy consumption. One such component is the CPU, which depending on clock
frequency might consume more or less energy. By logging energy consumption
of the prototypes with different clock frequencies, such a relationship could be
investigated. Another parameter that could be changed is the screen brightness,
to determine if this is a significant factor for energy consumption. Lastly, there
are variables in the prototypes that could be changed to further model energy
consumption. For instance, the size of the data or the frequency with which data
is sent could be changed to find correlations between different parameters.

55

8

Conclusion

This thesis investigated energy consumption of different synchronization techniques
when retrieving data from a network through WiFi. The different techniques were
compared with each other to find which technique was the most energy efficient.
The techniques were also compared with other factors, to assess whether network
techniques consume more or less energy compared with other elements in a mobile
networking application.

The energy consumption was logged through a software-based approach, where a
mobile application measured energy used by other applications. The difference be-
tween using a software-based approach compared with a hardware-based approach
was also discussed, and the difference revealed that logging through software works
just as well as through hardware. To measure energy consumption, three different
mobile application prototypes were developed. All prototypes were implemented
with different functionality, allowing for a comparison of energy consumption be-
tween different elements in a mobile application. The base prototype retrieved
data without displaying it, Prototype 1 both retrieved and displayed data, and
Prototype 2 retrieved, processed, and displayed data.

In the result, it was shown that using a network protocol with a smaller header
consumes less energy, as lesser data might mean lesser processing time and thus
more time for the components in the phone to sleep. It was also shown that
when synchronizing data frequently, using a constantly open connection is the
most energy efficient choice of technique compared with techniques that open new
connections. However, when the frequency of creating new connections decreases
it is more energy efficient to close the connections. A possible reason could be that

56

CHAPTER 8. CONCLUSION

the energy consumption when receiving and discarding packets is larger than the
consumption when starting and closing a connection.

Furthermore, it was concluded that the update frequency with which an application
displays data is the biggest energy consumption factor. The less frequently an
application updates the screen, the more energy is saved. Drawing a graphical user
interface on the screen is the second biggest factor, followed by network techniques.
The least important factor is which cross-platform framework is used. It was also
discussed that other parameters such as packet size or the delay with which packets
are sent might affect the energy consumption, and that future work will have to
conclude if this is the case.

57

References

[1] J. F. Dimarzio, Android: a programmer’s guide. Blacklick, OH, USA:
McGraw-Hill Osborne Media, 2008.

[2] A. Rice and S. Hay, “Measuring mobile phone energy consumption for 802.11
wireless networking,” Pervasive and Mobile Computing, 2010.

[3] D. Li, S. Hao, W. Halfond, and R. Govindan, “Calculating source line level
energy information for Android applications,” in The 2013 International Sym-
posium on Software Testing and Analysis (ISSTA 2013), 2013, pp. 78–89.

[4] S. A. L. Carvalho, R. Lima, and A. Silva-Filho, “A Pushing Approach for Data
Synchronization in Cloud to Reduce Energy Consumption in Mobile Devices,”
in Brazilian Symposium on Computing System Engineering (SBESC), 2014.

[5] T. Zhang, S. Madhani, P. Gurung, and E. van den Berg, “Reducing energy
consumption on mobile devices with WiFi interfaces,” in Global Telecommu-
nications Conference, nov 2005, pp. 561–565.

[6] International Data Corporation. (2015) IDC: Smartphone OS Market Share
2014, 2013, 2012, and 2011. [Online]. Available: http://www.idc.com/
prodserv/smartphone-os-market-share.jsp [Accessed: 2015-01-29]

[7] A. Rodrigues Tonini, L. M. Fischer, J. Balzano de Mattos, and L. Brisolara de
Brisolara, “Analysis and Evaluation of the Android Best Practices Impact on
the Efficiency of Mobile Applications,” in Brazilian Symposium on Computing
Systems Engineering (SBESC), dec 2013, pp. 157–158.

[8] F. Xu, Y. Liu, T. Moscibroda, R. Chandra, L. Jin, Y. Zhang, and Q. Li,
“Optimizing background email sync on smartphones,” in 11th annual interna-
tional conference on Mobile systems, applications, and services, Taipei, Tai-
wan, 2013, pp. 55–68.

58

http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.idc.com/prodserv/smartphone-os-market-share.jsp

REFERENCES REFERENCES

[9] Y. M. Kwete, “Power consumption for iOS,” Master’s thesis, North Dakota
State University, Fargo, North Dakota, USA, oct 2013.

[10] Apple Inc. (2015) Analyzing CPU Usage in Your App. [Online]. Available:
https://developer.apple.com/library/mac/documentation/DeveloperTools/
Conceptual/InstrumentsUserGuide/AnalysingCPUUsageinYourOSXApp/
AnalysingCPUUsageinYourOSXApp.html [Accessed: 2015-01-29]

[11] D. Li, S. Hao, J. Gui, and W. Halfond, “An Empirical Study of the Energy
Consumption of Android Applications,” in IEEE International Conference on
Software Maintenance and Evolution (ICSME), oct 2014, pp. 121–130.

[12] J. McWherter and S. Gowell, Professional Mobile Application Development.
Somerset, NJ, USA: John Wiley & Sons, 2009.

[13] D. Burgstahler, N. Richerzhagen, F. Englert, R. Hans, and R. Steinmetz,
“Switching Push and Pull: An Energy Efficient Notification Approach,” in
IEEE International Conference on Mobile Services (MS), june 2014, pp. 68–
75.

[14] C. Thompson, D. Schmidt, H. Turner, and J. White, “Analyzing mobile appli-
cation software power consumption via model-driven engineering,” Master’s
thesis, Vanderbilt University and Virginia Polytechnic Institute and State
University, Nashville, TN and Blacksburg, VA, USA.

[15] S. Hao, D. Li, W. Halfond, and R. Govindan, “Estimating Android applica-
tions’ CPU energy usage via bytecode profiling,” in First International Work-
shop on Green and Sustainable Software (GREENS), june 2012, pp. 1–7.

[16] S. Hao, D. Li, W. Halfond, and R. Govindan, “Estimating Mobile Application
Energy Consumption Using Program Analysis,” in The 2013 International
Conference on Software Engineering, 2013, pp. 92–101.

[17] Y. Liu, C. Xu, and S.-C. Cheung, “Diagnosing Energy Efficiency and Perfor-
mance for Mobile Internetware Applications,” Software, IEEE, vol. 32, no. 1,
pp. 67–75, Jan 2015.

[18] Encyclopædia Britannica Online. (2015) Android 2015. [Online].
Available: http://academic.eb.com.proxy.lib.chalmers.se/EBchecked/topic/
1483582/Android [Accessed: 2015-02-12]

[19] D. Morill. (2008, sept) Announcing the Android 1.0 SDK, release 1. [On-
line]. Available: http://android-developers.blogspot.in/2008/09/announcing-
android-10-sdk-release-1.html [Accessed: 2015-02-26]

59

https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/InstrumentsUserGuide/AnalysingCPUUsageinYourOSXApp/AnalysingCPUUsageinYourOSXApp.html
https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/InstrumentsUserGuide/AnalysingCPUUsageinYourOSXApp/AnalysingCPUUsageinYourOSXApp.html
https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/InstrumentsUserGuide/AnalysingCPUUsageinYourOSXApp/AnalysingCPUUsageinYourOSXApp.html
http://academic.eb.com.proxy.lib.chalmers.se/EBchecked/topic/1483582/Android
http://academic.eb.com.proxy.lib.chalmers.se/EBchecked/topic/1483582/Android
http://android-developers.blogspot.in/2008/09/announcing-android-10-sdk-release-1.html
http://android-developers.blogspot.in/2008/09/announcing-android-10-sdk-release-1.html

REFERENCES REFERENCES

[20] S. Allen, V. Graupera, and L. Lundrigan, Pro smartphone cross-platform de-
velopment: iPhone, BlackBerry, Windows Mobile, and Android development
and distribution. New York, N.Y., USA: Apress, 2010.

[21] J. Nutting, F. Olsson, D. Mark, and J. LaMarche, Beginning iOS 7 Develop-
ment: Exploring the iOS SDK. Berkeley, CA, USA: Apress, 2014.

[22] J. Bucanek, Learn iOS 8 App Development. New York, N.Y., USA: Apress,
2014.

[23] J. A. Brannan, S. Weber, and B. Ward, iOS SDK Programming: A Beginners
Guide. Blacklick, OH, USA: McGraw-Hill Osborne Media, 2011.

[24] Apple. (2015) Common App Rejections. [Online]. Available: https:
//developer.apple.com/app-store/review/rejections/ [Accessed: 2015-04-22]

[25] S. Dhillon and Q. H. Mahmoud, “An evaluation framework for cross-platform
mobile application development tools,” Software: Practice and Experience,
2014.

[26] O. Cinar, Android native development using eclipse. Berkeley, CA, USA:
Apress, 2012.

[27] Apache. (2015) Apache Cordova. [Online]. Available: http://cordova.apache.
org/ [Accessed: 2015-02-22]

[28] Drifty. (2015) Ionic: Advanced HTML5 Hybrid Mobile App Framework.
[Online]. Available: http://www.ionicframework.com/ [Accessed: 2015-03-30]

[29] Appgyver. (2015) Supersonic. [Online]. Available: http://www.appgyver.
com/supersonic [Accessed: 2015-02-22]

[30] Appcelerator Inc. (2015) Titanium Mobile Application Development
| Appcelerator Inc. [Online]. Available: http://www.appcelerator.com/
titanium/ [Accessed: 2015-02-22]

[31] A. Charland and B. Leroux, “Mobile Application Development: Web vs. Na-
tive,” Commun. ACM, vol. 54, no. 5, pp. 49–53, may 2011.

[32] J. Bristowe. (2015, March) What is a Hybrid Mobile App? Telerik.
[Online]. Available: http://developer.telerik.com/featured/what-is-a-hybrid-
mobile-app/ [Accessed: 2015-04-20]

[33] P. F. Johnson, Xamarin Mobile Application Development for iOS. Olton,
Birmingham, GBR: Packt Publishing, 2013.

60

https://developer.apple.com/app-store/review/rejections/
https://developer.apple.com/app-store/review/rejections/
http://cordova.apache.org/
http://cordova.apache.org/
http://www.ionicframework.com/
http://www.appgyver.com/supersonic
http://www.appgyver.com/supersonic
http://www.appcelerator.com/titanium/
http://www.appcelerator.com/titanium/
http://developer.telerik.com/featured/what-is-a-hybrid-mobile-app/
http://developer.telerik.com/featured/what-is-a-hybrid-mobile-app/

REFERENCES REFERENCES

[34] C. Petzold, Creating mobile apps with Xamarin.Forms. Redmond, Washing-
ton, USA: Microsoft Press, 2014.

[35] F. W. Zammetti, Learn Corona SDK Game Development. Berkeley, CA,
USA: Apress, 2013.

[36] M. M. Fernandez, Corona SDK Mobile Game Development : Beginner’s
Guide. Olton, Birmingham, GBR: Packt Publishing, 2012.

[37] E. Ramsden, Hall-Effect Sensors. Burlington, MA, USA: Newnes, 2006.

[38] M. Tatipamula, E. Oki, and R. Rojas-Cessa, Advanced Internet Protocols,
Services, and Applications. Hoboken, NJ, USA: John Wiley & Sons, 2012.

[39] S. Gundavaram, CGI Programming on the World Wide Web. USA: O’Reilly
Media, mar 1996.

[40] R. Stewart and C. Metz, “SCTP: new transport protocol for TCP/IP,” Inter-
net Computing, IEEE, vol. 5, no. 6, pp. 64–69, nov 2001.

[41] G. Bora, S. Bora, S. Singh, and S. M. Arsalan, OSI reference model: An
overview. Elsevier Inc, 2014.

[42] R. Mittal, A. Kansal, and R. Chandra, “Empowering Developers to Estimate
App Energy Consumption,” in Proceedings of the 18th Annual International
Conference on Mobile Computing and Networking, 2012, pp. 317–328.

[43] X. Li, X. Zhang, K. Chen, and S. Feng, “Measurement and analysis of energy
consumption on Android smartphones,” in IEEE International Conference on
Information Science and Technology (ICIST), apr 2014, pp. 242–245.

[44] A. Singhai, J. Bose, and N. Yendeti, “Reducing Power Consumption in An-
droid Applications,” in IEEE International Advance Computing Conference
(IACC), feb 2014, pp. 668–673.

61

A

Related projects

A Pushing Approach for Data Synchronization in Cloud to Reduce

Energy Consumption in Mobile Devices

Authors S. A. L. Carvalho, R.N. Lima and A.G. Silva-Filho [4]

Platform Android

Logging equipment Adafruit INA219

Application type Networking application

An empirical study of the energy consumption of

android applications

Authors D. Li, S. Hao, J. Gui and W.G.J. Halfond [11]

Platform Android

Logging equipment Monsoon power meter

Application type Networking application

I

APPENDIX A. RELATED PROJECTS

Calculating source line level energy information for

android applications

Authors D. Li, S. Hao, W.G.J. Halfond and R. Govindan [3]

Platform Android

Logging equipment LEAP

Application type Networking application

Empowering Developers to Estimate App Energy Consumption

Authors R. Mittal, A. Kansal and R. Chandra [42]

Platform Android

Logging equipment Monsoon power meter

Application type Networking application

Estimating Mobile Application Energy Consumption using

Program Analysis

Authors S. Hao, D. Li, W.G.J. Halfond and R. Govindan [16]

Platform Android

Logging equipment Atom LEAP

Application type Various mobile applications

Measurement and Analysis of Energy Consumption on

Android Smartphones

Authors X. Li, X. Zhang, K. Chen and S. Feng [43]

Platform Android

Logging equipment Standard power meter

Application type Various Android components

II

APPENDIX A. RELATED PROJECTS

Measuring mobile phone energy consumption for 802.11

wireless networking

Authors A. Rice and S. Hay [2]

Platform Android

Logging equipment National Instruments PCI-MIO-16E-4

Application type Networking application

Optimizing Background Email Sync on Smartphones

Authors F. Xu, Y. Liu, T. Moscibroda, R. Chandra, L. Jin, Y.
Zhang and Q. Li [8]

Platform Android

Logging equipment Monsoon power meter

Application type Networking application

Reducing Power Consumption in Android Applications

Authors A. Singhai, J. Bose and N. Yendeti [44]

Platform Android

Logging equipment Monsoon power meter

Application type Graphics application

Switching Push and Pull: An Energy Efficient Notification Approach

Authors D. Burgstahler, N. Richerzhagen, F. Englert, R. Hans and
R. Steinmetz [13]

Platform Android

Logging equipment Hitex Power Scale with ACM Probe

Application type Networking application

III

B

Requirements

B.1 Functional requirements

System

• The system shall be able to connect to a module through WiFi

• The system shall reconnect to a module if connection is lost

• The system shall close a connection when done

• The system shall be able to receive data

• The system shall be able to display received data in a graphical user interface

• The system shall be able to display a set of filtered data

• The system shall be able to save a configuration

• The system shall be able to load a configuration on start

User

• The user shall be able to filter data based on conditions and values

• The user shall be able to switch between different graphical user interfaces

Graphical user interface

• It shall be possible to change screen orientation

IV

APPENDIX B. REQUIREMENTS B.2. NONFUNCTIONAL REQUIREMENTS

• The GUI shall display data given by the system

• It shall be possible to start and stop a connection using screen interaction

B.2 Nonfunctional requirements

System

• The system shall respond to user interaction within 1 second

User

• A user shall be able to use the application without getting problems with
the phone, such as screen freeze

Reliability

• The system shall not crash due to lost network, bad data or similar exceptions

Usability

• It shall be possible to internationalize the application to at least two different
languages (e.g. Swedish and English)

• It shall be possible to keep the screen alive

V

	Introduction
	Purpose
	Problem description
	Energy efficiency
	Challenges in prototype design
	Functionality and energy efficiency trade-off

	Limitations
	Structure of report

	Related work
	Background
	Platforms
	Android
	iOS

	Frameworks
	Native applications
	Frameworks using web technology
	Xamarin
	Corona

	Electrical theory
	Measuring power
	Calculating energy consumption

	Network protocols
	TCP
	UDP

	Methodology
	Energy measurement approach
	Hardware logging
	Sanity checks

	Implementation approach
	Data synchronization techniques
	Prototypes
	Consistency

	Acquiring the results
	Prototypes
	Energy measurement protocol
	Models

	Design and Implementation
	Mobile application
	Architecture of the mobile application
	Base prototype
	Prototype 1
	Prototype 2

	PowerLogger
	Functionality
	User Interface

	Data provider

	Result
	Energy measurement
	Base prototype
	Prototype 1
	Prototype 2

	Factors affecting energy consumption
	Update frequency
	Graphical user interface
	Frameworks

	Energy models
	Additional findings

	Discussion
	Results
	Cross-platform frameworks
	Measuring energy
	Mobile application
	Future work

	Conclusion
	References
	Appendix Related projects
	Appendix Requirements
	Functional requirements
	Nonfunctional requirements

