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Modelling temporal context for traffic light recognition using RNNs
DAVÍÐ FREYR BJÖRNSSON
MATTIAS WESTERBERG
Department of Mathematical Sciences
Chalmers University of Technology

Abstract
The purpose of this thesis is to investigate whether or not including temporal context
using recurrent neural networks in real-time object detection systems can improve de-
tection performance in traffic light recognition. This was investigated using the DriveU
traffic light dataset. Two variations of the YOLOv4 object detection system were cre-
ated. The first variation is a LSTM which takes as input the bounding boxes predicted
by YOLOv4 and outputs updated predictions. The second variation is a modification
of the YOLOv4 network in which convolutional layers are replaced with convolutional
LSTMs. With a limited number of experiments, it was found that the baseline model out-
performs the more complicated sequential models. However, there is evidence that this
is due to the sequential training strategy since the YOLOv4 baseline was outperformed
by some sequential models when it adopted the sequential training strategy. The baseline
YOLOv4 model achieved best performance on a held-out test set. The best sequential
model achieved lower detection performance. When the baseline YOLOv4 was trained
with the sequential training strategy, it achieved worse performance than the sequential
models. Modelling temporal context using recurrent neural networks may improve detec-
tion performance, but answering the question requires an exhaustive search for a training
strategy and model architecture. The analysis conducted in this thesis provides no ev-
idence that modelling temporal context with YOLOv4 improves traffic light recognition
performance on the DriveU dataset.

Keywords: object detection; traffic light recognition; recurrent neural networks; temporal
context; YOLO
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Figure 1: A traffic scene from Germany with multiple traffic lights. The bounding boxes
enclosing the traffic lights are predictions from an object detection system. [11]

1 Introduction
Various systems for autonomous driving have been developed throughout the years. These
systems aim to make the job of the driver easier while increasing safety at the same time.
There is evidence of rearview cameras and rear parking sensors decreasing the probability
of collisions [2]. Additionally, a study found that lane departure warning and lane-keep
assist systems decrease the driver injury risk [3]. This work is concerned with developing
a traffic light recognition (TLR) system that can be useful in autonomous vehicles. A
typical scene with multiple traffic lights is illustrated in figure 1. Previous work in TLR
mainly concerns single frame traffic light recognition [[4], [5], [6], [7], [8]]. While these
papers show impressive performance, more information about the traffic situation can
be extracted when considering a sequence of frames. If a traffic light is in a particular
location in a frame, it is likely to be in a similar location in the next frame. The traffic
light state is also highly dependant on the previous frame. This observation has been used
for improvements in the general field of object detection in video sequences [9]. There are
several approaches in the field of deep learning to improve object detection in video with
the use of recurrent neural networks (RNN), a machine learning model for sequential data
[10]. Important information from previous frames can be remembered in an RNN and
potentially result in a more accurate TLR system. To the best of our knowledge, this has
not been investigated for the case of TLR.

1.1 Background

Scania is moving towards more sustainable transportation systems. Self-driving vehicles
are one of the many investments into this long-term project which Scania estimates will
lead to greater sustainability and automotive safety. Extensive research has to be con-
ducted in the field of traffic light recognition before fully autonomous vehicles can enter
the roads.
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1.2 Aim

There are many approaches to consider when including the temporal context in a model.
It is not feasible to investigate all of them, so the investigation is limited to RNNs. The
thesis aims to investigate if RNNs can improve the detection accuracy and speed of TLR.

1.3 Limitations

There are many techniques for optimising the training of object detection systems (ODS).
This thesis aims not to create the best possible ODS but rather to measure the effect of
adding RNNs in deep learning models in the field of TLR. Thus, an exhaustive search for
the optimal network architecture will not be performed. Due to both hardware and time
constraints, extensive hyperparameter tuning for models cannot be conducted. Instead,
the focus is put on a specific model and how RNNs affect its performance. Even if it was
possible to perform an exhaustive search for the optimal model, the results would still not
be guaranteed to hold for other data than used in the thesis.
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2 Theory
Video Object Detection Systems (VODS) are highly complex architectures, often com-
bining many components found in the field of deep learning. The core components are
ODSs and RNNs. Those components comprise many systems and operations, e.g. neural
networks, convolutions, recurrent models, activation functions and training schemes. This
chapter deals with the fundamental theory that the proposed VODS builds upon.

2.1 Deep learning foundations

Deep learning approaches to object detection utilise convolutional neural networks (CNN)
for extracting semantic information in images. A naive way of extracting information in
images would be to have one input neuron per pixel. However, a CNN is a special case
of the neural network model, made to improve this extraction process with the added
benefits of reduced training times and lower risk of overfitting. When concerned with
video object detection, it is also beneficial to factor in the relationship between frames in
a sequence. An RNN can model this relationship.

2.1.1 Feedforward neural networks

The core unit in a neural network is the neuron, which can be considered a vertex in a
computational graph holding one value. It is structured as a graph without cycles, where
one end of the graph contains the input neurons and the other end the output neurons.
A neural network has one or more layers with a varying number of neurons in each layer.
The value of a neuron is computed by an activation function of the weighted sum of the
outputs of the neurons in the previous layer. The weights are adjusted so that the neural
network models the input data. The error is the difference between the ground truth and
the prediction.

For a neural network with n layers, the value of the k’th neuron in layer l ∈ {1, ..., n}
is xkl := g(bkl +

∑
k w

k
l−1x

k
l−1). This is a recursive formula, since all neurons xil−1 will

be dependent on neurons in layer l − 2. The base case xk0 is given by the input data,
together with the ground truth. Common choices for a activation function g are the
sigmoid function σ and tanh.

The activation function should be differentiable since the weights wil are updated with
the gradient of the loss function `(ŷ, y) with respect to wil , where ŷ is the prediction (the
network’s output layer) and y ∈ RM is the true ground. For classification tasks, a common
loss function is cross-entropy (1) while the squared error is a common choice for regression
tasks. An example neural network is displayed in figure 2. The hidden layer consists of
2 neurons, each of which takes as input all neurons in the previous layer; therefore it is
called "fully connected".

`cross entropy(y, ŷ) = − 1

M

M∑
i=1

yi · log(ŷi) (1)

3



Input Layer

Hidden Layer Output Layer

Figure 2: A fully connected neural network with 4 input neurons, 2 hidden neurons and
2 output neurons.

The objective of a neural network is to model an input-output mapping. Finding a map-
ping means adjusting the weights and biases in the neural network so that they model
the true mapping as closely as possible. There is a wide range of training schemes to ac-
complish this goal. A training scheme consists of forward propagation of the input values,
i.e. calculating the output of a neural network, and backpropagation, which is propaga-
tion of the gradient of the loss back in the network in order to update the parameters.
The parameter update has a magnitude proportional to the gradient with respect to the
prediction error, but there are many optimisation strategies for how the gradient can be
utilised [12, p. 164-223].

2.1.2 Optimisation strategies

There are many techniques and optimisation algorithms available to get the best out of
the training phase. The field of deep learning is not in agreement on what optimisation
algorithm to use and what practices are best in general. A relevant subset of techniques
and stochastic optimisation algorithms is presented here [12, p. 306-307].

Two common optimisation algorithms are stochastic gradient descent (SGD) and Adam.
SGD is an optimisation algorithm that takes a subsample of the datapoints (commonly
referred to as a batch) and uses it to calculate the gradient with respect to a loss function
`. The gradient is propagated through the network and is used to update the weights and
biases. A pseudocode example for learning a parameter θ with SGD is given in algorithm
1. The algorithm requires a learning rate schedule ε1, ε2, ..., which is used for scaling the
gradient. A sufficient convergence condition is that

∞∑
k=1

εk =∞, and

∞∑
k=1

ε2k <∞.

In practise, the learning rate is constant after a couple of iterations [12, p. 290-291].
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Algorithm 1 SGD update for a parameter θ
Input: Learning rate schedule ε1, ε2, ...
Output: Parameter θ
1: procedure SGD(ε1, ε2, ...)
2: k ← 1
3: while stopping criterion not met do
4: Sample a batch from the training set {x(1), ...,x(m)} with corresponding targets y(i)

5: Compute gradient estimate ĝ← 1
m∇θ

∑m
i=1 `(ŷ

(i),y(i))
6: Apply update θ ← θ − εkĝ
7: k ← k + 1

A variation of the SGD optimiser is SGD with momentum, which works just like algorithm
1, but in each step a weighted sum of current and past gradient estimates is calculated,
where the weights are decaying exponentially for previous gradients. [12, p. 292-293]

Tuning hyperparameters for optimisation algorithms can be time-consuming, while model
performance is largely dependent on them. An attempt to combat this issue is an adaptive
learning rate. Adam takes into account the learning rates of past iterates. The algorithm
utilises the idea of moments in combination with the average of the past squared gradients.
The algorithm can be studied in more detail in algorithm 2. Adam is considered robust
to different choices of hyperparameters. [12, p. 306-307]

Algorithm 2 Adam optimiser algorithm [1]
Input: α: step size.
Input: β1, β2 ∈ [0, 1): Exponential decay rates for moment estimates.
Input: f(θ): objective function with parameters θ.
Input: θ0: Initial parameter vector
Output: θt
1: procedure Adam(α, β1, β2, f,θ0)
2: m0 ← 0
3: v0 ← 0
4: t← 0
5: while θt not converged do
6: t← t+ 1
7: gt ← ∇θft(θt−1)
8: mt ← β1mt−1 + (1− β1)gt
9: vt ← β2vt−1 + (1− β2)g2t

10: m̂t ← mt/(1− (β1)
t)

11: v̂t ← vt/(1− (β2)
t)

12: θt ← θt−1 − αm̂t/(
√
v̂t + ε)

Optimisation algorithms aside, other useful techniques can be applied to neural networks
to assist in the optimisation process.

The distribution of each layer’s input changes during the training process of a neural
network. This requires precise initialisation of the network hyperparameters. To combat
this, S. Ioffe et al. [13] proposed a method called batch normalisation.
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This is an operation which is usually applied right before an activation function. Let X
be a batch with m observations and n predictors, Xij denotes the i’th observation in the
j’th predictor. Then the normalised batch X ′ is calculated as:

X ′·j =

∑m
i=1Xij − µj

σj
∀j ∈ {1, ..., n}, (2)

where µj and σj are the mean and standard deviation of the j’th predictor over m obser-
vations. Batch normalisation helps to stabilise the training process and can dramatically
decrease the training time [12, p. 313-317].

Dropout is another technique for assisting the optimisation process. It involves setting
a random subset of neurons to zero during a forward pass. This technique is a way to
emulate the training of an ensemble of sparse networks so that it will not be too reliant
on a small subset of neurons. In other words, dropout is a regularisation technique [12,
p. 255].

Common choices for activation functions are, as stated earlier, sigmoid and tanh. However,
it has been found that those activation functions are likely to exacerbate the vanishing
gradient problem. This occurs commonly for deep networks because of the many multi-
plications in the long chain of gradients. It means that the training may be in a phase
where it cannot update some of its parameters and thus cannot learn from the data. To
combat the vanishing and exploding gradient problem, one can use the rectified linear
unit (ReLU) activation function:

g(x) =

{
x, for x > 0

0, otherwise.
(3)

The ReLU function, however, has another problem: the dead gradient. This occurs when
most inputs to the function are negative. To combat this problem, we allow for weakly
negative outputs. The new activation function is called leaky ReLU:

g(x) =

{
x, for x > 0

kx, otherwise,
(4)

where k is a small scalar. A variation on the leaky ReLU is to let k be a learnable
parameter. This activation function is called parametric ReLU [12, p. 189-190].

When the output takes on a finite number of discrete values, a common activation func-
tion is the softmax function. For an input vector x ∈ RK , the corresponding softmax
transformation is

φ(xi) =
exp(xi)∑K
j=1 exp(xj)

∀ i = 1, ..., K. (5)

Therefore all values of the transformed input vector are between 0 and 1 and together
sum to 1 [12, p. 180-181].
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2.1.3 Convolutional neural networks

A convolutional neural network is a special case of a neural network characterised by two
key operations: convolution and pooling operations. The convolution operation involves
calculating the Hadamard product between the input matrix and a kernel matrix and sum
the resulting matrix elements for each pixel. The output matrix is called a feature map,
and a convolutional layer in a neural network typically calculates several feature maps of
the input matrix, one per kernel. The network learns the weights of the kernel. Therefore
a kernel window with multiple activations gets associated with only one output [12, p.
327-328]. In the case where our input I of size W ×H (e.g. a grayscale image) and kernel
K of size M ×N are both two-dimensional, then a feature map F is calculated as

F = K ∗ I =
M∑
m=1

N∑
n=1

KmnIx−m,y−n, ∀ (x, y) ∈ (W −M)× (H −N). (6)

This convolution operation is commutative and is denoted by ∗. The convolution operator
for the two-dimensional case is visualised in figure 3 [12, p. 327-328]. When the feature
map is three-dimensional, as is the case for RGB images, the convolution operation is
applied to each colour channel using separate kernels.

There is also a possibility of controlling the step size of the kernel, called the stride, which
will affect the size of the resulting feature map. Equation (6) has a stride of (1, 1) which
means that it will move the kernel 1 element horizontally and 1 element vertically over I
for each feature map pixel. A stride of (2, 1) will halve the feature map size by stepping
two elements horizontally instead, i.e. every other element of W would be removed.

A generalisation of the equation (6) is achieved by introducing padding, e.g. zero padding,
which is adding zeros around the input matrix I to make it taller and wider. This operation
avoids having a smaller feature map than the input matrix, beneficial in applications where
the spatial context is of interest [12, p. 343].

Input

Kernel

Hadamard product
Su
m

2 1 0

1 0 1

0 1 0

0 0 0

0 0 1

0 1 0

2 1 1

1 0 0

0 0 0

1 1 0

1 0 1

1 1 0

3 0 0

0 0 0

0 3 0

2 1 3

0 2 4

4 3 2

9 1 2

6

3

1

6

Output

Figure 3: A visualisation of the convolutional operation using a two-dimensional input of
size 6× 6 and a kernel of size 3× 3.

The benefits of using convolutions in comparison to fully connected layers are twofold.
They typically reduce the number of network parameters sinceM×N×number of kernels
is usually smaller than the number of elements in the input matrix. Secondly, they
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effectively increase the size of the training dataset in relation to the number of parameters
since the same filters are applied to every kernel window of each image. Convolutions also
have a translational invariance property. This means that when a subset of image pixels is
shifted, the corresponding feature map elements are shifted accordingly. [12, p. 331-335].

For upsampling a feature map one can use transposed convolutions, where the input
elements get associated with multiple outputs. The notion of padding and stride is also
used for this operation. Given a set of feature maps F of size |F | ×W × H, a stride s,
an input padding pi, output padding po, dilation value d and a kernel size M × N , the
transposed convolution operator returns an output of size |F̃ | × W̃ × H̃, where

W̃ = s(W − 1)− 2pi + d(M − 1) + po + 1 (7)

H̃ = s(H − 1)− 2pi + d(N − 1) + po + 1. (8)

The procedure to create an output feature map comprises three steps.

1. Padding the input according to pi

2. Create an output feature map equal to the feature map but with d padding elements
(e.g. zeros) inserted between each row and column. Lastly, pad the output feature
map according to po

3. Apply a convolution operation (6) to the feature map with the given kernel and
stride

This procedure can be conducted on the same feature map as many times as the desired
size of the output channel dimension [14].

Another operation that is common in combination with convolutions is pooling. A pooling
layer has no parameters, and the motive is to reduce the size of a feature map. There
are different types of pooling layers, where a common one is max-pooling. The max-
pooling operation extracts the highest pixel value in each kernel of the image. A potential
problem with pooling operations is that they cause loss of spatial information of objects
in the original matrix, which is a drawback for applications relying on the preservation of
spatial context. A visualisation of max-pooling is displayed in figure 4 [15].

0 1 2 9 1 7 1 1 1
0 0 0 0 -2 0 0 1 1
0 6 0 3 0 0 0 0 1
4 4 3 3 6 0 1 -1 1
1 1 1 0 7 7 0 1 0
0 0 8 0 7 0 -1 0 1
9 9 7 0 0 0 1 8 8
6 8 4 0 0 0 2 2 6
6 9 5 0 0 0 7 2 3

6 9 1
8 7 1
9 0 8

Max pool

Figure 4: A visualisation of the two-dimensional pooling operation. In this case, max-
pooling with a kernel of size 3× 3 and a stride of 3× 3.
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A common design of a CNN [16] is successive use of the pattern

1. Convolution

2. Batch normalization

3. Activation

4. Pooling

2.1.4 Recurrent Neural Networks

An RNN is used for modelling sequential data by using connections to later realisations of
itself. The core components of a simple RNN are an activation function g, a loss function
` and a hidden state vector ht. The output vector at time step t is denoted as ŷt.

To perform forward propagation we begin with an initialised hidden state h0, then for
each time-step t, t = 1, ..., T we use the following update equations:

ht = f(W (t)
x xt +W

(t)
h ht−1 + bh) (9)

ot = W (t)
o ht + bo (10)

ŷt = g(ot), (11)

where f is a transition function that is applied at each time step, W (t)
h , W (t)

x , W (t)
o are

weight matrices and bh and bo are biases [12, p. 372-374].

The output of the network, denoted ot, is used in a loss function ` to measure the distance
between the predicted labels ŷ and true labels y. The total loss is the sum of the losses
at all timesteps: ` =

∑T
t=1 `t(ŷt, yt). A visualisation of the RNN is displayed in figure 5.

xt

ht

ot

ŷt

Wx

Wh

Wo

g

Compact

x1

h1

o1

ŷ1

Wx

Wo

g

x2

h2

o2

ŷ2

Wx

Wo

g

x3

h3

o3

ŷ3

Wx

Wo

g

h0

Unfolded

Wh Wh Wh

...

...

...

...

Figure 5: An illustration of the RNN model in compact and unfolded form.

With long sequences, the network becomes deep. As with all neural networks with many
hidden layers, they can suffer from the vanishing or exploding gradient problem. To
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illustrate this problem, consider a network with only one neuron per layer but many
layers. The nested activation functions give the output of the network

ŷT = g(W T
h g(W T−1

h ...g(W 2
hg(W 1

hx− b1h)− b2h)...− bT−1)− bT ). (12)

A single SGD update of the weight vector Wh

W
(t+1)
h := W

(t)
h + α

δ`

δW
(t)
h

, (13)

where α is the learning rate. The computation of the gradient δ`
δWh

involves multiplication
with the term

δW T
h

δW t
h

= Πt+1
k=Tg

′(bk)W k
h . (14)

Weights are often initialised with small values. However, if the weights are small, then
the product g′(bt−1h )W t

h is likely to be smaller than one. If T is large, the gradient δ`
δWh

becomes close to zero, and the training, therefore, slows down considerably. On the other
hand, if the weights are large in magnitude then the gradient factors are likely to be larger
than one. In that case, the gradients increase exponentially with network depth. This
is more common in later stages of the training since the weights tend to grow over time.
These scenarios are descriptions of the vanishing and exploding gradient problem. These
problems cause difficulties for recurrent neural networks to learn long-term dependencies
[17, p.131-132].

One way of tackling this problem is to have the hidden units with self-loops where another
hidden unit controls each loop, called a forget gate. This gate allows the network to retain
long-term knowledge and learn from the data what it should forget and remember. This is
the idea behind gated RNNs and specifically the long short-term memory (LSTM) model.
There are three types of gates in an LSTM: forget gate, input gate and output gate.
Those are visualised in figure 6 and the corresponding update formulas are listed in the
equations (15)-(20) [14]. The key idea is to learn what information should be remembered
and what should be forgotten [12, p. 404-406].

Figure 6: An illustration of the LSTM model with three time steps. [18]
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The output of an LSTM at time step t is denoted ot and the input as xt.

it = σ(Wiixt + bii +Whiht−1 + bhi) (15)
ft = σ(Wifxt + bif +Whfht−1 + bhf ) (16)
gt = tanh(Wigxt + big +Whght−1 + bhg) (17)
ot = σ(Wioxt + bio +Whoht−1 + bho) (18)
ct = ft ◦ ct−1 + it ◦ gt (19)
ht = ot ◦ tanh(ct) (20)

Although LSTMs reduce the risk of exploding gradients, they do not eliminate it. It is
therefore vital to be aware of methods to tackle that problem when using LSTMs. The
authors of [19] propose a method that involves scaling gradients when their norm reaches
a certain threshold. This introduces another hyperparameter, but the paper’s authors
find that looking at the average norm over many updates provides a good foundation for
deciding on a threshold.

There is a recurrent model which combines convolutional neural networks with an LSTM.
It is called a convolutional LSTM (ConvLSTM) and the corresponding update equations
are given by (21)-(26). The drawback the authors saw in using a fully connected LSTM
is that no spatial information can be encoded because the image data would have to be
flattened into a vector. Using a ConvLSTM in a neural network provides the network
with visual memory of previous images in an image sequence [20].

It = σ(Wxi ∗ Xt +Whi ∗ Ht−1 +Wci ◦ Ct−1 + bi) (21)
Ft = σ(Wxf ∗ Xt +Whf ∗ Ht−1 +Wcf ◦ Ct−1 + bf ) (22)
Gt = tanh(Wxc ∗ Xt +Whc ∗ Ht−1 + bc) (23)
Ct = Ft ◦ Ct−1 + It ◦ Gt (24)
Ot = σ(Wxo ∗ Xt +Who ∗ Ht−1 +Wco ◦ Ct + bo) (25)
Ht = Ot ◦ tanh(Ct) (26)

An alternative to LSTMs when it comes to gated RNNs is gated recurrent units (GRU),
which is a model with fewer parameters. It is a similar architecture but without an output
gate and a cell state. The update equations are listed in (27)-(30), where r is the reset
gate, z is the update gate, h̃ is the hidden state and h is the output [21].

rt = σ(Wrxt + Urht−1 + br) (27)
zt = σ(Wzxt + Uzht−1 + bz) (28)

h̃t = φ(Whxt + Uh(r ◦ ht−1)) (29)

ht = (1− zt) ◦ ht−1 + zt ◦ h̃t (30)

Similarly, a convolutional GRU model is achieved by exchanging the matrix-vector mul-
tiplications for convolution operations, considering the weight matrices as kernels. [22]

2.2 Object detection systems

There are four tasks that deep learning-based object detection systems need to perform
efficiently and accurately: extract features, generate candidate regions, classify and refine
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bounding box locations. The process of extracting features from an image using deep
learning can be done with a typical classification network for images, such as a residual
neural network (ResNet). A common architectural pattern in object detection networks
is where the following operations are applied repeatedly in order [[16], [23]]

1. Convolution

2. Batch normalisation

3. Activation

This part of an object detection system is called the backbone network. Deep learning
object detectors either tackle task two and three in one or two stages that comprise the
network’s head. Two-stage detectors divide the task into a region proposal step and
a classification-regression step, where region proposals are initial guesses of where an
object might be. For the classification step, a background class is included in addition
to the classes of interest. This class represents boxes not containing any objects. The
background class is used during inference for filtering out boxes that supposedly does not
contain an object. On the other hand, one-stage detectors take as input an image and
a set of predefined boxes and perform the classification and regression step directly, and
a confidence score determines if a box contains an object or not. Sometimes there is an
intermediate step between the backbone and the head for processing the features. This
stage of a detection system is called the neck [24, p. 84-85].

This section provides explanations of some fundamental concepts that are often used in
the object detection literature.

2.2.1 Anchor boxes and confidence scores

Anchor boxes are used in several object detection systems. They are predefined bounding
boxes that the network uses as initial guesses of the true bounding boxes. Those are
predefined boxes that can, for example, be selected by running k-means on the width
and height-space of the boxes in the training data. Suitable aspect ratios and sizes are
determined from the training data. Object detectors then refine these initial guesses by
predicting the deviation from them. This prediction often includes a confidence score that
ranges between 0 and 1. This score represents how confident the algorithm is that the
bounding box contains an object. Predicting the confidence score is a regression problem.
Therefore, the regression output from such object detectors consists of tuples of five values
- four values determining the location and size and one confidence score [25].

In object detection, an optimal system finds bounding boxes that perfectly localise the
ground truth boxes and predicts the correct classes. The localisation is often quantified
by Intersection over Union (IOU), the fraction of overlapping area between the ground
truth and the prediction. The label we use for training the confidence regressor of an ODS
is the IOU. The confidence of a bounding box is thus the predicted overlap with a ground
truth object. This feature of the system is used during inference to filter out predictions
with low confidence.
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2.2.2 Non-maximum suppression

Non-maximum suppression (NMS) is a post-processing method in object detection. Most
likely, some bounding box predictions will refer to the same object, which results in many
redundant predictions. NMS is a greedy algorithm for removing duplicate predictions by
selecting the most confident boxes in each region. It is specified in algorithm 3 [26].

Algorithm 3 Non-maximum suppression
Input: List of bounding box predictions B, confidence threshold t, NMS threshold τ
Output: A reduced list of bounding box prediction B̃
1: procedure NMS(B, t, τ)
2: B̃ ← {}
3: Remove boxes from B where confidence is less than t.
4: Sort B on confidence in a descending order
5: for B in B do
6: for B̃ in B̃ do
7: IOUB̃ ← IOU between B and B̃
8: if IOUB̃ > τ then
9: Break loop

10: if IOUB̃ < τ for all B̃ then
11: Append B to B̃

2.2.3 Selective search

Selective search is an algorithm for segmenting an image by finding coherent matter and
bounding boxes. It is a greedy similarity-based algorithm that combines several similarity
measures (e.g. color and size) to distinguish objects from each other. In order to not miss
any objects, the algorithm emphasises high recall over high precision [27].

This technique can propose regions of interest that may contain an object to a two-stage
ODS. This algorithm is not used in recently developed object detectors since it is slow
compared to modern region proposal methods.

2.2.4 Feature pyramid networks

A feature pyramid network’s (FPN) structure is a CNN for generating feature maps of
different scales and semantic complexity. It is structured as a bottom-up and top-down
pathway with lateral connections between them, as illustrated in figure 7a. The output
feature maps can be reorganised into box predictions. Intuitively, feature maps generated
with fewer convolutions are more coarse than others, and predictions are made indepen-
dently on the different top-down pathway scales. This means that we make predictions on
both coarse and fine features and at different scales, which intuitively encompass a greater
variety of objects. A detection system utilising FPNs may also be better at recognising
objects at different scales. It has been shown experimentally that FPNs increase detection
accuracy on common ODSs with little impact on the inference time [28].
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output
feature
maps

(a) An illustration of a feature pyramid net-
work consisting of bottom-up and top-down
pathways. The bottom-up pathway con-
sists of convolutional layers for downsam-
pling the maps, while the top-down path-
way consists of upsampling layers. The lat-
eral connections are copies of the feature
maps that are convoluted and concatenated
with features at later stages. The channel
dimension is omitted.

(b) An illustration of the fusion of bottom-
up and top-down features in the FPN net-
work.

Figure 7: A graphical explaination of the FPN network.

2.2.5 Focal loss and RetinaNet

Lin et al. [29] found that the main reason one-stage object detection systems were inferior
to two-stage detectors in terms of detection accuracy is the general imbalance between
the object and background class. They proposed a solution to this problem by inventing
a new loss function called focal loss. Focal loss down-weights correctly detected objects
during training to put focus on the falsely detected ones. Let p be the model’s estimated
probability that class y is correct. We define pt as p if the prediction is correct, and 1− p
otherwise. Focal loss is defined in equation (31). However, the focal loss is often used
with a scaling parameter αt in practice.

FL(pt) = −(1− pt)γlog(pt). (31)

The authors created a one stage object detection system called RetinaNet using an FPN
backbone network and focal loss, which surpassed all the existing two-stage detectors at
the time in terms of detection accuracy.

2.2.6 ROI pooling and warping

Two-stage object detection systems generate candidate bounding boxes and feed them
to a CNN. A CNN requires the bounding boxes to have a particular input size, but a
region proposal can be of any size. Region of interest (ROI) pooling was introduced
to solve this problem. It divides a candidate region into an K × K grid of cells and
then performs a pooling operation on each cell. But one downside of this operation is
apparent when candidate regions are non-integer, e.g. when relative coordinates are used.
In this case, some object information may be lost in the translation from relative to
absolute coordinates due to integer approximations [30]. A variation of ROI pooling is
ROI warping, which considers the lost information by interpolating all the pixels in a cell
instead [31].
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2.3 Evaluation of object detection systems

To demonstrate the quality of an ODS, it is necessary to define suitable metrics. Object
detectors output a confidence score representing the assessed probability that the predicted
bounding box contains an object and how accurately placed and shaped the predicted
bounding box is. The metric mean average precision (mAP) attempts to assess this in
one value between 0 and 1. For a precise definition of this metric, several concepts need
to be defined.

The confidence score that accompanies each bounding box prediction can be used to
classify a prediction as positive (the bounding box contains an object of a specific class)
or negative (the bounding box does not contain an object, i.e. the background class is
predicted). When calculating mAP, a detection is labelled positive if its confidence score
is equal or larger than a threshold t, else it is considered negative.

Whether the prediction is considered to be true or false depends on a chosen IOU threshold
s and whether or not the class prediction is correct. The IOU of a ground truth bounding
box and the predicted bounding box is the area of overlap between the bounding boxes
as a percentage of the total area of the two boxes.

The following metrics can then be defined:

• True positive (TP): A predicted box where the IOU with the ground-truth bound-
ing box is greater than a threshold s and the class is correct

• False positive (FP): A predicted box that is not a true positive, i.e. either the
class is correct, but the IOU is less than s, or the class is incorrect

• False negative (FN): A ground-truth bounding box that was not correctly de-
tected

For a fixed IOU threshold s, the precision and recall values are calculated as a function
of t

precision(t) =
TP (t)

TP (t) + FP (t)
(32)

recall(t) =
TP (t)

TP (t) + FN(t)
. (33)

A key property of a good object detector is one where when recall increases, precision
decreases by only a small amount. This results in a large area under the precision-recall
curve (AUC). To compute the mAP metric and the average precision (AP), the following
steps are carried out:

1. Order the K different confidence values outputted by the object detector in an
increasing order

t(k), k = 1, 2, ..., K where t(y) > t(x) for y > x (34)
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Each confidence value is used as a detection threshold t as in (32) and (33). There
is a one-to-one, monotonic correspondence between the recall and the confidence t
which has the identical correspondence with the index k. The precision-recall curve
is therefore discontinuous

2. Define an ordered set of reference recall values, R, sorted in a decreasing order:
R(i) < R(j) for i > j.

3. Interpolate the precision-recall curve so that it is continuous and monotonic over a
finite set

PRECint(i) = max
k|recall(t(k))≥i

precision(t(k)), (35)

where i is a given recall value

4. The AP metric is then defined as an approximation (Riemann integral) of the area
under the precision-recall curve

AP =
K∑
k=0

(R(k)−R(k + 1)) · PRECint(R(k)). (36)

The resulting Riemann integral is evaluated using interpolation, where two ap-
proaches can be taken:

• N -point interpolation, where the reference recall values are used for the calcu-
lations

R(n) =
N − n
N − 1

, n = 1, .., N . (37)

The AP becomes

AP =
1

N

N∑
n=1

PRECint(R(n)). (38)

Common values for N are 101 and 11.

• All-point interpolation, where the obtained K recall values are used and the
following function values are set:

t(0) = 0

t(K + 1) = 1,

so recall(0) = 1 and recall(K + 1) = 0 by definition. Then, recall(k) is the
recall at the k’th confidence value t(k). The precision values are calculated
using the interpolated precision-recall curve PRECint.

5. The mean average precision is the average AP over all the classes:

mAP =
1

C

C∑
i=1

APi (39)

where APi is the AP for class i and C is the total number of classes
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Common mAP metrics are mAP50, i.e. mAP calculated at an IOU threshold of 0.5 and
mAP@[0.5:0.05:0.95], mAP averaged over IOU thresholds from 0.5 to 0.95 with a step size
of 0.05. Another version of this metric takes the area of the ground-truth objects into
consideration:

• APS only takes into consideration small ground-truth objects (area < 322 pixels)

• APM only takes into account medium-sized ground-truth objects (322 < area < 962

pixels)

• APL only takes into considerations large ground-truth objects (area > 962 pixels)

Another version of IOU that takes adjacent frames in video into account is the spatio-
temporal tube intersection over union (STT-IOU). Considering a sequence of predictions
over several frames, the ground-truths and the predictions form tubes in time. STT-IOU
measures the volume of overlap as a fraction of the volume of union, thus quantifying
the tracking performance. This is formulated mathematically in equation (40), where T (i)

p

denotes a bounding box in frame i in a tube of predicted boxes Tp and, similarly, T (i)
gt for

a ground truth tube [32].

STT-IOU =
volume(Tp ∩ Tgt)
volume(Tp ∪ Tgt)

=

∑num. frames
i=1 area(T

(i)
p ∩ T (i)

gt )∑num. frames
i=1 area(T

(i)
p ∪ T (i)

gt )
. (40)

2.4 Regions with CNN features (R-CNN)

Two-stage object detection systems can be divided into a region proposal phase and a
combined classification and regression phase. The region proposal phase consists of two
steps. In the first step, ROIs are generated. In the second step, the coordinates of the
proposed bounding boxes are refined. Additionally, class predictions are updated, and
boxes that do not correspond to objects are removed. What follows is a brief description
of some of the most well-known two-stage algorithms in chronological order: R-CNN, Fast
R-CNN and Faster R-CNN.

2.4.1 R-CNN

Regions with CNN features (R-CNN) starts by generating region proposals using the
algorithm selective search. The backbone is used to extract features from images and
outputs a 4096-dimensional feature vector. In order to use the CNN, all images must be
of the same size. This issue was solved by resizing the images to a fixed size of 227× 227
pixels, potentially changing the aspect ratio. When the feature vector has been calculated
for a region proposal, a support vector machine (SVM) is run for each class. Each SVM
predicts whether a region proposal contains an object of a certain class or not. This means
that the backbone network calculates a feature vector for each region proposal, and the
feature vector for each proposal is fed to an SVM C times. Each classified proposal is fed to
a class-specific linear regressor that adjusts the bounding box coordinates. When it comes
to classifying examples as positive or negative in the loss function, the IOU threshold was
treated as a hyperparameter that was tuned on a validation set. A value of 0.3 was found
to be optimal in terms of mAP on a benchmark dataset. During inference, NMS is used
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to reject regions with high IOU between different predicted boxes in combination with low
SVM scores. Training is conducted in four stages: pre-training the backbone network on
an image classification task, domain-specific fine-tuning, training separate SVMs for each
class, and finally using a class-specific regressor to correct the bounding box locations [33].

2.4.2 Fast R-CNN

Fast R-CNN was introduced and builds upon R-CNN with the objective of reducing
inference time. The main inference bottleneck of the R-CNN implementation is that it is
necessary to perform one CNN forward pass for each region proposal. Another advantage
of Fast R-CNN is that it is trained end-to-end. The loss function consists of a sum of
partial loss functions, one for each ROI, and it combines classification and regression loss
as a weighted sum

`(p, u, tu, v) = `cls(p, u) + λ[u ≥ 1]`loc(t
u, v),

where u is the ground truth class, p is the softmax output, tu is the regression output
for class u and v is the bounding box ground truth. A bounding box regression output
is represented by a tuple containing coordinates. Hyperparameter λ is used for weighting
the localisation loss. The indicator function [u ≥ 1] is used to ignore localisation error for
the background class (which by convention is class 0). The number of region proposals at
test time is approximately 2000, all of which are passed through a CNN for prediction.
For the region proposals to be fed to the same CNN, they have to be of equal size. This is
achieved by using ROI pooling on each region proposal. Inference time in Fast R-CNN is
10 to 100 times lower than R-CNN. To make Fast R-CNN more robust to different image
scales, it is trained using each image at several predefined scales [30].

2.4.3 Faster R-CNN

Faster R-CNN was created to further reduce the inference time of Fast R-CNN by speeding
up the proposal generation process. The bottleneck of Fast R-CNN was generating region
proposals using selective search. To this end, a region proposal network (RPN) was
introduced. The RPN is a CNN that shares feature maps with the backbone, thus adding
little computational effort. The RPN is a small network taking the feature maps as input
and predicting ROIs with corresponding k confidence scores. The ROIs are determined
using the feature map output of the CNN component in the RPN. The RPN slides a 3×3
kernel over each pixel in the feature map and produces k anchor boxes for each pixel.
NMS is used on the output of the RPN to reduce the number of region proposals which
decreases the inference time. Finally, the head of Fast R-CNN is used as the head of the
ODS, where it predicts the box classes and adjusts the coordinates. A positive label is
assigned to two kinds of anchors: those with the highest IOU with a ground-truth box
or an anchor with an IOU higher than 0.7 with any ground-truth box. A negative label
is assigned to non-positive anchor boxes if the IOU is lower than 0.3 for all ground truth
boxes. Boxes that are neither positive nor negative do not affect the model training. The
Faster R-CNN objective function is given by

`(pi, ti) =
1

Ncls

∑
i

`cls(pi, p
∗
i ) + λ

1

Nreg

∑
i

p∗i `reg(ti, t
∗
i ),
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where i is the index of an anchor in a mini-batch, and pi is the probability that the anchor
box contains an object. Furthermore, p∗i is one if the ground-truth label is positive but 0;
otherwise, ti is a four-dimensional vector containing the four coordinates of the predicted
bounding box while t∗i contains the same values but for a positive ground truth anchor
box. Finally, the classification loss `cls is defined for a binary class with the two labels
being object and no object, while the regression loss `reg is only calculated as deviations
from positive ground truth anchors. The fact that the regression loss is calculated in terms
of deviations from the ground truth is what mainly differentiates the objective function of
Faster R-CNN from Fast R-CNN. The architecture of faster R-CNN is visualised in figure
8 [34].

RPN

Proposals

ROI Pooling

Fully-connected
Predictions

Figure 8: Visualisation of the architecture of Faster R-CNN.

2.5 You only look once (YOLO)

What follows are brief descriptions of the four versions of a commonly used one-stage
ODS called YOLO. Another common one-stage ODS is single shot detector (SSD) which
has a similar architecture to YOLOv2-YOLOv4, outputting coordinates, confidence score
and class probabilities based on anchor boxes [35]. SSD achieves lower detection accuracy
than YOLOv4 on the benchmark dataset MSCOCO 2017 but to a lower inference time
[23].

There exist multiple versions of YOLO, but all of them have the following steps in common:

1. Resize images to a square size

2. Run a convolutional network

3. Non-max suppression

2.5.1 YOLOv1

In the first version, all images are resized to a resolution of 448 × 448. Then the image
is divided into an S × S grid. For each grid cell, B bounding boxes and corresponding
confidence scores are predicted. Each bounding box prediction is composed of a 5 dimen-
sional vector: [x, y, w, h, confidence score] where x, y represent the top left corner of the
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bounding box and w, h the width and height. This means that the regression output is
of size S × S × B × 5. YOLOv1 also predicts class probabilities for each grid cell which
means the classification output is of size S×S×C, where C is the number of classes. This
creates a score map where the C values per grid cell can be interpreted as probabilities
since they are nonnegative and sum to 1.

When training YOLOv1, a combined regression and classification loss function is used,
and the two different losses are weighted by two hyperparameters λcoord and λnoobj. In
YOLOv1, a confidence score is defined as the IOU between a predicted and ground truth
box. One predicted box per grid cell is responsible for a ground truth object which is the
one with highest confidence score. If the center of no ground truth object falls into the
particular grid cell, no box is responsible for the prediction. The loss function is expressed
as

λcoord

S2∑
i=0

B∑
j=0

1
obj
ij

[
(xi − x̂i)2 + (yi − ŷi)2

]
(41)

+λcoord
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√
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2
]
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)2
(43)

+λnoobj
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1
noobj
ij

(
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(44)

+
S2∑
i=0

1
obj
i

∑
c ∈ classes

(pi(c)− p̂i(c))2, (45)

where 1obj
ij evaluates to 1 if an object’s center is located in cell i and bounding box j is

responsible for detecting that object, otherwise 0. 1noobj
ij is the opposite. xi, yi and x̂i, ŷi

are the ground truth and predicted x and y-coordinate values for grid cell i. Similarly,
w and h denote the width and height of a bounding box. Cij is the confidence score for
box j in grid cell i while Ĉij is the previously mentioned predicted confidence score. 1obj

i

evaluates to 1 when cell i contains an object, otherwise 0. p̂i(c) is the predicted probability
that the i’th cell contains class c and (pi(c)− p̂i(c))2 is thus the classification loss for class
c in grid i. Notice that, due to the indicator function 1obj

i , the confidence loss is the only
active loss when there is not an object in grid i. The hyperparameter λnoobj is usually
small, in order to handle the natural class imbalance occurring since most grid cells won’t
contain an object. A typical selection of values for λnoobj and λcoord is 0.5 and 5. Small
localisation errors in large bounding boxes should matter less than the same error in small
bounding boxes. Taking the square root of the bounding box width and height in the loss
function takes this into account.

When using YOLOv1 for inference, the predicted confidence score is used to discard
bounding boxes with no object using a confidence threshold, along with NMS for removing
overlapping boxes referring to the same object [36].
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2.5.2 YOLOv2

YOLOv1 has several shortcomings, like poor localisation accuracy in comparison to two-
staged alternatives. Version one of YOLO also has relatively low recall, so the main
focus in version two of YOLO is to improve those things. One improvement was adding
batch normalisation, which increased the network’s regularisation capabilities. Images of
varying resolutions are used, which improves overall mAP. The main difference, however,
is the introduction of anchor boxes in the YOLO head architecture. The paper authors
discovered that picking the right dimensions for the anchor boxes is crucial for maximising
the mAP. This was done using k-means clustering on a benchmark dataset and hand-
picking a value for k that lead to a good trade-off between recall and model complexity.
In YOLOv2 the bounding box centre has to fall inside the anchor boxes corresponding
grid cell, leading to less accurate localisation but decreasing training time. This is in
stark contrast to Faster R-CNN, which does not constrain the location of bounding boxes.
During inference, a bounding box prediction b is calculated according to the equations
(46)-(50), where x̂, ŷ, ŵ, ĥ, Ĉ is the regression output from YOLOv2 per anchor box. The
offsets cx, cy are for locating the correct grid cell for the anchor box, and pw, ph corresponds
to the anchor box width and height [37].

bx = σ(x̂) + cx (46)
by = σ(ŷ) + cy (47)
bw = pwe

ŵ (48)

bh = phe
ĥ (49)

bĈ = σ(Ĉ) (50)

2.5.3 YOLOv3

Like with YOLOv2, YOLOv3 takes as input B predefined anchor boxes. The regression
loss is identical to YOLOv1. Logistic regression is used to predict the confidence score for
each bounding box. Ideally, the logistic regressor should output one if a particular anchor
box has the greatest IOU with a ground truth box. If an anchor box has an IOU of more
than 0.5 with a ground truth box, but it is not the highest IOU, the prediction is ignored.
This way, we can train the logistic regressor to predict a confidence score for a given
bounding box prediction. For classification, separate logistic classifiers are used instead
of a softmax since each bounding box may contain more than one class, e.g. a traffic
light may be red and yellow. Boxes are predicted at three scales using an FPN to reflect
both the coarse and fine-grained features of the image in the predictions. Bounding box
anchors are chosen using k-means clustering on training data, as in YOLOv2. The loss
function is altered in YOLOv3, in which the confidence and classification loss is calculated
using cross-entropy [38].

FPN is not the only addition in the YOLOv3 backbone but also residual blocks. A residual
block in YOLOv3 consists of a 1x1 convolution and a following 3x3 convolution, both with
batch normalisation and activation. The number of output channels is the same as the
number of input channels. When several blocks are attached, there is a residual connection
from every block to every succeeding block [16] [38].
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2.5.4 YOLOv4

The YOLOv4 ODS is structured in the following way:

• Backbone: CSPDarknet53

• Neck: spatial pyramid pooling (SPP), path aggregation network (PAN),

• Head: YOLOv3 head network

The backbone network in YOLOv4 is CSPDarknet53. It is a cross-stage partial network
(CSPNet) and a deep fully convolutional neural network consisting of 53 network layers.
CSPNet was developed in order to combat inefficient gradient computations. In modern
backbone networks, it is common to apply successive convolutions in a ResBlock fash-
ion. This is called a Dense Block and means that instead of residual connections, we
concatenate the input feature map with the output feature map and perform a new con-
volution recurrently. The authors of CSPNet noticed that by splitting feature maps into
parts, performing operations on them individually and fusing them afterwards, one saves
computations with little degradation in accuracy [39].

YOLOv4’s neck network consists of layers that are used to process feature maps from the
backbone network. This includes the PAN and SPP modules.

The processed feature maps are then fed to the YOLOv3 head network, which is part of
YOLOv3. It consists of successive convolutional layers, batch normalisations and leaky
ReLU activations. Like stated earlier, the YOLOv3 head predicts feature maps at different
scales.

The goal of the creators of YOLOv4 was to create a network with low inference times and
high accuracy. Therefore YOLOv4 utilises several techniques from the so-called bag of
freebies (BOF) and bag of specials (BOS) sets of modifications to the network architecture
and training strategies for improving detection accuracy. BOF contains techniques that
increase detection accuracy without compromising inference time, e.g. data augmentation
methods called Mosaic and CutMix. BOS instead offers higher accuracy by paying a small
price in inference time, e.g. using the Mish activation function. BOF and BOS techniques
are applied at all parts of the YOLOv4 network. The following sections introduce some
of the essential elements of YOLOv4.

2.5.4.1 SPP SPP is a technique used in the neck of YOLOv4 for further processing the
backbone features. It takes as input a set of feature maps and then performs pooling with
three different kernel sizes: 5, 9 and 13, where the stride is 1 and the padding is adjusted
so that the output is of the same shape as the input. SPP proceeds by concatenating the
pooled feature maps with each other and the input set of feature maps. This means that
the output is four different variations on the input, with varying semantic emphasis.

The original SPP was created for outputting feature maps of a fixed size, independently of
the input image resolution. This is beneficial for two-stage systems, which often have fully
connected layers. However, it is not the case in YOLOv4, where the output feature maps
are larger if the input image is larger. The output of YOLOv4 for the typical input image
size 608× 608 is three grids of shapes 76× 76×A× (4 + 1 +C), 38× 38×A× (4 + 1 +C)
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and 19 × 19 × A × (4 + 1 + C), where A is the number of anchor boxes. With a higher
resolution, the grids will increase in size [40] [23].

2.5.4.2 PAN YOLOv4 uses a PAN in the neck. A central feature of a PAN is the
efficient propagation of features through the network. A PAN builds upon the FPN ar-
chitecture by adding an additional bottom-up pathway, a different strategy for combining
features of different semantic levels and a pooling strategy for aggregating the output fea-
ture maps. The lower semantic layers contain more accurate localisation information. The
accurate localisation information can be combined with the high-level semantics in the
last convolutional layer by allowing shortcuts in the network. The combination of features
propagated through lateral connections with the mainline of convolutions is conducted by
copying feature maps, downsampling them through convolutions and performing element-
wise addition with the mainline feature maps of matching size. This allows for the feature
propagation shortcuts in the network. In YOLOv4, a modification of the combination of
features is used where feature maps are concatenated instead of added together. Further-
more, the output feature maps are not combined using a pooling strategy. Instead, they
are concatenated together and processed by additional convolutional layers. A general
PAN is visualised in figure 9a, where the sideways arrows represent lateral connections.
The combination of features from lateral connections used in YOLOv4 is visualised in
figure 9b [41] [23].

Output

(a) Simplified schematic of the PAN archi-
tecture. Vertical arrows denote downsam-
pling or upsampling operations. The copy
operation copies a feature map and com-
bines it with later-stage feature maps. In
YOLOv4, there is no adaptive feature pool-
ing operation. The output is instead essen-
tially the last layer of feature maps. The
channel dimension is omitted.

C

(b) An illustration of the concatenation of
lateral connection-features and later stage-
features in the PAN network of YOLOv4.

Figure 9: A graphical explaination of the PAN network.

2.5.4.3 Mish activation D. Misra et al. [42] observed that the ReLU activation
function, apart from suffering from the dying ReLU problem, also generates sharp and
rough loss landscapes. This makes it hard to optimise over since the first-order gradient
is noisy. This problem is solved using Mish, which is a smooth, continuously differentiable
activation function. It is formulated in equation (51) and plotted in figure 10.

g(x) = x tanh (softplus(x)) = x tanh (ln (1 + ex)) (51)
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The activation function yields a smoother loss landscape than many other activation
functions. This was demonstrated experimentally by randomly generating neural networks
with two output neurons and plotting them for many different inputs. The resulting loss
landscapes from using ReLU and Mish as activation functions were plotted, and the Mish
loss landscape was confirmed to be smoother. The hypothesis that this would yield better
performance in neural networks was confirmed through benchmarks on state-of-the-art
classification networks such as ResNet and DarkNet. The benchmark showed that Mish
was the ideal choice for an activation function in most scenarios, which is why it is used
in the YOLOv4 backbone.

Figure 10: Mish activation function.

2.5.4.4 SAM SAM is an attention system that extracts the most useful parts in fea-
ture maps. The basic idea is to make a copy of a feature map, use average or max-pooling
in combination with performing convolutions. The outputted, modified feature map is
then fed to a sigmoid function before doing elementwise multiplication with the original
input feature map. This is done both channel-wise and along the spatial dimension. In
this way, the network can learn to become robust to perturbations in data [43].

The implementation of SAM in the YOLOv4 system is slightly modified. The pooling
operations are removed, and there is only a convolution and sigmoid operation left in the
attention module. This modified version of SAM is visualised in figure 11 [23].
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Figure 11: Modified version of the Spatial Attention Module, used in YOLOv4. It is a
component of the neck network for processing feature maps from the backbone net.

2.5.4.5 Cross mini-batch normalisation When a batch has low or zero variance,
that leads to numerical instability, e.g. due to floating point inaccuracies. This problem
can be solved by adding a small term in the denominator of the batch normalisation
formula (2). In equation (52), X denotes a batch of mini-batches, and Xti(θt) denotes the
i’th activation in the t’th minibatch using the network weights θt.

X̂ti(θt) =
Xti(θt)− µt(θt)√

σt(θt)2 + ε
(52)

An attempt to increase the expressive power of batch normalization, one could scale and
shift by learnable parameters γ and β. This scaled and shifted normalized batch, yti, is
calculated as in equation (53) [44].

yti(θt) = γX̂ti(θt) + β (53)

The problem that occurs in deep learning with images is that yti becomes noisy due
to small batch size. Nevertheless, given that weights change by a small amount between
iterations, it is possible to estimate the mean and variance needed using Taylor expansions
of both statistics. One can further stabilise the estimations by averaging over the current
and k−1 previous means. This alternative to batch normalisation is called Cross-iteration
batch normalisation [45].

YOLOv4 uses a modified version of CBN that does not incorporate statistics from previous
batches but only between the different mini-batches within the present batch. This means
that the estimate is a bit more accurate, as we do not have to rely on mean and standard
deviation estimates from previous training steps [23].

2.5.4.6 DropBlock regularisation The dropout technique does not work well for
regularising convolutional layers since neighbouring elements in a feature map are spatially
correlated. This means that removing an element will have little effect since its neighbours
have similar semantics. DropBlock is a strategy to mitigate the problem of dropout in
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convolution operations by dropping regions instead of elements at random. This has a
higher chance of achieving a regularisation effect than dropout in CNNs. An algorithm
for the DropBlock technique is given in 4 [46].

Algorithm 4 DropBlock Regularisation
Input: Activations g(L) from the previous layer L, size, α, mode.
Output: DropBlock-modified activations.
1: procedure DropBlock(g(L), size, α,mode)
2: if mode is inference then
3: Return g(L)
4: A← g(L)
5: Randomly sample mask M ∼ Bernoulli(α)
6: for each element m at position (i, j) in M do
7: Let m be the center of a square of size size, zero all corresponding elements in A.
8: Normalize A
9: Return A

2.5.4.7 Loss function YOLOv4 replaces the localisation loss in the YOLOv3 loss
function, which is the same as in (41) and (42), with a loss that considers the IOU instead
of the box coordinates.

In the following description of various IOU losses, the assumption is that only one pre-
dicted bounding box B and ground truth box Bgt exists. The coordinates-based bounding
box loss metric (usually l1 or l2 norm) is different from the IOU evaluation metric. The
inventors of Distance-IOU (DIOU) [47] show that the methods that attempt to take the
IOU metric into account offer an inadequate solution to this problem:

• IOU loss (originally proposed by [48]):

LIOU = 1− IOU (54)

This metric does not distinguish between bounding boxes that are close or far away
from the ground truth bounding box if they are non-overlapping.

• Generalised IOU (GIOU) loss (originally proposed by [48]):

LGIOU = LIOU +
|C \ B ∪ Bgt|

|C|
, (55)

where C is the smallest convex shape that contains both the predicted bounding box
B and ground truth box Bgt and | · | denotes the area of a shape.

In simulation experiments, the inventors of DIOU show that the IOU loss converges to
sub-optimal bounding box locations when the predicted and ground truth box are non-
overlapping. While the GIOU loss addresses the main problem of the IOU loss function,
it is still not ideal as it takes many iterations for it to converge.

Due to these problems they propose the DIOU loss:

LDIOU = LIOU +
ρ2(B,Bgt)

c2
, (56)

26



where c is the diagonal length of the smallest box that contains both the predicted bound-
ing box B and ground truth box Bgt and ρ is the Euclidean distance between the central
points of the bounding boxes. So instead of only trying to minimize the enclosing area
of the two boxes the goal is now to minimize the normalised distance between the boxes
directly. This fact leads to a faster convergence than for the GIOU loss. Incorporating
aspect ratio prediction consistency, the authors define the Complete-IOU (CIOU) loss:

LCIOU = LIOU +
ρ2(B,Bgt)

c2
+ αv. (57)

The value v measures the difference in aspect ratios between the ground truth and pre-
diction:

v =
4

π2
(arctan(

wgt

hgt
)− arctan(

w

h
))2, (58)

where w, h and wgt, hgt are the width and height of the predicted and ground truth bound-
ing box respectively and α is a parameter which represents the tradeoff between empha-
sizing the overlap and aspect ratio similarity, as specified in equation (59) [47].

α =
v

(1− IOU) + v
. (59)

The loss function used in YOLOv4 is similar to what is presented in equations (41)-(45).
However, the localisation loss is replaced by the CIOU loss. The loss function can be
written as

LCIOU (60)

+
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j=0

1
obj
ij

(
Ĉi log(Ci) + (1− Ĉi) log(1− Ci)

)
(61)
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)
(62)

+
S2∑
i=0

1
obj
i

∑
c ∈ classes

(
p̂i(c) log(pi(c)) + (1− p̂i(c)) log(1− pi(c))

)
, (63)

where LCIOU is defined in equation (57). [49]

2.5.4.8 DIOU-NMS In DIOU-NMS, the IOU metric used in NMS is replaced by
DIOU to avoid falsely removing bounding boxes of occluded objects. Given a predicted
box, K, with the highest confidence score we update the confidence score of a predicted
box predicted box Bi in the following way:

ri =

{
ri, if IOU − ρ2(K,Bi)

c2
< ε

0, if IOU − ρ2(K,Bi)
c2

≥ ε,
(64)

where ε is the NMS threshold and ri is the confidence score of box i. Then the bounding
boxes with zero confidences are removed. This results in the non-removal of bounding
boxes that have a large central point distance from the bounding box with the highest
confidence score [47].
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2.5.4.9 Data augmentation YOLOv4 uses basic data augmentation techniques like
mirroring images, altering hue, value, saturation and blur. The user has to decide what
data augmentation techniques to use. Mirroring an image, for example, is not necessarily
a good idea if the orientation of the ground truth object is the only way to characterise
it.

Another technique that improves mAP on an object detection benchmark dataset is Mo-
saic [23]. The Mosaic methodology is to merge different parts of images into one frame.
At most, four images are merged. First, the algorithm randomly selects whether to use
Mosaic or not. If it is used, the algorithm proceeds by selecting if a split on width, height
or both width and height should be split. If it decides to split on both, a width and a
height split is decided, ws and hs. They are pixel coordinates and are randomly sampled
among the 60 % central width and height pixels. All the images in the frame are ran-
domly sampled from the dataset, and the different cutouts from the frames are randomly
selected. Additionally, all images that are part of the Mosaic frame are processed with
random settings for the basic data augmentation techniques. An example Mosaic frame
is shown in figure 12.

Another data augmentation technique in YOLOv4 is CutMix, which places randomly
sampled bounding boxes from the ground truth data on other frames.

Figure 12: An example Mosaic frame.

2.6 Video object detections systems

A simple system for performing video object detection would be to run an ODS on every
frame. However, such a system does not consider temporal context, and an ideal system
would use this context to improve detection accuracy, inference time or both. In this work,
only systems that use RNNs for modelling the temporal context are considered. Despite
having access to more context in video, it is a more challenging problem than single frame
object detection. This is due to the large amount of data to process; motion blur more
frequently appears in video and objects may temporarily be partially or entirely occluded.
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[10] On top of this, RNNs are known to be difficult to train due to vanishing or exploding
gradients.

There are two categories of RNN video object detectors, feature-based and box-based.

2.6.1 Feature-based video object detection systems

The main idea behind feature-based VODS is to implement a visual memory of previ-
ous frames. An attempt to do this was done in multi-frame prediction ([50]), where the
idea was to extract features from several frames before making a prediction. The im-
plementation is inspired by a variant of the SSD architecture called SqueezeDet+. The
difference lies in that the head network is only used in the last frame, and the addition
of convolutional GRUs at the end of the backbone network. Figure 13 shows a minimal
illustration of this architecture. The experiments that were conducted using this imple-
mentation indicated that temporal context improves detection accuracy. In addition, that
long-term temporal context (frames more than one timestep ago) was more important
than short-term temporal context [9]. Similar architectures for predictions on every frame
and models using convolutional LSTMs have also been developed.

Figure 13: Multi-frame VODS inspired by SSD but with the addition of a convolutional
GRU.

Another interesting attempt at creating a VODS using RNNs is the system "Looking Fast
and Slow" [51]. The architecture utilises two feature extractors: a large and slow one and
a small and fast one. The idea behind the architecture is that it would be sufficient to
use a large feature extractor for every k’th frame and mainly rely on temporal context for
the other frames, where it would suffice to use the small feature extractor to retrieve the
coarse features of the image. The architecture is visualised in figure 14.
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Figure 14: The architecture of "Looking Fast and Slow", using one large and one small
feature extractor. The large feature extractor is used every k’th frame.

2.6.2 Box-level video object detection systems

Some VODS use the predicted bounding boxes and class probabilities as input to an RNN
to refine them using temporal context. An example of this can be found in the paper
"Context Matters: Refining Object Detection in Video with Recurrent Neural Networks"
[52]. S. Tripathi et al. implemented a recurrent model using YOLOv1 as a base ODS.
It takes S × S bounding boxes outputted from YOLOv1 (the ones having the highest
confidence score in each grid cell) as input to a two-layer GRU that outputs predicted
bounding boxes. An illustration of this architecture can be found in figure 15. The
system was trained in two stages: a standalone pre-trained YOLOv1 was first trained on
the dataset of interest, and secondly, the GRU unit was trained.
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Figure 15: An illustration of a box-level-based VODS using the most confident boxes per
grid cell in YOLOv1 as input to a two-layer GRU cell.

There are also papers in the field describing systems that are not online methods. K. Chen.
et al. [53] describe a system that uses detected bounding boxes at two different timesteps
to predict the bounding boxes on the frames in between. They use two operators, one
responsible for modelling the temporal context and another for refining bounding boxes
based on this context. The system predicts bounding boxes for a downscaled version of
a past frame and the present frame, which are then upscaled to the correct size. They
use a spatial refinement operator to derive the location of bounding boxes on the frame
in between. Notice that in the next timestep, the previously present frame will be among
those that are refined. This means that all but the first and last frame in a sequence will
be refined using temporal context.

2.6.3 Other video object detection systems

One could also combine feature-based and box-level approaches in one system. This
is the case for recurrent YOLO (ROLO), where both feature maps (flattened as a one-
dimensional tensor) and the most confident bounding box is concatenated into one vector.
This vector is then fed to an LSTM, which refines the prediction. Since only the most
confident bounding box is used, the system can only detect one object in an image. The
architecture is illustrated in figure 16 [54].

ROLO was trained in three phases. The first phase involves the pre-training of the back-
bone network of YOLO. The second involves training YOLO end-to-end. Then in the last
phase, only the LSTM of ROLO is trained.
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Figure 16: An illustration of the ROLO architecture.

Video object detectors based on attention techniques and optical flow also exist. Atten-
tion systems in the literature often achieve higher detection accuracy at the cost of high
inference times. Flow systems use so-called flow networks for modelling the optical flow
in a sequence of frames. This includes propagating information retrieved in subsequent
frames to previous frames to improve bounding box location estimates [9].
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3 Related work
Various approaches have been taken in an attempt to solve the problem of traffic light
recognition. Traffic light recognition systems that have been built vary from completely
rule-based systems that utilise image processing methods, to using completely deep learn-
ing based methods. The deep learning methods commonly use different versions of widely
known one and two-stage object detectors as starting points for their systems, e.g. YOLO,
SSD and R-CNN.

3.1 Non-deep learning approaches to TLR

A. Gómez et al. [55] propose a traffic light recognition system using image processing
for detection in combination with hidden Markov models (HMM) for state classification.
The base system is completely rule-based, where an image processing method and con-
version from the RGB to the HSV colourspace. The system is therefore not affected by
class imbalance problems. Traffic light state transitions can be viewed as Markov chains.
Therefore, in an attempt to improve upon the baseline, an HMM was added to the system
to make it more robust without decreasing inference speed. The authors used their own
dataset for evaluating their method, consisting of 649 manually annotated images. The
chosen performance metric was accuracy. The baseline system achieved an accuracy of
78.54% while the addition of the HMM resulted in an accuracy of 90.55%.

3.2 Non-temporal deep learning approaches to TLR

L. Possatti et al. [4] realised many studies in TLR were framed as single frame object
detection problems. For autonomous vehicles, it is also necessary to detect the relevant
traffic lights for the planned route. The researchers use the DriveU and LISA dataset for
training and a dataset created specifically for the project. Their own dataset was created
using a car equipped with LiDAR and a camera which was driven on five different routes.
The LiDAR data was annotated with 3D coordinates of the relevant traffic lights and
stored in the prior map. When the system was tested, the prior knowledge of relevant
traffic light positions was used to filter out the irrelevant traffic lights. The choice of ODS
was YOLOv3. The traffic light detection system performance was measured using mAP
as well as precision and recall. The images were shrunk to a resolution of 608x608 RGB
pixels. It was possible to achieve an inference time of 21 Hz on an Nvidia Titan Xp GPU,
though capped by the car camera’s framerate of 16 Hz. The ODS was trained on both
the DriveU and LISA training sets, and the resulting models were evaluated on the test
sets. In addition, the system was evaluated on the LiDAR dataset. It was reported that
precision and recall of 88.6% and 86.5% was achieved on the DriveU test set along with
an mAP50 of 85.6%. Corresponding values for the LISA test set were 66.5%, 54.8% and
50.6%. Finally, similar resulting values of 69.5%, 57.2% and 55.2% were obtained on the
researchers’ own dataset. Those results were obtained using a confidence threshold of 0.5,
meaning that all bounding boxes with confidence below the threshold were discarded.

Ouyang et al. [5] propose a lightweight system for the detection of traffic lights. They are
aware of the trade-off between accuracy and inference time in a real-world application of
TLR and build a system in light of this. The system reaches an inference frequency of 10
Hz on an Nvidia Jetson TX1/TX2. The proposed system consists of two phases: traffic
light detection and state classification. The detection phase is a heuristic method using
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several image processing techniques. It extracts all illuminants in a frame (traffic lights,
braking lights, etc.) and centres a fixed-size bounding box around it. This means that it
does not detect the whole traffic light but a specific bulb on it. The classification part is a
lightweight CNN that classifies the illuminants as green, red or other objects. It is reported
that the proposed system yields at least the same detection and classification performance
as the state of the art systems with computationally heavy backbone networks such as
ResNet, DarkNet, GoogleNet but with up to 50 times lower inferences times.

Bach et al. [8] propose a traffic light recognition system based on the Faster R-CNN two-
stage object detector. The DriveU dataset was used where only lights with three bulbs
were included. Tram, bus, pedestrian or cyclist lights were discarded as well as those
that did not belong to the nearest intersection of the vehicle. The dataset was then split
on images, where 70% was allocated to the training set and 30% to the test set. The
recognition system then consists of a feature extractor and a box classifier. The feature
extractor is a slightly modified version of the residual network used in Faster-RCNN. Like
in Faster-RCNN, anchor priors were utilised but defined based on the scales and aspect
ratios present in the training set (only one aspect ratio was used but nine different scales).
Finally, a regressor head outputs the relative bounding box coordinates, and a classifier
head classifies the states of traffic lights and their type, e.g. arrow-right. The mAP metric
is used to measure the recognition performance of the system. An mAP of only 1% was
achieved for the off class. No inference time system evaluation was reported.

Müller and Dietmayer [6] built a system based on SSD for TLR on the DriveU dataset.
They state that the main drawback of separating the region proposal and state classifi-
cation phases is increased inference times. On the other hand, they claim that pooling
operations in some CNN-based ODS:s result in an inability to detect small objects. They
claim that despite the detection of traffic lights may seem like a simple task at first glance,
they are easily confused with other objects in traffic scenes when little context is provided,
e.g. braking lights. To mitigate this problem, the researchers defined anchor box sizes
that were based on the bounding box sizes in the training set. The strides and kernel
sizes used were adjusted accordingly. Inspiration was taken from VGG-16, but with the
modification that feature maps from different stages of the network were concatenated
into one set of maps. The maps finally act as input to three different small networks that
output bounding boxes, confidence scores and class probabilities. The authors use Log
Average Miss Rate (LAMR) for evaluation of the network and its variations. The best
model in terms of LAMR achieved a score of 0.015 with an inference time of 117 ms.
The fastest network had an inference time of 101 ms but with a LAMR of 0.064. The
experiments were conducted using an Nvidia Titan Xp GPU.

K. Yoneda et al. [7] propose another method using prior maps to increase accuracy and
reduce the inference times of a TLR system. In order to avoid discomfort to passengers
when stopping a vehicle that is travelling at 50 km/h, typically, a minimum halting
distance of close to 100 meters is needed. Therefore, the authors state that it is important
that a TLR system recognises traffic light states at a distance of considerably more than
100 meters. A challenge in recognising traffic lights at a distance greater than 100 meters
is that traffic lights appear very small. A strength of their system is that it can detect
traffic lights that are smaller than 10 pixels. The data used for the prior maps comes from
Japan and contains information on the precise location, orientation and type of traffic
lights. Although the inclusion of prior maps seem to result in only a minor performance
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increase for normal traffic lights, the increase is substantial for arrow traffic lights where
substantially less data was available. The proposed method outperforms YOLOv3 on the
test set for circle traffic lights, both in terms of accuracy (mean F-score of 91.8% for the
proposed system, 91.5% without prior maps information but a value of 72.2% for YOLO).
The corresponding F-values for arrow lights were 56.7%, 42.9%, 41.7%. Inference times
were lower than YOLOv3 (YOLOv3 had an average computational time of around 94 ms
while the proposed system a time of around 64 ms), and their system was more robust to
different lighting conditions. They allege that deep learning detectors could outperform
image processing-based detectors in situations where the traffic lights have low brightness,
e.g. due to light pollution.

3.3 Temporal deep learning approaches to TLR

K. Behrendt et al. [56] proposes a system that modifies and builds upon the YOLO
ODS to detect, classify and track traffic lights over multiple frames. The data used
is the Bosch Small Traffic Light dataset, which contains 13 334 frames in total. The
dataset is then formed by taking random crops of the upper part of the image, where
most traffic lights are found. The authors run a modified version of YOLOv3 without
classification. Since traffic lights in their dataset are only 10 pixels in width on average,
they use a greater number of grid cells for more precise bounding box localisation ability.
The detected bounding boxes are then fed to a classification network that classifies the
states of the bounding boxes. Additionally, false positives are removed by thresholding the
bounding box confidence estimates of the network. In order to track objects, an odometry
based model in combination with a neural network is used to estimate the movement of
traffic lights between frames. They use disparity images from a stereo camera where the
median disparity value of a traffic light represents the whole traffic light. The traffic light
coordinates and disparity values are then triangulated onto the 2D reference frame of the
dataset. Then linear triangulation is used to reconstruct the 4 bounding box corners of a
frame. We can therefore write:

Xc
t

= T tt−1X
c
t−1

xc
t

= PXc
t

where c represents a corner id, and Xc
t−1

= [xc, yc, zc]T and xct represent the projected
and re-projected corner coordinates. The estimate is then created from the re-projected
corners. Since traffic lights are of small size in the dataset, precise localisation becomes
difficult. Therefore a neural network is used to refine the bounding box estimates. There is
no other performance evaluation on the full system other than precision-recall plots. From
an isolated evaluation of the traffic light state classifier, 95.1% accuracy was observed on
the test set. The full systems is reported to run at 15 FPS on an NVIDIA Titan Black
GPU. Gains are reported in an online evaluation where the system is run in real-time.
The YOLOv3 detector was compared with their system in an online and offline manner.
The reported gains in accuracy were observed in the online evaluation. Since the YOLOv3
detector needs 100 ms to process each frame, some frames are skipped in an online setting.
In that scenario, the tracker combined with the classifier could replace the detector in
many instances, so a significant gain in accuracy was observed compared to the baseline
YOLOv3 system.

Wang et al. [57] propose combining object tracking and a deep learning based detection
method for traffic light recognition. Detection is done by using a CNN model that consists
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of a backbone and a backend network. The backend network takes the multi-scale feature
maps outputted by the backbone as input and fuses them in a way to make the detection
network more robust to different object scales and image resolutions with a minimal
increase in computational complexity. The output of the detection network is the bounding
box location. An integrated channel feature tracking module is applied to track the traffic
light location and state when a detection is obtained. The system achieves better detection
accuracy, as they report 15% fewer false positives than YOLOv3. Running the system
on a computer with an Nvidia Titan XP they report an inference speed of 17.92 FPS
compared to YOLOv3’s 14.47 FPS.
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4 Methodology
To investigate whether or not RNNs can improve detection accuracy, a modern and high-
performing ODS was modified to incorporate temporal dependencies using RNNs. The
original and modified detection system are compared on the traffic light dataset DriveU.
An alternative approach would have been to create the simplest possible ODS and mod-
ify it to include temporal context. However, this does not guarantee that including the
temporal context in the same way in a modern and advanced ODS would increase the
performance. The aim of the thesis is to explore whether it is beneficial or not to model
temporal context in TLR systems using RNNs. This could not be evaluated using a
minimal ODS since the results are not guaranteed to hold for a state-of-the-art ODS.
For this reason, YOLOv4 was chosen as a baseline, as it achieves high performance in
terms of mAP on benchmark datasets while still running in real-time. The YOLO de-
tection systems are also common in TLR literature and achieve high detection accuracy
on various traffic light datasets. Similar experiments were run for YOLOv4 and different
modifications of it, so that the effect of adding temporal context could be measured.

4.1 Dataset

The data used in this project comes from the DriveU dataset, consisting of 232 039 traffic
light annotations in 11 cities in Germany. The data is in the form of 40 925 video frames
of resolution 2048x1024 which form 2 110 sequences in total. A sequence begins around
150 m before the vehicle arrives at a crossing controlled by traffic lights and ends after
immediately passing the crossing (the recording is paused while the vehicle has halted).
The videos were filmed at a frame rate of 15 FPS. Two different cameras were used to
record videos, one with a wide horizontal field of view (130 degrees) for capturing traffic
lights placed near the vehicle and the other with a narrow field of view (60 degrees) for
capturing traffic lights further away [11].

A label is represented by a six digit number representing the following properties:

• Viewpoint orientation (front-, back-, right- and left facing)

• Relevancy and occlusion (not relevant, relevant, not relevant and occluded, relevant
and occluded)

• Installation orientation (vertical and horizontal)

• Number of light units (1-4)

• State (off, red, yellow, red-yellow and green)

• Pictogram (circle, arrow, pedestrian, cyclist and bus)

The pre-processing of the dataset consists of two main steps: (1) cropping and resizing
the images and (2) filtering the labels.

In step 1, the goal is to reduce the size of the images to something that is feasible to
run using current state-of-the-art ODS (the common benchmark dataset MSCOCO 2017
has images of size 608x608). The size was chosen arbitrarily to be 640x640 with this in
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mind. Resizing from 2048x1024 to 640x640 using bilinear interpolation removes many
details in an image and the performance of an ODS would be low. It would also alter the
aspect ratio from 2:1 to 1:1. In order to combat this, two ideas were applied. The first
one comes from the observation that it is rare for traffic lights to appear at the bottom
of an image or the left or right edges. Therefore, a window of 1920x960 was cropped
out, vertically at the top but horizontally centred. This cropped region also maintains
the original aspect ratio. This reduces the image size without affecting the quality of the
image. The second idea was that instead of resizing the images to 640x640 directly, two
squares of size 640x640 were cropped from the image. Due to this, it was only necessary
to resize down to 1280x640 and then extract a left crop and right crop from each image.
This part of the pre-processing is visualised in figure 17. Traffic lights whose width is
more than 70 % outside the cropped regions are removed.

Unlike most other works in TLR, this work considers all of the traffic light state classes:
off, red, yellow, red-yellow and green. However, different pictograms are merged. This
means that e.g. a green circle traffic light and a green arrow traffic light are considered
to belong to the same class. Around 85 % of the traffic lights are circle lights. The only
classes that are filtered out are horizontal, pedestrian and cyclist traffic lights. The ones
kept are all relevant for a self-driving vehicle, except for those not facing the vehicle. The
single reason for detecting off traffic lights in the developed systems is for the case of
flashing yellow traffic lights. Off traffic lights were found to be challenging to detect, one
of the reasons being that they look similar to non-front-facing traffic lights from a large
distance. Therefore, the non- front-facing off traffic lights were not removed. This way,
the relevant off traffic lights may more easily be found by the ODS. A positive side effect
of this, is a less imbalanced dataset since most off traffic lights are not front-facing.

The resulting pre-processed dataset consists of 4 220 sequences and 81 850 frames of
resolution 640x640 with five classes: off, red, yellow, red-yellow and green. The dataset
was split by selecting random sequences in each city, resulting in a training, validation
and test set. They consist of 3 030, 548 and 642 sequences, respectively. Label statistics
for each set is provided in table 1. Small traffic lights are defined to have a bounding box
area of less than 322 pixels, medium between 322 and 962 and large having area greater
than 962.

Statistic Training Validation Test
No. of sequences 3 030 548 642
No. of frames 58 924 10 984 11 942

No. of annotations 134 014 24 025 25 946
% Off 20.8 22.1 17.8
% Red 30.6 28.9 32.6

% Yellow 3.5 4.0 4.5
% Red-Yellow 1.5 1.0 1.4

% Green 43.7 44.0 43.7
% Front-facing 82.7 80.9 84.4

% Small traffic lights 93.8 93.5 93.3
% Medium traffic lights 6.2 6.5 6.7
% Large traffic lights 0 0 0

Table 1: Statistics for the pre-processed training, validation and test set.
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Figure 17: A visualization of the pre-processing of the DriveU dataset, consisting of a
crop, resize and a split step.

An important note on the DriveU dataset that affects the performance of a TLR system
is an inconsistency in the annotations and labelling errors. One of them is that in some
cities, only the front-facing off traffic lights were annotated. This means that many of the
off traffic lights do not have annotations. Additionally, there are errors in the annotation
labels [11]. An attempt to fix this has recently been conducted, and a new version of
the DriveU dataset has been released. Unfortunately, this occurred too late in the thesis
creation process for the updated data to be utilised.

Because of the errors in the dataset and the way labels were filtered, the result is an
underestimate of what performance can be achieved with the models, especially for the
off traffic lights.

4.2 Evaluation

Apart from measuring how accurate a system is at making predictions, inference times
are relevant for a real-time system. The accuracy of an ODS is often measured with mAP.
Inference times are commonly measured in Frames Per Second (FPS) or milliseconds (ms)
in the field of object detection. Therefore the aim is to assess the impact of incorporating
temporal context in terms of two key aspects:

1. Accuracy

2. Inference time

For TLR, the exact localisation of traffic lights is not important compared with, e.g. cars
where there is a risk of crashing when localisation accuracy is low. Therefore the IOU
threshold at which we consider a traffic light to be localised correctly can be low. The
lowest threshold commonly used in literature was therefore chosen, namely 50 %.

Inference times that are measured for different models vary significantly due to the hard-
ware used when running them. To enable comparison, all the measured inference times
have been recorded on the same machine. Inference times may differ due to how much
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the machine is being utilised when measuring the inference time, so an average inference
time over many runs is reported along with the variance. The main interest is not to min-
imise the inference time since the running conditions are not similar to an actual deployed
version of the system. The central point is to show how the inference time changes with
different modifications of the baseline.

4.3 Baseline

A PyTorch [14] implementation of YOLOv4 was used for all baseline experiments. Some of
the BOF and BOS used in the original YOLOv4 system were not implemented due to time
limitations (e.g. DropBlock regularisation, CutMix and DIOU-NMS). A schematic view
of the specific implementation of YOLOv4 used in this project is illustrated in figure 18.
The five downsampling stages of the YOLOv4 backbone network are fully convolutional.
Most of the convolutional layers use a stride of one to lose as little localisation information
as possible. Batch normalisation and a Mish activation function are applied after each
convolutional layer. Stages two to five also includes one residual block each. Stages three
to five together with the neck and head network work as a PAN. The neck comprises an
SPP module and upsampling modules, where each of those modules also contains further
convolutional layers. The features then flow through the fully convolutional YOLOv3
head network, where predictions are made at several points in the network. Both the neck
and head network use leaky ReLU activations after batch normalisation instead of Mish.

Figure 18: A schematic view of the baseline YOLOv4 architecture where downsampling
is abbreviated as DS and upsampling as UP. The DS layers consists of fully convolutional
networks with batch normalisation and Mish activation after each convolution operator.
The neck is comprised of a PAN network and the head consists of a fully convolutional
network. The neck and head networks uses leaky ReLU activations.

YOLOv4 was trained with a batch size of four and Adam as optimiser with hyperpa-
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rameters β1 = 0.9, β2 = 0.999, ε = 10−8. The base step size α was 10−4 but was varied
according to a scheduler function S(t) : R→ R, yielding a step size factor to multiply the
base step size with for a given time step. This means that the step size in each time step
is 10−4 · S(t). The time step t is given according to algorithm 2, but the weights are only
updated after batch size-many forward propagations. The scheduler takes three additional
hyperparameters: b, the number of burn-in steps and s1, s2, the number of steps before
stepping down the step size factor. S(t) can be specified as

S(t) =


( t
b
)4 if t < b,

1 if b ≤ t < s1,
0.1 if s1 ≤ t < s2,
0.01 otherwise.

The YOLO loss function was used with the addition of CIOU loss, given in (57). An epoch
consists of sampling all frames in the dataset uniformly at random without replacement.

When training YOLOv4, there is a possibility of starting with pre-trained weights to
speed up training and potentially reach higher detection accuracy. However, this is not
available for the other models developed for this project. To be able to fairly compare
the models, pre-trained weights were therefore not used for the YOLOv4 baseline. There
is one experiment with Mosaic data augmentation and one without, to be able see how
the effect of Mosaic translates to sequential data. Those two experiments are denoted as
YOLO and YOLO_MOS.

It was noted in the class-specific performance analysis that the off state is most difficult
to detect. An alternative training session without the off state was conducted. This
experiment is denoted as YOLO_NOFF and does not use Mosaic.

4.4 Main systems

Two systems were developed for this thesis, a box-level LSTM version of YOLOv4 and
a feature-based architecture that replaces convolutional layers in the backbone, neck and
head networks with convolutional LSTMs.

The training strategy for the sequential models requires the introduction of additional
hyperparameters. While the batch size could be four as in YOLO and YOLO_MOS, it is set to
one in the experiments with the sequential models due to computer memory constraints.
Instead of maximising the batch size, the sequence subdivision length was maximised.
This is the number of images fed to the sequential model until backpropagation is con-
ducted and computer memory is freed. A higher sequence subdivision length than one
is necessary to model temporal context. In the experiments with sequential models, the
sequence subdivision length is six. This, however, does not mean that the weight update
occurs after six forward propagations. The cycle of weight updates is regulated using the
sequential batch size. If not stated otherwise, this hyperparameter is given a value of
two, meaning that one weight update is performed after completing two sequences. The
average gradient of the loss is used for the weight update. The hidden and cell states are
kept unchanged after a backpropagation within a sequence and only reset after completing
a whole sequence. The weight update cycle consists of running several backpropagations
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over two sequences and accumulating gradients, and updating the weights. A schematic
view of one training step is illustrated in figure 19. As in the YOLOv4 experiments, Adam
optimiser was used with the same settings and the same step size scheduler S(t). The loss
function used is the same as in YOLO, YOLO_MOS and YOLO_NOFF.

The data augmentation techniques for the sequential models are similar to the ones in YOLO
and YOLO_MOS. However, the data augmentation parameters such as blur and rotation are
not randomly sampled within a sequence but only at the start of a new sequence. This
is performed to ensure that the transformations to images in a sequence is consistent,
intuitively keeping more temporal dependencies. The Mosaic data augmentation method
is altered with the same idea in mind. With Mosaic zero, one, two or three extra sequences
are running simultaneously in the same frames, and the extra sequences are selected at
the start of a new sequence. Since the sequences are potentially of different lengths, the
sequence of frames stops after the shortest sequence is finished. The same logic applies if
the batch size is greater than one, the processing of the next sequence(s) is started once
the shortest sequence in the batch is over.

One additional data augmentation method was experimented with, namely reversed se-
quences. With 50% probability, this method will feed a sequence of frames in reverse order
during training. When this is used in an experiment, the experiment’s name gets the name
extension REV. The complete data augmentation pipeline and how it differs between the
single-frame object and video object detector experiments is illustrated in figure 20.

Figure 19: Illustration of one training step and how batch size, sequential batch size
and the sequence subdivision length parameter modifies it. The sequence subdivision
parameter is given the name k in the illustration.

4.4.1 Box-level VODS

The box-level VODS uses the YOLOv4 architecture and hyperparameters as in the YOLO
experiment but further processes the predicted boxes with a simple LSTM module. This
architecture is inspired by the system described in [52], presented in section 2.6.2. The
LSTM module requires the hyperparameter NB, the number of boxes to feed to the LSTM.
In practice, it takes theNB most confident boxes among the three prediction tensors, stores
them in a tensor of size NB × (4 + 1 +C), where C is the number of classes and 4 + 1 are
the coordinates and confidence score. This is a naive approach to box-level LSTMs since
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Figure 20: An illustration of the data augmentation pipeline that is applied during the
training of the architectures. The Mosaic and reverse operations are optional.
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there is no association of boxes between the frames. On the other hand, considerably more
boxes are predicted in YOLOv4 compared to YOLOv1, which is why the approach from
[52] is computationally intractable for YOLOv4. Naturally, the boxes that the LSTM
does not process could contain objects not covered by the processed ones, which is why
the tensor of processed boxes is put back among the non-processed ones. In short, the
three prediction tensors are concatenated, sorted on confidence, the NB most confident
boxes are processed, and finally, the sorting operation is reversed. The box-level VODS
experiments are denoted as BLSTM_NB, where NB is the hyperparameter NB.

4.4.2 Feature-level VODS

The feature-level VODS replaces or adds convolutional layers in the different stages (down-
sampling stages one to five, neck network and the head network) with convolutional
LSTMs. The most common unit in those stages is convolution, batch normalisation and
activation function. In some places, the convolution operation is replaced. If there is a
convolutional layer with a stride of one but a kernel size greater than one, it is replaced
by a ConvLSTM with a matching kernel size. If such a layer does not exist, a ConvLSTM
with a kernel size of three is added. A downsampling stage is denoted as DSX, where X is
replaced by the number 1-5. The neck and head stages are denoted as N and H respectively.
For the head experiment, the ConvLSTM is put at the start of the head, to affect all the
prediction stages. One experiment was conducted when a ConvLSTM was placed as the
first layer, i.e. before the YOLOv4 model. This experiment is denoted as FLSTM_P.

There is also a possibility of stacking ConvLSTMs. This was, however not explored due to
time limitations. Notice that when ConvLSTMs are placed in the neck, the architecture
is similar to [51] and [50], described in section 2.6.1. If the box-level LSTM is added on
top of a model used in FLSTM experiments, the architecture is similar to ROLO.

Some additional experiments were conducted with feature-level LSTMs, with other hy-
perparameters related to the sequential models. One of them is FLSTM_DS1_SHORT, which
uses a sequence subdivision length of three, but with a batch size of two. This experiment
is run to investigate how important the sequence length is sequential model’s perfor-
mance compared to the batch size. Some other experiments are FLSTM_DS4_KER5 and
FLSTM_DS4_KER7, where kernel sizes of 5 and 7 of the ConvLSTM in the DS4 phase are
tested. Like with the baseline experiment, there is one experiment where the off states
are removed from the dataset. This experiment is denoted as FLSTM_DS1_NOFF. Since
the hyperparameters from the YOLO experiment were used for the sequential models, the
training is biased towards the YOLOv4 baseline model. Therefore, an experiment with
the YOLOv4 baseline using the sequential training strategy (shown in figure 19) was also
run. In this experiment, the batch size is one, the sequential batch size is two, and the
subdivision length is six, like for the sequential models. We denote this experiment as
YOLO_SEQ.

As a sanity check, the learned weights for the ConvLSTM layers were looked into. If
weights such as Whi, Wci are all zeros while Wxi, Wxc, Wxo are not, it would mean that
temporal context is ignored and the ConvLSTM is reduced to a near to ordinary convo-
lutional layer with activation. It was, however verified that the sequential models weigh
in previous frames to different extents.

44



4.5 Experimental setup

Computers with an x86 and PowerPC architecture with Nvidia Tesla P100 GPU were
utilised for the experiments, running either PyTorch 1.5 or 1.7. OpenCV 4 was used
for processing images for training, e.g. data augmentation. The library Pycocotools was
utilised and modified to enable the computation of mAP at any IOU threshold.

Many hyperparameters need to be defined for the different experiments. YOLOv4 was
trained with the hyperparameter values b = 1000, s1 = 120000, s2 = 180000 for the step
size scheduler. For the sequential models, the scheduler hyperparameters need to be
adjusted due to a lot fewer training steps. Therefore, those hyperparameter values were
reduced so that, in most experiments, b = 100, s1 = 13000, s2 = 17000. Those settings
were chosen empirically to shorten model convergence and training time. The sequential
batch size was set to two, the batch size was set to one, and the sequence subdivision
length was set to six, if not stated otherwise. Similarly, the kernel sizes for feature-level
VODS was set to three, if not stated otherwise.

45



5 Results
In this section, a basis for evaluation and discussion of the systems is constructed. Infer-
ence times on an Nvidia Tesla P100 GPU as well as mAP50 of all models are presented.
Loss curves, as well as validation mAP50 curves, are also displayed. However, they are
all rather similar, which is why only a subset of them are included.

5.1 Baseline

The resulting baseline mAP50 scores for the validation and test set is provided in table 2.
The average inference time and its standard deviation for 1000 frames is given in table 3.

Experiment Validation mAP50 Test mAP50
YOLO 45.0 47.3

YOLO_MOS 45.4 47.9
YOLO_SEQ 39.8 39.4

Table 2: Baseline results in terms of mAP50 on the validation and test sets.

Experiment Inference time (ms) Variance
YOLO 40.2 0.7

Table 3: Baseline result in terms of average inference time and variance over 1 000 forward
propagations.

5.2 Main systems

The resulting mAP50 scores for most sequential models on the validation and test set is
provided in table 4. The average inference time and its standard deviation for 1000 frames
is given in table 5.

Experiment Validation mAP50 Test mAP50
BLSTM_1 23.5 23.4

BLSTM_100 <1 <1
FLSTM_P 40.8 40.4

FLSTM_DS1 40.2 39.8
FLSTM_DS2 39.5 39.3
FLSTM_DS3 40.0 40.1
FLSTM_DS4 37.9 37.6
FLSTM_DS5 38.8 38.1
FLSTM_N 38.4 38.4
FLSTM_H 38.8 38.3

Table 4: Main systems results in terms of mAP50 on the validation and test sets.

The best-performing model among the main system variations was FLSTM_DS1. Further
experimentation with this model was conducted, using data augmentation, different batch
size, sequential batch size and sequence subdivision length. The result from those exper-
iments is provided in table 6.
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Experiment Inference time (ms) Variance
BLSTM_1 45.2 0.5
FLSTM_P 56.9 0.4

FLSTM_DS1 55.7 0.6
FLSTM_DS2 46.3 0.2
FLSTM_DS3 53.0 0.7
FLSTM_DS4 54.4 0.6
FLSTM_DS5 49.0 0.2
FLSTM_N 62.2 0.7
FLSTM_H 68.7 0.9

Table 5: Main systems results in terms of mean inference time and variance over 1 000
forward propagations.

Experiment Validation mAP50 Test mAP50
FLSTM_DS1_MOS 40.7 40.8
FLSTM_DS1_REV 39.3 39.4

FLSTM_DS1_SHORT 35.9 35.0

Table 6: Result for variations on the experiment FLSTM_DS1.

Experiments with a larger kernel size than three were also conducted. The results of those
experiments are provided in table 7.

Experiment Validation mAP50 Test mAP50 Kernel size
FLSTM_DS4_KER5 39.4 38.9 5
FLSTM_DS4_KER7 39.2 38.3 7

Table 7: Results when using different kernel sizes.

Experiments were conducted when the off traffic lights were removed from the dataset.
The results from those experiments are available in table 8.

Experiment Validation mAP50 Test mAP50
YOLO_NOFF 58.0 57.9

FLSTM_DS1_NOFF 49.1 49.7

Table 8: Results when all off traffic lights were removed from the dataset.

Apart from the results in tables 2-8, two training variations of the FLSTM_P experiment
were conducted. In this variation, the sequential batch size was set to 1 and 10, respec-
tively. Setting the sequential batch size to 10 resulted in a model stuck at close to zero
validation mAP50 during training. This experiment was interrupted prematurely because
of this reason. When the sequential batch size was set to one, the model achieved a
validation mAP50 of 37.1 %.

5.3 Evaluation of results

In table 9, class-specific mAP50 for selected models is displayed.
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Experiment Off Red Red-Yellow Yellow Green
YOLO 16.9 20.2 57.7 56.9 43.4 49.9 51.3 49.9 68.0 67.6

YOLO_NOFF - - 58.7 56.9 53.6 52.6 60.0 60.5 67.4 67.6
YOLO_SEQ 3.9 3.3 53.7 52.9 38.4 38.6 40.5 40.0 62.8 62.4
FLSTM_DS1 4.0 3.5 54.5 54.5 35.7 36.4 41.8 40.4 65.0 64.4

FLSTM_DS1_NOFF - - 53.0 51.6 40.0 39.1 45.7 49.6 57.7 58.6
FLSTM_P 5.9 5.6 54.2 54.1 36.4 36.1 42.7 41.1 64.8 64.9

Table 9: Per-class mAP50 for some selected experiments. It is provided under each
heading as validation mAP50 and test mAP50.

It was also looked into how the performance differs for different sizes of traffic lights.
Since there are no large traffic lights in the dataset, only medium and small traffic lights
could be considered. Results for traffic lights of sizes small and medium is given for some
selected models in table 10. Notice that this time, the metric is mAP, i.e. the mean over
each class for mAP@[0.5:0.05:0.95].

Experiment Small Medium
YOLO 22.0 23.1 45.7 42.7

YOLO_NOFF 29.8 30.2 53.1 49.0
FLSTM_DS1 19.3 18.9 39.8 36.5

FLSTM_DS1_NOFF 23.1 23.2 45.7 42.7

Table 10: Per-traffic light size mAP for some selected experiments. It is provided under
each heading as validation mAP and test mAP.

The training loss and the validation mAP50 plotted against training steps for the experi-
ment YOLO_MOS is given in figure 21a and for FLSTM_DS1_MOS in figure 21b. The validation
mAP50 is only calculated after each epoch, and is therefore interpolated. Analogous plots
are given for experiments FLSTM_DS4_KER5, FLSTM_DS4_KER7, FLSTM_P and FSLTM_H in
figures 21c, 21d, 21e and 21f.
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(a) In red, the training loss in YOLO_MOS is
plotted against training steps.

(b) In red, the training loss in
FLSTM_DS1_MOS is plotted against training
steps.

(c) In red, the training loss in
FLSTM_DS4_KER5 is plotted against training
steps.

(d) In red, the training loss in
FLSTM_DS4_KER7 is plotted against training
steps.

(e) In red, the training loss in FLSTM_P is
plotted against training steps.

(f) In red, the training loss in FLSTM_H is
plotted against training steps.

Figure 21: The light red colour marks the actual loss, while the bright red curve has been
smoothed with exponential weighted moving average with weight α = 0.03. In blue, the
validation mAP50 is plotted.

The learned parameters of the ConvLSTM layer of FLSTM_DS1 and FLSTM_DS3 were looked
into. It was observed that all parameter values of the convolutional layer were in the
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range -1 to 1, similar to other convolutional layers in the first downsampling phases of
the backbone. It was also investigated how the accuracy of the models YOLO and FLSTM_P
differs for different IOU thresholds. In figure 22, the result from IOU thresholds ranging
from 1 % to 99 % is displayed.

Some side by side comparisons of predictions on test images from DriveU from different
models is available in appendix A.

Figure 22: Plot of mAP at different IOU thresholds for the models YOLO and FLSTM_P.
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6 Discussion
The results were in favour of the baseline model, YOLOv4. In other words, modelling
temporal context using either ConvLSTMs or box-level LSTMs did not improve the re-
sults. However, this does not prove that it would never do so, especially since it has
been successful in other applications. There are several possible reasons why it did not
happen in this case. The first possible reason is the selection of hyperparameters and
architecture design. Due to the time constraints, it was not possible to do proper hy-
perparameter tuning or conduct an exhaustive search for the optimal model architecture.
The hyperparameters for YOLOv4 were used as starting point for all alternative models,
which means that the training was biased towards the baseline. Additionally, most of
the hyperparameters for YOLOv4 were adopted from recommendations from the original
developers, where an exhaustive search for optimal hyperparameters was possible. This
may have had a large impact on the outcome of the experiments. An indication of this
can be seen in the results of experiments FLSTM_DS4 and FLSTM_DS4_KER5, which differ a
lot in mAP50 for a slight change of hyperparameters. Therefore, researchers attempting
to model temporal context in video using RNNs should be aware that careful tuning is
vital.

The results are also highly affected by the data. There are two properties of the DriveU
dataset which may have had a large impact on the result. The first one is the low camera
FPS of 15. Lower camera FPS means that there is a larger difference between two con-
secutive frames, thus the temporal dependencies are weaker. When the vehicle is turning
or when traffic lights are close, this is especially true. Of course, higher camera FPS
requires a faster model as well. The temporal dependencies are further weakened by the
fact that the images are split in half, meaning that a particular traffic light may stay on
camera for less time. The results of both the baseline and the sequential models are also
negatively impacted by the aggressive resizing of the images, despite several operations
being performed to avoid it. The second property about DriveU, which may have harmed
the sequential models is the annotation inconsistencies and inaccuracies. Several traffic
lights were found to have the wrong label, which causes confusion about what the correct
class of a traffic light is. However, the most important error to point out is inconsistent
labelling of off traffic lights for different cities. This was fixed but too late for use in this
thesis. Further work may therefore provide more accurate results for off traffic lights.
The YOLO model achieved significantly higher mAP50 for the off traffic lights, but we also
experienced that it was less hesitant to make predictions overall. The behaviour of some
selected models, including YOLO, can be studied in appendix A for a small number of
scenes.

The reason for why off traffic lights were difficult to detect cannot only be explained with
annotation errors. Red, yellow and green traffic lights are strong illuminants, so those
objects differ greatly from most other objects in traffic scenes. Off traffic lights appear
dark or blend in with the background in many images, which requires a model that can
rely on context instead of only colour. The difficulty of detecting off traffic lights was also
concluded by [8], where an mAP of 1 % was achieved. A possible solution to this problem
arises from the scenario in which they matter. In Sweden, the only time off traffic lights
are interesting to drivers is when a traffic light flashes yellow. Thus, an off traffic light can
be indirectly detected using the yellow state, which is present in only some of the frames.
Not directly detecting off traffic lights would allow a model to focus on only the simpler
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states, which yields a more accurate system. An additional benefit would be with regards
to class imbalance since the front-facing off traffic light is infrequent.

Two experiments with data augmentation were conducted. The first experiment tries
to answer whether or not Mosaic improves mAP in sequential models. Experiments
FLSTM_DS1 and FLSTM_DS1_MOS, indicate that using Mosaic increases mAP50.

While most experiments used the highest possible sequence length (six) before performing
backpropagation, a model with lower sequence subdivision lengths but larger batch size
was also tested. The experiment FLSTM_DS1_SHORT used a sequence subdivision length
of three but a batch size of two. However, this resulted in lower detection accuracy. A
natural follow-up experiment would be also to test a sequential subdivision length higher
than six, which unfortunately was not possible due to memory constraints. Two related
experiments were conducted where the sequential batch size was set to one and ten. As
stated in the result section, setting the sequential batch size to ten led to extremely slow
convergence, and the mAP50 was close to zero. This is likely due to a noisy gradient, so
that the average gradient over many sequences is close to zero. This could potentially have
been fixed by increasing the learning rate or switching to another learning rate scheduler.
Setting the sequential batch size to one did not improve mAP50 either.

Another interesting experiment was to increase the kernel size. This was done as an
alternative to FLSTM_DS4, with a kernel size of three, which reached an mAP50 of 37.6 on
the test set. The alternative experiments FLSTM_DS4_KER5 and FLSTM_DS4_KER7 improved
on this, getting test mAP50’s of 38.9% and 38.3%. This indicates that a more complicated
sequential module is beneficial when dealing with a semantically complex feature.

The box-level VODS performed poorly. A box-level LSTM has been implemented with
success, but then the task was only to find one object per frame [54]. However, the im-
plementation does not hold for more than one object since when more than one bounding
box is fed to the LSTM at a time, there is no mechanism for the association of boxes
between different frames. For the LSTM to meaningfully adjust the box predictions, the
objects must be fed to the LSTM to be in the same order each frame. The resulting
representation, therefore, becomes too weak. For example, let us consider the case when
the most confident box in a particular frame does not contain the same object as the most
confident box in the next frame. The system wrongly tries to associate the two bounding
boxes although they are in no way related, i.e. erroneously adjusting the bounding box
locations and labels.

Although the results of the experiments indicate some differences between models, they
need to be taken with a grain of salt for two reasons. First, due to time constraints, it was
only possible to run each experiment once. It is therefore possible that with repeated runs
that the difference in the mAP50 metric would not be statistically significant (although
the large size of the dataset reduces the effect of the randomness in parts of the model).
Second, the models were trained and tested on a German dataset, so it is not guaranteed
that results would hold up for data from other parts of the world.

The sequential models did have consistently higher inference time than the baseline but
to a varying degree. The largest factor was how big the feature maps of the added con-
volutional LSTM’s were. This is natural since replacing a convolutional layer with a
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ConvLSTM is essentially replacing a number of convolutional layers with more convolu-
tional layers. This generally low impact on the inference time indicates that if adding
ConvLSTMs in a network can improve the accuracy of a model and inference time simul-
taneously, since the network probably can be shrunk but maintaining higher accuracy.

It has been shown by [58] that a convolutional layer can be replaced by a so-called self-
attention layer, which has a smaller computational cost but does not compromise on
expressive power. A recent invention in the vision field is the Swin transformer [59],
which is a completely convolution-free backbone network that can be used for various
vision tasks like image classification and detection. It is a variation on the attention-
based Transformer model originating from the natural language processing field. The
Swin transformer backbone with a variation of the R-CNN head achieves state-of-the-
art performance on a benchmark dataset, outperforming YOLOv4. This indicates that
future work should explore how attention can be used in an ODS in general, but most
importantly how it may incorporate temporal context. According to [60], the attention
modules should be applied in the later stages of the ODS, in which we have seen some
evidence that ConvLSTM’s are the least useful. Our experiments indicate that the further
down the CNN a sequential model is attached, the more advanced it has to be. The finding
further confirms that advanced attention modules are useful in the later stages of a CNN.
[61] constructed variants of ConvLSTMs where attention was included. The result was a
nine-fold reduction in the number of parameters for all variants compared to the standard
ConvLSTM. The system was used to predict hand gestures in video and achieved similar
or better performance than the ConvLSTM-based system. Therefore, an attention-based
ConvLSTM version of YOLO may potentially have outperformed the baseline.

A problem with high-resolution images and CNN’s is that aggressive resizing is necessary,
where much quality is removed. A simple solution would be to divide each image into
n grid cells and then run an ODS on each cell. This would most likely increase the
detection accuracy but to a high cost of inference time. Therefore, a significantly smaller
model would be necessary to compensate for dividing the image into cells. According
to [58], if the input and output channels are 128, a convolutional layer with kernel size
being 3 has similar computational cost as an attention layer with "kernel size" being 19
(in vision attention models, it is called spatial extent). A potential approach to combat
the resizing problem would be to use an attention system on the full-resolution image
that predicts locations where traffic lights may be. This would be more likely to be
computationally feasible since attention models can consider much larger receptive fields
to the same computational cost.

For the classification task of a detection system, conversion from RGB to HSV colour
space can be beneficial. The reason is that for distinguishing between the colours yellow,
red and green it is sufficient to look only at the hue component. It is, therefore, simpler
and more efficient to perform colour segmentation in the HSV space [55]. Additionally [62]
show that colour segmentation algorithm achieves better detection accuracy on road signs
when using the HSV colour space as opposed to the RGB colour space. They attribute
the better performance of the algorithm mainly to the robustness of HSV colour space to
different types of lighting conditions.

The primary metric used in this thesis to evaluate the models was mAP50. There is a
possibility that the developed sequential model is better in another sense, e.g. consistency
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of predictions, an mAP metric with a lower IOU threshold or with respect to another
metric, e.g. STT-IOU. Because of the rather big difference in mAP50, there is a high
probability for that the baseline system is better in most ways.

A potential way of encouraging a model to learn temporal dependencies would be to
incorporate them in the loss function. For example, incorporating STT-IOU in the loss
function of a sequential detection system is possibly a more efficient way of learning the
temporal dependencies, just as incorporating the IOU loss using LCIOU improved single-
frame detection systems. This would also allow for tracking how well the model learns to
model temporal context during training.

It should be noted that even if a VODS would confidently show higher mAP with the
proper architecture and hyperparameters, it comes with some additional problems com-
pared to a single-framed ODS. One example is the bias towards the behaviour of the
vehicle the annotated data was recorded on. For example, if inference is run on a new
vehicle that is more springy, it may lead to worse performance. An extreme version of this
problem can be seen in figure 26 in appendix A, using footage of traffic lights recorded
on a phone while walking. In this example, even though there is not a significant dif-
ference in the performance on the DriveU dataset between the sequential model and the
baseline, the sequential model makes severe mistakes. This means that using a model
utilising ConvLSTMs requires annotated data from not only different environments but
also different vehicles. This makes the process of creating annotated data more expensive
and complicated. Notice that all models perform significantly worse on those images, sug-
gesting that the models also learned bias towards the cameras and scenes used in DriveU.
A potential way to mitigate this problem is to use weights from earlier epochs, as the
validation mAP50 observed during training does not display any hints of bias towards the
DriveU dataset. A benefit of the ConvLSTM models over the baseline is reduced flicker-
ing in their predictions over several frames. From manual inspection of predictions on the
test set (some of which are available in appendix A), it was observed that the sequential
model makes more stable predictions but also fewer predictions overall. The baseline thus
makes more predictions but also produces more false positives. This is likely the reason
for the difference in performance on off traffic lights between the sequential models and
the baseline. By running inference on the same sequences with YOLO_SEQ, however, yields
similar predictions as with the sequential models. This indicates that this behaviour is
associated with the training strategy and not necessarily the model.

Finally, YOLO and FLSTM_P were evaluated for different IOU thresholds. It was found that
YOLO outperforms the sequential model for all thresholds, but the gap shrinks dramatically
as the IOU threshold is increased. This is yet another indication that YOLO is less hesitant
to make predictions than the sequential alternative. As the IOU threshold is increased,
the models only detect the highly confident cases.
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7 Conclusion
Modelling temporal context for traffic light recognition using RNNs is non-trivial. A
proper investigation of whether temporal context can be efficiently modelled for improv-
ing detection accuracy involves exhaustive hyperparameter and model architecture search.
This is a computationally expensive and time-consuming process. Our experiments indi-
cate that the further down the network a sequential module is attached, the more complex
it has to be to improve recognition accuracy.

The problem of recognising traffic lights is made considerably easier because traffic lights
are strong illuminants with similar aspect ratios. Despite this fact, there are still difficult
cases that a TLR system has to be able to handle. One of them is differentiating a traffic
light from a vehicle brake light. Here the system has to rely heavily on context, which
can be done by considering large enough receptive fields. However, the most challenging
problem is the detection of off traffic lights. This problem has received very little attention
in the literature since researchers in the field routinely exclude this class when developing
TLR systems. Off traffic lights can be indistinguishable from other objects when seen
from far away. But off traffic lights are only relevant in the case of blinking yellow traffic
lights. We, therefore, suggest that a future TLR system should instead focus on inferring
the relevant off states using the yellow traffic light, which is much easier to find.

Our experiments provide some evidence that considering longer sequences (t > 3) is
necessary to maximise accuracy in a sequential vision model utilising ConvLSTMs. Since
this requires a large amount of computation time and computer memory, using attention
models to reduce the time complexity is an attractive alternative that needs to be explored
further.

Lastly, a box-level LSTM without the association of boxes between frames yielded a lower
detection accuracy than the baseline and the feature-level sequential models.
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Appendices

A Inference examples
In this appendix, there are side by side comparisons of a few different models when
conducting inference on the DriveU test set. In ground truth images, white boxes represent
the off state, red for the red state, orange for the red-yellow state, yellow for the yellow
state and finally green for the green state.

(a) Ground truth. (b) YOLO

(c) YOLO_SEQ (d) FLSTM_P

Figure 23: Model comparison for a scene with many traffic lights. The YOLOv4 baseline
model detects considerably more off traffic lights.
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(a) Ground truth. (b) YOLO

(c) YOLO_SEQ (d) FLSTM_P

Figure 24: Model comparison for a scene with few traffic lights. YOLO is the only model
that detects the off traffic light. Notice also the annotation error in the dataset, where a
red traffic light was labeled as a yellow.
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(a) Ground truth. (b) YOLO

(c) YOLO_SEQ (d) FLSTM_P

Figure 25: Model comparison for a scene with some traffic lights that are both far away
and somewhat occluded by trees. YOLO has the best recognition performance but FLSTM_P
recognises the most relevant traffic lights.
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(a) YOLO (b) YOLO_SEQ

(c) FLSTM_P

Figure 26: Model comparison for a scene with some traffic lights from Uppsala, Sweden.
YOLO_SEQ and FLSTM_P both wrongly detect non-traffic lights as traffic lights.
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B Difficulties in DriveU
The DriveU dataset is the largest traffic light dataset in terms of number of frames and
annotations at the time of writing the thesis. There are some errors in the dataset and
some other difficulties for machine learning models, especially for sequential models. In
this appendix, some of those difficulties are visualised. During the writing of this thesis,
an update of DriveU was released with annotation errors and off state inconsistencies
fixed. This was however published too late to incorporate in the thesis, which is why all
image labels are from version one.

(a) A red traffic light which is annotated as yel-
low.

(b) Another red traffic light labeled as yellow.

Figure 27: Examples of annotation errors in version one of DriveU.
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(a) First frame. (b) Second frame.

Figure 28: Example of how two consecutive frames in DriveU can be significantly different
from each other, due to a camera FPS of 15. This makes it difficult to model temporal
dependencies between frames.

(a) First frame. (b) Second frame.

Figure 29: Another example of how different two consecutive frames are in DriveU.
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