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Modelling temporal context for traffic light recognition using RNNs
DAVID FREYR BJORNSSON

MATTIAS WESTERBERG

Department of Mathematical Sciences

Chalmers University of Technology

Abstract

The purpose of this thesis is to investigate whether or not including temporal context
using recurrent neural networks in real-time object detection systems can improve de-
tection performance in traffic light recognition. This was investigated using the DriveU
traffic light dataset. Two variations of the YOLOv4 object detection system were cre-
ated. The first variation is a LSTM which takes as input the bounding boxes predicted
by YOLOv4 and outputs updated predictions. The second variation is a modification
of the YOLOv4 network in which convolutional layers are replaced with convolutional
LSTMs. With a limited number of experiments, it was found that the baseline model out-
performs the more complicated sequential models. However, there is evidence that this
is due to the sequential training strategy since the YOLOv4 baseline was outperformed
by some sequential models when it adopted the sequential training strategy. The baseline
YOLOv4 model achieved best performance on a held-out test set. The best sequential
model achieved lower detection performance. When the baseline YOLOv4 was trained
with the sequential training strategy, it achieved worse performance than the sequential
models. Modelling temporal context using recurrent neural networks may improve detec-
tion performance, but answering the question requires an exhaustive search for a training
strategy and model architecture. The analysis conducted in this thesis provides no ev-
idence that modelling temporal context with YOLOv4 improves traffic light recognition
performance on the DriveU dataset.

Keywords: object detection; traffic light recognition; recurrent neural networks; temporal
context; YOLO
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Figure 1: A traffic scene from Germany with multiple traffic lights. The bounding boxes
enclosing the traffic lights are predictions from an object detection system. [11]

1 Introduction

Various systems for autonomous driving have been developed throughout the years. These
systems aim to make the job of the driver easier while increasing safety at the same time.
There is evidence of rearview cameras and rear parking sensors decreasing the probability
of collisions [2]. Additionally, a study found that lane departure warning and lane-keep
assist systems decrease the driver injury risk . This work is concerned with developing
a traffic light recognition (TLR) system that can be useful in autonomous vehicles. A
typical scene with multiple traffic lights is illustrated in figure [1. Previous work in TLR
mainly concerns single frame traffic light recognition [[4], [5], [6], [7], [8]]. While these
papers show impressive performance, more information about the traffic situation can
be extracted when considering a sequence of frames. If a traffic light is in a particular
location in a frame, it is likely to be in a similar location in the next frame. The traffic
light state is also highly dependant on the previous frame. This observation has been used
for improvements in the general field of object detection in video sequences ﬂgﬂ There are
several approaches in the field of deep learning to improve object detection in video with
the use of recurrent neural networks (RNN), a machine learning model for sequential data
[10]. Important information from previous frames can be remembered in an RNN and
potentially result in a more accurate TLR system. To the best of our knowledge, this has
not been investigated for the case of TLR.

1.1 Background

Scania is moving towards more sustainable transportation systems. Self-driving vehicles
are one of the many investments into this long-term project which Scania estimates will
lead to greater sustainability and automotive safety. Extensive research has to be con-
ducted in the field of traffic light recognition before fully autonomous vehicles can enter
the roads.



1.2 Aim

There are many approaches to consider when including the temporal context in a model.
It is not feasible to investigate all of them, so the investigation is limited to RNNs. The
thesis aims to investigate if RNNs can improve the detection accuracy and speed of TLR.

1.3 Limitations

There are many techniques for optimising the training of object detection systems (ODS).
This thesis aims not to create the best possible ODS but rather to measure the effect of
adding RNNs in deep learning models in the field of TLR. Thus, an exhaustive search for
the optimal network architecture will not be performed. Due to both hardware and time
constraints, extensive hyperparameter tuning for models cannot be conducted. Instead,
the focus is put on a specific model and how RNNs affect its performance. Even if it was
possible to perform an exhaustive search for the optimal model, the results would still not
be guaranteed to hold for other data than used in the thesis.



2 Theory

Video Object Detection Systems (VODS) are highly complex architectures, often com-
bining many components found in the field of deep learning. The core components are
ODSs and RNNs. Those components comprise many systems and operations, e.g. neural
networks, convolutions, recurrent models, activation functions and training schemes. This
chapter deals with the fundamental theory that the proposed VODS builds upon.

2.1 Deep learning foundations

Deep learning approaches to object detection utilise convolutional neural networks (CNN)
for extracting semantic information in images. A naive way of extracting information in
images would be to have one input neuron per pixel. However, a CNN is a special case
of the neural network model, made to improve this extraction process with the added
benefits of reduced training times and lower risk of overfitting. When concerned with
video object detection, it is also beneficial to factor in the relationship between frames in
a sequence. An RNN can model this relationship.

2.1.1 Feedforward neural networks

The core unit in a neural network is the neuron, which can be considered a vertex in a
computational graph holding one value. It is structured as a graph without cycles, where
one end of the graph contains the input neurons and the other end the output neurons.
A neural network has one or more layers with a varying number of neurons in each layer.
The value of a neuron is computed by an activation function of the weighted sum of the
outputs of the neurons in the previous layer. The weights are adjusted so that the neural
network models the input data. The error is the difference between the ground truth and
the prediction.

For a neural network with n layers, the value of the k’th neuron in layer [ € {1,...,n}
is of == g(bf + >, wf ,xf ;). This is a recursive formula, since all neurons x]_; will
be dependent on neurons in layer [ — 2. The base case xf is given by the input data,
together with the ground truth. Common choices for a activation function g are the

sigmoid function ¢ and tanh.

The activation function should be differentiable since the weights w} are updated with
the gradient of the loss function (¢, y) with respect to w;, where § is the prediction (the
network’s output layer) and y € R is the true ground. For classification tasks, a common
loss function is cross-entropy while the squared error is a common choice for regression
tasks. An example neural network is displayed in figure 2] The hidden layer consists of
2 neurons, each of which takes as input all neurons in the previous layer; therefore it is
called "fully connected".
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Input Layer
Hidden Layer Output Layer

Figure 2: A fully connected neural network with 4 input neurons, 2 hidden neurons and
2 output neurons.

The objective of a neural network is to model an input-output mapping. Finding a map-
ping means adjusting the weights and biases in the neural network so that they model
the true mapping as closely as possible. There is a wide range of training schemes to ac-
complish this goal. A training scheme consists of forward propagation of the input values,
i.e. calculating the output of a neural network, and backpropagation, which is propaga-
tion of the gradient of the loss back in the network in order to update the parameters.
The parameter update has a magnitude proportional to the gradient with respect to the
prediction error, but there are many optimisation strategies for how the gradient can be
utilised [12, p. 164-223|.

2.1.2 Optimisation strategies

There are many techniques and optimisation algorithms available to get the best out of
the training phase. The field of deep learning is not in agreement on what optimisation
algorithm to use and what practices are best in general. A relevant subset of techniques
and stochastic optimisation algorithms is presented here |12, p. 306-307].

Two common optimisation algorithms are stochastic gradient descent (SGD) and Adam.
SGD is an optimisation algorithm that takes a subsample of the datapoints (commonly
referred to as a batch) and uses it to calculate the gradient with respect to a loss function
¢. The gradient is propagated through the network and is used to update the weights and
biases. A pseudocode example for learning a parameter § with SGD is given in algorithm
[ The algorithm requires a learning rate schedule €, €s, ..., which is used for scaling the
gradient. A sufficient convergence condition is that

M8

€, = 00, and
k=1

(o]
D e < oo

k=1

In practise, the learning rate is constant after a couple of iterations |12, p. 290-291].



Algorithm 1 SGD update for a parameter 6
Input: Learning rate schedule €1, €s, ...
Output: Parameter 0

1: procedure SGD(ey, €2, ...)

2 k<1

3 while stopping criterion not met do

4: Sample a batch from the training set {X(l), ey x(m)} with corresponding targets y(?)
5 Compute gradient estimate g < %V@ S D,y @)

6 Apply update 0 < 0 — €8

7 k<—k+1

A variation of the SGD optimiser is SGD with momentum, which works just like algorithm
[1, but in each step a weighted sum of current and past gradient estimates is calculated,
where the weights are decaying exponentially for previous gradients. [12, p. 292-293]

Tuning hyperparameters for optimisation algorithms can be time-consuming, while model
performance is largely dependent on them. An attempt to combat this issue is an adaptive
learning rate. Adam takes into account the learning rates of past iterates. The algorithm
utilises the idea of moments in combination with the average of the past squared gradients.
The algorithm can be studied in more detail in algorithm [2 Adam is considered robust
to different choices of hyperparameters. |12, p. 306-307|

Algorithm 2 Adam optimiser algorithm [1]

Input: a: step size.

Input: f;, 52 € [0,1): Exponential decay rates for moment estimates.
Input: f(6): objective function with parameters 6.

Input: 6j: Initial parameter vector

Output: 6;
1: procedure ADAM(«, 31, B2, f, 0)
2: mo < 0
3 vg < 0
4: t+0
5: while 68; not converged do
6 t—t+1
7 gt < Vo fi(0i-1)
8 my < Bimy—1 + (1 — p1)gs
9: v+ Bavi—1 + (1 — B2)g?
10: My < my/(1— (B1)?)
11: Uy — ’Ut/(l — (BQ)t)
12: Ot — 0t_1 —Oémt/(\/’lATt-i-ﬁ)

Optimisation algorithms aside, other useful techniques can be applied to neural networks
to assist in the optimisation process.

The distribution of each layer’s input changes during the training process of a neural
network. This requires precise initialisation of the network hyperparameters. To combat
this, S. Toffe et al. |13] proposed a method called batch normalisation.



This is an operation which is usually applied right before an activation function. Let X
be a batch with m observations and n predictors, X;; denotes the i’th observation in the
j’th predictor. Then the normalised batch X’ is calculated as:

mX—
Xt = =X Tl ey )

0j

where p1; and o; are the mean and standard deviation of the j’th predictor over m obser-
vations. Batch normalisation helps to stabilise the training process and can dramatically
decrease the training time [12, p. 313-317].

Dropout is another technique for assisting the optimisation process. It involves setting
a random subset of neurons to zero during a forward pass. This technique is a way to
emulate the training of an ensemble of sparse networks so that it will not be too reliant
on a small subset of neurons. In other words, dropout is a regularisation technique [12,
p. 255].

Common choices for activation functions are, as stated earlier, sigmoid and tanh. However,
it has been found that those activation functions are likely to exacerbate the vanishing
gradient problem. This occurs commonly for deep networks because of the many multi-
plications in the long chain of gradients. It means that the training may be in a phase
where it cannot update some of its parameters and thus cannot learn from the data. To
combat the vanishing and exploding gradient problem, one can use the rectified linear
unit (ReLU) activation function:

g(x):{x’ for z > 0 (3)

0, otherwise.

The ReLU function, however, has another problem: the dead gradient. This occurs when
most inputs to the function are negative. To combat this problem, we allow for weakly
negative outputs. The new activation function is called leaky ReLU:

(4)

€T) =
9(@) kx, otherwise,

{x, for x > 0

where £ is a small scalar. A variation on the leaky ReLU is to let k& be a learnable
parameter. This activation function is called parametric ReLU [12, p. 189-190].

When the output takes on a finite number of discrete values, a common activation func-
tion is the softmax function. For an input vector x € R¥, the corresponding softmax
transformation is
exp(z; ,
d(x;) = # Vi=1,.,K. (5)
> j=1 exp(z;)

Therefore all values of the transformed input vector are between 0 and 1 and together
sum to 1 [12, p. 180-181].



2.1.3 Convolutional neural networks

A convolutional neural network is a special case of a neural network characterised by two
key operations: convolution and pooling operations. The convolution operation involves
calculating the Hadamard product between the input matrix and a kernel matrix and sum
the resulting matrix elements for each pixel. The output matrix is called a feature map,
and a convolutional layer in a neural network typically calculates several feature maps of
the input matrix, one per kernel. The network learns the weights of the kernel. Therefore
a kernel window with multiple activations gets associated with only one output [12, p.
327-328|. In the case where our input I of size W x H (e.g. a grayscale image) and kernel
K of size M x N are both two-dimensional, then a feature map F' is calculated as

F=K+I1=Y Y Kuplomyn  V(z,y)€(W—M)x(H-N). (6)

m=1 n=1

This convolution operation is commutative and is denoted by *. The convolution operator
for the two-dimensional case is visualised in figure |3| [12, p. 327-328]. When the feature
map is three-dimensional, as is the case for RGB images, the convolution operation is
applied to each colour channel using separate kernels.

There is also a possibility of controlling the step size of the kernel, called the stride, which
will affect the size of the resulting feature map. Equation @ has a stride of (1,1) which
means that it will move the kernel 1 element horizontally and 1 element vertically over I
for each feature map pixel. A stride of (2, 1) will halve the feature map size by stepping
two elements horizontally instead, i.e. every other element of W would be removed.

A generalisation of the equation ([6) is achieved by introducing padding, e.g. zero padding,
which is adding zeros around the input matrix I to make it taller and wider. This operation
avoids having a smaller feature map than the input matrix, beneficial in applications where
the spatial context is of interest |12} p. 343].

Input .
adap, &
0 lo o |2 [T{1] U progy, )
0 |0 |1 |1 JOo ]O 2 |1 |3 |6
2 11 10
0 |1 |0 |O [0 [O 0 12 |4 |3
. 1 {o |1
3 10 |0 |1 |1 16 4 13 12 |1
0 [t+-}0
0 |0 |JO |1 |0 |1 9 |1 |2 |6
Kernel
0 |3 JO |1 |1 (O Output

Figure 3: A visualisation of the convolutional operation using a two-dimensional input of
size 6 X 6 and a kernel of size 3 x 3.

The benefits of using convolutions in comparison to fully connected layers are twofold.
They typically reduce the number of network parameters since M x N x number of kernels
is usually smaller than the number of elements in the input matrix. Secondly, they

7



effectively increase the size of the training dataset in relation to the number of parameters
since the same filters are applied to every kernel window of each image. Convolutions also
have a translational invariance property. This means that when a subset of image pixels is
shifted, the corresponding feature map elements are shifted accordingly. p. 331-335].

For upsampling a feature map one can use transposed convolutions, where the input
elements get associated with multiple outputs. The notion of padding and stride is also
used for this operation. Given a set of feature maps F of size |F| x W x H, a stride s,
an input padding p;, output padding p,, dilation value d and a kernel size M x N, the
transposed convolution operator returns an output of size \F | x W x H , where

W =s(W—1)—2p; +d(M —1) +p, + 1 (7)
H=s(H—1)—2p;+d(N —1)+p, + 1. (8)

The procedure to create an output feature map comprises three steps.
1. Padding the input according to p;

2. Create an output feature map equal to the feature map but with d padding elements
(e.g. zeros) inserted between each row and column. Lastly, pad the output feature
map according to p,

3. Apply a convolution operation @ to the feature map with the given kernel and
stride

This procedure can be conducted on the same feature map as many times as the desired
size of the output channel dimension [14].

Another operation that is common in combination with convolutions is pooling. A pooling
layer has no parameters, and the motive is to reduce the size of a feature map. There
are different types of pooling layers, where a common one is max-pooling. The max-
pooling operation extracts the highest pixel value in each kernel of the image. A potential
problem with pooling operations is that they cause loss of spatial information of objects
in the original matrix, which is a drawback for applications relying on the preservation of
spatial context. A visualisation of max-pooling is displayed in figure [4] [15].

Max pool

Figure 4: A visualisation of the two-dimensional pooling operation. In this case, max-
pooling with a kernel of size 3 x 3 and a stride of 3 x 3.



A common design of a CNN |16] is successive use of the pattern
1. Convolution
2. Batch normalization
3. Activation
4. Pooling

2.1.4 Recurrent Neural Networks

An RNN is used for modelling sequential data by using connections to later realisations of
itself. The core components of a simple RNN are an activation function g, a loss function
¢ and a hidden state vector h;. The output vector at time step t is denoted as ;.

To perform forward propagation we begin with an initialised hidden state hg, then for
each time-step ¢,t = 1,...,T we use the following update equations:

he = fW Oz + W hy_y + by) (9)
or = WOh, 4+ b, (10)
th :Q(Ot)> (11)

where f is a transition function that is applied at each time step, W,Et), ngt), Wo(t) are
weight matrices and by, and b, are biases |12, p. 372-374].

The output of the network, denoted o;, is used in a loss function ¢ to measure the distance
between the predicted labels ¢ and true labels y. The total loss is the sum of the losses
at all timesteps: ¢ = Zthl Ci(9e, y). A visualisation of the RNN is displayed in figure .

Compact Unfolded

Figure 5: An illustration of the RNN model in compact and unfolded form.

With long sequences, the network becomes deep. As with all neural networks with many
hidden layers, they can suffer from the vanishing or exploding gradient problem. To



illustrate this problem, consider a network with only one neuron per layer but many
layers. The nested activation functions give the output of the network

gr = g(Wy g(Wy " g(Wig(Wyw — by) — by)... —b' 1) = b). (12)

A single SGD update of the weight vector W,

ol

W

Wi = w4 o (13)

where « is the learning rate. The computation of the gradient é%h involves multiplication
with the term
SWT
oW}

= g (V)W (14)

Weights are often initialised with small values. However, if the weights are small, then
the product ¢’ (b} ')W} is likely to be smaller than one. If T is large, the gradient 5%
becomes close to zero, and the training, therefore, slows down considerably. On the other
hand, if the weights are large in magnitude then the gradient factors are likely to be larger
than one. In that case, the gradients increase exponentially with network depth. This
is more common in later stages of the training since the weights tend to grow over time.
These scenarios are descriptions of the vanishing and exploding gradient problem. These
problems cause difficulties for recurrent neural networks to learn long-term dependencies
[17, p.131-132].

One way of tackling this problem is to have the hidden units with self-loops where another
hidden unit controls each loop, called a forget gate. This gate allows the network to retain
long-term knowledge and learn from the data what it should forget and remember. This is
the idea behind gated RNNs and specifically the long short-term memory (LSTM) model.
There are three types of gates in an LSTM: forget gate, input gate and output gate.
Those are visualised in figure [f] and the corresponding update formulas are listed in the
equations (L5)-(20) [14]. The key idea is to learn what information should be remembered
and what should be forgotten |12, p. 404-406].

) ® ®
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Figure 6: An illustration of the LSTM model with three time steps. [18]
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The output of an LSTM at time step ¢ is denoted o, and the input as z;.

ir = o(Wiixy 4 by + Whiihe—1 + bpi) (15)
fi= O‘(VVifZUt + bif + thht—l + bhf) (16)
gr = tanh(Wi,zy + by + Wighi—1 + byy) (17)
0y = 0(Wioms 4 bio + Wiohy—1 4 bpo) (18)
¢t = froc_1+i0g (19)
hiy = o4 o tanh(c;) (20)

Although LSTMs reduce the risk of exploding gradients, they do not eliminate it. It is
therefore vital to be aware of methods to tackle that problem when using LSTMs. The
authors of [19] propose a method that involves scaling gradients when their norm reaches
a certain threshold. This introduces another hyperparameter, but the paper’s authors
find that looking at the average norm over many updates provides a good foundation for
deciding on a threshold.

There is a recurrent model which combines convolutional neural networks with an LSTM.
It is called a convolutional LSTM (ConvLSTM) and the corresponding update equations
are given by (2I)-(26). The drawback the authors saw in using a fully connected LSTM
is that no spatial information can be encoded because the image data would have to be
flattened into a vector. Using a ConvLSTM in a neural network provides the network
with visual memory of previous images in an image sequence [20].

Iy =0(Wyx Xy + Wiy s Hyy + We0Cioy + b;) 21

(21)
.Ft :J(fo*?(mLth*th +choct—1 +bf) (22)
Gy = tanh(Woe « Xy + Whe * Hy1 + be) (23)
Ci=FoC1+LioG (24)
Op = (W * Xy + Who x Hy_1 + Weo 0 Cy + by) (25)
H; = Oy o tanh(Cy) (26)

An alternative to LSTMs when it comes to gated RNNs is gated recurrent units (GRU),
which is a model with fewer parameters. It is a similar architecture but without an output
gate and a cell state. The update equations are listed in —, where r is the reset
gate, z is the update gate, h is the hidden state and h is the output [21].

oW,z + U.hy_1 + b,)
oc(W,zy +U,hy—1+0b,)
he = ¢(Whay + Up(r o hy_1))
ht:(l—zt)oht,l—i-ztoﬁt

(7

Zt

Similarly, a convolutional GRU model is achieved by exchanging the matrix-vector mul-
tiplications for convolution operations, considering the weight matrices as kernels. [22]

2.2 Object detection systems

There are four tasks that deep learning-based object detection systems need to perform
efficiently and accurately: extract features, generate candidate regions, classify and refine
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bounding box locations. The process of extracting features from an image using deep
learning can be done with a typical classification network for images, such as a residual
neural network (ResNet). A common architectural pattern in object detection networks
is where the following operations are applied repeatedly in order [|16], [23)]]

1. Convolution
2. Batch normalisation
3. Activation

This part of an object detection system is called the backbone network. Deep learning
object detectors either tackle task two and three in one or two stages that comprise the
network’s head. Two-stage detectors divide the task into a region proposal step and
a classification-regression step, where region proposals are initial guesses of where an
object might be. For the classification step, a background class is included in addition
to the classes of interest. This class represents boxes not containing any objects. The
background class is used during inference for filtering out boxes that supposedly does not
contain an object. On the other hand, one-stage detectors take as input an image and
a set of predefined boxes and perform the classification and regression step directly, and
a confidence score determines if a box contains an object or not. Sometimes there is an
intermediate step between the backbone and the head for processing the features. This
stage of a detection system is called the neck [24], p. 84-85].

This section provides explanations of some fundamental concepts that are often used in
the object detection literature.

2.2.1 Anchor boxes and confidence scores

Anchor boxes are used in several object detection systems. They are predefined bounding
boxes that the network uses as initial guesses of the true bounding boxes. Those are
predefined boxes that can, for example, be selected by running k-means on the width
and height-space of the boxes in the training data. Suitable aspect ratios and sizes are
determined from the training data. Object detectors then refine these initial guesses by
predicting the deviation from them. This prediction often includes a confidence score that
ranges between 0 and 1. This score represents how confident the algorithm is that the
bounding box contains an object. Predicting the confidence score is a regression problem.
Therefore, the regression output from such object detectors consists of tuples of five values
- four values determining the location and size and one confidence score [25].

In object detection, an optimal system finds bounding boxes that perfectly localise the
ground truth boxes and predicts the correct classes. The localisation is often quantified
by Intersection over Union (IOU), the fraction of overlapping area between the ground
truth and the prediction. The label we use for training the confidence regressor of an ODS
is the IOU. The confidence of a bounding box is thus the predicted overlap with a ground
truth object. This feature of the system is used during inference to filter out predictions
with low confidence.
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2.2.2 Non-maximum suppression

Non-maximum suppression (NMS) is a post-processing method in object detection. Most
likely, some bounding box predictions will refer to the same object, which results in many
redundant predictions. NMS is a greedy algorithm for removing duplicate predictions by
selecting the most confident boxes in each region. It is specified in algorithm [3[ [26].

Algorithm 3 Non-maximum suppression
Input: List of bounding box predictions B, confidence threshold ¢, NMS threshold 7
Output: A reduced list of bounding box prediction B
procedure NMS(B,t,7)
B+ {}
Remove boxes from B where confidence is less than t.

1:

2

3

4 Sort B on confidence in a descending order
5: for B in B do
6

7

8

9

for B in B do 3
10Uz « I0U between B and B
if IOUz > 7 then

: Break loop
10: if IOUj < 7 for all B then
11: Append B to B

2.2.3 Selective search

Selective search is an algorithm for segmenting an image by finding coherent matter and
bounding boxes. It is a greedy similarity-based algorithm that combines several similarity
measures (e.g. color and size) to distinguish objects from each other. In order to not miss
any objects, the algorithm emphasises high recall over high precision |27].

This technique can propose regions of interest that may contain an object to a two-stage
ODS. This algorithm is not used in recently developed object detectors since it is slow
compared to modern region proposal methods.

2.2.4 Feature pyramid networks

A feature pyramid network’s (FPN) structure is a CNN for generating feature maps of
different scales and semantic complexity. It is structured as a bottom-up and top-down
pathway with lateral connections between them, as illustrated in figure [Tal The output
feature maps can be reorganised into box predictions. Intuitively, feature maps generated
with fewer convolutions are more coarse than others, and predictions are made indepen-
dently on the different top-down pathway scales. This means that we make predictions on
both coarse and fine features and at different scales, which intuitively encompass a greater
variety of objects. A detection system utilising FPNs may also be better at recognising
objects at different scales. It has been shown experimentally that FPNs increase detection
accuracy on common ODSs with little impact on the inference time [28].
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(a) An illustration of a feature pyramid net-
work consisting of bottom-up and top-down
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maps that are convoluted and concatenated
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(b) An illustration of the fusion of bottom-
up and top-down features in the FPN net-
work.

Figure 7: A graphical explaination of the FPN network.

2.2.5 Focal loss and RetinaNet

Lin et al. |29] found that the main reason one-stage object detection systems were inferior
to two-stage detectors in terms of detection accuracy is the general imbalance between
the object and background class. They proposed a solution to this problem by inventing
a new loss function called focal loss. Focal loss down-weights correctly detected objects
during training to put focus on the falsely detected ones. Let p be the model’s estimated
probability that class y is correct. We define p; as p if the prediction is correct, and 1 —p
otherwise. Focal loss is defined in equation . However, the focal loss is often used
with a scaling parameter o in practice.

FL(p:) = —(1 — p:)"log(pe). (31)

The authors created a one stage object detection system called RetinaNet using an FPN
backbone network and focal loss, which surpassed all the existing two-stage detectors at
the time in terms of detection accuracy.

2.2.6 ROI pooling and warping

Two-stage object detection systems generate candidate bounding boxes and feed them
to a CNN. A CNN requires the bounding boxes to have a particular input size, but a
region proposal can be of any size. Region of interest (ROI) pooling was introduced
to solve this problem. It divides a candidate region into an K x K grid of cells and
then performs a pooling operation on each cell. But one downside of this operation is
apparent when candidate regions are non-integer, e.g. when relative coordinates are used.
In this case, some object information may be lost in the translation from relative to
absolute coordinates due to integer approximations [30]. A variation of ROI pooling is
ROI warping, which considers the lost information by interpolating all the pixels in a cell
instead [31].
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2.3 Evaluation of object detection systems

To demonstrate the quality of an ODS, it is necessary to define suitable metrics. Object
detectors output a confidence score representing the assessed probability that the predicted
bounding box contains an object and how accurately placed and shaped the predicted
bounding box is. The metric mean average precision (mAP) attempts to assess this in

one value between 0 and 1. For a precise definition of this metric, several concepts need
to be defined.

The confidence score that accompanies each bounding box prediction can be used to
classify a prediction as positive (the bounding box contains an object of a specific class)
or negative (the bounding box does not contain an object, i.e. the background class is
predicted). When calculating mAP, a detection is labelled positive if its confidence score
is equal or larger than a threshold t, else it is considered negative.

Whether the prediction is considered to be true or false depends on a chosen IOU threshold
s and whether or not the class prediction is correct. The IOU of a ground truth bounding
box and the predicted bounding box is the area of overlap between the bounding boxes
as a percentage of the total area of the two boxes.

The following metrics can then be defined:

e True positive (TP): A predicted box where the IOU with the ground-truth bound-
ing box is greater than a threshold s and the class is correct

e False positive (FP): A predicted box that is not a true positive, i.e. either the
class is correct, but the IOU is less than s, or the class is incorrect

e False negative (FN): A ground-truth bounding box that was not correctly de-
tected

For a fixed IOU threshold s, the precision and recall values are calculated as a function
of t

. TP(t)
precision(t) = TP + FP() (32)

TP(t)

recall(t) = TP + FN(D)' (33)

A key property of a good object detector is one where when recall increases, precision
decreases by only a small amount. This results in a large area under the precision-recall
curve (AUC). To compute the mAP metric and the average precision (AP), the following
steps are carried out:

1. Order the K different confidence values outputted by the object detector in an
increasing order

t(k),k =1,2,..., K where t(y) > t(x) for y >« (34)
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Each confidence value is used as a detection threshold ¢ as in (32)) and . There
is a one-to-one, monotonic correspondence between the recall and the confidence ¢
which has the identical correspondence with the index k. The precision-recall curve
is therefore discontinuous

2. Define an ordered set of reference recall values, R, sorted in a decreasing order:
R(i) < R(j) for i > j.

3. Interpolate the precision-recall curve so that it is continuous and monotonic over a
finite set

PREC;, (i) = k|TeC£%%>(<k))2iprecision(t(k)), (35)

where 7 is a given recall value
4. The AP metric is then defined as an approximation (Riemann integral) of the area

under the precision-recall curve

AP = i(R(k) — R(k+1)) - PREC;(R(k)). (36)

The resulting Riemann integral is evaluated using interpolation, where two ap-
proaches can be taken:

e N-point interpolation, where the reference recall values are used for the calcu-

lations N
—-n
R(n):N_l,nzl,..,N. (37)
The AP becomes N
1
AP = ; PREC;,,(R(n)). (38)

Common values for N are 101 and 11.

e All-point interpolation, where the obtained K recall values are used and the
following function values are set:

£(0) = 0
HE +1) =1,

so recall(0) = 1 and recall(K + 1) = 0 by definition. Then, recall(k) is the
recall at the k’th confidence value ¢(k). The precision values are calculated
using the interpolated precision-recall curve PRECY,,;.

5. The mean average precision is the average AP over all the classes:
s
AP = — AP, 39
mAP = Z:; (39)
where AP; is the AP for class i and C' is the total number of classes
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Common mAP metrics are mAP50, i.e. mAP calculated at an IOU threshold of 0.5 and
mAP@[0.5:0.05:0.95], mAP averaged over IOU thresholds from 0.5 to 0.95 with a step size
of 0.05. Another version of this metric takes the area of the ground-truth objects into
consideration:

e APs only takes into consideration small ground-truth objects (area < 322 pixels)

e APy only takes into account medium-sized ground-truth objects (322 < area < 962
pixels)

e AP only takes into considerations large ground-truth objects (area > 96 pixels)

Another version of IOU that takes adjacent frames in video into account is the spatio-
temporal tube intersection over union (STT-IOU). Considering a sequence of predictions
over several frames, the ground-truths and the predictions form tubes in time. STT-IOU
measures the volume of overlap as a fraction of the volume of union, thus quantifyin
the tracking performance. This is formulated mathematically in equation , where T,SZ
denotes a bounding box in frame ¢ in a tube of predicted boxes 7T}, and, similarly, T, g(? for
a ground truth tube [32].

num. frames (4) (3)
STTIOU = volume(T, N Tg) _ > area(Tp"” N Tgf ) (40)

volume(T, UTy,) s frames g0 (70 Tg(z))

2.4 Regions with CNN features (R-CNN)

Two-stage object detection systems can be divided into a region proposal phase and a
combined classification and regression phase. The region proposal phase consists of two
steps. In the first step, ROIs are generated. In the second step, the coordinates of the
proposed bounding boxes are refined. Additionally, class predictions are updated, and
boxes that do not correspond to objects are removed. What follows is a brief description
of some of the most well-known two-stage algorithms in chronological order: R-CNN, Fast
R-CNN and Faster R-CNN.

2.4.1 R-CNN

Regions with CNN features (R-CNN) starts by generating region proposals using the
algorithm selective search. The backbone is used to extract features from images and
outputs a 4096-dimensional feature vector. In order to use the CNN, all images must be
of the same size. This issue was solved by resizing the images to a fixed size of 227 x 227
pixels, potentially changing the aspect ratio. When the feature vector has been calculated
for a region proposal, a support vector machine (SVM) is run for each class. Each SVM
predicts whether a region proposal contains an object of a certain class or not. This means
that the backbone network calculates a feature vector for each region proposal, and the
feature vector for each proposal is fed to an SVM C times. Each classified proposal is fed to
a class-specific linear regressor that adjusts the bounding box coordinates. When it comes
to classifying examples as positive or negative in the loss function, the IOU threshold was
treated as a hyperparameter that was tuned on a validation set. A value of 0.3 was found
to be optimal in terms of mAP on a benchmark dataset. During inference, NMS is used
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to reject regions with high IOU between different predicted boxes in combination with low
SVM scores. Training is conducted in four stages: pre-training the backbone network on
an image classification task, domain-specific fine-tuning, training separate SVMs for each
class, and finally using a class-specific regressor to correct the bounding box locations [33].

2.4.2 Fast R-CNN

Fast R-CNN was introduced and builds upon R-CNN with the objective of reducing
inference time. The main inference bottleneck of the R-CNN implementation is that it is
necessary to perform one CNN forward pass for each region proposal. Another advantage
of Fast R-CNN is that it is trained end-to-end. The loss function consists of a sum of
partial loss functions, one for each ROI, and it combines classification and regression loss
as a weighted sum

€<p7 u7tu7 U) - Ecls(pa ’LL) + /\[U 2 ]-]gloc(tuyv)7

where v is the ground truth class, p is the softmax output, t“ is the regression output
for class v and v is the bounding box ground truth. A bounding box regression output
is represented by a tuple containing coordinates. Hyperparameter A is used for weighting
the localisation loss. The indicator function [u > 1] is used to ignore localisation error for
the background class (which by convention is class 0). The number of region proposals at
test time is approximately 2000, all of which are passed through a CNN for prediction.
For the region proposals to be fed to the same CNN, they have to be of equal size. This is
achieved by using ROI pooling on each region proposal. Inference time in Fast R-CNN is
10 to 100 times lower than R-CNN. To make Fast R-CNN more robust to different image
scales, it is trained using each image at several predefined scales [30].

2.4.3 Faster R-CNN

Faster R-CNN was created to further reduce the inference time of Fast R-CNN by speeding
up the proposal generation process. The bottleneck of Fast R-CNN was generating region
proposals using selective search. To this end, a region proposal network (RPN) was
introduced. The RPN is a CNN that shares feature maps with the backbone, thus adding
little computational effort. The RPN is a small network taking the feature maps as input
and predicting ROIs with corresponding k& confidence scores. The ROIs are determined
using the feature map output of the CNN component in the RPN. The RPN slides a 3 x 3
kernel over each pixel in the feature map and produces k anchor boxes for each pixel.
NMS is used on the output of the RPN to reduce the number of region proposals which
decreases the inference time. Finally, the head of Fast R-CNN is used as the head of the
ODS, where it predicts the box classes and adjusts the coordinates. A positive label is
assigned to two kinds of anchors: those with the highest IOU with a ground-truth box
or an anchor with an IOU higher than 0.7 with any ground-truth box. A negative label
is assigned to non-positive anchor boxes if the IOU is lower than 0.3 for all ground truth
boxes. Boxes that are neither positive nor negative do not affect the model training. The
Faster R-CNN objective function is given by

g(pzytz chls pl’pz +)‘

Zp;%eg ti 7)),

cls reg
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where i is the index of an anchor in a mini-batch, and p; is the probability that the anchor
box contains an object. Furthermore, p! is one if the ground-truth label is positive but 0;
otherwise, t; is a four-dimensional vector containing the four coordinates of the predicted
bounding box while ¢ contains the same values but for a positive ground truth anchor
box. Finally, the classification loss /. is defined for a binary class with the two labels
being object and no object, while the regression loss ¢,., is only calculated as deviations
from positive ground truth anchors. The fact that the regression loss is calculated in terms
of deviations from the ground truth is what mainly differentiates the objective function of
Faster R-CNN from Fast R-CNN. The architecture of faster R-CNN is visualised in figure
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Figure 8: Visualisation of the architecture of Faster R-CNN.

Proposals

- > Predictions

2.5 You only look once (YOLO)

What follows are brief descriptions of the four versions of a commonly used one-stage
ODS called YOLO. Another common one-stage ODS is single shot detector (SSD) which
has a similar architecture to YOLOv2-YOLOv4, outputting coordinates, confidence score
and class probabilities based on anchor boxes [35]. SSD achieves lower detection accuracy
than YOLOv4 on the benchmark dataset MSCOCO 2017 but to a lower inference time

[23].

There exist multiple versions of YOLO, but all of them have the following steps in common:
1. Resize images to a square size
2. Run a convolutional network
3. Non-max suppression

2.5.1 YOLOv1

In the first version, all images are resized to a resolution of 448 x 448. Then the image
is divided into an S x S grid. For each grid cell, B bounding boxes and corresponding
confidence scores are predicted. Each bounding box prediction is composed of a 5 dimen-
sional vector: [x,y,w, h, confidence score| where z,y represent the top left corner of the
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bounding box and w, h the width and height. This means that the regression output is
of size S x S x B x 5. YOLOv1 also predicts class probabilities for each grid cell which
means the classification output is of size S x .S x C', where C'is the number of classes. This
creates a score map where the C' values per grid cell can be interpreted as probabilities
since they are nonnegative and sum to 1.

When training YOLOvV1, a combined regression and classification loss function is used,
and the two different losses are weighted by two hyperparameters Acoorqg and Apoobi. In
YOLOvV1, a confidence score is defined as the IOU between a predicted and ground truth
box. One predicted box per grid cell is responsible for a ground truth object which is the
one with highest confidence score. If the center of no ground truth object falls into the
particular grid cell, no box is responsible for the prediction. The loss function is expressed
as

S$? B
Acoord P 31 [(xz — &)+ (v — Qz)ﬂ (41)
i=0 j=0

+Acoond Z Z 15| (Vao, = Vi + (Vi - ﬁ-)ﬂ (42)
+ZZ]1°bJ( )2 (43)

=0 7=0
2
+)\HOObJ Z ]]-HOObJ ( C’L > (44)
=0 7=0
+ Z Y (pile) = pi(e), (45)
c € classes
where ]lObj evaluates to 1 if an object’s center is located in cell ¢ and bounding box j is

resp0n81ble for detecting that object, otherwise 0. ]lnoo I is the opposite. z;,y; and &, §;

are the ground truth and predicted z and y- coordlnate values for grid cell 7. Similarly,
w and h denote the width and height of a bounding box. Cj; is the confidence score for
box 7 in grid cell ¢ while C’ij is the previously mentioned predicted confidence score. ]l‘z?bj
evaluates to 1 when cell ¢ contains an object, otherwise 0. p;(c) is the predicted probability
that the i’th cell contains class ¢ and (p;(c) — ps(c))? is thus the classification loss for class
¢ in grid 7. Notice that, due to the indicator function ]l?bj, the confidence loss is the only
active loss when there is not an object in grid i. The hyperparameter Apoob; is usually
small, in order to handle the natural class imbalance occurring since most grid cells won'’t
contain an object. A typical selection of values for A,oopj and Acoora is 0.5 and 5. Small
localisation errors in large bounding boxes should matter less than the same error in small
bounding boxes. Taking the square root of the bounding box width and height in the loss
function takes this into account.

When using YOLOv1 for inference, the predicted confidence score is used to discard
bounding boxes with no object using a confidence threshold, along with NMS for removing
overlapping boxes referring to the same object [36].
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2.5.2 YOLOv2

YOLOvV1 has several shortcomings, like poor localisation accuracy in comparison to two-
staged alternatives. Version one of YOLO also has relatively low recall, so the main
focus in version two of YOLO is to improve those things. One improvement was adding
batch normalisation, which increased the network’s regularisation capabilities. Images of
varying resolutions are used, which improves overall mAP. The main difference, however,
is the introduction of anchor boxes in the YOLO head architecture. The paper authors
discovered that picking the right dimensions for the anchor boxes is crucial for maximising
the mAP. This was done using k-means clustering on a benchmark dataset and hand-
picking a value for k£ that lead to a good trade-off between recall and model complexity.
In YOLOvV2 the bounding box centre has to fall inside the anchor boxes corresponding
grid cell, leading to less accurate localisation but decreasing training time. This is in
stark contrast to Faster R-CNN, which does not constrain the location of bounding boxes.
During inference, a bounding box prediction b is calculated according to the equations
. . where ., 1, W, h C is the regression output from YOLOvV2 per anchor box. The
offsets ¢,, ¢, are for locating the correct grid cell for the anchor box, and p,,, p, corresponds
to the anchor box width and height [37].

2.5.3 YOLOv3

Like with YOLOv2, YOLOvV3 takes as input B predefined anchor boxes. The regression
loss is identical to YOLOv1. Logistic regression is used to predict the confidence score for
each bounding box. Ideally, the logistic regressor should output one if a particular anchor
box has the greatest IOU with a ground truth box. If an anchor box has an IOU of more
than 0.5 with a ground truth box, but it is not the highest IOU, the prediction is ignored.
This way, we can train the logistic regressor to predict a confidence score for a given
bounding box prediction. For classification, separate logistic classifiers are used instead
of a softmax since each bounding box may contain more than one class, e.g. a traffic
light may be red and yellow. Boxes are predicted at three scales using an FPN to reflect
both the coarse and fine-grained features of the image in the predictions. Bounding box
anchors are chosen using k-means clustering on training data, as in YOLOv2. The loss
function is altered in YOLOvV3, in which the confidence and classification loss is calculated
using cross-entropy |[38].

FPN is not the only addition in the YOLOv3 backbone but also residual blocks. A residual
block in YOLOvV3 consists of a 1x1 convolution and a following 3x3 convolution, both with
batch normalisation and activation. The number of output channels is the same as the
number of input channels. When several blocks are attached, there is a residual connection
from every block to every succeeding block [16] [38].
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2.5.4 YOLOv4
The YOLOv4 ODS is structured in the following way:

e Backbone: CSPDarknet53
e Neck: spatial pyramid pooling (SPP), path aggregation network (PAN),
e Head: YOLOv3 head network

The backbone network in YOLOv4 is CSPDarknet53. It is a cross-stage partial network
(CSPNet) and a deep fully convolutional neural network consisting of 53 network layers.
CSPNet was developed in order to combat inefficient gradient computations. In modern
backbone networks, it is common to apply successive convolutions in a ResBlock fash-
ion. This is called a Dense Block and means that instead of residual connections, we
concatenate the input feature map with the output feature map and perform a new con-
volution recurrently. The authors of CSPNet noticed that by splitting feature maps into
parts, performing operations on them individually and fusing them afterwards, one saves
computations with little degradation in accuracy [39)].

YOLOv4’s neck network consists of layers that are used to process feature maps from the
backbone network. This includes the PAN and SPP modules.

The processed feature maps are then fed to the YOLOv3 head network, which is part of
YOLOvV3. It consists of successive convolutional layers, batch normalisations and leaky
ReLU activations. Like stated earlier, the YOLOv3 head predicts feature maps at different
scales.

The goal of the creators of YOLOv4 was to create a network with low inference times and
high accuracy. Therefore YOLOv4 utilises several techniques from the so-called bag of
freebies (BOF) and bag of specials (BOS) sets of modifications to the network architecture
and training strategies for improving detection accuracy. BOF contains techniques that
increase detection accuracy without compromising inference time, e.g. data augmentation
methods called Mosaic and CutMix. BOS instead offers higher accuracy by paying a small
price in inference time, e.g. using the Mish activation function. BOF and BOS techniques
are applied at all parts of the YOLOv4 network. The following sections introduce some
of the essential elements of YOLOvV4.

2.5.4.1 SPP SPP isa technique used in the neck of YOLOvV4 for further processing the
backbone features. It takes as input a set of feature maps and then performs pooling with
three different kernel sizes: 5, 9 and 13, where the stride is 1 and the padding is adjusted
so that the output is of the same shape as the input. SPP proceeds by concatenating the
pooled feature maps with each other and the input set of feature maps. This means that
the output is four different variations on the input, with varying semantic emphasis.

The original SPP was created for outputting feature maps of a fixed size, independently of
the input image resolution. This is beneficial for two-stage systems, which often have fully
connected layers. However, it is not the case in YOLOv4, where the output feature maps
are larger if the input image is larger. The output of YOLOv4 for the typical input image
size 608 x 608 is three grids of shapes 76 x 76 x A x (44+1+C), 38 x 38 x Ax (44+1+4+C)
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and 19 x 19 x A x (44 1+ C), where A is the number of anchor boxes. With a higher
resolution, the grids will increase in size [23].

2.5.4.2 PAN YOLOv4 uses a PAN in the neck. A central feature of a PAN is the
efficient propagation of features through the network. A PAN builds upon the FPN ar-
chitecture by adding an additional bottom-up pathway, a different strategy for combining
features of different semantic levels and a pooling strategy for aggregating the output fea-
ture maps. The lower semantic layers contain more accurate localisation information. The
accurate localisation information can be combined with the high-level semantics in the
last convolutional layer by allowing shortcuts in the network. The combination of features
propagated through lateral connections with the mainline of convolutions is conducted by
copying feature maps, downsampling them through convolutions and performing element-
wise addition with the mainline feature maps of matching size. This allows for the feature
propagation shortcuts in the network. In YOLOv4, a modification of the combination of
features is used where feature maps are concatenated instead of added together. Further-
more, the output feature maps are not combined using a pooling strategy. Instead, they
are concatenated together and processed by additional convolutional layers. A general
PAN is visualised in figure [9a], where the sideways arrows represent lateral connections.
The combination of features from lateral connections used in YOLOv4 is visualised in

figure [23].

e

O
Output

(a) Simplified schematic of the PAN archi-
tecture. Vertical arrows denote downsam-
pling or upsampling operations. The copy
operation copies a feature map and com-
bines it with later-stage feature maps. In
YOLOv4, there is no adaptive feature pool-

ing operation. The output is instead essen- (b) An illustration of the concatenation of
tially the last layer of feature maps. The lateral connection-features and later stage-
channel dimension is omitted. features in the PAN network of YOLOvA4.

Figure 9: A graphical explaination of the PAN network.

2.5.4.3 Mish activation D. Misra et al. [42] observed that the ReLU activation
function, apart from suffering from the dying ReLU problem, also generates sharp and
rough loss landscapes. This makes it hard to optimise over since the first-order gradient
is noisy. This problem is solved using Mish, which is a smooth, continuously differentiable
activation function. It is formulated in equation and plotted in figure [10]

g(x) = z tanh (softplus(z)) = x tanh (In (1 + €%)) (51)
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The activation function yields a smoother loss landscape than many other activation
functions. This was demonstrated experimentally by randomly generating neural networks
with two output neurons and plotting them for many different inputs. The resulting loss
landscapes from using ReLLU and Mish as activation functions were plotted, and the Mish
loss landscape was confirmed to be smoother. The hypothesis that this would yield better
performance in neural networks was confirmed through benchmarks on state-of-the-art
classification networks such as ResNet and DarkNet. The benchmark showed that Mish

was the ideal choice for an activation function in most scenarios, which is why it is used
in the YOLOv4 backbone.

3.0
2.5
2.0
1.5

1.0

Mish output

0.5

0.0

-0.5

-1.0
-6 -4 -2 0 2
Input

Figure 10: Mish activation function.

2.5.4.4 SAM SAM is an attention system that extracts the most useful parts in fea-
ture maps. The basic idea is to make a copy of a feature map, use average or max-pooling
in combination with performing convolutions. The outputted, modified feature map is
then fed to a sigmoid function before doing elementwise multiplication with the original
input feature map. This is done both channel-wise and along the spatial dimension. In
this way, the network can learn to become robust to perturbations in data [43].

The implementation of SAM in the YOLOv4 system is slightly modified. The pooling
operations are removed, and there is only a convolution and sigmoid operation left in the
attention module. This modified version of SAM is visualised in figure [11] [23].
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Sigmoid

X
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Figure 11: Modified version of the Spatial Attention Module, used in YOLOv4. It is a
component of the neck network for processing feature maps from the backbone net.

2.5.4.5 Cross mini-batch normalisation When a batch has low or zero variance,
that leads to numerical instability, e.g. due to floating point inaccuracies. This problem
can be solved by adding a small term in the denominator of the batch normalisation
formula . In equation , X denotes a batch of mini-batches, and X;;(#;) denotes the
1'th activation in the ¢’th minibatch using the network weights 6.

Xii(0r) — 11:(0;)

i(6) o(60)? + €

(52)

An attempt to increase the expressive power of batch normalization, one could scale and
shift by learnable parameters v and . This scaled and shifted normalized batch, y;, is

calculated as in equation [44).

Yii(0:) = 7 Xu(0,) + B (53)

The problem that occurs in deep learning with images is that y; becomes noisy due
to small batch size. Nevertheless, given that weights change by a small amount between
iterations, it is possible to estimate the mean and variance needed using Taylor expansions
of both statistics. One can further stabilise the estimations by averaging over the current
and k—1 previous means. This alternative to batch normalisation is called Cross-iteration
batch normalisation [45].

YOLOvV4 uses a modified version of CBN that does not incorporate statistics from previous
batches but only between the different mini-batches within the present batch. This means
that the estimate is a bit more accurate, as we do not have to rely on mean and standard
deviation estimates from previous training steps [23].

2.5.4.6 DropBlock regularisation The dropout technique does not work well for
regularising convolutional layers since neighbouring elements in a feature map are spatially
correlated. This means that removing an element will have little effect since its neighbours
have similar semantics. DropBlock is a strategy to mitigate the problem of dropout in
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convolution operations by dropping regions instead of elements at random. This has a
higher chance of achieving a regularisation effect than dropout in CNNs. An algorithm
for the DropBlock technique is given in {4] [46].

Algorithm 4 DropBlock Regularisation
Input: Activations g(L) from the previous layer L, size, a, mode.
Output: DropBlock-modified activations.

procedure DROPBLOCK(g(L), size, a, mode)

1:
2 if mode is inference then

3 Return g(L)

4: A<+ g(L)

5: Randomly sample mask M ~ Bernoulli(a)

6: for each element m at position (i,7) in M do

7 Let m be the center of a square of size size, zero all corresponding elements in A.
8

9

Normalize A
Return A

2.5.4.7 Loss function YOLOv4 replaces the localisation loss in the YOLOv3 loss
function, which is the same as in and , with a loss that considers the IOU instead
of the box coordinates.

In the following description of various IOU losses, the assumption is that only one pre-
dicted bounding box B and ground truth box B9 exists. The coordinates-based bounding
box loss metric (usually /; or Iy norm) is different from the IOU evaluation metric. The
inventors of Distance-IOU (DIOU) [47] show that the methods that attempt to take the
IOU metric into account offer an inadequate solution to this problem:

e 10U loss (originally proposed by [48]):
Loy =1—1I0U (54)

This metric does not distinguish between bounding boxes that are close or far away
from the ground truth bounding box if they are non-overlapping.

e Generalised IOU (GIOU) loss (originally proposed by [48]):

C\ BuU B¢
Larov = Lrou + %, (55)

where C is the smallest convex shape that contains both the predicted bounding box
B and ground truth box B and | - | denotes the area of a shape.

In simulation experiments, the inventors of DIOU show that the IOU loss converges to
sub-optimal bounding box locations when the predicted and ground truth box are non-
overlapping. While the GIOU loss addresses the main problem of the IOU loss function,
it is still not ideal as it takes many iterations for it to converge.

Due to these problems they propose the DIOU loss:

2 B, Bgt
Lprov = Liov + %, (56)
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where c is the diagonal length of the smallest box that contains both the predicted bound-
ing box B and ground truth box BY and p is the Euclidean distance between the central
points of the bounding boxes. So instead of only trying to minimize the enclosing area
of the two boxes the goal is now to minimize the normalised distance between the boxes
directly. This fact leads to a faster convergence than for the GIOU loss. Incorporating
aspect ratio prediction consistency, the authors define the Complete-IOU (CIOU) loss:

(B, B
Lcrov = Liov + % + av. (57)

The value v measures the difference in aspect ratios between the ground truth and pre-

diction:
w9t

h gt
where w, h and w9, h9 are the width and height of the predicted and ground truth bound-

ing box respectively and « is a parameter which represents the tradeoff between empha-
sizing the overlap and aspect ratio similarity, as specified in equation [47].

v = ;l (arctan(—) — arctan(%))Q, (58)

v
- (1-1I0U) +v

(59)

The loss function used in YOLOvVA4 is similar to what is presented in equations —.
However, the localisation loss is replaced by the CIOU loss. The loss function can be
written as

Lcrou (60)
+ Z Z 1579 (Cilog(C) + (1= G log(1 - C)) (61)
Hnoobj Z 1% (Cilog(C:) + (1~ Ci) log(1 — C))) (62)

512
+ Z ]l(;bj Z (]51‘(0) log(pi(c)) + (1 — pi(c)) log(1 — Pz‘(C)))» (63)

c € classes

where Lojop is defined in equation . [49]

2.5.4.8 DIOU-NMS In DIOU-NMS, the IOU metric used in NMS is replaced by
DIOU to avoid falsely removing bounding boxes of occluded objects. Given a predicted
box, K, with the highest confidence score we update the confidence score of a predicted
box predicted box B; in the following way:
r;, if IOU — —2 KB < ¢
i B;) (64)
0, if IOU — 2B €,
where € is the NMS threshold and r; is the confidence score of box i. Then the bounding
boxes with zero confidences are removed. This results in the non-removal of bounding

boxes that have a large central point distance from the bounding box with the highest
confidence score [47].
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2.5.4.9 Data augmentation YOLOv4 uses basic data augmentation techniques like
mirroring images, altering hue, value, saturation and blur. The user has to decide what
data augmentation techniques to use. Mirroring an image, for example, is not necessarily
a good idea if the orientation of the ground truth object is the only way to characterise
it.

Another technique that improves mAP on an object detection benchmark dataset is Mo-
saic [23]. The Mosaic methodology is to merge different parts of images into one frame.
At most, four images are merged. First, the algorithm randomly selects whether to use
Mosaic or not. If it is used, the algorithm proceeds by selecting if a split on width, height
or both width and height should be split. If it decides to split on both, a width and a
height split is decided, wy and hs. They are pixel coordinates and are randomly sampled
among the 60 % central width and height pixels. All the images in the frame are ran-
domly sampled from the dataset, and the different cutouts from the frames are randomly
selected. Additionally, all images that are part of the Mosaic frame are processed with
random settings for the basic data augmentation techniques. An example Mosaic frame
is shown in figure [12]

Another data augmentation technique in YOLOv4 is CutMix, which places randomly
sampled bounding boxes from the ground truth data on other frames.

i
Frame 3 Frame 4

Figure 12: An example Mosaic frame.

2.6 Video object detections systems

A simple system for performing video object detection would be to run an ODS on every
frame. However, such a system does not consider temporal context, and an ideal system
would use this context to improve detection accuracy, inference ti<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>