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Abstract

Diffusion-weighted magnetic resonance imaging (MRI) is a medical imaging technique that utilizes strong
magnetic field and radio waves to measure the speed of diffusion of water in the human body. It has been a
growing field in recent years, with new methods continually being developed to further the knowledge of the
human body, and especially the brain. Most of these methods are used to calculate tissue characteristics based
on information from multiple images showing the same area but showing the speed of diffusion in different
directions. The calculations require thousands of images to hold information regarding the same tissue volume
in the same place. These methods are improved by the use of more powerful magnets and larger magnetic
field gradients in the imaging sequences. These stronger fields unfortunately also introduce distortions in the
images, caused by undesired induced eddy currents and the heating of the main magnetic field, causing it
to drift from its ideal strength. These distortions can make a part of the subject end up in different pixels
for different images, while they should in fact be in the same place. Such a distortion makes it impossible to
correctly calculate tissue characteristics based on multiple images. An example of this kind of characteristic is
the fractional anisotropy that tells how much the speed of diffusion of water differs in different directions.

Different correction methods can be applied to counter distortions. Various methods are available to correct
distortions for images that use clinical strength diffusion gradients (b < 1000 s mm−2), but none are available
for research sequences where the diffusion gradients can have b-values larger than 4000 s mm−2. This thesis
outlines and implements a completely new correction method for such high b-value sequences. The method is a
post-processing method that can be applied without any special requirements on the imaging sequence that is
used. It is designed to correct for the image distortions caused by eddy current and magnetic field drift in high
b-value diffusion MRI.

A new post-processing method has been developed to correct for these distortions in high b-value diffusion
imaging. The method requires multiple b-values to be captured for an image series and works by registering
these images to each other, while the low b-value images can be registered to a non-diffusion weighted image,
resulting in a global correction of the whole set of images. It uses local correlation for image comparison and
particle swarm optimization to find the maximum of the sum of local correlations.

The new method has been tested on simulated data, on data from an imaging phantom and on real data
from brain scans on volunteers. It is able to find most of the distortions, being 10-20% off from the true
parameters on the simulated data in the presence of a large level of noise. On the phantom data and the
in vivo data, it is shown to correct all of the distortions that are visually present in the images. It greatly
improves the alignment of the images in the data sets when large distortions are present, while it does not
negatively affect the images when no distortions are present. While the method improves images in its current
configuration, further work is required to perfect the method. It does currently not handle patient movement,
and optimization method that tries to find the best correction parameters could be improved to make sure that
all distortions are removed.

Keywords: Magnetic resonance imaging, diffusion weighted MRI, eddy currents, high b-value
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Nomenclature

α Shearing parameter applied to an image

β Scaling parameter applied to an image

γ Both translation correction parameter and Gyromagnetic Ratio

δ Gradient duration

∆ Time between diffusion gradients

ADC Apparent Diffusion Coefficient

B0 External static magnetic field

b-value Strength of diffusion weighting

CC Cross Correlation

CSF Cerebrospinal fluid

CT Computer Tomography

D Diffusion coefficient

DICOM Digital Imaging and Communications in Medicine

DT Diffusion Tensor

DTI Diffusion Tensor Imaging

DWI Diffusion Weighted Imaging

EPI Echo Planar Imaging

FA Fractional Anisotropy

FID Free Induction Decay

fMRI Functional Magnetic Resonance Imaging

G Gradient vector

k-space Frequency space for imaging

LC Local Correlation

MRI Magnetic Resonance Imaging

NMR Nuclear Magnetic Resonance

PCA Pricipal Component Analysis

PGSE Pulsed Gradient Spin Echo

PSO Particle Swarm Optimization

RF Radio Frequency

S Signal level

SD Standard Deviation

SNR Signal to Noise Ratio

T Tesla

Td Effective time of diffusion

TE Time of echo

TR Repetition time

T1, T2, T
′
2 Time for signal relaxation of different types

Voxel Image pixel generated from a volume
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1 Introduction

Magnetic resonance imaging (MRI) is an imaging technique made possible by the physical phenomenon of
magnetic spin resonance in atomic nuclei. This effect was discovered in the early 20th century and determines
the way the magnetic spin of the nuclei precess in a static magnetic field. Manipulation of the nuclear spin
can then be utilized to retrieve information about the materials containing the atoms. It was first used for
spectroscopy under the name of nuclear magnetic resonance (NMR), and resulted in several Nobel prizes, such
as the one awarded to Felix Bloch and Edward Mills Purcell in 1952. This technique was further developed
to allow actual imaging in the 1970s, thus creating the branch of physics known as MRI, and introducing a
completely new non-invasive imaging method for use in health care [1].

The basic idea of nuclear resonance is to excite magnetic spins using radio frequency pulses and then
measure the time it takes for the spins to return to their equilibrium state. Different materials and tissues
will have different relaxation times, making it possible to differ between them. This is what creates contrast
between fat, bone and other tissue types in the human body.

The advancement of MRI during the last thirty years have made new functional techniques possible, which
allows not only morphological imaging of tissues but also the measurement of properties that link directly to
the functionality of the brain. The most well known such technique is functional MRI (fMRI), which measures
small changes in blood flow in the brain as a response to different activities, thus connecting an activity, such
as raising an arm, to a certain part of the brain.

This study concerns another such technique, diffusion-weighted imaging. Since the brain, as the rest of the
human body, mainly consists of water, diffusion is a constantly present physical process. Measuring the speed
of diffusion of this water can give much information regarding the properties of tissue in different parts of the
brain.

Figure 1.1: The 3T Philips MRI scanner that was used to generate all the images used in this thesis. The
scanner is fitted with the receiving head coil that was used for imaging of both the phantom and the volunteers.
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1.1 Diffusion

Diffusion of particles, called Brownian motion for larger particles, is the random movement of particles that
occur at all time in all matter due to the thermal energy that creates constant motion and collisions of molecules.
It is named after the botanist Robert Brown who first described it in a scientific paper in 1828, where he
discusses the way small particles contained in plant pollen moves on a water surface [2]. The mathematics and
physics behind this process were not known at the time and was first fully described almost a century later,
when Albert Einstein published a paper on Brownian motion in 1905 [3]. In this paper he showed that the
mathematics describing this movement leads to an equation controlling diffusion, known as Fick’s law, that
had previously been discovered by studies of the way concentrations even out in fluids and gases. Einstein
showed that the spatial distribution of particle displacements due to diffusion can be calculated by a simple
formula if the diffusion coefficient and the time of diffusion are known. The diffusion coefficient is measured
when there is no concentration difference present in the subject, and is then called the self-diffusion coefficient.
In water this coefficient at room temperature is 2.3 μm2/ms [4].

1.2 Usage of Diffusion Imaging

Measuring diffusion of water in the body using MRI was proposed soon after the first medical scanners were
built in the late 1970s [1]. It was realized that the speed of diffusion could be measured in different tissues,
giving another property to differentiate tissue types. The property that is found by measuring the diffusion in
this way is the average rate of the diffusion, known as the apparent diffusion coefficient (ADC), in m2/s. It is
only the apparent coefficient, since there are other effects affecting the signal, such as the flow of blood in the
brain and also the structures of the tissue that hinders diffusion. A real diffusion coefficient D is measured
as free diffusion where the moving particles are not hindered by barriers during the diffusion time. The first
practical usage of diffusion-weighted imaging (DWI) arrived in 1990, when Moseley et al. showed that diffusion
imaging could be used to diagnose ischemic stroke in cats in the first few hours after onset, something that is
not possible with neither computer tomography (CT) nor normal MRI [5].

The next evolution in diffusion MRI was to study the diffusional anisotropy in white matter in the brain. It
was found that the ADC was considerably higher in the direction of the neural fibers than in the perpendicular
directions. A method to calculate this anisotropy was presented by Basser et al. in 1994 [6]. They captured
several diffusion images that each showed the speed of diffusion in a different direction, but for the same volume
of the brain. These values were then combined to calculate a tensor for each voxel (an image pixel containing
signal value from a volume), called the diffusion tensor (DT). This tensor makes it possible to describe the
diffusion in the voxel as an ellipsoid. A spherical shape shows that the diffusion is similar in all directions,
while anisotropy is indicated by an elongated ellipsoid. This can be used to make probabilistic calculations of
the paths of white matter fiber bundles. An example of such an image is found in figure 1.3. Such images can
be used to detect damage to white matter in patients.

Diffusion is also used to make measurements on a microscopic scale. A typical diffusion image shows the
result of the diffusion that has occurred during about 50 ms. In this time, unhindered water molecules will travel
a root mean square distance of 15 μm, in a single dimension. This value is far smaller than the typical volume
that is contained within an image pixel, which is typically 1-10 mm3. This means that diffusion measurement
can potentially contain information that has far better resolution than the voxels of an ordinary MRI image.
This has been used in more recent years, when diffusion imaging has been utilized to measure the size of very
small compartments in a sample [7]. Another measurable diffusion parameter is the kurtosis, which indicates by
how far the diffusion distribution deviates from a Gaussian curve. This parameter has the potential of offering
further information regarding tissue [8].

1.3 Distortions and Corrections

As with any other imaging method, MRI is not free from distortions. The distortion that is most troublesome
for diffusion imaging is the effect of eddy currents. Diffusion is measured in MRI by the application of strong
magnetic field gradients that encode the position of molecules and lead to signal loss in places where the
encoded spins have changed their position through diffusion. A real world system can never apply a magnetic
field without ramping up to the desired level. Changing a magnetic field strength creates current through
induction in the system, and these induced eddy currents will influence the following magnetic field gradients

2



(a) (b)

(c) (d)

Figure 1.2: MRI images from a diffusion set showing the same slice, but with different contrast scale. (a)
T2-weighted image without any diffusion gradient applied. (b) Diffusion image, b = 500. (c) Diffusion image, b
= 3000. (d) The same image as (c), but shown using the same scale as in (a). This shows the loss of signal
caused by the strong diffusion gradient.

by their own associated magnetic fields. This leads to distortion during the image sampling and results in
transformations in the final image. This kind of distortion is the central question in this thesis, and is discussed
in detail in section 3.2. Figure 3.9 show how this distortion affects a diffusion image.

Another effect in MRI is that the patient can move during the imaging sequence. Creating a single image
using MRI takes from a few milliseconds to several seconds depending on the type of sequence being used, and
patient movement can affect the image in the longer sequences. Movement can be even more of a problem in
diffusion, where images with different diffusion directions are combined to calculate the values of ADC and
other derived diffusion-related parameters. These images can be taken many seconds apart, making it possible
for movement to heavily affect the results, or even render the whole image set useless.

1.4 Purpose

This thesis is focused on the correction of eddy current distortions in diffusion images. The MRI physics group
at the Department of Medical Radiation Physics at Lund University studies cutting edge diffusion methods
that require the strongest possible magnetic field gradients to be used [9, 10]. These strong magnetic fields
create eddy currents that could influence and potentially ruin studies of kurtosis and other parameters that are
calculated using multiple images. Few research groups focus on diffusion in MRI with strong diffusion gradients,
and there has been a lack of established methods to correct distortions in these images. The existing methods

3



Figure 1.3: Example of fiber tracking using diffusion imaging. The paths are the result of a probabilistic tracking
using the calculated diffusion tensor of each voxel of a diffusion imaging set. Image courtesy of Thomas Schultz
under the Creative Commons Attribution-Share Alike 3.0 Unported license.

work well for ordinary diffusion images, but rest on principles that do not hold for these new sequences. To
limit or eliminate the effect of distortions, a new method was needed.

The purpose of this work is to try to develop a method that makes it possible to correct for image distortions
caused by eddy currents and magnetic field drift in diffusion weighted MRI images taken with strong diffusion
gradients. The method should preferably not require any modification to the existing diffusion sequences,
making it possible to use it for post correction of already captured images. Another requirement is that the
method should have a solid base in the known physics of MRI and avoid the type of corrections that lack such a
foundation, which are common in many methods. Finally, the method should possibly be combined with some
kind of correction of patient movement, thus giving the group a complete suite of tools for distortion correction.

1.5 Goals

• To develop a model for correction of eddy current distortions in diffusion images.

• To use this model in a post-processing correction algorithm that can be applied to diffusion image sets.

• To evaluate the percentage of distortions that can be removed using the new method.

4



2 MRI Theory

This chapter aims to give a short explanation of the physics involved in generating MRI images. It demonstrates
the principles of MRI physics and the most basic technique to generate images. The reader that is familiar
with the concept and theory of MRI can move on to the next chapter since this chapter does not contain any
theory that is specific to this thesis.

2.1 Creating a Signal

The basics of MRI begin with creating a signal that can be detected. This first part explains how this is
possible to do by affecting the atomic spins in the sample using radio frequency pulses. The affected spins are
excited to a state from which they return to equilibrium. The excited spins will precess at a high frequency in a
strong magnetic field, which creates an induced electric current in coils surrounding the sample. The resulting
voltage can be measured to generate a signal from the sample.

2.1.1 Spins and Magnetization

Magnetic resonance is based on the properties of the atomic spin. All atomic nuclei with a non-zero magnetic
spin have a magnetization and can be utilized for resonance. This is the case with the hydrogen atom, which is
found in abundance in all tissues in the human body, thus making it a perfect agent for medical resonance
imaging. The spins of the hydrogen nuclei behave as randomly distributed microscopic magnetic vectors in the
body, having a total magnetization of zero due to the large number of randomized spins.

To create a state of equilibrium, suitable for imaging, an external static magnetic field (B0) is applied along
the z axis. This field invokes a peculiar quantum effect on the spins. It creates a torque on the magnetic
moments, making them all precess along the z axis (figure 2.1a) with the same constant angular frequency,
thus creating an observable angular momentum.

All these spins can now be treated using classical physics, where each spin acts as a precessing magnet
with a random orientation. The external field will however affect these magnets slightly, giving them a slight
tendency to align along the z axis. This tendency is enough to create the requirement of MR, which is a total
magnetization vector behaving as one large predictably spinning magnet. Figure 2.1b illustrates how this
combined magnetization M behaves. The size of this magnetization is proportional to the external magnetic
field. A stronger field yields a larger net magnetization which is desirable, since this magnetization is what
creates signal in MRI, as will be shown next. A stronger field results in a better signal to noise ratio, and is the
reason why higher field strength is continually in demand in MRI [11].

2.1.2 Larmor Frequency

The frequency of the precession discussed above is called the Larmor frequency. It is commonly presented in
the form of the Larmor equation:

ω0 = γB0 (2.1)

The nuclei dependent part γ is known as the gyromagnetic ratio and is measured in rad/(sT). In the case of
hydrogen, the value is γ/2π = 42.58 MHz/T. Note that the definition in the Larmor equation gives the Larmor
frequency as an angular frequency. It is more common to refer to the Larmor frequency in Hz instead. This
value is found by dividing the value of ω0 by 2π. Thus, the frequency required for resonance in an MRI scanner
with a static field of 3 Tesla is 3 · 42.58 = 127.5MHz. This value is in the radio frequency (RF) range, meaning
that MRI scanners can affect the magnetization using radio pulses [12].

The Larmor equation shows that spins will precess about the z axis with a very high frequency. To simplify
later calculations, it helps to use a rotating frame of reference. Instead of x, y and z, we introduce a coordinate
system of x′, y′ and z where the plane spanned by x′ and y′ rotates with angular frequency w0 in relation to x
and y. This creates a system where the main spinning magnetization is static instead of rotating. This system
will be used in later sections.

5
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Figure 2.1: (a) Spins in an external field B0 will precess around the z axis with the Larmor frequency ω0. The
spins will be randomly distributed, but with a slight tendency to align with the z axis due to the presence of the
external field. (b) The sum of all these spins result in a total magnetization M along the z axis. The x and y
projections of the spins sum to zero due to their completely random orientations.

2.1.3 RF Pulses and the MR Signal

As seen above in figure 2.1b, the sum of all spins can be seen as single total magnetization vector. Due to
the statistical properties of quantum mechanics, this allows us to ignore the individual spins and focus on
this magnetization instead. This will behave according to classical mechanics, and can be affected by other
magnetic fields. A second external field will apply a torque to the magnetization as given by

∂M

∂t
= γ(M×B) (2.2)

where γ is the gyromagnetic ratio, M is the magnetization and B is a new external field [13]. This is known as
the Bloch equation and the effect is used to excite the magnetization, which is shown in figure 2.2.

To enable this effect, a magnetic field has to be applied that is perpendicular to both the total magnetization
and the static field. This is accomplished by using an RF pulse that is circularly polarized with regard to the z
axis. Since the magnetization vector will rotate with the Larmor frequency in the x-y plane, the RF pulse
along the z axis must have the same frequency. This will create a magnetic field B cosω0t along the y axis,
and hence a constant field B along the y′ axis. Thus, according to equation (2.2), we can achieve any desired
rotation of the magnetization vector by enabling an RF pulse a suitably long time. It is most common to rotate
the magnetization vector 90 degrees to excite the system. The degrees of rotation is known as the flip angle.

With the system excited, the magnetization vector will be precessing around the z axis at the angle
determined by the flip angle. With the magnetic vector constantly changing in the x-y plane, induction will
occur according to Faraday’s law of induction

E = −dΦ

dt
(2.3)

where E is the electromotive force induced in the coil in volts and Φ is the magnetic flux through the coil [14].
By surrounding the spinning magnetization with coils, a current will be induced and will have the frequency ω0

of the rotating magnetization. In this way, the most basic MR signal is created, known as the free induction.
The signal induced in this way consists of contributions from each spin in the whole sample. At each moment

t, the total signal can be calculated as

s(t) =

∫
r

ρ(r)eiφ(r,t) dr (2.4)

where ρ(r) is the spin density in each point, and φ(r, t) is the phase of the spinning magnetization. In the most
simple case, where φ is independent of the spatial location and the sample has a uniform spin density, the
result is a pure complex sinusoidal signal.
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Figure 2.2: (a) A second magnetic field B1 is applied along the y′ axis by an RF pulse. This will create a torque
on the magnetization M, leading to the situation in (b) after a time t. The magnetization will keep rotating
around the y′ axis as long as the B1 field is applied. The system will return to the equilibrium state when B1 is
switched off.

t

(a) Free induction decay

MzMmax

0.63

0
0 T1

t

(b) T1 relaxation

Figure 2.3: (a) The free induction decay current that is induced during relaxation. It is a sinusoidal signal
with frequency ω0. Due to dephasing spins, the frequency spectrum is slightly widened as the signal decays. (b)
The recovery of magnetization due to T1 relaxation. After T1 seconds, it has grown to 63%, or -3 dB from the
original signal. After 3T1 seconds, the signal is back to 95% of its original strength.
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2.1.4 Relaxation

The free induction signal induced by the precessing magnetization vector will not last long after the RF pulse
has been shut off. Without its effect the system will revert to the equilibrium state, a process known as
relaxation. During a free relaxation, the signal induced in the receiving coils is known as the free induction
decay (FID). An example of such a signal is shown in figure 2.3a. The signal is lost over time through two
different relaxation processes.

The signal drops as the original magnetization along the z axis is recovered, which occurs when there is
no longer a force present that pushes the magnetization away from its initial state. This process is called
spin-lattice relaxation, and is also commonly referred to as T1 relaxation. The latter name comes from the
definition of the time T1, which is the time it takes for the magnetization to recover 63% of its initial signal
strength along the z axis. The recovery of magnetization is described by the following equation:

Mz(t) = Mz(0)(1− et/T1) (2.5)

where Mz is the projection of the magnetization vector on the z axis. This process is illustrated in figure 2.3b.
T1 will differ depending on the tissue or material where the spins are located. It varies between approximately
half a second to several seconds in different human tissue.

Relaxation in the x-y plane occurs when the precessing magnetization is dephased. When the magnetization
is flipped into the plane, the spins that make up the total magnetization will initially all precess with the
Larmor frequency ω0. However, as time pass they will experience slight differences in the magnetic fields,
making some spins increase their frequency of precession, while other decreases theirs. This process will make
the total magnetization in the plane decrease (figure 2.4).

z

y′

x′

B0

M

(a)

z

y′

x′

B0

M

(b)

Figure 2.4: Illustration of T2 and T ′2 relaxation. In (a), the magnetization has just been flipped to the x′-y′

plane and all spins are precessing with the Larmor frequency. (b) shows the effect of T2 and T ′2 relaxation.
Some spins have increased their precession frequency while other have decreased their frequency. The total
magnetization projected onto the y′ axis will then be smaller than in (a).

The decrease of signal in the plane is caused by two different processes that have the same effect on the
spins. Each individual spin will affect the magnetic fields surrounding its neighboring spins, making it differ
slightly from B0. This will make the different spins have different precession frequency as described above, and
is called T2 relaxation. The other process that work in the same way as the T2 effect is the much stronger T ′2
relaxation. It is the effect of local fluctuations in the magnetic field and it quickly dephases the magnetization.
Fortunately, this effect can be mostly removed by the use of spin echoes, which will be discussed later. The
combined effect of T2 and T ′2 is called T ∗2 and can be calculated as

1

T ∗2
=

1

T2
+

1

T ′2
(2.6)

The loss of magnetization in the x′-y′ plane due to the dephasing spins is calculated by

Mx′y′(t) = Mx′y′(0)e−t/T
∗
2 (2.7)
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The relaxation process in the plane is much faster than T1, and T2 will thus always be smaller than T1.
Typical values for T2 are 100 ms in gray matter, 80 ms in white matter and 50 ms in muscle, for a 1.5 T scanner.
This can be compared to T1, where the relaxation times for the same tissue types are 950 ms for gray matter,
600 ms in white matter and 900 ms in muscle [12]. Note that the relaxation time for muscle is only half that of
gray matter for T2, but about the same as gray matter for T1. This kind of difference makes it possible to get
different contrast in images depending on which kind of signal is sampled.
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y′

x′

M

(a)

z

y′

x′

M

(b)

Figure 2.5: Principle of a spin echo. In (a), the spins are dephasing due to the T ′2 effect. (b) shows the situation
after a 180 degree RF pulse has been applied. Spins that were previously ahead of the main magnetization are
now behind, and vice versa. Since each spin will still change phase in the same way as compared to M, they
will now refocus and cause a spin echo.

S
180◦

0

t
0 TE

Figure 2.6: Induced signal as a function of time for a spin echo. The dotted line represents the signal decrease
that would result from T2 relaxation only. The solid line shows the signal strength of the combined relaxation.
The signal is quickly lost from T ′2 relaxation, but this signal loss is recovered by the use of a 180 degree RF
pulse, making a spin echo appear at TE, after twice the time from the application of the original exciting RF
pulse at t = 0. The arrow is a common way to represent RF pulses in MRI literature.

2.1.5 Spin Echoes

As mentioned before, the very fast process of T ′2 relaxation can be countered by usage of a so called spin echo.
T2 and T ′2 has the same effect and are both caused by the local magnetic field differing slightly from B0. T2
relaxation is irreversible since it is caused by the magnetic fields of nearby spins, whose nature is unpredictable.
The local fluctuations of the B0 field that cause T ′2 relaxation is instead easily predictable, since it is due
to fixed factors such as the distribution of different tissue in the sample. A spin in a certain location will
continuously either fall behind or be ahead of the main magnetization, as illustrated in figure 2.4b. When an
RF pulse is applied to flip all spins by 180 degrees, the situation is reversed. All spins that were behind the
main magnetization are now ahead of it, and all spins that were ahead of the magnetization are all behind it
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instead (see figure 2.5). Thus, if the signal is sampled exactly when the spins refocus, it will be void of any loss
from the T ′2 effect, and the only relaxation losses will be from T2 [15]. The effect on the signal from a spin echo
is illustrated in figure 2.6.

2.2 Imaging

The MR signal discussed so far would enable spectroscopy of a sample. To create actual images, more elaborate
signal sampling is required. This second part of the chapter demonstrates how it is possible to find how the
spin density varies within the subject, and how this variation is turned into an image. The key to this is the
usage of magnetic field gradients to first enable imaging of a specific desired area, and then make it possible to
encode the spatial positions in the final sampled signal.

2.2.1 Slice Selection

So far the signal discussed has been the free induction decay signal where a single frequency is induced in
the receiving coil. The initial RF pulse has excited the whole sample, meaning that the collected signal is
an average over all spins. This is not very useful for actual imaging, where spatial information is required to
generate an image. Since the signal in MRI is an induced frequency, connecting frequency to spatial position is
the natural way to create a positional difference. This can be achieved by using the fact that the resonance
frequency is proportional to the external magnetic field, as established in section 2.1.2. By making sure that
each location experiences a unique external magnetic field, a correlation between position and signal can be
created. This is done in two different ways: by selecting a slice for imaging and by frequency encoding that
slice.

Slice selection is made in order to make it possible for the signal to only include the thin slice of the sample
that should end up in the image. This is accomplished by making sure that only the spins in the desired slice
are excited when the RF pulse is applied to flip the spins. To make this possible, a magnetic field gradient is
applied along the z axis, which makes each position along the axis experience different static magnetic fields,
hence having different resonance frequency. When the RF pulse is applied, it can be adapted to only affect the
resonance frequencies that are present in the slice that is to be imaged. Since we want to excite a slice, we
need to limit the excitation to the thin range of frequencies that correspond to that slice, i.e. to a rectangular
function in the frequency domain. This function corresponds to a sinc function in the time domain, meaning
that this is the shape that an RF pulse should have in order to limit the excitation. Previously, excitation
has been shown using an RF pulse in the shape of a sine function of Larmor frequency. To end up with a
rectangular function in the frequency domain holding the needed frequencies and excite the desired slice, the
sine function is multiplied with the sinc function to get the following Fourier transform:

F
(

sin(f0t) · sinc(at)
)

=


0, ω < f0 − a
1, f0 − a < ω < f0 + a

0, ω > f0 + a

(2.8)

where 2a is the width of the selected slice, centered around the frequency f0 [16]. When a pulse like this is
used, only the selected slice will generate any signal, as illustrated in figure 2.7.

2.2.2 Frequency Encoding and the Fourier Transform

With slice selection in use, only the excited slice of the sample in the scanner will contribute to the generated
signal. It does however not create any spatial awareness in the generated data. To do this, magnetic field
gradients are put to use again, in a process known as frequency encoding.

The principle of frequency encoding is the same as the basis for slice selection, namely to make different
parts of the sample experience different magnetic fields in order to make them unique. When parts of a sample
experiences different external magnetic fields, the resonance frequencies are affected as shown before. The
resonance frequency in the presence of a gradient along the x axis will be

ω(x, t) = ω0 + ωG(x, t) (2.9)
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B(z)

z

B0

Figure 2.7: A single slice (dotted lines) can be selected for imaging by applying a gradient on the static external
field B0. By having the resonance frequency depend on z, it is possible to make only the desired slice to be
excited by the following RF pulse.

where ωG is the deviation caused by the gradient G(x). This difference in resonance frequency carries over to a
difference in phase for the spinning magnetization along x. The accumulated phase due to the gradient for
each position will be

φG(x, t) = −
∫ t

0

ωG(x, t′) dt′ = −γx
∫ t

0

G(t′) dt′ (2.10)

where the second step assumes that the gradient is linear along x, giving ωG(x, t) = γxG(t). This difference in
phase along the affected axis is illustrated in figure 2.8.

x

ω0

φ

(a)

x

ω0

φ

ω0 + ωG

(b)

x

ω0

φ

ω0 + ωG

(c)

Figure 2.8: The effect of a linear gradient on the accumulated phase difference after the gradient has been on
for some time t. In (a), no gradient is present and all spins have the same resonance frequency ω0 and the
same phase. (b) shows the application of a gradient. The spins that experience a negative magnetic field have a
positive phase difference against the spins in the center that still have the nominal resonance frequency. In (c),
an even larger gradient creates a situation with larger phase differences. These differences in phase translates
to a larger span of frequencies ending up in the induced signal.

We can now imagine that we have a one dimensional object that is to be imaged, with the object placed
along the x axis. The signal equation from (2.4) can now be written as

s(t) =

∫
ρ(x)eiφG(x,t) dx =

∫
ρ(x)e−ixγ

∫ t
0
G(t′)dt′dx (2.11)

where only the phase difference is considered, since the frequency induced by the Larmor frequency is constant
for all spins, and will be removed in filters before the signal is considered. If we use the convenient variable
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replacement

k(t) = γ

∫ t

0

G(t′) dt′ (2.12)

the expression in (2.11) is turned into

s(k) =

∫
ρ(x)e−ikx dx (2.13)

which is analogous to the Fourier transform as defined in [16]:

f̂(ξ) =

∫
f(x)e−iξx dx (2.14)

with k in place of ξ. Thus, the sampled signal is in fact the Fourier transform of the spin density ρ(x), which is
what we want to find. This value can now be found by simply performing an inverse Fourier transform on the
measured signal [12].

This can be demonstrated using a simple example where the one dimensional object from before is replaced
by two single spots of non-zero spin density at −x0 and x0. A linear gradient Gx is applied along the x axis
from time 0 < t < t1, while the signal is sampled during the same time interval. The spin at x0 will now
have a phase φG(x0, t) = −γGxt and the spin at −x0 has instead arrived ahead by the same phase so that
φG(−x0, t) = γGxt. The signal that is sampled will be:

s(t) = s0e
−iγGx0t + s0e

iγGx0t = 2s0 cos(γGtx0) (2.15)

or transformed to the k variable:
s(k) = 2s0 cos(kx0) (2.16)

with s0 as the basic amplitude of each spot. From here, the inverse Fourier transform should result in the
original spin density. k can be considered to be valid for negative values with an inverted sign on the gradient.
This gives

ρ(x) =
1

2π

∫ ∞
−∞

2s0 cos(kx0)eikx dk

=
s0
2π

∫ ∞
−∞

eik(x+x0) + eik(x−x0) dk

= s0
(
δ(z + z0) + δ(z − z0)

)
(2.17)

which is two spikes at positions x0 and −x0, exactly as expected.

2.2.3 k-Space Sampling and Generating an Image

In the previous section, it was shown that the spin density can be recovered by performing an inverse Fourier
transform on the sampled signal where the time and gradient dependent variable k from (2.12) is used. The
key to being able to find the spin density in the earlier example was to sample the signal at times when k took
on different values. In the final transformation, it was assumed that we had values for all values of k from
negative to positive infinity. This is of never true in a real situation, but the principle still holds, and the finite
number of samples available makes it possible to perform a discrete inverse Fourier transform to find the spin
density. This way of using k is called k-space sampling, and it was first described in two separate articles in
1983, by Stig Ljunggren and Donald B. Twieg [17, 18].

To determine the spin density, the signal is sampled at as many different k values as possible. A closer
examination of (2.12) shows that it is possible to reach virtually any value of k by applying negative or positive
gradients for a suitable amount of time. This is used to create a grid of values of s(k) that is used for the
reverse transform. The only limitation is that the signal will experience relaxation and lose strength during the
sampling. It is therefore important to sample as many points as possible close to the peak of the spin echo.

k-space is not limited to one axis, since the same principle that was demonstrated for the x axis is equally
valid for further dimensions. It is most common to use gradients along the x and y axis, to create two
dimensional images, but it is also possible to image in all three dimensions at once. In the two dimensional case,
points (kx, ky) are sampled, and a two dimensional inverse Fourier transform is then performed to generate the
actual image. An example of the way k-space is traversed and sampled is found in figure 2.9, where as much as
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kx

ky

Figure 2.9: The sampling of k-space during a full image slice readout. Each black dot represents a point where
the signal is sampled. The path through k-space begins in the bottom left corner and sweeps back and forth
along kx, with small gradient blips creating the movement upwards along ky. It is very important to sample the
center of k-space exactly at the maximum of the spin echo, since this sample point holds information regarding
the zero frequency, which holds the general signal level. In reality, the number of sampling points and lines in
k-space are much higher than illustrated here. In general, between 64 and 256 lines are sampled.

possible of k-space is scanned starting in the bottom left corner. Positive and negative gradients along x are
switched on to move to the right and left in the figure, while positive gradients applied for a short time in
the y direction creates the steps upwards. The x direction is generally known as the read direction, since the
gradient in this direction is switched on during the actual sampling while the y direction is often called the
phase direction. In the figure, the whole of k-space is sampled during a single excitation. This method is called
Echo Planar Imaging (EPI), and is most common in the kind of images discussed in this thesis. Figure 2.10
gives an example of a gradient sequence that gives rise to this kind of sampling. It is also possible to excite the
same slice several times and sample just one line in k-space during each excitation (i.e. keeping ky unique for
each excitation). This requires a longer scanning time, but can result in a better signal to noise ratio (SNR).

It should be noted that it is possible to sample k values in any desired order, and not just the one shown
in figure 2.9. This order is commonly used since it makes the following Fourier transform quite simple, but
many other patterns are possible. One such pattern is to sample k-space in a spiral [19]. Another is to use a
sequence where the same slice is imaged several time, with the center of k-space sampled during each excitation,
while different sections of the outer reaches are sampled each time [20]. This has the advantage of making it
possible to get better SNR, while at the same time making it possible to adjust for patient movement that
might otherwise affect the image quality.

The discussion here has mainly considered two dimensional images as being placed in the x-y plane. It is
equally possible to excite a slice in an arbitrary plane of the sample. In this case, all the gradients described
will simply have to be adjusted by an ordinary vector transformation.
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Figure 2.10: Example of a full sequence that give the k-space pattern showed in figure 2.9. It shows the RF
components and the different gradients played out on the three different axes. Only nine sweeps along the x axis
is shown here for simplicity. The signal is sampled during the period indicated by S, and will result in a two
dimensional image in the x-y plane. Note that the centre of k-space will be sampled at the echo time TE. The
negative gradient shown for Gz is required to refocus the spins. This refocusing is not required after the 180
degree pulse, since the gradient is self refocusing for this flip angle. The negative gradients along x and y before
the sampling begins are required to make the k-space path during sampling start in the lower left corner as in
figure 2.9. The larger gradients along the x axis move the path back and forth, while the smaller triangular blips
along the y axis moves the k-space position upwards along ky. The actual sampling is only done when the x
gradients are active.
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3 Diffusion Theory and Distortion Correction
This chapter explains the physics of diffusion and how it makes the field of diffusion MRI possible. The specifics
of diffusion sequences and their sensitivity to distortions are introduced, followed by the concept of eddy current
distortion. Finally, it summarizes the previous scientific efforts concerning eddy current compensation.

3.1 Diffusion Theory

As discussed in the introduction, diffusion measurements is an important tool in MRI. Its use was first shown
in diagnosing acute ischemic stroke, but its field of use has since grown to many other applications. In the
last two decades, several methods have been developed that use diffusion to probe into microscopic properties
of tissue that are otherwise not possible to image with the resolution available using MRI scanners. These
methods have in common that they measure diffusion in several different directions, and then combine these
images into a value or vector for each voxel. This section shows how such images are created, and why they
are susceptible to certain image distortions, creating the requirements for such correction methods as the one
outlined in this thesis.

3.1.1 The Diffusion Equation

While Albert Einstein explained the physics and mathematics underlying diffusion [3], the macroscopic effect
was already well known at that time. Diffusion is a process where molecules randomly change position. It
is most noticeable in fluids and gases, but is also present in solids, especially in metals [21]. The observable
macroscopic effect of diffusion is that differences in concentration disappear given time. That is, molecules move
from an area with a higher concentration to areas where they have less presence until the same concentration is
present everywhere. This effect was discovered in the first half of the 19th century, and was further described
by Adolf Fick in 1855 [22]. Fick put salt in one end of a horizontal tube filled with water and measured how
the salt spread in the tube. This led to the formulation of the diffusion equation:

∂C

∂t
= D

∂2C

∂x2
(3.1)

where C is the concentration of the diffusing substrate and D is the diffusion coefficient in m2/s. This coefficient
is dependent on both the diffusing particles and the viscosity of the medium they diffuse in. Is is also dependent
on the squared velocity of the particles, which in turn depend on the temperature. It is thus quite a complex
coefficient. The relationship can easily be extended to three dimensions, which turn it into:

∂C

∂t
= D

(
∂2C

∂x2
+
∂2C

∂y2
+
∂2C

∂z2

)
= D∇2C (3.2)

This is in fact identical to the heat equation (with C replaced by temperature) that governs how heat spreads
in a material. That is not very surprising giving the similar nature of heat transfer and diffusion.

The equations above describes the speed of diffusion. In diffusion MRI, it is the distance traveled by the
diffusing particles that is relevant to the measurements. It is useful to consider the probability distribution of
distance moved by the diffusing particles after a certain time. This distribution starts out as a delta function
at t = 0 and then turns into a Gaussian distribution as time goes by, assuming that the diffusion is unhindered
in all directions. The mean displacement of a freely diffusing particle can be calculated as

λ =
√

2ndDTd (3.3)

where Td is the diffusion time and nd is the number of dimensions in which diffusion is possible [3].
The version of the diffusion equation given above in (3.2) works when the diffusion is unhindered in all

directions. This is not the case in the human body, where tissue structures can work as barricades for the
molecules. Since these barriers make the diffusion dependent on direction, it has to be described using a tensor
with nine terms. These make up the diffusion tensor:

D =

 Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 (3.4)

15



With the tensor, (3.2) becomes a summation over the nine different coefficients so that

∂C

∂t
=
∑
i,j

Dij
∂2C

∂i ∂j
(3.5)

3.1.2 Diffusion Sensitive Imaging

The idea of diffusion MRI is to make the image sensitive to the rate of diffusion of the spins contained in each
voxel during the imaging. Any movement of molecules containing excited spins would be to lower the signal
value in the voxel. This turns out to be quite simple to achieve using magnetic field gradients that cause phase
dispersion in a similar way to the T2 effect. In each diffusion image sequence, two identical gradients are placed
on each side of the 180 degree RF pulse present in the normal imaging sequence from figure 2.10. The resulting
sequence is found in figure 3.1. This basic diffusion sequence was first created by O. E. Stejskal and J. E.
Tanner in 1965 and was first used for spectroscopy. It is called a pulsed gradient spin echo (PGSE) [23].

TE

t

90◦ 180◦

G

∆

δ

Figure 3.1: Composition of a diffusion sequence of the pulsed gradient spin echo type, showing gradients and
the common denotion of different parts of the sequence. δ is the duration of the gradients, while the gradient
strength is marked G. The separation of the gradients, ∆, is the time during which the movement of the particles
affects the measurement. The size of the gradients shown here compared to the length of the sequence is for
illustrative purposes and is not representative for the real world values of δ, ∆ and G.

The effect of the PGSE sequence comes from the two gradients surrounding the 180 degree pulse. The
first gradient will change the phase of each particle’s magnetization a certain amount. The second gradient
will have exactly the opposite effect due to the 180 degree pulse, meaning that the phase will change in the
other direction. A particle that is in the same position during both gradients will thus have its magnetization
left completely unaffected by the two gradients. Any movement during or between the gradients will however
make the them have different effect on the moving spin, leaving it with a net phase change. The effect of
these diffusion sensitizing gradients on particles moving in different ways is illustrated in figures 3.2 – 3.5. An
important point to notice is that each diffusion measurement is only sensitive to motion along the direction of
the applied gradients, as shown in figure 3.3. This makes it possible to detect differences in diffusion in different
directions, as discussed regarding DTI in the previous section.
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(a)

(b)

(c)
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y′

x′
M

B

B

Figure 3.2: The effect of diffusion sensitizing gradients on stationary particles. When the particles are still as
in (a), the gradient effect on them during the first diffusion block (b) is exactly the same as during the second
block (c). The two diffusion gradients will cancel each other, leaving the total magnetization unaffected (d).
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Figure 3.3: The case of particles moving along the y axis (a), perpendicular to the diffusion sensitizing gradients,
is identical to the effect on stationary particles. Since the particles don’t change their position along the x axis,
the first gradient (b) and the second gradient (c) will affect the particles in exactly the same way and will cancel
each other. The total magnetization is still unaffected (d).
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Figure 3.4: The effect of diffusion sensitizing gradients on particles that experience constant flow during the
imaging. All the particles move the same distance along the x axis between the two diffusion gradients (a).
This means that the strength of the first gradient on each particle (b) will be less than the strength of the
second gradient (c). The effect is that each particle will experience a phase change by an equal amount, hence
inducing a total phase change on the magnetization, but not decreasing the total strength (d), leaving the image
unaffected.

y

x

x

x

(a)

(b)

(c)

(d)

y′

x′
MB

B

Figure 3.5: The effect of diffusion gradients on actually diffusion particles (a) is profound. The effect of the first
gradient (b) and the second gradient (c) are totally different since the particles have moved a random distance.
The particles experiences phase changes that differ in both direction and magnitude. The combined effect is that
the total magnetization M in (d) is lower than if the particles had not moved. This results in a loss of signal,
meaning that pixels will have a lower value the more diffusion the particles contained in it experiences.
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Stejskal and Tanner also derived the effect that the applied gradients have on the signal level in the images
[23]. They defined the commonly used diffusion strength parameter b, having the unit sm−2:

b = γ2δ2(∆− δ

3
)|G|2 (3.6)

where ∆, δ and G are defined as shown in figure 3.1 and γ is the gyromagnetic ratio. The value ∆− δ/3 is
often written as Td, and is called the effective diffusion time. b is most often referred to using the using s mm−2.
With this definition, the b-value can be used as an effective way to indicate the loss of signal strength, now
given by

S

S0
= e−bD (3.7)

where S is the signal value with diffusion gradients present and S0 is the signal value without them. D is the
diffusion coefficient of the medium. Hence, the remaining signal is

S(b) = S0e
−bD (3.8)

This equation combines all the relevant diffusion parameters and gives an easy way to describe the effects of
the performed measurement. The signal loss experienced for different b-values can be seen in figure 1.2. It
should be noted that the b-value is only a total sum of the effect of the diffusion gradients on the image signal.
Two measurements with the same b-value can still differ a lot if they have different values for δ, ∆ and G.

3.1.3 Diffusion Tensor Imaging

A diffusion MRI image shows the speed of diffusion in one specific direction only. The first applications of
diffusion weighted imaging (DWI) used a single such image of the diffusability in some direction to allow
detection of larger disruptions in tissue. It was then realized that information from several different images of
diffusion in different directions could be combined to give even more information about the body. In 1994,
Basser et al. showed how measuring the coefficients from (3.4) could be used to calculate the fractional
anisotropy (FA) for each voxel in the MR image [6]. Fractional anisotropy indicates how much the rate of
diffusion varies in different directions in each voxel. It can be calculated if diffusion images are taken in at
least seven different directions. Since the coefficients Dij = Dji for water molecules, these seven images are
enough to find all six unique coefficients for the tensor (seven are required since two data points are needed
for each coefficient). The tensor can then be diagonalized to find three eigenvalues λ1, λ2 and λ3 and three
eigenvectors v1, v2 and v3. The three eigenvectors are scaled with their respective eigenvalues to create the
ellipsoid spanned by λ1v1, λ2v2 and λ3v3, illustrated in figure 3.6, where an elongated ellipsoid shows that the
speed of diffusion is higher in the direction where λ is largest. Using these ellipsoids, it is possible to create
images such as the one in figure 1.3. In this image, the paths of nerve fibers in the brain have been calculated
by linking voxels together when they have clearly elongated diffusion ellipsoids that line up. This is due to the
fact that the speed of diffusion is higher along a nerve fiber than perpendicular to it. Such images can be used
to locate damaged nerves for certain medical conditions [24].

3.1.4 Distortion Sensitivity

Diffusion images are rarely used on their own as a single image. Instead, clinically useful values such as FA and
kurtosis are calculated from whole image set, as shown in the case with Diffusion Tensor Imaging (DTI) above.
In the case of DTI at least seven images must be taken to find the six parameters that are required for each
voxel. When the analysis is done, these images are used as a single set, and the image value sij is taken from
all the images to be used for the calculation of the tensor for that voxel. When used like this, it is extremely
important that all seven images actually show the exact same tissue in the exact same voxels. If the patient
has moved, or the image has been otherwise distorted, the calculation will have a certain error since the values
compared do not actually belong to the same area. This is the reason why distortions can be very problematic
in diffusion imaging, and is why methods such as the one proposed in this work are required to counter the
distortions.

Another common use case is the calculation of the apparent diffusion coefficient, ADC. This is can be
achieved when one has an image without any diffusion weighting and one or more images of the same area with
diffusion gradients applied. Looking at (3.7) above, it is apparent that knowing two different signal values S
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Figure 3.6: Using diffusion tensor imaging, a diffusion ellipsoid can be created for each voxel. This ellipsoid
shows the probability distribution of spin movements during the imaging. It becomes a sphere when the diffusion
is equal regardless of direction. Such ellipsoids can be calculated for each voxel using diffusion tensor imaging,
and can give further information about the tissue. The ellipsoid is created by the eigenvectors vi and eigenvalues
λi found by diagonalizing the diffusion tensor.

and S0 and all the coefficients involved in calculating the b-value makes it possible to find the value of D if
it is unknown. This apparent diffusion coefficient can be calculated voxel by voxel to create a whole map of
the ADC, which has proved useful in detecting differences in brain tissue [25]. The important realization in
this case is that a correct ADC map requires the measurements from the two compared voxels to have imaged
exactly the same area. Any offset introduced by a distortion such as patient movement or a measurement
deviation causes a misregistration artifact in the calculated image. The correct comparison of images to produce
a final result is thus a major hurdle in producing good results in diffusion MRI.

The possible effect of any distortions grow with the complexity of the comparisons made. Measurements that
require comparisons of many different diffusion images are much more susceptible to wrongly aligned images.
The situation grows even worse when the measurements depend on images generated with large b-values, due
to the much lower SNR available. A measurement of that kind is the kurtosis, which has been found to add
valuable information regarding brain tissue [26]. Kurtosis is the variance of of ADC present in a voxel. This
variance is a Gauss distribution in the case of completely free diffusion, since the distance that particles have
traveled will be normally distributed. This is not the case in the human body, and kurtosis can be used to
characterize different types of tissue. This kurtosis value K can be found from

S(b) = S0e
(−bD+ 1

6D
2K) (3.9)

where D is the diffusion coefficient [8].
Kurtosis is studied by the MRI physics group at the Department of Medical Radiation Physics at Lund

University, often using the largest possible b-values [9, 27]. This makes the group especially interested in
countering the effects of distortions.
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3.2 Correcting Distortions

As has been outlined above, distortions can be a sever problem for diffusion weighted MRI measurements. This
thesis is focused on the problems caused by eddy currents, and a possible solution for these. Below is found the
theory of eddy currents, along with descriptions of previous efforts to create correction methods.

3.2.1 Eddy Currents

Eddy currents are currents that are induced in a conductor whenever the magnetic field passing through the
conductor changes. These circular currents are named after the term eddy in fluid dynamics, since they are
very similar to these circular flows. Examples of eddies are the swirls surrounding the tip of an oar during
rowing and the circular patterns present in weather systems.

Eddy currents arise from the induction of an electromagnetic force when a time-varying magnetic flux is
present, in accordance with Faraday’s law from (2.3). This force creates a current and an associated magnetic
field of its own. Eddy currents normally decay by causing heating of the material, which is the principle of
induction heating used in stoves [14].

In MRI, eddy currents are induced in the coils by the fast switching of gradients that is present during
much of the imaging cycle. In theory, the perfect gradient is a square wave that switch immediately from off to
maximal strength. As with any model, this is not true in a real world system where a certain time, however
small, is required to ramp the gradients from zero to the desired level. During this ramping up or down of the
magnetic field, the field is time-varying and eddy currents are induced. This process of induction is illustrated
in figure 3.7.

t

t

G(t)

Geddy(t)

Figure 3.7: Undesired eddy currents are generated when the magnetic field gradients are switched on and off. The
upper part shows how a positive gradient G is applied. Since the ramping of the gradient is not instantaneous,
the value dG/dt will be non-zero in the periods indicated by the dotted lines, causing the induction of eddy
currents shown in the lower part of the figure. The eddy currents give rise to a magnetic field gradient Geddy

that then decays as the current is turned into heat. These undesired extra gradients will cause problems if they
remain when other gradients are used, especially during the readout phase. The growth of eddy currents is
non-linear due to the decay that begins as soon as the induction starts. Note that this figure illustrates the
principle and that the y axes do not have the same scale. The induced gradient is in reality much smaller than
the diffusion inducing gradient.

With eddy currents present, a residual undesired gradient remains after the intentional gradient has been
switched off. This remaining gradient will affect any further gradients applied so that the effect is now G+Geddy,
which can give rise to a major change in the imaging sequence when Geddy is not insignificant compared to
G. This is often the case in diffusion imaging, where the whole k-space is scanned for each image. The small
gradient blips that are used to change the k-space position, illustrated in figure 2.10, are easily affected by
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Figure 3.8: The readout sequence affected by an induced eddy current. A diffusion gradient applied along the y
axis at the top gives rise to an eddy current gradient that stretches into the readout phase during which the
k-space is scanned by applying smaller gradients along x and y. These smaller gradients that move the k-space
position are altered by the gradient caused by the eddy current. In this case, x is the read direction and y is the
phase direction, as can be seen by the larger read gradients present for Gx.

residual eddy current gradients. This principle is shown in figure 3.8 where a diffusion gradient is switched
off, inducing an eddy current that cause a gradient that slowly degenerates during the actual readout period.
The effect of an eddy current gradient being applied on top of the readout gradients is that the movements in
k-space will not be as expected. Instead of the even sampling pattern shown in figure 2.9, the actual sampling
will be offset in some direction by the eddy current gradient. Since the reconstruction algorithm will still treat
the data points as having been sampled at the expected locations in k-space, the image will be generated based
on an incorrect Fourier transform. The resulting effect on the image is a distortion of the imaged substance
[28]. Such an eddy current distorted diffusion image is shown in figure 3.9, where the image that is affected has
experienced significant transformation. From this figure, it is immediately apparent that calculating values per
voxel based on overlaying these two images would be fraught with errors.

Eddy currents have experimentally been found to be an issue in diffusion imaging using EPI readout. The
residual gradients caused by eddy currents can be modeled by the following equation:

ε =
∑
i

εi e
−t/τi (3.10)

where ε is the eddy current gradient and εi and τi are the individual factors that are used to model the decline
as a sum of exponentially declining gradients. The time factors have been found to be in the order 1-100 ms,
which means that the declining currents will have a significant impact for a few hundred milliseconds. Since a
typical EPI readout is about 40-50 ms long, and a full image cycle is in the order of 100 ms, this indicates that
eddy current gradients are present during the EPI readout and need to be taken into account [12, 29].

3.2.2 The Effect on Images

It has previously in (2.11) been established that the MRI signal after filtering depends on the spin density
ρ(r) and the phase accumulated by the gradients φG(r, t). It has also been shown that we can use the k-space
representation to describe the signal (2.13) and that this can be expanded to two or more dimensions. Standard
MRI images are created by sampling the signal in a two-dimensional k-space and calculating the spin density
from the signal using a two-dimensional discrete Fourier transform. This means that the signal will be

s(kx, ky) =
∑
x

∑
y

ρ(x, y) e−i(kxx+kyy) (3.11)

The steps kx and ky taken in k-space are determined by the phase change that occurs between adjacent sample
points. To calculate the effect of the induced eddy currents, we need to take a closer look at how this phase
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Figure 3.9: Illustration of eddy current distortion in a diffusion-weighted image. Baseline image without
diffusion weighting (a) and the same slice imaged using diffusion sensitizing gradients (b) with the border of
the brain from the left image overlaid on both images. This clearly indicates how the shape of the subject has
been distorted by the eddy current effect. The areas with clear such effects are indicated by the arrows. The
diffusion weighted image was captured using a diffusion gradient of 29.3 mT/m with duration δ = 20 ms. The
low resolution of these images is due to the use of EPI for readout. Images courtesy of Markus Nilsson.

change is affected. If we assume the normal linear EPI readout gradients Gr in the read direction x and Gp in
the phase direction y, this phase change is

∆φ(x, y) = γ

(∫ t

0

Gr(t)x dt+

∫ t

0

Gp(t)y dt

)
(3.12)

This phase change governs a normal EPI readout that is unaffected by eddy currents [30]. When eddy currents
appear, a new term will have to be introduced. To start with, we can define the diffusion gradient as a vector
on the form

Gdiff = cxî+ cy ĵ + cz ẑ (3.13)

where ci is the gradient strength in the given direction, measured in T/m. This gradient will give rise to an
eddy current induced gradient on the form

Geddy(t) = εx(t)̂i+ εy(t)ĵ + εz(t)ẑ (3.14)

where εi is a gradient strength in the same way as in the previous equation. This gradient is proportional to
the characteristics of the diffusion gradient, with larger gradients giving rise to a larger eddy current gradient.
It is, however, not linearly proportional to the gradient strength in the same direction, i.e. εx is not necessarily
proportional to cx. The induction of eddy currents in the scanner is a complex process where currents may
appear in many different surfaces. It has been shown that cross-terms where cx leads to εy, and so on, are a
significant part of the eddy current gradient. There is also a potential effect from eddy currents on the B0

field, which is expressed as a term ε0(t) in the direction of the static field. The combined eddy current gradient
effect is thus

Geddy(t) · r + ε0(t)B̂0 (3.15)

where r is a positional vector measured from the center of the magnet bore. This new term can now be added
to the phase change (3.12) that becomes

∆φ(r) = γ

(∫ t

0

Gr(t)x dt+

∫ t

0

Gp(t)y dt+

∫ t

0

Geddy(t) · r + ε0(t) dt

)
(3.16)

This expression combined with the definitions given in figure 3.10 makes it possible to calculate the eddy current
effect on the phase changes in each direction. We also make the assumption that the eddy current gradient will
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be constant during the EPI readout, which is reasonable since the eddy currents last several times longer than
the time a readout takes. The total phase change between two sample points along the read (x) axis is then

∆φr(r) = γ

(
Grx

tr
N

+ (Geddy · r)
tr
N

+ ε0
tr
N

)
(3.17)

where tr/N is the time period between the two samplings, since N samplings are made during tr when the
read gradient is constant. The phase change during the time tp when the phase gradient is active becomes

∆φp(r) = γ
(
Gpy tp + (Geddy · r) tr + ε0 tr

)
(3.18)

where it should be noted that the phase direction gradient does only alter the phase during tp, while the eddy
current effect is active and accumulates phase drift during the whole period tr between two adjacent phase
blips.

tp

tr

t

t

Gr

Gp

(a)

kx

ky

∆φr

∆φp

(b)

Figure 3.10: Illustration showing readout gradients and the desired path through k space. (a) Real shape of
the readout gradients in an EPI readout. The gradients along the read axis are trapezoidal while the smaller
phase direction gradients are triangular. The phase direction blips are applied while the readout gradients
change direction. We define this period as tp and the period during which the read gradients are constant as
tr. Note that the scale is not correct, the amplitude of the read gradients is about a hundred times larger than
the amplitude of the phase gradients, and the difference between tr and tp is in reality much larger than it
appears here. (b) shows the k space path generated by the gradients in (a), with the sampling points indicted by
the circles. The phase change induced during a read blip is defined as ∆φp and the phase change between two
samplings along kx as ∆φr. The number of sampling points N are in reality much higher, normally between 64
and 256. The definitions given here means that the time between two sampling points is tr/N .

Using these equations, it is now possible to estimate the potential impact of the eddy currents on the
readout sequence. The read gradients used in EPI are often as strong as possible to make the readout scan fast
enough. This means that the gradient Gx can be about 50 mT/m, compared to the eddy current gradient that
is normally less than 1 mT/m [31]. This means that in the read phase equation (3.17) we have

Grx
tr
N
� (Geddy · r)

tr
N

+ ε0
tr
N

(3.19)

The total impact of eddy current effects on the phase in the read direction is thus very small and can be ignored
in the total calculation of the eddy currents effect.

The situation is unfortunately very different for the phase change in the phase direction. The time-average
of the gradient blips that move the readout in the phase direction in k space is very small, and can thus be
of approximately the same strength as the eddy current gradient. This is definitely probable when the eddy
current inducing diffusion gradients can be up to 100 mT/m, as is the case with kurtosis sequences. We can
then conclude that the eddy current impact is substantial in the phase direction, since

Gpy tp ≈ (Geddy · r) tr + ε0 tr (3.20)

and the eddy current part can even be larger than the intended phase change.
When it comes to any potential phase change in the z direction due to eddy currents, this can safely be

ignored. Any gradients in this direction will not change the EPI sequence dramatically since there are no
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z gradients present in the readout sequence. It would only amount to a minor change in the slice selection,
resulting in a small effect on the SNR [31].

The combined effect from all eddy currents that need to be included in any correction method is thus the
terms given in (3.18), which can be expanded into

∆φp(x, y, z) = γ
(
Gpy tp + (εxx+ εyy + εzz) tr + ε0 tr

)
(3.21)

The total impact on the generated images can be determined by analyzing the different eddy current terms and
their effect on the normal phase change separately. With no eddy currents present, the expected phase change
would be

∆φp(x, y, z) = γ Gpy tp (3.22)

The effect on this phase change with an eddy current effect from εx present, would be an added x dependent
term

∆φp(x, y, z) = γ
(
Gpy tp + εxx tr

)
(3.23)

This effect on the phase change carries over into the step ∆ky so that the real ky becomes ky + εxx tr. This
new term will end up in the inverse Fourier transform that generates the final image and will change the y
transform so that ∑

y

ρ(x, y)e−ikyy ⇒
∑
y

ρ(x, y)e−i(ky+trεxx)y (3.24)

This additional term will cause a shearing along the x axis since the effect on the inverse Fourier transform by
an added term in the exponential is

F−1
[
f̂(ξ)e−iaξ

]
= f(t− a) (3.25)

In our case we will end up with an offset of γtrεxx in the y direction for each pixel. This shearing effect is
illustrated in figure 3.11b.

Analogously, if only εy is present, (3.21) is reduced to

∆φp(x, y, z) = γ
(
Gpy tp + εyy tr

)
= γGpy tp

(
1 +

εy tr
Gp tp

)
(3.26)

which shows that this will result in a scaling of ky, as illustrated in figure 3.11c, due to the Fourier transform
scaling rule

F−1
[

1

|a|
f̂

(
ξ

a

)]
= f(at) (3.27)

The effect of a potential εz gradient can be completely ignored. This is due to the slice selection gradient
explained in section 2.2.1. This gradient is played out at the beginning of the imaging sequence and makes sure
that only the desired slice has its spins at the correct resonance frequency. At the same time this adjustment
makes it possible for us to regard z as zero for each image. Thus, the εz term from (3.21) will always disappear.

Finally, the eddy current effect on the static magnetic field has to be considered. With only ε0 present, the
remaining phase change is

∆φp(x, y) = γ
(
Gpy tp + ε0tr

)
(3.28)

which is identical to the effect that caused the shearing, except that there is no x dependence present. Hence,
instead of a shearing, the effect on the image is an offset along the y axis that is the same for all pixels, i.e. a
translation of the image. This effect is illustrated in figure 3.11d.

The complete effect on an image caused by eddy current gradients consist of distortions along the phase axis
in the shape of shearing, scaling and translation of the image [31, 32]. The full set of distortions are illustrated
in figure 3.11, while an example on an actual image is shown in figure 3.9.

3.2.3 Existing Correction Methods

The existence of eddy currents is a problem that has been known since the early times of NMR. As the potential
of diffusion measurements was made apparent, studies of active measures to counter this problem were initiated.
These counter measures can be roughly divided into three different categories.

The first type consists of methods that are integrated in the MRI/NMR scanners at hardware or software
level. They are completely general and are applicable to all sequences, and can be seen as preprocessing
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Figure 3.11: Illustrations of the different distortions that can occur due to eddy currents. An unaffected imaged
shape is shown in (a) for comparison. The read direction is horizontal, while the phase direction is vertical in
all images. Shearing (b) is an effect where each pixel is offset depending on its position along the read axis. The
next effect is scaling (c), where the image is either compressed or extended. Finally, eddy currents affecting the
static magnetic field can cause translation (d). All these three effects can also appear in the opposite direction
to the arrows shown here, depending on the direction of the eddy current gradients.

methods. The second category consists of methods that are pure post-processing methods. They are applied
only after the image sets are generated, and do not require any sequence modifications. The final type of
methods require special sequences, or modification of existing imaging sequences to function. They work by
either canceling eddy currents straight away, or by supplying data that makes it possible to remove the eddy
current effects in the image generation step.

The first improvements that were made were in the early days of MRI when the hardware was quickly evolving.
It was discovered that shielding the gradients and rearranging them could lower the electromagnetic coupling
between the gradients and other parts of the scanner, resulting in substantially less induced eddy currents [33].
Such easy gains were quickly incorporated into the scanners by the manufacturers. In the early 1990s, attention
turned to improving the sequences being used. The eddy currents induced were mathematically described
and sequences were developed to counteract the eddy current induction [34, 35]. These countermeasures work
by slightly modifying the gradients applied during readout to get the desired path in k-space even with eddy
currents being present. Hence the new sequence would have a term that cancels the results function of the
eddy currents, known by calibration. They were found to work well and have been integrated into modern
scanners as they lower the impact of eddy currents for all sequences.

Early diffusion sequences only sampled one row in k-space per excitation. The capabilities of MRI scanners
improved quickly, and in the early 1990s it was possible to use EPI readouts where the whole k-space is sampled
during one echo (explained in 2.2.3). This made DTI possible, and it became an established method in the
middle of the decade. The much higher eddy current sensitivity of the EPI scans required for DTI gave rise to
a burst of articles on distortion correction, both concerning sequence modification and post-processing methods.
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The first such method was presented by Haselgrove and Moore [36]. This method was the first eddy current
correction that was built on co-registration of images, which means that one image (or whole volume) is altered
in some way until it becomes as similar as possible to a base image that is supposedly more correct. In diffusion
imaging, this is most commonly done by comparing a diffusion-weighted image to a normal image that is not
diffusion-sensitized, since the latter does not include any diffusion related distortions. Co-registration is done by
maximizing or minimizing some kind of comparison function, of which there are many. The strategy outlined
by Haselgrove and Moore was to correct the diffusion images by applying shearing, scaling and translation as
discussed in the previous section. This was done by changing column after column in the image to maximize
the comparison against the same column in the base image. Since the diffusion should only change the image
in the phase direction, shearing, scaling and translation can be combined into scaling and translation of each
column. The study used a comparison function called cross correlation for the co-registration. Cross correlation
is dependent on images having a comparable overall intensity, meaning that it is only usable for diffusion images
taken with a low b-value. The reason for this is apparent in the huge difference in signal strength between
figures 1.2a and 1.2d. Haselgrove and Moore corrected images taken with b = 160 in this way. By visual
inspection, they deduced that the distortion was linear with the b-value and that the correction parameters
found from the first image could be extrapolated to images taken with higher diffusion strength. While this
method was found to be acceptable, it has the large disadvantage that a whole extra set of images with low
diffusion strength has to be added to the sequence just to find correction parameters, since the images used
for DTI normally has a b-value of about 1000. The distortion parameters found are also not restricted by the
physics involved, meaning that accidental similarity of two columns could lead to mis-registrations.

The principle of correction as outlined by Haselgrove and Moore has been the basis of most post-processing
methods developed since. An early improvement was to use it with sequences that suppress the intense signal
from cerebrospinal fluid (CSF), thus lessening the negative effect of the signal difference that is a problem to
the cross correlation function [37, 38]. This makes it possible for the original correction algorithm to be effective
for DTI sequences without the need to collect an additional image set with a low b-value. It does however come
at the cost of lower SNR in the diffusion images, which has a negative impact on calculation of DTI.

The problem with signal intensity and cross correlation has since been circumvented by not using cross
correlation at all, but instead using the comparison function known as mutual information. This function is
very robust towards signal differences, and is shown in a study to be consistent over separate imaging sets
of the same subject, which was often not the case with the method as proposed by Haselgrove and Moore
[39]. Another method to handle this question was suggested by two separate studies in 2004. They show that
instead of comparing diffusion weighted images to non-diffusion weighted images it is possible to compare
diffusion images taken with completely opposite diffusion gradients. These images have the characteristic of
having opposite eddy current distortions while the corrected images should be identical. This is shown to work
very well, but does come at the cost of longer sequences since twice the number of diffusion images has to be
collected [40, 41].

Another negative aspect of these post-processing algorithms is that they are time consuming to apply on an
image set. A processing time of several hours for each patient is not uncommon in these studies. Several articles
suggests that this could be solved by running the post-processing algorithms on an image set collected from
specially made phantoms. This could then be done less frequently than for each patient, such as once a week.
The most promising such method is the one presented by Horsfield in 1999, which is based on a physical model
where the theoretical effect of eddy currents is taken into account and then adjusted with mutual information
to maximize similarity to non-diffusion weighted images. While it seems that the eddy currents are consistent
over time, the method as suggested leaves some remaining errors in the parameters for shearing and scaling [42].

The post-processing methods presented so far have one big negative aspect in common - they don’t take
patient movement into account. While they all reduce the impact of eddy current distortions, there is always a
risk that the distortion correction is wrongly calculated due to patient motion. This possibility exists because
the diffusion weighted images are compared to the non-diffusion weighted image takes first in the imaging
sequence. This means that the time period between image captures can be several minutes in the worst case,
enough time for the patient to have moved a substantial distance. To combat the effect of this, more advanced
correction algorithms were created in the early 2000s. These work by comparing whole volumes of images
and finding patient motion and eddy current distortion at the same time. One of the most popular such
algorithms is the one used in the medical image processing software package FLIRT, which is general method for
co-registering medical images [43, 44]. This method is especially used for correction of patient motion in fMRI
imaging, where motion can cause severe artifacts since very small differences in blood flow are measured. The
FLIRT method finds the affine transformation that maximized the mutual information between two image sets,
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using twelve dimensions of freedom. In this way, it can find both patient motion (rotations and translations)
and the three dimensions of eddy current distortion. There is one big drawback using this method, which is
that there is no correlation between the diffusion gradients in use and the correction applied, and hence no
base in the physics involved. It simply finds the best possible match of images, regardless of the reason. Due to
this, there is criticism against the method and the unrealistic transformations is can lead to [45].

Some more specific eddy current correction methods have also been created along the same lines. Andersson
and Skare showed in 2002 that the remaining residual in the diffusion tensor is a good fitness function that can
be used to find both patient motion and eddy current distortion. They used separate models for the two types
of transformations, and applied them in the same calculation step as two different transformation matrices.
Using this, they convincingly showed that the method works well and that the residual from the diffusion
tensor [46] is a good fitness function. They also importantly used limits for the allowed transformations to
avoid any unrealistic corrections.

The most thorough post-processing method is probably the one presented by Rohde et al. in 2004 [47].Their
method models eddy current effects from the applied diffusion gradients, giving a model soundly based in
the physics involved. They use mutual information to co-register non-diffusion weighted image volumes and
image volumes taken with b = 1120. The method is evaluated and found sound by showing that the method
maximizes the information captured in the first few components of a principal component analysis (PCA). The
method considers parameter limitation and and also signal change and rotation of the diffusion gradient matrix
due to the applied transforms. The medical image software NordicICE uses this method for image registration.

The final type of methods emerged as the same time as the first post-processing methods. This class consist
of methods that require some sort of special sequence to counter the eddy current effect. The first idea for such
a method was to counter the eddy current inducing gradients by applying gradients in the opposite direction
in close proximity to the diffusion sensitizing gradients. This can be done either by applying the opposing
gradients before the slice excitation (prepulse) or by putting focusing and refocusing gradients on each side of
the 180 degree pulse (bipolar gradients). While especially bipolar gradients have shown good results towards
eddy current correction, they both come at the cost of longer imaging time and lower SNR [48].

Another option is to measure the effect of eddy currents using special navigational phase maps. These are
special low resolution samplings of the phase that can be used to determine how far out of phase the signal is
due to image correction. The images can then be corrected afterwards using the parameters determined in this
way. Jezzard et al. developed such a method in 1998 [31]. They measure the error in the phase direction and
successfully correct the eddy currents effects. This works well on interleaved images when each line in k-space
is collected during a separate excitation. When used on single image EPI, however, it comes with a penalty
that makes the sequence three times longer, which is clearly unacceptable.

This method has since been improved [49] upon by Chen et al. They developed a method where the diffusion
sequence for DTI was applied on a phantom, and the eddy current effects from scaling and shearing were then
measured through field maps as in the previous method. The parameters found in this way could then be
applied later on the patient images. The translation was determined separately for each patient by running
an additional two minute scan that measured the B0 shift using the same type of phase measurements. This
vastly reduced both the time and the SNR penalty from the method as suggested by Jezzard et al.

The final method to be described here is by many seen as the general solution to the problem of eddy current
distortion. In 2003, Reese et al. developed a completely new diffusion sequence, known as twice-refocused spin
echo [50]. This imaging sequence differs from the ordinary spin echo sequence described here by using two
different refocusing pulses instead of one. This allows the diffusion gradients to be split into four different blocks
that can be adjusted to suitable lengths to cancel out the eddy current effects while still being combined into
the desired diffusion strength. The study shows that this configuration is able to completely cancel out the eddy
current effect from a single exponentially declining eddy current. This makes the sequence able to remove an
overwhelming majority of the eddy current effect, which has made it perfect for common diffusion measurements
such as DTI. It does however induce a penalty of an SNR loss of up to 20%, which is an acceptable cost in
most applications [49].

3.2.4 Applicability in High b-value Sequences

Since much diffusion research effort has been focused on DTI and fMRI, most eddy current correction methods
are designed to correct images generated with a b-value of up to 1000. High b-value diffusion sequences is an
emerging subject and has thus so far not given rise to any research into eddy current correction. Many of the
correction methods described above would not work for the kind of diffusion images used for kurtosis, where
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b-values up to 4000 are used. These sequences apply very strong diffusion gradients that can be close to 100
mT/m, compared to the values of 20-30 mT/m used in most correction studies. As discussed previously, these
strong gradients mean that the images will have a much lower SNR than normal DTI images (see figure 1.2).
This creates huge problems for most established post-processing methods. The lower SNR means that these
images will have much less similarity to the B0 images normally used as reference for comparison, making
it impossible to register the images as intended. It also derails Andersson and Skare’s method that uses the
diffusion tensor for correction, since a correct diffusion tensor cannot be calculated using images with very high
b-values. The only study that discusses correction for higher b-values is the article by Rohde et al. who figures
that their method could be applicable.

Sequence dependent methods do not have the same problems. Twice refocused spin echo works for high
b-value imaging, but the SNR penalty that goes with it it not seen as viable for the kurtosis sequences where
the SNR is already very low. The methods, such as the one by Chen et al. that use navigational phase maps
could potentially work, but at the cost of additional scan time. Since the scan time for kurtosis sequences is
already 30-45 min, all additional time is very undesirable due to the problems inherent with requiring patients
to remain completely still for a long time.

All in all these limitations in existing methods makes it desirable to develop a new post-processing method
that would work for high b-value sequences.
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4 Method
This chapter outlines the eddy current compensation method that was developed for this thesis. It explains
the different parts of this new method that together make up a software package that can readily be used to
correct an eddy current distorted diffusion image set. It also explains the three different steps that were used
to verify the functionality of this new method.

4.1 Modeling and Comparing Images

The correction method explained here is a post-processing method that is based on the different distortions
that has been shown to be possible in the previous chapter. This is the same type of compensation that has
commonly been used ever since the first post-processing methods. However, here the compensation is further
linked to the actual physics of Diffusion MRI by linking the correction parameters to the diffusion gradients
that are applied to generate the image. This method also differs from earlier suggestions by co-registering
images in a way that has not previously been used. This makes it possible to use this method for b-values
larger than 1000. The basic idea is to transform parts of the image set and co-register the images. The total
correlation in this set is used as a fitness function for a numeric optimization method explained below, resulting
in a set of best fitting transformation parameters. The whole method is implemented as a MATLAB program
where the heavily used comparison and transformation functions are written in C for speed.

4.1.1 A Model for Eddy Current Distortion

The basics of the correction method is to find parameters that link the applied diffusion gradients to the
shearing, scaling and translation that corrects each image in the set. From the previous theory chapter it is
known that the distortion in an image is given by the three parameters εx, εy and ε0 (εz is always zero) that
cause the three different distortion effects. The correction transformation can be applied as an affine image
transformation according to  x′

y′

1

 =

 1 0 0
α 1 + β γ
0 0 1

 x
y
1

 (4.1)

where α is shearing, β is scaling, γ is translation and the image is assumed to be located with the phase
encoding direction along y. Note that this γ is just a naming of a variable, it is not related to the previous
use of γ as the gyromagnetic ratio. All mentions of γ from here on refers to the translation of images. To
find these parameters, we create a model whereby all correction parameters for the entire image set can be
calculated by determining a smaller set of parameters. This model is dependent on the assumption that the
eddy current effects are linearly dependent on the applied diffusion gradients, which is according to finds in
previous research [42, 49]. The model calculates the correction parameters in the following way:

εx : α = p1Gr + p2Gp + p3Gs

εy : β = p4Gr + p5Gp + p6Gs (4.2)

ε0 : γ = p7Gx + p8Gy + p9Gz

where Gr, Gp and Gs are the diffusion gradients in the read, phase and slice directions of the images. Note that
γ is instead dependent on the diffusion gradients in x, y and z directions in the scanner’s frame of reference.
The reason that this parameter differs from the two previous ones is that ε0 comes from eddy current effects on
the B0 field along z, while εx and εy are dependent on the eddy currents in the image’s plane which differs if
the slice stack is tilted due to the patient’s position. p1 . . . p9 are the nine parameters that need to be found to
enable the full calculation of correction parameters. Using all nine parameters allows both direct and cross
terms from all gradients to come into effect on all three distortions.

The approach so far is similar to some previous correction methods. One more element is however added
that needs to be considered for the kind of high b-value diffusion experiments used in this thesis. It has been
found, for example by Foerster et al. [51], that the main magnetic field is not stable during long sequences
using high power magnetic field gradients. The induced heat and physical vibrations cause the B0 field to drift,
causing a separate translation of the images in the phase direction. The most intense sequence used in the
study found a time dependent translation that reached several millimeters during a 30 min sequence, which is
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very similar to the sequences used in Lund. To make it possible to adjust for this offset, a time dependent
function is added to the translation, which thus becomes

γ = p7Gx + p8Gy + p9Gz + f(t) (4.3)

where f(t) is set to be a second-order polynomial on the form

f(t) = p10t
2 + p11t (4.4)

The parabola given by this function can bend in either direction, and can also degenerate into just a line.
The lack of a non-time dependent parameter in the function is due to the boundary condition that the time
dependent translation should always be zero at t = 0.

This completes the model for the image distortion effects in a full sequence, giving a total of eleven parameters
to find in order to correct the image set.

4.1.2 Comparing Images Using Local Correlation

An important step in any post-processing strategy is the co-registration of images. This involves calculating
some sort of value that shows how alike two images are. As discussed in the theory chapter, two methods have
been commonly used in different post-processing methods: cross correlation and mutual information. The
latter method is currently seen as the gold standard for co-registration [52, 53]. It is based on calculating the
joint entropy of the image data, which has the drawback of being a very computationally intensive calculation.
Since comparing all the images in a data set would require thousands of these calculations, mutual information
was deemed impractical for this project. The other common method, cross correlation, is impossible to use for
images with very different signal strength, which is the case with diffusion images. Since both these methods
have distinct drawbacks, a third method called local correlation was studied for use in this thesis. This method
has been shown to be equal to mutual information for co-registering, while being both faster and avoiding the
problems with cross correlation [54, 55].

Cross correlation compares pixels in two images by calculating their difference compared to the averages
over the whole images. With the image data designated r and t respectively, the correlation becomes

CC(r, t) =

∑
i(ri − r̄)(ti − t̄)√∑

i(ri − r̄)2
∑
i(ti − t̄)2

(4.5)

where r̄ and t̄ designate the average signal value over respective image and i is an index summing over all the
pixels in the images. It is immediately apparent that this calculation is very dependent on the signal strengths
being similar in order for the two images to weigh in at the same level. Local correlation solves this problem by
considering the average of the Moore neighborhood (the pixel and its eight surrounding pixels) for each pixel
instead of the global average. Two neighborhoods are compared using the following calculation:

[uv]i =
∑
j∈n(i)

(uj − ūi)(vj − v̄i) (4.6)

where we sum over the neighborhood n(i) of pixel i and ūi is the average value for the neighborhood. The
complete local correlation is then calculated as a sum over such partial sums as

LC(r, t) =
1

N

∑
i

[rt]2i
[rr]i[tt]i

(4.7)

This value will be much more robust than cross correlation when it comes to differences in signal intensity
due to its focus on local differences. The definition above makes local correlation an efficient comparison that
indicates how well the edges in two images line up with each other. The way each pixel contributes to the total
local correlation is illustrated in figure 4.1.

During the testing and evaluation of local correlation, it was discovered that the optimization process
could be improved by discarding parts of the data. The calculation as defined in (4.7) is dependent on the
total number of used neighborhoods N . This has the effect of reducing the local correlation if more pixels
are included, even if they are completely black and do not add any further information. This was avoided by
adding a filtering function whereby a neighborhood [uv] is only included in the calculation when its value is
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Figure 4.1: (a) A normal MRI image and (b) the distribution of values for pixel neighborhoods when the
local correlation is calculated for the image compared to itself. It clearly shows that local correlation works by
focusing on the lineup of the detected edges in the compared images. The right image also demonstrates that the
neighborhood values are rather noisy even when the signal to noise ratio in the original image is very high.

larger than a certain limit, meaning that the neighborhood must contain a level of contrast to be considered.
The local correlation is thus only divided by the number of neighborhoods Nt that pass this threshold. This
filtered version of local correlation is used in this thesis and is defined as

LC(r, t) =
1

Nt

∑
i

[rt]2i
[rr]i[tt]i

(4.8)

where at least one of [rr] and [tt] is larger that the designated threshold t. Using this, the local correlation has
a much larger difference when images are correctly aligned. Figure 4.2 shows this effect. The vast improvement
in local correlation value when the images are aligned make it easier to detect this situation. When many such
comparisons are combined, filtering becomes an effective way to make sure that the correct global maximum is
more likely to be found by numeric optimization.

4.1.3 Co-Registration Strategy

The filtered local correlation described above is used to co-register different images in the image set. Images are
compared according to a scheme designed to include the images where alignment is most likely to be detected.
Most post-processing methods developed so far correct the images by finding the highest similarity between
the non-diffusion weighted image of a slice and the different diffusion weighted images taken of the same slice.
While this works well for b-values up to about 1000, it does not function properly for larger b-values since these
differ too much from the non-diffusion weighted image in both image content and signal strength. The scheme
is designed to eliminate this problem by using a chain of comparisons between images captured using different
b-values. This scheme is illustrated in figure 4.3.

The basic idea of this new strategy is to utilize the fact that two diffusion images captured using the same
diffusion gradient direction but with different b-values should be very similar to each other. This means that
while it is not possible to make a decent comparison between images with b = 0 and b = 4000 for example,
it is feasible to compare images with b = 1000 and b = 4000. Using this, we create a chain of comparisons.
The image with b = 0 is compared to the image in direction A with the lowest non-zero b-value. That image
is then compared to the image with the second lowest b-value and so on. Each comparison results in a local
correlation value between the two images, and the global fitness function is then defined as the sum of all such
local correlations. The perfect transformation should then result in the correction of all distortions, making all
the images as similar as possible.

As can be seen in figure 4.3, the scheme does not only compare images captured with the same direction
for the diffusion gradients, but also compare images captured with different directions (the arrows connecting
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Figure 4.2: The effect on enabling filtering for local correlation. The three lines show the local correlation values
for an image compared to a scaled version of itself, where a y-scaling of 1 is the correlation between the image
an itself. The red line shows the local correlation as originally defined in (4.7). The blue line is a test where
only pixels above a certain signal threshold was included in the calculation. Finally, the black line shows the
effect of using filtered local correlation as defined in (4.8). As can be seen, the function peak is vastly improved,
making it much easier to detect for an optimization function.

images labeled Dir A with images labeled Dir B). The idea here is to provide further information by using
the correlation between images with similar gradient directions but the same b-value. For each direction, the
closest neighboring direction is found, and each image is then also compared to its neighboring image when the
fitness function is calculated for each transformation. This neighboring direction can be either the direction
closest to the image’s direction, or the direction closest to the exact opposite of the image’s direction. This is
due to the fact that two diffusion images captured with exactly opposite gradient directions should be identical,
as discussed in the theory chapter.

Hence, for an image set with 5 b-values, 10 gradient directions and 15 slices, there is a total of 51 images
per slice (there is one non-diffusion weighted image per slice). These 51 images result in 75 separate local
correlations for the slice: one for each image compared to the image with lower b-value and one for each pair
of diffusion images between neighboring images (same pattern as in figure 4.3 where 7 images result in 9
comparisons). With fifteen slices, testing a set of transformation parameters would require the calculation of
75 · 15 = 1125 local correlations that are then summed to form the fitness value for the parameter set. Due to
the large cost of calculating thousands of local correlations, the calculation is often limited to a subset of the
slices, such as five of the fifteen slices in the example. Also note that there are no comparisons made between
images from different slices, which is due to different physical regions being present in different slices, making
them hard to compare to each other.

4.1.4 Numeric Optimization

The hard part of this post-processing method is to find the transformation parameters that maximize the fitness
function that is the sum of all the local correlation calculations made. This requires some kind of numeric
optimization method. Test calculations where images were scaled and sheared and then compared with local
correlation showed a difficult topography filled with small local maxima. This means that methods such as the
Gauss-Newton method, which would otherwise fit very well with local correlation, would easily get stuck in
such maxima. Instead, particle swarm optimization (PSO) was chosen as a suitable method for the numeric
optimization [56]. PSO is an optimization method inspired by the behavior of bird flocks. The basic idea is to
allow a number of particles to explore the multi-dimensional space spanned by the possible range of solutions.
In this case, this is the eleven dimensional space consisting of all possible sets of transformation parameters
p1, . . . , p11 within the bounded search-space. Each particle is given a random starting position in this space,
which is a candidate solution for the problem. It is also given a random velocity in this space. For each iteration,
the fitness function is calculated for the position of each particle. In each iteration the particles will move
according to their current velocity. This velocity is updated in each iteration, where each particle is drawn to
both the best position it has found itself, and towards the globally best position. This means that even when a

32



Dir A

Dir B

b = 0

b = 500

b = 1000

b = 2500

b = 500

b = 1000

b = 2500

Dir A

Dir A

Dir B

Dir B

Figure 4.3: Illustration of the co-registration scheme as a sum of local correlations between different images.
This is a partial view of the images that are taken of one slice of the subject, showing only the non-diffusion
weighted image (b = 0) and the diffusion images for two different gradient directions (A and B). Each arrow
indicates the calculation of one local correlation. Hence, each image is compared to the image taken with a lower
b-value and to the image with a larger b-value, both using the same gradient direction. It is also compared to the
image taken with the same b-value, with the gradient direction that is closest to its own. Thus, the images in the
illustration would contribute with nine different local correlation values that are added to the global summation.
Note that the length of the arrows is a consequence of the illustration and lacks any importance.

particle finds a local maximum, its velocity will make it pass over the position and thus avoid being stuck there.
In the end, all particles will gravitate towards the best position found by any particle and will further explore
the space surrounding that point. The optimization process will be done when the particles have converged so
that the average speed is below some predetermined breakpoint. Hence, the method starts with exploration of
the total search-space, which slowly changes into a behavior when it exploits the best positions found so far.
This makes the method function very well for numeric optimizations in spaces filled with local maxima, such as
the one encountered in this thesis. The optimization was run with the default parameters as given in [56], since
they were found to work well and result in repeated convergence towards the global maximum.

4.1.5 Application on Diffusion Images

With these tools in place, the full post-processing chain can be applied to diffusion image sets. The method
runs on images stored using the DICOM standard (Digital Imaging and Communications in Medicine), which
is a common format for storage of medical images. These images currently must contain some tags that are
specific to images captured using Philips MRI scanners, but the tag reading could easily be adapted for other
manufacturers. When the image sets are read, the DICOM files contain info regarding b-values, gradient
directions and timings involved in the sequence. This allows for the calculation of the total imaging time for
the set and the individual capture time of each image, which is required to correctly apply the translation
calculated from the time dependent function. The only information that needs to be supplied by the user is a
target directory with DICOM images, the number of slices in the stack (required to simplify the loading of the
images) and the values for ∆ and δ used in the diffusion sequence. The two final values are used to calculate
the diffusion gradient strength for each image according to (3.6), where the b-value and the gradient direction
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are read from the image files.
The method currently assumes that the image set is created using simple slice interleaving where all the

odd numbered slices are captured first, followed by the even numbered slices using the same setting. This is
commonly done to allow a slice as long relaxation time as possible before it is excited for a new image to be
taken. The method can be configured to use all slices in the set for the correction, or to only use a subset. The
experiments conducted during this thesis work commonly used 6-8 slices for each run, spaced evenly through
the image set. This reduction of slices is done in order to decrease the total optimization time since it was
found to have no negative effect on the final parameters.

When the optimization process is started, about 150 particles (depending on settings) are initialized to
random positions and given starting velocities as described in the section above. During each iteration, the
following steps are performed:

1. For each particle, the parameter values are put into the method to calculate the transformation parameters
α, β and γ for each image in the slices involved in the optimization.

2. Each image is transformed according to the these parameters using bicubic interpolation [57] to make
them as accurate as possible.

3. The transformed images are compared to each other using local correlation, with the scheme outlined
above. The total fitness function for each particle is found as the sum of all these comparisons.

4. The global best and particle best positions are updated, and all the particle velocities are changed.

5. If the average speed of the particles is below the threshold, convergence has occurred and the final solution
is found.

This process is preferably run in parallel, to increase the calculation speed. Since MATLAB has no built-in
support for parallelization, a multicore enabling plugin written by Marcus Buehren was used [58]. This made it
possible to distribute the calculation of all the fitness functions over several cores.

4.1.6 Parameter Reduction

Unfortunately, the numeric optimization of all eleven parameters p1 . . . p11 using PSO turned out to be very
hard. Testing showed that while the method converged each time, convergence was not stable enough to be
considered a robust correction method. To eliminate this problem, we turned to parameter reduction. The
parameters p3, p6, p7 and p8 as defined in (4.2) were set to zero, leaving seven parameters to find for the
numeric optimization. The effect of leaving out p3 and p6 is that the gradient in slice direction is no longer
allowed to influence the shearing and scaling. Similarly, with p7 and p8 removed, the x and y gradients cannot
affect the translation of the images. While this removes several dimensions of freedom for the final solution,
this reduction is motivated by the findings of previous research in the field, such as the article by Chen et al.
[49]. This research shows that the effect of gradients is much larger in the direction of the gradient than the
effect on other directions caused by cross terms. Hence, it makes sense to remove the parameters that indicate
cross terms if parameter reduction is required. This action ensured that the end product was a correction
method with stable conversion towards a credible solution. The final calculation of α, β and γ with parameter
reduction in place becomes

α = p1Gr + p2Gp

β = p4Gr + p5Gp (4.9)

γ = p9Gz + p10t
2 + p11t

4.2 Simulations

With a finished post-processing method in place, a method to verify its functionality was required. This was
provided by simulated data with known eddy current distortions. Thus, if the method works as intended, it
should be able to find these known parameters when applied to the simulated data. The simulated data was
generated by an advanced simulation framework created by Markus Nilsson at the Department of Medical
Radiation Physics at Lund University. This framework has previously been used in several studies, such as the
one by Mannfolk et al. [59].
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Figure 4.4: Simulated MRI images showing the same slice. (a) Image without diffusion weighting (b = 0). (b)
Image simulated with b = 4000. (c) Same image as in (b), but with added noise. Note that the images are
shown in different scale. In reality, the maximum signal strength in the first image is ten times larger than in
the other images. The image in (d) is the same image as in (b), but shown using the same scale as (a).

The simulations are based on a virtual brain created from a high resolution DTI scan. This brain is divided
into cells where the tissue is given realistic properties. Simulated sequences are then played out on this subject,
with each cell reacting to the RF pulses and diffusion gradients according to established MRI theory. Each
voxel in the final image consists of about 103 cells, with each simulation cell having the shape of a cube with
sides that are approximately 200 μm. The final result from these simulations is a realistic noise free image
with known distortions. This simulated image set has the characteristics found in table 4.1, where TR is the
repetition time of the sequence, which is the time difference between two images of the same slice.

The simulations are however somewhat limited. They only include direct eddy currents from each gradient
direction, which means that cross-terms aren’t taken into account. There is also no time dependent translation
effect in the images. Both translation and noise can be added at load time before the correction algorithm
is started, which makes it possible to test how these effects are handled as well. Example images from the
simulated data set are shown in figure 4.4.

When noise was added to the images, it was randomly added to all pixels using a Rician distribution, which
is the noise distribution in MRI images due to the way that the image reconstruction is done. The noise level
was adjusted to generate a signal to noise ratio (SNR) of about 30 in the non diffusion-weighted image, which
is the normal level for this kind of image. The SNR is calculated according to the method described in [1],
using the following equation:

SNR = 0.66 · S
σ

(4.10)
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Table 4.1: Sequence parameters for the simulated diffusion protocol.

Parameter Value

Nr of slices 60
Nr of gradient directions 15
b-values 0, 500, 1000, 1500, 2000, 2500, 4000
∆ 40.0 ms
δ 30.0 ms
TR 8000.0 ms

where S is the mean signal value in the area of the image containing the subject, and σ is the standard deviation
of the signal found in the area that is outside of the subject. 0.66 is the Rayleigh distribution correction factor,
accounting for the fact that the noise in the images is not normally distributed.

The first results from simulated images with added noise showed that the method failed to find the true
parameters with the noise present, instead resulting in transform parameters that were roughly one factor
to small. This was found to be due to the background noise outside the subject, which lowered the local
correlation values until there was no difference in local correlation for small changes in shearing and scaling.
To remove this negative effect, all signal in the input data set below a certain threshold was set to zero for
the optimization process, illustrated in figure 4.5. To identify a suitable cutoff, the signal distribution for the
images captured with the largest b-value was studied, since these are the images that have the lowest SNR
and thus show the smallest difference between the background noise and the real signal from the subject. The
threshold was chosen so that it removed most of the background noise while leaving almost all of the real signal
untouched. This thresholding of the signal was successful, and was since used in the correction of all data sets
from the MRI scanner. The threshold level was set individually for each data set.

4.3 Testing on a Phantom

After the verifications on simulated data, the next step was to test the correction method on real MRI data.
An imaging phantom is an object that simulates the behavior of a real subject. It was used in this thesis to
eliminate any impact that might come from a moving subject. The phantom needed to have a directionally
varying sensitivity to diffusion gradients to make it similar to a human body. It was also preferable that the
phantom had an inner structure to give contrast in the image in order to have edges that the eddy current
algorithm can detect and use to find the correction parameters. These requirements ruled out the normal
silicon oil phantoms that are often used in MRI. Instead, asparagus stems placed in water was chosen as the
phantom for this study. Asparagus has different diffusion properties in different directions since water will
diffuse more easily along the fibers, and it also gives the phantom the required inner structure. An image of
the phantom is found in figure 4.6.

The images of the phantom were acquired on a Philips 3T Achieva camera at the Sk̊ane University Hospital
in Lund. Two different diffusion protocols were used, with five series captured using each sequence. The idea
behind using different protocols was that it would make it possible to determine by how much the distortion
parameters vary between different sequences. By capturing several series for each protocol, it is also possible to
test whether the distortion parameters are stable when the same sequence is used several times on a static
subject. If the parameters are stable, it might be possible to find the distortion for a certain sequence using
a phantom, and then apply these precomputed parameters on the data series from live patients. Thus, only
motion correction would have to be calculated in a post-processing step for each patient. The data for the two
different sequences are found in tables 4.2 and 4.3. Two example images from the phantom data sets are shown
in figure 4.7, where the loss of data for large b-values is very apparent.
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Figure 4.5: Filtering of noise was found to be necessary since the local correlation was lowered by the background
noise. A simulated image is shown in (a), with a realistic noise level added. The image is captured using the
highest b-value, making the real signal only slightly stronger than the background noise. The distribution of
signal values in this image is found in (c), where the large amount of low signal values to the left shows the
noise. The smaller rise in the middle of the image is the real signal. To make the method work on noisy images,
all signal below a threshold was removed to eliminate the background noise. (b) shows the same image as (a),
using the same scale, but with all signal below S = 500 removed. As can be seen in both the image and the
histogram, this removes almost all the background noise, while allowing true signal to remain.

Table 4.2: Parameters for the first sequence used on the asparagus phantom.

Parameter Value

Nr of slices 35
Nr of gradient directions 15
b-values 0, 500, 1000, 1500, 2000, 3000
∆ 43.7 ms
δ 25.5 ms
TR 5624.7 ms
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Figure 4.6: The phantom used to generate real image data to test the correction method. It consists of asparagus
stems placed in water, which gives it both a distinct structural contrast and a directionally varying diffusion
sensitivity. This makes it a perfect phantom for testing eddy current distortion. A plastic lid was placed on the
container before it was put in the MRI scanner.

Table 4.3: Parameters for the second sequence used on the asparagus phantom.

Parameter Value

Nr of slices 15
Nr of gradient directions 15
b-values 0, 1000, 1500, 2000, 3000
∆ 37.9 ms
δ 9.7 ms
TR 6000.0 ms

(a) (b)

Figure 4.7: Images from the diffusion sequence on the asparagus phantom. (a) No diffusion weighting, b = 0 and
(b) maximum diffusion gradient, b = 3000. It is apparent that the water surrounding the asparagus stems allows
free diffusion, which is why the signal from the water is almost zero in the right hand image. The structure of
the stems hinder the diffusion and gives the comparatively high signal that remains inside them.

38



4.4 Measuring in Vivo

The final test was to apply the method on in vivo data from diffusion measurements. To accomplish this, three
healthy volunteers were examined after informed consent. A kurtosis sequence was used for the measurements.
The same sequence was repeated five times in a row on each volunteer, to make it possible to test by how much
the movements of a patient would affect the final transformation parameters. These measurements would also
be used to find out whether the transformation parameters are the same for different brains imaged using the
same kurtosis sequence. The outcome of this would tell if the method can be calibrated using a phantom for
later immediate application on in vivo data, or if the optimization process has to be run separately for each
subject. Example images from these measurements are found in figure 1.2, while the settings for the imaging
sequence are located in table 4.4.

Table 4.4: Parameters for the in vivo kurtosis measurements.

Parameter Value

Nr of slices 35
Nr of gradient directions 15
b-values 0, 500, 1000, 1500, 2000, 3000
∆ 43.5 ms
δ 25.5 ms
TR 5625.0 ms
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5 Results
This chapter summarizes the results from running the post-processing method on the different data sets outlined
in the previous chapter. For each data set, the method was run five times with identical settings in order to
determine the stability of the resulting transformation parameters. All the results were generated on an Apple
Mac Mini Intel Core 2 Duo 2.4 GHz, utilizing both cores. This performed the iterations it generally took for
the 150 particles to converge in about four hours. The converging criterion was that the average movement of
the particles in each dimension was less than 2% of the allowed parameter space. This generally required about
100 iterations, requiring a total of 15000 evaluations.

5.1 Results from Simulations

5.1.1 Unadjusted Data Set

The first run on the simulated data was made without any noise or time dependent translation being added.
Thus, there were only five parameters left to be found, p1, p2, p4, p5 and p9 as defined in (4.9). Since the
parameters that generated the data set are known, this experiment becomes a test of the ability of the method
to find the correct transformation. The method was run on a subset of the full 60 slices, consisting of slices
15, 23, 31, 39, 47 and 55. The results for the five runs are found in table 5.1, along with the mean values for
the parameters and their standard deviation. Here are also the true values that should theoretically be found
based on the known generating parameters used to affect the simulated image readout.

The results show that the optimization algorithm is capable of consistently finding the parameter set that
maximizes the local correlation. The parameters found actually results in a higher local correlation than the
expected parameters, as seen in the table, showing that the optimization algorithm works perfectly. When the
parameters are multiplied with the gradients, the largest transform parameters found are α = 0.0140 (shearing),
β = 0.0144 (scaling) and γ = 0.0023 (translation), although these are for different images in the set. When
these transformations are translated into image pixels the largest pixel movement from shearing inside the
imaged subject is 0.48 pixels, the largest scaling is 0.56 pixels and the largest translation is 0.18 pixels (the
transformation from translation is calculated as percentage of the image size). This shows that method is
capable of finding transformations down to a subpixel level. The largest combined translation of the image set
becomes 1.1 pixels, which is a substantial difference when calculating kurtosis for a diffusion set. Each pixel is
about 2 mm in the imaged subject.

Table 5.1: Results for five different parameter optimization runs on the simulated data set without any added
noise or time dependent translation. The best result found for each run is presented, along with the number of
iterations required for convergence and the local correlation (LC) for the best parameter set discovered. I is
the number of iterations required for convergence. The bottom half of the table shows the mean and standard
deviation (SD) for the five parameters. The bottom row holds the true values that should theoretically be the
final result. The LC presented for the true values is the correlation found if these values are applied to the
image set.

p1 p2 p4 p5 p9 I LC

Run 1 0.2976 0.0829 -0.3069 0.2906 0.0502 49 0.94080
Run 2 0.2980 0.0830 -0.3079 0.2927 0.0501 45 0.94076
Run 3 0.2974 0.0823 -0.3072 0.2954 0.0500 50 0.94076
Run 4 0.2973 0.0831 -0.3080 0.2903 0.0503 51 0.94076
Run 5 0.2974 0.0781 -0.3072 0.2881 0.0502 49 0.94076

Mean 0.2976 0.0819 -0.3074 0.2914 0.0502 48.8 0.94077
SD (10−3) 0.2746 2.1461 0.4826 2.7356 0.1419 2.28 0.018
True 0.3272 0.1091 -0.3272 0.3272 0.0511 n/a 0.94058

As is clearly seen, the results from the optimization do not exactly match the true values that are expected
to be the correct transformation parameters. The values found are about 10% lower than expected, except for
p2 where the difference is almost 25% and p9 where the difference is less than 2%. When this is translated into
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real image pixel differences, the largest difference found between the true parameter set and the one found is
0.11 pixels, which is 10% of than the largest transformation applied by the correction.

One way to analyze the impact of the different transformations is to measure the amount of signal found
outside the position of the imaged subject. The image taken without any diffusion weighting shows the subject
without any eddy current distortions, and the goal of the correction method is to properly realign the other
images with this position. Thus, a segmented mask could be created from the image with b = 0 in each slice.
When this mask is applied to the diffusion weighted images in the same slice, the total image signal outside the
segmented position of the subject gives an indication of the effect of the transformations. An effective transform
should show that the signal outside the segmented subject should be substantially decreased compared to
the situation before any distortion correction is applied. This process is illustrated in figure 5.1, with a mask
created from a non-diffusion weighted image shown in 5.1b. When this method was applied slice by slice to one
of the transformed data sets, the method was shown to have reduced the total signal outside of the segmendted
subject by 11.75%. When the known true transformation parameters were applied, the reduction of signal was
12.32%. This shows that the true parametes are in fact a better correction (as expected), even if they showed a
slightly lower local correlation value for the image set. The found value does however show a performance that
is very close to the true parameters.

(a) (b)

(c) (d)

Figure 5.1: Illustration of the principle of applying a mask to calculate the effectiveness of the correction. (a)
uncorrected image from the simulated data set. A mask was created by thresholding the image with b = 0 in the
same slice, using a visually determined suitable level (b). (c) the effect on the image by applying the determined
transformation having α = 0.001, β = −0.006 and γ = −0.002, which is mainly scaling and translation. Blue
color shows area where signal was removed by the transform, with red color the opposite. (d) shows the change
for the area outside of the image mask from (b). This shows that signal is mainly removed from the area outside
of the brain, exactly what would be expected by a working correction method. In this case, 20.2% of the signal
outside of the segmented brain was removed by the correction, with the remaining signal being mainly noise.
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5.1.2 Time Dependent Translation

For the second test using the simulated data, a time dependent translation was added to the image set, shown
in figure 5.2. This translation grows with time, until it reaches its maximum of 2%, or 2.56 pixels, when the
sequence ends after a simulated acquisition time of 728 seconds. The translation function is quadratic, which is
the same shape and size of the translation that is described in the article [51] by Foerster, et al. This adds
two new parameters, p10 and p11, to the set that needs to be found, making it necessary to find 7 parameters
instead of 5.
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Figure 5.2: The time dependent translation added to the simulated data set, in percent. The translation function
is a quadratic function with its maximum after 728 seconds, when the translation is 2%. Since the images are
128× 128 pixels, this equals 2.56 pixels.

The detailed results for five different runs on the data are found in table 5.2, while mean values and standard
deviations, along with the true values, reside in table 5.3. The results show that the method is still very
consistent, while the added translation is clearly not a problem. The values found for p10 and p11 are close
to the true parameter values, off by 10% and 4%, respectively. While this may seem like a large difference,
when the real difference in pixel movement is calculated, it becomes only 2.9%, or 0.07 pixels. Note that these
parameters give a negative translation offset, which is required to counter the positive translation that was
originally added to the images. The lineup of the found parameters and the true change is seen in figure 5.3,
showing a very good lineup.

The values for the five remaining parameters are slightly further off from the true values than they were
when no time dependent translation was included. The mean value of p2 is now 40% lower than the true value,
and the mean value of p5 is 20% off. This is however compensated by a better match for p4. The largest
difference in image pixels becomes 0.22, about 8% of 2.68 pixels, which is the largest pixel movement found.
How the aggregated correction works is demonstrated for a single image in 5.4, showing that the algorithm
performs very well. Since the extra translation applied to the images move many of them quite far from
their correct position, the analysis method using the image mask of the non-diffusion weighted images show
completely different values than before. The correction method now manages to remove 64.2% of the signal
outside of the image mask. It takes almost twice as many iterations for the PSO to converge, compared to the
case without any time dependent translation.
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Figure 5.3: The time dependent translation that should be found is shown as a solid line, while the dashed line
shows the translation found by the method during the first run on the data set.
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Table 5.2: Detailed results for the five runs of the correction method on the simulated data with added time
dependent translation. The algorithm is still very consistent when expanded to 7 parameters. It does however
take almost twice the number of iterations (I) to reach convergence. The capability of the optimization algorithm
is demonstrated by it being able to correctly find the translation parameter p10 despite it being in the region of
10−8.

p1 p2 p4 p5 p9 p10(10−8) p11(10−5) I LC

Run 1 0.2802 0.0633 -0.3158 0.2672 0.0496 4.145 -5.685 92 0.92559
Run 2 0.2828 0.0615 -0.3125 0.2661 0.0495 4.153 -5.691 93 0.92559
Run 3 0.2788 0.0678 -0.3134 0.2591 0.0496 4.187 -5.736 88 0.92559
Run 4 0.2786 0.0659 -0.3142 0.2592 0.0491 4.166 -5.733 93 0.92559
Run 5 0.2790 0.0654 -0.3102 0.2586 0.0493 4.164 -5.724 92 0.92559

Table 5.3: Mean and standard deviation for five runs completed on the same data set as in table 5.2. The
bottom row holds the known true values for the simulated data set. The standard deviations are at least two
magnitudes smaller than the mean values, showing great consistency between runs. Once more, the true values
turn out to result in a slightly lower local correlation value than the values found by the correction method.

p1 p2 p4 p5 p9 p10 p11 LC

Mean 0.2799 0.0648 -0.3132 0.2621 0.0494 4.163× 10−8 −5.714× 10−5 0.92559
SD (10−3) 1.748 2.414 2.099 4.213 0.228 1.586× 10−7 2.401× 10−4 1.2× 10−3

True 0.3272 0.1091 -0.3272 0.3272 0.0511 3.775× 10−8 −5.496× 10−5 0.92489

(a) (b)

Figure 5.4: The effect of correction on a simulated image with added time dependent translation. To the left is
the uncorrected image. The bright border shows the outline of the image with b = 0 in the same slice, and thus
shows the ideal position for the image. It is apparent that the image is far off from where it should be. To the
right is the image after correction, showing that the image is now well positioned. The translation applied to
this image during the correction was -0.0179, or -2.3 pixels.
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5.1.3 Adding Noise

The noise that was added to the images gave a realistic SNR of 35 in the non-diffusion weighted images, and
SNR = 4.6 in the images where b was largest (b = 4000). Different random noise was added to the data set
before each run of the optimization method. As discussed in the method chapter, the first attempt at correction
using the method failed to find the known true correction parameters. The summarized results for these runs
are shown in table 5.4. The mean values are very close to zero and far off from the true parameters. It should
be noted that the true parameters actually gives a lower local correlation value than the ones found by the
method, showing that the optimization method finds the maximum for the fitness function. The background
noise apparently causes any gain from applying the correct transformation parameters to be lost.

Table 5.4: Results when the method was run five times on simulated data with added noise, without any
thresholding of the data. The parameters found are close to zero, except for the time dependent translation.
This is probably due to the true parameter settings being hidden by the large background noise in the images.
The only parameters that are found as expected by the method are the time dependent translation parameters.

p1 p2 p4 p5 p9 p10 p11 LC

Mean 0.0196 0.0031 -0.0365 0.0162 0.0147 5.052× 10−8 −5.293× 10−5 0.28975
SD (10−3) 1.478 7.357 3.251 2.740 1.341 5.725× 10−6 9.343× 10−3 0.284
True 0.3272 0.1091 -0.3272 0.3272 0.0511 3.775× 10−8 −5.496× 10−5 0.28664

The problem with noise defeating the method was solved by applying a lower threshold on the input data
used by the optimization algorithm. The mean value of the signal S in the area of the imaged subject was
roughly 1000 in the images captured with b = 4000. The threshold was set to 500, which removed almost all
the noise outside of the subject but left the noise that was applied to the area of the imaged subject. The
results from five runs on this data are found in tables 5.5 and 5.6. The results here show that with the low
level signal removed, the method is once more capable of finding the true parameters. The results are however
further from the true parameters than without the noise, and also show larger standard deviation than before.
The latter is probably due to separate noise being added to the data for each run. This is done to avoid a
situation where a single lucky or unlucky noise distribution might severely affect the results.

The added noise causes a larger deviation from the true parameters than the case with only time dependent
translation added. The largest difference between the true parameters and the found parameters varies between
0.33 and 0.49 pixels. This is roughly twice as much as the difference found when no noise was present. Given
that the largest pixel transformation applied in each set is slightly more than 2.5 pixels, this is still less than
20% of the total change.

The masking method used before also shows a significant improvement in the amount of signal that is
located inside the mask created from the images with b = 0. The reduction in signal outside the mask is
63.5− 68.7% for the thresholded data set. When the removed noise is included in the calculation, this value
drops to 3.9 − 4.1%, indicating that a very large part of the signal outside of the mask is only added noise.
While the true parameters have a lower local correlation value than the found parameters, they once more result
in a better reduction of signal outside the mask. The real parameters give 65.6− 70.2% on the thresholded
data, slightly better than the found parameters.

Plots showing the size and variation of the correction parameters for each image are found in figure 5.5.

Table 5.5: Results for five runs on the noisy simulated data set where the input data to the optimization
algorithm was thresholded at S = 500. The results are less consistent than previous results, which is probably
due to the fact that the noise added to the data set is different for each run. It takes more iterations for the
algorithm to converge with noise present, as can be expected.

p1 p2 p4 p5 p9 p10(10−8) p11(10−5) I LC

Run 1 0.3122 0.0489 -0.3285 0.1612 0.0715 4.310 -5.755 98 0.27696
Run 2 0.2225 0.0536 -0.2935 0.2437 0.0391 5.453 -6.542 121 0.27756
Run 3 0.2792 0.0542 -0.2392 0.2389 0.0342 5.213 -6.416 100 0.27751
Run 4 0.4040 0.0698 -0.4133 0.1797 0.0661 3.825 -5.429 95 0.27718
Run 5 0.2105 0.0329 -0.2641 0.2616 0.0427 5.542 -6.611 107 0.27764
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Table 5.6: Aggregated results for the five runs from table 5.5. The mean values are close to the true values,
showing that the thresholding method enables the algorithm to find the true parameters regardless of the presence
of noise. As before, it turns out that the local correlation value is lower for the true parameters than for the
parameters found for each run. The local correlation value shown here for the true parameters is an average
value since the separately applied noise made it different for each run.

p1 p2 p4 p5 p9 p10 p11 LC

Mean 0.2857 0.0519 -0.3077 0.2170 0.0507 4.869× 10−8 −6.151× 10−5 0.27737
SD (10−3) 78.08 13.20 67.79 43.83 16.89 7.607× 10−6 5.278× 10−3 0.287
True 0.3272 0.1091 -0.3272 0.3272 0.0511 3.775× 10−8 −5.496× 10−5 0.27631

5.2 Phantom Results

For the asparagus phantom, two series captured using each of the two sequence protocols were arbitrarily
selected for processing using the correction algorithm. As before, five runs were completed on each selected
data set, for a total of twenty runs on the four data sets. The input data was thresholded in the same way as
with the noisy simulated images. The maximum signal level reaches 47 in the images with the largest b-value
(compared to 1400 when b = 0), which occurs in the asparagus stems. The surrounding water has a very small
signal due to its homogeneous diffusion characteristics. The thresholding level was set to 1 to only remove the
background noise surrounding the phantom, and not the small signal from the water. The signal contribution
from the water is large when b = 0, as shown in figure 4.7, resulting in a large SNR of 188. For b = 3000, SNR
drops to 5.76, which is comparable to the value for the noisy simulated data set.

Table 5.7: Results from running the correction method on two image series captured using the first sequence for
the asparagus phantom, defined in table 4.2. Values shown are mean parameter values and standard deviation
for the best parameters found for the five runs completed on each of the series. The phantom was not moved
between acquisitions.

Sequence 1 p1 p2 p4 p5 p9 p10 p11 LC

Series 1
Mean 0.0089 -0.1710 -0.0122 -0.1360 0.0334 −4.732× 10−8 0.3119× 10−5 0.93058
SD (10−3) 14.41 41.69 14.77 14.30 3.302 1.771× 10−6 6.435× 10−4 0.0151

Series 2
Mean -0.0078 -0.1756 -0.0049 -0.0763 0.0319 −2.625× 10−8 −0.2720× 10−5 0.93216
SD (10−3) 18.95 16.61 7.069 20.00 1.698 1.344× 10−6 6.726× 10−4 0.0125

The results for the first sequence from table 4.2 are found in table 5.7. The standard deviation shows that
the method again converges consistently for all parameters. The values actually show lower deviations than the
ones found for the noisy simulated data. They are also very similar between the two series, the only major
difference is that the SD for p2 show a much larger value for the first series due to a minor outlier in one of the
runs. The mean values show that the method generates similar correction results for the two series. While
the mean values for p10 and p11 might seem quite different with the latter actually showing different sign, the
combined effect of them is very close. The transformation parameters that are generated for the mean values
show that the shearing and translation are almost identical. Larger difference is present for scaling, where p4
is almost twice as large for series 1, causing about twice as much scaling of the images. The transformation
parameters for the separate sequences can be studied in figure 5.7. The plots show the large correlation between
the results for the two different series, but also that the first series result in a large correction change. There
is a significant time dependent translation present, reaching a maximum change of 0.94 pixels for series 1.
The gradient dependent translation is much smaller with a maximum change of 0.08 pixels. Shearing and
scaling effects are not as large as the total translation, peaking at 0.22 pixels and 0.21 pixels, respectively. All
these values are the maximum change found in the central 80× 80 part of the images. The largest correction
difference for a single image between the two series is 0.19. Since the largest combined pixel movement for an
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Figure 5.5: Shearing (a), scaling (b) and translation parameters (c) generated from the best values found in
run 5 on the noisy simulated data set. The values are shown as a function of time in seconds. The translation
parameters are dominated by the time dependent translation that grows with time. The two other parameters
also grow with time, but in this case because the b-value and hence the gradients become larger. The plot clearly
shows how the sequence cycles over the fifteen parameters. The horizontal blocks where the parameter stays the
same occurs when each slice in sequence is imaged using the same gradient setting. The maximum shearing
value of about 0.01 gives a largest pixel movement of 0.40 in the central 80× 80 pixels area of the image where
the subject is located. The largest scaling at -0.015 creates a maximum movement of 0.58 pixels in the same
area. The translation is in percent of the image size (128 pixels) and gives a largest movement of 2.56 pixels.

image is 0.90 pixels, the difference in result for the two series is about 20%.
To determine if these transformations actually result in better alignment of the image set, visual inspection

and signal reduction was used as for the simulated data. Figure 5.6 shows one image from the first series, before
and after correction has been added to the image. When the edge found from the non-diffusion weighted image
from the same slice is overlaid, the correction shows better alignment with the b = 0 image for most of the
spots were signal is present. The method using image masks and change in signal level outside the mask was
used with the threshold set to S = 25. The first series gave a reduction of signal outside of the mask by 2.27% -
2.47%. While this may seem like a very small change, this is due to the largest part of the signal existing in the
asparagus stems that are all inside of the mask before and after correction is applied. The reduction of signal
outside the mask still indicates an improvement of the image alignment. For the second series the reduction
was 1.63% - 1.90%. That this reduction is smaller than for the first series show that the larger corrections
found for series 1 does in fact result in a better image alignment than for series 2.

While the two series from sequence 1 generated very similar correction parameters, the situation is completely
different for sequence 2. The aggregated results from five runs on each series are found in table 5.8. Both series
converge consistently with low standard deviation, except for p5 in series 1 where run 4 is an outlier. They do
however converge to very different results. The shearing parameters are similar for both series, but series 2
results in three times as much scaling as series 1. The huge difference occurs for the time dependent translation,
where the two series show completely different trajectories, illustrated in figure 5.8. Series 2 result in the same
kind of translation as for the previous sequence, but correction on series 1 has resulted in a positive translation
in a parabola, reaching its maximum in the middle of the sequence. To determine if either correction result in
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Figure 5.6: Image from the first phantom sequence, captured at b = 3000, before (a) and after (b) correction
from the first run is applied. The red border shows the outline of the non-diffusion weighted image of the same
slice, thresholded at S = 200. The white arrows point to areas where visual inspection indicates that the image
after correction is better lined up with the b = 0 image than before. The correction effect on this particular
image was α = 0.0035, β = −0.0026 and γ = −0.0053, giving a pixel movement that varies between -0.19 and
-0.67 pixels depending on the position in the image. While the overall correction does seem favorable with less
signal outside of the true location of the subject, it should also be noted that the outline of the asparagus stem
on the far right does seem to line up slightly worse after correction.

any improvement, the most reasonable approach is to once again look at the reduction of signal outside of the
true position of the phantom. Series 1 does not show any change at all, the runs actually increase the signal
outside the image mask slightly, with 0.00% - 0.14%. Series 2 instead shows a decent change of the signal,
reducing it by 3.81% - 4.03%. It should however be noticed that while series 1 did not reduce the signal outside
the phantom, there is also no visual indication that the data is misaligned before correction. The non-diffusion
weighted images from the two series overlap as expected, showing that the phantom was not moved between
the capture of the two data series.

The correction method converged consistently for all the four different image series that were used for the
evaluation of the phantom measurements. It did so using slightly fewer iterations that for the noisy simulated
data, using an average of 97.7 iterations. Another parameter that indicates easier convergence is the large
value for local correlation for all the data sets. The average is more than 0.93 for the phantom data, which
can be compared to a mean value of about 0.27 for the simulated data with added noise. This shows that the
real images from the phantom do in fact have much less random noise than the amount that was added to the
simulated images.

Table 5.8: Results for running the correction method five times on two separate data series for the second
sequence on the asparagus phantom. The two series result in very different correction parameters, with the
second series being consistent with previous results while the first series show completely different values,
especially for the time dependent translation.

Sequence 2 p1 p2 p4 p5 p9 p10 p11 LC

Series 1
Mean -0.0229 0.0488 0.0347 0.0372 -0.0010 −9.520× 10−8 4.084× 10−5 0.95184
SD (10−3) 4.157 5.175 10.59 3.856 0.8708 3.052× 10−6 9.761× 10−4 0.0200

Series 2
Mean -0.0351 0.0464 0.0106 0.1094 -0.0011 −0.501× 10−8 −1.758× 10−5 0.94969
SD (10−3) 6.266 7.855 6.899 7.177 0.1207 1.249× 10−6 4.470× 10−4 0.0055
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Figure 5.7: Transformation parameters as a function of time (s) resulting from the mean parameters from the
two series of sequence 1 for the asparagus phantom. (a) and (b) show scaling from the first and second series,
while (c) and (d) show the translation. The plots show that the correction method on the two different series
result in the same shape for the plotted parameters. The first series does however show almost twice as large
scaling effect, and also a slightly larger translation than the second series. The shearing parameters are not
shown here, but they show large correlation between the two series. The greatest difference arising when these
transformations are applied to the images is 0.19 pixels. This should be compared to the largest pixel movement
for any of the images in the two series, which is 0.90 pixels.
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Figure 5.8: Translation as a function of time in seconds for the second sequence protocol on the asparagus
phantom. The solid line is series 1 and the dashed line is series 2. Both are captured using the exact same
protocol and settings, and would not be exptected to differ. Series 2 shows the kind of translation that was
the result from correction on sequence 1, while series 1 has resulted in a positive translation that reaches its
maximum in the middle of the sequence. This goes against the theory for expected distortions. The largest
translation for series 2 is -0.92 pixels and the same for the first series is 0.57 pixels.

5.3 Results in Vivo

Results on real humans are provided from the three healthy volunteers. The correction algorithm was run
five times each on two different series for each person. All the series were captured using the same sequence
protocol. The results from the correction algorithm are collected in tables 5.9, 5.10 and 5.11. The algorithm
converges in about 100 iterations for all the series. As in all the previous cases, it also converges consistently to
the same solution for all runs made on the same series. For volunteer 1, both series result in parameters that
cause quite large corrections to be applied to the images. Figure 5.10 show that this results in a good correction
where the images align correctly with the true position of the subject. This is reflected in the percentage of
signal removed outside of the brain: the reduction is between 1.70% and 3.56% for the ten runs. Note how the
uncorrected image in figure 5.10 is clearly misaligned with the real position of the brain. The time dependent
translation for both series on volunteer 1 behaves in the same way as for the phantom, resulting in a translation
that grows with time until it finally reaches almost -2 pixels at the end of the sequence at t = 427 s.

Table 5.9: Results for five correction runs on data from two different series on volunteer 1 using the same
sequence protocol. The correction algorithm converge consistently for both series, and the mean parameters
are very similar. Both series show a decent amount of shearing from p2, and a quite large scaling effect in p5.
While the values for p10 and p11 might seem very different for the two series, their combined effect is in fact
very similar, both resulting in a negative translation that reaches a minimum value of about -0.015 (-2 pixels in
the image) at the end of the series.

Volunteer 1 p1 p2 p4 p5 p9 p10 p11 LC

Series 1
Mean -0.0295 0.1255 -0.0841 0.2174 0.0017 −5.925× 10−8 −0.825× 10−5 0.6574
SD (10−3) 5.239 5.397 4.714 2.763 0.868 0.527× 10−6 2.706× 10−4 0.0056

Series 2
Mean -0.0173 0.1099 -0.0804 0.2437 0.0025 0.663× 10−8 −3.595× 10−5 0.6635
SD (10−3) 8.579 1.669 2.024 3.635 1.341 2.252× 10−6 9.154× 10−4 0.0048

The situation is quite different for the two other volunteers. Figure 5.11 shows the correction for volunteer 3.
The uncorrected image does not show any visually obvious misalignment. The correction applied by the solution
only make minor adjustments, making it impossible to tell whether the correction results in any improvement
to the image using visual inspection. Figure 5.12 illustrates how different the correction applied to volunteer 3
is to the one found for volunteer 1. The situation for volunteer 2 is the same as for volunteer 3. The biggest
difference between the four data series for volunteer 2 and 3 and the two series for volunteer 1 is that the time
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dependent translation behaves very differently. Figure 5.9 shows the translation for the six different series.
Three different types of translation are seen. The expected translation that results in a negative adjustment
is found, but there are also positive and negative parabolas that reach their minimum and maximum in the
middle of the sequence. The extrema for the functions add a translation of about 0.6 pixels in either positive or
negative direction. The same shape was seen for one of the phantom series as well, indicating that it is not
due to any movement by the volunteer. While this type of correction was an unexpected result, it does not
seem to negatively affect the image series. All the series still show good alignment with the true position of
the brain, and result in a reduction of the signal outside the brain. This reduction varies between 0.72% and
1.61%. It is natural that the change is less than for volunteer 1, since none of the series for the other volunteers
show as much distortion effect to correct. It should be noted that all of the series that lack the large negative
translation also lack any large initial deviation from the true position, and thus seem to be much less affected
by distortions overall.

Table 5.10: Results for volunteer 2, for two different series using the same protocol as for volunteer 1. Both
series converge consistently, and the results for the two series are very alike for shearing and scaling. The
combined effect of p1 and p2 is a shearing that is about half of that found for volunteer 1. The case for scaling is
the same, p5 is dominant giving slightly less than half the scaling for volunteer 1. The time dependent translation
varies between the two series. Neither gives a large effect, but they show different signs, one maximizing at plus
0.05, the other reaches a minimum of -0.05 instead.

Volunteer 2 p1 p2 p4 p5 p9 p10 p11 LC

Series 1
Mean -0.0875 0.0225 -0.0495 0.1046 -0.0006 −7.102× 10−8 3.563× 10−5 0.6627
SD (10−3) 5.321 3.068 2.984 3.628 0.5870 1.204× 10−6 3.740× 10−4 0.0093

Series 2
Mean -0.0696 0.0319 -0.0524 0.1050 -0.0043 3.892× 10−8 −2.617× 10−5 0.6672
SD (10−3) 4.211 3.167 1.517 3.975 0.6137 1.646× 10−6 5.894× 10−4 0.0071
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Figure 5.9: Translation as a function of time in seconds for the six different data series on the volunteers. Blue
is volunteer 1, red is volunteer 2 and black is volunteer 3. The two series on volunteer 1 are similar and behave
as most series did for the phantom, ending in a negative translation of about -2 pixels for the final image. For
the other two volunteers, the two series are distinctively different. Each volunteer has one series that results in
a parabola having positive translation and one series with a trend that is almost the opposite. The shape of this
translation is very similar to the one seen for the phantom in figure 5.8.

51



Table 5.11: The results for the final volunteer show the same kind of consistency as the others, for both series.
There is virtually no shearing at all present for either series, while the scaling is on about the same level as
for volunteer 2, p5 once more dominating. The time dependent translation once again differs between the two
series, one showing a slight positive translation, the other a slight negative translation.

Volunteer 3 p1 p2 p4 p5 p9 p10 p11 LC

Series 1
Mean -0.0382 -0.0123 -0.0558 0.0799 -0.0028 −7.302× 10−8 3.593× 10−5 0.6624
SD (10−3) 1.119 2.726 1.979 2.751 0.7263 0.355× 10−6 1.212× 10−4 0.0029

Series 2
Mean -0.0229 0.0039 -0.0505 0.1008 -0.0039 4.023× 10−8 −2.661× 10−5 0.6618
SD (10−3) 2.4238 2.516 3.323 4.782 0.6904 0.289× 10−6 1.437× 10−4 0.0056

(a) (b)

Figure 5.10: Image of volunteer 1, before (a) and after (b) correction is applied, with the real position of the
brain overlaid. The correction applied is the average parameters found on series 1. The image is of the upper
part of the brain and is taken using the largest b-value, b = 3000. The gray border is the detected position of the
non-diffusion weighted image from the same slice. The borders that are seen inside the brain is the position
of the ventricles. Before correction there is substantial misalignment of the image, especially visible at the
bottom of the image where there is several pixels between the brain in the image and the real position. This
is adjusted when the correction has been applied, the brain now aligning with the desired position. It is also
apparent that the ventricles now align correctly. In the uncorrected image the areas of large signal in the brain
partly overlaps with the ventricles, which is clearly wrong. The transformation parameters applied to the image
are α = −0.0546, β = 0.0098 and γ = −0.0143, resulting in an adjustment of the subject between −1.21 pixels
and −2.41 pixels, depending on the position in the image. The small zones of border seen right in the center
of the image and outside of the brain are due to a few pixels falling just below or above the threshold used to
segment the true position.
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(a) (b)

Figure 5.11: Uncorrected (a) and corrected (b) image, as in figure 5.10, but for series 1 on volunteer 3 instead.
The situation here is completely different than for volunteer 1. There is no large misalignment in the uncorrected
image, and hence no visually detectable improvement to the image after correction. The resulting transformation
parameters are α = −0.0001, β = 0.0040 and γ = 0.0021. The movement from this varies between 0.01 pixels
and 0.33 pixels within the subject.

(a) (b)

Figure 5.12: The change applied to each pixel in the images corrected in figures 5.10 and 5.11, with the change
for volunteer 1 in (a), and volunteer 3 in (b). The scale is from blue at -3 to red at 1. The image to the
left shows much correction, ranging from -2.77 pixels in the bottom right corner to -0.85 pixels in the top left
corner. Shearing is clearly present, shown by the way the stripes with the same pixel change are at an angle.
The different colored stripes show that scaling is also present in the image. On the right, there is almost no
shearing, and much less scaling. At the bottom the scaling almost exactly counters the positive translation,
giving a total change of 0.01 pixels, while the change reaches 0.54 pixels at the top of the image.
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6 Discussion and Conclusions

6.1 Feasibility of the Method

This thesis work has resulted in a robust method that consistently improve the data quality of the image sets.
The method converges to the same solution every time it is run on a data set, making sure that only one run is
required to find the translation parameters that best improve the images.

The application of the method on the simulated data shows that the method is capable of finding a solution
that is very close to the known distortions even in the presence of large amounts of noise. The corrections that
were found resulted in parameters that are 10% - 20% from the perfect values. While not being identical to the
true solution, this is still a huge improvement when values such as kurtosis are to be calculated using a full
data set since it adjusts the images by more than 2.5 pixels. This kind of distortion would otherwise make the
calculated values almost useless.

The asparagus phantom made it possible to estimate the real effects on a subject that is unaffected by
movement. Two different sequence protocols were tested, with two different series tested for each protocol. All
but one of the series showed obvious visual improvement of the alignment of the images. Those three series
also showed that while shearing and scaling is present, the largest distortions were due to a time dependent
translation caused by the heating of the scanner. The algorithm found that this translation slowly grew with
time, which is as expected from literature. The fourth series did not find this type of translation, but did not
show any initial misalignment either.

In vivo data from three volunteers show a similar behavior to the phantom data. The two series on one
of the volunteers show large distortions, and very good alignment of the images after correction. The other
four series do behave more like the fourth series on the phantom, having neither any big misalignment before
correction, nor any large movement due to the correction. Running the correction algorithm on these six series
result in a reduction of the amount of signal outside the true position of the brain for all the series. This is a
good indication of the result of correction, since correction of the images should result in signal being moved
from outside of the location of the brain in the non-diffusion weighted images to inside this area. It is however
impossible to judge if the method has corrected for all distortions that are present. While there are possibly
some misalignment left in the images, they are reduced from several pixels to sub pixel levels, which is a vast
improvement.

While the biggest actual pixel movement arises from the time dependent translation that is due to B0 field
drift, there is also quite large shearing and scaling effects detected in some data series. This shows that it is
absolutely necessary to include the field drift translation, but that there are also eddy current effects present
in the images. It does however seem to be almost zero effect from the gradient dependent translation (p9).
This strengthens the case to disregard the cross-terms between the x and y gradients and the translation effect,
since this is as small as was expected.

Since the method is capable of detecting and correcting the large distortions that are present in some of the
image series, the overall recommendation should be to run it on all data sets that are to be used for calculating
kurtosis, DTI, or other values that are dependent on the images aligning correctly. The method has never
showed any tendency to result in worse alignment of the data set, which means that it is safe to use even when
no distortions are present.

6.2 Distortion Characteristics

When the work on this thesis started, the perception was that eddy currents were the source of the large
distortions present in MRI diffusion images, while B0 field distortions might be a minor factor. The results in
this thesis instead supports the opposite situation: the translation due to field drift is much larger than the
eddy current effects. This translation is easily detected by visual inspection of the images, and is clearly a
factor that needs to be corrected for. The results do also support that eddy currents effects are present, but
these do contribute with less than a pixel of movement in the images, compared to a distortion of several pixels
for the time dependent translation. One reason that the eddy current effect is not larger might be built-in
correction software in the MRI scanner. This could explain why earlier diffusion data seemed to be much more
affected by eddy currents. The large distortion caused by the B0 field drift is probably caused by the fact
that the kurtosis sequences push the scanner to its limits, causing more drift than has been noticed in more
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moderate diffusion sequences, such as the ones used for DTI.

Another idea that can be dismissed by the results is that the distortions would be completely dependent on
the sequence protocol, regardless of whether a phantom or a patient was the subject. If this was the case, it
would be possible to use correction results from a single reference measurement to correct future image sets
captured using the same protocol. The idea with capturing several series on two different sequences for the
phantom was to determine whether this was the case or not. The results for both phantom and volunteers
clearly show that the distortions vary between series captured with the same protocol. Some series show a
large distortion of several pixels, as in figure 5.9, while others show no apparent distortions at all (figure 5.11).
The largest variation is the time dependent translation that is due to the B0 field drift, which is easily detected
by ocular inspection. The results also show large variation in scaling and shearing, but whether this is due
to actual differences or to other unknown factors that affect the convergence is hard to tell. The notion that
reference corrections could be created by running the algorithm on data from a phantom can be completely
dismissed. Instead, the algorithm will have to be performed separately for each data series. While this takes
about four hours using the hardware that was available for this thesis, it could easily become much faster
since the evaluations are parallelizable. A current eight core computer should be able to run the process until
convergence in about one hour.

That both the eddy current effect and the time dependent translation varies as much as it seems to do is an
effect that is not accounted for in the available literature on the subject. Since there is not much data available
on the behavior of high b-value diffusion gradients, real field measurements should ideally be performed to
find out how they actually behave. The model used here assume linear eddy current effects in accordance
with existing theory. The large deviations found using the correction algorithm creates some doubt regarding
whether they are linear. Measurements of the actual effects would add valuable knowledge regarding the
requirements of correction. Measurements of the B0 field drift should most definitely be made since this is
the single largest source of distortions in the images, and also seems to differ a lot between data series. The
method currently assumes that the time dependent translation returns to zero quickly when each data series
acquisition is finished. This has later been shown in Lund to be false, and the method should be expanded to
take this into account.

A large factor in the puzzle when it comes to distortions is the MRI scanner itself. Each manufacturer
has their own software and hardware, and such complex machines can also be expected to vary somewhat in
between scanners. The amount of correction that is built into the software is an unknown factor and might
turn out to be completely different for another manufacturer. Since the results here are based on data from
a single Philips 3T MRI scanner, this might be a factor. The data acquisition for this thesis was made over
a period of six months, which means that differences in calibration over time is another possible source of
distortions. Image series from different scanners should be used as input for the algorithm, and preferable also
data from scanners from other manufacturers. This would add valuable information regarding the scope that
the method can handle.

6.3 Further Analysis of Results

While the correction method does improve the data quality of the image series after correction, we don’t
actually know how much distortion remains after the correction has been applied. Visual inspection can only
determine that most of the distortions have been accounted for. Sub pixel shearing and scaling distortions are
clearly beyond the human eye to measure. The kurtosis data sets consist of between 1000 and 2500 images
each, which creates a requirement for computational methods to determine the distortion effects that are not
accounted for. The results generated here are based on the study of a handful of images per data set, and while
the signal reduction used here is a good indication that the method makes a difference, it tells us nothing about
any remaining distortions. The model is based on existing theory, but could there be other factors present?
The measurements mentioned above could go a long way to answering this.

Further analysis of the results could also be performed by comparing the method to some of the existing
methods discussed in section 3.2.4. While these are not capable of correcting distortions in the high b-value
series used here, they could be compared against results for our method on image series that use b-values up to
about 1000. If our method works well it should return comparable results to the existing methods, although it
is not known how well it works with fewer b-values available.

Finally, the analysis of the results could benefit from creating some sort of computational measurement of
the amount of registration error that remains in the image series after correction has been performed. The
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article by Zitová and Flusser [60] discussed various ways that such a measurement could be created. This kind
of analysis was however considered to be outside the scope of this thesis.

6.4 Improving the Method

The results show that the method is far from perfect when it comes to finding the true optimization solution.
The method was 10% - 20% off from the true solution when noise was added to the simulated images. The
optimization algorithm found the solution that maximized the fitness function, but this was not the true
solution. The real solution did show a lower fitness function, proving that it was not the optimization that went
wrong. The problem was that the fitness function reaches its maximum at a point that is close to, but not at
the true solution. The calculation of the reduction of signal outside the brain showed that the real solution
resulted in larger reduction than the found solution, clearly proving that it was in fact the superior correction.
Thus, the fitness function needs some tweaking to further improve the results. The required change might
be to introduce a different pattern of comparisons than the one shown in figure 4.3, or to introduce different
weighting for the different comparisons that are made. Another possibility is that further measurements must
be added to the fitness function. For example, the reduction of signal outside the subject might be a suitable
value to include.

Another aspect of the method is that it can be adjusted by many different parameters. There are parameters
controlling how the values are distributed at the start, and several different parameters control how the
optimization process performs. Finding the optimum for each of these parameters has not been possible during
the time that was available for this work. Since five runs on a data series took about 20 hours to run until
convergence, only a small set of possible parameters have been tested. Finding the perfect balance for this
process might be the key to being able to drop the reduction of parameters used here. The full method using
twelve parameters would be much preferable since this would allow cross-terms between any of the gradient
directions. While the contributions from and to the z gradient are generally smaller, including these could
improve the possibility of finding small corrections that might remain now.

The method currently assumes that the eddy current decay completely in a slice before the next image
acquisition takes place (TR in the sequence specifications). This might not be one hundred percent true, and
the method could benefit by adding a parameter that adjusts the decay rate. This could either be set based on
measurements, or could be allowed to be found by the method itself. The latter would however add at least
one more parameter to be found, increasing the demands on the method.

6.5 Handling Movement Correction

The method as it currently stands does not include any correction of the involuntary motion of a patient during
the image acquisition. The typical TR between two images of the same slice is in the range 5 - 10 s. The time
between two images with the same gradient direction but different b-values that are compared is even greater,
often 30 seconds or more. Thus it is quite likely that a patient would move the head a few millimeters between
the capture of two images that are compared to each other, causing the method to fail since such motion is
completely different from the distortions that the model allows.

Given those circumstances it is apparent that the method must take patient movement into account,
especially since patients probably move much more than healthy volunteers. There are several established ways
that motion could be detected and corrected for, since this is a problem that is common to many other fields of
MRI as well. While several eddy current correction methods try to correct for both the eddy current effect and
the motion and the same time, this is mainly done by allowing any kind of spatial transform that improves
the image registration, opening up for the possibility that completely non-physical corrections are performed.
For the method presented here it makes more sense to try to measure the patient motion and correct for it
before the eddy current correction is applied. Measurement of movements could be performed either by an
external camera or by inserting so called navigational echoes into the image sequence. Navigational echoes
capture a low resolution volume of the head that is enough to determine if any movement has occurred. The
results from either method would then be used to correct for the movements. It is very important to rotate
the applied gradients when this is done, since the method rely on the exact direction of the gradients to find
the correction parameters. How and why this should be performed is discussed in detail in the article by
Leemans and Jones [61]. Applying a movement correction in this way unfortunately has the effect of changing
the correction method from a pure post-processing method by requiring either changes to the sequence protocol
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or special sensor equipment to the used during the acquisition. While this somewhat defeats the purpose
outlined in the introduction, it should be noted that the method is still capable of correction without motion
correction, as shown in this thesis. A post-processing method has recently been proposed by Ben-Amitay et al.
that could solve the movement problem, discussed in the following section.

Whether the results on the volunteers are affected by involuntarily motion or not is very hard to tell. It
does however seem unlikely that the large translation seen for volunteer 1 and the lack of the same for the
other two are the result of movement since both effects have been noticed for the motionless phantom as well.
It could however have an influence on the results, perhaps explaining why the results differ as much as they do
for the different volunteers. The translations that are positive for one series and negative for the next in figure
5.9 could possibly be an effect of such motion. It would be very interesting to perform studies were volunteers
perform large deliberate motions to find out how this would affect the method.

6.6 Recent Studies on High b-Value Diffusion

When the work on this thesis started back in 2010, there was no literature on the subject of eddy current
correction in high b-value diffusion MRI. Since then, a few different articles have been published that propose
methods that could be used to counter these effects.

Ben-Amitay et al. published an exciting method in 2011 that could correct for motion in a post-processing
step [62]. The basic idea is to start by running a DTI scan and calculate the diffusion tensor for the subject.
This is a step that is well known and have established correction methods for both eddy currents and patient
movement. They next create a simulated data set from this that shows how the high b-value data might look.
Finally they take the real high b-value images and register them to the simulation, thus canceling any patient
motion that might be present. This seems to work very well, and could potentially be used as a pre-processing
step to the method outlined here, or to completely replace it.

Another article, by Zhuang et al. from 2012 proposes a method for eddy current distortion correction that
is somewhat similar to the method in this thesis [63]. Instead of comparing diffusion weighted images with
different b-values, they co-register diffusion images with the same b-value and similar gradient directions, and do
not use any comparison to the non-diffusion image of the same slice. The reduction of distortions is indicated
by longer fiber tracking (as in figure 1.3) being possible after correction is applied. While this method seems to
reduce distortions, it also shares some of the shortages in older studies, especially allowing for non-physical
transforms of the images.

6.7 Conclusions

The method that has been developed during this thesis work is, while not perfect, capable of finding the visually
apparent distortions in high b-value kurtosis series. It is robust and converges to the same solution every time
on a given image series. The distortions have been shown to differ a lot between series using the same sequence
protocol, which requires the method to be run separately on each image series. The method can find distortions
and does not show any tendency to negatively affect data with wrongful transformations. It should thus be run
on all high b-value image series, even if this takes a few hours per data set with ordinary computer capability,
since the benefit clearly outweighs the negative aspects. The biggest distortion effect in the kurtosis series come
from B0 field drift, meaning that this effect should most definitely not be left uncorrected.

The level of distortions left in the images after correction is unknown and further work is required to
determine this and improve the method. Some kind of movement correction strategy should also be implemented
to make this a fully fledged method to correct for all distortions that are present in high b-value diffusion
images.
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