
Global illumination for static and
dynamic objects using light probes

Master’s thesis in Computer Science: Algorithms, Languages, and Logic

JOHAN BOWALD

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2016

Master’s thesis

Global illumination for static and dynamic objects
using light probes

Master’s thesis in Computer Science: Algorithms, Languages, and
Logic

JOHAN BOWALD, johan@bowald.se

Department of Computer Science and Engineering
Chalmers University of Technology

Gothenburg, Sweden 2016

johan@bowald.se

The Author grants to Chalmers University of Technology and University of Gothen-
burg the non-exclusive right to publish theWork electronically and in a non-commercial
purpose make it accessible on the Internet. The Author warrants that he/she is the
author to the Work, and warrants that the Work does not contain text, pictures or
other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for ex-
ample a publisher or a company), acknowledge the third party about this agreement.
If the Author has signed a copyright agreement with a third party regarding the
Work, the Author warrants hereby that he/she has obtained any necessary permis-
sion from this third party to let Chalmers University of Technology and University
of Gothenburg store the Work electronically and make it accessible on the Internet.

Global illumination for static and dynamic objects
using light probes
Master’s thesis in Computer Science: Algorithms, Languages, and Logic
JOHAN BOWALD

© JOHAN BOWALD, 2016.

Examiner: Ulf Assarsson, Department of Computer Science and Engineering

Department of Computer Science and Engineering
Chalmers University of Technology
SE-412 96 Gothenburg
Sweden
Telephone +46 31 772 1000

Cover: Cornell box scene with only indirect light, using the implemented method
with a resolution of 16 voxls. The sphere is a dynamic object. The teal boxes
indicates light volumes.

Typeset in LATEX
Gothenburg, Sweden 2016

iii

Global illumination for static and dynamic objects
using light probes
Master’s thesis in Computer Science: Algorithms, Languages, and Logic
JOHAN BOWALD
Department of Computer Science and Engineering
Chalmers University of Technology

Abstract
Today, real-time 3D applications commonly use two separate techniques for global
illumination of static and dynamic objects. Using two different systems such as
lightmaps and point clouds (probe-based solutions) can lead to different appearances
depending on the type of object. The purpose of this thesis project has been to
research and develop a data structure used to sample indirect light for both static
and dynamic objects. Integrating the indirect light data for static objects in a probe-
based solution has additional advantages over lightmaps. For example, an artist will
be able to apply small changes to a level and instantly have an adequate perception
of the global illumination. A data structure has been implemented in Autodesk’s
game engine, Stingray, and tested on three different scenes. The data structure uses
symterical probe placement, a method to filter out occluded probes, and 3rd order
spherical harmonics as transfer basis. The data structure can be run in real time
while being memory efficient. However, visual artifacts arise for complex geometry,
such as spheres. Even if this project did not achieve the visual quality strived for,
its findings can be used when developing a better solution.

Keywords: Real-time global illumination, light probes, indirect light, static and
dynamic objects.

iv

Acknowledgements
I would first like to thank Anders Lindqvist, Sr Software engineer at Autodesk,
who has been my supervisor at Autodesk during this project. He has been an
inspiration, always offered help with understanding the source code of the game
engine and enouraged me to test different methods to overcome problems during
the research.

I also would like to acknowledge Magnus Pettersson, who made it possible to do
this thesis project at Autodesk and helped me with the proposal. I also like to thank
him for being my supervisor before Autodesk’s re-organization.

Thanks to all the employees at Autodesk for making me feel welcome.
Special thanks to Amanda Nilsson for proofreading this thesis, she has provided

very valuable comments on both report structure and grammar.
Thanks to Adam Sandberg Ericsson for his opposition on this thesis.
Lastly, I would like to thank Professor Ulf Assarsson at the department of Com-

puter Science and Engineering, for being the examiner of this thesis and also for
helping me to get in contact with Autodesk in the first place.

Johan Bowald, Gothenburg, June 2016

vi

Contents

1 Introduction 1
1.1 Background . 1
1.2 Problem definition . 1

1.2.1 Associating surface fragments with light probes 2
1.2.2 Placement of probes . 2

1.3 Limitations . 3
1.4 Method . 3
1.5 Outline . 4

2 Previous Work 5
2.1 Indirect lighting in Killzone 3 . 5

2.1.1 Probe placement . 5
2.1.2 Querying the data structure 6
2.1.3 Occlusion of erroneous probes 6

2.2 Precomputed Radiance Transfer probes 6
2.2.1 Probe placement . 6
2.2.2 Generation of radiance for probes 7
2.2.3 Querying the data structure 7
2.2.4 Occlusion of erroneous probes 8
2.2.5 Performance . 8

2.3 Spherical harmonics, compact representation of directed light data . . 8

3 Theory and implementation 10
3.1 Pre-calculation phase . 10

3.1.1 Dividing the scene into volumes for probe placement 10
3.1.2 Generating radiance for each probe 11

3.1.2.1 Treatment of occlusion inside light volumes 11
3.2 Continuous phase . 14

3.2.1 Sample the correct light value 14
3.2.2 Interpolating the result . 16

4 Results 17
4.1 Memory and Performance . 17
4.2 Visual results . 18

5 Discussion 21

viii

Contents

5.1 The relation between light volumes and transfer basis from a runtime
perspective . 21

5.2 The visual quality using the implemented occlusion bitmask 22
5.3 Future Work . 22
5.4 Ethical aspects of improved computer graphics 24

6 Conclusion 26

References 27

Appendices 29

A Appendix 30
A.1 Autodesk Stingray . 30
A.2 Test System specification . 30
A.3 Scenes to test different aspects of the implemented solution 30

A.3.1 Simple primitive Scene . 30
A.3.2 Global illumination test scene 31
A.3.3 Subway scene . 31

A.4 Radiance and irradiance . 33
A.5 Memory requirements for Lightmaps 34
A.6 Performance with and without 3rd order Spherical Harmonics 34

ix

1
Introduction

1.1 Background
Indirect lighting is commonly used in video games. Game studios strive to add
as many effects as possible in a game and therefore require that each effect can be
rendered in line with a time budget. Reaching at least 30 frames per second (FPS) on
limited hardware (consoles) is a requirement. Therefore, the focus of the algorithms
generating visual effects tends to be on optimizing rendering time while achieving
satisfying visual results. A drawback of these algorithms can be visual artifacts,
which graphical artists can remediate during level or model design by changing the
geometry. This is a time consuming procedure.

Real-time indirect lighting is not only used in games. An example of another
graphical application is Computer-aided design (CAD) tools, which are used in in-
dustrial design and architecture to create prototypes. In these applications, the final
image is rendered using a non-real-time renderer such as a ray tracer where the ren-
dering time depends on the desired final quality. The purpose of real-time rendering
in these applications is to give an approximation before performing the ray tracing.
To have a good approximation, indirect lighting needs to be considered. Unlike in
the gaming industry, tweaking either geometry or textures to avoid visual artifacts
is not possible.

This thesis covers the development of a data structure for sampling pre-calculated
indirect light in real time. The main priority has been to reduce the number of major
visual artifacts, regardless of the geometry in the scene, and to minimize the amount
of human interaction. The proposed solution is independent of meshes and uv-maps.
Minimizing the rendering time has been the second priority with the intention to
reach real time. The data structure contains light probes, automatically placed
covering both static and dynamic objects in the scene.

The knowledge gained from this research can be applied in cases where there is a
need for generating an adequate image without manual interaction. An example can
be gaming applications, where instead of sampling indirect light from light maps,
the algorithm presented in this report can be used.

1.2 Problem definition
Indirect lighting is a crucial component to reach realistic visuals. There exist nu-
merous approaches to render indirect light in real time. Two main categories are
UV-based methods and light-probe interpolation.

1

1. Introduction

UV-based methods use pre-calculate irradiance values from 2D textures, and
map them to the objects in the scene using UV-coordinates (Akenine-Möller et al.,
2008, 9.9 Precomputed Lighting), often referred to as Lightmapping. Even though
lightmaps are memory efficient, they are lacking in terms of artifact seams. These
seams are introduced when unwrapping a 3D model’s surfaces to fit in a 2D texture.
The unwrapping procedure is often automatic. To minimize seams, the transforma-
tion can be manually tweaked but this procedure is time consuming.

Light-probe interpolation is performed by calculating the indirect light for certain
positions in the scene and using this data to interpolate the result for either a model
or a surface (Greger, Shirley, Hubbard, & Greenberg, 1998; Sukys, 2014; Bentley,
2014; Cupisz, 2012). These light-probe techniques are mainly used for dynamic
objects and share a drawback from light-leakage artifacts due to interpolation errors.
There is an interest of finding a method which is not dependent on UV-maps, is fast
enough to be evaluated in real time, can be applied to both static and dynamic
objects, and contains few to no major visual artifacts.

To find a solution to this problem, it has been divided into two subproblems:
placing light probes in the scene and associating surface fragments with these probes.
These subproblems are described in more detail in the following two sections.

1.2.1 Associating surface fragments with light probes
Each visible surface fragment in a scene needs to be shaded with indirect lighting.
The indirect light is determined by interpolating data from the probes associated
with a surface fragment. This problem consist of two parts, extracting the data
fast enough for real time and filter out occluded probes such that no light leakage
occurs.

The first part of the problem can be defined as: Given a world coordinate, traverse
the data structure to identify which volume the coordinate corresponds to and obtain
illumination data from the light probes defining that volume. The solution must
provide a data structure that is fast enough to allow the application to run in real
time.

The second part of the problem can be defined as: Given a set of probes placed
across the scene, associate surface fragments with a number of probes, such that
erroneous probes do not contribute to the result, yet provide enough data for each
surface fragment. Assuming that the amount of probes needed to cover the scene
exceeds the memory capacity of the GPU, there is also a need for the data structure
to be streamable. The quality of the solution is evaluated based on the number of
major visual artifacts, the memory complexity and render time.

1.2.2 Placement of probes
The amount of probes affects rendering time, memory requirements and light detail.
By having few probes, the data structure requires less memory and can potentially
be faster. However, having more probes increases both details in indirect light and
the possibility to avoid artifacts.

This problem can be defined as: Minimize the amount of probes needed, yet cover

2

1. Introduction

the entire scene and provide enough data to avoid visual artifacts. Probe placement
and minimizations of probes can be done during an offline stage and not during
runtime. The quality of a solution to this problem is evaluated based on memory
efficiency.

1.3 Limitations
The implementation of the project has been done in Autodesk’s game engine Stingray.
Stingray supports both gaming consoles and personal computers (PC). This project
is coded with PC in mind, however, the usage of functions from DirectX 11.0 API
is limited to functions supported by Stingray.

Finding an optimal generation of irradiance data for the probes is not considered
during this research. Instead the existing path tracer in Stingray is modified to
generate the data.

This research project considers only low-frequent indirect light when generating
the data for the probes. Even if it is possible to generate high-frequent light, such
as caustic effects, the detail will depend on the resolutions of volumes defined by the
light probes. For example large volumes will lose high-frequency details during the
interpolation, due to small sample size. To allow varying volume sizes, high-frequent
light will not be considered.

1.4 Method
During the early stages of the project different light probe techniques where re-
searched in order to find a solution to the problems defined in Section 1.2.2 and 1.2.1.
Also, different data structures where studied to allow the data to be queried effi-
ciently.

To get aquinted with the game engine Stingray, a part of the project was ded-
icated to learning the code base by implementing small examples releated to the
reaserch. When enough knowledge had been gained about the game engine, a sim-
ple data structure was implemented to test the performance in real time. Radiance
used for the probes was first random color values and later hardcoded directional
radiance data. When the data structure could be queried in real time, a solution to
find occluded probes was implemented. To test the accuracy of the implementation,
the probes needed to contain radiance values based on their position in the scene.
During the next iteration of the project, generation of radiance for the probes was
implemented by modifying Stingrays path tracer. When the probes had been as-
signed correct radiance values, artifacts generated by the probe occlusion algorithm
were found and refinments of the algorithm were sought. Due to time constraints
other strategies to solve light leakage were not implemented. When the implemen-
tation was considered finished, tests with three different scenes were conducted and
performance, memory efficiency and visual quality was evaluated.

3

1. Introduction

1.5 Outline
The thesis is divided into five chapters. First, the introduction where the back-
ground, problem definition, limitation and method is provided. The second chapter,
Previous work, offers information related to the project. Some techniques described
are used within the project, others are techniques which solve similar problems.
The third chapter, Theory and implementation, contains descriptions of the algo-
rithms implemented in the data structure. The first section of this chapter describes
the pre-calculation phase and the second section describes the run-time phase. The
fourth chapter, Results, provides data on memory complexity, run-time performance
and visual examples for the three test scenes. The fifth chapter, Discussion, offers
an analysis of advantages and disadvantages of the implementation. The implemen-
tation is compared to other methods described in the previous work chapter. This
chapter also contains a future work section, with suggestions on improvements of
the implemented data structure.

4

2
Previous Work

This chapter presents previous work connected to this thesis. The two first sections
describe similar methods and approaches to sample indirect lighting using light
probes, while the last one presents a relevant technique used in the data structure.

2.1 Indirect lighting in Killzone 3
Valient (2014) presented during Game Developers Conference 14 a prototype method
used to achieve indirect lighting in Killzone 3 (Guerrilla Games, 2011). The method
is applied to both static and dynamic object and calculated per-pixel. The purpose of
the approach was to replace light mapping for static objects and use the same system
for both dynamic and static objects. By using the same lighting solution for both
types of objects, differences in lighting between the types would be at minimum.
An advantage with this approach was that even if some changes were applied to
the geometry in the scene, the lighting would still be adequate. In comparison,
a UV-based approach would not be this robust, due to the indirect lighting here
being based on the meshes in the scene and therefore needing to be re-rendered.
The method presented consisted of two parts. A pre-calculation phase to build the
data structure and a runtime phase to query the irradiance from the data structure
per-pixel.

2.1.1 Probe placement
To build the data structure, probes need to be placed in the scene. The first step
in placing the probes is to voxelize the scene. The diameter of a voxel is 1m in
gameplay areas and up to 10m in distant areas of the level. Light probes are placed in
empty voxels next to voxels containing geometry. Volumes are defined by Delaunay
tetrahedralization (Cupisz, 2012). Delaunay tetrahedralization divides the scene
into tetrahedrons based on the probes’ positions, such that the globally minimal
angle between probes are maximized (the tetrahedralization can be compared to
triangulation in 2D). This associates four light probes with a tetrahedron, one at
each vertex.

A drawback of this probe placement technique was that long and sliver-like tetra-
hedrons could be formed. To counter this problem, filler probes were added in empty
spaces at a lower frequency than the original probes. This created more regularly
shaped tetrahedrons, covering more space above the geometry, which dynamic ob-
jects could use to sample indirect lighting.

5

2. Previous Work

2.1.2 Querying the data structure
A level using the light probe system can consist of up to a few hundred thousand
probes. The method is applied per-pixel, meaning that for each pixel in each frame
all light probes need to be traversed to find the corresponding irradiance value.
The tetrahedrons are partitioned into a sparse grid, where each cell is 16m3. When
using a perfect hashmap for the sparse grid, the per-pixel search can be speeded
up by only searching within a cell for the corresponding tetrahedron. Furthermore,
the tetrahedrons are stored in a Binary space partitioning (BSP) tree per grid cell,
which also speeds up the search time. When the corresponding tetrahedron is found,
the surface fragment is shaded using interpolation between the probes that are not
occluded.

2.1.3 Occlusion of erroneous probes
When performing the interpolation between different probes in a volume, it is impor-
tant to filter out probes which are occluded, otherwise light leakage artifacts occur.
To solve the problem, additional data is stored in each tetrahedron. The data con-
sist of either a number of occlusion shadow maps or occlusion splitting planes. A
splitting plane is used when geometry in the volume is simple, such that the vol-
ume is split along a certain axis by the geometry. Since there are three axes, up to
three occlusion splitting planes can be stored per tetrahedron. If geometry inside
the tetrahedron is more complex, one occlusion shadow map per probe can be used.
The triangle plane on the opposite side of the probe is tessellated such that 16 sub
triangles are generated. For each subsample the distance to the closest geometry is
stored, the value being proportional to the length of the tetrahedron. Using these
two data sets, light leakage can be decreased to an acceptable degree.

2.2 Precomputed Radiance Transfer probes
During the thesis work a presentation of a method for solving a similar problem was
held at Game Developers Conference 16. Stefanov (2016) presented the method used
to achieve Global Illumination (GI) effects in Tom Clancy’s The Division (Ubisoft
Massive, 2016). The method is called Precomputed Radiance Transfer probes (PRT).
Since Tom Clancy’s The Division takes place in a large open world, where the
environment contains a large amount of objects, a light map solution was not feasible
due to memory constraints. This approach also updated the irradiance dynamically
to attain different types of lighting throughout the day.

2.2.1 Probe placement
The probe placement is automated using two different methods: using a ray casting
grid and placement along building walls. The ray casting method uses a grid with
4m spacing to place the probes. Rays are fired in a top-down manner from the grid
and a probe is spawned at each intersection. If a probe should intersect geometry,
the probe is slightly moved such that it does not intersect an object. The game

6

2. Previous Work

is set in Manhattan and contains large buildings. The walls need to be covered
with probes due to the varying sky visibility as seen from the streets. Probes are
therefore generated along the walls of tall buildings so that they can capture radiance
transitions.

2.2.2 Generation of radiance for probes
Each probe contains a list of surfels which are visible to that probe. A surfel is a
surface element, associated with a number of parameters, where the position and
the normal are important when calculating radiance values for the probes. The list
of surfels can be compared to a G-buffer cube map, or to firing a lot of rays and
storing the intersected surfaces. Each direction missing a surfel is treated as visible
sky, resulting in a spherical shadow term for the sky. The idea is that radiance from
each surfel for a probe is stored as an irradiance component for that probe. The
irradiance from the sky is scaled by the sky visibility. To avoid light leakage for
the sky values, the shadow map of the sun is used to tweak the sky radiance values
such that objects in the shadows are not illuminated. The irradiance for a probe is
stored using the Half life 2 ambient cube as a transfer basis (Mitchell, McTaggart,
& Green, 2006). The HL2 ambient cube is basically 6 axis aligned vectors each
associated with a light value.

To be able to generate probe radiance during runtime a data structure and a
number of optimizations are presented. First, the probes are divided into a sector
grid where each cell has the size of 64m2. A cell can at most contain 1000 probes,
however, in the game a cell typically contains 200-300 probes. The sectors are
streamed in and out depending on the position of the player, where a maximum of
sectors on the GPU is set to 25. Secondly, the surfels are clustered in a two-level
hash grid. The first grid level offers the positions, normals and albedo for the surfels
associated with it. A cell’s size is 1m3 and only treats surfels with roughly the same
normal, i.e a number of cells can be positioned at the same place if the geometry
inside is complex, however, at most six cells in the same position(two directions for
each axis). Furthermore, cells containing surfels facing same direction are combined
into an irradiance brick, the second grid level. The brick has a size of 4m3. Bricks
are associated with an array of weights, which determines how much irradiance a
probe receives from a particular brick. Thirdly, the surfel data is shared between the
probes, such that when radiance is generated for a specific surfel it does not need
to be recomputed for each probe that sees it. The light for each surfel is computed
using the albedo and normal in a similar way as a deferred lighting pass (Deering
et al., 1988). To achieve multiple bounces, each surfel is associated with the closest
probe and it can sample irradiance from the previous frame. The irradiance value
is used as the ambient light term for that surfel.

2.2.3 Querying the data structure
To query irradiance for fragments in the scene, a volumetric grid is used. The grid
consists of 32×16×32 voxels per axis, spanning 100×50×100m in the game world.
The grid is aligned with the player’s camera, such that it always follows the view

7

2. Previous Work

of the player. For each voxel, the closest probe is chosen as that voxel’s radiance
value and geometry in the scene is shaded by trilinear interpolation of the voxels.
Geometry that is not covered by the volumetric grid, i.e is further away than 100m
in the z-direction (into the scene), are shaded using a fallback solution. The fallback
solution consists of a 2D texture, where the texels are treated as sector probes, i.e
in the same way as a probe in a voxel. These texels only contain direct illumination
from the sky. The geometry outside the volumetric grid samples those values.

2.2.4 Occlusion of erroneous probes
The approach occludes irradiance in two different ways. Filtering out probes placed
on the outside from probes on the inside and distinguishing between probes placed
in different rooms. The latter is used to avoid light leakage between walls. The other
is partly used to avoid light leakage but also used to make sure skylight does not
bleed through walls. By storing volumes, defined by probes, which are either placed
on the inside or outside in two different textures, a stencil buffer containing only the
building model can be used to decide whether the surfel is located inside or outside
the building. Surfels on the inside only load irradiance from the inside texture and
vice versa. To avoid light leakage between rooms inside a buidling, i.e located in the
same texture, Axis aligned bounding boxes (AABB) matching the extent of a room
are used. Surfel reads are clamped using the AABBs so only probes inside the same
rooms are used.

2.2.5 Performance
The PRT solution is able to render a frame in ca 0.95ms on Xbox one and ca 0.47ms
on a PC using GTX 760 card. These are representative values, due to the exact
timings depending on the number of probes in screen space. During this time, the
radiance values of the probes in two sectors are also updated. The one which the
player is in and a sector chosen at random which is loaded on the GPU.

2.3 Spherical harmonics, compact representation
of directed light data

A light probe needs to have pre-calculated radiance values. These values can not
be stored for only a particular normal, but need to be stored for all directions over
a sphere. This can be seen as a spherical function. To express this in a compact
way, the values can be stored as coefficients of a transfer basis and be reconstructed
during runtime. For this project a 3rd order Spherical Harmonics has been chosen
as a transfer basis.

Spherical Harmonics is the solution to Laplace’s equation using spherical coordi-
nates (Sloan, 2008). It is defined as a basis function based on Legendre polynomials,
meaning that Spherical Harmonics describe an infinitely large set of scaled functions
which, when summed, can describe any spherical shape. In computer graphics an

8

2. Previous Work

approximation of the light is stored by truncating the sum of functions to only con-
tain either the second order of coefficients or the third order. In this project 3rd order
Spherical Harmonics has been used to provide a sufficient approximation, meaning
that 9 floating point values are enough to store directional radiance for a color.

Spherical Harmonics have a series of mathematical features. The Spherical Har-
monics approximations are invariant for rotation, meaning that rotating the encoded
values is the same as rotating the original values. Spherical Harmonics approxi-
mations are also additive, meaning that encoded radiance can be added together
without decoding.

9

3
Theory and implementation

This chapter covers the theory and implementation to solve the different problems
stated in the problem definition, Section 1.2. An acceptable solution provides the
ability to render an image with minimum light leakage and a decent percepted
light correctness, while being able to run in real time. The implemented solution
is called a data structure and consists of various different algorithms described in
each following section. The data structure is created and initialized during a pre-
calculation phase and is used during a continuous phase which is active during the
runtime of the application. The parts of these stages are described in more detail
in each subsection. The implemented solution takes advantage of the symmetric
resolution of equally sized cube shaped volumes, both for creating a perfect hash for
accelerating the data structure and interpolating the result.

3.1 Pre-calculation phase
This phase refers to calculations that are performed before running the application.
During this phase the generation of radiance and placement of probes are performed
and stored in an acceleration structure. No optimization of runtime for this step is
needed.

3.1.1 Dividing the scene into volumes for probe placement
The entire scene is divided into a number of volumes. A volume is defined as the
space spanned by a set of vertices, where all geometry inside this space will be
shaded by interpolated light values associated with each vertex. Given the volume
resolution, k, the total number of volumes is defined in a cubical k × k × k grid.
Light probes are only placed in volumes containing geometry, which means that the
set of volumes are represented by a sparse structure. Traversing volumetric data
sets may be time consuming if the search algorithm is naive. Therefore an octree
approach is used, where the root node is the entire scene’s bounding box, and each
leaf node is a volume. Each triangle of each mesh in the scene is tested against each
volume using fast triangle-box test (Akenine-Möller, 2005). Given a triangle, defined
by three vertices, and a box volume, this tests if the face of the triangle intersects
the volume or if any of the vertices are inside of the volume. At each vertex of a
volume containing geometry a probe is placed. The position of the volume where
these probes are placed, is calculated from the amount of volumes, k, and the min
and max position of the scenes bounding box. Two neighbouring volumes, both

10

3. Theory and implementation

containing geometry, share overlapping probes, i.e the same probe position is not
stored twice. Thus, the maximum amount of probes is (k + 1)× (k + 1)× (k + 1).

(a)

(b)

Figure 3.1: Teal cubes refer to the light volumes and red spheres indicate light
probes. Figure(a) shows the Simple scene, Probes are only located near geometry.
Figure (b) shows the subway example scene, no volumes are placed in the open hall
in the right half of the image, however the pillars, roof and floor are covered in light
volumes.

3.1.2 Generating radiance for each probe
Each probe needs to be associated with a radiance value. Radiance is described by
a 5-dimensional function which, given a point and a direction, returns the outgoing
light energy, Section A.4. To encode these values, 3rd order Spherical Harmonics
is used, Section 2.3. Radiance is generated using a modified version of Stingray’s
path tracer by sampling the indirect light for 256 paths starting from each probe
position. This procedure is performed on the GPU.

3.1.2.1 Treatment of occlusion inside light volumes

Light leakage is a visual phenomenon where light is able to travel through non-
transparent geometry, causing visual artifacts seen as illuminated areas where light
should be occluded. During shading, irradiance needs to be calculated for each
surface fragment by sampling the radiance of each probe not occluded by other
geometry. Therefore, a method for filtering occluded probes is needed. This method
generates a representation of which parts of the volume the radiance from each probe
can be transferred to.

11

3. Theory and implementation

Each light volume is divided it into several subvolumes, for this project a 4 ×
4 × 4 resolution is used, yielding 64 subvolumes. Each probe in the volume has a
corresponding bitmask where each bit marks if a subvolume is occluded or visible.
To represent this bitmask a 64 bit unsigned integer is used, making the memory
requirements for a volume, with eight probes, 64 bytes. Unlike the radiance data
for each probe, these bitmasks cannot be shared with other volumes.

To illustrate the generation of the bitmask, a series of images are presented in
Figures 3.2, 3.3, 3.4, 3.5, 3.6 and 3.7. These images describe a 2D representation
of a volume. A square with a 4 × 4 grid describes the volume and each grid cell
corresponds to a subvolume. The circles at the corners of the square represent
light probes. Since a bitmask is generated for each probe, the images focus on the
generation of a bitmask for a particular probe. That probe is referred to as the active
probe and is represented with a teal color in the images. The red lines correspond
to geometry in the scene, where each line segment is a triangle in the 3D case. The
2D case is analogous to the 3D case, and is only used as a simplified example.

Figure 3.2: The circles in the corner represents the probes. The teal circle repre-
sents the active probe. The square containing the grid represents the volume and
each cell represents a subvolume. The red lines represent geometry.

To determine if a probe is occluded, a path-finding algorithm is used. Starting at
the active probe, we want to traverse the volume until we reach the opposite planes.
This is done by creating several paths, each starting from the subvolume closest
to the active probe and ending in a subvolume at the opposing plane. An image
representing the opposing subvolumes for an active probe can be seen in Figure 3.3.

Whether a subvolume is occluded is based on geometry within the subvolume. In
order to determine if a subvolume contains geometry, we used the same approach
that was described in Section 3.1.1. The result from this operation is a bitmask
which can be seen in Figure 3.4.

The path generation is an iterative process where one subvolume is considered at
a time. If a subvolume contains no geometry it is visible and the next subvolume
in the path is considered. If a subvolume contains geometry a test is carried out
to determine whether it is occluded or not. If a subvolume is occluded, no new

12

3. Theory and implementation

Figure 3.3: A volume containing a number of subvolumes and geometry. The
active probe is located in the top-left corner. Each yellow cell shows an opposing
subvolume for the active probe.

Figure 3.4: Geometry inside a light volume. The green squares represent which
subvolumes that contain geometry.

subvolumes are considered for that path. A subvolume is occluded if it contains more
backfacing geometry than geometry facing the active probe. The next subvolume
to try is chosen based on the number of subvolumes between the current subvolume
and the goal, in accordance with the path shown in Figure 3.5. The path is branched
if two subvolumes are equally far from the goal.

A mesh surface has a backface and a frontface defined by the normal of the
triangle spanned by the vertices. This poses the question of how to treat light
leakage for infinitely thin planes. In this implementation, backfaceing areas can not
receive light and frontfaceing should receive light. An example would be if part of a
sphere is inside a light volume, such that at least one probe is inside the sphere, and
the normals of the sphere points outwards. In this case the probe inside the sphere

13

3. Theory and implementation

Figure 3.5: An example how a full path between a start subvolume and a goal
subvolume.

should not contribute to the lighting of the surface, however, errors on the inside of
the sphere are accepted.

To test if a subvolume containing geometry is occluded, the area of each triangle
inside the subvolume is calculated. The goal with this part is to associate each probe
in a volume with a score based on the accumulated triangle area facing that probe. A
triangle is considered frontfacing if the face normal of the triangle is within 90 degrees
of a vector from the volume’s center towards the probe’s position. In Figure 3.6a,
the normals for the geometry inside the current subvolume are shown. The total
triangle area inside the probe is also stored and a probe contributes to the result if
the ratio between area associated with the probe and total area inside the volume
precedes a certain threshold. The threshold yielding best result is 50%. Which can
be seen in Figure 3.6b. If the subvolume contains a majority of backfacing geometry
the path is considered occluded and no new subvolume candidates are generated
from this subvolume.

Is visible = Probearea

Totalarea

> Threshold (3.1)

3.2 Continuous phase
The continuous phase is active during the runtime of the application. For each frame
and for each pixel, the correct radiance value needs to be sampled from the data
structure and interpolated to achieve the indirect lighting.

3.2.1 Sample the correct light value
To be able to sample the correct irradiance values in real time from the probes, we
need to traverse all the probes in an efficient way. Similar to the method used in

14

3. Theory and implementation

(a)
(b)

Figure 3.6: In Figure (a) the two normals for the different lines are shown. The
normal label a is facing the active probe, The angle of the origo-to-probe vector and
the normal b vector is 90 degrees and therefore its area not included. Figure (b)
shows all area which is considered facing the active probe, where the transparent
parts of the geometry is considered backfacing.

(a) (b) (c)

Figure 3.7: Green squares indicates subvolumes visible from the active probe,
yellow squares show current subvolume, red square shows occluded subvolume. In
(a) the subvolume with geometry facing the active probe is tested. Also the two
probes not containing geometry is marked as visible. In (b) the previous subvolume
is marked as visible, the current subvolume contains geometry which is backfacing.
In (c) the subvolume treated in (b) is marked as occluded, the previous branch in
the path has been taking, however also leading to the occluded subvolume and thus
terminating the path.

Killzone 3, described in Section 2.1, this approach makes use of a perfect hashmap
to find the probes corresponding to the current pixel.

On the GPU four probe-related buffers are stored, one containing the radiance
values for each probe, one containing occlusion bitmasks for each probe in a volume,
and two buffers spanning the entire volume with indices to the buffers containing
probe data. Also sent to the GPU is the voxel resolution of the data structure,
the size of a voxel in world space, and also the min and max position of the scenes

15

3. Theory and implementation

bounding box. By calculating the world space position of the current pixel, one
can calculate which volume corresponds to that pixel, using the size of the voxel
and where the first voxel is located. The probe index buffer array is packed such
that the indices to the first volume’s probes are located in the first eight elements,
the second volume’s are located in the next eight elements etc. Thus, by knowing
which volume the pixel corresponds to, the probe data can be retrieved in O(1)
time. The occlusion bitmasks is obtained using the same technique. However, since
the bitmasks is unique for each probe and volume, in regards to the radiance value
for the probe’s, a different buffer with indices needs to be used.

The memory needed for each of the four arrays can be seen in the equations
following Equation (3.2). Equation (3.3) describes the memory needed for the SH
coefficients, the array consists of 27 float values (9 coefficients × three colors). The
array is sparse and the size is dependent on n, the voxel-resolution, and the number
of volumes containing geometry. The data structure uses sparse arrays for the SH
coefficiants and the occlusion bitmasks. The sparse arrays are queried using a two
separate index arrays. One map to each volume and takes into account that volumes
can share SH coefficiants between probes. The other is used to query the occlusion
bitmask. Equation (3.2) describes the size in bytes needed for accessing the Spherical
Harmonics coefficients, n denotes the voxel-resolution.

SH-indexsize = (n + 1)3 · 4 [bytes] (3.2)

SH-coefficientssize = 27 · 4 · O(n3) [bytes] (3.3)

Occlusion-indexsize = 4 · n3 [bytes] (3.4)

Occlusion-bitmasksize = 2 · 4 · 8 · O(n3) [bytes] (3.5)

3.2.2 Interpolating the result
When shading a specific surface fragment, using that fragment’s world position, the
voxel-resolution, min and max position for the data structure, the volume which the
surface fragment belongs to can be calculated. To aquire the irradiance from each
probe, the probes’ SH coefficients are evaluated based on the surface normal and the
bitmasks are retrieved. Using the world position and the number of subvolumes in
a volume, the subvolume corresponding to the surface fragment can be calculated.
Then, for each probe, the occlusion bitmask determines if the subvolume is occluded
for that probe. If the probe is not occluded it should contribute to the interpolation,
otherwise it should not. The resulting irradiance is obtained by using trilinear
interpolation between visible probes where the weights are based on the distances
from the current surface fragment to each probe. When interpolating between two
probes where one is occluded, the result of the interpolation is the radiance value
only for visible probe.

16

4
Results

The results of using the implementation during run time are presented in this chap-
ter. The chapter has been divided into two sections, the first covers the memory and
performance tests while the second presents the visual results of the implementation.
The tests have been carried out on three different scenes. A simple scene to test
performance for basic shapes, the cornell box scene to test correctness of indirect
light and the subway example scene to test performance during a more game-like
setting. Each scene is further described in Appendix A.3.

4.1 Memory and Performance
During the performance test, two different screen resolutions were tested, 1435×650
and 1435 × 935. The perfromance result was measured in render time for a frame
and is shown in Table 4.1. The data structure used one pixel shader during runtime
for querying the irradiance. The measurment was started when the fullscreen pass
was invoked, for the pixel shader querying the irradiance, and was stopped when the
fullscreen pass was completed. To test the worst case scenario for the implemented
solution, the camera was placed such that the entire view port was filled with ge-
ometry. This is so that each pixel is rendered by the implemented shader. The time
presented is an average over 5 seconds, with a deviation of at most 0.4 milliseconds.

The memory requirement for different buffers used by the data structure is shown
in Table 4.2. Different scenes have been tested using differnt voxel resolution for the
data structure. The resolution has been chosen to generate visually pleasing results.

Table 4.1: Average render time measured in milliseconds for the different scenes
with a deviation of 0.4 miliseconds. Measurment with lower voxel resolution for the
Cornell and Subway is not included.

Probe Resolution Screen Resolution Simple Cornell Subway
8× 8× 8 1435× 655 6.4ms - -

16× 16× 16 1435× 655 6.4ms 6.4ms 6.4ms
16× 16× 16 1435× 967 9.8ms 9.8ms 9.8ms
32× 32× 32 1435× 655 6.4ms 6.4ms 6.4ms

17

4. Results

Table 4.2: Memory requirement for different scenes. n denotes the resolution of the
data structure. SH-index and Occlusion-index denotes the buffers used for storing
the indices in the sparse representation.

Scene n Active volumes SH-index SH-Coefficients Occlusion-index Occlusion-mask Total

Simple 8 256 3 kb 61 kb 2 kb 16 kb 82 kb
Cornell 16 563 20 kb 121 kb 20 kb 36 kb 197 kb
Subway 32 1210 144 kb 225 kb 131 kb 77 kb 577 kb

4.2 Visual results
This section contains the visual results generated by the data structure. Each fig-
ure contains two subfigures, one shows the indirect lighting generated by the data
structure while the other shows a reference image which uses the standard shader
in Stingray.

Figure 4.1a shows the visual result using a volume resolution of 16×16×16 voxels.
The scene used is the cornell box scene and in this iteration a dynamic object, the
sphere, has been added. The sphere is shaded using the same probes as the static
wall in the background. The green color bleeding is visible at the left hemisphere.
The red light in the image comes from the red wall opposing the green wall.

(a) (b)

Figure 4.1: Figure (a) shows the cornell box scene with only indirect light, using the
implemented method with a resolution of 16 voxels. Figure (b) is used for reference,
it shows the cornell box scene with all effects enabled and uses the standard light
map for indirect lighting. The sphere in the center of the image is a dynamic object.
Figure (a) shows how the indirect light from the green wall on the left side of the
image affects both the static wall in the middle of the room and the sphere.

Figure 4.2a shows the cornell box scene. In this render all objects are static. The
walls of the room are affected by color bleeding from the colored walls. Also the
sphere has been shaded with the bouncing light from the wall. Both the walls and
the sphere have been illuminated by indirect light from the implemented solution.
The discontinuities shown as uniform green square patterns across the sphere con-
stitute a region where a large amount of probes have been occluded. This leads to
interpolation using too few samples and results in the seen artifact.

18

4. Results

The difference in brightness between 4.2a and 4.2b is because only indirect light
is shown in (a) and this is an additive effect, thus the darkness will not affect the
end result. The red spheres indicate probe placements and are not part of the end
result.

(a) (b)

Figure 4.2: Figure (a) shows the cornell box scene, using the research method for
indirect light, with a resolution of 16 voxels. Figure (b) is used for reference, it
shows the cornell box scene with all effects enabled and uses the standard light map
for indirect lighting. The walls of the room are affected by color bleeding from the
colored walls. Discontinuities can be seen on the left side of the sphere as uniform
green square patterns.

Figure 4.3a presents the result of the implemented solution rendering indirect
light for a part of the subway example scene. The camera focuses on the entrance
where a light source is placed, simulating sunlight from the outside. The resolution
of the data structure is 32 voxels. Some discontinuities can be seen at the wall at the
top of the staircase on the left side. The discontinuities consist of uniform colored
squares and appear due to using too few probe samples when interpolating.

(a) (b)

Figure 4.3: Figure (a) shows the subway scene, using the research method for
indirect light, with a resolution of 32 voxels. Figure (b) is used for reference, it
shows the subway scene with all effects enabled and uses the standard lightmap for
indirect lighting. Some discontinuities can be seen at the wall at the top of the
staircase on the left side. The discontinuities consists of uniform colored squares
and appears due to using too few probe samples when interpolating.

19

4. Results

Figure 4.4: Shows the simple primitive scene, rendered with a resolution of 8
voxels.

A visual result of the quality using the implementation can be seen in Figure 4.4.
It shows a render of the simple box scene. No light leakage can be seen between
the planes. Some discontinuities can be seen at the side of the boxes near the top
of each plane.

20

5
Discussion

The indirect lighting for static and dynamic objects is commonly shaded using dif-
ferent techniques. During GDC14, Valient (2014) presented a method which shaded
both types of objects using the same technique, henceforth referred to as the Killzone
solution. The technique was a probe based solution, usually used only for dynamic
objects. Applied per pixel, this method could replace lightmaps for static objects.
This thesis further explored the concept of a probe based solution as a replacement
technique for lightmaps and the results are here compared to the Killzone solution
and viewed in the light of a recently presented technique, Precomputed Radiance
Transfer probes (PRT) (Stefanov, 2016).

The resulting implementation can be run in real time but uses a large render-time
budget per frame. Memory complexity for the implemented solution is low compared
to lightmaps, see appendix A.5, and theoretically as low as in the Killzone solution.
The implemented solution for reducing light leakage generates artifacts in the final
images, due to interpolating too few samples for a surface fragment. These three
aspects will be discussed in more detail in the following sections.

5.1 The relation between light volumes and trans-
fer basis from a runtime perspective

Definition of volumes and the choice of transfer basis are different for the imple-
mented solution, the Killzone solution and the PRT solution. The implemented
solution uses eight symmetrically placed probes to form a cube shaped volume, de-
scribed in section 3.1.1, and 3rd order Spherical Harmonics, section 2.3, as transfer
basis. The Killzone approach defines volumes as tetrahedrons using four probes,
section 2.1.1, the transfer basis used is not presented. The PRT solution uses a
cubical grid, section 2.2.3, and HL2 ambient cube, section 2.2.2, as a transfer basis.

Real-time applications strives to at least be run in 30 frames per second leaving
the render time for a single frame to a maximum of 33ms. The resulting render
time for different scenes and resolutions, can be seen in table 4.1. The results are
only dependent on the screen resolution and the number of pixels which uses the
data structure. Values as high as 9.8ms leaves little time budget to other effects
and there is a need to further optimize the run time. In the calculation of a frame
the most expensive component is evaluation of the SH coefficients, which is done
up to eight times per volume. This can be concluded by testing without SH, where
instead a color vector is used for each probe. When using a single color vector per
probe the frame is rendered in 1.5 ms and when using 3rd order SH it takes 9.8 ms

21

5. Discussion

to render, further described in Section A.6. Therefore the choice of transfer basis is
dependent on the volume shape. In the killzone approach each volume will at most
sample four different probes, potentially decreasing the number of samples by half.
The PRT method uses a similar volume definition as in the project implementation,
however, uses the HL2 ambient cube as transfer basis, which is cheaper to evaluate.
Allowing a volume to consist of more probes.

5.2 The visual quality using the implemented oc-
clusion bitmask

A 3D Occlusion mask, Section 3.1.2.1, has been implemented to filter out occluded
probes for a particular surface fragment in a volume. Each probe in a volume has
a bitmask describing which subvolumes are visible in that volume. The advantage
of this method is the ability to store multiple depth values in a particular direction.
A disadvantage is the lack of precision when storing where an occlusion occurs. An
example of when the lack of precision produces an artifact is shown in Figure 5.1.
The entire top face of the box should be visible for the probe located above the
lower right part of the box top corner. The probe, however, should not be able to
illuminate the backfacing areas of the box sides. The method implemented deter-
mines that the backfacing area is greater than the frontfacing area and occludes
the top left subvolume for the probe. This produces a square shaped artifact on
the plane due to interpolating between too few irradiance samples compared to the
neighbouring subvolumes. An example of such an artifact is shown in Figure 5.2.
Even by subdividing the volume further the problem will still not be solved and
the memory complexity will increase. The Killzone solution uses a shadow map
approach, Section 2.1.3, which to a greater extent eliminates this kind of problems
by storing where the occlusion occurs with higher precision.

In retroperspective, another interesting approach would be to disregard elemina-
tion of light leakage completely, but rather use a permissive approach which focuses
on getting the overall ambient light of a room. Ambient Occlusion could then be
used as a post process to cover local light leakage, often already included in these
types of real-time applications.

5.3 Future Work
The main drawback of the current implementation is the square like artifacts which
are generated by the bitmask filtering technique. To be able to use this implemen-
tation, how to filter out occluded probes needs further investigation. The usage of a
shadow map approach, similar to the one used in the Killzone solution, where a more
accurate depth value for occluded geometry can be stored is interesting to further
research. Another aspect worth researching, which has been outside the limitations
of this research, is to take occlusion into account in the baking process. An example
would be to take occlusion into account when storing the irradiance values, such
that the radiance is blocked for certain directions. If a successful method is found,

22

5. Discussion

Figure 5.1: An example of when a subvolume is treated as occluded where it
should be visible. Each grid cell corresponds to a subvolume in the bitmask. The
bit mask corresponds to the probe, shown as an orange sphere in the figure. The
green squares correspond to subvolumes which are visible to the probe and the red
square indicates an occluded subvolume. The normals of the cube’s three planes are
shown for the top left subvolume. Two points away from the probe, while on points
towards, thus the majority is back facing and the subvolume is treated as occluded.

Figure 5.2: An example of square shaped artifact due to too few interpolation
samples. The artifacts are seen at the left part of the sphere.

all probes in the light volume could be used during the interpolation. This would
result in a simple trilinear interpolation which can offer a performance improvement
by using GPU Volume Textures hardware accelerated trilinear interpolation.

Another way to optimize the visual quality and performance is to consider light
volumes of different sizes. A light volume containing complex geometry can be sub-
divided to an appropriate size, while simple geometry uses larger volumes. The
current implementation uses the same volume size regardless of what kind of ge-
ometry it holds. Using asymmetrical volumes, the lookup structure needs to be
partitioned in such a way that it provides faster search times than a linear search.
Another reason to partionate light volume is the possibility to stream an amount of
light volumes to the GPU, making the solution able to handle levels several orders

23

5. Discussion

of magnitude larger than the tested subway scene.
The current solution does not distinguish between distant and close surfaces.

Distant surfaces do not fluctuate in irradiance as close surfaces do and therefore do
not need the same resolution. Performance could be improved by using some sort
of clamped values for distant surfaces, similar to what is used in the PRT solution
described in Section 2.2.3.

As stated in section 5.1, the definition of volumes and the choice of transfer
basis are related. This implementation would benefit from either storing the values
in another type of transfer basis cheaper to evaluate or from choosing a volume
definition that uses fewer probes.

5.4 Ethical aspects of improved computer graph-
ics

Computer graphics is merely a tool to present content in an application. The ap-
plication itself could be used for entertainment, advertising, scientific visualization
or industrial design. Different applications treat different ethical aspects. An ex-
ample is that video games aimed toward children need to have other focuses than
computer-aided design tools. Since this thesis treats global illumination, with the
intent of providing life-like computer graphics, an ethical issues could be behavioral
changes due to exposure of virtual reality (VR).

Weisel (2015) presented an article discussing the effects of VR in psychoanalytic
terms. Virtual reality differs from that of reading a book or playing a board game.
A user can lose the sense of time and space in a VR application. An example is
in video games, where one can reload the game after a mistake, and go back to a
previous point and thus experience a new beginning. The conclusion of the article
is that transitions between the fictional and the real world can be blurred.

Which elements of the virtual world could be transferred to the real world, is an
open research question (Fritz, 2003). Fritz presents a theory that the first signs of
changes in behavior of an individual, are associative transfers from the virtual to
the real world. Associative transfers are when one associates video game events with
real life events. An empirical study showed that two-thirds of computer game users
have experienced these transfers (Fritz, 2003).

Both these article points to virtual reality as an influential medium. Brey (1999)
makes a comparison with more traditional mediums. He states that even though
immoral actions and behaviours exists in other medias such as television and lit-
erature, they are hard to compare to VR due to how differently user engages in
such medias. Television and literature are experienced in a passiveness, where a VR
application requires the user to actively engage to experience it. Even though there
exist other active medias such as board games, VR still distinguishes from those, by
being immersive.

One of the most researched areas of VR environments is that of violence in video
games. Over the years a number of empirical studies and scientific researches have
been performed, however, if there exists a link between violence in VR and in real
life is still uncertain (Lishner, Groves, & Chrobak, 2015). Lishner et al. performs a

24

5. Discussion

meta-analysis where they question if researchers are biased towards a certain result,
since no consensus has been found regarding violence and VR. Thus, how influential
VR environments are is a difficult question to answer.

In a VR application it is up to the developer to design the intention of the program
and to implement which actions a user can perform. As VR is an influential medium,
where there is no limitation on what kind of actions that can be implemented,
developers need to take precaution regarding ethical aspects or immoral actions
during development. An example is military VR simulators for combat training.
When developing a simulator with realistic intents there could be variations in the
degree of accuracy, such as wounds in the simulator are not expressed in a graphically
realistic way or that enemies portrayed in the simulator may be based on stereotypes
or propaganda. When training in such an environment it could be hard to retain
a critical mind towards the application. To conclude, reaching life-like computer
graphics in itself is not an ethical issue. However, developers should take precautions
when it comes to ethical aspects of immoral behavior in an application with realistic
graphics, a recomendation is to make use of test groups with a diverse background
to test the application.

25

6
Conclusion

This thesis has researched the possibility of using a single technique to query indirect
lighting for both dynamic and static objects. A data structure has been developed
which uses a probe-based solution to define irradiance values for both types of ob-
jects. The resulting implementation can be run in real time but uses an extensive
amount of render time per frame. This is due to the use of an expensive transfer
basis which is sampled multiple times for a single surface fragment. Memory com-
plexity for the implemented solution is low compared to light maps. The visual
quality of the rendered images is lacking because too few probes are used during
the interpolation. This is due to the method being prone to occluding probes. To
further improve the data structure, a number of methods have been proposed.

To optimize runtime, the solution will either need to use light volumes consisting
of fewer probes or use a cheaper transfer basis. Another way to increase performance
is to clamp distant surface fragments to a fixed set of probes, which can be reused
without large impact of the visual result.

The method used to filter out occluded probes generates artifacts and is the
main drawback of the implemented solution. One way to fix this problem is to
use a filtering technique with higher precision, similar to a shadow map. Another
interesting approach is to disregard elemination of light leakage completely, but
rather use a permissive approach which focuses on getting the overall ambient light
of a room. Ambient Occlusion can be used as a post process to cover local light
leakage.

To summarize, the use of a probe-based method for illuminating static and dy-
namic objects is possible. The winnings in memory savings and visual quality by
sharing the same light system is worth researching more. Even if this project did
not achieve the quality strived for, its findings can be used in developing a better
solution.

26

References

Akenine-Möller, T. (2005). Fast 3d triangle-box overlap testing. In Acm siggraph
2005 courses (p. 8).

Akenine-Möller, T., Haines, E., & Hoffman, N. (2008). Real-time rendering. CRC
Press.

Bentley, A. (2014). Infamous second son engine postmortem. http://
suckerpunch.playstation.com/images/stories/GDC14_infamous_second
_son_engine_postmortem.pdf. (Game Developers Conference)

Brey, P. (1999). The ethics of representation and action in virtual reality. Ethics
and Information technology, 1 (1), 5–14.

Cupisz, R. (2012). Light probe interpolation using tetrahedral tessella-
tions. http://twvideo01.ubm-us.net/o1/vault/gdc2012/slides/
Programming%20Track/Cupisz_Robert_Light_Probe_Interpolation.pdf.
(Game Developers Conference)

Deering, M., Winner, S., Schediwy, B., Duffy, C., & Hunt, N. (1988). The trian-
gle processor and normal vector shader: a vlsi system for high performance
graphics. In Acm siggraph computer graphics (Vol. 22, pp. 21–30).

Fatshark. (2014). Warhammer: End times - vermintide. [Video Game] Deep Silver.
Fatshark. (2016). Escape dead island. [Video Game] Fatshark.
Fritz, J. (2003). Wie virtuelle welten wirken. Über die Struktur von Transfers

aus der medialen in die reale Welt. U: Fritz, Jürgen/Fehr, Wolfgang (ur.):
Computerspiele. Virtuelle Spiel-und Lernwelten. Bonn.

Greger, G., Shirley, P., Hubbard, P. M., & Greenberg, D. P. (1998). The irradiance
volume. Computer Graphics and Applications, IEEE , 18 (2), 32–43.

Guerrilla Games. (2011). Killzone 3. [Video Game] Sony Computer Entertainment.
Kajiya, J. T. (1986). The rendering equation. In Acm siggraph computer graphics

(Vol. 20, pp. 143–150).
Lishner, D. A., Groves, C. L., & Chrobak, Q. M. (2015). Are violent video game-

aggression researchers biased? Aggression and Violent Behavior , 25 , 75–78.
Mitchell, J., McTaggart, G., & Green, C. (2006). Shading in valve’s source engine.

In Acm siggraph 2006 courses (pp. 129–142).
Sloan, P.-P. (2008). Stupid spherical harmonics (sh) tricks. In Game developers

conference (Vol. 9).
Stefanov, N. (2016). Global illumination in ’tom clancy’s the division’. http://

mrakobes.com/Nikolay.Stefanov.GDC.2016.pdf. (Game Developers Con-
ference)

Sukys, P. (2014). Light probe cloud generation for games.
Ubisoft Massive. (2016). Tom clancy’s the division. [Video Game] Ubisoft.

27

http://suckerpunch.playstation.com/images/stories/GDC14_infamous_second_son_engine_postmortem.pdf
http://suckerpunch.playstation.com/images/stories/GDC14_infamous_second_son_engine_postmortem.pdf
http://suckerpunch.playstation.com/images/stories/GDC14_infamous_second_son_engine_postmortem.pdf
http://twvideo01.ubm-us.net/o1/vault/gdc2012/slides/Programming%20Track/Cupisz_Robert_Light_Probe_Interpolation.pdf
http://twvideo01.ubm-us.net/o1/vault/gdc2012/slides/Programming%20Track/Cupisz_Robert_Light_Probe_Interpolation.pdf
http://mrakobes.com/Nikolay.Stefanov.GDC.2016.pdf
http://mrakobes.com/Nikolay.Stefanov.GDC.2016.pdf

References

Valient, M. (2014). Taking killzone shadow fall image quality into the next genera-
tion (Vol. 14). https://www.guerrilla-games.com/read/taking-killzone
-shadow-fall-image-quality-into-the-next-generation-1.

Weisel, A. (2015). Virtual reality and the psyche. some psychoanalytic approaches
to media addiction. Journal of Analytical Psychology, 60 (2), 198–219.

28

https://www.guerrilla-games.com/read/taking-killzone-shadow-fall-image-quality-into-the-next-generation-1
https://www.guerrilla-games.com/read/taking-killzone-shadow-fall-image-quality-into-the-next-generation-1

Appendices

29

A
Appendix

A.1 Autodesk Stingray
Stingray is a 3D game engine with support for all major platforms. The game
engine was developed by Fatshark, a game studio based in Stockholm, under the
name Bitsquid. Games built with the engine include titles as Warhammer: End
Times-Vermintide (Fatshark, 2014) and Escape dead island (Fatshark, 2016). The
game engine is implemented in C++, Lua, and supports both OpenGL and DirectX.
The data structure presented in the thesis is implemented in C++ and using the
internal API for DirectX. Shaders have been written in HLSL.

A.2 Test System specification
All tests performed on the different scenes have been carried out on a single high
performance desktop computer. The specification of the computer can be seen in
Table A.1

A.3 Scenes to test different aspects of the imple-
mented solution

To evaluate the different parts of the data structure, different scenes were used to
test for specific properties. There are three types of scenes used for the project,
one using simple primitive geometry, one for testing color bleeding effects and one
similar to a real game level.

A.3.1 Simple primitive Scene
The Simple primitive scene consists of a number of primitive meshes. A robust
system is required to handle basic shapes, such as the ones in this scene.

The purpose of this scene is to test if the shaded surfaces are seamlessly inter-
polated when some probes are occluded, such that no edges between different light
volumes are visible.

The scene has four light sources, a red, green, blue and yellow one and consists
of four rectangular box shapes of equal size. The shapes are overlapping in the z-
direction. The green light and the blue light are placed between the second and the

30

A. Appendix

Table A.1: Specifications on the test system.

2x Intel Xeon CPU E5-2697 v2
Core Count 12
Clock Speed 2.7 GHz
Cache 30MB
Max Turbo Frequency 3.5GHz

Nvidia Geforce GTX 580
CUDA Cores 512
Graphics Clock (MHz) 772 MHz
Processor Clock (MHz) 1544 MHz
Memory Clock 2004 MHz (4008 data rate)
Standard Memory Config 1536
Memory Interface GDDR5
Memory Interface Width 384-bit
Memory Bandwidth (GB/sec) 192.4

Other
Ram 32 GB
Operating system Windows 8.1 Enterprise

third box. The yellow light and red light are placed between the third and fourth
box.

A.3.2 Global illumination test scene
Global illumination is tested using Stingray’s version of the Cornell Box scene with
a slight modification. The original example consists of four different cornell boxes,
where the version tested in this project only contains one. The box itself has one
face missing. The floor, the ceiling and one of the walls are white. The left wall
is green and the right wall is red. A light source is placed in the middle of the
ceiling. Two rectangle primitives are distributed on the floor, while a sphere is
floating in the middle of the room. The purpose of this scene is to test the quality
of the indirect lighting. The expected result is to have color bleeding from the walls
to the different objects on the floor. The orignal version of this scene for Autodesk
Stingray can be retrieved from the creative market, https://creativemarket.com/
apps/stingray/examples.

A.3.3 Subway scene
The subway example level is another standard Stingray example scene. It consists
of a hall and a subway platform, two train tunnels and a decent amount of complex
objects, such as benches, newspaper piles, trash cans and phone booths. The scene
has a number of light sources placed in the roof along the train tracks and the scene is
also illuminated by indirect light from the daylight outside of the station, reaching
the platform from the entrance to the station. The scene used in this project is
slightly modified. All animated dynamic objects have been removed. The purpose

31

https://creativemarket.com/apps/stingray/examples
https://creativemarket.com/apps/stingray/examples

A. Appendix

Figure A.1: A screenshot of the simple primitive test scene. All four rectangu-
lar boxes are visible, also the four light sources defined by the spherical gizmo in
corresponig source color.

Figure A.2: Screenshot showing the beast example scene

of the scene is to test the scalability of the solution, and serves as a realistic test for
the data structure.

The scene is an Autodesk Stingray standard scene and can be retrieved from

32

A. Appendix

creative market. https://creativemarket.com/apps/stingray/examples

(a) (b)

(c)

Figure A.3: The subway scene used to test scalability of the solution.

A.4 Radiance and irradiance
Radiance is defined in the Rendering equation (A.1) (Kajiya, 1986), and describes
the flow of light energy through a point in a given direction. Irradiance is the
incoming light energy onto a certain point. Thus the irradiance corresponds to the
integral in the Rendering equation.

Lo(x, ω) = Le(x, ω) +
∫

Ω
f(x, ω, ω′)Li(x, ω′) cos (n, ω′)dω′. (A.1)

Li(ω) is defined as the field-radiance function, which in this equation means the
incoming radiance from direction ω. The cosine term scales the incoming radiance
depending on the incoming direction. This is to represent that light with a steep
angle smears out over a surface. Thus the steeper the angle the less it contributes
to a surface.

33

https://creativemarket.com/apps/stingray/examples

A. Appendix

A.5 Memory requirements for Lightmaps
Lightmaps have been generated using Stingrays new featured path tracer (currently
in beta). The default settings have been used when generating the lightmaps, i.e the
color format is 16 bit per channel and the texture scale is set to 10. The path tracer
generates a lightmap for each material of each mesh. The size of all lightmaps
generated for a level, and the number of meshes is displayed in Table A.2. The
reason that the size of the lightmap for the Cornell Box scene is large may be due to
being a level for testing global illumination and therefore uses lightmaps with high
resolution.

Table A.2: Memory requirement for different scenes using lightmaps for each mesh

Scene Meshes Lightmap size
Simple 4 2298 kb
Cornell 4 56167 kb
Subway 135 22497 kb

A.6 Performance with and without 3rd order Spher-
ical Harmonics

To test the cost of 3rd order Spherical Harmonics as a transfer basis for the imple-
mented solution. A test was carried out that instead of evaluating the coefficient for
each probe, a single RGB vector was used. The values are based on the probe index,
such the extreme points are white and black, the probes in between are shaded based
on where they are in the volume. The render of this image is shown in Figure A.4
and the results are shown in Table A.3.

Table A.3: Render time with and without Spherical Harmonics as transfer basis

Probe Resolution Screen Resolution Scene Render time, SH Render time, without SH
16× 16× 16 1435× 655 Cornell 6.4ms 1.5ms

34

A. Appendix

Figure A.4: Image rendering using a single vector as transfer basis instead of 3rd

order SH.

35

	Introduction
	Background
	Problem definition
	Associating surface fragments with light probes
	Placement of probes

	Limitations
	Method
	Outline

	Previous Work
	Indirect lighting in Killzone 3
	Probe placement
	Querying the data structure
	Occlusion of erroneous probes

	Precomputed Radiance Transfer probes
	Probe placement
	Generation of radiance for probes
	Querying the data structure
	Occlusion of erroneous probes
	Performance

	Spherical harmonics, compact representation of directed light data

	Theory and implementation
	Pre-calculation phase
	Dividing the scene into volumes for probe placement
	Generating radiance for each probe
	Treatment of occlusion inside light volumes

	Continuous phase
	Sample the correct light value
	Interpolating the result

	Results
	Memory and Performance
	Visual results

	Discussion
	The relation between light volumes and transfer basis from a runtime perspective
	The visual quality using the implemented occlusion bitmask
	Future Work
	Ethical aspects of improved computer graphics

	Conclusion
	References
	Appendices
	Appendix
	Autodesk Stingray
	Test System specification
	Scenes to test different aspects of the implemented solution
	Simple primitive Scene
	Global illumination test scene
	Subway scene

	Radiance and irradiance
	Memory requirements for Lightmaps
	Performance with and without 3rd order Spherical Harmonics

