
Implicit Cooperative Positioning (ICP)
Implementation and Evaluation of ICP on a Semi-Autonomous
System

Master’s thesis in Systems, Control and Mechatronics

TOMASZ PROCZKOWSKI and NITHIN SYRIAC KURIEN

Department of Electrical Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2017

Master’s thesis 2017

Implicit Cooperative Positioning (ICP)

Implementation and Evaluation of ICP on a Semi-Autonomous
System

TOMASZ PROCZKOWSKI
NITHIN SYRIAC KURIEN

Department of Electrical Engineering
MPSYS

Chalmers University of Technology
Gothenburg, Sweden 2017

Implicit Cooperative Positioning (ICP)
Implementation and Evaluation of ICP on a Semi-Autonomous System

© TOMASZ PROCZKOWSKI
NITHIN SYRIAC KURIEN, 2017.

Supervisor: Markus Fröhle & Christopher Lindberg, Electrical Engineering
Supervisor: Thomas Petig, Computer Science and Engineering
Examiner: Henk Wymeersch, Electrical Engineering

Master’s Thesis 2017
Department of Electrical Engineering
MPSYS
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Illustration showing the analogy between the real world scenario and the
ICP implementation.

Typeset in LATEX
Gothenburg, Sweden 2017

iv

Abstract
Autonomous vehicles are becoming extremely popular in the automotive field and
the positioning of these vehicles is very vital. Getting position measurements with
very low variance from noisy measurements is very important otherwise there could
be some disastrous consequences to the pedestrians and environment. Our aim
is to tackle this problem by investigating the performance of Implicit Cooperative
Positioning (ICP), a cooperative positioning system aimed for autonomous vehicles.
According to this algorithm vehicles track objects (features) and use this information
between other vehicles to position the feature better than use this information to
position themselves better. ICP was implemented on a semi-autonomous system to
check the functioning in a real life scenario. The various aspects of ICP including
belief propagation and message passing are dealt with. Simulations were carried out
to test various scenarios where the vehicle position measurements were altered with
noise, later position estimate error comparisons were made to the Kalman filter. The
complete implementation and integration of the robot system including the robot
framework and the components involved, e.g. Kalman filtering, Linear Quadratic
Regulator were done.
Our results does show the viability of such a positioning system in a real world
system. Sharing information between multiple nodes in the system ensures better
estimation by reduction in measurement variance. The error in position is greatly
reduced for really noisy measurements. The feedback of the ICP position estimates
for the control of the robot in case of noisy measurements from UWB was done
and successfully implemented on the robot system. The thesis mainly handles the
ICP algorithm and does not look into the communication protocols or any feature
recognition and tracking algorithms. It is assumed such technologies are already in
place if the ICP is to be implemented.

Keywords: ICP, Cooperative positioning, Cramer-Rao bound, Kalman filter, LQR,
Pioneer-D3X

v

Acknowledgements
We would like to thank our supervisors Markus, Christopher and Thomas for their
undue and selfless support for our thesis. They always had an opinion or solution
to our questions and problems. They were always prompt with giving feedback
and were truly a joy to work with. We are grateful to have such dedicated and
helpful supervisors. We would like to also thank our examiner Henk Wymeersch
for giving us an opportunity to work with this thesis and for his valuable feedback
and comments. We would also like to thank our dear booyas (David Gardtman &
Albin Casparsson) for making our thesis enjoyable, without them our thesis would
have been just some chore to do. Thanks to them we had our occasional bout of
laughter. We also thank them for their valuable suggestions and advice regarding
our thesis and other random stuff about life. Lastly we would like to thank our
dearest families, friends and beloved ones for their motivation and support without
which we would have a tough time completing our thesis.

Tomasz Proczkowski & Nithin Syriac Kurien, Gothenburg, June 2017

vii

Contents

List of Figures xi

List of Tables 1

1 Introduction 1
1.1 Background . 1
1.2 Related work . 1
1.3 Purpose . 2
1.4 Scope and limitations . 3

2 Theory 5
2.1 System model . 5

2.1.1 Motion model . 6
2.1.2 Robot twist model . 7
2.1.3 Measurement models . 9
2.1.4 Homogeneous transformation matrix 10

2.2 Trilateration . 11
2.3 Bayesian estimation . 13

2.3.1 Finding the posterior . 13
2.3.2 Some simple message passing rules 14

2.4 Extended Kalman filter . 15
2.5 Cramer-Rao bound . 17

2.5.1 Cramer-Rao bound for ranging 18
2.5.2 Cramer-Rao bound for positioning 19

2.6 Linear quadratic regulator . 20
2.7 Robot Operating System . 21

3 Methods 23
3.1 ICP . 23

3.1.1 Belief propagation in the factor graph 24
3.1.1.1 Prediction message 24
3.1.1.2 GNSS measurement update 25
3.1.1.3 Feature measurement update 26

3.1.2 Message passing algorithm . 28
3.2 Hardware and ROS setup . 31

3.2.1 Real scenario - experimental setup analogy 31
3.2.2 ROS setup . 32

ix

Contents

3.2.3 Reused ROS nodes . 33
3.2.3.1 ROSARIA . 33
3.2.3.2 Gulliview . 33
3.2.3.3 Robot position service 34

3.2.4 Developed ROS nodes . 35
3.2.4.1 ICP node . 35
3.2.4.2 Robot controller node 35

3.2.5 ROS node integration . 35
3.3 State estimator using Kalman filter 36
3.4 Controller for Pioneer-D3X robots . 37

3.4.1 Trajectory planning . 38
3.4.2 LQR for Pioneer-D3X robots 38
3.4.3 Angle discontinuity . 39

3.5 Implementation of ICP on Pioneer-D3X robots 40

4 Results 43
4.1 CRB results for ranging and position 43
4.2 Plots of LQR . 47

4.2.1 Simulation of LQR using MobileSim 47
4.2.2 Trajectory tracking on Pioneer-D3X robots 48

4.3 Performance evaluation of ICP using synthetic measurements 50
4.3.1 Randomly generated trajectory 50
4.3.2 Fixed trajectory . 54

4.4 Evaluation of ICP on Pioneer-D3X robots 57

5 Conclusion 61
5.1 Evaluation . 61
5.2 Future work and improvements . 62

Bibliography 63

x

List of Figures

2.1 The system containing of two robots/vehicles and two features with
specified GNSS-like measurements ρG

i,t, V2F measurements ρV2F
i,t and

the V2V communication link . 6
2.2 Movement of robot during a time step 8
2.3 Transformation of point (x, y) to (x′, y′) after robot translation and

rotation . 11
2.4 Trilateration position uncertainty in 2-D with A) One transceiver, B)

Two transceivers and C) Three transceivers 12
2.5 Test configuration for finding CRB for positioning with anchor bea-

cons represented as crosses. 20
2.6 Publisher and Subscriber nodes in a ROS system 22

3.1 Factor graph representation of the system where gG
i represents the

GNSS measurement function, hi the motion model of the vehicle and
gV2f
i,k,t the V2F measurement. xi,t and fk,t are the vehicle state and the
feature state at time t. 24

3.2 The factor graph representing the effect of the vehicle state xi,t and
the measurement noise nG

i,t on the GNSS measurement ρG
i,t, as de-

scribed in Section 2.1.3 . 25
3.3 The factor graph representation of the effect of the feature state fk,t,

the vehicle state xi,t and the measurement noise nV2F
i,k,t on the V2F

measurement ρV2F
i,k,t . Matrices H1 and H2 are the observability matri-

ces. See Section 2.1.3 for further explanation. 27
3.4 Illustration showing the real scenario and experimental setup analogy 31
3.5 Test setup used for carrying out the robot experiments 32
3.6 Communication and topic flow between the component and node in-

terfaces . 33
3.7 The tags defining the coordinate axis from the AprilTag family of 16h6 34
3.8 rqt_graph showing the various ROS nodes and the flow of topics

between them . 36
3.9 Block diagram showing the various components of the robot controller 39

4.1 CRB for Ranging, shows the change in variance with respect to the
distance between two pinging beacons 43

4.2 Plot showing the CRB curves for positioning with the beacons in the
default setup with three anchor beacons 44

4.3 Plot showing the CRB curves for positioning with four anchor beacons 44

xi

List of Figures

4.4 Plot showing the CRB curves for positioning with four anchors in an
equilateral triangle setup . 45

4.5 Plot showing the CRB curves for positioning with five anchor beacons 46
4.6 Comparison of CRB with actual measurement covariance 47
4.7 Trajectory tracking simulation with start from outside circular tra-

jectory . 48
4.8 Trajectory tracking simulation with start from inside circular trajectory 48
4.9 Trajectory tracking on actual robot with Kalman filtering and sensor

fusion . 50
4.10 The plot of the estimation error acquired from 100 runs, plotted over

time (s), σ1 = 1 m, σ2 = 4 m, σV2F = 1 m 51
4.11 The plot of the estimation error acquired from 100 runs, plotted over

time (s), σ1 = 1 m, σ2 = 4 m, σV2F = 5 m 52
4.12 The plot of the estimation error acquired from 100 runs, plotted over

time (s), σ1 = 4 m, σ2 = 4 m, σV2F = 1 m 53
4.13 The plot of the estimation error acquired from 100 runs, plotted over

time (s), σ1 = 4 m, σ2 = 4 m, σV2F = 5 m 53
4.14 The ICP and Kalman estimates and the actual trajectory of vehicle

1, σ1 = 0.1 m, σ2 = 0.01 m, σV2F = 0.01 m 54
4.15 The ICP and Kalman estimates and the actual trajectory of vehicle

2, σ1 = 0.1 m, σ2 = 0.01 m, σV2F = 0.01 m 55
4.16 The ICP and Kalman estimates and the actual trajectory of vehicle

1, σ1 = 0.1 m, σ2 = 0.1 m, σV2F = 0.01 m 56
4.17 The ICP and Kalman estimates and the actual trajectory of vehicle

2, σ1 = 0.1 m, σ2 = 0.1 m, σV2F = 0.01 m 56
4.18 ICP measurement feedback to controller with noise on UWBmeasure-

ments, σ2
x = 0.1 m2, σ2

y = 0.1 m2. The top figure shows the reference
tracking of the position while the bottom shows the tracking of the
orientation . 58

4.19 Kalman Estimate feedback to controller with noise on UWB measure-
ments, σ2

x = 0.1 m2, σ2
y = 0.1 m2. The top figure shows the reference

tracking of the position while the bottom shows the tracking of the
orientation . 59

4.20 Error in distance from actual trajectory after control by using A) ICP
estimate feedback (Top) and B) Kalman estimate feedback (Bottom),
σ2
x = 0.1 m2, σ2

y = 0.1 m2 . 60

xii

1
Introduction

This chapter describes the background of problems related to positioning of au-
tonomous vehicles, its possible and existent solutions and also the idea behind and
the uniqueness of the implicit cooperative positioning. Furthermore it specifies the
scope and limitations of the thesis described in this report.

1.1 Background
Currently there is a lot of interest in the field of autonomous vehicles and robots.
Autonomous vehicle is the future of the automobile industry. Also the use of au-
tonomous robots is constantly increasing in a variety of tasks e.g. warehouse logistic.
In both cases one of main hurdles is the exact positioning of the agent [1]. Accurate
positioning is often crucial for providing proper and safe functioning of the systems.
Especially in case of autonomous vehicles, inaccurate positioning may have drastic
and life threatening consequences. Thus the task of making the positioning system
of autonomous vehicles accurate and reliable would be really crucial, keeping the
safety of the passengers and the environment around the vehicle in mind.

For outdoor applications, thanks to the worldwide coverage and good accuracy, time
of arrival (TOA) based global navigation satellite systems (GNSS) such as GPS,
GLONASS, etc. are widely used for localisation [2]. For indoor purposes, where
GNSS suffer form significant signal loss the Ultra Wide Band (UWB) radio beacons
gained big popularity. These can be used in a Round-trip Time of Arrival (RTOA)
based system, which in an energy efficient way that provides estimates with just few
centimetre accuracy [3]. However, because of i.a. noise in the TOA measurements,
shadowing and multiple path propagation, these systems suffer from uncertainties
[4, 5, 6].

1.2 Related work
To alleviate the negative effects of the measurements with low accuracy many com-
panies and academic institutions are constantly striving to develop new algorithms
to improve the positioning. For example applying Real Time Kinematics as in [7]
may increase the GNSS measurement accuracy down to a centimetre level, although
requires high cost equipment and a reference station located at exactly known co-
ordinates. Many cooperative localisation solutions have been developed too. These

1

1. Introduction

rely on vehicles sharing their relative position to each other and use this information
to correct the GNSS or UWB measurements [8, 9]. This concept may strongly im-
prove the localisation increasing its accuracy and enlarging the coverage. Also the
combination of cooperative localisation and distributed target tracking [10], coop-
erative self localisation and tracking (CoSLAT) has been developed [11, 12]. These
use ranging to estimate the position of targets which further can help in estimation
of position of the agents themselves. Although accurate, they often require radio
anchors with predefined position and accurate ranging between the nodes and the
targets. The CoSLAT algorithm is though using recognition of only one target per
node and the ranging is not contained within any of existing and popular standards
[13].

1.3 Purpose

The natural reasoning is that having more sensors on the vehicle would increase the
amount of information about where the vehicle is located. One sensor that comes to
mind in an autonomous vehicle would be the camera. A camera would be required
to sense the environment and this could be used to see objects and position the ve-
hicle with respect to this object. What if this could be made better by cooperating
measurements between numerous cars in the vicinity. This indirectly unlocks the
potential of adding more sensors to a given vehicle without installing any physical
components.

The cooperative positioning system hence needs a robust algorithm which will help
the vehicle with bad GNSS measurements to get better measurements. Also by coop-
erating with many vehicles and sensing more objects using the camera one should be
able to acquire much more accurate estimates for all vehicles as each vehicles share
their measurements with other vehicles. Given the advancements in communication
protocols for vehicle-to-everything (V2X)[14, 15] and the current development in
5G mainly pushing for the implementation of the "internet of things(IoT)"[16], such
kind of vehicle cooperation would be more practical in the near future. Our aim is
to achieve such a system which will carry out the cooperative positioning and also
test its viability in an actual test scenario using robots.

A new idea of so called implicit cooperative positioning emerged [13]. This algo-
rithm is using the information from easily accessible on-board sensors, as cameras
and radars, to sense the environment and to see different objects (features) and
position them with respect to the vehicle. Sharing the information about each ve-
hicles beliefs of the features’ position via vehicle-to-vehicle (V2V) links would allow
to cooperatively estimate the features’ coordinates. Further on each vehicle could
use this information to improve its own position acquired using internal sensors as
GNSS receivers or UWB beacons.

2

1. Introduction

1.4 Scope and limitations
In this report the implementation in an real world application and further evalua-
tion of the ICP algorithm will be presented. Differential drive robots [17] will be
used for as the nodes. Positioning will be done using RTOA based UWB system
and the relative position of the features will be measured using Gulliview system [18].

The questions to be investigated are e.g.
• Can the estimation performance be improved by incorporating feature mea-

surements?
• If yes, how much can the estimation error be reduced?
• When is it most advantageous to use ICP?
• Are there any situations when ICP might not work as expected?

Our focus will be mainly related to working on the algorithm focusing with the
positioning of the vehicles given that a system for tracking and recognising features
is already in place. Also the intricacies of the protocols for communication between
the robots will not be looked into or followed. Therefore the algorithm will be imple-
mented in a centralised fashion, giving each vehicle access to the information needed
instantly and exactly.

3

1. Introduction

4

2
Theory

This chapter describes the theory needed to understand the solution to the problem
formulated in the previous chapter. Topics explained are i.a. the system model, tri-
lateration, Bayesian estimators, Cramer-Rao bound and linear quadratic regulator.

2.1 System model

As described in Section 1.4, the system contains of a set of agents (let us call
them vehicles), denoted V and a set of features, F . Each vehicle, i ∈ V , has its
corresponding state vector containing the position and velocity states in x and y
directions at time t, xi,t = [pxi,t, pyi,t, vxi,t, vyi,t]T, and each feature, k ∈ F , its x and
y position at time t as state vector fk,t = [fxi,t, fyi,t]T. The position measurement
(say GNSS measurement) of a vehicle i at the time t will be denoted as ρG

i,t and the
V2F measurement between vehicle i and feature k at time t will be denoted as ρV2F

i,k,t .
Time t denotes the current discrete time step, while time t− 1 denotes the previous
discrete time step. Figure 2.1 depicts a system of two vehicles and two features and
the associated measurements.

5

2. Theory

Figure 2.1: The system containing of two robots/vehicles and two features with
specified GNSS-like measurements ρG

i,t, V2F measurements ρV2F
i,t and the V2V com-

munication link

2.1.1 Motion model
The relation between the vehicle state in time step t−1, xi,t−1, and the current one,
xi,t, can be described by the linear motion model of the vehicle.
The state in time t is

xi,t = Axi,t−1 +Bui,t−1 +wi,t−1, (2.1)

where the matrix A represents the system matrix, B is the input matrix and the
process noise wi,t−1 ∼ N (0, Qi,t).
For the purpose of evaluation and testing of the ICP algorithm a simple constant
velocity (CV) motion model has been chosen. One advantage of a CV model is the
simplicity, since it is linear and does not require successive linearisation which would
increase the complexity of the algorithm. It is also pretty accurate model to use
with differential drive robots, where the velocity vector is unlikely to change a lot
from one iteration to another. The system and input matrices are

ACV =


1 0 Ts 0
0 1 0 Ts
0 0 1 0
0 0 0 1

 , and BCV =


T 2

s

2 0
0 T 2

s

2
Ts 0
0 Ts

 , (2.2)

where the Ts is the sampling time.

6

2. Theory

The input to the vehicle proposed by [13] is defined as the vehicles acceleration
acquired either using sensors or control input to the vehicle, ui,t−1 = [axi,t ayi,t]T.
Using acceleration vector as the input to the model is not necessarily going to be con-
sistent throughout the project. Since the acceleration of the vehicle is not straight
forward to access, the effect of the input to the model will be neglected. Only the
process noise will be present for the prediction step, allowing the changes in the
velocity states to happen. The algorithm will in this case work without any infor-
mation from the vehicle, using only its own observations and prior knowledge of the
vehicle state. The function of the algorithm should still be satisfactory for acquiring
useful results.

Without using the input to the system an assumption is implicitly done, that the
process noise wi,t (which is a Gaussian noise) is responsible for all changes of the
velocities in the system. For the optimal behaviour of the algorithm the value of the
process noise covariance in the algorithm needs to be matched with the covariance
value of the actual trajectory. According to [19, p. 60] we therefore set the process
noise covariance in the algorithm as

Qi,t =


qc

xT
3
s

3 0 qc
xT

2
s

2 0
0 qc

yT
3
s

3 0 qc
yT

2
s

2
qc

xT
2
s

2 0 qcxTs 0
0 qc

yT
2
s

2 0 qcyTs

 , (2.3)

where qcx and qcy are the continuous time variances of the velocity state of the actual
trajectory of the vehicle in x and y directions.
This does not hold in the real process where the actual movement of the vehicles
follows a specified trajectory. However for the filter to work satisfyingly the qc values
can be later tuned to best match the motion of the vehicle.
Also, the constant velocity model will be used for the positioning algorithm only.
A more thorough model of the differential drive robot, the robot twist model, is
derived for control purposes in Section 2.1.2.

2.1.2 Robot twist model

The differential robot’s motion model needs to be modelled. To represent the dy-
namics of the system would be useful for the filtering and control algorithms that
are to be implemented later. As the inputs to the robot are linear and angular ve-
locity and that to with respect to the robot frame we need to create transformations
from the robot frame to the world frame. Let us assume that the linear velocity is
described as V and angular velocity as Z then we can make many deductions, if the
robot was to make a circular motion forward as shown in the Figure 2.2

7

2. Theory

∆ψ =

∆η

∆ξ

θk
ξk

ηk

ξk−1

ηk−1

θk−1

i

j

i

j

∆θ

r

X⃗k

X⃗k−1

Figure 2.2: Movement of robot during a time step

Here ξ− η represents the robot/inertial frame and i− j the world frame, the colour
red in Figure 2.2 is used to denote the robot coordinate space while the black denotes
the world space. For a starting point of the model the model in [20] is simplified
and used. If ~Xk−1 is the present state then the prediction of the state of the robot
after the time step can be given by

~̂
Xξη
k|k−1 =

 ξ̂k|k−1
η̂k|k−1

ψ̂k|k−1

 =


Vk−1
Zk−1

sinZk−1∆t
Vk−1
Zk−1

(1− cosZk−1)∆t
Zk−1∆t

 . (2.4)

The model can be transformed using trigonometric identities to give us a model in
the i− j coordinate space is given as

~̂
X ij
k|k−1 =

x̂k|k−1
ŷk|k−1

θ̂k|k−1

 =


x̂k−1|k−1 + Vk−1

Zk−1
[sin(θ̂k−1 + Zk−1∆t)− sin θ̂k−1]

ŷk−1|k−1 + Vk−1
Zk−1

[cos θ̂k−1 − cos(θ̂k−1 + Zk−1∆t)]
θ̂k−1 + Zk−1∆t

 . (2.5)

We need to linearise the model as the LQR and Kalman filtering algorithms work
on linearised models. The linearised model can be later used for evaluating the
controller gain matrix K and this is to be done at every time step to have a good
approximation of the model. For the purpose of linerisation we need to find the
Jacobian matrices. To do this the equations are partially derivated with respect to
the states and then the input to complete the linear differential form of

∆X̂k|k−1 = Ak−1∆X̂k−1|k−1 +Bk−1∆uk−1, (2.6)

8

2. Theory

where A and B are found by the following method; assume that the equations for
the states in ~̂

X ij
k|k−1 in symbolic form can be represented such that

~̂
X ij
k|k−1 =

x̂k|k−1
ŷk|k−1

θ̂k|k−1

 =


f1(x̂k|k−1, θ̂k|k−1, Vk−1, Zk−1)
f2(ŷk|k−1, θ̂k|k−1, Vk−1, Zk−1)

f3(θ̂k|k−1, Zk−1)

 , (2.7)

then the matrices A and B are found by

A =


∂f1

∂x̂k|k−1

∂f1
∂ŷk|k−1

∂f1
∂θ̂k|k−1

∂f2
∂x̂k|k−1

∂f2
∂ŷk|k−1

∂f2
∂θ̂k|k−1

∂f3
∂x̂k|k−1

∂f3
∂ŷk|k−1

∂f3
∂θ̂k|k−1

 , B =


∂f1
∂Vk−1

∂f1
∂Zk−1

∂f2
∂Vk−1

∂f2
∂Zk−1

∂f3
∂Vk−1

∂f3
∂Zk−1

 . (2.8)

Using the relation (2.8) on the model described in (2.5) we get our linearised matrices
as

A =


1 0 Vk−1

Zk−1
(cos(Zk−1∆t+ θ̂k|k−1)− cos θ̂k|k−1)

0 1 Vk−1
Zk−1

(sin(Zk−1∆t+ θ̂k|k−1)− sin θ̂k|k−1)
0 0 1

 , (2.9)

B =


− sin(Zk−1∆t+θ̂k|k−1)+sin θ̂k|k−1

Zk−1
a

cos(Zk−1∆t+θ̂k|k−1)−cos θ̂k|k−1
Zk−1

b

0 ∆t

 , (2.10)

where

a = ∆tVk−1 cos(Zk−1∆t+θ̂k|k−1)+x̂k|k−1
Zk−1

− Zk−1x̂k|k−1−Vk−1 sin(θ̂k|k−1)+Vk−1 sin(Zk−1∆tθ̂k|k−1)
Z2

k−1
,

b = ∆tVk−1 sin(Zk−1∆t+θ̂k|k−1)+ŷk|k−1
Zk−1

− Zk−1ŷk|k−1+Vk−1 cos(θ̂k|k−1)−Vk−1 cos(Zk−1∆tθ̂k|k−1)
Z2

k−1
.

The motion model Sections described above is only a part of the solution to a
common model based problem. The motion model is most of the times preceded by
a measurement model, which shows how the states of the model can be described
by the measurements obtained this is dealt with in the Section 2.1.3.

2.1.3 Measurement models
The measurement ρ can be described as a sum of a linear function dependent on
some states and a zero-mean Gaussian noise n with covariance R and relates to the
vehicle state x by

ρ = Hx+ n, (2.11)
where the H is the observability matrix that transforms the state of interest into
the pure measurement value.

9

2. Theory

In the ICP algorithm there are two measurements to consider: The first one, ρG
i,t

is the position measurement (GNSS or alike) of the vehicle. The measurement is
assumed to be normally distributed around the actual position of the vehicle as
follows

ρG
i,t =[pxi,t pyi,t]T + nG

i,t (2.12)
=HGxi,t + nG

i,t. (2.13)

Since the vehicle state vector contains the position of the vehicle, observability
matrix is set to directly choose the first two values of the state vector,

HG =
[
1 0 0 0
0 1 0 0

]
. (2.14)

The covariance value of the measurement noise RG
i,t is in this case set accordingly to

the accuracy of the position sensor.

The second measurement is the vehicle to feature (V2F) measurement. It is given
by the position difference between the feature position and the vehicle position with
additive zero-mean Gaussian noise

ρV2F
i,k,t =[fxi,t fyi,t]T − [pxi,t pyi,t]T + nV2F

i,k,t (2.15)
=H1fk,t +H2xi,t + nV2F

i,k,t , (2.16)

where

H1 =
[
1 0
0 1

]
, H2 =

[
−1 0 0 0
0 −1 0 0

]
, (2.17)

and
nV2F
i,k,t ∼ N (0, RV2F

i,k,t). (2.18)

2.1.4 Homogeneous transformation matrix
The robot, even though is one unified object, has many components on it like the
camera and the UWB beacon. Each components on the robot has it’s own loca-
tion with respect to the location of the robot itself. When the robot moves the
components on the robot are therefore displaced with regards to the world coordi-
nate system based on the robot’s orientation and displacement. A transformation
is needed to convert the location of each of the robot’s components from it’s own
coordinate system to the world-coordinate system. The Figure 2.3 shows the robot
at point (0, 0) being displaced by distance Xt in the X-Axis and Yt in the Y-Axis
with a rotation of Θ.

10

2. Theory

Xt

Yt

(0, 0)

(x′, y′)

Θ

(x, y)

Figure 2.3: Transformation of point (x, y) to (x′, y′) after robot translation and
rotation

Assume that the top-left corner of the robot is (x, y) and after the translation and
rotation the corner is located at (x′, y′). We need to find the new location of the
corner given the translation and rotation of the robot which currently is located at
(xt, yt). Using simple geometric computation we can see that new location of the
corner is at [

x′

y′

]
=
[
x cos θ − y sin θ +Xt

x sin θ + y cos θ + Yt

]
, (2.19)

this can be rearranged and written in matrix form as

x
′

y′

1

 = T

xy
1

 , (2.20)

where

T =

cos θ − sin θ xt
sin θ cos θ yt

0 0 1

 . (2.21)

The matrix T is called the homogeneous transformation matrix which is very com-
monly used to represent such transformations in many robotic applications. More
about this transformation and other type of transformations can be read about in
[21].

2.2 Trilateration

Trilateration is the method of finding the absolute or relative location/position of a
point using distance measurements. Trilateration for positioning using a positioning
system is carried out in three steps as can be seen in Figure 2.4.

11

2. Theory

P2

P1

P

A B C

Figure 2.4: Trilateration position uncertainty in 2-D with A) One transceiver, B)
Two transceivers and C) Three transceivers

Carrying out trilateration normally involves a transmitter/receiver pair. A trans-
mitter is used to ping a receiver to find the distance between the transmitter and
the receiver using some TOA algorithm. In the case of GNSS systems the message
is sent from the satellite to the device and based on the time-stamp of the message
received the receiver does the computation on how far away the transmitter and
receiver are. Most indoor positioning system have no global time system like in a
GNSS system. To make the indoor positioning viable a transceiver has to initiate the
ping to another transceiver which then sends back a ping to the initial transceiver
then the first transceiver checks the delay between the sending and receiving ping to
decide the distance between the transceivers. This step is commonly called ranging
and it is the first step to the trilateration problem.

Given the ranging distance the position of a target transceiver is to be found using
transceivers at a known position. The target transceiver (the transceiver for which
we are interested in finding the position) could be anywhere around the sphere (if el-
evation is needed) or circle (if elevation is not needed) around the anchor transceiver
(the transceiver which is anchored at known positions), assuming that the transmit-
ter propagates equally well in all directions. For the second setup with two anchor
transceivers using the known distance between the target transceiver and the two
anchor transceivers, we can find the region of intersection (a circle) where the target
transceiver could lie, by using the spheres of radiation at set distances to the target
transceiver, propagating from the anchor transceivers. If we are only concerned with
the 2-D case the point where the target transceiver is located is reduced to two pos-
sible points. Another distance measurement would limit the possible position of a
target transceiver to two points for 3-D and only one in 2-D case (or constrained 3-D
case). To get the location of the target transceiver we need at least four transmitters
for 3-D, and three transmitters for 2-D, where the intersection of the spheres created
by the radiation with radius equal to the distance to the target transceiver returns
just one point. So by changing the anchor transceiver count from one to four the
possibility of finding the target transceiver location in 3-D has been changed from
a sphere to a circle to two points to just one point.

Using more anchor transceivers than the minimum required improves the accuracy
of the positioning especially when the ranging measurements are prone to noise. It

12

2. Theory

is common in GNSS systems to use more than four satellites to give more accurate
position estimates.

2.3 Bayesian estimation
There are many ways to estimate a state vector of a system given some additional
information like measurement values. Some of them, like non-parametric estimators,
use a set of particles to represent probability of certain states and how they affect
each other. Also Least Mean Square filters are used for this purpose. In this project
however, parametric Bayesian estimator will be used. Here we describe all states of
the system in a common vector θ and all the measurements in vector ρ.

2.3.1 Finding the posterior
Bayesian estimators are minimum mean square error (MMSE) estimators and they
aim to find the estimated state as

θ̂MMSE
t =

∫
θtp(θt|ρ1:t)dθt, (2.22)

which is the expected value of the combined state given all the observed values, or
simply the expected value of the posterior probability density function of the state
θ [13]. Finding the posterior is therefore an important task in state estimation.
Since the process is assumed to fulfil the Markov property (the states at time t are
dependent only on states in time step t − 1), and the prior p(θ0|ρ0) is assumed to
be known, the problem can be solved recursively. Usually one step in the recursion
is split in two stages: prediction and update [22].

The prediction describes the probability of a state in time t given the information
about the state in time t− 1

p(θt|ρ1:t−1) =
∫
p(θt|θt−1)p(θt−1|ρ1:t−1)dθt−1, (2.23)

where the p(θt|θt−1) is defined by the system dynamics and p(θt−1|ρ1:t−1) is the
posterior of the previous time iteration.

The update step can be done as follows

p(θt|ρ1:t) ∝ p(ρt|θt)p(θt|ρ1:t−1), (2.24)

where the term p(ρt|θt) is the likelihood function of all the measurements in the
system and p(θt|ρ1:t−1) is the output from the prediction step.

The equations (2.23) and (2.24) together gives the posterior needed to find the
estimate of the state of interest. However, often the terms in these equations must be
further factorised, depending on the number of different measurements and how the
system is built up. The full factorisation of the posterior for the system (described
in Section 2.1) is shown in Section 3.1. This factorisation can also be described in

13

2. Theory

form of a factor graph, representing the dependencies (represented as edges in the
graph) of different functions (represented as rectangular nodes) and states (circular
nodes). Belief propagation (or the Sum-product algorithm) [23, Ch. 4] is used in this
project to, given the dependencies in the graph, estimate the posterior probability
density function of the system. Since all distributions are assumed to be Gaussian
in the graph, belief propagation will consist of a set of simple message passing rules.

2.3.2 Some simple message passing rules
Given the problem formulation it is desirable to estimate the posterior of the vehicle
and feature states given the GNSS and V2F measurements. To obtain this posterior
a belief propagation algorithm is performed on a factor graph resulting from the
factorisation of the posterior [23, ch. 4]. However, to understand the derivation of
the algorithm equations an understanding of how messages (representing the differ-
ent probabilities in the graph) are propagated through different types of functions
in the model and passed around in the graph.

The cases needed for understanding the ICP derivations are message passing through
a linear mapping, an addition and how multiple messages are together used for es-
timating a belief of a state. Also the initialisation of a message will be considered.
Note that given the assumptions made in this project only Gaussian messages will
be present in the message passing algorithm. Further on E will denote the edge
concerned in calculations along which the message is passed, and f will denote the
node representing a function.

In case of initialisation of the message (that is a single outgoing edge from a node
representing a probability density function), the message will be equal to the prob-
ability function of the node. Hence if f(e) = N (µ,C) then the outgoing message
is given by

mf→E = N (µ, C). (2.25)

In case of a message passing through a linear map as e2 = Ae1, where e1 is the input
to the function and e2 is the output, and A is a square and invertible matrix there
are two different calculations to mention: The first one is when the message is passed
in the direction of the function, that is where the known message is the message
from edge E1 to the function, denoted mE1→f = N (µ1, C1), then the message of
interest is

mf→E2 = N (Aµ1, AC1A
T), (2.26)

and the second, when the message is passed in direction opposite to the direction of
the function. Message known is then denoted mE2→f = N (m2, C2), and message of
interest can be calculated as follows

mf→E1 = N (A−1µ2, A
−1C2(A−1)T). (2.27)

In case of an addition, where e3 = e1 + e2 and the incoming messages are mE1→f =
N (µ1, C1) and mE2→f = N (µ2, C2), the outgoing message is

14

2. Theory

mf→E3 = N (µ1 + µ2, C1 + C2). (2.28)
However, when message is passed in opposite direction the message can be computed

mf→E1 = N (µ3 − µ2, C3 + C2). (2.29)
Other important part of message passing is determining the belief of state x given
all incoming messages mE1→x = N (µ1, C1), . . . ,mEJ→x = N (µJ , CJ). The belief is
simply the product of the messages and can be calculated as follows

b(x) =
J∏
j=1
N (µj, Cj) ∝ N (µf , Cf), (2.30)

where

Cf =
 J∑
j=1

C−1
j

−1

and µf =Cf

 J∑
j=1

C−1
j µj

 . (2.31)

These rules will be used later in Section 3.1 for derivation and explanation of the
ICP algorithm.

2.4 Extended Kalman filter
The Kalman filter [19] is a Gaussian estimator for the states of a dynamical system.
The algorithm mainly uses Bayesian statistics for estimating the probability distri-
bution of the state variables over each time frame. The Kalman filter consists of
two steps: (i) the prediction step and (ii) the update step. In the prediction step
a linear model which describes the dynamics of the system is used to compute the
states at the next time step. The estimate covariance are also updated depending
on the process noise. These represent the prior before the measurement update.
In the measurement update step the measurements are obtained and depending on
the covariance of the measurements, the probability distribution are combined to
update the states and the estimate covariance. A lower process noise indicates the
filter to trust the model more whereas a lower measurement noise indicates the filter
to trust the measurement more. The Kalman filter also have the added advantage of
estimating states for which we do not have measurements but which could be observ-
able [24, Ch. 7]. For a normally distributed variable x the conditional probability
p(xk−1|yk−1) is described by the probability density function (PDF),

p(xk−1|y1:k−1) = N (x̂k−1|k−1, Pk−1|k−1). (2.32)

The Kalman equations as stated in [19, p. 37] are summarised by two steps. The
first being the prediction step written as

x̂k|k−1 = Ak−1x̂k−1|k−1, (2.33)
Pk|k−1 = Ak−1Pk−1|k−1A

T
k−1 +Qk−1, (2.34)

15

2. Theory

and the update step written as

x̂k|k = x̂k|k−1 +Kkvk, (2.35)

Pk|k = Pk|k−1 −KkSkK
T
k . (2.36)

The Kalman gain Kk, innovation vk and the innovation covariance Sk are obtained
by:

Kk = Pk|k−1H
T
k S
−1
k (2.37)

vk = yk −Hkx̂k|k−1 (2.38)
Sk = HkPk|k−1H

T
k +Rk. (2.39)

Where x̂k|k−1 represents the prediction of states for next time step, Pk|k−1 is the er-
ror covariance estimate, Q represents the process noise. x̂k|k and Pk|k is the updated
(posterior) state and updated (posterior) covariance estimates respectively. Hk rep-
resents the observability matrix. The posterior state vector x̂k|k is the filtered state
estimates.
The Kalman filter mentioned above is useful for the linear motion and measurement
models cases. For non linear motion and/or measurement model we need to approx-
imate the non linear model to a linear one using the Jacobian. This type of Kalman
filtering is called the extended Kalman filter (EKF). Assume the non-linear model
is described by

xk = f(xk−1) + qk−1. (2.40)
Then the linearised model is represented by

xk ≈ f(x̂k−1|k−1) + f ′(x̂k−1|k−1)(xk−1 − x̂k−1|k−1) + qk−1. (2.41)

Similarly the measurement model if non-linear can be described as

yk = h(xk) + rk, (2.42)

with the linear measurement model written as

yk ≈ h(x̂k|k−1) + h′(x̂k|k−1)(xk − x̂k|k−1) + rk−1, (2.43)

where f ′(x̂k−1|k−1) and h′(x̂k|k−1) are the jacobians given by

[f ′(x̂k−1|k−1)]ij = ∂gi(x)
∂xj

, [h′(x̂k|k−1)]ij = ∂hi(x)
∂xj

. (2.44)

The EKF equations as seen in [19, p. 69-70] thus can be written as:
The prediction step

x̂k|k−1 = f(x̂k−1|k−1), (2.45)
Pk|k−1 = f ′(x̂k−1|k−1)Pk−1|k−1f

′(x̂k−1|k−1)T +Qk−1. (2.46)
The update step

x̂k|k = x̂k|k−1 +Kkvk, (2.47)
Pk|k = Pk|k−1 −KkSkK

T
k . (2.48)

16

2. Theory

The Kalman gain Kk, innovation vk and the innovation covariance Sk are obtained
by:

Kk = Pk|k−1h
′(x̂k|k−1)TS−1

k , (2.49)

vk = yk − h(x̂k|k−1), (2.50)

Sk = h′(x̂k|k−1)Pk|k−1h
′(x̂k|k−1)T +Rk. (2.51)

The EKF hence can be used to estimate non-linear states as described above this
will be later helpful in our implementation later in the project.

2.5 Cramer-Rao bound
Most estimators have a variance in the estimates, being able to place a lower bound
on the variance of any unbiased estimator can be extremely useful. At the best case
it allows us to assert that an estimator is the minimum variance unbiased (MVU)
estimator. Many such bounds do exists but the Cramer-Rao bound (CRB) is the
easiest to determine.
Since all the information for the CRB is obtained from the observed data and the
PDF for that data, the accuracy of the estimation directly depends on the PDF. So
if the influence of the unknown parameter on the PDF is more, the better we should
be able to estimate it.
A simple estimator model as stated in [25, p. 28] can be written as

x[0] = A+ w[0], (2.52)

where w[0] ∼ N (0, σ2) and A is the parameter to be estimated. We can expect the
estimate to be good if the variance σ2 is small. For the ideal case the estimate is
the best if σ2 is 0, which is the best unbiased estimator where the estimate then
becomes Â = x[0]. The estimator accuracy will hence increase as σ2 decreases.
As A is a deterministic value, the distribution of x[0] will be normally distributed
such that A ∼ N (A, σ2) the PDF of x[0] can be written as

pi(x[0];A) = 1√
2πσ2

i

exp
[
− 1

2σ2
i

(x[0]− A)2
]
. (2.53)

When the PDF is viewed as a function of the unknown parameter it is termed as
the likelihood function. The sharpness of the likelihood function determines the
accuracy. To quantify and measure this, the negative of the second derivative of the
logarithm of the likelihood function is taken. This quantity gives us the curvature of
the log-likelihood function. To demonstrate this we will take the natural logarithm
of (2.53)

ln pi(x[0];A) = − ln
√

2πσ2
i −

1
2σ2

i

(x[0]− A)2. (2.54)

The first derivative is

∂ ln pi(x[0];A)
∂A

= − 1
σ2
i

(x[0]− A) (2.55)

17

2. Theory

and the negative of the second derivative becomes

− ∂2 ln pi(x[0];A)
∂A2 = 1

σ2
i

. (2.56)

The curvature of the PDF will increase as σ2 decreases. Since for our simple esti-
mator case we know that Â = x[0] has variance σ2. We can write the variance of
the estimator as

Var(Â) = 1
−∂2 ln pi(x[0];A)

∂A2

. (2.57)

In this simple example the second derivative does not depend on x[0] but in the
general case it would. For a general case, assume θ is the unknown parameters to
be found from the measurements x, such that θ is distributed according to a PDF
f(x; θ). If this is the case then the variance of the unbiased estimator θ̂ of θ is then
bounded by the inverse of the Fisher information matrix (FIM) I(θ) as mentioned
in [25, p. 30] i.e

Var(θ̂) ≥ 1
I(θ) . (2.58)

The FIM is defined by the second derivative of the negative log likelihood function
of the probability density function (pdf). As given by (2.59)

I(θ) = −E
[
∂2 ln(f(x; θ))

∂θ2

]
. (2.59)

It should be noted that no unbiased estimator can exist whose variance is lower than
σ2. Hence the CRLB is the lowest possible bound an estimator can ideally reach.
We would like to find out the CRB of the positioning system using the TOA system.
The sections below will cover the derivation of the CRB for the distance measure-
ment and then use that information to find the CRB for the position.

2.5.1 Cramer-Rao bound for ranging
Before we can find the CRB for the complete trilateration setup we need to find the
CRB for the simple ranging scenario. For electromagnetic radiation propagation
we know that the height of the transmitting and receiving antenna is crucial as
there would be losses due to the fresnel zone. The minimum length of the antenna
required to transmit without the influence of the Fresnel effect as mentioned in [26,
p. 16] can be written as

H [m] = 8.656

√√√√ D [km]
f [GHz] , (2.60)

where H is the height of the antenna needed, D is the distance between the trans-
mitter and receiver and f the frequency of transmission. As the test setup is set up
in an area between a rectangle of dimensions of 3 m length and 3.5 m breadth the
maximum distance possible between the beacons is 4.6 m . The frequency of trans-
mission for the UWB is 2.2 GHz using this the height required for transmission was
found to be approximately 40 cm. For the future experiments the antenna heights

18

2. Theory

were taken as 80 cm.
As mentioned in [27] the variance of CRB for ranging can be found by

1
Var = c2

8π2PSNRB2 . (2.61)

The SNR is calculated by finding the power received and power lost using the equa-
tions (assuming no fading). The power received at distance d from the transmitter
is found by

Pr = Ptk
Dγ

0
Dγ
d

, (2.62)

where Pt is the power transmitted by the transmitter antenna which is 3.981·10−5

W, D0 is the reference distance 1 m, k is 10−L0/10 where L0 is the power received at
the reference distance, k is very close to 1. Dd is the distance between the beacons
and γ is the path loss exponent which is taken as 2 assuming vacuum. The noise
power hence can be calculated by

Pn = 4kbTB. (2.63)

Where kb is the Boltzman constant, T is the atmospheric temperature which is about
293 K and B is the bandwidth of transmission which is 2.2 GHz

PSNR = Pr
Pn
. (2.64)

The CRB for the distance estimate was plotted against distance between the trans-
mitter and receiver, the resulting plot is shown in Figure 4.1.

2.5.2 Cramer-Rao bound for positioning
For finding the CRB for positioning, the net 2D covariance of a given position is
found by summing up the influence of the variance of the multiple pivot anchors at
that point as described in detail in [28], i.e the CRB is givn by

Var = J−1
c , (2.65)

where Jc Represents the FIM which can be found by

Jc =
n∑
i=1

Jrnλ(Dn). (2.66)

The quantity λ(D) is the variance of ranging given the distance between the beacons
D which can be found using (2.61) - (2.64), and n denotes the total number of anchor
beacons. The transformation matrix Jr denotes the influence of the variance due to
ranging on the position. The quantity Jr is dependent on the angle φ. The angle φ
is the angle made by the line joining the two beacons with respect to the positive
x-axis. The transformation matrix is given by

Jr =
[

cos2(φ) cos(φ) sin(φ)
cos(φ) sin(φ) sin2(φ)

]
. (2.67)

19

2. Theory

As the CRB for positioning is dependent on the configuration of the setup and the
total number of beacons, a test setup as shown in Figure 2.5 was put up. Later more
tests were carried out by increasing the beacon count and changing the configuration
of the beacons.

0 0.35 0.7 1.05 1.4 1.75 2.1 2.45 2.8 3.15 3.5

X (m)

0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

3

Y
 (

m
)

3 Anchor Setup Configuration

Figure 2.5: Test configuration for finding CRB for positioning with anchor beacons
represented as crosses.

For the purpose of illustration and making the CRB visually obvious the 300σ ellipses
at various points in the test setup were evaluated and plotted. The plot is shown in
Figure 4.2. The CRB for other kind of configurations were also found which can be
seen from the Figures 4.3 - 4.5.

2.6 Linear quadratic regulator
There are many type of controllers like the PID controllers or more complex ones
like the model predictive control (MPC). While the PID controller just tries to min-
imise the error in a simple way the MPC controller solves an optimisation problem
which tries to find the control input between set constraints. The linear quadratic
regulator (LQR) on the other hand is somewhere in between the PID and a MPC
controller. The LQR is a an optimal controller used for dynamical systems that can
be described by linear differential equations. It has the advantage of being not so
computationally complex yet being very robust at control. The LQR also easier to
tune when compared to a PID Controller. The LQR minimises a cost function based
on the weight on the system states and input, which is predetermined by the control
designer. The infinite-horizon, discrete time LQR are described in (2.68)-(2.72).
For a discrete-time linear system described by [29]

xk+1 = ALQRxk +BLQRuk, (2.68)

where x is the vector of states, u is the vector of input and k is the time step. With

20

2. Theory

a cost function J defined as

J =
∞∑
k=0

(
xTkQxk + uTkRuk + 2xTkNuk

)
, (2.69)

where Q is the weight matrix for the states which has dimensions n × n, n is the
size of the state vector. The weight matrix R for the inputs has dimensions m×m,
m is the number of input. N is the weight matrix for input and states combined,
has dimensions n ×m. The optimal control sequence minimising the cost function
is given by

uk = −Kxk, (2.70)
where the controller gain K is given by

K = (R +BT
LQRPBLQR)−1(BT

LQRPALQR +NT). (2.71)

P is the unique positive definite solution to the discrete time algebraic Riccati
equation (DARE) which can be evaluated by

P = ATLQRPALQR−(ATLQRPBLQR+N)
(
R +BT

LQRPBLQR
)−1

(BT
LQRPALQR+NT)+Q.

(2.72)
The infinite horizon problem can be solved by the finite horizon problem by recur-
sively solving the finite horizon problem until it converges. For getting reference
tracking the controller gain is multiplied to the difference between the present state
and the reference state and this gives us the control input which is feedback to the
system.

2.7 Robot Operating System
Robot Operating System (ROS) [30] is a flexible platform/framework for writing
robot software. It is a collection of tools and libraries that are geared towards
simplifying the task of creating complex and robust robot behaviour across a wide
variety of robotic platforms. ROS was first developed by the Stanford Artificial
Intelligence Laboratory in 2007. From then on it has been developed as an open
source source platform. ROS is extensively used for robotics projects owing to
it’s robustness, modularity and enormous community driven libraries which can
be easily incorporated without fiddling too much with the underlying architecture
of software or the hardware. ROS system mainly consists of a ROSCORE which
is the master node through which all information passes to the various programs.
ROSCORE is responsible for maintaining the flow of data, scheduling and routing
of the various intricate tasks for the functioning of the system. A ROS system can
be programmed in two ways, one being the publisher-subscriber or the service-client
workflow. ROS system is mainly comprised of nodes which are programs intended
to do a particular task with the information that is transferred via ROSCORE.
The nodes for a publisher-subscriber can be broadly classified into two groups, a
publisher and a subscriber. A publisher node keeps publishing some kind of data
continuously whereas the subscriber will continuously access the data posted by the

21

2. Theory

subscriber. The publisher will keep posting the data to a pre-configured channel
which are called as topics in ROS terminology. The subscribers will access the data
from the topics. The data sent to the topics are called messages in ROS terminology
which are wrapped based on a pre-defined or a user-defined data structure. The basic
block diagram for a ROS system is shown in Figure 2.6

ROSCORE

PUBLISHER NODE SUBSCRIBER NODE

/Topics/Topics

Figure 2.6: Publisher and Subscriber nodes in a ROS system

The service-client work-flow on the other hand does not continuously stream data as
in the case of the Publisher-Subscriber but only does it when the data is requested
by the client node. So the client node will request the message by initiating the call
to the service node via the ROSCORE and wait for the response. The service will
get the request for the message and will acknowledge it and then send the data to the
client. The Pioneer-D3X robots have a publisher-subscriber node called ROSARIA
which helps the robot to inform subscribers about it’s sensor states and also accept
the input to the wheel motors as linear and angular velocity from other publishers.

22

3
Methods

This chapter gives a description of the algorithm and how it was implemented in a
real world scenario using the theory presented in the previous chapter.

3.1 ICP

The purpose of ICP is to find the MMSE estimate of the vehicle state (hence also
position) of the vehicle at a certain time step, given all the information contained in
the GNSS measurements of the vehicles and all the V2F measurements [13]. That
is, the objective of ICP is to find the posterior distribution of the vehicle state
xi,1:t given the measurements ρG

i,1:t and ρV2F
i,k,1:t. This posterior can be denoted as

p(xi,t|ρG
i,1:t,ρ

V2F
i,k,1:t). Since all the vehicle and feature states are assumed independent

of each other and are as well fulfilling the Markov criterion, this distribution can
be factorised, splitting the calculations over every time step (iterative filtering) and
making it possible for the GNSS and V2F updates to be done separately.
The factorisation of the posterior for each time iteration is done as follows

p(θt|ρ1:t) ∝
∏
i∈V

(
p(ρG

i,t|xi,t)
∫
p(xi,t|xi,t−1)p(xi,t−1|ρ1:t−1)dxi,t−1

×
∏

k∈Fi,t

p(ρV2F
i,k,t |fk,xi,t)

∏
k∈F

p(fk|ρ1:t−1) (3.1)

where the θ is the full state vector of the system containing both vehicle state and
the feature state, and the ρt is the combined measurement vector with both GNSS
and V2F measurements.
Here one can see that many of the probability functions may be calculated using
the knowledge about the system model from Section 2.1 and applying the belief
propagation rules from Section 2.3.2:

• Motion model can be used to describe the probability of the vehicle state xi,t
considering the vehicle state in previous time iteration xi,t−1, i.e. p(xi,t|xi,t−1)

• p(ρG
i,t|xi,t) is the likelihood of the GNSS measurement given the current vehicle

state and can be described using the GNSS measurement model,
• p(ρV2F

i,k,t |fk,xi,t) is the V2F measurement likelihood that can be described using
the V2F measurement model.

probability functions p(xi,t−1|ρ1:t−1) and p(fk|ρ1:t−1) are the priors of a time itera-
tion of the algorithm, which simply are the outcome of the previous iteration.

23

3. Methods

3.1.1 Belief propagation in the factor graph
The factorisation in (3.1) can be presented in a factor graph illustrated in Figure
3.1 depicting all the influences and all the passed information present in the system.

b b b

b

b

b

b

b

b
b b b

b
b

b

xn,t+1

x1,t+1

xn,t−1

x1,t−1

xn,t

x1,t

f1,t+1

fm,t+1fm,t

f1,t

fm,t−1

f1,t−1

tt-1 t+1

h1

gV 2F
1,m,t

hn

gV 2F
1,1,t gV 2F

n,1,t

gV 2F
n,m,t

gG
1 gG

n

Figure 3.1: Factor graph representation of the system where gG
i represents the

GNSS measurement function, hi the motion model of the vehicle and gV2f
i,k,t the V2F

measurement. xi,t and fk,t are the vehicle state and the feature state at time t.

3.1.1.1 Prediction message

The effect of the state xi,t−1 on the state xi,t is described by the motion model of
the vehicle i and passed to the state node using the prediction message mhi→xi

using
the rules described in Section 2.3.2.
The motion model used is the CV model described in Section 2.1.1

xi,t = ACVxi,t−1 +BCVui,t−1 +wi,t−1. (3.2)
The prediction message to the vehicle state xi,t can then be calculated as follows

mhi→xi
=
∫
hib(xNmp

i,t−1)dxi,t−1 (3.3)

=N (ACVµ
Nmp

i,t−1 +BCVu
Nmp

i,t−1, ACVC
Nmp

i,t−1A
T
CV +Qi,t−1), (3.4)

24

3. Methods

where the b(xNmp

i,t) = N (µNmp

i,t−1, C
Nmp

i,t−1) is the final belief of the vehicle i’s state from
the previous time iteration, and where hi = p(xi,t|xi,t−1) describes how the current
state xi,t is affected by the state in previous time instance xi,t−1.

3.1.1.2 GNSS measurement update

The factorisation of the GNSS measurement can be depicted using the GNSS mea-
surement model from Section 2.1.3 as shown below

HG

xi,t

ρG
i,t

nG
i,t

mn→+

myG
i,k→HG

mgg
i,t→xi,t

gGi,t

Figure 3.2: The factor graph representing the effect of the vehicle state xi,t and
the measurement noise nG

i,t on the GNSS measurement ρG
i,t, as described in Section

2.1.3

Using this factor graph Figure 3.2, the GNSS update can be performed on the pre-
diction message, forming the initial belief b(x0

i,t) of the vehicle state in the message
passing algorithm will boil down to the usual Kalman filter update step equations.
Thus the belief of the vehicle can be updated according to following [23, pp. 120-123]

b(x0
i,t) = N (µ0

i,t, C
0
i,t), (3.5)

where

µ0
i,t =µhi→xi

+K(ρG
i,t −HGµhi→xi

), (3.6)
C0
i,t =(I −KHG)Chi→xi

, (3.7)

and where
K = Chi→xi

(HG)T (HGChi→xi
(HG)T +RG

i,t)−1. (3.8)
Here, (3.6) updates the expected value of the prediction message µhi→xi

with the sum
of a Kalman gain K and the innovation term ρG

i,t−HGµhi→xi
. The innovation is the

difference between the measurement value and the predicted position. Kalman gain
decides according to the covariance matrices, how much of the innovation should be

25

3. Methods

used for update, that is whether the measurement or the prediction should be more
trusted. The higher the measurement covariance (lower measurement accuracy)
compared to the covariance of predicted state, the more the prediction will affect
the updated belief of the state, and vice versa.

For the optimal function of the Kalman filter the measurement noise needs to be
normally distributed with zero mean. Since there are non-linearities in the TOA-
based position measurements this is not the case in the real case scenario. The
Monte-Carlo approximation can be applied on a set of measurements to approximate
the measurement noise as Gaussian, which should be sufficient for good functioning
of the filter.

3.1.1.3 Feature measurement update

The measurement likelihood function gi,k,t can be then depicted (using the V2F
measurement model from Section 2.1.3) in the factor graph presented below

26

3. Methods

H2

H1

xi,t

fk,t

ρV 2F
i,k,t

nV 2F
i,k,t

m
n→

+

myV 2F
i,k,t →+

m
H

2 →
+

m
H

1 →
+

m
+
→

H
1

m
+
→

H
2

m
g

V
2
F

i,k
,t →

f
k
,t

m
f

k
,t →

g
V

2
F

i,k
,t

m
x

i,t →
g

V
2
F

i,k
,t

m
g

V
2
F

i,k
,t →

x
i,t

gV 2F
i,k,t

Figure 3.3: The factor graph representation of the effect of the feature state fk,t,
the vehicle state xi,t and the measurement noise nV2F

i,k,t on the V2F measurement
ρV2F
i,k,t . Matrices H1 and H2 are the observability matrices. See Section 2.1.3 for

further explanation.

Following the conventions of message passing from Section 2.3.2 from state xi,t across
the gi,k,t to the state fk,t results in the expressions for the individual messages.
The message mxi→gi,k

is firstly passed through the matrix H2 and the outgoing
message becomes

mH1→+ = N (H1µ
n−1
fk→gi,k

, H1C
n
fk→gi,k

HT
1), (3.9)

Note here that n is the iteration index of the loop in the message passing algorithm.
It will be further discussed in Section 3.1.2. The message from the measurement
node yV2F

i,k is representing the likelihood function of the V2F

myV2F
i,k,t
→+ = N (ρV2F

i.k , RV2F). (3.10)

27

3. Methods

Further on the two above messages are merged

m+→H2 = N (ρV2F
i,k −H1µ

n
fk→gi,k

, RV2F +H1C
n
fk→gi,k

HT
1). (3.11)

The outgoing messages from the measurement gi,k are not possible to calculate as
the observability matrices H1 and H2 does not necessarily need to be square, and
therefore not invertible. However, it turns out that the product of these messages
is possible to calculate exactly. Since the beliefs of the vehicle states xi and feature
states fk and their outgoing messages can all be calculated using the product of
their incoming messages, the product is the only thing needed.
According to (2.30) the information sufficient for calculating the product is therefore
following two expressions

Cn
gi,k→xi

−1 = HT
2 (RV2F +H1C

n
fk→gi,k

HT
1)−1H1, (3.12)

and

Cn
gi,k→xi

−1µngi,k→xi
=HT

2 (RV2F +H1C
n
fk→gi,k

HT
1)−1H2H

−1
2 (ρfeatk −H1µ

n
fk→gi,k

)
(3.13)

=HT
2 (RV2F +H1C

n
fk→gi,k

HT
1)−1(ρfeatk −H1µ

n
fk→gi,k

), (3.14)

As can be seen in (3.14) by multiplying the inverse of the covariance with the
expected value of the message the inverse of the non-square matrix H2 is eliminated.
That is the reason to why the product of the messages is possible to calculate, while
the expected value itself is not.
In similar manner the message passing from the feature state to the vehicle state
can be done resulting in:

Cn
gi,k→fk

−1 = HT
1 (RV2F +H2C

n−1
xi→gi,k

HT
2)−1H1, (3.15)

and

Cn
gi,k→fk

−1µngi,k→fk
= HT

1 (RV2F +H2C
n−1
xi→gi,k

HT
2)−1(ρfeatk −H2µ

n−1
xi→gi,k

). (3.16)

In this case, since the H1 is an invertible, the actual expected value of the message
can be calculated. The calculations are done in the same fashion though, to make
the algorithm more consistent and allow for changes in the measurement model.

3.1.2 Message passing algorithm
After the initial belief b(x0

i,t) is calculated for each vehicle, the information contained
in the feature measurements should be incorporated in the vehicle beliefs. However,
since there exist loops in the factor graph, the usual sum-product message passing
algorithm is no longer sufficient to calculate the beliefs of the states of interest. It
needs therefore be expanded by applying so called loopy belief propagation. The idea
is to iteratively pass the messages around in the loop, letting them affect messages
starting other loops in the end of each iteration.

28

3. Methods

Firstly, using the message incoming to gi,k from the vehicle state xi from the previous
iteration of the message passing algorithm, µn−1

xi→gi,k
, the terms of outgoing message

from gi,k are calculated according to equations (3.15) and (3.16). Notice here that
at the initial iteration n = 1 the messages µn−1

xi,t→gi,k,t
has not yet been calculated.

Therefore for the calculations of (3.15) and (3.16) the value is simply set µ0
xi,t→gi,k,t

=
b(x0

i,t).
This is done in parallel by each vehicle for every of vehicle’s visible features. Since the
algorithm is implemented here in a pseudo-decentralised fashion, the terms acquired
from (3.15) and (3.16), can be accessed directly from all vehicles (there is no V2V
communication needed) and therefore consensus value uk,t,n can be found directly
by multiplying all incoming messages to the feature state fk.
Thus the consensus over belief of feature’s k state at time t and iteration n is given
by

uuk,t = N (µcons
k,t,n,C

cons
k,t,n), (3.17)

where

Ccons
k,t,n =

(∑
i∈V

Cn
gi,k→fk

−1
)−1

, (3.18)

and

µconsk,t,n = Ccons
k,t,n

(∑
i∈V

Cn
gi,k→fk

−1µngi→xi

)
. (3.19)

Continuing, each vehicle calculates for all features the current message from the
all the feature state fk,t to the measurement function gi,k,t according to following
equation

µnfk,t→gi,k,t
= b(fk,t−1)

∏
l∈V\{i}

µnxl,t→fk,t
. (3.20)

Since (3.20) contain a product of all incoming messages to a feature except the
message from vehicle i, this equation can be simplified by using the consensus value.
Rewriting gives

µnfk,t→gi,k,t
= b(fk,t−1)

unk,t
µnxi,t→fk,t

, (3.21)

where the division of Gaussians is done as in the product in (2.30) but using sub-
traction of the terms of distribution in the denominator instead of addition.
Further on the terms describing message mn

gi,k,t→xi,t
are obtained using (3.12) and

(3.14).
The outgoing messages from the vehicle state can then be calculated for use in next
iteration as follows

µnxi,t→gi,k,t
= b(x0

i,t)
∏

j∈F\{k}
µnfj,t→xi,t

. (3.22)

After all the iterations in message passing algorithm are done the vehicles’ and the
features’ states can be calculated as in (2.30). These beliefs will be then

29

3. Methods

b(fk,t) = unk,tb(fk,t−1), (3.23)

and

b(xi,t) = b(x0
i,t)

∏
k∈F

µnfk,t→xi,t
. (3.24)

Here a new time iteration of the algorithm can be started.

30

3. Methods

3.2 Hardware and ROS setup
This Section will discuss the setup used to carry out the experiments, the hardware
and the framework used to develop the robot software. The various aspects of how
the link to an actual real life scenario is achieved by the experiment will be portrayed.

3.2.1 Real scenario - experimental setup analogy

Figure 3.4: Illustration showing the real scenario and experimental setup analogy

The ICP is expected to be implemented on autonomous vehicles. The measurements
for the vehicle would be obtained from a global positioning system like the GNSS.
The relative distance to features measurements would be obtained form a camera
placed in/on the vehicle. The features would be famous landmarks, prominent traf-
fic control apparatuses and accessories like traffic lights or islands. For our depiction
of the actual scenario we will have the Pioneer-D3X robots [17] representing the au-
tonomous vehicles. The Time-Domain UWB [3] sensor beacons are used to simulate
the GNSS as for both systems we would have to do some sort of trilateration and
use radio waves. For the feature measurements we will use a web-cam [31] which
can be compared to a camera in/on the autonomous vehicle. The features would be
AprilTags [32] which are QR like tags placed on the ceiling. These tags will have
a specific id which represents that feature number. The analogy of the real world
scenario with our experiment is illustrated in Figure 3.4. The physical experimen-
tal setup used to test the functioning and implementation of the ICP algorithm is
illustrated in Figure 3.5.

31

3. Methods

Figure 3.5: Test setup used for carrying out the robot experiments

3.2.2 ROS setup

As discussed earlier ROS is a very robust system to program robot software. For
this particular reason ROS was used for setting up the robot system. The tests use
two robots and each robot has a laptop. The robot laptop needs to be connected to
the robot, the sensors and ROSCORE, the setup is shown in Figure 3.6. The UWB
is connected to the laptop on the robot using the Ethernet connection, whereas the
camera and robot itself is connected to the laptop on the robot using USB. The
robots (laptops) are connected to the ROSCORE on the master computer using
Wi-Fi. The nodes running on the laptops individually are the ROSARIA for the
robot, Gulliview for the feature and robot orientation measurements, the service
client for the UWB positioning system for the robot. The nodes running on the
master computer where the ROSCORE is running is the robot controllers and the
ICP node. The master computer receives the sensor measurements from all the
robots, calculates the ICP estimates and computes the control action and sends the
controller information to the robots to execute.

32

3. Methods

Wi-Fi

Ethernet

USB

ROSCORE

Camera

UWB

Robot0 Robot1

UWB

Camera

/position

/features

COMMUNICATION

TOPICS
ROSARIA

/sensor

/control
/icp

Figure 3.6: Communication and topic flow between the component and node
interfaces

3.2.3 Reused ROS nodes
Some of the desired functionalities for the robot have already been implemented as
ROS nodes either by the hardware providers or by efforts of other people. These
nodes will be discussed in this Section.

3.2.3.1 ROSARIA

The Pioneer-D3X robots can interface with ROS using the ROS node called ROSAR-
IA, this can be used to interface to most robots created by Adept MobileRobots.
ROSARIA has the desired functions which help make use of the ARIA libraries for
the control of the robots and also reading the sensor measurements. ROSARIA
contains topics like pose which publish the state of the various sensors and topics
like cmd_vel which act as input to the controller on the robot. For the robot we
will mainly depend upon the Gulliview to get the orientation but there will be cases
where the robot moves such that it does not see any tags. In such scenario we
will use the encoder data in the robots through ROSARIA to do the update on
orientation. More about ROSARIA and it’s implementation can be read in [33]

3.2.3.2 Gulliview

As discussed we need a program to get the feature measurements (relative distance
between the robot and the feature). Gulliview is a smart program which uses special
tags called AprilTags placed at known locations to find the location of an unknown
tag with respect to the tags placed. For doing this four tags are set up on the
ceiling to define the coordinate system. The distance between the placed tags are
measured. The Gulliview is then fed with this information and then the position of

33

3. Methods

the tags are converted to a desired unit of our own. After setting this up if we bring
a fifth tag with an id other than the ones used for defining the coordinate axis, the
Gulliview would then return the position of the fifth tag with respect to the four
tags placed. The problem we are dealing with, which is finding the relative position
of the robot with respect to the feature is achieved using the existing functionality
of the Gulliview with a system which measures the camera position with respect to
the tags placed on the ceiling. For achieving this the coordinate axis is set up on the
roof and the unknown tag which represents the feature is also placed on the roof.
The Gulliview program is used to find the position of the unknown tag/feature with
respect to the coordinate axis and the code of the Gulliview was modified using the
OpenCV libraries to return the camera position of the robot. The camera matrix
for the camera is used to specify the perspective and barrel distortion effects and
then the known information of the ceiling tags is used to do the computation of
camera position real-time using the SolvePnp function. The camera position is
then subtracted from the feature position to give the relative feature measurement.
The Rotation Matrix obtained from the SolvePnp also helps to find the orientation
of the robot which is also used for controlling the robot. The example of a tag family
used for the Gulliview can be seen in Figure 3.7

Figure 3.7: The tags defining the coordinate axis from the AprilTag family of 16h6

The implementation of the default system and the default code for the gulliview can
be got from the repository [18].

3.2.3.3 Robot position service

This node was developed by an earlier group for their project [20]. The UWB setup
uses three anchor beacons and a beacon on top of each robot. To get the position of
the robot, the beacon on the top of the robot should ping the three anchor beacons
separately. Each ping to the anchor beacons help to get the distance of the robot
beacon from the anchors individually. The separate distance measurements is then
used for trilateration to find the position. The pings to the beacons can only be
done one at a time and to get the position of the robot we need to do three pings
one after the other. This means one of the robot has to finish the series of three
pings without interruption from the other robot. To ensure this the service-client
approach was used, so that the client requested for the position. The request then
would be initiated and serviced blocking other services in the meanwhile, this would
mean that both robots would not randomly try pinging the beacons. Thus one
robot could complete the series of the pings it required to get the position without
errors. This kind of service routine can be easily done in ROS. The robots hence

34

3. Methods

have a service of their own which will initiate the positioning. The position service
for one of the robots would be called by the ICP node depending on whether the
other service is called or not.

3.2.4 Developed ROS nodes
This Section will describe the nodes discussed were developed from the ground up
to complete the intended purpose.

3.2.4.1 ICP node

Once the robot and feature measurements are obtained from the positioning service
and the Gulliview node of all the robots, we just need to carry out the ICP algorithm
on the data to give the updated position of the robot. The algorithm is explained in
Section 3.1. This updated position measurements can now be sent to the controller
for computing the control inputs to the robots. For testing the robustness and ef-
ficiency of the algorithm we need to add different noise levels to the measurements
and test the runs using the ICP estimate feedback to controllers. To achieve this
a measurement mixer is used so that we can artificially add Gaussian noise to the
measurements to simulate faulty measurements. The ICP node will ultimately pub-
lish the actual/simulated measurements, the ICP estimate and orientation of each
robot to the robot controllers.

3.2.4.2 Robot controller node

After the execution of the ICP algorithm we would have better robot position esti-
mates which can be feed back to the controllers. The controllers are a LQR controller
as explained in Section 3.4.2. The controller has two parts, one being the state es-
timators which is the Kalman filter and second the LQR. The nodes also have an
option to toggle between using the actual/simulated measurements or the ICP esti-
mate for checking the performance of the controller using both measurements.

3.2.5 ROS node integration
The graphical representation of the final integration of the complete robot system
nodes for two robots is shown in Figure 3.8. The ROS program called rqt_graph [34]
was used to display the topic exchange between the various nodes. The get_coord
_serverN is the service for finding the position for robot N . The node gulliviewN
is the node responsible for the feature measurement and orientation for the robot N ,
this is done through the /positionN topic. The node RobotN is the ROSARIA node
on the robot N which uses the topics /RobotN/cmdvel and /RobotN/pose to receive
the control input values from the controller and send the robot orientation infor-
mation from encoders to the ICP node respectively. The nodes described above are
running on the robots itself. The remaining nodes mainly the ICP_Node and the
Robot_ControllerN are running on the central computer which runs ROSCORE.
The ICP_Node takes the feature measurements from the Gulliview and calls the
service for the positioning to get the robots position. After the measurements are

35

3. Methods

done the ICP algorithm is run and the ICP belief of robots are sent to the controller
nodes. The Robot_ControllerN node takes the measurements, computes the ref-
erence trajectory the robot is to move and sends the desired control inputs to the
robots.

Figure 3.8: rqt_graph showing the various ROS nodes and the flow of topics
between them

3.3 State estimator using Kalman filter
For the present robot systems we need an efficient way for finding the state estimates
from the inaccurate measurements, also the robot presently relies on the camera, the
Gulliview and the tags on the ceiling to get it’s orientation. If the tags are not visible
there is no way of getting the orientation. There would be problems controlling the
robot, to alleviate this issue the wheel encoder of the robot is used to return the
orientation when the tags is not visible. The problem of the wheel encoder though
is that it is liable to drift if it runs for a long time due to slip. So the orientation for
the robot is currently got from the combination of camera and the wheel encoders.
The orientation is mainly got from the camera, whenever the tags are visible, but
when the tags are not visible the increments from the wheel encoder at every time
step are taken to do the update of the angle until the tags are visible again.
As the sensors can give inaccurate readings a filtering solution as explained in Section
2.4 was needed. As the dynamics of our system has already been described by the
twist robot model in (2.9) - (2.10) we just need to use these matrices to implement
the EKF. The prediction step for the Kalman is done using the system model whereas
the update step is done in three stages. These update steps is part of the sensor
fusion employed. There is some outlier detector for the measurements which checks
the previous filtered value and the present measurement value and if it is below a
certain threshold the update is done, else the prediction is used for that time step
as the measurement obtained is probably an outlier. The first update step is for the
position using the position reading from the UWB. The second update step is for
orientation form the camera and encoder combination whereas the third update is
also for the orientation using a generated measurement based on the previous filtered
position and the present UWB position measurement which is not an outlier. The
measurement is generated by

θ̂k|k−1 = tan−1
(
ŷk−1 − yk|k−1

x̂k−1 − xk|k−1

)
. (3.25)

36

3. Methods

To find the variance R of the noise for each sensor close to 1000 samples of mea-
surements were taken and the covariance were calculated. For the UWB positioning
system the covariance were found as

RUWB =
[
σ2
xx σxy
σxy σ2

yy

]
=
[
6.18× 10−4 1.75× 10−4

1.75× 10−4 4.43× 10−4

]
. (3.26)

The variance for the orientation using the camera was found to be

Rθ1 = σ2
θ1 = 2.5× 10−8 rad2. (3.27)

As the variance of the camera is greater than that of the wheel encoder and both
sensor reading represent one measurement model, we can take the variance of the
combined reading to be that of the camera.
The variance for the orientation using the generated measurement model described
in (3.25) was found to be

Rθ2 = σ2
θ2 = 1.0 rad2. (3.28)

It should be noted that this variance calculation was done with the robot stationary
hence the reading is not that accurate as the position estimates fluctuate a lot giving
false readings. This is also observed when the robot is stationary but making a
rotation around it’s Z-Axis. On the contrary if the robot was made to move linearly
such that there is a change in position, the variance of the orientation readings got
from this measurement model was really low and of the order of 10−4, depending
on if the robot was perfectly moving a straight line without any rotations. We will
not dwell too deep into the fine tuning of this measurement model but will assume
the worst case. This is because we get measurements with very low variance from
the Gulliview, so we just need the measurement model to guide the update in the
general direction in case the Gulliview is not functional due to the disappearance of
the tags.
As the noise in the model is subjected to the previous input. We would want
to assume that the controller will work really well such that trajectory which is
created with the robot having constant linear and angular velocity will be followed
perfectly. Hence can assume a small process noise and take it as an arbitrary value
for experimentation for further tuning

Q =

8.0× 10−7 0 0
0 8.0× 10−7 0
0 0 1.0× 10−7

 . (3.29)

3.4 Controller for Pioneer-D3X robots
In this Section we will describe the various aspects of the controller needed for the
Pioneer-D3X. We will look into the different modes of operation of the trajectory
planner and the control algorithm employed. The components of the controller
and the way they are combined will also be discussed. A brief description of angle
discontinuity will also be summarised.

37

3. Methods

3.4.1 Trajectory planning

For the purpose of controlling the robot through the desired trajectory with the
desired angular and linear velocity we need to plan a trajectory. For planning the
trajectory we need to decide the least possible sampling time. The Pioneer-D3X
while using the UWB beacons have minimum sampling time of 0.1 s to get the po-
sition estimate, so for the trajectory a smaller sampling time of 0.05 s was chosen.
The default trajectory desired to move for the robot is an elliptical trajectory, so
that the robot could make rotations around the features when implementing the
ICP algorithm. That way we can be certain that the robot see’s the tags most of
the time as the tags are really important for the ICP algorithm. As the robot is not
positioned precisely at the trajectory every time the robot runs would be executed,
we need to device a trajectory re-router which would help the robot merge into the
elliptical trajectory no matter where the robot is.
This problem is handled in two ways, if the robot is positioned inside the elliptical
trajectory the least distance possible is calculated to the elliptical trajectory. Once
the least possible distance is calculated the robot is rotated to face that point then
the robot moves forward. Once the robot reaches the desired point the robot is ro-
tated to match the orientation of the trajectory then the robot starts the rotations.
If the robot is outside the elliptical trajectory the robot tries to find the tangent to
the elliptical trajectory and then selects the one which is in the direction of rotation
of the robot. Once the tangent is selected the robot will rotate to match the tan-
gent orientation and then the robot will move forward and merge into the elliptical
trajectory. When the controller is started the location of the robot is checked and
then a suitable re-routing is done and the total trajectory is returned for the con-
troller to follow. The trajectory has three states, x, y, θ. Depending on when the
measurement arrives the trajectory is checked on where the robot should be at that
particular time and the three states for that time is returned to the controller.

3.4.2 LQR for Pioneer-D3X robots

For the purpose of controlling the robot we need a robust system which would be
capable of handling the quick fluctuations of sensor measurements and still maintain
the desired smooth reference trajectory without much error. The solution for this
is using a LQR controller, as explained in Section 2.6, with the states estimated
from a Kalman filter. The resulting controller would be robust enough to control
systems disturbed by white additive noise optimally. The block diagram for the
LQR Controller using a Kalman estimator is shown in Figure 3.9

38

3. Methods

K

Plant

xref

x̂

u

w v

y +

-

Kalman Estimator

Figure 3.9: Block diagram showing the various components of the robot controller

The block K represents the controller gain from the LQR controller. The quanti-
ties w and v represents the process and measurement noise respectively, x̂ is the
estimated states from the Kalman Filter, xref is the reference trajectory the robot
is expected to move in. We have already implemented the Kalman estimator in
Section 3.3 and the trajectory.
From the Section 2.1.2 the dynamics of the system have already been defined which
are given by (2.9) - (2.10) the weights for the states Q and the inputs R matrices
were chosen as (these were finally concluded by running test runs)

Q =

300 0 0
0 300 0
0 0 200

 , R =
[
50 0
0 50

]
. (3.30)

Simulations were run using the controller parameters in MobileSim [35] for the
Pioneer-D3X robot model. For the simulations state estimators was not needed
as the simulation returned precise robot states without any noise. The scripting
language used was Python and the results of the simulation are shown in Figures
4.7 - 4.8. For the actual run on the robot the Kalman filter as described in Section
3.3 was used, as the robot sensor measurements, unlike in the simulation, are prone
to noise. The complete LQR controller as seen in Figure 3.9 was implemented and
run on the robot which can be seen in Figure 4.9.

3.4.3 Angle discontinuity
During the simulations and actual run on the robots we do come across the problem
of angle discontinuity. For our experiments we take θ ∈ [0, 2π]. Even the angles
obtained from the Gulliview is mapped from θ ∈ [−π, π] to θ ∈ [0, 2π]. When the
angle switches between 0 to 2π and vice versa there is a big discontinuity. We need
to keep track of such discontinuities as when the robot is following the trajectory
and it is crossing this discontinuity for e.g. the robot’s orientation is close to 2π rad
but the reference trajectory is 0 rad the controller will see this as a big difference
in values even though the angle is really close. Similarly if the robot’s orientation

39

3. Methods

is 0 rad and the reference trajectory is 2π rad we would have a similar issue. So a
check is done to avoid such kind of discontinuities. The check would try to find such
discontinuities and bring back the error difference to the actual one instead of the
perceived discontinuity.

3.5 Implementation of ICP on Pioneer-D3X robots
The implementation of ICP is converted to a ROS node which access the camera of
both robots to get the feature measurement and keeps pinging the UWB beacons
to get the robots’ positions. The ICP node then does it’s estimate by running the
complete set of iterations through the algorithm to compute the various messages
to update the belief of features and vehicles. The ICP estimates are then sent to
the controller which will carry out the control operations of trajectory planing and
controller feedback back to the robots. For the purpose of simulations there is also
the possibility of adding noise to the actual measurements using a mixer so that we
get some simulated measurements which depict a bad reception scenario. The ICP
ROS node has the functionality of activating and deactivating the ICP estimates so
that the effect of switching on/off the ICP can be evaluated real-time. When the
ICP is deactivated the ICP will only evaluate the Kalman estimate from the linear
velocity model with measurement update without taking the feature information.
For the purpose of comparing the performance of the controller with just the Kalman
filtering and the ICP algorithm we need a common test platform hence it would be
better to use the common prediction model for the Kalman filter which is described
in Section 3.1.1.1. Hence we will be using the CV model instead of the robot twist
model in both cases when we have to make the runs to compare the performance
of the two estimator algorithms. The reason for not using the twist model for the
ICP case is because the ICP algorithm uses the constant velocity model for the
prediction and using the estimate of the ICP into the prediction of the twist model
would mean we are doing two predictions which could be avoided by using just
the constant velocity. We in the process of choosing the constant velocity model
will sacrifice the performance of the twist model (the twist model is a better model
which closely represents the true robot model when compared to the CV model).
Our aim being the comparison of the traditional Kalman filtering we do not mind the
reduction in performance as the drop will be the same for both scenarios. The robot
twist model computations are still done as they are used to predict the orientation
the position estimates though will come from the velocity model.
For running the complete ICP setup on the robots and testing the effectiveness
of the controller using the estimates got form the ICP, a noise was added to the
position estimates got from the UWB for one of the robots which we want to move
with σ = 0.1 m2 on both x and y (this robot will represent the vehicle with faulty
GNSS). For the test a robot was kept stationary observing the tags (this robot
represents the vehicle with good GNSS reception). The faulty robot (the robot with
noise added to the UWB position estimates) is made to circle around the tags on
the ceiling where one of the tags is the feature. Two scenarios were tested where
the ICP was either turned on or off while feeding the ICP/Kalman estimates to
the LQR controller. The run using the ICP estimate as feedback to controller can

40

3. Methods

be seen in Figure 4.18 and the run with ICP deactivated with Kalman estimate as
controller feedback is shown in Figure 4.19.
As explained in Section 2.1.4 not all components of the robot are placed exactly
one over the other, which means that the position of each components of the robot
does not coincide. We have the similar problem where the UWB beacon is not
placed where the camera is. We thus need to correct for the camera’s position so
that is coincides with the beacon’s position. This would help us get the feature
measurements with respect to the beacon position as we want it to be instead of
with respect to the camera. Accounting for this transformation hence helps to
get the precise feature measurement, otherwise we will get strange offsets in the
measurement during the robot runs due to the relative position between the camera
and beacon position.

41

3. Methods

42

4
Results

This chapter will show the various results and plots obtained by carrying out the
simulations and test runs proposed in the previous chapters. The inferences made
by observing the results will also be discussed in detail in this chapter.

4.1 CRB results for ranging and position
The equations used to find CRB for the distance estimation in Section 2.5.1 was
written in a Matlab script and simulations for the CRB with increasing distance
was done as seen in Figure 4.1.

0 0.5 1 1.5 2 2.5 3 3.5 4

Distance (m)

0

0.2

0.4

0.6

0.8

1

1.2

2
 (

m
2
)

10
-6 CRB on Distance Ranging

CRB

Figure 4.1: CRB for Ranging, shows the change in variance with respect to the
distance between two pinging beacons

We can see from the plot that the CRB increases gradually as the distance between
the beacons increases. This is expected as the radio signal strength reduces as we
go away from the transmitter hence we can expect this kind of behaviour. For the
purpose of finding the CRB on position estimates we will use the CRB of distance
estimates used in Section 2.5.1. The transformations on the CRB for position is
done using the equations described in Section 2.5.2. As before a Matlab script
was created and simulations for the CRB were run depending on different anchor
beacon configurations as shown later. For the basic test case scenario shown in

43

4. Results

Figure 4.2 we can see how the the covariance curves for the variance in position
changes throughout the test region.

0 0.35 0.7 1.05 1.4 1.75 2.1 2.45 2.8 3.15 3.5

X (m)

0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

3

Y
 (

m
)

300 Plots for 3 Anchor Equilateral Configuration

300 Cramer Rao Bound Curve

Figure 4.2: Plot showing the CRB curves for positioning with the beacons in the
default setup with three anchor beacons

It can be seen that the region in the centre of the equilateral triangle has a more
rounded curve which is attributed to this region being equidistant from the anchor
beacons. Moving closer to one of the anchor beacons shows skewness in one of the
dimensions. The influence of increasing the anchor beacon by one can be seen in
Figure 4.3. Here we can see how the covariance curves in the central region becomes
more round and with smaller covariances when compared to the three anchor beacon
case.

0 0.35 0.7 1.05 1.4 1.75 2.1 2.45 2.8 3.15 3.5

X (m)

0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

3

Y
 (

m
)

300 Plots for 4 Anchor Configuration

300 Cramer Rao Bound Curve

Figure 4.3: Plot showing the CRB curves for positioning with four anchor beacons

44

4. Results

The beacon is then rearranged to a different setup as shown in Figure 4.4 here we
can see how changing the configuration gives us really small covariances close to the
centre of the triangle due to larger concentration of anchor beacons in this region.

0 0.35 0.7 1.05 1.4 1.75 2.1 2.45 2.8 3.15 3.5

X (m)

0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

3

Y
 (

m
)

300 Plots for 4 Anchor Equilateral Configuration

300 Cramer Rao Bound Curve

Figure 4.4: Plot showing the CRB curves for positioning with four anchors in an
equilateral triangle setup

The anchor beacon count is then increased to five and arranged as shown in Figure
4.5 here we see more decrease in the covariance curves indicating better measure-
ment estimates. From all the configuration we can see how adding more anchor
beacons contribute to lesser CRB showing that the measurements would be more
accurate with the introduction of more beacons. Also depending on the position
where the measurement was taken the cross-covariance between the x and y posi-
tion would change. Having asymmetric configurations also had an influence where
the covariances were greater where the beacons were lesser in number. As our aim
is to improve the position estimates using the ICP we will not try to improve it us-
ing more beacons. We will thus stick to the minimum anchor beacon setup needed
which is three and the configuration as shown in the Figure 4.2.

45

4. Results

0 0.35 0.7 1.05 1.4 1.75 2.1 2.45 2.8 3.15 3.5

X (m)

0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

3
Y

 (
m

)

300 Plots for 5 Anchor Configuration

300 Cramer Rao Bound Curve

Figure 4.5: Plot showing the CRB curves for positioning with five anchor beacons

Tests were carried out by finding the position estimates using the trilateration
method using the distance of the point from three anchor points. The tests were
carried out from four points using the afore mentioned configuration. 1000 samples
were taken from each position and the covariance matrix was calculated using these
samples. Three of such runs were done and the average was taken to finally decide
the covariance matrix for a given position. The variance matrix obtained at the
four points and the CRB for the corresponding positions are plotted in the Figure
4.6. For the purpose of illustration the 600σ of CRB is plotted with the 6σ of the
measurements obtained.
It can be seen from Figure 4.6 that the CRB is close to 102 times smaller than the
actual covariances obtained form the UWB trilateration algorithm. This is expected
as the CRB represents the least possible variance that can be achieved by an esti-
mator. Also to do this calculation various assumptions of parameters were made e.g
the medium is vacuum and so on these assumptions are not completely valid. The
CRB calculated is for an almost ideal case and the test setup is not so.
What should be noted from the plots are that the covariances follow the general
shape of the CRB. This is a good indication that the position estimates from the
experiment, even though are very large compared to the CRB are still reliable.

46

4. Results

0 0.35 0.7 1.05 1.4 1.75 2.1 2.45 2.8 3.15 3.5

X (m)

0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

3
Y

 (
m

)

Comparison of CRB with Actual Measurement

600 Cramer Rao Bound Curve

6 Experiment Curve

Figure 4.6: Comparison of CRB with actual measurement covariance

4.2 Plots of LQR
This Section will show the results, plots and the discussion of these from carrying out
the LQR simulations. The simulations will cover the controller behaviour without
any ICP implementation. The results from the software simulator and the actual
robot run will be discused.

4.2.1 Simulation of LQR using MobileSim
The functionality of the trajectory planning and LQR controller is shown in Figures
4.7 - 4.8 the simulations were carried out on a ROS simulation software called
MobileSim. As mentioned earlier in Section 3.4.2 we did not use any state estimators
as the simulation returned perfect measurement values of states for the robot. In
the first case the robot is placed at the origin, the desired trajectory to follow is
a circular trajectory with radius 1 m with centre at point (1.6, 1.1). We can infer
from the plot that the trajectory planner checks the initial position of the robot and
tries to decide if the robot is inside the circle or not, as the robot is outside the
circle it tries to find the tangent to the circle and creates the path. The trajectory is
generated assuming the robot can move with linear velocity of 0.1 m/s and angular
velocity of 0.1 rad/s.
For the second case the circular trajectory has the same radius of 1 m with the centre
at the origin the robot is also placed at the origin. When the trajectory planner is
called it realises that the robot is inside the trajectory. It finds the closest point on
the circular trajectory and then creates the θ reference trajectory to face that point
and then creates the position reference to move to that point.
We can infer from the plots that the simulations gave accurate reference tracking
on all the reference states of x, y and θ. The Trajectory planner seems to do its
intended purpose in both cases where the robot starts from the middle and when the

47

4. Results

robot starts from the outside of the circular trajectory. The simulations do perform
as expected. Now with the controller working as intended in the simulations we can
proceed to implement it on the actual robot.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
X (m)

0.0

0.5

1.0

1.5

2.0

2.5

Y
 (
m

)

Trajectory

Refrence Trajectory
Trajectory

0 10 20 30 40 50 60
Time (secs)

0

1

2

3

4

5

6

7

Θ
(r
a
d
)

Θ Reference

Reference Θ
Θ

Figure 4.7: Trajectory tracking simulation with start from outside circular trajec-
tory

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
X (m)

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Y
 (
m

)

Trajectory

Refrence Trajectory
Trajectory

0 20 40 60 80 100
Time (secs)

0

1

2

3

4

5

6

7

Θ
(r
a
d
)

Θ Reference

Reference Θ
Θ

Figure 4.8: Trajectory tracking simulation with start from inside circular trajectory

4.2.2 Trajectory tracking on Pioneer-D3X robots
The first few tests for the robot using the controller from the simulations were not
successful as unlike in the simulations the measurements in the actual scenario kept
fluctuating due to noise levels and irregular position ping timings. The uncertain-
ties in the measurement caused the robot to move in sharp steps with very poor
trajectory tracking. The need for filtering is quite obvious form the initial test runs.
The Kalman filter with the robot twist model was implemented to filter the sensor
measurements and get better estimates on the position and the orientation. Multi-
ple runs were executed to tune the parameters of the LQR. Finally a good enough

48

4. Results

weights were found as

Q =

375 0 0
0 375 0
0 0 180

 , R =
[
50 0
0 50

]
. (4.1)

For the final tests the previous problems faced during the run of the robot using the
LQR controller has been alleviated with the introduction of the Kalman filtering
and sensor fusion, the robot now follows the trajectory smoothly without sudden
jerks, the trajectory followed is a bit offseted from the actual trajectory this is partly
because of lower weights on the controller than the previous case. The gain could
be further increased for compensating for the offset but due to the irregular posi-
tion estimate got due to delayed pings between the beacons, the performance is not
stable over multiple runs. Hence with keeping the stability of performance of the
controller in mind over multiple runs the present weights are satisfactory. Other
than the slight offset form the actual trajectory we can observe appropriate tracking
on the position and the orientation as can be seen from Figure 4.9

49

4. Results

Figure 4.9: Trajectory tracking on actual robot with Kalman filtering and sensor
fusion

4.3 Performance evaluation of ICP using synthetic
measurements

In this subsection the results generated during simulations are presented. Firstly
the error graphs generated from multiple runs of the algorithms on a randomly
generated trajectory are presented. Later, the trajectory is fixed to examine the
behaviour of the filter in 2-D plane.

4.3.1 Randomly generated trajectory
To verify the performance of the algorithm error plots are generated during the
simulations. The algorithm is run multiple times, each time on a newly generated
random trajectory and measurement generated around this trajectory. The errors
of vehicle position are found by subtracting the estimated position vectors with the
true trajectory. Further on the errors are squared and the x and y terms are summed
together to represent the overall accuracy. The mean over all runs is then taken and
the square root of it is presented in a graph. It is important to mention that the
covariance matrices are matched with the actual covariance values of the trajectory
and the measurement noises.
Firstly the most interesting case where first vehicle’s position measurement is good
(σ1 = 1 m), while the second ones is poor (σ2 = 4 m) is examined. The noise
intensity of the V2F measurement is set to a value of σV2F = 1 m. This case
represents the scenario where one vehicle enters e.g. an urban canyon and the
GNSS measurements are affected by shadowing and multipath propagation. It is
where the help from other vehicles which not yet suffer from these problems is most
valuable. The case with two vehicles and one to four features is examined.

50

4. Results

0 5 10 15 20
Time

0.5

1.0

1.5

2.0

2.5

3.0

3.5

E
rr

o
r
[m

]

The mean errors for vehicle 1

Error for Kalman filter

Error for ICP (1 feature)

Error for ICP (2 features)

Error for ICP (3 features)

Error for ICP (4 features)

0 5 10 15 20
Time

0

1

2

3

4

5

6

7

E
rr

o
r
[m

]

The mean errors for vehicle 2

Error for Kalman filter

Error for ICP (1 feature)

Error for ICP (2 features)

Error for ICP (3 features)

Error for ICP (4 features)

Figure 4.10: The plot of the estimation error acquired from 100 runs, plotted over
time (s), σ1 = 1 m, σ2 = 4 m, σV2F = 1 m

In this case it is obvious that the ICP improves the position estimates of the vehicles.
The Kalman filter relying on the GNSS measurements and being decoupled for
the two vehicles result in an error of approximately 1.3 m for the vehicle 1 and
approximately 4 m for vehicle 2. The error of the ICP converges instead to 1 m for
vehicle 1 and somewhat above 1 m for vehicle 2 for all features. This behaviour is
expected. Since the V2F measurements are good the positioning of the vehicles with
respect to each other will be accurate. This leads to the belief errors being close
to each other for both vehicles. It is also logical that the vehicle with bad GNSS
measurement will gain the most from the ICP algorithm since its belief is much
more uncertain and the other vehicle will be able to affect its belief stronger. Even
the first vehicle will benefit from the algorithm since there is some poor, but still
helpful information being passed from the vehicle 2. Since the feature measurement
are accurate the increased number of features will not lead to much gain in the
certainty of the estimator.

Following the same case but increasing the V2F measurement covariance to σV2F =
5 m Figure 4.11 is generated.

51

4. Results

0 5 10 15 20
Time

1.0

1.5

2.0

2.5

3.0

E
rr
o
r
[m

]

The mean errors for vehicle 1

Error for Kalman filter

Error for ICP (1 feature)

Error for ICP (2 features)

Error for ICP (3 features)

Error for ICP (4 features)

0 5 10 15 20
Time

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

E
rr
o
r
[m

]

The mean errors for vehicle 2

Error for Kalman filter

Error for ICP (1 feature)

Error for ICP (2 features)

Error for ICP (3 features)

Error for ICP (4 features)

Figure 4.11: The plot of the estimation error acquired from 100 runs, plotted over
time (s), σ1 = 1 m, σ2 = 4 m, σV2F = 5 m

As it can be seen in Figure 4.11 the ICP algorithm will not improve the position
estimation of vehicle 1 noticeably. This is because of the uncertainty of the belief of
the second vehicle combined with the uncertainty of the feature measurement will
make the information passed have a limited accuracy and will therefore be of lesser
value for the algorithm. This will result in ICP output being very alike the pure
Kalman filtered output. However the error for the second vehicle can be decreased
significantly. Here, unlike the previous case, the effect of bigger feature count can be
seen clearly. Since only a feeble conclusion can be done by the algorithm about the
other vehicles position using only one feature, the increase in the number of feature
measurements will be of great help.

Another interesting case can be done by examining the effect of the ICP on two
vehicles both having a poor position measurement. This can be seen in both Figure
4.12 and 4.13 presenting the estimation error of ICP with V2F measurements of low
respective high variance.

52

4. Results

0 5 10 15 20
Time

1

2

3

4

5

6

7

E
rr
o
r
[m

]

The mean errors for vehicle 1

Error for Kalman filter

Error for ICP (1 feature)

Error for ICP (2 features)

Error for ICP (3 features)

Error for ICP (4 features)

0 5 10 15 20
Time

1

2

3

4

5

6

7

E
rr
o
r
[m

]

The mean errors for vehicle 2

Error for Kalman filter

Error for ICP (1 feature)

Error for ICP (2 features)

Error for ICP (3 features)

Error for ICP (4 features)

Figure 4.12: The plot of the estimation error acquired from 100 runs, plotted over
time (s), σ1 = 4 m, σ2 = 4 m, σV2F = 1 m

0 5 10 15 20
Time

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

E
rr
o
r
[m

]

The mean errors for vehicle 1

Error for Kalman filter

Error for ICP (1 feature)

Error for ICP (2 features)

Error for ICP (3 features)

Error for ICP (4 features)

0 5 10 15 20
Time

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

E
rr
o
r
[m

]

The mean errors for vehicle 2

Error for Kalman filter

Error for ICP (1 feature)

Error for ICP (2 features)

Error for ICP (3 features)

Error for ICP (4 features)

Figure 4.13: The plot of the estimation error acquired from 100 runs, plotted over
time (s), σ1 = 4 m, σ2 = 4 m, σV2F = 5 m

Figure 4.13 clearly shows that even for two vehicles with bad measurements (σ1 =
4 m) and bad feature measurements (σV2F = 5 m) the ICP algorithm increases the
accuracy significantly. The error for the Kalman filter converges to a value of 4 m

53

4. Results

while the ICP with four features converges to 2.5 m. It can also be noticed that
less feature measurements in the ICP results in a smaller improvement of accuracy.
This because of the low confidence of the V2F measurements and thereby more
information needed to improve the estimates.
Not exactly the same behaviour is presented in Figure 4.12. ICP, as expected, in-
creases the accuracy but the feature count does not affect it as it does in Figure 4.13.
First of all, since the accuracy of the feature measurement is very good compared to
the vehicles, only one feature measurement will provide a confident correction of the
estimate. Further increase in the feature count may actually result in overconfidence
resulting in feature estimates converging to a wrong value and lead to an offset in
the vehicles position estimate.

4.3.2 Fixed trajectory

Next step of verification is applying the algorithm on measurement generated around
a fixed trajectory of a certain shape. The measurement noise is now also scaled more
appropriately to match the setup with the UWB beacons and Gulliview described
earlier. The good measurement will therefore be position measurement with stan-
dard deviation of 1 cm and the bad one with 10 cm. The number of features is set
to one.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Position in x [m]

−1.0

−0.5

0.0

0.5

1.0

P
o
si
ti
o
n
 i
n
 y

 [
m

]

The simulated values fo vehicle 1

Actual t ajecto y

GNSS measu ement

Position estimate Kalman

Initial estimate

Position estimate ICP

Figure 4.14: The ICP and Kalman estimates and the actual trajectory of vehicle
1, σ1 = 0.1 m, σ2 = 0.01 m, σV2F = 0.01 m

54

4. Results

−1.2 −1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2
Position in x [m]

−0.5

0.0

0.5

1.0

P
o
si
ti
o
n
 i
n
 y

 [
m

]

The simulated values fo vehicle 2

Actual t ajecto y

GNSS measu ement

Initial estimate

Position estimate Kalman

Position estimate ICP

Figure 4.15: The ICP and Kalman estimates and the actual trajectory of vehicle
2, σ1 = 0.1 m, σ2 = 0.01 m, σV2F = 0.01 m

The above Figures show clearly the improvement in the estimations of the vehicle
1 using ICP (seen also in Figure 4.10). The red line representing the Kalman esti-
mate, despite tuning, has a visible offset from the real trajectory during the whole
simulation. For the vehicle 1 the trajectory’s ICP estimate, as before, is very close
to the Kalman estimate.

The earlier results shown in Figure 4.12 are also be seen while examining the tra-
jectories, as in Figures 4.16 and 4.17. That is even when both vehicles have poor
position readings, a good feature measurement can improve their positioning signif-
icantly. It is obvious that the ICP estimates represents the true trajectory much
better then the Kalman filter itself. This affect is not as big as in previous case.
This is because of none of the vehicles is really certain about its position. It can also
be seen that it takes longer for the vehicle 1 to converge to the actual trajectory.
This probably again because of insufficient information passed from vehicle 2. Also
a bigger error can be noticed around the curves of the trajectory. This is because
the initial beliefs in the ICP algorithm (since the CV model) will take time to react
when some acceleration is present. That will lead to communicating faulty beliefs
to the other vehicle and in such a way accumulating the error.

55

4. Results

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Position in x [m]

−0.5

0.0

0.5

1.0

P
o
si
ti
o
n
 i
n
 y

 [
m

]

The simulated values fo vehicle 1

Actual t ajecto y

GNSS measu ement

Position estimate Kalman

Initial estimate

Position estimate ICP

Figure 4.16: The ICP and Kalman estimates and the actual trajectory of vehicle
1, σ1 = 0.1 m, σ2 = 0.1 m, σV2F = 0.01 m

−1.2 −1.0 −0.8 −0.6 −0.4 −0.2 0.0
Position in x [m]

−1.0

−0.5

0.0

0.5

1.0

P
o
si
ti
o
n
 i
n
 y

 [
m

]

The simulated values fo vehicle 2

Actual t ajecto y

GNSS measu ement

Initial estimate

Position estimate Kalman

Position estimate ICP

Figure 4.17: The ICP and Kalman estimates and the actual trajectory of vehicle
2, σ1 = 0.1 m, σ2 = 0.1 m, σV2F = 0.01 m

56

4. Results

4.4 Evaluation of ICP on Pioneer-D3X robots

For the implementation of ICP on the robot, as discussed before in Section 3.5,
we would use the constant velocity model instead of the robot twist model for the
Kalman filter. As the model is different form the previously implemented controller
we need to re-tune the controller parameters as the runs using the previous controller
weights was not functional. The robot twist model is a better representation of the
robot than the CV model hence this is to be expected. During the run using the CV
model it was observed that the robot was overextending the trajectory every time
causing the robot to vigorously move forward and backwards. Extensive runs were
done using the CV model until a good enough weights were found as

Q =

30 0 0
0 30 0
0 0 100

 , R =
[
50 0
0 50

]
. (4.2)

Whereas the covariances on the process noise for the CV model for the robots were
kept as:

P =
[
10−4 0

0 10−4

]
. (4.3)

We intend to test the working of ICP with the Kalman filter so the two scenarios
were tested out. The test scenario were setup as explained in Section 3.5, Figure
4.18 shows the ICP estimates got form the ICP node fed into the controller. As can
be seen in the plots the simulated measurements for position is spread all around
the reference trajectory (the noise added to both the x and y estimates of the UWB
measurement is σ2 = 0.1 m2). The noisy measurements when fed through the ICP
gives really good estimates of the robot position and the controller as expected,
performs really well. We can see that the robot follow the trajectory precisely with
very less error.

57

4. Results

Figure 4.18: ICP measurement feedback to controller with noise on UWB mea-
surements, σ2

x = 0.1 m2, σ2
y = 0.1 m2. The top figure shows the reference tracking

of the position while the bottom shows the tracking of the orientation

For the second scenario the robot controller is fed with the Kalman estimates with
the ICP deactivated. It can be inferred from Figure 4.19 that the estimates is too far
away from the actual position and keeps jumping a lot around the actual position
as the robot moves this causes the robot to move in a very choppy manner. The
robot sometimes has to accelerate and sometimes decelerate to reach the position
estimates.

58

4. Results

Kalman

Figure 4.19: Kalman Estimate feedback to controller with noise on UWB mea-
surements, σ2

x = 0.1 m2, σ2
y = 0.1 m2. The top figure shows the reference tracking

of the position while the bottom shows the tracking of the orientation

We can see from the scenarios that the ICP gives really good estimates of the
position which when fed to the controller gives really good controller behaviour.
The importance of the ICP hence can be seen if it were to be ported to a real scale
autonomous car application. In Figure 4.20 the error in distance generated while
feeding back the ICP estimates and the Kalman estimates in the above test scenarios

59

4. Results

can be seen. We notice the error in the controller tracking with ICP estimates as
feedback is less than half of what it is while using Kalman estimates as feedback. In
our test demo we have used only two robots and one feature. Using multiple vehicles
and features will improve the algorithms efficiency and reliability by a substantial
amount.

0 10 20 30 40 50 60
Time (secs)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

D
is

ta
n
ce

 (
m

)

Mean distance error= 0. 25

Distance error Robot0

Distance error

Figure 4.20: Error in distance from actual trajectory after control by using A)
ICP estimate feedback (Top) and B) Kalman estimate feedback (Bottom), σ2

x = 0.1
m2, σ2

y = 0.1 m2

60

5
Conclusion

According to the results presented in the previous chapter some conclusions can be
drawn. These are presented hereafter. Also some possible improvements of the ICP
and its evaluation are proposed.

5.1 Evaluation

Conclusion can be done that using Implicit Cooperative Positioning algorithm can
improve the accuracy of positioning significantly. Simulations show that coopera-
tion made by agreeing on feature position by multiple vehicles increase the amount
of information available for a vehicle about its own state. Compared to a Kalman
filter, if tuned properly, ICP should always improve the positioning, independent of
the noise levels present in the different measurement. The experiments on robots
also show clear improvement compared to only the Kalman filter.

The relative gain of accuracy using ICP is hard to determine since it is dependent
on the noise levels of the measurements and the number of vehicles and features
present in the system. However, according to the simulations, for two vehicles with
the same magnitude of noise on GNSS measurements, the error of position estimates
can be reduced approximately by 50 % if the V2F measurement is very accurate.
Also, if ICP is applied for multiple vehicles, where one of them has a very small error
on GNSS measurement and the V2F measurements are very accurate, the estimates
of the vehicles with bad GNSS positioning will converge to the estimates of the first
vehicle. This can lead to a great improvement of positioning accuracy, and this is
probably the case where ICP is most beneficial to use.

Only negative aspect was noticed during simulations where many features with a
low noise intensity on V2F measurements were used for running the simulation. In
some cases the feature beliefs converged to and stabilised around wrong values. This
probably due to overconfidence on feature beliefs. The affect of the overconfidence
was reduced by applying a process noise on feature belief between time iterations,
letting the algorithm assume feature can change its position and hence letting the
previous value of the state have less effect on the new feature belief.

61

5. Conclusion

5.2 Future work and improvements
The system that has been implemented is not completely decentralised, and there-
fore is not completely representing the system the algorithm is meant for. To fully
test the system of truly independent vehicles running ICP, the system should be
decentralised. The algorithm should then be run on separate machines connected
by V2V links and running consensus over the feature beliefs using the information
available from other cars. This problem has been left out from this thesis outline
due to the time limitations but should be considered in future work.

There are still many possible improvements that can be done to make the ICP ap-
plied in a real case scenario to work better. One of these can be to implement
and use a more thorough motion model. Incorporating the input vector into the
prediction step in the algorithm would increase the accuracy of the prediction step,
improving the estimation. Also the choice of states to the state vector has an effect
on the estimation. In systems like differential dive robots or modern cars the input
to the system might strongly affect the knowledge of the future behaviour of the
system. Also in many modern applications, very accurate sensors as IMUs (Inertial
Measurement Units) are incorporated. These can give readings accurate enough
to assume being input, or, if not, modifying the state vector can make it possible
to use these measurements for updating the belief of the state, giving additional
information that could be used directly or in next iteration’s prediction. Here for
example, it is easy to imagine an accurate orientation measurement would increase
the certainty of the vehicle moving in a specific direction.

A possibility that has not been considered in this project is the recognition and mea-
suring the relative position of some moving features. This could make it possible to
increase feature count and further improve the positioning. This step would require
modelling of the feature, determining it properties such as possible velocity ranges
etc. Given this model a prediction step could be implemented, helping to determine
the feature state given the previous estimated state. This of course could affect the
positioning in a negative way, reducing the amount of useful information for esti-
mation of the vehicle position itself. Also, a badly tuned prediction step could lead
to confidence mismatch and degeneration of the localisation performance. Since the
diversity of objects possible to recognise as features, it is easy to believe the tuning
of the feature behaviour would be a complicated task. Using moving features in the
decentralised algorithm would result in timing issues to be solved too. However,
simulation showed that in some cases when over-confidence might occur, adding
some uncertainty to the feature belief may improve the outcome of the filter. In
other words, assuming a feature is moving when it actually is still might sometimes
have positive influence.

Further on, we believe combining ICP with other existing positioning methods as
for example the CoSLAT algorithm [11, 12] might further improve the function of
the estimator. In Bayesian filtering many different sources of information may be
combined to form an accurate estimate of the state.

62

Bibliography

[1] S. E. Shladover and S.-K. Tan, “Analysis of vehicle positioning accuracy re-
quirements for communication-based cooperative collision waring,” Journal of
Intelligent Transportation System, vol. 10, no. 3, pp. 131–140, 2006.

[2] E. Kaplan and C. Hegarty, Understanding GPS: principles and applications.
Artech house, 2006, ch. 1.

[3] “PlusON 330 Datasheet,” Accessed: 2017-01-18. [Online].
Available: http://www.timedomain.com/wp/wp-content/uploads/2015/11/
320-0330A-P330-Data-Sheet-PRELIMINARY.pdf

[4] E. Kaplan and C. Hegarty, Understanding GPS: principles and applications.
Artech house, 2006, ch. 6, 7.

[5] N. Patwari, J. N. Ash, S. Kyperountas, A. O. Hero, R. L. Moses, and N. S. Cor-
real, “Locating the nodes: cooperative localization in wireless sensor networks,”
IEEE Signal processing magazine, vol. 22, no. 4, pp. 54–69, 2005.

[6] Y. Wang, G. Leus, and A. J. van der Veen, “Cramer-rao bound for range
estimation,” in 2009 IEEE International Conference on Acoustics, Speech and
Signal Processing, April 2009, pp. 3301–3304.

[7] A. El-Mowafy and M. Al-Musawa, “Machine automation using rtk gps posi-
tioning,” in 2009 6th International Symposium on Mechatronics and its Appli-
cations, March 2009, pp. 1–6.

[8] H. Wymeersch, J. Lien, and M. Z. Win, “Cooperative localization in wireless
networks,” Proceedings of the IEEE, vol. 97, no. 2, pp. 427–450, 2009.

[9] A. T. Ihler, J. W. Fisher, R. L. Moses, and A. S. Willsky, “Nonparametric belief
propagation for self-localization of sensor networks,” IEEE Journal on Selected
Areas in Communications, vol. 23, no. 4, pp. 809–819, April 2005.

[10] J. Liu, M. Chu, and J. E. Reich, “Multitarget tracking in distributed sensor
networks,” IEEE Signal Processing Magazine, vol. 24, no. 3, pp. 36–46, 2007.

[11] F. Meyer, E. Riegler, O. Hlinka, and F. Hlawatsch, “Simultaneous distributed
sensor self-localization and target tracking using belief propagation and like-
lihood consensus,” in Signals, Systems and Computers (ASILOMAR), 2012
Conference Record of the Forty Sixth Asilomar Conference on. IEEE, 2012,
pp. 1212–1216.

[12] F. Meyer, F. Hlawatsch, and H. Wymeersch, “Cooperative simultaneous local-
ization and tracking (coslat) with reduced complexity and communication,” in
2013 IEEE International Conference on Acoustics, Speech and Signal Process-
ing, May 2013, pp. 4484–4488.

[13] G. Soatti, N. Garcia, H. Wymeersch, M. Nicoli, B. Denis, and R. Raulefs,
“Implicit cooperative positioning.”

63

http://www.timedomain.com/wp/wp-content/uploads/2015/11/320-0330A-P330-Data-Sheet-PRELIMINARY.pdf
http://www.timedomain.com/wp/wp-content/uploads/2015/11/320-0330A-P330-Data-Sheet-PRELIMINARY.pdf

Bibliography

[14] Z. H. Mir and F. Filali, “Lte and ieee 802.11 p for vehicular networking: a
performance evaluation,” EURASIP Journal on Wireless Communications and
Networking, vol. 2014, no. 1, p. 89, 2014.

[15] A. Festag, “Standards for vehicular communication—from ieee 802.11 p to 5g,”
e & i Elektrotechnik und Informationstechnik, vol. 132, no. 7, pp. 409–416, 2015.

[16] F. Mattern and C. Floerkemeier, “From the internet of computers to the in-
ternet of things,” in From active data management to event-based systems and
more. Springer, 2010, pp. 242–259.

[17] Mobile Robots, “Pioneer Robot Datasheet,” Accessed: 2017-01-18.
[Online]. Available: http://www.mobilerobots.com/Libraries/Downloads/
Pioneer3DX-P3DX-RevA.sflb.ashx

[18] Edwin Olson, “Gulliview,” Accessed: 2017-03-10. [Online]. Available:
https://bitbucket.org/thpe/visionlocalization

[19] S. Särkkä, Bayesian filtering and smoothing. Cambridge University Press,
2013, vol. 3.

[20] O. BERONIUS, E. LUNDÉN, M. MALMQUIST, and A. ROHLIN, “Coordi-
nation of robots via a wireless network,” 2016.

[21] H. Pottmann and J. Wallner, Computational line geometry. Springer Science
& Business Media, 2009.

[22] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on par-
ticle filters for online nonlinear/non-gaussian bayesian tracking,” IEEE Trans-
actions on Signal Processing, vol. 50, no. 2, pp. 174–188, Feb 2002.

[23] H. Wymeersch, Iterative Receiver Design. Cambridge University Press, 2007.
[24] K. J. Aström and R. M. Murray, Feedback systems: an introduction for scien-

tists and engineers. Princeton university press, 2010.
[25] S. M. Kay, Fundamentals of Statistical Signal Processing, Volume I: Estimation

Theory (v. 1). Prentice Hall, 1993.
[26] R. L. Freeman, Radio system design for telecommunication. John Wiley &

Sons, 2006, vol. 98.
[27] S. Gezici, Z. Tian, G. B. Giannakis, H. Kobayashi, A. F. Molisch, H. V. Poor,

and Z. Sahinoglu, “Localization via ultra-wideband radios: a look at positioning
aspects for future sensor networks,” IEEE Signal Processing Magazine, vol. 22,
no. 4, pp. 70–84, July 2005.

[28] Y. Shen and M. Z. Win, “Fundamental limits of wideband localization—part
i: A general framework,” IEEE Transactions on Information Theory, vol. 56,
no. 10, pp. 4956–4980, 2010.

[29] G. C. Chow, Analysis and Control of Dynamic Economic Systems. Krieger
Pub Co, 1986.

[30] “ROS,” Accessed: 2017-02-16. [Online]. Available: http://www.ros.org/
[31] Logitech, “Logitech Webcam C930e,” Accessed: 2017-01-18. [Online]. Available:

http://www.logitech.com/assets/64665/c930edatasheet.ENG.pdf
[32] “AprilTags,” Accessed: 2017-04-20. [Online]. Available: https://april.eecs.

umich.edu/
[33] “ROSARIA,” Accessed: 2017-02-16. [Online]. Available: http://wiki.ros.org/

ROSARIA

64

http://www.mobilerobots.com/Libraries/Downloads/Pioneer3DX-P3DX-RevA.sflb.ashx
http://www.mobilerobots.com/Libraries/Downloads/Pioneer3DX-P3DX-RevA.sflb.ashx
https://bitbucket.org/thpe/visionlocalization
http://www.ros.org/
http://www.logitech.com/assets/64665/c930edatasheet.ENG.pdf
https://april.eecs.umich.edu/
https://april.eecs.umich.edu/
http://wiki.ros.org/ROSARIA
http://wiki.ros.org/ROSARIA

Bibliography

[34] Dirk Thomas, “rqt_graph,” Accessed: 2017-05-15. [Online]. Available:
http://wiki.ros.org/rqt_graph

[35] Omron, “MobileSim,” Accessed: 2017-03-18. [Online]. Available: http:
//www.mobilerobots.com/Software/MobileSim.aspx

65

http://wiki.ros.org/rqt_graph
http://www.mobilerobots.com/Software/MobileSim.aspx
http://www.mobilerobots.com/Software/MobileSim.aspx

	List of Figures
	List of Tables
	Introduction
	Background
	Related work
	Purpose
	Scope and limitations

	Theory
	System model
	Motion model
	Robot twist model
	Measurement models
	Homogeneous transformation matrix

	Trilateration
	Bayesian estimation
	Finding the posterior
	Some simple message passing rules

	Extended Kalman filter
	Cramer-Rao bound
	Cramer-Rao bound for ranging
	Cramer-Rao bound for positioning

	Linear quadratic regulator
	Robot Operating System

	Methods
	ICP
	Belief propagation in the factor graph
	Prediction message
	GNSS measurement update
	Feature measurement update

	Message passing algorithm

	Hardware and ROS setup
	Real scenario - experimental setup analogy
	ROS setup
	Reused ROS nodes
	ROSARIA
	Gulliview
	Robot position service

	Developed ROS nodes
	ICP node
	Robot controller node

	ROS node integration

	State estimator using Kalman filter
	Controller for Pioneer-D3X robots
	Trajectory planning
	LQR for Pioneer-D3X robots
	Angle discontinuity

	Implementation of ICP on Pioneer-D3X robots

	Results
	CRB results for ranging and position
	Plots of LQR
	Simulation of LQR using MobileSim
	Trajectory tracking on Pioneer-D3X robots

	Performance evaluation of ICP using synthetic measurements
	Randomly generated trajectory
	Fixed trajectory

	Evaluation of ICP on Pioneer-D3X robots

	Conclusion
	Evaluation
	Future work and improvements

	Bibliography

