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Overflying measurements using microphone arrays
An investigation of algorithms for sound source localization of complex moving ob-
jects
ENES FEHRATOVIC
Department of Applied Acoustics
Chalmers University of Technology

Abstract
It is common to find airports in the vicinity of greater cities where aircraft causes
health inflicting noise pollution. Deutsches Zentrum für Luft und Raumfahrt (Ger-
man Aerospace Center) have been a contributor in reducing sound emissions from
aircraft by proposing design changes backed by their research and experiments. To
be able to evaluate various design attempts in a real life scenario, sound sources
must be localized and quantified in an overflying measurement. At their private
airfield they conduct experiments using a microphone phased array. With post pro-
cessing techniques and the deconvolution algorithm, DAMAS, they have managed
to localize and quantify sound sources of aircraft.

DAMAS has been used by the German Aerospace Center since 2006. In recent
time they have been eager to investigate more novel algorithms for sound source
localization, and one in particular, called CLEANT. The goal of this thesis is to in-
vestigate how CLEANT works and implement it in python code in order to evaluate
the results. This would be among the first attempts to use CLEANT on overflying
measurements at this scale. Both CLEANT and DAMAS requires beamforming to
be performed in order to enable further deconvolution of the results. The implemen-
tation of CLEANT was successful and interesting results were obtained. The main
advantage of CLEANT is that it operates exclusively in the time domain whereas
DAMAS is a frequency domain algorithm. This means that CLEANT can take
the movement of the object into account whereas frequency domain algorithms are
better suited for stationary sources. Although CLEANT can cause a masking effect
leading to undetected sources who are very close to each other, CLEANT can op-
erate in lower frequencies than DAMAS. It also scales better for greater amount of
focus points in the grid, meaning that for higher resolution or larger area of analysis,
CLEANT is faster.

Keywords: sound source localization, aircraft, beamforming, deconvolution, micro-
phone array
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1
Introduction

This section will introduce the reader to this study and why it was performed. The
reader will understand the problem formulation, why it is important to be able to
localize and quantify sound sources of overflying aircraft and the necessary tools to
acquire such information.

1.1 Background
It is fairly common to find an airport in the vicinity of a greater city. Living in a
urban area, an airport is usually no more than 30 minutes away. This means that
the traffic to and from the airport often passes over nearby towns, suburb areas or
parts of the inner city. With their jet engines and high speed the aircraft causes a
lot of noise, noise that is polluting the environment wherever it passes. This can
cause great disturbance to a lot of people, especially during uncomfortable hours.
Long term impacts of such noise can be quite devastating and lead to anxiety, de-
pression and cardiovascular diseases. In a big study performed by WHO, researchers
could link all the above mentioned conditions to noise pollution which also raised
the awareness of the drastic health impacts caused by noisy environments [12]. In
order to maintain the convenience of having airports close to cities and building
sustainable urban environments great effort is made in order to keep the noise levels
down. Common people who are affected by the noise pollution are not the only ben-
eficiary group. Health benefits, achieved through lower sound emitted by aircraft,
is the main reason why these studies are performed. But aircraft manufacturers are
paying significant noise taxes which is based on the noise levels when landing and
these taxes can vary at different airports [9]. In order to be able to target the main
noise contributors on an aircraft the noise must first be located with high precision
and correct levels. Thus attempts, in order to lower the emitted noise levels, can be
properly evaluated. German Aerospace Center (DLR) have made contributions in
this field by performing overflying measurements. Through complex post processing
methods such as beamforming and a deconvolution algorithm called DAMAS they
have successfully been able to localize and quantify sounds sources of aircraft. The
DAMAS algorithm was developed by NASA in 2004 [3] and was further studied and
implemented by DLR in the following years [7]. In the years passed since, extensive
research has been made in the field of sound source localization and further devel-
opment on already existing algorithms. For that reason DLR wants to investigate
if there are new approaches that could surpass or complement the DAMAS algo-
rithm. One of the most promising algorithm which is on the agenda of DLR is the
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1. Introduction

CLEANT algorithm. It is based on the traditional CLEAN algorithm but exclu-
sively performed in time domain, hence the added letter "T" for time domain. A
time domain algorithm could possibly reduce the short comings of algorithms solely
performed in the frequency domain, which are generally not suitable for moving
sound sources.

1.2 Setup

Measurements are performed at DLR:s private airfield Magdeburg-Cochstedt, 190
km from Berlin city. DLR has their own research aircraft called ATRA which is
initially an Airbus A320-232 with V2500 long cowl engines and can be seen in figure
1.1.

Figure 1.1: The research aircraft of DLR flying above the microphone array

On the ground there is a microphone phased array with a total of 238 electret micro-
phones. The size of the array is 35x40 m and the shape is a multi-arm logarithmic
spiral stretched in the direction of flight which can be seen in figure 1.2 and 1.3.

3



1. Introduction

Figure 1.2: The microphone array located at the Magdeburg-Cochstedt private
airfield

Figure 1.3: An illustration of the microphone array where size and shape is better
observed.

In May 2016 baseline experiments were performed at the private airfield and in
September 2018 and July 2019 noise modified experiments were performed. In this
study measurements from 2016 and 2019 are mainly used.

Information and figures of the private airfield, microphone array and experimental
aircraft was provided by DLR.
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2
Theory

In the following sections I will cover the theoretic knowledge necessary to understand
the purpose of the algorithms and their functionality which will be covered in later
stages of the thesis. A point source refers to a single derivative of a sound source.

2.1 Wave propagation
Sound can be explained as pressure fluctuations which travels through a medium
such as air or fluids. The motion of sound waves through air in one dimension can be
described by the classic formula in equation 2.1, also known as the wave equation.

∂2p

∂x2 −
1
c2

0

∂2p

∂t2
= 0 (2.1)

Where p is pressure, x is a measure of distance, t is time and c0 is the speed of
sound. The wave equation is a partial differential equation that combined several
equations in order to describe the propagation of waves. These equations can be
observed in equations 2.2 - 2.4.
Equation of continuity:

∂p

∂t
+ ρ0

∂u

∂x
= 0 (2.2)

Where ρ is the density of the medium, in this case air and u is the velocity. Equation
of motion:

ρ0
∂u

∂x
+ ∂p

∂x
= 0 (2.3)

Gas equation:
∂p

∂ρ
= kRT

m
(2.4)

Where k is the ratio of specific heat, R is the gas constant, T is temperature in
Kelvin and m is mass. A general solution to the wave equation in one dimension is:

p(x, t) = f(t± x

c0
) (2.5)

for plane waves where the pressure is dependent on a function of time t and distance
x. The solution for a two dimensional plane wave propagating in a third dimension
is obtained by the real part of

p(x, t) = p(x)ej(wt) (2.6)
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2. Theory

To understand the difference between a plane wave and a spherical wave in this con-
text, assume a sound source oscillating with a certain frequency. The sound source
can be a point source that radiates sound in all directions. At lower frequencies a
longer wavelength is generated by the point source. If a receiving point is placed at
a certain distance to the source the receiving point is more prone to experience the
curvature of the radiated sound, thus experiencing spherical waves. At higher fre-
quencies the wavelength is much shorter and the curvature of the source is therefore
not as significant for the same receiving point. If the receiving point is placed at a
greater distance from the source it is more likely to achieve plane waves as a uniform
sound-front even for lower frequencies. Therefore, at a receiving position close to
the source, relative to the frequency wavelength, we can assume spherical waves. If
the receiving point is far relative to the frequency wavelength, we can assume plane
waves. The wave equation can be transformed to account for spherical coordinates

∂2p

∂r2 + 2∂p
r∂r
− 1
c2

0

∂2p

∂t2
= 0 (2.7)

where r is the radius of the spherical sound wave. A general solution to the wave
equation with spherical coordinates is given by

p(r, t) = 1
r
f(t± r

c0
) (2.8)

where the incoming wave (t + r
c0

is often neglected and a equation for outwards
propagating harmonic wave can be formulated:

p(r, t) = A

r
ej(wt−kr) (2.9)

where A is the amplitude of the sound source, w is the angular frequency and k is
the wave number.

2.2 Discrete Fourier Transform
Without contradictions, it is safe to say that Discrete Fourier Transform (DFT) is
one of the most powerful assets in digital signal processing. DFT is an algorithm
that transforms a signal from time domain into frequency domain. This is of course
extremely valuable for analysis purposes and further manipulation of a signal. The
Fast Fourier Transform (FFT) is essentially a calculation algorithm to solve DFT
calculations more efficiently and reduce the computation time, which is especially
useful when handling large amounts of data. DFT is a calculation of order O(n2)
and FFT is a calculation of order O(nlogn) where n represents discrete points of
a finite signal. For the FFT to operate under optimal conditions the block size of
data should be in order of 2n. The reason for this is to enable the FFT algorithm
to continuously divide the operation into smaller chunks and avoid redundant cal-
culations by doing so.

Performing a DFT yields information such as frequency spectrum, amplitude and
phase from a signal. Due to the simple reason that a digital computers cannot handle
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2. Theory

a continuous-time signals, the signal needs to be sampled in order to be studied. The
number of samples (N) can vary depending on the signal content. A rule of thumb
is that the signal should be sampled with a frequency fs, where fs is at least twice
as high as the highest frequency of the signal. This is also known as the Nyquist
frequency. If this criteria is not met the signal can not be accurately displayed and
valuable information will be lost in the process of sampling. A much higher sampling
rate would of course generate more detailed data. The mathematical formula for
the DFT is

X(k) =
N−1∑
n=0

x(n) · e−j 2πkn
N (2.10)

where k is the Fourier coefficient, n is the sample number and N is the total amount
of samples. The DFT assumes that the signal is periodic, therefore the transformed
spectrum is periodic and double-sided. The transformed signal is not scaled. This
means that in order to get an accurate amplitude of the signal, scaling should be
applied as following.

X̄(k) = 1
N
·X(k) (2.11)

2.3 Auto & Cross Spectrum
Auto-spectrum is a useful processing step because it discards the imaginary part
of the signal through complex conjugate multiplication. This generates a squared
amplitude, which implies that the auto-spectrum is a measure of the energy/power of
a frequency component. Auto-spectrum is calculated by using the following equation

Sxx(fn) = X(fn) ·X(fn)∗ (2.12)

where X(fn) is the transformed signal and X(fn)∗ is its complex conjugate. The
difference between auto-spectrum and cross-spectrum is that autospectrum uses the
same input signal only conjugated where cross-spectrum uses two different input
signals. Cross-spectrum can be useful when using multiple measurements in order
to reduce the uncorrelated noise in both signals. By squaring the signal, phase
information is lost and a fixed phase relation is obtained. This way, the averaging
process of the cross-spectrum reduces noise because the average of uncorrelated
noise is suppressed. The cross-spectrum between the two signals can be calculated
by equation

Syx(fn) = Y (fn) ·X(fn)∗ (2.13)

where Y (fn) and X(fn)∗ represent two different signals after performing FFT.

2.4 Doppler Effect
Most people have encountered the doppler effect in their everyday life. A typical
scenario where this effect is most noticeable is when an ambulance or police vehicle
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2. Theory

passes by with their sirens turned on. There is a noticeable shift in frequency when
the vehicle approaches and once it passes. This happens because the wavelength of
the source sound is smaller in the direction the vehicle moves. Because the sound
source is omnidirectional, the sound source and the sound are moving in the same
direction. The velocity of the sound source can be subtracted from the speed of
sound and vice versa. When the source is leaving the receiver position the velocities
of the source and the sound can be added because they move in opposite directions.
This causes a longer wavelength as the source is leaving and a shorter wavelength
as the source is approaching which can be seen as λ1 and λ2 in figure 2.1. Assume
an omnidirectional point source emitting a 1000 Hz pure tone that is moving to the
right as in figure 2.1. If a receiver is placed to the right of the source so that the
source is approaching the receiver with a constant speed of 30 m/s, the perceived
frequency will be different to the one that the source is actually emitting. The
change in pitch can be calculated by equation

fapproach = f
c0

c0 − v
(2.14)

where fapproach is the perceived frequency as the source is approaching, f is the
frequency emitted by the source, c0 is the speed of sound and v is the constant
velocity of the source. For a scenario where the sound source is leaving the equation
is similar, the only difference is that the velocities are added instead.

fleaving = f
c0

c0 + v
(2.15)

With these equations both approaching and leaving frequencies can be calculated
which yields fapproaching = 1096.77 Hz and fleaving = 918.92 Hz when the sound
source is moving to the right at a velocity of 30 m/s assuming that the speed of
sound c0 = 340 m/s.

Figure 2.1: (Left): Omnidirectional point source.
(Right): Omnidirectional point source moving to the right demonstrating the
doppler effect.

For overflying measurements using a microphone array the doppler factor is calcu-
lated slightly different. The microphone array is located on ground level while the
aircraft is passing above it. The frequency which will be received by the microphone
array is dependent of the emitted frequency by the aircraft and adhere to
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2. Theory

fm = feDf (2.16)

where fm is the frequency at the microphone location, fe is the frequency emitted
by the aircraft and Df is the doppler factor. Doppler factor in this case depends on
the mach number and the emissions angle. Mach number is easily calculated with
M = v/c0, where v is the speed of the object, in this case an aircraft, and c0 is the
speed of sound. Emission angle between the aircraft and the microphone array is
calculated using simple trigonometry. The doppler factor is the obtained using

Df = 1
1−Mcosθe

(2.17)

where θe is the emission angle between the aircraft trajectory and the microphone
array as in figure 2.2. Frequency at microphone location is then given by equation
2.16.

Figure 2.2: Illustration of the emission angle.

2.5 Microphone Phased Array

Assume an acoustic source emitting sound under free field conditions at a certain
position. Beamforming results of that source will not present a perfectly located
source. Beamforming result will present the original source surrounded by addi-
tional sources spread around the original source that might not really be there. The
finite number of microphones in a microphone phased array causes a spatial under-
sampling. The system response caused by the spatial undersampling is called the
point spread function (PSF). The phased array mainly consists of empty space which
is resulting in spatial aliasing. In a optimal scenario there would be no space in be-
tween the sensors although such devices does not yet exist. There are several factors
that affect the PSF in a microphone array, the spacing between the microphones,
the amount of microphone sensors and the shape of the microphone array.
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2. Theory

Figure 2.3: (Left): Four microphones with an element spacing of 0.1m.
(Right): Four microphones with an element spacing of 0.3m.

For demonstration purposes a simple Uniform Line Array (ULA) has been chosen to
demonstrate the effects of element spacing and element amount in figure 2.3. The
color bar shows that the yellow color represents a sensitivity in certain Degree of
Arrival (DOA) along the x-axis. Along the y-axis one can observe how the beam-
pattern changes over frequency with a frequency range of 0− 4000 Hz. It is clearly
visible that increasing the distance between the microphone elements has a great
impact on the beampattern of the array. The space determines at which frequency
sidelobes are introduced by using the simple equation

f = c0/λ (2.18)

where f is the frequency, c0 is the speed of sound and λ is the wavelength. In this
case the distance between the elements is used as the wavelength in the equation.
In the left figure the spacing is 0.1 m which corresponds to the wavelength of a 3400
Hz signal, assuming the speed of sound is 340 m/s. In the figure to the right the
spacing is 0.3 m and following by using the 2.18 again the sidelobes of this setup
will appear at approximately 1133 Hz. In the right figure several sidelobes can be
detected above 1133 Hz which corresponds to, n · f , where f is the fundamental
frequency corresponding to the distance between microphones. In bot figures it can
be determined that for very low frequencies the directional of the beam is very wide
and therefore rather inaccurate for lower frequencies. Generally the beam width is
wider for the array with shorter spacing which can also be observed in figure 2.3

10



2. Theory

comparing the two figures, the beamwidth of the right configuration is more narrow
in the range of 500− 4000 Hz. This phenomenon can also be observed in figure 2.4.

Figure 2.4: (Left): Ten microphones with an element spacing of 0.1m.
(Right): Ten microphones with an element spacing of 0.3m.

Figure 2.5: Four different microphone array configurations. From left: spiral, grid,
circle and X-shape. Image source: [2]

Microphone arrays can take many sizes and shapes and there has been extensive
research made in pursuit of finding an optimal array design. In 2000 the national
German railway company, Deutsche Bahn, initiated a study on optimum array mi-
crophone configuration in order to better quantify the noise generated by trains [2].
Four 2D array configurations were tested in a simulated environment, spiral, grid,
circle and X shaped arrays which can be seen in figure 2.5. The microphone array
for all configurations had a diameter of 4 m, element spacing of 0.4 m for spiral and
grid configuration and 0.1 m spacing for circle and X configuration. The source is
simulated train noise located at 7.5 m from the microphone array where the train
has a velocity of 50 m/s. Source strength detected by the array can be estimated
by

sj(t) =
∑N

m=1 pm(t+ rjm(t)/c0)∑N
m=1 r

−1
jm(t)

(2.19)

where sj(t) is a source, N is the total amount of microphones, rjm is the distance
between the source sj and the receiving microphone pm at time t and c0 is the speed
of sound. Doppler effect has been neglected in this case and rectangular amplitude
weighting window is assumed [2]. All microphone arrays configurations consists
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2. Theory

of 90 microphones where the spiral configuration is irregularly space and the grid
configuration is regularly spaced. The results in 2.6 reveal that the spiral formation
generates the most accurate results across the varying frequency bands. Irregular
element spacing contributes to lower sidelobes and grated lobes which visibly occurs
in the regularly shaped grid configuration in column 2. Grated lobes causes fake
sources to appear around the two original sources with equal strength. Circle and X
shaped arrays causes significantly different result due to their characteristic shapes
which visibly perform worse in all frequency ranges compared to the irregularly
shaped spiral.

Figure 2.6: Column 1: Spiral, Column 2: Grid, Column 3: Circle, Column 4:
X-Shape. Row 1: Total levels, Row 2: 200 − 600 Hz, Row 3: 1 − 1.4 kHz, Row 4:
1.8− 2.2 kHz, Row 5: 3− 3.4 kHz, Row 6: 3.8− 4.3 kHz. Image source: [2]
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3
Methods

In this section acoustic imaging algorithms are explained. Some algorithms rely
heavily on the deconvolution process by suppressing the PSF of the sound sources.
Both DAMAS and CLEANT aim to improve the results generated by beamform-
ing which is why beamforming is essential in most acoustic imaging approaches.
Algorithms that aim to improve the results of beamforming are also extensively
increasing the computation cost by evaluating a scanning each single grid which
contains points with potential sound sources.

3.1 Beamforming
A phased microphone array, also called microphone antenna, refers to a setup of
multiple transducers (in this report mainly microphones), first saw the light of day
in 1974 and was developed by John Billingsley. Before that beamforming was first
incorporated in radar antennas during world war 2 [4]. Today phased arrays are
also used in medical imaging using ultrasound. Improvements in data acquisition,
computing hardware and software enabled the use of bigger arrays, incorporating
more microphones with high sample rates. This massively improved the quantifica-
tion and localization of sources of complex objects. It is often used for aerodynamic
sources in wind tunnels as well as localizing and quantifying moving sources on
flying aircraft, trains, motorized vehicles in motion and operating rotors such as
turbo engines and helicopters [4]. To successfully localize moving sound sources, the
movement of the object must be well known to be able to take it into account.

Howell et all. first demonstrated the possibilities of performing beamforming on
aircraft in 1986 [4]. They used a line array consisting of four microphones with
a spacing of 3.802 m in between. The microphone array was aligned with the
trajectory of the aircraft for the first measurement. This measurement revealed the
blade passing frequency of the wing engines. Another measurement was perform
this time in transversal alignment of the trajectory. This measurements revealed
the location of the wing engines. Later on microphone arrays took different shapes,
one that has been proved more efficient is the logarithmic spiral. As mentioned
earlier, the movement of the aircraft must be well known which is why nowadays
there is a data acquisition for the position relative to the microphone array over time
as well as environmental conditions. In order to acquire precise source localization
and determine the speed of sound, the environmental conditions are necessary. The
speed of sound in air can be approximated by
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3. Methods

c = 331.4m/s+ T · 0.6 m/s , (3.1)

where c is the speed of sound and T is the temperature in Celsius.

Essentially, beamforming is a technique for processing data acquired from a micro-
phone array in order to achieve an image of located sources in a so called source map.
A mesh-grid covering the entire aircraft and following the trajectory of the aircraft
contains much smaller grids, so called focus points [3]. Beamforming is repeated for
each focus point in this mesh-grid where there is a potential source. For focus points
where there so happens to be a source the source is preserved and for focus point not
containing a source the source is suppressed. Thus the source map of the aircraft
can be generated by repetitively performing beamforming for each focus point [6].
A technique often associated with beamforming is the delay-and-sum approach. In
simple words, each source will be recorded by each microphone at different times
due to the varying distances. Due to the fact that setup details and environmen-
tal parameters are known during the measurements it is fairly straight forward to
determine the delay between the signals. The signals are shifted so that they are
aligned correctly, summed and then normalized depending on how many signals are
available. Delay-and-sum beamforming can be performed in both frequency domain
and time domain. When done in the frequency domain, the time delay corresponds
to a varying phase shift of the signals. Only beamforming in the time domain allows
for non-stationary focus points however.

3.1.1 Time-Domain-Formulation
In figure 3.1 a simple setup of delay and sum beamforming can be observed. In this
setup there is a known source, x. Assume that the speed of sound and the various
distances between the sound source and the three microphones are known.

Figure 3.1: Illustration of delay and sum beamforming

It is now possible to calculate the delay which should be applied to each microphone
signal in order to align the received signals in time, creating an acoustic beam for
this particular sound source. The aligned signals are summarized, normalized by
the total amount of microphones and the levels at this source location can be de-
termined. In this setup there is only one sound source present and the position
is known, that is not the case with overflying measurements with arbitrary sound
sources at unknown positions. In overflying measurements the sound sources are
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3. Methods

traveling along with the aircraft, the trajectory of the aircraft relative to the mi-
crophone array position, is therefore monitored by a GSP and recorded by the data
acquisition system so that beamforming can adapt to the moving sources. The grid,
covering and following the trajectory of the aircraft, enables calculations of each
focus point at each discrete time instance.

The process for time domain beamforming is given by equation

b(t, xj, {pm}) = 1
Kj(t)

N∑
m=1

wm

pm(t+ rjm(t)
c

)
rjm(t)(1−Mcosθjm(t))2 , (3.2)

Kj(t) =
N∑

m=1

wm

[rjm(t)(1−Mcosθjm(t))2]2 (3.3)

where pm is the microphone signal between the sound source j and microphones m
, Kj is a normalization factor, xj represents the focus points in the grid, M is the
mach number, θ the incidence angle of the focus point, wm is the spatial weighting
coefficient for microphone m and rjm the distance between the focus point and mi-
crophone [8]. These are parameters of moving sound sources which changes location
over time and thus time dependent. This also enables the removal of geometric
attenuation from the signal resulting in the sound source levels for a specific focus
point [10]. Once this is done for all focus points at all discrete time instances a
beamforming source map is obtained.

3.1.2 Frequency-Domain-Formulation
Another way to do beamforming is through calculating the CSM which is technique
that works in the frequency domain and is well suited for stationary incoherent
broadband sources. In a discrete mesh grid covering the aircraft there are many
smaller grid points. Assuming there is a sound source in the grid point ξj, the
signal at microphone location is then sj ~gj, where sj is the complex amplitude of
the source and ~gj is a N component complex vector known as the steering vector.
Steering vector has the same amount of components as there are microphones and the
steering vector models the pressure amplitude at microphone location [11]. In free
field the steering vector is given by the Green’s function of the Helmholtz equation

gm = exp(−2πif || ~xm − ~ξj||/c)
4π|| ~xm − ~ξj||

, (3.4)

where ||·|| is the euclidean norm, i is the imaginary unit and ~xn = (xn,yn, zn)T ∈ R3

are the positions of N microphones. The autopower, A, of the source located at ξj

can now be estimated by mathematically diminishing the difference between the
estimation and the actual pressure vector recorder by the microphones. Since it is
a mathematical estimation the constant can be neglected.

A(ξj) = 1
2
g∗j 〈pp∗〉gj

||gj||4
= w∗jCwj (3.5)
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Where 〈·〉 is the time average and wj is the weighted steering vector and C is the
CSM of the pressure measured by the microphones in frequency domain by using
FFT.

wj = gj

||gj||2
(3.6)

C = 〈pp∗〉 (3.7)

C is a positive definite matrix because of the definition mentioned in 3.7. This can
although lead to exaggerated levels when noise is present. Because of the averaging
operation, noise, which is incoherent between microphones, only remains in the
autopower. The auto-spectrum makes up the diagonal of the CSM.

C =


C11 C12 ... C1m0

C21 C22 ... C2m0

... ... ... ...
Cm01 ... ... Cm0m0

 (3.8)

C represent the total CSM where m0 is the total amount of microphones in the
array. In conventional beamforming the output spectrum is given by the equation
3.9.

Y (w) = wTCw

m2
0

(3.9)

Where w is the steering vector, T as superscript implies complex transpose and m0
is the total amount of microphones in the array. This expression can be extended
in order to include weighting of individual microphones or diagonal removal of the
CSM.

One method to suppress the effect of noise on the result is to remove the auto-
spectrum diagonal of the CSM. However the matrix is not positive definite anymore
as the eigenvector might be negative and the side lobes in the final source map can
be of negative values, which does not make sense in the physical world. The negative
side lobes can interrupt weaker sources so that they are not identified [11].

3.2 DAMAS
DAMAS stands for "deconvolution approach and mapping of acoustic sources" and
was developed by Brooks and Humphrey at NASA Langley Research Center in 2004
[3]. Essentially DAMAS is a post processing method to further increase the accuracy
of the source map generated by beamforming. A drawback of beamforming in general
is the strong presence of side lobes which deconvolution algorithms such as DAMAS
tries to suppress. The process begins with the computation of the conventional
beamforming results for all points of a grid. DAMAS is a deconvolution approach
that solves a series of linear equations in order to gain a better source map resolution
[3]. In order to arrive with such a solution a problem definition is useful.
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Pm:n = Qne
−1
m:j (3.10)

Where Pm:j is the pressure transform of microphonem is related to a modeled source
at position j. Qj is the pressure transform of environmental parameters and e−1

m:j is
a model of a propagated signal to actually render the transmission of Pm. Equation
3.10 now yields a CSM that looks a little bit different.

G = Xj


(e−1

1 ) ∗ e−1
1 (e−1

1 ) ∗ e−1
2 ... (e−1

1 ) ∗ e−1
m0

(e−1
2 ) ∗ e−1

1 (e−1
2 ) ∗ e−1

2 ... ...
... ... ... ...
... ... ... (e−1

m0) ∗ e−1
m0

 (3.11)

Where Xj is the mean square pressure per bandwidth for each microphone m and
normalize for distance. Now the total modeled cross spectral matrix can be obtained.

Gmod =
∑

j

Gjmod (3.12)

From equation 3.9 a new expression is obtained:

Yjmod(ê) =
[

êTGmodê
m2

0

]
j

(3.13)

It is now time to merge equations 3.11, 3.12 and 3.14 which yields:

Yjmod(ê) =
∑
j′

êT
j [ ]jêj

m2
0

Xj′ (3.14)

Where the [ ]j denotes the modeled CSM from equation 3.11.
Finally an expression which can be solved is found.

Yjmod(ê) = AXj (3.15)

Where matrix A consists of the following components:

Ajj′ =
êT

j [ ]jêj

m2
0

(3.16)

The system of linear equations can now be solved iteratively for all sources N in the
source map Xn with the following expression.

Xj = Yj −

 j−1∑
j′=1

Ajj′Xj′ +
N∑

j′=j+1
Ajj′Xj′

 (3.17)

3.3 CLEAN
In June, 1974, J.A. Högbom published "Aperture Synthesis With A Non-Regular
Distribution Of Interferometer Baselines" [1]. At that time, situated at the ob-
servatory in Stockholm, Högbom commenced the work to tackle the issues with
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astronomic images using radio interferometric telescopes. Radio interferometry was
a well established procedure at this time which included theorems in the area of
Fourier optics. Unfortunately there was no way to avoid the higher spatial fre-
quencies. Essentially this meant extensive synthesis for interferometers in order to
generate astronomic images. Of course astronomers wanted to go faster and to be
able to measure numerous astronomic sources. Högbom gathered data from various
such sources at the Green Bank Interferometer [1]. He was contemplating on how to
generate an image from the collected data and tried several approaches. Ultimately
this lead to the development of the first iterative CLEAN approach.

The original CLEAN algorithm worked as following:
• Obtain data using radio interferometric telescopes.
• Locate the strongest source.
• Remove part of the strongest source according to the previously determined

loop gain from the "dirty image" using the calculated PSF.
• Replace the "dirty image" with the one where strongest source is removed and

repeat the process until the side lobes have been heavily reduced and a clean
representation of the sources is acquired.

Figure 3.2: CLEAN algorithm applied on radio source 3C 244.1 where a) is the
dirty map at first iteration and b) is the clean map at first iteration. γ = 1 is used
in this illustration. c) is the clean map at second iteration and d) is the clean map
result after six iterations. Image source: [1]

As the CLEAN algorithm is reducing the the side lobes and other noise from the
image, the algorithm converges to a desired result. An image of astronomic sources
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is mainly empty and the algorithm only has a few source points to identify, as one
could imagine. Högboms CLEAN algorithm is considered ahead of its time and
has, since its discovery, been modified and optimized to be useful even outside of
astronomic imaging. In figure 3.2 an example of the original CLEAN algorithm can
be seen.

3.4 CLEAN-SC
A more recent version of the traditional CLEAN is the so called CLEAN-SC, SC
stand for source coherence. This is a frequency domain deconvolution approach
developed by Sijtsma and is mainly developed for acoustic imaging. CLEAN-SC
manages to suppress the impact of the PSF by using spatial coherence between the
actual sources and side lobes [5]. Much like the traditional CLEAN algorithm the
CLEAN-SC follows a similar procedure.

• Obtain a Cross Spectral Matrix (CSM).
• Calculate coherence parts for a each grid point of the CSM.
• A copy of the CSM used for iterative calculations is assigned to a so called

dirty map
• Locate the strongest source and delete the coherent parts from the dirty map.
• Add the strongest source to an empty copy of the dirty map, commonly referred

to as clean map.
• Repeat until convergence is reached or another stop criteria, like a set amount

of iterations.

Once CLEAN-SC is finished a clean map is obtained with clearly suppressed side
lobes leaving the strongest source to be observed in higher detail. It works because
we can assume that the CSM can be defined as a sum of supplements from K amount
of incoherent sources [11].

C =
K∑

k=1
〈pkp

∗
k〉 (3.18)

Where pk is a acoustic source vector of arbitrary length which represent the Fourier
transformed signal. In order for equation 3.18 to valid it must abide by following
conditions:

• All sound sources must be incoherent
• No appended incoherent noise
• The signal from the same source must not be a subject to decorrelation between

microphones. Environmental conditions can cause such issues.
• Diagonal deletion of the CSM can be implemented and neglect auto spectrum.

Just as in traditional CLEAN algorithm, CLEAN-SC primarily locates the strongest
source by making use of steering vectors in the mesh grid where ξj is the current grid
point. In order to find the strongest source in the beamforming, following expression
is obtained.
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max(A) = A(ξj) = w∗jCwj (3.19)
A(ξj) is the estimated source power and wj is the weight vector which is calculated
by the steering vector gk. The steering vector itself is obtained by equation 3.20.

gn = −exp(−2πif || ~xn − ~ξ||/c)
4π|| ~xn − ~ξ||

(3.20)

Where f is the frequency, c the speed of sound, x→n the position of the microphone
and ξ→ the source location. The reciprocal source component hj can be explained
by:

hj = Cwj

A(ξj)
(3.21)

By inserting equation 3.18, the following expression is obtained:

hj =
∑K

k=1(1
2p
∗
kwj)pk

A(ξj)
(3.22)

Given that there is enough distance between the sources, the term inside the paren-
thesis in equation 3.22 will be large and a good estimate of the peak source while
small for other sources. This means that the source component is a fair appraisal of
the loudest source vector, leading to the final expression:

hj =
(A(ξj))2hjh

∗
j

|p∗kwj|2
≈ A(ξj)hjh

∗
j (3.23)

Which is the component that should be subtracted from the dirty map in each
iteration until a set of iterations are done or other stop criteria is met. The whole
process can be summarized to the following expression:

C =
I∑

i−1
A(i−1)

max h
(i)h∗(i) +D(i) (3.24)

Where C is the original CSM, ∑I
i−1 determines the sum over number of iterations,

A(i−1)
max h

(i)h∗(i) is the clean map and D(i) is the dirty map.
Some benefits of the CLEAN-SC is that it does not depend on any PSF, it coun-
teracts negative side lobes, relatively fast and can remove sources from outside the
grid. On the other hand it performs rather poorly when decorrelation occurs, for
instance outdoors measurements where there is a great distance between source and
microphone array [5].

3.5 CLEANT
CLEANT is the most recent modification that came from the original CLEAN algo-
rithm. The algorithm was developed by Cousson et al. [8] and is a time domain de-
convolution approach. This approach has previously been tested on high speed train
and rotating sound sources by Kujawski [10], Sarradj and Cousson et al. Previously
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mentioned researchers have made extensive studies to demonstrate that CLEANT
provides more accurate results for localization and quantification of moving sources
than previously incorporated methods. Like many other algorithms, CLEANT is
a deconvolution approach with the goal to remove the influence of the PSF and
obtain the original condition of the source map. CLEANT is using the resulting
source map from time domain beamforming to initiate the dirty map, therefore this
approach requires time domain beamforming to be performed before commencing
the deconvolution algorithm. The results from beamforming in time domain can
be obtained with Eq. 3.2. CLEANT will locates the strongest source in the dirty
map for every iteration and subtract the effect of this source from the microphone
signals until a stop criteria is met. Following process is the initial condition of the
CLEANT approach:

• Φ(0)(t, xj) = b(t, xj, {pm}). This is simply the dirty map being initiated with
the beamforming result.

• Γ(0)(t, xj) = 0. The clean map is initiated with zeros in the same size and
shape as the dirty map.

• pres(0)
m (t) = pm(t). The parameter representing the residual microphones is

initiated with the original microphone signals.

The next step is to locate the strongest source within the dirty map. This is done
for every iteration as well and can be obtained by integrating over a time frame T
for focus point x̂j. A mathematical equation for this process is presented as

x̂j = arg
x̂j

max
∫

T
|Φ(i−1)(t, xj)|2 dt (3.25)

The strongest source is then also added to the clean map.

Γ(i)(t, x̂j) = Γ(i−1)(t, x̂j) + γΦ(i−1)(t, x̂j) (3.26)

γ represents the loop gain and is commonly set to a value between [0, 1]. By using γ
the amount of added signal can be scaled. At this stage of the algorithm a modeled
microphone signal from the strongest source x̂g is created.

pres(i)
m (t+

rxjm

c
) = pres(i−1)

m (t+
rxjm

c
)− γ Φ(i−1)(t, x̂j)

rx̂jm(t)(1−Mcosθx̂jm(t))2 (3.27)

After this step the new microphone signal, pres(i)
m (t+ rxjm

c
), is used to perform beam-

forming again and the whole process is repeated for a set amount of iterations.
Another stop criteria that can save computation cost is when there is an increase of
energy in the beamforming results from the residual microphone signal. The out-
come of CLEANT is a clean map representing the identified sources. The sum of all
identified sources can be expressed by equation 3.28

Γ(t, xj) = γ
K∑

k=1
Φ(k)(t, xj) = γ

K∑
k=1

b(t, xj, {pres(k)
m }) (3.28)

Where K is the total amount of iterations of the CLEANT algorithm.
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3.6 Implementation

The whole implementation builds on the code base that DLR had previously devel-
oped. It contains delay-and-sum beamforming as well as the DAMAS deconvolution
algorithm among other necessary processing tools like resampling. CLEANT builds
on time domain beamforming which is already performed by the software of DLR.
Apart from beamforming code, DLR provided measured data, recorded trajectory
of the aircraft and code for constructing the grid. All other functions were devel-
oped in this thesis. Several processing steps that previously existed require some
modification to suit the CLEANT approach. The entire implementation was done
in Python with the use of external libraries. Below pseudo-code is used to describe
the implementation of the CLEANT algorithm.

1. Specify interval of observation (angle in degrees from the array reference point),
aircraft trajectory and size of mesh grid that follows the aircraft trajectory.

2. Load recorded data or simulated data as microphone signal which will be used
by the algorithm.

3. Set a number of maximum iterations and loop gain.
4. Create a butterworth bandpass filter of order six with cutoff frequencies at

100 Hz and 10000 Hz. This can be useful due to beamforming limitations in
frequency resolution and focuses in on the most common frequencies emitted
by aircraft.

5. Filter the microphone array signal.
6. Commence the algorithm loop for a set amount of iterations. The other stop

criteria is when the energy within the dirty map at a certain iteration increases.
Meaning that the strongest sources have been treated and noise is mainly the
remnants.

7. Perform beamforming in time domain and collect the emission times for the
sound sources. This is done by removing geometric attenuation and then
delay and sum beamforming. The signal is downsampled before performing
beamforming to save computation costs.

8. Assign the result from beamforming to dirty map.
9. Initiate a clean map in the same size and shape as the dirty map.
10. Obtain all potential sources by creating an array with all points from the mesh

grid that follows the aircraft trajectory.
11. Call sourcemap object for future design of the actual acoustic image from the

clean map.
12. Find max index in dirty map. The index points the location within the dirty

map where the strongest source is located.
13. Add the strongest located source signal from the dirty map into the clean map

using the loop gain to scale the amount added.
14. Create a trajectory for only the strongest source located in the dirty map. This

saves computation cost by only taking one certain point into account instead
of all possible sources at every grid point.

15. Calculate the propagation time from the strongest source to each microphone.
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16. By combining the emission times with the propagation times, the receiving
times can be calculated.

17. Now that the receiving times are known for the microphone array, the interval
of recording times can be found with the same high sampling frequency as the
recorded signals. This time array is saved for the modeled microphone signal.
The time array matches the angle interval of interest in which recording is
performed.

18. Calculate the doppler attenuation as well as the distance attenuation from the
strongest source to each microphone.

19. Use the attenuation coefficient to calculate the sound pressure of the strongest
source at receiving position of each microphone. This is done for the entire
duration of the recording. Notice that this signal is still down-sampled as a
consequence of beamforming.

20. Interpolate the modeled microphone signal by using the resampled time inter-
val to get a modeled microphone signal that matches the sampling frequency
of the recorded signals.

21. Remove the modeled microphone signal from the recorded microphone signals.
22. Pass the microphone signals with the strongest source removed as the original

microphone signal for the next iteration.
23. Go to step 7 to perform beamforming with the new microphone signal and

repeat the process until stop criteria is met.
24. Plot clean map

Figure 3.3: A flow chart representing the code structure of the CLEANT imple-
mentation.
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In this chapter the final sourcemaps generated by the CLEANT algorithm will be
presented. The two sourcemap which will be presented is the Clean Map, generated
by CLEANT and the Dirty Map, generated by beamforming. Several datasets have
been used, two simulated overflying measurements, received by Swiss EMPA, which
can be seen in figure 4.1. The real measurements are from 2016 and 2019 and were
performed at the private airport of DLR with their microphone array, seen in figure
4.2. Several settings have been tested, such as, different values for the loop gain (γ),
diagonal removal activated/deactivated and single third octave band implementation
of source localization. At last a comparison between CLEANT and DAMAS will be
presented by the results of the real overflying measurements in order to determine
the pros and cons of the two approaches. All color bars represents the sound source
levels in dB SPL.

Figure 4.1: (Left): Simulated flyover measurements of a single monopole source
(Right): Simulated flyover measurements of two monopole sources. Both figures
show mean value of all microphones.
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Figure 4.2: (Left): Real flyover measurements performed in 2016 (Right): Real
flyover measurements performed in 2019. Both figures show mean value of all mi-
crophones.

In the beginning of every data analysis and for every iteration of CLEANT a band-
pass filter is applied to narrow down the frequency range of interest and due to
limitations of beamforming.

Figure 4.3: Butterworth bandpass filter of order 6 with cutoff frequencies at 100
Hz and 10 kHz.

4.1 Simulated overflying measurements of a single
sound source

The first data set consist of a simulated overflying monopole source containing in-
formation in a broad frequency range. It was useful for verification process since it
is a single source located in the middle of the detection area. This way it was easy
to determine if the desired result was achieved.
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Figure 4.4: Simulated overflying measurement with one monopole source in TOB,
only processed with the bandpass filter seen in figure 4.3.

4.1.1 Diagonal removal deactivated

In this section the diagonal removal of the CSM has not been activated and a γ
value of 1 is set.

In figure 4.5 and 4.8 another source appears to the left of the real source in the
middle position. This is caused by the shortcoming of beamforming and spatial
undersampling. The strong sidelobes in the PSF can sometimes be identified as an
additional sources.

Figure 4.5: CLEANT results of a single monopole source at 100 Hz.
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Figure 4.6: CLEANT results of a single monopole source at 1000 Hz.

Figure 4.7: CLEANT results of a single monopole source at 2500 Hz.

Figure 4.8: CLEANT results of a single monopole source at 6300 Hz.
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4.1.2 Diagonal removal activated

In this section the diagonal removal of the CSM is active and a γ value of 1 is set.

When diagonal removal is activated the spatial accuracy is increased at the com-
promise of level accuracy. Comparing with previous section 4.1.1, the influence of
spatial undersampling has been lowered for all frequencies. The results are signifi-
cantly improved with diagonal removal.

Figure 4.9: CLEANT results of a single monopole source at 100 Hz with diagonal
removal activated.

Figure 4.10: CLEANT results of a single monopole source at 100 Hz with diagonal
removal activated.
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Figure 4.11: CLEANT results of a single monopole source at 100 Hz with diagonal
removal activated.

Figure 4.12: CLEANT results of a single monopole source at 100 Hz with diagonal
removal activated.

4.2 Simulated overflying measurements of two sound
source

A dataset simulating overflying measurements using only two monopole sources
containing information in a broad frequency range. This data was also used for
verification purposes in order to investigate if the CLEANT algorithm can handle
several sources and what settings are optimal.
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Figure 4.13: Simulated overflying measurement with two monopole sources in
TOB, only processed with the bandpass filter seen in figure 4.3.

4.2.1 Diagonal removal deactivated

In this section the diagonal removal of the CSM has not been activated and a γ
value of 0.6 is set.

In this dataset there are two sources, one located in the middle and the other one to
the right of the center positioned one. With basic parameter settings the algorithm
has a hard time to identify both sources as can be seen in figures 4.14, 4.15, 4.16 and
4.17. The reason for this might be that the two sources are identical and overlap
when detecting the strongest source in the dirty map.

Figure 4.14: CLEANT results of two monopole sources at 100 Hz
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Figure 4.15: CLEANT results of two monopole sources at 1000 Hz

Figure 4.16: CLEANT results of two monopole sources at 2500 Hz

Figure 4.17: CLEANT results of two monopole sources at 6300 Hz
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4.2.2 Diagonal removal activated

In this result section the diagonal removal of the CSM is activated and a γ value of
0.6 is set.

When diagonal removal is enabled the results look much better across the frequency
range as both sound sources can be detected properly. In figure 4.18 there are still
complications fully detecting both sources. Low frequencies are more often more
affected to spatial undersampling due to the long wavelengths and therefore not
accurately located.

Figure 4.18: CLEANT results of two monopole sources at 100 Hz with diagonal
removal activated.

Figure 4.19: CLEANT results of two monopole sources at 1000 Hz with diagonal
removal activated.
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Figure 4.20: CLEANT results of two monopole sources at 2500 Hz with diagonal
removal activated.

Figure 4.21: CLEANT results of two monopole sources at 6300 Hz with diagonal
removal activated.

4.2.3 Diagonal removal activated and low loop gain

In this section the diagonal removal of the CSM is activated and a γ value of 0.1 is set.

In this setup a lower gamma value was chosen which presents less accurate results
than with only diagonal removal activated. Both sources are detected, except for at
100 Hz in figure 4.22 but at a significantly lower level.
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Figure 4.22: CLEANT results of two monopole sources at 100 Hz with diagonal
removal activated and low gamma value.

Figure 4.23: CLEANT results of two monopole sources at 1000 Hz with diagonal
removal activated and low gamma value.

Figure 4.24: CLEANT results of two monopole sources at 2500 Hz with diagonal
removal activated and low gamma value.
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Figure 4.25: CLEANT results of two monopole sources at 6300 Hz with diagonal
removal activated and low gamma value.

4.2.4 Diagonal removal activated and single 1000 Hz TOB
detection

In this section the diagonal removal of the CSM is activated and a γ value of 0.6 is
set. The detection of the strongest source performed by the CLEANT algorithm is
restricted to a single TOB of 1000 Hz.

These result show that a single TOB of 1000 Hz was not very suitable for two
simulated sound sources as they are less accurate than only diagonal removal. The
lack of tonal components, which single TOB detection was designed for, might be
the cause.

Figure 4.26: CLEANT results of two monopole sources at 100 Hz with diagonal
removal activated and single TOB detection.
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Figure 4.27: CLEANT results of two monopole sources at 1000 Hz with diagonal
removal activated and single TOB detection.

Figure 4.28: CLEANT results of two monopole sources at 2500 Hz with diagonal
removal activated and single TOB detection.

Figure 4.29: CLEANT results of two monopole sources at 6300 Hz with diagonal
removal activated and single TOB detection.
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4.3 Recorded overflying measurements from 2016
A more broadband noise is present in this dataset which can be observed in figure
4.30. This is due to the fact that the aircraft is approaching landing and the power
of the jet engines is significantly lowered.

Figure 4.30: Recorded microphone signals in TOB only processed with the band-
pass filter seen in figure 4.3.

4.3.1 Diagonal removal deactivated
In this section the diagonal removal of the CSM is has been deactivated and a γ
value of 0.6 is set.

The results reveals a lot of identified sound sources in figure 4.32, 4.33 and 4.34.
These are mainly aerodynamic noises as the aircraft is approaching landing. Most of
the identified sources are vortexes or turbulence caused by various sensors or parts
poking out from the aircraft. At 100 Hz in figure 4.31 there are only two main
sources identified behind the wings which could also be vortexes.

Figure 4.31: CLEANT results of an overflying measurement in 2016 at 100 Hz.
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Figure 4.32: CLEANT results of an overflying measurement in 2016 at 1000 Hz.

Figure 4.33: CLEANT results of an overflying measurement in 2016 at 2500 Hz.

Figure 4.34: CLEANT results of an overflying measurement in 2016 at 6300 Hz.
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4.3.2 Diagonal removal activated

In this section the diagonal removal of the CSM is active and a γ value of 0.6 is set.

The results with diagonal removal enabled reveals slightly better detection of sound
sources around the wings. But now one of the jet engines is not fully detected. This
could again be the consequence of the so called masking effect.

Figure 4.35: CLEANT results of an overflying measurement in 2016 at 100 Hz
with diagonal removal activated.

Figure 4.36: CLEANT results of an overflying measurement in 2016 at 1000 Hz
with diagonal removal activated.
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Figure 4.37: CLEANT results of an overflying measurement in 2016 at 2500 Hz
with diagonal removal activated.

Figure 4.38: CLEANT results of an overflying measurement in 2016 at 6300 Hz
with diagonal removal activated.

4.4 Recorded overflying measurements from 2019

A more tonal noise generated by the jet engines is present in this dataset which can
be observed between 1000 − 2500 Hz in figure 4.39. This dataset is taken from a
takeoff which means that the power output of the jet engines is at their maximum
and thus the more tonal noise is present.
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Figure 4.39: Recorded microphone signals in TOB only processed with the band-
pass filter seen in figure 4.3.

4.4.1 Diagonal removal deactivated

In this section the diagonal removal of the CSM is has been deactivated and a γ
value of 0.6 is set.

These results reveal that the jet engines have been identified across all frequencies
and again better detection for higher frequencies than lower. In this data the aircraft
is taking of which means that the most dominant sound sources are from the jet
engines. Sources are also identified in front of the engines which could be the BPF.

Figure 4.40: CLEANT results of an overflying measurement in 2019 at 100 Hz.
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Figure 4.41: CLEANT results of an overflying measurement in 2019 at 1000 Hz.

Figure 4.42: CLEANT results of an overflying measurement in 2019 at 2500 Hz.

Figure 4.43: CLEANT results of an overflying measurement in 2019 at 6300 Hz.

42



4. Results

4.4.2 Diagonal removal activated

In this section the diagonal removal of the CSM is active and a γ value of 0.6 is set.

When enabling diagonal removal the results generally looks better and the sound
sources are higher in level. There are now more sound sources identified in front of
the engines as well which are most like vortexes.

Figure 4.44: CLEANT results of an overflying measurement in 2019 at 100 Hz
with diagonal removal activated.

Figure 4.45: CLEANT results of an overflying measurement in 2019 at 1000 Hz
with diagonal removal activated.
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Figure 4.46: CLEANT results of an overflying measurement in 2019 at 2500 Hz
with diagonal removal activated.

Figure 4.47: CLEANT results of an overflying measurement in 2019 at 6300 Hz
with diagonal removal activated.

4.4.3 Diagonal removal activated and low loop gain

In this section the diagonal removal of the CSM is activated and a γ value of 0.1 is set.

Setting the gamma value to a very low one results in better detection and greater
spread of the sound sources but with a significantly lower level. The individual
sound sources are not easy to identify due to this spread but more sound sources
have been located.
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Figure 4.48: CLEANT results of an overflying measurement in 2019 at 100 Hz
with diagonal removal activated and low gamma value.

Figure 4.49: CLEANT results of an overflying measurement in 2019 at 1000 Hz
with diagonal removal activated and low gamma value.

Figure 4.50: CLEANT results of an overflying measurement in 2019 at 2500 Hz
with diagonal removal activated and low gamma value.
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Figure 4.51: CLEANT results of an overflying measurement in 2019 at 6300 Hz
with diagonal removal activated and low gamma value.

4.4.4 Diagonal removal activated and single 1000 Hz TOB
detection

In this section the diagonal removal of the CSM is activated and a γ value of 0.6 is
set. The detection of the strongest source performed by the CLEANT algorithm is
restricted to a single TOB of 1000 Hz.

Detection in a single TOB was quite useful for this data as the aircraft is taking
meaning that the tonal components of the jet engines are more pronounced. The
results reveals that more sources have been identified. Some sources from previous
test cases have disappeared indicating that the new sources in this setup might be
of more tonal characteristics.

Figure 4.52: CLEANT results of an overflying measurement in 2019 at 100 Hz
with diagonal removal activated and single TOB detection.
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Figure 4.53: CLEANT results of an overflying measurement in 2019 at 1000 Hz
with diagonal removal activated and single TOB detection.

Figure 4.54: CLEANT results of an overflying measurement in 2019 at 2500 Hz
with diagonal removal activated and single TOB detection.

Figure 4.55: CLEANT results of an overflying measurement in 2019 at 6300 Hz
with diagonal removal activated and single TOB detection.
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4.4.5 DAMAS vs. CLEANT
A comparison between DAMAS and CLEANT on the same dataset from 2019 where
an airplane is taking off. For a fair comparison both algorithms used same grid size
and settings, the only difference is that diagonal removal is active for CLEANT
and not for DAMAS as it is not required unless a lot of noise is expected. Due to
limitations of DAMAS at very low frequencies 100 Hz was replaced with 250 Hz.

Figure 4.56: Results of an overflying measurement in 2019 (Left): CLEANT
(Right): DAMAS, at 250 Hz.

The difference between CLEANT and DAMAS is significant for lower frequencies
where CLEANT actually identifies sound sources whereas DAMAS mainly presents
aliasing artifacts in figure 4.56.

Figure 4.57: Results of an overflying measurement in 2019 (Left): CLEANT
(Right): DAMAS, at 1000 Hz.

In the frequency range of 1000 Hz the identified sound sources are fairly similar. The
DAMAS algorithm presents the identified sound sources in larger polygon shapes

48



4. Results

while CLEANT on the other presents slightly better looking sources which makes
it easier to separate the sound sources. There is a small difference in level as well
between the two deconvolution algorithms which can be seen in figure 4.57.

Figure 4.58: Results of an overflying measurement in 2019 (Left): CLEANT
(Right): DAMAS, at 2500 Hz.

DAMAS is significantly improving its resolution with higher frequencies. in figure
4.58 there is a larger gap in level detection between CLEANT and DAMAS.

Figure 4.59: Results of an overflying measurement in 2019 (Left): CLEANT
(Right): DAMAS, at 6300 Hz.

In figure 4.59 the resolution of DAMAS continues to improve but a lot of the sources
in front of the engines are not longer detectable by DAMAS. CLEANT present even
more identified sources in this frequency range both behind and in front of the jet
engines. The sources behind the jet engines comes from the exhaust system. The
sources in front are mainly vortexes and BPF.
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The simulated datasets uses a grid of size 41x41 where each step size is 0.25 m re-
sulting in a grid covering 10.25x10.25 m in total. For verification purposes of one or
two sources this was considered enough as a greater grid size with smaller step size
would heavily increase the computation cost. As long as the object which is being
investigated, such as a simulated source or an aircraft, is covered by the entire grid
there is no other purpose in increasing the grid size. In the first result section 4.1.1
CLEANT has processed a simulated overflying measurements of one sound source.
For very low and very high frequencies there is a false sound source located to the
left of the center positioned sound source. Although those are normal phenomenons
due to spatial undersampling of the microphone array, once diagonal removal is ac-
tivated those false sources are gone. Diagonal removal provides an increased spatial
accuracy in exchange for level accuracy, which can be observed in sections 4.1.1 and
4.1.2 for the figures representing the 1000 Hz sources. The same phenomenon can
be observed in section 4.3.1 and where some sources disappear but the overall levels
are lower when diagonal removal of the CSM is active. The sources detected in
these figures are mainly caused by aerodynamic noise as the aircraft is approaching
landing. A vortex can be observed at the tip of the right wing and the resistance
caused by the extended wing flaps causes sources to be detected behind the wings.

In the section displaying the results of a simulated overflying measurements of two
sound sources a greater variety of settings is tested such as different loop gain fac-
tor, γ, and localizing the strongest source within as single TOB. For the overflying
measurements made in 2019 the same settings were investigated. In both these
cases, section 4.2.3 and 4.4.3, the lower loop gain of γ = 0.1 generates less accurate
results. For the real overflying measurements from 2019 the lower loop gain causes
a greater spread in sound source detection and thus making targeting of individual
sources less accurate. In section 4.2.3 the lower loop gain results in the center po-
sitioned sound source to never be correctly detected in level although the source is
identified except for at 100 Hz. Overall the levels are much lower with the lower
loop gain compared to the other settings for the same case. This may not come
as a surprise because that is what the loop gain controls, how much of a signal to
add or remove. Unfortunately the algorithm is considered done when the energy
within the dirty map increases from the previous iteration, meaning that what is
left in the dirty map is considered the remaining noise. In section 4.2.4 and 4.4.4
the localization of the strongest source is restricted to a single TOB, in this case
1000 Hz TOB. Otherwise the detection of the strongest source is operating across
the wide frequency band, 100 Hz to 10000 Hz. For the simulated data in section
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4.2.4 only one source is detected at 100 Hz and for the higher frequencies the level of
the right source in never fully detected. This may be that 1000 Hz TOB was a bad
choice as the strongest signal may be in another frequency band. In section 4.4.4
the 1000 Hz TOB is more relevant as that is approximately the frequency range
where the noise of jet engines are mainly located and the results are satisfying. The
levels of the sources are slightly higher for this setting than when only diagonal
removal is activated in section 4.4.2. Noise that is outside of this 1000 Hz TOB are
unfortunately compromised for and are not properly detected, this can be seen at
6300 Hz in section 4.4.2 and 4.4.4. Although loosing accuracy outside of the 1000
Hz TOB the accuracy is gained withing the TOB. Generally diagonal removal seems
to improve the results in all cases using CLEANT. The loop gain factor that yield
the best results is γ = 0.6 and it was achieved through trial and error.

In the very last section 4.4.5 the results from CLEANT are seen on the left side and
DAMAS results are seen on the right side in different TOB. Beamforming settings
were identical the only difference in these two cases is that diagonal removal is
active for CLEANT and not for DAMAS. For 250 Hz TOB it is clearly visible that
DAMAS has reached its limits and cannot detect the sources correctly, the spiral
shapes indicates some sort of aliasing. The CLEANT on the other hand can detect
sources and present them nicely. The strongest sources are detected at the exhaust
system of the jet engines and the weaker source in front is most likely be the BPF
of the jet engine. Overall the levels detected by DAMAS are higher than the ones
detected by CLEANT where the difference is up to 7 dB for 2500 Hz. Source
detection increases in resolution for higher frequencies using DAMAS where 250 Hz
is not readable. At 1000 Hz the greatly resolution improves but the sources are still
quite large and polygon shaped. For 2500 Hz and 6300 Hz DAMAS has excellent
replication of the sources. This does not affect CLEANT as CLEANT does not
suppress a PSF that is depending on the frequency.
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The goal of this study was to investigate and implement a more novel sound source
localization algorithm in hopes of finding an approach which is more reliable, faster
and extends the frequency band of operation. CLEANT is an algorithm that dif-
fers substantially from the previously used DAMAS by operating exclusively in the
time domain. Both DAMAS and CLEANT have proven to be useful deconvolution
approaches in pursuit of locating and quantifying sound sources of aircraft flyover
measurements. CLEANT has shown that it can handle somewhat lower frequencies
than DAMAS, where good results were achieved for as low as 100 Hz and due to
its time domain property it allows for analysis across time and narrowband source
spectrum. DAMAS on the other hand has a limit of operation around 200 Hz to 300
Hz. When it comes to accuracy the CLEANT algorithm has still not been verified
to output correct SPL. This leaves room for future studies where the dedopplerized
spectrum of the microphone signals can be compared to the output of the CLEANT
results. For grid sizes up to around 25x25 m the two deconvolution algorithms op-
erate at approximately the same speed where both approaches took between 4 − 5
hours to finish. With greater grid sizes of 40x40 m the CLEANT was finished in ap-
proximately 7 hours where DAMAS required approximately 32 hours. This means
that the two algorithms scale very differently, CLEANT has a much more linear
increase in computation cost than DAMAS. This might not comes as a surprise
because the heavy computation of CLEANT comes from performing beamforming
for every iteration while DAMAS solves a large number of linear system equations
of each frequency at almost every grid point. CLEANT of course has its limitations
and depends on parameter settings such as loop gain factor. In some figures unex-
pected sources appear and some expected sources are missing due to its unique way
of locating the strongest source in each iteration. This can be observed in figure
6.1 and 6.2. The variety of settings demonstrated in section 4 shows the sensitivity
on user defined settings to obtain a better result. In all datasets the sources are
identified and it is obvious that CLEANT can handle both broadband noises and
tonal noises which is demonstrated in the overflying measurements from 2016 and
2019. In the results from 2016 CLEANT successfully locates the broadband noise
generated by the extended wing flaps and vortexes which are dominant sources as
the aircraft is approaching landing. In the results from overflying measurements
from 2019 there is more emphasis on the jet engines noise, made up from broadband
and tonal noise, as the aircraft is taking off.

Further research on CLEANT should investigate the possibilities of enhancing per-
formance through more complex resampling and interpolation algorithms. In this
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project resampling occurs before beamforming where the time data is sampled with
48 kHz and then resampled to 23.5 kHz. Resampling occurs once again when the
modeled microphone signal is created from the strongest located source back to 48
kHz. Standard algorithms have been used due to the time frame of this project.
This will increase the accuracy of the signal content for every iteration.

Figure 6.1: (Left): Clean Map at first iteration presenting the first located source.
(Right): Dirty Map which is identical to the beamforming of the original microphone
signal at first iteration.

Figure 6.2: (Left): Clean Map at second iteration presenting two identified sources.
(Right): Dirty Map now demonstrates the impact of the first identified strongest
source being deleted from the Dirty Map.
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