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ABSTRACT: 
In recent years, growing demand for greater mechanical properties of PM steel components with 
competitive fabrication cost has led to enormous innovation in different aspects of PM industry. 
Recent research has focused on introducing new alloying systems, different furnace atmospheres and 
combining sintering and post sintering processes for more hardenable powder metallurgy (PM) 
steels. By elimination of any secondary operation such as quench-hardening and instead by 
introducing the hardening treatment right after sintering, fabrication cost is reduced by far. Sinter-
hardening is a result of research conducted along this line. In this process, it is possible to 
manufacture sintered parts with a martensitic-bainitic microstructure by applying sufficient cooling 
rates (1-10°C/s depending on composition) directly after sintering. In addition, alloying elements such 
as Cr, Mo and Mn are usually added to the Fe-based powder to enhance the hardenability of the 
material. 
 
In this thesis, the cooling response of prealloyed steel powder during the sinter-hardening process 
has been investigated by means of Finite Element Method (FEM). An axi-symmetric FE model has 
been developed using MATLAB to predict the cooling response, considering the effects of nonlinear 
boundary conditions, latent heat of phase transformation and nonlinear thermal properties.  The 
code was verified in two steps, firstly, by means of ANSYS commercial code and later by making a 
comparison between the results of the present FE simulation and the works done by previous 
researchers. Finally, the method was applied to simulate the cooling response and microstructural 
development of two prealloyed Cr-Mo steel powder grades; Astaloy CrL+0.6%C and Astaloy CrL+0.8 
%C. 
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1. OBJECTIVES: 
The aim of this project is: 

1. To develop a 2D axi-symmetric FE code to simulate the cooling response in components with 
axial symmetry, such as rings and cylinders 

2. To predict the cooling rate of PM steel components during the sinter-hardening treatment 
3. To predict the microstructure development when cooling from sintering temperature 
4. To predict the sinter-hardening response of different materials and geometries 

2. BACKGROUND: 

2.1 Heat treatment of PM steels- Sinter hardening process 
Generally, in order to obtain increased strength, hardness and wear resistance, ferrous PM 
components containing adequate amount of carbon and alloying elements may be heat treated to 
form bainitic/martensitic microstructure. The conventional heat treatment procedures can be 
applied to PM steels to achieve desirable mechanical properties. Quench-hardening followed by 
tempering treatment is a common practice in the PM industry.  In this method, the sintered PM 
components are heated up to austenitizing temperature and quenched in agitated oil bath. The 
components are tempered after quenching, in order to partially regain the lost ductility (due to 
quenching). The other most frequent method is sinter-hardening which is applicable to PM steel 
grades with high hardenability. The term hardenability refers to the ability of a certain steel to form 
in-depth martensite when cooling from austenitizing temperature [1]. This term will be explained in 
detail later. In sinter-hardening process by applying high cooling rates, the component hardens when 
cooling from the sintering temperature and thus, the need for secondary heat treatment (i.e. 
quench-hardening) is eliminated. This method has some benefits over the quench-hardening process 
[2]. Due to less severe quenching, the components are less distorted, and consequently better 
dimensional control is attainable. Moreover, if tempering is needed, it is easier to apply such 
treatments on sinter-hardened steels. During oil quenching of PM steels, usually considerable 
amount of oil is trapped in the pores, which must be burnt off before tempering the material above 
200℃. In addition, in case of using finishing processes such as plating, the sinter-hardening 
components does not need oil removal step [2]. 

2.2 Alloying methods - Hardenability of PM steels 
The alloying elements added to the ferrous powder determine the processability of the PM steel 
grade in terms of compaction, sintering and post sintering treatments responses. In particular, the 
final mechanical properties of the PM components are directly influenced by amount of alloying 
elements in solution. There are four main alloying methods for ferrous materials, which is classified 
according to the manner that they are added to the base iron powder [2]: 
 

• Admixed- certain amount of alloying elements are mixed with base iron powder and 
compacted within the die. Since the iron powder is unalloyed, the adverse effect of alloying 
elements on compressibility is the least using this alloying method. However, the 
microstructure of the material after sintering is highly heterogeneous, and there are some 
concerns about dusting during handling and compaction.  
 

• Diffusion bonded- a mix of certain alloying elements and iron powder is hydrogen annealed 
at elevated temperature (generally 800 ℃ - 900 ℃) to develop partial diffusion bonding 
between them [3]. The final microstructure is heterogeneous, due to chemical gradient 
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within the material; however, the compressibility is higher than the prealloyed powder 
grades.  
 

• Prealloyed- alloying elements, except for carbon, are mixed in the molten state and then 
atomized to form alloyed powders. Due to uniform distribution of the alloying elements, the 
final microstructure is homogeneous. However, this alloying method results in lower 
compressibility due to solution hardening of the powder.  

 
• Hybrid alloys- this method involves mixing elemental alloys with highly compressible 

prealloyed powders [4]. 
 
Generally, hardenability is defined as the distance below the quenched surface, where a specific 
hardness is achieved [4]. According to ASTM A255 standard, the hardenability depth can be 
determined as the distance below the quenched end where the value of hardness drops below 65 
HRA.  In other words, only those grades of steel, in which the formation of relatively soft phases (e.g. 
ferrite and pearlite) is retarded upon cooling from austenitic region, are considered hardenable.  For 
any given steel there is a critical cooling rate at which the decomposition of austenite to ferrite, 
pearlite and bainite can be avoided during cooling.  Carbon content, alloying elements and austenite 
grain size are all factors that determine this critical cooling rate. Fig. 1 shows the TTT (time 
temperature transformation) curves for 1060 steel (Fe-0.63%C-0.87 %Mn) and 4068 steel (Fe-0.68 
%C-0.87 %Mn-0.24 %Mo) [5]. As can be seen, addition of a small amount of Mo, suppressed the 
pearlite nose to a significantly later time. This shift in TTT curve, make it possible to attain martensite 
during cooling from austenitic region for 4068 steel. It is worthy to note that these figures are 
illustrated here only to show the effects of alloying elements on hardenability, and under continues 
cooling condition, CCT curves are to be used to accurately predict the transformed phases. It should 
also be noted that only fractions of alloying elements in solid solution in austenite can contribute to 
the hardenability of the steel grade. Thus, among above alloying methods, prealloyed steel powders 
usually exhibit better hardenability. In general, two different experiments are more commonly used 
to evaluate the hardenability of steels, the Grossman test and the Jominy (quench) test.   
 
 
 

  
Fig.1: TTT diagram for a)1060, composition:0.63 %C-0.87%Mn (wt.%), austenitizing temperature 816 °C, grain size: ASTM 5-
6  b) 4068, composition: 0.68 %C-0.87%Mn-0.24%Mo (wt.%), austenitized at 899 °C, grain size: ASTM 7-8 [5] 
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2.2.1 The Grossman test 
In Grossman test, the hardenability is defined in terms of the ideal critical diameter (DI), which is the 
diameter of a cylinder that can form 50% martensite at its center, when cooled with an ideal 
quenchant.  The term ideal quenchant implies that the temperature of the cooling media remains 
unchanged during the quenching process. The ideal critical diameter (DI) varies with steel 
composition and austenite grain size. To evaluate the effect of alloying elements and grain size on 
hardenability, Grossman and co-workers defined a base ideal diameter (Do) which only depends on 
carbon content and grain size. Later, the effect of alloying elements is introduced by means of 
multiplying factors; 
 
𝐷𝐼 = 𝐷0 × 𝑓1 × 𝑓2 × 𝑓3 × … (1) 
 
Fig.2a shows the dependence of the base ideal diameter on carbon content and ASTM grain size. 
Multiplying factors for each element can be obtained from Fig.2b.  As can be seen, Cr, Mn and Mo 
improve hardenability of steels more effectively than Ni and Si. 
 

 
 

Fig.2: a) effect of carbon content and ASTM grain size on D0 , b) multiplying factors for alloying element  (after Totten [1] 
with some modification) 

 

2.2.2 The Jominy test 
The Jominy test involves end-quenching of a standardized cylindrical specimen.  After quenching, the 
cylinder bar is grounded to make two opposite parallel flat surfaces. Then, the hardness values are 
measured along the bar at 1/16 inch intervals from quenched end. Fig.3a shows an illustrative Jominy 
hardenability curve. The test is covered by ASTM A255 standard. Fig.3b shows the dimension of the 
Jominy test bar and end-quenching condition. According to ASTM A255 standard, a cylindrical bar 
with specific dimensions (Ø 25mm×100mm) is heated up to austenitizing temperature and soaked 
for 30 min. it is then placed at a holding fixture and quenched from the lower end by means of a jet 
of water under a certain condition, shown in Fig.3a. Different cooling rates at different distances 
from the quenched end ensure that the various phases can be formed along the bar. Depending on 
the steel composition and the grain size, martensite will most likely form at the quenched end, and 
moving away from the quench end, gradually bainite, ferrite and/or pearlite may form. 
Consequently, the hardness will gradually decrease as we move further away from the quenched end 
which is martensitic. 
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Fig.3 a) illustrative Jominy hardenability curve b) Jominy specimen and test conditions [1] 
 

2.3 Phase transformation in steels 
In general, steel refers to an iron-carbon alloy, which may contain up to 2 wt.% C. Although carbon is 
the most common element, a group of alloying elements such as Mn, Si, Cr, Mo and Ni may also be 
added to steels to obtain desired properties.  Obviously, these elements need to be added to the iron 
base in molten state, generally at temperature above 1600 C. When cooling from liquid state, 
different phase transformations can take place, as shown in Fig.4. The first phase transformation is 
from liquid → δ-ferrite, which has a bcc (body centered cubic) structure. With decreasing 
temperature, δ-ferrite transforms to γ-austenite, fcc (face centered cubic) form of iron which can 
take up to 2.1 wt.% carbon.   
 

 
Fig.4: Fe-C phase diagram showing allotropic forms of Iron [1] 

 
At lower temperatures, α-ferrite, another allotropic form of iron becomes stable, which has a bcc 
structure and can dissolve a small amount of carbon, up to a maximum of 0.02 wt% at 723℃. This 
large difference in carbon solubility of austenite and α-ferrite implies that steels are heat treatable.  
When cooling from austenitic temperature, austenite may decompose to different microstructures as 
ferrite, pearlite, bainite and martensite, making it possible to obtain a wide variety of mechanical 
properties by controlling the process variables. To have a better understanding of steels in general, 
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these microstructure evolutions need to be studied in detail. However, more focus is put on the 
martensitic and bainitic transformations due to their dominance in sinter-hardening process. 

2.3.1 Ferritic and pearlitic transformations: 
The product of the eutectoid transformation in steels is called pearlite, which is in fact a lamellar 
mixture of ferrite and cementite developed alternately during slow cooling of austenite. Considering 
the Fe-C phase diagram shown in Fig.4, the eutectoid transformation at 723˚C may be written as; 
 
𝛾(0.77 𝑤𝑡% 𝐶) ↔  𝛼(0.02 𝑤𝑡% 𝐶) + 𝐹𝑒3𝐶 (6.67 𝑤𝑡% 𝐶) 
 
Application of lever rule at this temperature gives the amount of cementite within the pearlite 
colonies; 
 
0.77 − 0.02
6.67 − 0.02

× 100 = 11 𝑤𝑡%  
 
and therefore, the weight percent of ferrite is 89%. This simple calculation shows that the pearlite 
basically contains 89% ferrite, and consequently similar thermal properties can be used for these 
phases in numerical modeling.  
Pearlite and ferrite transformations are good examples of the diffusional process. The term 
diffusional implies that this transformation is controlled by diffusion process and is a function of both 
time and temperature. Thus, the kinetics of transformations can be simulated by application of the 
volume extended concept introduced by Johnson, Mehl, Avrami and Kolmogorov (see section 2.4.1). 

2.3.2 Martensitic transformation: 
Rapid cooling of steels from austenitic region may lead to formation of martensite. Unlike austenite 
to ferrite and pearlite transformations, formation of martensite is diffusionless. This implies that the 
elements in solid solution in the former austenite, remains in solution in the martensite.  Therefore, 
martensite can be considered as a supersaturated solid solution of carbon in ferrite. This 
transformation is accompanied by a large shear deformation and a volume expansion, since the 
carbon atoms order within interstitial sites, in such a way that the bcc structure of ferrite changes to 
the body-centered tetragonal (bct) structure, shown in Fig.5a. The degree of tetragonality can be 
evaluated by measuring the ratio between the axes, 𝑐 𝑎⁄  [6]; 
 
𝑐
𝑎

= 1 + 0.045 𝑤𝑡% 𝐶  (2) 
 
The effect of carbon content on lattice parameters, c and a, are shown in Fig.5b, showing that 
tetragonality increases dramatically with higher carbon dissolution.  
 

  
Fig.5 a) bct structure of martensite b) effect of carbon on lattice parameters, a and c [6] 
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Martensitic transformation is commonly considered as athermal, since the transformation starts at a 
well-defined temperature, 𝑀𝑠 (i.e. martensite start temperature), and continues until martensite 
finish temperature, 𝑀𝑓  , is reached. However, isothermal martensitic transformation may also occur 
at constant temperatures [6, 7].   

2.3.2.1 Thermodynamics aspects of martensitic transformation in steels  
Diffusionless nature of martensitic transformation implies that no chemical decomposition occurs 
during transformation; and therefore the chemical free energies of the martensite and the parent 
phase depend only on temperature. There may exist a specific temperature (𝑇0), at which these two 
free energies become equal. The difference between free chemical energy of austenite and 
martensite, at temperatures other than 𝑇0 can be given as;   
 
∆𝐹𝛾→𝛼́ = 𝐹𝛼́ − 𝐹𝛾  (3) 
 
Where, 𝐹𝛾 and 𝐹𝛼́  are chemical free energies of austenite and martensite, respectively. It has to be 
noted that, difference between chemical energies, ∆𝐹𝛾→𝛼́, is positive when austenite is more stable 
than martensite. Fig.6 shows the variation of free energy with temperature for these phases. As can 
be seen, martensitic transformation does not take place until a certain supercooling is provided (𝑀𝑠 
lies below 𝑇0), due to the presence of nonchemical free energies such as interfacial and strain 
energies.  In practice, the supercooling (𝑇0 −𝑀𝑠) may exceed to a value as large as 200˚C [8].  
 

 
Fig.6: Variation of chemical free energy for austenite 

and martensite with temperature (after Kaufman 
and Cohen [8] with some modification)  

 
One may express the overall free energy as; 
 
∆𝑊𝛾→𝛼́ = ∆𝐹𝛾→𝛼́ + ∆𝐺𝛾→𝛼́   (4) 
 
where, ∆𝐺𝛾→𝛼́  represents the fraction of nonchemical free energies. The necessary condition for 
commence of martensitic transformation is that the overall free energy becomes negative, 
or ∆𝐹𝛾→𝛼́ < ∆𝐺𝛼́→𝛾 . In other words, not only is it necessary that the chemical free energy is 
negative,but it also needs to be less than a certain quantity, ∆𝐺𝛼́→𝛾 .   
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The classical theory of homogenous nucleation can be applied to study the martensitic 
transformation. In general, creation of new interfaces during solid state transformations will increase 
the free energy by an amount that depends on coherency of the parent phase (austenite) and the 
martensite. For a lenticular plate, with thickness of 2𝑐 and radius of 𝑟 ≫ 𝑐, the interfacial free energy 
may be given as; 
 
∆𝐺𝑠

𝛾→𝛼́ = 2𝜋𝑟2𝜎  𝑐𝑎𝑙/𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒  (5) 
 
where, 𝜎 represents the free energy of 𝛼́/𝛾 interface per unit area, or specific interfacial free energy. 
Fisher et al. [9] assumed a coherent interface between the martensite and the parent phase, and 
calculated a value of 5.7 × 10−7𝑐𝑎𝑙/𝑐𝑚2 for 𝜎. On the other hand, it can be shown that if the 
interface between them is considered semi-coherent, higher values for the specific interfacial free 
energy can be obtained (1.2 − 2.4 × 10−5𝑐𝑎𝑙/𝑐𝑚2)[8].  
Mechanical free energy is also an important factor, since the martensitic transformation is 
accompanied by large shear deformations. As a result, elastic strains are developed and stored, both 
inside and around the martensite plates. The elastic free energy of a lenticular martensite plate may 
be expressed as; 
 
∆𝐺𝜀

𝛾→𝛼́ = 𝜋𝑐𝑟2(𝐴𝑐 𝑟)⁄   𝑐𝑎𝑙/𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒  (6) 
 
where two terms 𝜋𝑐𝑟2 and 𝐴𝑐 𝑟⁄  refer to the approximated volume of martensite plate and the 
strain free energy of a unit volume of martensite, respectively, and A is the strain energy factor. 
Fisher et al. [9] showed that elastic free energy can take values as large as 480 to 1140 𝑐𝑎𝑙/𝑐𝑚3. 
Within and around martensite plates, some extent of plastic deformation can also take place, to relax 
the developed shear strains. However, the energy needed for such deformations to occur is 
considerably large, and therefore its effect is generally regarded negligible.  
After inserting Eq.5 and Eq.6 into Eq.4; the overall free energy may take the form; 
 
∆𝑊𝛾→𝛼́ = 𝜋𝑟2𝑐∆𝑓𝛾→𝛼́ + 2𝜋𝑟2𝜎 + 𝜋𝑐𝑟2(𝐴𝑐 𝑟)⁄   (7) 
 
where, ∆𝑓𝛾→𝛼́ is the chemical free energy change per unit volume. Differentiating Eq.7 with respect 
to r and c determines the value of critical nucleus size, and finally the free energy barrier can be given 
as [8, 9]; 
 
∆𝑊∗ = 8192 𝜋𝜃2𝜎3 (27∆𝑓4)⁄   𝑐𝑎𝑙/𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒  (8) 
 
where, 𝜃 is a strain factor that depends on the elastic constant of the parent phase and shear angle 
of martensite plate [9]. It should be mentioned that, although Eq.5 to Eq.8 give some indications 
regarding the effects of nonchemical energies on the transformation mechanism, the energy barrier 
calculated by Eq.8, is large by several orders of magnitude, leading to dramatic deviation from 
experimental observations. This confirms that martensite nucleation occurs on pre-existing embryos, 
and therefore, the whole mechanism is heterogeneous [6, 8].  

2.3.2.2 Effects of alloying elements  
The overall free energy of the martensitic transformation includes two separate terms, one is 
concerning the nonchemical free energies, discussed in previous section, and the other pertains to 
the chemical free energy, which will be studied here. In general, the alloying elements can influence 
both the chemical and nonchemical energies.  
Since no chemical decomposition takes place during martensitic transformation, the chemical free 
energy of a binary 𝐹𝑒 − 𝑋 alloy system can be expressed formally by adding three following terms; 
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∆𝐹𝐹𝑒−𝑋
𝛾→𝛼́ = (1 − 𝑥)∆𝐹𝐹𝑒

𝛾→𝛼 + 𝑥∆𝐹𝑋
𝛾→𝛼 + ∆𝐹𝑀

𝛾→𝛼́   (9) 
 
where 𝑥 is the concentration of alloying element 𝑋 in atom fraction. In above relation, ∆𝐹𝑀

𝛾→𝛼́ 
represents the difference in the free energy of mixing. According to the basic rules of 
thermodynamics, ∆𝐹𝑋

𝛾→𝛼́  can be written as; 
 
∆𝐹𝑋

𝛾→𝛼́ = ∆𝐻𝑋
𝛾→𝛼́ − 𝑇∆𝑆𝑋

𝛾→𝛼́  (10) 
 
where ∆𝐻𝑋

𝛾→𝛼́ and ∆𝑆𝑋
𝛾→𝛼́ are the enthalpy and entropy  changes between 𝛾and 𝛼́ for the element 𝑋, 

respectively. Zener assumed that the solid solutions are ideal, which implies ∆𝐹𝑀
𝛾→𝛼́ = 0 [8]. He 

further assumed that ∆𝑆𝑋
𝛾→𝛼́ is zero, and therefore Eq.9 can be simplified as; 

 
∆𝐹𝐹𝑒−𝑋

𝛾→𝛼́ = (1 − 𝑥)∆𝐹𝐹𝑒
𝛾→𝛼́ + 𝑥∆𝐻𝑋

𝛾→𝛼́   (11) 
 
The values of ∆𝐻𝑋

𝛾→𝛼́  for different alloying system can be found in Ref.10. By setting ∆𝐹𝐹𝑒−𝑋
𝛾→𝛼́  equal to 

zero, the value of 𝑇0 can be obtained. In general, those elements that expand the 𝛾 loop, i.e. 𝛾 
stabilizers, make the value of ∆𝐻𝑋

𝛾→𝛼́  positive and lower 𝑇0. Fig.7 shows the 𝑀𝑠 and 𝑇0 for iron-
carbon and iron-nickel [8]. 
 

 
Fig.7:   𝑀𝑠 and 𝑇0 for iron-carbon and iron-nickel [8] 

 
As can be seen,  𝑀𝑠 and 𝑇0 behave similarly, i.e. they both decrease as the alloying content increases. 
However, for the case of Fe-Ni, the difference between them,  𝑇0 − 𝑀𝑠 , increases with nickel 
content. This indicates that, the alloying elements may also take part in nonchemical free energies. 
Electron microscopy observations confirm that the martensitic transformation involves a large 
amount of slip or twining. Thus, anything that can restrain the glide of dislocations may retard the 
transformation temperature. Ghosh and Olson [11] suggested that the fraction of alloying elements 
in solid solution in austenite can be used to estimate the driving force necessary for martensitic 
transformation. Their hypothesis was based on the effects of solid solution strengthening mechanism 
on glide of dislocations. They showed that the critical driving force can be expressed in term of 
interfacial frictional work; 
 
 −∆𝐺𝑐𝑟𝑖𝑡

𝛾→𝛼́ = 𝐾1 + 𝑊𝜇(𝐾𝜇𝑖 ,𝑋𝑖) (12) 
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where 𝐾1 is a constant that includes the effects of interfacial energies and strain field around the 
embryo, and 𝑊𝜇 is the frictional work, given as; 
 

𝑊𝜇 = �∑ (𝐾𝜇𝑖𝑋𝑖0.5)2𝑖 + �∑ (𝐾𝜇
𝑗𝑋𝑗0.5)2𝑗 + �∑ (𝐾𝜇𝑘𝑋𝑘0.5)2𝑘 + 𝐾𝜇𝐶𝑜𝑋𝐶𝑜0.5  (13) 

 
where 𝑖 = 𝐶,𝑁 ; 𝑗 = 𝐶𝑟,𝑀𝑛,𝑀𝑜,𝑁𝑏, 𝑆𝑖,𝑇𝑖,𝑉; 𝑘 = 𝐴𝑙,𝐶𝑢,𝑁𝑖,𝑊. Using 𝐾𝜇𝑖  values reported in Ref.11; 
the critical driving force takes the form; 
 
−∆𝐺𝑐𝑟𝑖𝑡

𝛾→𝛼́ = 𝐾1 + 4009𝑋𝐶0.5 + 1879𝑋𝑆𝑖0.5 + 1980𝑋𝑀𝑛0.5 + 172𝑋𝑁𝑖0.5 + 1418𝑋𝑀𝑜0.5 + 1868𝑋𝐶𝑟0.5 +
                         1618𝑋𝑉0.5 + 752𝑋𝐶𝑢0.5 + 714𝑋𝑊0.5 + 1653𝑋𝑁𝑏0.5 + 3097𝑋𝑁0.5 − 352𝑋𝐶𝑜0.5 (14) 
 
Ghosh and Olson [11] reported a value of 𝐾1 = 1010 𝐽 𝑚𝑜𝑙−1.  Finally, it was assumed that the 
martensitic transformation commences when the chemical deriving force of austenite to martensite 
transformation reaches to ∆𝐺𝑐𝑟𝑖𝑡

𝛾→𝛼́, that is; 
 
∆𝐹𝛾→𝛼́{𝑎𝑡 𝑀𝑠} = ∆𝐺𝑐𝑟𝑖𝑡

𝛾→𝛼́  (15) 
 
It should be noted that Cool and Bhadeshia [12] observed a better correlation between experimental 
data for 𝐾1 = 683 𝐽 𝑚𝑜𝑙−1. There are also several empirical equations to calculate the martensite 
start temperatures. Andrews developed a product equation with confidence of ±25°C for 95% of the 
steels under investigation [7];  
 
𝑀𝑠(°𝐶) = 512 − 453𝐶 − 16.9𝑁𝑖 + 15𝐶𝑟 − 9.5𝑀𝑜 (16) 
                  +217(𝐶)2 − 71.5(𝐶)(𝑀𝑛) − 67.6(𝐶)(𝐶𝑟)  
 
However, it was reported that for steels with high alloy content, the 𝑀𝑠 calculated using such 
empirical equations (e.g. Eq.16) deviates dramatically from experimental values [13].  

2.3.2.3 Effect of grain size 
Several studies [14-17] reported the dependence of martensite start temperature on austenite grain 
size (AGS). As shown in Fig.8, the 𝑀𝑠 drops as the AGS decreases, however, the influence of AGS is 
more significant for smaller grains. Many qualitative explanations for this observation have been 
given. For instance, Brofman and Ansell [14] proposed that this behavior can be explained by means 
of dislocation theories. Using the experimental evidence that confirms the inverse relation between 
grain size and dislocation density (𝜌 ∝  1 𝐷⁄   ) [18], they suggested that higher dislocation density 
within the smaller grains may have some strengthening effects on the austenite, leading to higher 
resistance to plastic deformations locally and macroscopically. Consequently, higher driving force is 
needed for martensitic transformation.  Although this hypothesis gives an explanation for such 
behavior, there are some arguments against its viability [19].  Recently, Yang and Behadeshia 
developed a model to estimate the variation of martensite start temperature as a function of the 
AGS. This model is, in fact, based on the geometrical partitioning hypothesis introduced by Fisher et 
al. (9), which suggests that the amount of the transformed martensite, during the early stages of 
transformation, is proportional to cube of austenite grain size (𝑉𝑓 ∝ 𝐷3). Thus, for smaller grains, 
higher undercooling is needed to detect the early stages of martensitic transformation corresponding 
to 𝑀𝑠.  Although the model proposed by Yang and Behadeshia is shown viable, the need for the 
reliable thermodynamic databases restricts its application. Lee and Lee [20] proposed an empirical 
equation for low alloy steels that considers the effects of chemical composition and austenite grain 
size on martensite start temperature; 
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𝑀𝑠(°𝐶) = 402 − 797𝐶 + 14.4𝑀𝑛 + 15.3𝑆𝑖 − 31.1𝑁𝑖 + 345.6𝐶𝑟 (17) 
                   +434.6𝑀𝑜 + (59.6𝐶 + 3.8𝑁𝑖 − 41𝐶𝑟 − 53.8𝑀𝑜).𝐺 
 
where 𝐺 is the ASTM austenite grain size and elements are in weight fraction.  
  

  
Fig.8: variation of martensite start temperature against grain size [17, 19] 

2.3.2.4 Surface effects on martensite start temperature 
In general, the lattice energy is higher at the surface of the crystals, leading to a smaller barrier for 
nucleation [10].However, the energy difference between the surface and interior of a crystal depends 
on the chemical composition and the crystal orientation. In particular, for the case of martensitic 
transformation, the effect of free surfaces can be described by its influence on relative stability of 
structure at the surface [21]. The shear nature of the martensitic transformation suggests that any 
phenomenon that can ease the glide on dislocations will promote the transformation, and 
consequently, affects the martensite start temperature. In this sense, the energy barrier for 
martensitic transformation is smaller at the surface, since restraining effects of the neighboring 
atoms on shear deformation is partly eliminated at the surface.  Several studies have been conducted 
to experimentally confirm the promoting effects of free surfaces on martensitic transformation. For 
instance, Honma [10] measured the 𝑀𝑠 at the surface and in the interior for several 𝐹𝑒 − 𝑁𝑖 alloys, 
and showed that martensite start temperature is higher by 10-30 ℃ at the surface layer.  Further 
details on experimental investigations and verifications can be found in Ref.10.   

2.3.2.5 Kinetics of martensitic transformation in steels  
Several equations have been developed to describe the kinetics of athermal martensitic 
transformation. However, the reliability of these equations is still under investigation. Fig.9 shows the 
comparison between the models proposed by different authors. As can be seen, all three models 
agree closely for undercooling less than 50 ℃, but they diverge markedly for higher undercoolings. 
The discrepancy between the predicted volume fractions is probably due to the different methods 
they used to measure the amount retained austenite. The model proposed by Koistenen and 
Marburger [22] is known the most viable relation (referred to as KM model), since X-ray analysis was 
used to determine the volume fraction of retained austenite. They showed that the extent of 
martensitic transformation for pure iron-carbon alloys can be expressed as; 
 
𝑉 = 1 − exp (−0.011(𝑀𝑠 − 𝑇)) (18) 
 
where 𝑉 is the volume fraction of martensite transformed and T is the temperature below 𝑀𝑠 .  
 



 

11 
 

 
Fig.9: Martensite formation as a function of undercooling below Ms [7] 

 
Several authors have used this equation to predict the extent of martensitic transformation for low 
alloy steels.  However, recent study conducted by Lee-Lee [20] shows that this model cannot 
completely predict the extent of transformation for low alloy steels. They, therefore, made an 
attempt to develop a new model using dilatometric analysis of a wide range of low alloy steels [20];  
 
𝑑𝑉
𝑑𝑇

= 𝐾.𝑉𝑎(1 − 𝑉)𝑏  (19) 

𝐾 = 𝐺0.240(𝑀𝑠−𝑇)0.191

9.017+62.88𝐶+9.27𝑁𝑖−1.08𝐶𝑟+0.76𝑀𝑜
  

 
𝑎 = 0.42 − 0.246𝐶 + 0.359𝐶2    
 
𝑏 = 0.32 − 0.567𝐶 + 0.933𝐶2  
  
where 𝑉 is the volume fraction of martensite and 𝐶 is the carbon content in wt% and 𝐺 is the ASTM 
austenite grain size. 

2.3.3 Bainitic transformation: 
Bainite is an intermediate product, in the sense that it forms at temperatures above martensite start 
temperature but below those at which the pearlitic transformation can take place. Bainite is a 
mixture of carbide and ferrite; however, microscopically, it is quite different from pearlite. The major 
difference is that, unlike pearlite, the cementite and ferrite in bainite possess a certain orientational 
relation with the parent phase within the grains [24]. There are mainly two forms of bainite, upper 
and lower bainite.  
Upper bainite forms at temperature range 550 ℃ -400 ℃. The main microstructural feature of upper 
bainite is its feathery appearance of the ferrite clusters, often called sheaves [6, 7]. Within each sheaf 
the plates of ferrite (sub-units) are parallel, having similar crystallographic orientation [6].  
Decomposition of austenite to upper bainite takes place in two distinct stages. Firstly, the ferrite 
plates nucleate at the austenite grain boundaries, and then they grow rapidly within the grains. This 
process is accompanied by large shear deformations, thus in one sense, the bainitic transformation is 
similar to low temperature martensitic transformation [6]. However, upper bainite forms at higher 
temperatures at which the strength of austenite is significantly lower. Therefore, some amount of 
the shear strain developed during rapid growth of ferrite plates can be relaxed by plastic deformation 
of the nearby high temperature austenite. This plastic deformation is accompanied by an increase in 
dislocation density, which in turn strengthens the adjacent austenite. Due to this strengthening 
effect, the sub-units can grow to a limited size which is much smaller than the austenite grain size. 
Since the solubility of carbon in ferrite is 0.02 wt% at most, during the growth of plates, the carbon 
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solute transfers into adjacent austenite. Eventually, the carbon concentration reaches to the critical 
value necessary for carbide precipitation, and cementite forms between the ferrite sub-units.  
Lower bainite, in contrast, forms at lower temperature range 400-250˚C. Crystallographic and 
microstructural features of the lower bainite are very close to the upper bainite; however, the 
mechanism of carbide precipitation is slightly different. In lower bainite, the carbides may also form 
inside the ferrite plates as a result of supersaturation. However, these cementite particles are very 
fine and cannot be resolved by optical microscopy.    

2.3.3.1 Kinetics of bainitic transformation  
Bhadeshia [23] suggests that the bainitic transformation may take place in two distinct stages, shown 
in Fig.10. Firstly, it starts with nucleation of a sub-unit at an austenite grain boundary, which grows 
rapidly within the grains before it is suppressed by the plastic deformation of adjacent austenite. 
Then, new sub-unit may nucleate at the tip and the ferrite clusters form. As this process continues, 
the carbide may also precipitate within the supersaturated ferrite plates, or the enriched nearby 
austenite. The overall kinetic of bainite evolution is controlled by these three events, and may be 
expressed by the concept proposed by Johnson, Mehl, Avrami and Kolmogorov [23].  
 

 
Fig.10: evolution stages of bainitic transformation [6] 

 

2.3.3.2 Effect of austenite grain size  
The effect of austenite grain size on kinetics of bainite transformation is not well understood. Some 
studies showed an inverse relation between grain size and transformation rate, while others 
reported that the overall kinetics of bainite reaction increases with increasing the grain size [23]. A 
detailed study conducted by Bhadeshia [23] suggests that there is a relation between the bainite 
morphology and the grain size effects, which may explain the discrepancy in experimental 
observations for different steels. Fig.11 shows the morphology of bainite for two different low alloy 
steels, at early stages of transformation [25]. Two extreme cases may occur;  
 

1. The nucleation rate at the grain boundaries is relatively lower than the growth rates of the 
bainite sheaves (steel A) 

2. The nucleation rate at grain boundary is higher than growth rates of the bainite sheaves 
(Steel B) 

 
In steel A, bainite sheaves lengthened within the grains until their growth was stopped by grain 
boundaries. In this case, the maximum volume of a sheaf is directly proportional to the cube of 
austenite grain size, 𝑉𝑚𝑎𝑥 ∝ 𝐷3. Thus, for steel A, the overall kinetics of transformation is suppressed 
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by reducing the grain size. On the other hand, for the case of Steel B, the nucleation rate is relatively 
higher than growth rate of bainite sheaves and the number of nucleation sites specifies the overall 
reaction rate. Thus, with decreasing the austenite grain size, the number of potential sites for 
nucleation increases, and consequently the overall reaction rate increases with reducing the grain 
size. 
 

  
Fig.11: bainite morphologies for two different steels [25] 

 

2.4 Kinetic models for diffusive transformations 
Phase transformation in steels is generally divided into two groups, diffusional and diffusionless 
transformations. As discussed before, the diffusive transformation involves nucleation and growth 
mechanisms that are both time and temperature dependent, while the extent of the diffusionless 
transformation is solely a function of undercooling. Several models have been proposed to describe 
the kinetics of diffusion controlled, as well as, diffusionless or martensitic transformations in steels.  

2.4.1 Johnson–Mehl–Avrami–Kolmogorov (JMAK) model 
Johnson,Mehl, Avrami and Kolmogorov developed a model to determine the extent of the diffusive 
transformations under isothermal conditions [26]. Their model is based on the following assumptions 
[6, 26]; 
 

1. The nucleation process is random 
2. The nucleation and growth rates are constant with respect to time 
3. The nuclei have spherical shape 

 
Under these assumptions, they showed that the volume fraction of the transformed phase 𝑋, at any 
given time 𝑡, can be obtained by; 
 
𝑋 = 1 − exp (−𝜋

3
𝑁̇𝐺3𝑡4)   (20) 

 
where 𝑁̇ is the nucleation rates and 𝐺 is the growth rate of the spherical nuclei.  However, in actual 
practice, this simple model cannot cover all the possibilities during nucleation and growth process. 
For instance, grain boundaries act as the preferential sites for nucleation process and can enhance 
the rate of nucleation markedly. Therefore, one may express the JMAK model in a general form; 
 
𝑋 = 1 − exp (−𝑘(𝑇)𝑡𝑛(𝑇)) (21) 



 

14 
 

 
where 𝑘 and 𝑛 are the model’s parameters and depend on the nucleation and growth mechanism.  
When the isothermal transformation diagram is available, these parameters can be obtained by 
means of the following relations; 
 

𝑛 = ln (ln (1−𝑋𝑠)/ln (1−𝑋𝑓))
ln (𝑡𝑠 𝑡𝑓⁄ )

 (22) 

 
𝑏 = − ln (1−𝑋𝑠)

𝑡𝑠𝑛
 (23) 

 
where 𝑋𝑠 and 𝑋𝑓 are the starting and finishing volume fractions, usually taken as 𝑋𝑠 = 0.01 and 
𝑋𝑓 = 0.99 and, 𝑡𝑠 and 𝑡𝑓 are respectively the start and finish transformation times at a constant 
temperature. Time derivative of Eq.21 takes the form of the following equation; 
 
𝑋̇ = 𝑏1 𝑛� (𝑛(1 − 𝑋)(− ln(1 − 𝑋))𝑛−1 𝑛� ) (24) 
 
If 𝑛 in Eq.21 remains constant during transformation (i.e. n stays independent of temperature), and 𝑘 
is only a function of temperature, the rate equation Eq.24, can be expressed as 𝑓(𝑋)𝑔(𝑇), and the 
transformation is called iso-kinetic. It will be discussed later that, in such circumstances, Scheil’s 
principle can be used to extend the JMAK model for anisothermal condition. 
It takes an enormous effort to produce a TTT diagram. Generally, for a given steels composition, only 
one TTT diagram is available, which is provided for a specific austenite grain size and austenitizing 
temperature. In order to consider the difference between the austenite grain sizes reported in TTT 
diagrams (𝑑𝛾𝑇𝑇𝑇) and its size within the samples (𝑑𝛾), one may use the modified JMAK model [27] ; 
 
𝑋 = 1 − exp (−𝑘(𝑇)(𝑑𝛾𝑇𝑇𝑇

𝑑𝛾
)𝑞𝑡𝑛) (25) 

 
where 𝑞 is to be taken 1 for ferrite and 2 for pearlite transformations.  

2.4.2 Austin and Rickett (AR) model 
Several authors [28, 29] used the Austin-Rickett (AR) equation to describe the kinetics of diffusional 
transformations with time; 
 
log � 𝑋

1−𝑋
� = 𝑚log (𝑡) + 𝑐 (26) 

 
where  𝑚 and 𝑐 are the model’s parameters, which can be obtained using TTT digarams. Starink [30] 
showed that this model can predict the kinetics of diffusion controlled transformations more 
precisely than the JMAK model. The rate of transformation can be obtained by differentiating Eq.26 
with respect to time; 
 
𝑑𝑋
𝑑𝑡

= 𝑚10𝑐 𝑚⁄ 𝑋�1−
1
𝑚�(1 − 𝑋)�1+

1
𝑚� (27) 

 
The volume fraction of the transformed phase can be calculated by integration of Eq.27 with respect 
to time. However, the initial value 𝑋 = 0 at the beginning of the transformation results in zero 
transformation rates. Tehler [29] suggested the following modification to tackle this problem; 
 

  𝑋 = � 𝑋 𝑋 > 0.0001
0.0001 𝑋 < 0.0001

� 
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2.4.3 Kirkaldy equations 
Kirkaldy and Venugopalan [31] proposed a series of rate equations for diffusive transformations in 
steels, in a general form of, 

 
  

𝑑𝑋
𝑑𝑡

=
(∆𝑇)𝑛 exp�− 𝑄

𝑅𝑇�

𝐹(𝐶,𝑀𝑛,𝑆𝑖,𝑁𝑖,𝐶𝑟,𝑀𝑜,𝐺)𝑋
2(1−𝑋)

3 (1 − 𝑋)
2𝑋
3  (28) 

 
where 𝐹 is a function of alloying elements in 𝑤𝑡%, 𝐺 is the prior austenite grain size (ASTM number), 

T∆ is the undercooling, and 𝑄 is the activation energy of the diffusional reaction. The exponent of 
undercooling n is a constant concerning the diffusion mechanism (n =2 for volume diffusion in case of 
bainitic transformation and n = 3 for boundary diffusion in case of ferrite/pearlite transformations). 
Application of Scheil’s additivity rule (see section 2.4.4) together with time integration of Eq.28 over 
time-temperature profile gives the volume fraction of transformed phase under any arbitrary cooling 
condition; ,  
 

𝑋 = ∫ 𝑑𝑋 =𝑋
0 ∫ 𝑑𝑋

𝑑𝑡
𝑡
0 𝑑𝑡 = ∫

(∆𝑇)𝑛 exp�− 𝑄
𝑅𝑇�

𝐹(𝐶,𝑀𝑛,𝑆𝑖,𝑁𝑖,𝐶𝑟,𝑀𝑜,𝐺)𝑋
2(1−𝑋)

3 (1 − 𝑋)
2𝑋
3 𝑑𝑡𝑡

0   (29) 

 
In general, the function 𝐹, the exponent n and the activation energy vary for ferrite, bainite and 
pearlite transformations. T∆ is the difference between the equilibrium temperatures, 𝐴1, 𝐴3  and 𝐵𝑠, 
and the instantaneous temperature during cooling.  

2.4.4 Scheil’s principle 
The models defined in sections 2.4.1 to 2.4.3 give a mathematical description of the transformation 
kinetics under isothermal condition. In common heat treating processes, except for some special 
cases in thermomechanical treatments, anisothermal condition (also referred to continuous cooling 
condition) is more frequent. However, in such circumstances, the aforementioned models are of no 
practical use. To tackle this limitation, Scheil proposed a hypothesis to calculate the incubation time 
under anisothermal condition from isothermal data, which is widely known as Scheil’s principle or 
Scheil additivity rule [32]. According to this hypothesis, the time needed to reach a specific amount of 
transformed phase, 𝑋, under anisothermal conditions can be obtained, when the following relation is 
satisfied; 
   
∫ 𝑑𝜉

𝜏�(𝑇(𝜉),𝑋(𝑡))
𝑡
0 = 1  (30) 

 
where 𝜏̃(𝑇,𝑋) is the time needed to reach the same fraction of 𝑋 in isothermal condition. The 
incubation time of the transformation can be calculated applying similar hypothesis; 
 
∫ 𝑑𝜉

𝜏𝑠(𝑇(𝜉))
𝑡
0 = 1  (31) 

 
where 𝜏𝑠(𝑇) is the isothermal incubation time corresponding to 𝑋 = 1%  at a given temperature, 
which is simply available in TTT diagrams. Fig.12 shows the schematic representation of the Scheil 
additivity rule. 
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Fig.12: schematic representation of the Scheil additivity rule [32] 

 
It is shown that this additivity hypothesis is valid only if transformation is iso-kinetic. In this 
circumstance, the rate equation can be written as a separate function of 𝑋 and 𝑇 [33] ; 
 
𝑋̇ = 𝑓(𝑋)𝑔(𝑇) (32) 
 
Referring back to Eq.24 and Eq.27, the necessary condition for JMAK and AR models to be written in 
the form of Eq.32 is that the exponents  𝑛 and 𝑚 are to be constant and  𝑏 and 𝑐 are only functions 
of temperature. However, in practice, this condition is rarely satisfied during phase transformation 
process. For instance, the values of 𝑛 in JMAK model obtained from Eq.22 vary markedly with 
temperature, and can hardly be considered as a constant.  
Hawbolt and his co-workers [34] experimentally confirmed that the additivity rule does not hold for 
incubation period and when 𝑛 varies markedly with temperature the application of the additivity rule 
leads to overestimation in calculation of the time needed for completion of pearlitic transformation. 
However, they found that if the incubation period is excluded from the whole transformation period, 
the exponent 𝑛 is virtually constant, leading to an iso-kinetic transformation. It is worthy to note that 
in order to determine the parameters of the JMAK model; several researchers [32] have directly used 
Eq.22 and Eq.23 without taking into account the fraction of error introduced by inclusion of 
incubation period. However, recent study conducted by Zhu et al. [35] showed that the fraction of 
error due to the inclusion of incubation time in calculations is small, despite the fact that according to 
Hawbolt et al. [34] the additivity rule does not hold for incubation period.  

2.4.5 Effects of porosity on the kinetics of transformations 
Porosity may affect the kinetics of transformation by several means. It is known that the most 
effective potential sites for nucleation of the diffusive products are the free surfaces and grain 
boundaries [24]. The porous nature of PM steels implies that this type of materials possess a larger 
amount of potential sites for nucleation process (due to the presence of free surfaces) compared to 
the conventional solid steels. Pores may also inhibit the grain growth at elevated temperatures due 
to the pinning effects [36, 37], leading to relatively smaller grain sizes than it can be found in fully 
dense steels with similar chemical composition, heat treated under the same condition. Warke et al. 
[38, 39] have conducted a detailed study on kinetics of diffusional transformation of a prealloyed PM 
steel. They found that the presence of porosity in PM steels decreases the austenite stability, and 
therefore, the incubation time reduces with increasing porosity content. The metallographic and 
dilatometric results provided in Ref.39 confirm that the presence of porosity can promote both the 
nucleation and growth mechanisms by increasing the amount of potential sites and the effective 
diffusion path in porous steels. Several authors reported a similar trend [40-42].  
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In general, several factors may affect the kinetics of athermal (martensitic) transformation in steels. 
Different aspects of martensitic transformation were discussed in section 2.3.2. It is shown that 𝑀𝑠 is 
highly sensitive to variation of interstitial alloying elements such as carbon and nitrogen. It is also 
shown that 𝑀𝑠 reduces with decreasing the grain size, while the free surfaces can reduce the energy 
barrier for martensitic transformation, leading to an increase in 𝑀𝑠 . Hence, the porous nature of PM 
steels may affect the martensite start temperature by several means, in particular, the larger amount 
of free surfaces and likelihood of carbon fluctuation close to the pores may increase the 𝑀𝑠 by 
several degrees compared to the wrought steels with similar chemical compositions. On the other 
hand, smaller austenite grain size in PM steels may lead to a decrease in martensite start 
temperature. However, as can be seen in Fig.8, the effect of austenite grain size on martensite start 
temperature is significant for grains smaller than 10 𝜇𝑚, which is not usually the case in PM steels, 
and therefore can be neglected.  
Several authors [39, 40] reported the same trend in dependence of 𝑀𝑠 to the level of porosity. In a 
very recent study, Warke et al. [39] experimentally confirmed that the martensite start temperature 
in PM steels increases with increasing the porosity content. Based on these experimental results, 
Semel and Lados [43] suggested that the 𝑀𝑠 in PM steels increases by 2.3℃ per 1% porosity. 

2.5 Constitutive equation and finite element formulation 
In order to study the cooling behavior of a material under a specific condition, it is necessary to solve 
the heat equation. However, except for some simple cases, solving the heat equation requires 
complicated mathematical treatments, and often application of numerical methods such as Finite 
Difference Methods (FDM) and Finite Element Methods (FEM) is inevitable.  
In this part, an attempt is made to provide a brief description of the general form of heat equation, 
including the latent heats of solid phase transformation. Then, the FE formulation of the axi-
symmetric heat equation has been developed, and finally the procedure to couple the phase 
transformation terms has been described. 

2.5.1 Constitutive equation      
Heat equation, in its general form, can describe the temperature distribution within any arbitrary 
region over the time. It can be derived using Fourier's law of heat conduction and the law of 
conservation of energy as [44];  
 
𝜌 𝜕𝐸
𝜕𝑡
− ∇(𝑘∇𝑇) = 0 (33) 

 
where 𝜌, 𝑘, 𝑇 and 𝑡 are density, thermal conductivity, temperature and time, respectively. 𝐸 is the 
specific internal energy. There may exist a differentiable function 𝑒, representing the specific internal 
energy within the material as; 
 
𝐸(𝑥, 𝑡) = 𝑒(𝑇,𝑋𝑖) (34) 
 
where 𝑋𝑖=1,2,3,4  correspond to volume fractions of ferrite, pearlite, bainite and martensite phases, 
respectively. Differentiating Eq.34 with respect to the internal variables gives; 
 
𝜕𝑒
𝜕𝑇

= 𝑐     and      𝜕𝑒
𝜕𝑋𝑖

= −𝑞𝑖   
 
where 𝑐 is the specific heat and 𝑞𝑖 represents the latent heats of 𝑖𝑡ℎ solid transformation. Thus, the 
general form of heat equation in two dimensional Cartesian coordinate system may be written as; 
 
𝜌(𝑇)𝑐(𝑇) 𝜕𝑇

𝜕𝑡
= 𝜕

𝜕𝑥
�𝑘(𝑇) 𝜕𝑇

𝜕𝑥
� + 𝜕

𝜕𝑦
�𝑘(𝑇) 𝜕𝑇

𝜕𝑦
� + ∑𝜌𝑖(𝑇)𝑞𝑖(𝑇) 𝜕𝑋𝑖

𝜕𝑡
       in region Ω (35) 
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As shown in Eq.35, in general, all the thermal properties can be temperature dependent. The 
boundary and initial conditions may be given as;  
 
−𝑘 𝜕𝑇

𝜕𝑛
= ℎ𝑐(𝑇)(𝑇 − 𝑇∞) + 𝜎𝜖(𝑇)(𝑇4 − 𝑇∞4)     along 𝛤 for air cooling (36) 

 
−𝑘 𝜕𝑇

𝜕𝑛
= ℎ𝑐(𝑇)(𝑇 − 𝑇∞)                                        along 𝛤 for water/oil quenching (37) 

 
𝑇0 = 𝑇(𝑥, 𝑦, 0)             at   𝑡 = 0 in region Ω  (38) 
 
where ℎ𝑐 is the convective heat transfer coefficient, 𝜎 is the Stefan–Boltzmann constant (56.7 
W/mm.K), 𝜀 is the radiation emissivity of the surface and 𝑇∞ is the ambient temperature. Both ℎ𝑐 
and 𝜀 can be a function of temperature. The radiative part of Eq.36 can be written as; 
 
𝜎𝜖(𝑇)(𝑇4 − 𝑇∞4) = 𝜎𝜖(𝑇)(𝑇2 + 𝑇∞2)(𝑇 + 𝑇∞)(𝑇 − 𝑇∞) = ℎ𝑟(𝑇)(𝑇 − 𝑇∞)  (39) 
 
Therefore, Eq.36 may be expressed as; 
 
−𝑘 𝜕𝑇

𝜕𝑛
= ℎ𝑐(𝑇)(𝑇 − 𝑇∞) + ℎ𝑟(𝑇)(𝑇 − 𝑇∞) = ℎ𝑟𝑐(𝑇)(𝑇 − 𝑇∞) (40) 

 
where, ℎ𝑟𝑐 is often called the combined heat transfer coefficient, including both the radiative and 
convective parts.  Eq.36 in cylindrical coordinate system takes the following form; 
 

𝜌(𝑇)𝑐(𝑇) 𝜕𝑇
𝜕𝑡

= 𝑘(𝑇)(1
𝑟
𝜕
𝜕𝑟
�𝑟 𝜕𝑇

𝜕𝑟
� + 𝜕2𝑇

𝜕𝑧2
) + ∑𝜌𝑖(𝑇)𝑞𝑖(𝑇) 𝜕𝑋𝑖

𝜕𝑡
  (41) 

 
It is worthy to note that Eq.35 and Eq.41 are both based on an assumption that the temperature 
gradient in the thrid direction is negligible. nontheless, these equations have many practical uses. As 
an example, the temperature distribution of the cylindrical geometries such as rings can be estimated 
with a reasonable precision using Eq.41. Fig.13 shows 3D geometry which can be simplified to a 2D 
axi-symmetric domain, provided that the boundray conditions are also axi-symmetric.   
 

 

 
Fig.13: an illustrative 3D model which can be treated as a 2D domain according to axi-symmetric FE formulation 

 

2.5.2 FE Formulation      
In general, Eq.41 (or Eq.35) cannot be solved analytically, and therefore, application of numerical 
methods to obtain the temperature distribution is inevitable. FEM is a powerful numerical tool for 
solving Partial Differential Equations (PDE) such as Eq. 41, within any arbitrary domain with nonlinear 

2D domain 

Axis of rotation 
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boundary and initial conditions. In this part, only a brief description of the FE formulation is provided, 
and an interested reader is referred to Ref.45 for more detailed treatments.  
The weak form of Eq.41 is derived by multiplying it by an arbitrary weight function, 𝜔, and using 
divergence theorem to incorporate the boundary conditions;    
 

�𝜔𝜌𝑐
𝜕𝑇
𝜕𝑡

 

𝛺

𝑟𝑑𝑟𝑑𝑧 + �𝑘(
𝜕𝜔
𝜕𝑟

 

𝛺

𝜕𝑇
𝜕𝑟

+
𝜕𝜔
𝜕𝑧

𝜕𝑇
𝜕𝑧

)𝑑𝑟𝑑𝑧 

                                +∫ 𝜔𝑟ℎ𝑟𝑐( 
𝛤 𝑇 − 𝑇∞)𝑑𝛤 − ∫ 𝜔∑𝜌𝑖𝑞𝑖

𝜕𝑋𝑖
𝜕𝑡

 
𝛺 𝑟𝑑𝑟𝑑𝑧 = 0  (42) 

 
Application of the standard procedure of FE discretization, Eq.42 takes the general form of; 
 
𝐶𝑇̇ + 𝐾𝑇 = 𝑅   (43) 
 
where 𝐶 is the heat capacity matrix, 𝑅 is the vector of thermal loads and 𝐾  represents the stiffness 
matrix. In order to obtain the temperature at new times, the so-called 𝜃-method scheme can be used 
[45]; 
 

𝑇̇ = 𝑇𝑗+1−𝑇𝑗

∆𝑡
 (44) 

 
where 𝑇𝑗 = 𝑇(𝑟, 𝑧, 𝑡𝑛) is the temperature at time step 𝑗 corresponding to time 𝑡 = 𝑡𝑗  , and ∆𝑡 is the 
time increment. Thus, having known the temperature at current time, it is possible to calculate the 
temperature in the next time step. By introducing the relaxation parameter 0 < 𝜃 < 1, the absolute 
temperature can be obtained as; 
 
𝑇 = 𝜃𝑇𝑗+1 + (1 − 𝜃)𝑇𝑗  (45) 
 
It is worthy to note that for 𝜃 ≥ 1

2
, the numerical algorithm is unconditionally stable. In this work, 

𝜃 = 2
3
  is assumed. Inserting Eq.45 and Eq.44 into Eq.43, we have; 

 

�𝜃𝐾 + 1
∆𝑡
𝐶� 𝑇𝑗+1 = �(𝜃 − 1)𝐾 + 1

∆𝑡
𝐶� 𝑇𝑗 + 𝑅  (46) 

 
𝐾, 𝐶 and 𝑅, in general, can be a function of temperature. This means that Eq.46 cannot be solved 
using direct FE methods. Thus, it needs to be written in a form of force-balance vector; 
 

𝑔�𝑇𝑗+1� = �𝜃𝐾𝑗+1 + 1
∆𝑡
𝐶𝑗+1� 𝑇𝑗+1 − �(𝜃 − 1)𝐾𝑗+1 + 1

∆𝑡
𝐶𝑗+1� 𝑇𝑗 − 𝑅𝑗+1 = 0  (47) 

 
where 𝐾𝑗+1, 𝐶𝑗+1 and 𝑅𝑗+1 are stiffness matrix, heat capacity matrix and load vector at temperature 
𝑇𝑗+1. In time step 𝑗, 𝑇𝑗  is known and 𝑇𝑗+1 is sought. There are several numerical methods to find the 
roots of Eq.47. Newton iteration scheme is one of the most powerful methods to solve the nonlinear 
system of equations [45] that can be expressed as;   
 

�
𝐽𝑚
𝑗+1∆𝑇𝑚+1

𝑗+1 = −𝑔𝑚
𝑗+1

 
𝑇𝑚+1
𝑗+1 = 𝑇𝑚

𝑗+1 + ∆𝑇𝑚+1
𝑗+1

� (48) 

 
where 𝑚 is the iteration number in 𝑗𝑡ℎ time step, and 𝐽 is the Jacobian matrix (or derivative matrix) at 
𝑇𝑗+1; 
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𝐽�𝑇𝑗+1� = �𝜃𝐾𝑗+1 + 1
∆𝑡
𝐶𝑗+1� + �𝜃 𝜕𝐾𝑗+1

𝜕𝑇𝑗+1
+ 1

∆𝑡
𝜕𝐶𝑗+1

𝜕𝑇𝑗+1
� 𝑇𝑗+1  

                                                      −�(𝜃 − 1) 𝜕𝐾
𝑗+1

𝜕𝑇𝑗+1
+ 1

∆𝑡
𝜕𝐶𝑗+1

𝜕𝑇𝑗+1
� 𝑇𝑗 − 𝜕𝑅𝑗+1

𝜕𝑇𝑗+1
   (49) 

 
In each time increment, a virtual temperature (𝑇), starting from 𝑇𝑗, is updated using the scheme 
given in Eq.48, until the force balance vector lies below an error limit, consequently;  
 
If ‖𝑔(𝑇)‖ < 𝜀  then 𝑇𝑗+1 = 𝑇   
 
In this work, four-node isoparametric element is used. Using isoparametric formulations, the four-
node plane element can be applied to any arbitrary domain. This concept is based on mapping the 
four-node element with non-parallel sides (with the global coordinate system) to a new coordinate 
system in such a way that the sides of the rectangular element become parallel to the coordinate 
axes in new system, as shown in Fig. 14. This ensures that the compatibility criterion for the element 
is met. Interested reader is referred to Ref.45 for more details on this type of elements. 
 

 
Fig.14: Isoparametric mapping of a four node plane element in global coordinate system (Left) to the 𝝃𝜼 space (right) [45]   

2.5.3 Incorporating the phase transformation terms  
This section deals with incorporating the phase transformation models into the weak formulation, 
Eq.42. As pointed out earlier, the thermal load vector (𝑅) in Eq.43 includes the terms concerning both 
the boundary conditions and the latent heat of phase change; 
 
𝑅 = ∫ 𝜔𝑟ℎ𝑟𝑐

 
𝛤 𝑇∞𝑑𝛤 + ∫ 𝜔∑𝜌𝑖𝑞𝑖

𝜕𝑋𝑖
𝜕𝑡

 
𝛺 𝑟𝑑𝑟𝑑𝑧 (50) 

 
At constant pressures, the latent heats of transformation may be replaced by the enthalpy 
changes (𝜌𝑞 ≡ ∆𝐻);  
 
𝑅 = ∫ 𝜔𝑟ℎ𝑟𝑐

 
𝛤 𝑇∞𝑑𝛤 + ∫ 𝜔∑∆𝐻𝑖

𝜕𝑋𝑖
𝜕𝑡

 
𝛺 𝑟𝑑𝑟𝑑𝑧  (51) 

  
As before, 𝑖 = 1,2,3,4 represents ferrite, pearlite, bainite and martensite phases, respectively. Thus, 
for instance, ∆𝐻1 denotes the enthalpy change of austenite to ferrite transformation. When the time 
increments are infinitesimally small, one may make the following assumption; 
 
𝑅 = ∫ 𝜔𝑟ℎ𝑟𝑐

 
𝛤 𝑇∞𝑑𝛤 + ∫ 𝜔∑∆𝐻𝑖

∆𝑋𝑖
∆𝑡

 
𝛺 𝑟𝑑𝑟𝑑𝑧  (52) 
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in which, it is assumed that; 
 

 𝜕𝑋𝑖
𝜕𝑡

≅ ∆𝑋𝑖
∆𝑡

= 𝑋𝑖
𝑗+1−𝑋𝑖

𝑗

∆𝑡
   (53) 

 
In Eq.53, 𝑋𝑖

𝑗+1 represent the volume fraction of phase 𝑖 at time step 𝑗 + 1. It is also necessary to 
update the thermal properties during the phase transformation process. Having known the amount 
of each phase in time step 𝑗, the thermal properties can be calculated using the rule of mixture; 
 

𝜌𝑐 = � 𝑋𝑖𝜌𝑖𝑐𝑖
𝑖=1,2,3,4,𝛾

 

    

𝑘 = � 𝑋𝑖𝑘𝑖
𝑖=1,2,3,4,𝛾

 

 
Both JMAK and AR models can be used to predict the amount of diffusive transformations, however 
in following paragraphs; the focus is put on implementation of the JMAK model.  
According to Scheil’ principle (see section 2.4.4), the kinetics of transformation under anisothermal 
condition can be approximated by means of infinitesimally small isothermal increments. Fig.15 shows 
the incremental time approach.  
 

 
Fig.15: additivity rule, fictitious time [46] 

  
Assuming that the volume fraction of phase 𝑖 at the temperature 𝑇𝑗−1 is known, the transformation 
time can be obtained by summation of the time increment, ∆𝑡, and a fictitious time, 𝑡∗, needed to 
gain the same fraction of phase 𝑖 at the current temperature, 𝑇𝑗, i.e.; 
 
𝑡𝑗 = ∆𝑡 + 𝑡𝑗∗ 
 
where  𝑡∗ may, for instance,  be calculated by means of JMAK model (Eq.21) as; 
 

𝑡𝑗∗ = �
ln ( 1

1−𝑋𝑖,𝑗−1
)

𝑘(𝑇𝑗)
�
1/𝑛(𝑇𝑗)

  (54) 

 
However, when cooling from the austenitic region, depending on the chemical composition of the 
steel, various diffusive phases may form. Obviously, during the transformation, the fraction of the 
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austenite reduces and the new products can only be formed from the remaining austenite phase. 
Therefore, to take into account this fact, the value of 𝑋𝑖,𝑗−1 in Eq.54 needs to be replaced by; 
 
𝐹𝑖,𝑗−1 = 𝑋𝑖,𝑗−1

𝑋𝑖,𝑗−1+𝑋𝛾,𝑗−1
 (55) 

 
where 𝑋𝛾,𝑗−1 is the volume fraction of austenite at time step 𝑗 − 1. Then Eq.54 takes the form; 
 

𝑡𝑗∗ = �
ln ( 1

1−𝐹𝑖,𝑗−1
)

𝑘(𝑇𝑗)
�
1/𝑛(𝑇𝑗)

  (56) 

 
Then, by application of Eq.56, the fictitious volume fraction of phase 𝑖 at the end of time step 𝑗 can 
be calculated by insertion of the modified 𝑡𝑗  into Eq.21; 
 

𝐹𝑖,𝑗∗ = 1 − exp (−𝑘�𝑇𝑗�𝑡𝑗
𝑛�𝑇𝑗�)   (57) 

 
and eventually, the volume fraction of phase 𝑖 at the end of time step 𝑗 can be obtain as; 
 
𝑋𝑖,𝑗 = 𝐹𝑖,𝑗∗ (𝑋𝑖,𝑗−1 + 𝑋𝛾,𝑗−1)       𝑓𝑜𝑟 𝑖 = 1,2,3   (58) 
 
The incubation time of diffusive transformations may also be calculated by means of Eq.31, which 
can be approximated for the infinitesimally small time increments as 
 
𝑄 = ∫ 𝑑𝜉

𝜏𝑠(𝑇(𝜉))
𝑡
0 ≈ ∑ ∆𝑡𝑗

𝜏𝑠(𝑇𝑗)
   (59) 

 
It is assumed that the transformation starts when 𝑄 ≥ 1. In the case of martensitic transformation, 
Koistenen-Marburger equation (Eq.18) can be used. Like diffusive transformation products, 
martensite can only be developed from the untransformed austenite. Therefore, Eq.18 needs to be 
modified for the multiphase systems as; 
 
𝑋4,𝑗  = �1 − exp �−0.011�𝑀𝑠 − 𝑇𝑗��� �1 − ∑𝑋𝑖,𝑗�      𝑓𝑜𝑟 𝑖 = 1,2,3   (60) 
 
Fig.16 shows the numerical steps in FE implementation of the heat equation incorporating the solid 
phase transformations.   
 



 

23 
 

 
Fig.16: The algorithm applied for the numerical implementation of the heat equation incorporating the effects 

of phase transformation (After Nobari [27] with some modification) 
 

2.5.4 Incorporating the effects of porosity in the developed FE model 
Porosity content affects the cooling rates and final microstructure through its effects on thermal 
properties and kinetics of transformations. The effects of porosity on kinetics of transformations 
were discussed in section 2.4.5. Here, the influence of porosity on thermal properties involved in FE 
modeling has been studied. 
Heat capacity is independent of porosity content [47], and therefore in this work, it is assumed that it 
only varies with temperature for each phase. On the other hand, thermal conductivity and density 
decrease with increasing porosity content. The density can be corrected for PM steels as; 
 
𝜌𝑠 = (1 − 𝜀)𝜌𝑚  (61) 
 
where 𝜌𝑠 is the density of sintered component, 𝜌𝑚 is the density of fully dense material and 
𝜀 represents the total volume of porosity. Many relations have been proposed to relate thermal 
conductivity of the PM steels to the amount of porosity. Koh and Fortini [48] evaluated different 
relations and concluded that the best fit to experimental data for a wide range of porosity is obtained 
by the following equation: 
 
𝑘𝑠
𝑘𝑚

= 1−𝜀
1+𝜒𝜀2

  (62) 
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where 𝑘𝑚  and 𝑘𝑠 represent the thermal conductivity of the fully dense and the sintered material and 
𝜒 is a constant that depends on manufacturing characteristics of porous material, contamination of 
material during different sintering process and accuracy of porosity-conductivity measurements. Koh 
and Fortini have shown that by application of 𝜒 = 11, this model can be used to relate the thermal 
conductivity of steel powders (301 and 304L stainless steels powders) to the amount of porosity with 
a reasonable accuracy. In this work, the same value for 𝜒  has been considered. As can be seen in 
Fig.17, for the industrial level of porosity(≈ 10%), the linear equation (1 − 2.1𝜀) fits the 
experimental data with reasonable accuracy, and therefore it can be used instead of Eq.62. The 
enthalpy changes of solid transformations also need to be modified as; 
 
∆𝐻𝑠(𝐽 𝑚3⁄ ) = (1 − 𝜀)∆𝐻𝑚(𝐽 𝑚3⁄ )  (63) 
 
Where ∆𝐻𝑠 and ∆𝐻𝑚 are the enthalpy changes of solid transformations for sintered and fully dense 
components, respectively.  
 

 
Fig.17: Comparison of experimental data and three different 
relations proposed for thermal conductivity of PM parts [48] 
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3. RESULTS 
In this work, a 2D axi-symmetric FE model has been developed using MATLAB to predict the cooling 
response, considering the effects of nonlinear boundary conditions, latent heat generated during 
phase transformation and nonlinear thermal properties. By means of the established algorithm 
described in section 2.5.3, it is possible to simulate the effects of phase transformation when cooling 
from sintering temperatures. However, when implementing the numerical steps, each needs to be 
verified separately to ensure that the whole concept is valid. Thus, at first, an attempt has been made 
to verify the time and space discretization methods, irrespective of the phase transformation effects. 
Then, in the second step, the effects of phase transformation has also been included and the results 
has been verified by means of the published experimental and numerical results presented for the 
water quenching of a specimen with eutectoid composition. Finally, the approved algorithm has been 
applied to simulate the cooling response and microstructure development in PM steels. 

3.1 Verification of the FE code excluding the phase transformation effects 
This section deals with verification of the developed FE code while disregarding the effects of phase 
transformation. The aim is to ensure the accuracy in time and space discretizations and the validity of 
the iterative method. In this step, the Jominy test has been simulated using the current FE code, since 
there also exist an analytical solution for comparison if it is assumed that the effects of phase 
transformation are negligible, at least where the martensitic transformation takes place ( i.e. close to 
the surface). ANSYS commercial code has also been used for comparison. Assuming that the Jominy 
bar can be treated as a semi-infinite plate, exposing to convective boundary condition from one side, 
there is a 1D analytical solution as [44]; 
 
𝑇(𝑥,𝑡)−𝑇𝑖
𝑇∞−𝑇𝑖

= 𝑒𝑟𝑓𝑐 � 𝑥
2√𝛼𝑡

� − �exp (ℎ𝑥
𝑘

+ ℎ2𝛼𝑡
𝑘2

)� �𝑒𝑟𝑓𝑐( 𝑥
2√𝛼𝑡

+ ℎ√𝛼𝑡
𝑘

)�   (64) 

 
Therefore, the temperature at different times and locations in the bar, 𝑇(𝑥, 𝑡), can be obtained if its 
value is known at the previous time step. In Eq.64, 𝑇𝑖 and 𝑇∞ are the initial and ambient 
temperatures, respectively. ℎ ,𝑘 and 𝛼 represent the heat transfer coefficient, thermal conductivity 
and thermal diffusivity and 𝑒𝑟𝑓𝑐 is the complementary error function.  
Here, for all analyses, 900℃ is assumed as the initial temperature and the convection boundary 
condition for water quenching given in [49] is applied to the bottom edge of the model, 𝑥 = 0. 
MATLAB fitting toolbox has been used to express it in a form of a polynomial; 
 

ℎ(𝑇) = �
20                                                                                                               𝑇 < 225 ℃

−2.11 × 10−9𝑇4 + 3.78 × 10−6𝑇3 − 0.00217𝑇2 + 0.555𝑇 − 32.47 225℃ < 𝑇 < 800℃
92.5                                                                                                              𝑇 > 800℃

�  

 
Temperature dependent thermal properties of a typical low alloy steel have been used as the input 
for these analyses [50]. Fig.18 and Fig.19 show the temperature distribution within the bar, 
comparing the results obtained from the current FE code and ANSYS software. Fig.20 and Fig.21 show 
the comparison between the numerical results and analytical solution at the surface, 𝑥 = 0 and at 5 
mm distance from the quenched surface.  As can be seen, there is a good correlation between the 
numerical and analytical results, approving the validity of the established FE code. 
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Fig.18: The Temperature distribution obtained from the MATLAB code after a:25 sec., b:100 sec., c:300 sec. 

 
 
 

 
Fig.19: The Temperature distribution obtained from ANSYS after 100 sec. 

 
 

a) b) c) 
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Fig.20: comparison between different tools used for simulation of cooling response of the PM steel on surface, x=0 

 
 
 

 
Fig.21: comparison between different tools used for simulation of cooling response of the PM steel, 5 mm from the 

cooling surface 
 

3.2 Verification of the FE code including the phase transformation effects 
The effects of phase transformation, in particular, the latent heat of solid transformations can be 
included in numerical analysis by fully implementation of the algorithm shown in Fig.16, section 
2.5.3. In this step, an attempt is made to verify the established FE code with experimental and 
numerical results already available for solid steels. Thus, the results of the current model have been 
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compared with the experimental and numerical results reported in Ref.51 and Ref.52, in which 
similar hypothesis was established to simulate the water quenching process of a cylindrical specimen 
with eutectoid composition, 1080 carbon steel. Fig.22 shows the dimensions of the specimen, and 
the position of the holes drilled to attach the thermocouples. Due to the symmetry of the specimen, 
only a half of the cylinder has been modeled, to reduce the computational time. Fig.23 and Fig.24 
show the TTT diagram for 1080 carbon steel and the temperature dependent convective boundary 
condition has been calculated using inverse iterative method [51]. The austenitizing temperature and 
the quenchant temperature are assumed 850℃ and 22.5℃, respectively. The temperature 
dependent thermal properties for austenite, pearlite and martensite have also been reported in 
Ref.52. Similar values are used for current simulations. The following enthalpy changes for solid 
transformations are used in this step; 
 
∆𝐻𝑃  (𝐽 𝑚3) = 1.56𝑒9 − 1.5𝑒6 × 𝑇(℃)⁄  
  
∆𝐻𝑀 (𝐽 𝑚3) = 640𝑒6⁄  
 

 
Fig.22: specimen dimensions and the position of the thermocouples [52] 

 

  
Fig.23: TTT diagram of 1080 eutectoid steel [52] Fig.24: temperature dependent convective boundary condition [51] 
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Fig.25 shows the comparison between the results of the current FE simulation and the experimental 
and numerical results reported in Ref.52. The meshed model, which can also be seen in Fig.25, is a 
section from quarter of the cylinder shown in Fig.22. Points O and B are located at the center and on 
the surface, respectively. Fig.26 shows the comparison between cooling profiles obtained using AR 
and JMAK models. The distribution of temperature, martensite and pearlite phases at various times 
are shown in Fig.27 to Fig.29. 
 

 
Fig.25: Temperature profile on cooling from austenitizing temperature 850C for point O and B, comparison between 

experimental data and present FE simulation, O: center and B: surface 
 

 
Fig.26: The comparison between AR and JMAK models 

AR model 

Experiment [30] 
JMAK model 

Experiment [30] 

Present FE simulation 
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Fig.27:Temperature (℃) distribution within the cylinder after quenching a)5 sec. b)15 sec. c)100 sec. 

 
 
 

   
Fig.28:Martensite volume fraction after quenching  a)5 sec. b)15 sec. c)100 sec. 

 
 
 

   
Fig.29:Pearlite volume fraction after quenching  a)5 sec. b)15 sec. c)100 sec. 

 

(a) (b) (c) 

(a) (b) (c) 

(a) (b) (c) 
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The distribution of the phases along the radius of the sample after 100 second cooling in water is 
shown in Fig.30. The comparison between the results obtained by both AR and JMAK models has also 
been shown in this figure.  
 

 
Fig.30: The distribution of different phases along the radius of the sample after 100 sec. cooling in water, 

comparison between AR and JMAK models 
 

 
Fig.31: Distribution of hardness vs. radial distance from the center. Comparison between experimental and 

calculated results 
 
The calculated and experimental hardness distribution over the radius of the specimen is shown in 
Fig.31. Woodard et al. [51] assumed constant hardness values for pearlite, martensite and residual 
austenite, regardless of cooling rates. The model developed by Maynier [53], on the other hand, 
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considers both the effects of cooling rates and alloying content on the hardness values for each 
phase. However, Fig.31 shows that the latter model cannot predict the pearlite hardness accurately. 
When more than two phases are transformed, linear rule of mixture is used to calculate the hardness 
values. It should be noted that in order to obtain the hardness distribution shown in Fig.31, JMAK 
model is used for kinetics of pearlitic transformation.  

 

3.3 Cooling response in Astaloy CrL+0.6%C and Astaloy CrL+0.8%C 
The same hypothesis can be applied to simulate the cooling response and microstructure 
development of PM steels, when the effect of porosity on kinetics of transformation and material 
properties is considered.  In this work, only the effect of porosity on physical properties has been 
taken into account, due to the need for extensive experimental data to include the effects of porosity 
on kinetics of transformations.  
The heat transfer coefficient (HTC) is calculated in such a way that the cooling rates in range 1120℃ 
to 700℃ becomes constant. However, below this temperature range, depending on the cooling rates 
and the kinetics of transformation, different phases may form, leading to release of latent heat of 
transformation. Here, an attempt is made to study the effects of heat release on the final 
microstructure.  
Under certain circumstances, when the thermal gradient inside the specimen is negligible, the heat 
transfer coefficient can be determined by combining the Newton’s law of cooling and Fourier's law of 
conduction [44]; 
 
ℎ = − 𝜌𝑉𝐶𝑃

𝐴(𝑇−𝑇∞)
𝑑𝑇
𝑑𝑡

  (65) 

 
where 𝑉 and 𝐴 are the volume and the surface area of the workpiece, respectively, and 𝑇∞ 
represents the ambient temperature. Biot number gives an index for the significance of thermal 
gradient inside a body;  
 
𝐵𝑖 = ℎ𝐿

𝑘
   (66) 

 
where 𝐿, ℎ and 𝑘 represent the volume to area ratio, heat transfer coefficient and thermal 
conductivity. For 𝐵𝑖 < 0.1, the temperature gradient inside the body can be neglected, and 
therefore, Eq.65 can be used to calculate the heat transfer coefficients. The primarily calculations 
showed that the Biot number for a cylindrical specimen with 20 mm in diameter and 10 mm in length 
is significantly small (𝐵𝑖 = 0.04) for typical carbon steels, cooled in an environment with heat 
transfer coefficient as high as 500 𝑊/𝑚2𝐾, which is, in fact, 2 to 3 times higher than the actual 
condition within the industrial furnaces. Therefore, similar dimensions are used for FE modeling to 
maintain certain cooling rates unchanged during simulation of sinter hardening process when the 
corresponding calculated values of heat transfer coefficients are applied on the boundaries of the FE 
model. 
JMatPro software has been used to obtain the thermal properties of a wrought steel with chemical 
composition similar to Astaloy CrL+0.6%C. (1.5 %Cr, 0.2 %Mo, Fe-Bal. (wt.%)). The temperature 
dependent specific heat capacities and thermal conductivities of different phases are shown in 
Table.1 and Table.2. In order to determine the values of heat transfer coefficients in range 1120 ℃ to 
700 ℃, the properties given in these tables need to be modified for a certain level of porosity. In this 
work, the sintering density is assumed 7 𝑔 𝑐𝑚3⁄ , equivalent to 10% porosity. 
 

Phase  𝜌𝐶𝑃  (𝐽 𝑚3𝐾⁄ ) 
Austenite  0.00059𝑇3 − 1.3809𝑇2 + 1916𝑇 + 3618814                                                                  𝑇 < 1120℃ 
Pearlite/Bainite 0.00002𝑇4 − 0.0199𝑇3 +  8.2598𝑇2 + 1389.2666𝑇 + 3653622                                𝑇 < 760℃ 
Martensite −0.06083𝑇2 +  3103.42115𝑇 +  3396258                                                                        𝑇 < 300℃ 

 Table.1: Temperature dependent specific heat capacity for different phases in solid steel with Astaloy CrL composition 
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Phase  𝑘  (𝑊 𝑚 𝐾⁄ ) 
Austenite 0.01269𝑇 +  16.6340                                                                                                              𝑇 < 1120℃ 
Pearlite/Bainite 0.0000000332𝑇3 − 0.00004𝑇2 − 0.000642𝑇 + 39.94                                                   𝑇 < 760℃ 
Martensite 0.0000002263𝑇3 − 0.0001479𝑇2 +  0.00803027𝑇 + 42.5562                                  𝑇 < 300℃ 

Table.2: Temperature dependent thermal conductivity for different phases in solid steel with Astaloy CrL composition 
 
 

 
Fig.32: TTT diagram for Astaloy CrL+0.6%C 

 
 
 

 
Fig.33: TTT diagram for Astaloy CrL+0.8%C 
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It is assumed that the enthalpy changes of solid transformations in fully dense Astaloy CrL are similar 
to those given in section 3.2. However, like the other material properties, the enthalpy changes have 
also been modified to cover the effects of porosity. Fig.32 and Fig.33 show the experimental TTT 
diagrams for Astaloy CrL+0.6%C and Astaloy CrL+0.8%C, respectively. The best fitted curves are also 
shown in these figures. 
 

 
Fig.34: cooling profiles obtained for constant cooling rates in range 1120 ℃-700 ℃, Astaloy CrL+0.8%C, 10% porosity. CR 

stands for cooling rate. The arrows show the transformation start times and temperatures 
 
 

 
Fig.35: cooling profiles obtained for constant cooling rates in range 1120 ℃- 700 ℃, Astaloy CrL+0.6%C, 10% porosity. CR 

stands for cooling rate. The arrows show the transformation start times and temperatures 
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Fig.34 shows the calculated cooling profiles for Astaloy CrL+0.8%C including 10% porosity. The 
convective boundary conditions applied on the FE model are calculated by Eq.65 to attain constant 
cooling rates in range 1120 ℃ to 700 ℃. In Fig.34, CR stands for cooling rates. The transformation 
start times and temperatures are also shown in this figure. The calculated cooling profiles for Astaloy 
CrL+0.6%C including 10% porosity is shown in Fig.35.   
Fig.36 shows the simulated CCT diagram using the concept introduced by Scheil (see section 2.4.4) 
and the experimental TTT diagram shown in Fig.32. The experimental starting transformation times 
of pearlite and bainite are also shown in this figure for comparison. 
 
 

Fig.36: dilatometric and calculated CCT diagram for Astaloy CrL+0.6%C 
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4. DISCUSSION: 

4.1 Verification routine 
In section 3.1, the accuracy of the time and space discretization method was evaluated. Fig.20 and 
Fig.21 shows the comparison between the results obtained by the established FE code, ANSYS 
software and the analytical solution of the heat equation for semi-infinite plates. As can be seen in 
these figures, the maximum temperature difference between the results of the present model and 
ANSYS software are less than 5% at 𝑥 = 0 and less than 2% at 𝑥 = 5𝑚𝑚. In section 3.2, the effects of 
phase transformation was included. In order to ensure the accurate implementation of the numerical 
algorithm shown in Fig.16, the results of the current model were compared with those presented in 
Ref.52.  As shown in Fig.25, the result of the present model is in close agreement with experimental 
and numerical results reported in Ref.52. The numerical results show that the present model can 
accurately predict the hump due to the heat release of pearlitic transformation. The difference 
between the numerical and experimental results is probably due to inaccuracy in thermal and 
physical properties of each phase, inaccuracy in boundary conditions and inconsistency between the 
grain size and the chemical composition of the specimen and the TTT diagram used for FE simulation. 
Fig.30 and Fig.31, respectively, show the distribution of the phases and the hardness values (HRC) 
along the symmetry axis OB, shown in Fig.25. As can be seen in Fig.31, the model proposed by 
Maynier [53] underestimates the hardness values of pearlite in plain carbon steels. However, the 
results show that the model can fairly predict the transition region between pearlite and martensite 
phases inside the cylinder. Knowledge of the achievable hardness for a given component size and 
heat treatment condition (as shown in Fig. 31) could be of great importance for designers at the early 
stages of the product development as well as for process engineers when deciding for the correct 
heat treatment procedure. 
 
The phase distribution illustrated in Fig.30 shows that the Asutin-Rickett (AR) model predicts a faster 
completion for pearlitic transformation compared to the JMAK model. This can also be understood 
from Fig.26. The hump in the cooling profile that is obtained by means of the AR model shrinks 
faster, leading to a larger deviation from experimental data afterward. The difference between 
cooling profiles predicted by AR and JMAK models is, in fact, due to the difference in volume 
fractions of each phase, and its influence on the overall thermal/physical properties during cooling. 
 

4.2 FE modeling of cooling response in Astaloy CrL PM Steel 
In this work, the cooling response of Astaloy CrL with two carbon content was simulated. The TTT 
diagrams of these alloys are shown in Fig.37. These TTT diagrams are produced experimentally by 
Höganäs AB. The effect of carbon content on incubation times of pearlitic and bainitic transformation 
is not similar. As expected, the bainite nose is shifted to later times with increasing carbon addition, 
(hardenability increases with carbon addition), while the position of pearlite nose remains 
unchanged. This is probably due to carbon depletion at higher temperatures, or inaccuracy in 
microstructure analyses/dilatometric measurements. However, as can be seen in Fig.34 and Fig.35, 
for the industrial range of cooling rates in sinter hardening process (2℃/𝑠 < 𝐶𝑅 < 4℃/𝑠), the final 
structure is generally bainitic and/or martensitic. The results of current FE simulations showed that 
the structure of Astaloy CrL+0.8%C is fully martensitic for cooling rates greater than 5 ℃/𝑠, whereas  
according to the simulated CCT diagram shown in Fig.36, for Astaloy CrL+0.6%C a fully martensitic 
microstructure is acquired by applying cooling rates higher than 15 ℃/𝑠. As can be seen in Fig.36, the 
simulated CCT diagram by application of Scheil’s principle is in good agreement with dilatometric 
data. 
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Fig.37: TTT diagrams of Astaloy CrL+0.6%C and Astaloy CrL+0.8%C (𝜌 ≈ 7 𝑔 𝑐𝑚3⁄ ) 

 

4.3 Considerations for PM steels 
In sections 2.4.5 and 2.5.4, the effects of porosity on kinetics of transformation and physical 
properties were discussed in detail. It is shown that the porosity may affect the kinetics of diffusive 
transformation by increasing the number of potential sites for nucleation and by providing the 
additional diffusion path inside the material [38]. In addition, the dilatometric analyses conducted by 
Warke et al. [39] showed that porosity affects the kinetics of martensitic transformation in PM steels; 
𝑀𝑠 increases with increasing the porosity content. It is speculated that this increase may be due to 
the carbon loss during sintering process and/or assisting effects of pore free surfaces on reducing the 
energy barrier necessary for martensitic transformations. Porosity also affects the cooling behavior 
by reducing the density and thermal conductivity according to Eq.61 and Eq.62. It is known that in 
PM steels, the cooling rates increases with increasing the porosity content [50]. Hence, in order to 
simulate the cooling response and microstructure development in PM steels, the material properties 
and transformation diagrams are to be modified for a specific level of porosity. Hatami et al. [50] 
showed that the influence of porosity on the cooling response can be simulated by application of 
Eq.61 and Eq.62. However, in order to take into account the effects of porosity on transformation 
kinetics, the models described in section 2.4.1 and section 2.4.4 are to be corrected for porosity. An 
obvious influence of porosity is to shorten the incubation period of diffusional transformations; 
which means that in PM steels the TTT diagram shifts to the earlier times with increasing the 
porosity. Supposing that the TTT diagrams for a specific level of porosity is available, the incubation 
time of transformation for a material with different porosity content can be estimated by modifying 
Eq.31 (see section 2.4.4); 
 
∫ 𝑑𝜉

(𝜀𝑇𝑇𝑇𝜀 )𝑞𝜏𝑠(𝑇(𝜉))
𝑡
0 = 1  (67) 

 
where  𝜏𝑠 is the starting time of transformation at a given temperature and level of porosity.  𝜀𝑇𝑇𝑇 is 
the porosity content of the sample which the TTT diagram is produced for, and 𝜀 is the porosity 
content of the component under study. 𝑞 is an exponent which is different for ferrite, pearlite and 
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bainite transformations due to the different effects of porosity on nucleation process. The probable 
effects of porosity on growth mechanisms can also be taken into account by modifying the JMAK 
model (Eq.21); 
 
𝑋 = 1 − exp (−𝑘(𝑇)( 𝜀

𝜀𝑇𝑇𝑇
)𝑝𝑡𝑛)  (68) 

 
where 𝑝 is an exponent that varies for ferrite, pearlite and bainite transformations due to the 
different effects of porosity on kinetics of transformations.  In accordance with the study conducted 
by Warke et al. [39], the correction parameters in Eq.68 increases with increasing porosity content, 
leading to a faster growth mechanism for less dense materials. In order to determine 𝑞 and 𝑝 
parameters in Eq.67 and Eq.68, the numerical results should be compared with experimental data 
provided for different level of porosity, cooled under controlled condition.   
Based on the study conducted by Warke et al. [39], Semel and Lados [43] suggested that the 𝑀𝑠 in 
PM steels increases by 2.3℃ per 1% porosity. The equation proposed by Koistenen and Marburger 
(see section 2.3.2.5) can be used to obtain the volume fraction of the martensite in PM steels.  
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   5. CONCLUSIONS:  
1. A 2D axi-symmertic FE model has been developed using MATLAB software, which has a 

practical use for many components with symmetric axis, such as rings.  
2. The accuracy of the time and space discretization method was verified using a reliable 

commercial code, ANSYS. 
3. The latent heat of phase transformation is taken into account in the developed model. 
4. The simulation results were verified by comparing the results of the present model with the 

experimental and numerical results reported in previous studies. 
5. The established FE code can be used to simulate different heat treating processes such as oil 

quenching, sinter hardening, etc. 
6. A comparative study showed that the model can be applied to simulate the cooling response 

in PM steels. 
7. The simulated CCT diagram for Astaloy CrL+0.6%C is in close agreement with dilatometric 

measurements. 
8.  A model is proposed to take into account the effects of porosity on transformation kinetics. 

However, to determine the parameters of the model, the numerical results should be 
compared with experimental cooling profiles measured for specimens with different level of 
porosity, cooled under controlled conditions.   
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