
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Calibration of 3D lidars
A fully automatic and robust method for calibrating
multiple 3D lidars using only point cloud data
Master’s thesis in Systems, Control and Mechatronics

TORGEIR LANGFJORD NORDGÅRD
OLAV RAVNDAL SKJØLINGSTAD

DEPARTMENT OF MECHANICS AND MARITIME SCIENCES

CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2020
www.chalmers.se

www.chalmers.se

Master’s thesis 2020:17

Calibration of 3D lidars

A fully automatic and robust method for calibrating
multiple 3D lidars using only point cloud data

TORGEIR LANGFJORD NORDGÅRD
OLAV RAVNDAL SKJØLINGSTAD

DF

Department of Mechanics and Maritime Sciences
Division of Vehicle Engineering and Autonomous Systems

Chalmers University of Technology
Gothenburg, Sweden 2020

Calibration of 3D lidars
A fully automatic and robust method for calibrating
multiple 3D lidars using only point cloud data
TORGEIR LANGFJORD NORDGÅRD
OLAV RAVNDAL SKJØLINGSTAD

© TORGEIR L. NORDGÅRD, OLAV R. SKJØLINGSTAD, 2020.

Advisor: Lars Brown, CPAC Systems AB
Examiner: Peter Forsberg, Department of Mechanics and Maritime Sciences

Master’s Thesis 2020:17
Department of Mechanics and Maritime Sciences
Division of Vehicle Engineering and Autonomous Systems
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Visualization of a point cloud produced by four lidars calibrated using the
proposed algorithm. The measurements from the lidars are represented by separate
colors.

Typeset in LATEX
Printed by Chalmers Reproservice
Gothenburg, Sweden 2020

iv

Calibration of 3D lidars
A fully automatic and robust method for calibrating
multiple 3D lidars using only point cloud data
TORGEIR LANGFJORD NORDGÅRD
OLAV RAVNDAL SKJØLINGSTAD
Department of Mechanics and Maritime Sciences
Chalmers University of Technology

Abstract
In order to use lidars for perception in autonomous vehicles, they must be properly
calibrated. Commonly used techniques for automatic calibration, such as itera-
tive closest point, often requires an accurate guess of the calibration parameters,
which is challenging to obtain. Additionally, these techniques are often depen-
dent on feature-extraction or designated calibration environments, which are highly
application-specific. We propose an alternative calibration algorithm for an arbitrary
number of lidars based on particle swarm optimization. Using our method, accurate
calibration parameters can be produced from extremely rough initial guesses, with-
out the aforementioned application-specific limitations. When tested on synthetic
data, the algorithm is shown to be superior to conventional methods. Additionally, a
method for allowing calibration during vehicle movement is explored and proposed.

Keywords: lidar calibration, point clouds, stochastic optimization, voxel grid filter

v

Acknowledgements
We would like to thank both our advisor Lars Brown and our examiner Peter
Forsberg for all the help and interesting discussions they provided during the semester.
We would also like to thank the people at CPAC Systems AB for welcoming us into
their offices, and helping us when needed.
Finally, we would like to thank SARS-CoV-2 for helping us avoid unnecessary dis-
tractions during the writing of this thesis.

Torgeir Langfjord Nordgård & Olav Ravndal Skjølingstad
Gothenburg, June 2020

Thesis advisor: Lars Brown
Thesis examiner: Peter Forsberg

vii

Contents

Acronyms xi

1 Introduction 1
1.1 Lidar variants . 2
1.2 Calibration . 2
1.3 Aim . 3
1.4 Related work . 4

1.4.1 Iterative closest point . 4
1.4.2 Feature-based calibration . 5
1.4.3 Biologically inspired optimization methods 6
1.4.4 Conclusions on related work 7

1.5 Research questions and limitations 8

2 Methods 9
2.1 Data collection . 9

2.1.1 Data modification . 11
2.2 Objective function . 12

2.2.1 Voxel grid filter . 13
2.2.2 Uniform objective function . 13
2.2.3 Distance varying objective function 14

2.3 Genetic algorithm . 15
2.3.1 Initial population . 15
2.3.2 Fitness evaluation . 16
2.3.3 Evolution . 16
2.3.4 Termination . 19

2.4 Particle swarm optimization . 19
2.4.1 Initialization . 19
2.4.2 Evaluation . 20
2.4.3 Velocity and position update 20
2.4.4 Termination . 21

2.5 Geometric constraints . 21
2.6 Iterative closest point . 24
2.7 Adaptive calibration . 24

2.7.1 Discrepancy detection . 24
2.7.2 Online calibration . 25

ix

Contents

3 Results 27
3.1 Parameter choice - GA . 27
3.2 Parameter choice - PSO . 28
3.3 Evaluation methods . 28
3.4 Objective functions . 29

3.4.1 Flaw in the objective functions 30
3.5 Robustness to sensor noise . 30
3.6 GA, PSO and ICP comparison . 31
3.7 Adaptive calibration . 32

3.7.1 Discrepancy detection . 32
3.7.2 Search space reduction . 33

4 Discussion 35
4.1 Objective functions . 35
4.2 Comparison . 36
4.3 Adaptive calibration . 37
4.4 Geometric constraints . 38
4.5 Methodological issues . 38

5 Conclusion 39

Bibliography 41

A Boxplots I
A.1 Scene 1 . II
A.2 Scene 2 . XI
A.3 Scene 3 . XX

x

Acronyms

FL front left. 3, 10, 24, 32, 33
FOV field of view. 3, 10, 38, 39
FR front right. 3, 10, 24, 33

GA genetic algorithm. 6–8, 15, 18, 19, 24, 27–32, 36, 38, 39

ICP iterative closest point. 4–8, 24, 27, 31, 32, 36

PSO particle swarm optimization. 7, 8, 19, 20, 24, 27–33, 36, 37, 39

RANSAC random sample consensus. 5
RL rear left. 3, 10, 24, 33
RMS root mean square. 29, 31, 32
RR rear right. 3, 10, 24, 33

SIFT scale-invariant feature transform. 6, 7

xi

1
Introduction

For the past few years, the development of autonomous vehicles has been booming.
The industry is currently exploring usage of autonomous operation, due to the many
advantages of automating tasks that has previously been done by humans. This is
especially true for environments that are inhospitable and dangerous.

For autonomous vehicles to operate, awareness of the environment is needed. For
this, a multitude of sensors are used. Usually, some combination of ranging sensors,
imaging sensors, inertia sensors and GNSS receivers are fused to obtain a robust and
accurate perception of reality. The knowledge of the orientations and the positions
of these sensors in relation to each other and the vehicle influences how well the
sensor data can be fused. Therefore, knowledge of the sensors’ extrinsic parameters
are paramount for the development of usable autonomous platforms.

CPAC Systems, a developer of localization and control systems, was one of the main
developers in the Brønnøy project in Norway. The Brønnøy project utilizes multiple
autonomous Volvo trucks for transporting limestone from an open pit mine to a
nearby port. The trucks uses four 2D lidars as a part of the navigation system. An
illustration of their pose on the vehicle can be seen in Figure 1.1.

Figure 1.1: Overview of four lidars and their position on the vehicle.
Reprinted from [1] and modified with the authors’ permission.

1

1. Introduction

1.1 Lidar variants
A lidar is an active sensor that emits light in the form of a laser and measures the
time it takes for that light to be reflected back to the device. These measurements
can then be used to create a point cloud of the environment. If a lidar has lasers and
detectors at one height capturing a single plane, a 2D point cloud can be built. If
a lidar has multiple lasers and detectors capturing planes at different heights, a 3D
point cloud can be built. There are multiple ways to construct a lidar sensor, but
for the purposes of this thesis two main types are relevant; rotating and solid-state.

In rotating lidars, the laser and the detector rotate several revolutions per second to
cover a wide field of view. By measuring reflection times distances can be calculated,
which together with the angle of the laser at the time of measurement can be used
to build a point cloud of the environment. Because the rotation of a lidar is not
instantaneous, neither is the data capture. As a consequence, any motion of a
rotating lidar during the sweep of the light beam will distort the collected data.
So, unless the vehicle is standing still, the motion of the vehicle must be taken into
account when calculating the point cloud.

Solid-state lidars, on the other hand, contains no moving parts. Instead of rotating
the lasers and detectors to achieve horizontal resolution, the lidar is built by an array
of detectors both horizontally and vertically. This approach allows all measurements
to be collected simultaneously, which solves the issue of the vehicle moving during
capture, prevalent in rotating lidars. When solid-state lidars reach high production
volumes, they will be cheaper and more durable than their rotating counterparts [2].
Therefore, an industry-wide shift to solid-state lidars is inevitable, and algorithms
for calibrating these lidars will be needed.

1.2 Calibration
Lidars produce a point cloud with respect to their own coordinate system. By esti-
mating the lidars’ translation and orientation in relation to each other, the individual
point clouds can be merged into a single point cloud as if obtained from a single
lidar. The lidars’ position and orientation in the vehicle’s coordinate system will
be referred to as calibration parameters. The process of estimating the calibration
parameters is known as calibration.

Since the environment in the mines at Brønnøy is quite rough, the lidars are shaken
badly and hit at times, altering their original positions. Thus, the lidars should
be calibrated regularly before driving sessions and ideally during driving as well.
Manual calibration is difficult and time-consuming, so an automatic calibration al-
gorithm is required for both practical reasons and for safety. Furthermore, if the
calibration is to be done while the vehicle is moving, the process would have to be
automatic.

As additional sensors will add more points of failure, calibration using only point
clouds produced by the lidars is desirable. To fulfill this desire, overlap in the

2

1. Introduction

collected point clouds is needed, which in turn requires overlap in the lidars’ field of
view (FOV). Common features between the point clouds can then be used to infer
the poses of the lidars. In point clouds produced by 2D lidars, common features
only exist if they depict the same plane, which only happens if the lidars have the
same height, roll and pitch. As a consequence, any calibration algorithm using 2D
point clouds is limited to calibration of x, y and yaw.

Calibration using 3D point clouds does not have such limitations, as the additional
dimension makes the determination of complete poses possible. The richer informa-
tion available in 3D point clouds also makes them desirable for use in perception.
As mentioned earlier, a shift to solid-state lidars is inevitable, so only 3D solid-state
lidars are considered in this thesis.

1.3 Aim
The aim of this thesis is to propose and implement a fully automatic calibration
algorithm. The calibration algorithm shall determine the poses of four 3D lidars
given a rough initial estimation of the calibration parameters, without the use of
designated calibration environments. Additionally, only the lidars’ point clouds shall
be used for calibration. The poses of the lidars’ coordinate system relative to the
vehicle’s coordinate system are illustrated in Figure 1.2.

FL

FR

RR

RL

xy

z

Figure 1.2: Overview of the four lidars and their translations (dashed blue lines)
and orientations (green, yellow, and red lines) relative to the vehicle’s coordinate
system (black lines). The lidars are referred to as front left (FL), front right (FR),
rear right (RR) and rear left (RL), which reflects their positions on the vehicle.

A secondary aim is to implement an adaptive version of the automatic calibration
algorithm. Adaptive refers to detecting changes in lidar poses during vehicle move-
ment, followed by recalibrating the lidars on the fly. The lidars should thereby stay
calibrated at all times, increasing the quality of the vehicles’ perception system.

3

1. Introduction

1.4 Related work
The underlying challenges with extrinsic calibration of lidars can be divided into two
parts. The first step is to find robust correspondences in the lidar data. With this
at hand, the correspondences’ overlap can be maximized by changing the pose of
the lidars using an optimization method. Ideally, the resulting lidar poses produce a
merged point cloud, where all common features between the lidars perfectly overlap.

These challenges are quite common within the fields of perception and positioning
[3, 4, 5], so a multitude of solutions and approaches exist [6, Ch. 5]. Those considered
most relevant for this thesis are the iterative closest point (ICP) algorithm and
biologically inspired optimization methods. For the sake of completeness, feature-
based calibration methods will also be explored. In this section these approaches
will be presented in more detail, starting with ICP.

1.4.1 Iterative closest point
The iterative closest point (ICP) algorithm offers one of the simplest solutions to
calibration of lidars, as it does not require any feature extraction algorithm. As
expressed in [7], the main idea behind ICP is to align one point cloud, P , to another
point cloud, Q. This process can be viewed as finding the transformation TQ←P that
best maps the points in P to the corresponding points in Q, and can be expressed
more formally as solving

TQ←P = arg min
T

error(T (P), Q) (1.1)

where error(T (P), Q) represents the error function. This error function is obtained
by first extracting a set of matching points between the two points clouds, defined
as

M = {(p, q) : p ∈ P, q ∈ Q} (1.2)

In most cases, this set is found by doing a nearest neighbor search between the
point clouds. To increase the robustness of the algorithm, a common approach is to
associate a weight to each match. This set of weights is formally defined as

W = {w(p, q) : ∀(p, q) ∈M} (1.3)

Subsequently, the error function can be defined as the sum of the weighted distance
between the matched points as

error(P,Q) =
∑

p,q∈M

w(p, q)d(p, q) (1.4)

where d(p, q) is the distance between point p and q. Unfortunately, using this error
function in equation (1.1) would only yield a correct transformation if used with
an ideal matching function. To overcome this limitation, ICP iteratively forms

4

1. Introduction

the set M before minimizing the error function. The result is a sequence of N
transformations, the product of which produces

T̂Q←P =
(1∏

i=N

Ti

)
Tinit (1.5)

where T̂Q←P is an estimation of the transformation between P and Q, and Tinit is
an initial guess of this transformation.

After the ICP algorithm is finished, the relative transformation must be geometri-
cally constrained to the vehicle frame. The most common approach is to manually
determine the pose of the lidar that produced Q, which is difficult to do accurately.
Determining the orientation is especially challenging as one must measure the angles
of the lidars’ laser beams. Any errors in these manual measurements will propagate
to the calibration of the lidar that obtained P .

As ICP only calibrates one pair of lidars at a time, calibrating more than two lidars
together requires running ICP on all of them in a pairwise fashion. Consequently,
any errors made by the algorithm when calibrating one lidar pair will propagate to
the next pair. Another issue with ICP is the sensitivity to the initial guess, Tinit.
The accuracy of Tinit greatly affects the outcome of the matching function, which in
turn affects the final transformation.

1.4.2 Feature-based calibration
Feature-based calibration is the process of extracting interesting regions in the data
from one sensor, referred to as features, and matching these with features from other
sensors yielding correspondences. A calibrated system is obtained by minimizing the
distance between these correspondences, which can be done using, for instance, a
modified version of ICP. Hence, feature-based calibration can be viewed as simply
changing the definition of the matching function in equation (1.2), which is investi-
gated further in [8].

When dealing with lidars, a common approach is to introduce features manually by
adding known geometric shapes in a calibration environment. In [9, 10, 11] various
combinations of cameras and lidars are successfully calibrated by creating scenes
with checkerboards and boxes. As the shape of the objects are known, shared
features such as corners and planes can be extracted from the point cloud and
the image. The 3D-features are projected into the image, from which a relative
pose can be estimated by maximizing their overlap with the image features. In
these publications, the optimization process is done using random sample consensus
(RANSAC), which is a paradigm for robust model fitting [12]. In [9, 10] the solution
from RANSAC is refined using modified versions of gradient descent to further
improve the accuracy.

In [13] a set of 3D lidars are calibrated by including a moving sphere in the en-
vironment. By estimating the center of the sphere along its successive positions a
trajectory of the ball can be extracted from each lidar. These correspondences are

5

1. Introduction

matched between the lidars using an approach based on singular value decompo-
sition [14], yielding their relative poses. However, estimating the sphere’s center
requires a certain amount of measurements of the sphere itself. Furthermore, all
lidars must detect the sphere at all times, which greatly complicates the setup and
reduces the flexibility of this approach.

To account for these drawbacks, descriptor-based feature extraction techniques have
been developed. These techniques aim at finding unique, invariant features on
naturally occurring objects in a scene, more formally referred to as descriptors.
Descriptor-based feature extraction has long been used on 2D images with methods
ranging from the hand-crafted SIFT-descriptor [15], to descriptors learned by neural
networks [16, 17].

In recent years 3D counterparts of these 2D descriptors have been developed. Such
3D descriptors are extensively compared and evaluated in [18, 19]. In [18] different
3D descriptors are tested by merging point clouds using ICP. Their results indicate
that the accuracy of the merged point cloud is dependent on the choice of descriptor.
An unsuitable descriptor cannot extract enough unique features from the input data
for ICP to work. In [19] the descriptors’ quality and repeatability are reviewed. Here,
the authors conclude that these factors are largely dependent on the nature of the
input data, and that the best choice of descriptor is application dependent.

1.4.3 Biologically inspired optimization methods
An alternative to using ICP as the optimization method is to utilize approaches
found within the family of biologically inspired optimization methods. As described
in [20, Ch. 1], these methods are stochastic optimization algorithms inspired by
biological concepts such as evolution and swarming behavior. A shared requirement
is the need to describe the quality of a solution by associating it with a numerical
value. This value is either maximized or minimized.

One evolutionary algorithm is the genetic algorithm (GA). This method uses the
concept of fitness as a numerical description of the quality of a solution, so an
optimal solution should result in the highest fitness. In [21] this idea is explored
in the context of calibrating the yaw angles of four 3D lidars. The fitness of the
calibration parameters is calculated by projecting the 3D points onto the x-y plane.
This plane is divided into grids, and the fitness is proportional to the number of
projected points within each cell of the grid. By using a GA to evolve the calibration
parameters, the yaw angles are successfully found.

The most relevant previous work for this thesis is [1]. It uses data collected from the
system presented in the introduction, and has an approach based on a GA. In this
work, an automatic calibration method for four 2D lidars is developed for x, y and
yaw. Here the fitness of the calibration parameters is given by downsampling the
merged point cloud and calculating the number of removed points. The more points
removed by downsampling the higher the fitness of the calibration. Additionally, the
approach has the advantage of not calibrating lidars pairwise, it calibrates all the
lidars at once. However, the solution form the GA only includes the relative transfor-

6

1. Introduction

mation between the lidars. To obtain the calibration parameters, the solution must
be geometrically constrained to the vehicle’s coordinate system. Here, the lidars are
geometrically constrained using assumptions about symmetry and knowledge of the
distance from the vehicle’s origin to the center point between the rear lidars. When
the assumptions hold, most of the constraints will be zero, which greatly simplifies
the manual measurements needed to geometrically constrain the lidars.

The authors of [1] also propose that future work in the area should explore the
use of particle swarm optimization (PSO), which is another biologically inspired
optimization algorithm. This resonates well with [20, Ch. 1], which states that
some stochastic optimization algorithms outperforms others on specific classes of
problems.

1.4.4 Conclusions on related work
Determining the extrinsic parameters of sensors is a well-researched topic. As dis-
cussed in the previous sections, the most common approaches for lidars are based on
combinations of feature extraction and deterministic optimization methods, such as
different variations of ICP. However, the use of feature extraction based on calibra-
tion objects requires that certain information must be present in, or even introduced
to, the data. Therefore, these approaches are often limited to designated calibra-
tion environments, which is not desirable. Furthermore, the use of descriptor-based
feature extractors, such as 3D-SIFT on point clouds, are application dependent and
not believed to provide enough descriptors to produce a robust calibration loop.

The simple approach found in ICP without any feature-extraction is appealing. Un-
fortunately, ICP does suffers from an accumulating error when used with more than
two lidars, as they are calibrated in pairs. It is also sensitive to the initial guess as
well as error introduced during the manual calibration of the reference. Constrain-
ing the system via the reference is another drawback, as the rough environment at
Brønnøy might cause its pose to drift, subsequently affecting the entire calibration.
For these reasons, ICP is believed to be an unsuitable approach to the problem at
hand.

Another calibration method that uses point clouds without any feature extraction
is presented in [1]. Here, a genetic algorithm is utilized to successfully calibrate four
2D lidars. The calibration is performed on all four lidars simultaneously, thereby
solving the issues with pairwise calibration, making it more robust than ICP. It also
introduces a symmetry-based constraining method, which is considered more robust
and easier to determine than that used with ICP. A similar concept for evaluating
the quality of the calibration parameters could possibly be used for calibration of
3D lidars, and should be further researched.

To the authors knowledge the use of particle swarm optimization in calibration
applications is fairly unexplored. The advantages of using a GA also applies to
PSO, as the concept of downsampling a merged point cloud to determine calibration
quality can be reused. This makes it an interesting subject to look further into.

7

1. Introduction

1.5 Research questions and limitations
Based on the aim and related work, this thesis will focus on answering the following
research questions:

1. How can an objective function be defined for calibrating 3D lidars? How does
the choice of objective function influence the calibration algorithm’s ability to
consistently converge to accurate calibration parameters?

2. How do the GA and PSO compare with respect to robustness, i.e. initial
estimation, accuracy, consistency and sensor noise? How do they compare to
ICP?

3. Which, if any, modifications and additions must be made to the proposed
calibration algorithm to make it adaptive? How can an algorithm be defined
to detect changes in lidar poses? What are the advantages and challenges with
using such an algorithm?

To simplify the work, the algorithms will be tested on data produced in a simulator
using four high resolution solid-state lidars. When calibration is performed using
point cloud data exclusively, the lidar poses can only be determined relative to each
other. Therefore, to determine the calibration parameters relative to the vehicle,
some relations between the lidar arrangement and the vehicle’s coordinate system
will be assumed known.

8

2
Methods

This chapter aims at providing detailed descriptions of data collection, the objective
functions and algorithms used for calibration, how relative poses are geometrically
constrained to the vehicle, and a proposed method for adaptive calibration.

2.1 Data collection
The CARLA simulator is used for data collection in this project. CARLA is an
open-source driving simulator built on top of the graphics engine Unreal Engine 4
and is purpose-made for autonomous vehicle research [22]. It includes support for
collecting data from simulated sensors, such as lidars, depth cameras and IMUs. A
screenshot from the simulation environment can be seen in Figure 2.1. By using a
simulator we set the ground truth ourselves, and can thus evaluate the correctness
of the calibration parameters objectively. Using a simulator is also much faster and
more convenient than collecting data from embedded hardware, allowing us to spend
more time at developing and evaluating the algorithms.

Figure 2.1: The CARLA environment. This scene is the basis for other figures in
this section.

The built-in lidar sensor in CARLA is based on a rotating lidar. Therefore, a

9

2. Methods

custom sensor is constructed to model a solid-state lidar. The built-in depth camera
sensor is used as a basis for the custom lidar model. In CARLA, the depth camera
sensor extracts an image from the environment. Each pixel encodes the distance,
λ, from the image plane to captured objects. The depth information is stored as
bytes in the pixels’ color channels and must be decoded, which is explained in the
CARLA documentation. To create a point cloud from the depth image computer
vision techniques are utilized. Firstly, the image coordinates must be converted
to homogeneous coordinates. Secondly, each homogeneous coordinate, x, must be
normalized, which is done using the depth camera sensor’s calibration matrix

K =

f 0 px

0 f py

0 0 1

 (2.1)

where
f = w

2 tan(π · FOV/360) , px = w

2 , py = h

2 (2.2)

Here, w and h are the width and height of the depth image in pixels, and FOV is
the field of view. Finally, each 3D point, X, in the point cloud can be computed
using the pinhole camera model as

X = K−1xλ (2.3)
Each solid-state lidar is comprised of multiple depth cameras with a FOV of at
most 90°. These depth cameras are placed in the same point and rotated relative to
each other. The reason for using multiple depth cameras instead of a single depth
camera with a large FOV is the distortion introduced by the latter. The amount of
depth cameras and their rotations are determined by the desired FOV of the solid-
state lidar. For example, a solid-state lidar with a FOV of 270° uses three depth
cameras, each with a FOV of 90°, rotated 90° relative to each other. The resolution
of the lidars are determined by the resolution of the depth cameras, and the range
is determined by removing points that are further away than the desired range.

In this project, the lidars are based on the current sensors used in the Brønnøy
project. They will have a FOV of 270° and be positioned on the vehicle according
to the values in Table 2.1. These parameters results in an overlap of 180° between
each lidar. Additionally, the lidars will have a range of 50 meters and an angular
resolution of 0.5°. Figure 2.2 shows the result of collecting data using the proposed
lidar model.

Table 2.1: Values of true calibration parameters for each lidar.

Lidar
Translation [m] Rotation [deg]

x y z ϕ θ ψ

FL 2.0 1.5 2.8 0 0 45
FR 2.0 -1.5 2.8 0 0 -45
RR -2.0 -1.5 2.8 0 0 -135
RL -2.0 1.5 2.8 0 0 135

10

2. Methods

Figure 2.2: A point cloud extracted from the scene depicted in Figure 2.1 using
the solid-state lidar model. Each lidar’s point cloud is shown with a separate color.

2.1.1 Data modification
The calibration algorithm should eventually be used in the real world, not just a
simulated environment. Therefore, the synthetic data is modified to emulate data
collected from a real lidar. In the real world, noise is introduced in every part of
the data collection chain, from quantization due to the discrete nature of sensors,
to electric noise which is inherent in all electronic components.

The noise is modeled as
x̂ = x+N (0, 0.1)
ŷ = y +N (0, 0.1)
ẑ = z +N (0, 0.1)

(2.4)

where x̂, ŷ and ẑ are the noisy “measurements”, x, y and z are the ground truth
coordinates, and N (0, 0.1) is white Gaussian noise with a standard deviation of 0.1.

To further enhance the realism of the data, outliers are added as well. Since measur-
ing the time of flight of light emitted by lidars has extreme requirements of precision,
errors in distance are deemed the most probable source of outliers. Therefore, the
outliers are generated as follows

d =
√
x̂2 + ŷ2 + ẑ2

r ∼ N (0, 0.1d)
(2.5)

which are used to shift the distance of the noisy measurement computed in (2.4) as

x̂ = x̂ · r
ŷ = ŷ · r
ẑ = ẑ · r

(2.6)

11

2. Methods

Note that r is sampled once and multiplied with all three components, as opposed
to equation (2.4) where the noise is sampled individually for x, y and z. Using this
model we increased the amount of outliers until it looked reasonable, which was
found to be 1% of all points. An illustration of a point cloud that is modified using
the described noise and outlier model can be seen in Figure 2.3.

Figure 2.3: The point cloud from Figure 2.2 with added noise.

2.2 Objective function
Since stochastic optimization methods will be used, an objective function must be
defined. The objective is to calibrate lidars, so the objective function must associate
a numerical value to the quality of the calibration parameters. This number will
be referred to as the score. The inputs to the objective function are the calibration
parameters from four lidars, illustrated in Figure 2.4, and the point clouds from the
four lidars, which results in the objective function

score = f(calibration parameters, point clouds) (2.7)

Since the objective function only takes the calibration parameters and point clouds
as input, it can only be used to find relative transformations between the lidars.

Assuming that there are overlapping objects in the lidar scans, a good calibration
should result in a larger amount of overlapping points than a bad calibration. There-
fore, the objective function should calculate the amount of overlap between the four
point clouds after the calibration has been applied. This calculation is done by first
transforming each lidar’s point cloud using their respective calibration parameters.
Subsequently, the four transformed point clouds are merged into a single point cloud.
Determining the amount of overlap in this merged point cloud is the task of the ob-
jective function. More specifically, it should associate a high score to parameters

12

2. Methods

that produces a point cloud with a large number of overlapping points, and a low
score when the opposite is true. The amount of overlap between the point clouds
can be determined numerically using a voxel grid filter.

x y z ϕ θ ψ x y z ϕ θ ψ x y z ϕ θ ψ x y z ϕ θ ψ

Front left Front right Rear left Rear right

Figure 2.4: A tuple containing the calibration parameters of four lidars.

2.2.1 Voxel grid filter
A voxel grid filter downsamples a point cloud by applying a cubical 3D grid on the
data. If any points lie within the bounds of a grid, they will be replaced by a single
point at the center of the voxel. Consequently, the voxel grid filter will leave a point
cloud with fewer points if overlap is present, which is exploited to produce the score
as

score = points before filter− points after filter (2.8)
An illustration of how the filter works can be seen in Figure 2.5.

(a) Before filtering. (b) Applying the filter. (c) After filtering.

Figure 2.5: Illustration of applying the voxel grid filter to a simple point cloud.

Determining the size of the voxel grid is important, as a point cloud gets sparser
farther away from the lidar. If the resolution of the voxel grid is too fine, objects far
away will not be matched correctly as the voxel size will be smaller than the point
cloud resolution. Two ways to set the voxel size are explored in this thesis, which
gives rise to two objective functions.

2.2.2 Uniform objective function
A simple approach is to use a uniform voxel filter with a voxel size corresponding
to the lowest resolution of the point cloud. This method will be referred to as the
uniform objective function. The voxel size is determined by the angular resolution
α and range r of a lidar, according to

s = 2πr α

360 (2.9)

13

2. Methods

An illustration of voxel size computation can be seen in Figure 2.6. The uniform
voxel grid filter has the disadvantage of removing the finer details in objects at close
range. The result of applying a uniform filter to the point cloud in Figure 2.2 can
be seen in Figure 2.7.

α

s

r

Figure 2.6: The voxel size s is determined by the lidars’ angular resolution α and
range r.

2.2.3 Distance varying objective function
Another approach is to use a distance varying objective function. In this method,
the size s of a voxel is varied according to its Euclidean distance d from the lidar,
which can be written as

s(d) = 2πd α

360 (2.10)

Unlike the uniform objective function the data collected from the lidars is better
utilized, as the voxel size is varied according to the resolution of the point cloud.
Thus, finer details are kept, which we expect to yield more accurate calibration.

Figure 2.7: The point cloud from Figure 2.2 after applying the uniform voxel grid
filter.

14

2. Methods

2.3 Genetic algorithm
The first stochastic optimization method explored in this thesis is the genetic algo-
rithm (GA). GAs are a subset of evolutionary algorithms, which are optimization
methods inspired by natural selection. The work and theory on GAs in this thesis
is largely based on [20, Ch. 3].

Fundamentally, GAs generate a population of individuals, each with its own chromo-
some. The chromosome contains a set of genes, each of which represents a parameter
in the search space of an objective function. In our case, the parameters of interest
are the translation and rotation of the four lidars in relation to the vehicle. The
chromosome is defined as the tuple shown in Figure 2.4, and each entry represents
a single gene. More formally, the value of gene g in chromosome C, will be denoted

value = C(g) (2.11)

The main pipeline of the genetic algorithm can be summarized as initialization,
evaluation, and evolution of the population. The last two steps are repeated until
termination. The number of repetitions is usually referred to as generations, but we
will instead refer to it as iterations for consistency. An in depth explanation of the
different steps in the GA is outlined in the following sections.

2.3.1 Initial population
The first step in a genetic algorithm is to initialize the population. The number
of individuals in the algorithm is called the population size, and balances compu-
tational complexity and optimization performance. That being said, increasing the
population size is often a case of diminishing returns [20, Ch. 6], and the optimal
value is different for most problems.

Given a population size, each individual’s chromosome must be initialized, which
will be done by sampling their genes from the uniform distribution

C(g) ∼ U(lb(g), ub(g)) (2.12)

where lb(g) and ub(g) are the lower and upper bounds of a gene g. These bounds de-
fine the solution space of the algorithm and stay constant throughout the execution.
The solution space is distinct from the search space, and is defined as a constrained
region within the search space.

It is important to choose the lower and upper bounds properly; if they are too
narrow the correct parameters could fall outside the solution space, and if they are
too wide the algorithm might never converge. We will explore different values for
these bounds to evaluate the robustness of the algorithm. As we are using synthetic
data, the bounds are chosen such that they contain the ground truth. In the real
world, the bounds can be defined around previous calibration parameters, or by
manual guesstimation.

15

2. Methods

2.3.2 Fitness evaluation
Every individual must be evaluated using some measure of the quality of its genes.
This measure is called fitness and is calculated using a fitness function. The objective
functions defined in Section 2.2 will be used for this purpose. The fitness will in
turn be used to guide the evolution of the population.

2.3.3 Evolution
To explore the solution space and exploit the best individuals, the population evolves
in each iteration of the algorithm. Evolution is a stochastic process that combines
the previously calculated fitness with the evolutionary operators selection, crossover,
mutation, and elitism.

Selection

The selection step chooses the individuals that forms the basis of the next iteration.
Selection is based on the individuals’ fitness and can be done in a multitude of
ways. The most common are roulette wheel selection and tournament selection.
Roulette wheel selection generates a probability distribution that is proportional
to the fitness of the individuals. This distribution is used to select individuals for
the next iteration. The probability Pi of selecting an individual i is defined by the
equation

Pi = Fi∑N
j=1 Fj

(2.13)

where F is the fitness of an individual. This method is illustrated in 2.8.

i1
100

i2
30

i3
50

i4
70

i5
90

i6
25

Selection

Figure 2.8: Roulette wheel selection. The fitness of each individual is represented
by the width of the slices. The method can be thought of as “spinning the wheel”.

Another alternative is to use tournament selection, which is illustrated in Figure
2.9. The selection starts by randomly picking a number of individuals defined by the
tournament size, n. The second step is to select the individuals in the tournament

16

2. Methods

by their fitness. The individuals are ordered by fitness, and chosen according to

P1 = ptour

P2 = ptour · (1− ptour)
P3 = ptour · (1− ptour)2

...
Pn = ptour · (1− ptour)n−1

(2.14)

where Pi is the probability of choosing individual i and ptour is the probability of
choosing the individual with the largest fitness. ptour is typically quite large. The
winner of the tournament then goes on as the offspring.

Random selection Fitness selection Winner

i1 100

i2 30

i3 50

i4 70

i5 90

i6 25

i2 30

i3 50

i5 90

i5 90

Figure 2.9: Tournament selection with a tournament size 3. Individuals i2,3,5 are
chosen randomly from the population, and i5 is the winner of the tournament.

Crossover

The next part of the evolution process is crossover. Crossover mimics the process
of reproduction, where the genes of two individuals are mixed and the offspring
hopefully inherits favorable traits. These pairs of individuals are chosen from the
population according to the probability pcross without replacement. A crossover
point is chosen at random, and the two individuals’ chromosomes are swapped at
that point as illustrated in Figure 2.10. Increasing pcross typically results in faster
convergence at the expense of an increased risk of getting stuck in local minima.
Therefore, this procedure can be seen as exploitation in optimization terms.

17

2. Methods

x y z ϕ θ ψ

x y z ϕ θ ψ

x y z ϕ θ ψ

x y z ϕ θ ψ

.

.

.

.

Figure 2.10: Crossover. The two individuals at the left are crossed at the point
represented by the black line, resulting in two new individuals at the right.

Mutation

Finally, every gene will be mutated by some probability, pmut. Simply put, mutation
is done by changing the value of a random set of genes, which allows the GA to
stochastically explore the solution space. An illustration of this concept can be seen
in Figure 2.11.

0.21 0.71 4.11 6.32 2.73 0.33 0.52 0.25 8.92 4.43

0.21 0.48 4.11 6.32 3.21 0.33 0.52 0.25 8.92 4.43

.

.

Figure 2.11: Mutation of two genes.

The probability of a gene being mutated is typically chosen as

pmut = nmut

ngenes
(2.15)

where nmut is the average number of genes to mutate per chromosome. Mutation
is performed by drawing a new gene from a uniform distribution, centered around
the value of the previous gene. The width of this distribution is determined by the
creep rate, which in turn determines the amount of exploration. The creep rate is
typically initialized as quite large, and gradually reduced for each iteration. Due to
the different units, different creep rates are used for positions and angles.

To avoid exploring outside of the solution space of interest, mutation is bounded by
the same lower and upper bounds, lb(g) and ub(g), as those used to initialize the
population in Section 2.3.1. The resulting mutation bounds are defined as

lbmut(g) = max (C(g)− cr(g), lb(g))
ubmut(g) = min (C(g) + cr(g), ub(g))

(2.16)

where C(g) is the current value and cr(g) is the creep rate of the gene g. These
bounds are used in a uniform distribution U , such that the mutated chromosomes
are picked according to

Cmut(g) ∼ U(lbmut(g), ubmut(g)) (2.17)

18

2. Methods

Elitism

Even though the probability of the fittest individual getting offspring is high, it
is not 100%. Also, the offspring might mutate and be crossed over with another
individual, meaning the fittest individual in one iteration might not carry on into
the next iteration. Therefore, to ensure that a good individual does not get lost,
an exact copy of the fittest individual is made and inserted into the next iteration.
This procedure is called elitism and ensures that fitness never decreases.

2.3.4 Termination
The evolved population is evaluated, and the process of evolution-evaluation is re-
peated until some termination criterion is met. After terminating, the population
contains several individuals with differing fitness. The final step is to return the
genes of the fittest individual as the solution to the optimization problem.

2.4 Particle swarm optimization
As an alternative to a GA, we will also explore using particle swarm optimization
(PSO). The theory in this section is based on [20, Ch. 5]. Some concepts and solu-
tions are similar to the ones used in the GA, so the explanations from the previous
section will be reused in this section. Like the GA, PSO is also an evolutionary
algorithm. It is inspired by the behavior of bird flocks flying, and schools of fish
swimming. In these complex systems, each individual organism has its own freedom
and intelligence. However, when individuals are combined into a swarm, the swarm
behaves as a single organism, expressing swarm intelligence.

Particle swarm optimization can be expressed as particles swarming around the so-
lution space of an objective function, searching for minima. Each particle’s position
represents the arguments of the objective function. In our case, the position rep-
resent the calibration parameters, as shown in Figure 2.4. Each particle also has
a velocity, knowledge of its own best-known position, as well as knowledge of the
swarms best-known position. In the following sections, each part of the algorithm
will be explained in depth.

2.4.1 Initialization
At the start of the algorithm, the particles are given initial positions, p, according
to a uniform distribution as

p ∼ U(lb, ub) (2.18)
where lb and ub are the lower and upper bounds on the search space. These bounds
are the same as those used for the GA, as explained in Section 2.3.1. An illustration
of a particle swarm can be seen in Figure 2.12.

19

2. Methods

Figure 2.12: A particle swarm. This figure is for illustration purposes only, it does
not represent the search space spanned by the calibration parameters.

2.4.2 Evaluation
To determine the quality of a position, the particles must be evaluated using an
objective function. The objective functions presented in 2.2 will be used. As most
PSO implementations perform minimization, the objective functions are negated.

Each particle has knowledge of its own best-known position ppb, and the swarms
best-known position psb. This information is updated and saved whenever new
positions are found that are better than previous ones.

2.4.3 Velocity and position update
The next step is to update the velocity and position of each particle. The velocity
update is done using the previous velocity vprev, as well as the positions ppb and
psb. These three factors are weighed using different tuning parameters, each of
which affects how the particles behave. The cognitive component, c1, determines
the particles’ reliance on their own performance to find better positions. The social
component, c2, decides the degree to which particles follow the swarm. The inertia
weight, w, balances exploration and exploitation, by allowing particles to continue
their trajectories as opposed to converging to ppb or psb. These parameters affect
the optimization process heavily and are highly problem specific. Mathematically,
the velocity update is defined as

v = wvprev + c1r1p
pb + c2r2p

sb (2.19)

where r1 and r2 are random numbers sampled from the uniform distribution U ∼ (0, 1).
Using the updated velocity, the position p of each particle is updated as

p = pprev + v (2.20)

20

2. Methods

An illustration of the entire process can be seen in Figure 2.13.

Previous velocity

Particle best Swarm best

(a) The three directions
used for the update.

wvprev

c 1
r 1p

pb
c2 r2 p sb

(b) Applying the weights.

pprev

p

v

(c) Updating the velocity
and position.

Figure 2.13: Velocity and position update.

2.4.4 Termination
After the position has been updated, it is evaluated. This process repeats until
a termination criterion is met. A common criterion is to terminate after a fixed
number of iterations. Finally, the swarm’s best-known position, psb, is returned as
the solution to the optimization problem.

2.5 Geometric constraints
The stochastic optimization algorithms only yield relative transformations between
the lidars. Consequently, a relationship between the lidars and the vehicle’s coordi-
nate system must be obtained manually to geometrically constrain the lidars to the
vehicle. Such a relationship can be found by manually determining the pose of a
single lidar. However, as discussed in Section 1.4.4, this is not a desirable approach.
Therefore, a method based on symmetry around the longitudinal axis is proposed.

An illustration of the proposed method can be seen in Figure 2.14. The longitudinal
axis, along, is defined as the vector that stretches from the center point between the
rear lidars to the center point between the front lidars. The latitudinal axis, alat, is
perpendicular to the longitudinal axis. The definition of its absolute orientation is
however more complicated. In cases where the lidar positions form a rectangle, as in
Figure 2.14, the latitudinal axis is simply the vector between the rear lidars, called
vrear. In all other cases, vrear will not be perpendicular to along and cannot be used
as the latitudinal axis. Therefore, the latitudinal axis is defined as the projection of

21

2. Methods

longitudinal axis
latitudinal axis

FL

FR

RR

RL

R, t

Figure 2.14: The positions and orientations of a relative solution (top) and its
constrained counterpart (bottom). R is a rotation matrix and t a translation vector.

vrear onto the plane for which along is the normal vector, which is expressed as

alat = vrear −
vrear · along

‖along‖2 along (2.21)

and an illustration of this concept can be seen in Figure 2.15.

along

vrear

alat
plane(along)

RL

RR

Figure 2.15: Definition of the latitudinal axis, alat. The longitudinal axis, along, is
a normal vector on a plane. alat is found by projecting vrear onto this plane.

In the proposed constraining method, the relationship between the lidars and the
vehicle’s coordinate system is given as a translation, tc, and a rotation matrix, Rc.

22

2. Methods

Here, tc is defined as the center point between the rear lidars. To construct Rc, three
angles are needed: The roll ϕc, is the angle between alat and the vehicle’s x-y plane.
The pitch, θc, is the angle between along and the vehicle’s x-y plane. The yaw, ψc,
is the angle the between along and the vehicle’s x-z plane. Thus, Rc is defined as

Rc = Rz(ψc)Ry(θc)Rx(ϕc) (2.22)

where Rx, Ry and Rz are elemental rotation matrices around the x, y and z axis
respectively. Note that this order of multiplication is used for all rotation matrices
in this thesis.

To apply the constraints, a corresponding translation vector and rotation matrix
must be obtained from the relative solution. The translation, trel, is the center
point between the rear lidars. To get the rotation, Rrel, one must first extract the
longitudinal and latitudinal axes as described above. These are normalized, yielding
ālong and ālat. A third unit vector, which is perpendicular to both ālong and ālat is
obtained as

āperp = ālong × ālat (2.23)

Together, these vectors form the rotation matrix

Rrel =
[
ālong ālat āperp

]
(2.24)

With this at hand, the translation of each lidar, tF L, tF R, tRR, tRL can be constrained
by applying the rigid transformation

tXX
c = Rc R

>
rel

[
tXX − trel

]
+ tc (2.25)

where XX represent either of the four lidars. To constrain the orientation of the
lidars, their rotation matrices must be calculated, yielding RF L, RF R, RRR and RRL.
The constrained orientations can then be calculated as

RXX
c = Rc R

>
rel R

XX (2.26)

Finally, the roll, pitch and yaw angles can be extracted from RXX
c by computing

ϕXX
c = arctan

(
RXX

c (3, 2)
RXX

c (3, 3)

)

θXX
c = arctan

 −RXX
c (3, 1)√

RXX
c (3, 2)2 +RXX

c (3, 3)2

ψXX

c = arctan
(
RXX

c (2, 1)
RXX

c (1, 1)

)
(2.27)

where RXX
c (i, j) is the matrix element at the i-th row and j-th column. These angles

along with the constrained translations, tXX
c , represent the final calibration of each

lidar.

23

2. Methods

2.6 Iterative closest point
ICP will serve as a baseline for determining the success of the GA and PSO. The
point-to-point variant similar to that described in Section 1.4.1 will be used, as it is
not dependent on any feature extraction techniques and is therefore a fair comparison
to the proposed calibration methods. To give the ICP similar preconditions as the
GA and PSO, it is given an initial guess sampled from

Tinit ∼ U(lb, ub) (2.28)

where lb and ub are the same bounds used in the GA and PSO. When calibrating
using ICP, the FL lidar is used as the reference that geometrically constrains the
lidars to the vehicle’s coordinate system. Therefore, its pose is simply given as the
ground truth. The remaining lidars are calibrated pairwise in the following order:
The first pair is FL-FR, the second pair is FR-RR, and the third pair is FL-RL.
These choices result in the FR and RL lidars having ground truth as their reference,
while the RR lidar has the FR lidar as its reference.

2.7 Adaptive calibration
As mentioned in the introduction, lidar poses can change while a vehicle is driving.
Detecting such a change and recalibrating the lidars is referred to as adaptive cal-
ibration. To simulate this scenario, lidar poses will be changed in CARLA while
collecting data. We will assume that the lidars are calibrated before introducing
changes.

2.7.1 Discrepancy detection
To detect changes in a lidar’s pose, its point clouds from two consecutive time steps
will be compared. The comparison is done by transforming the point clouds from
time k and k − 1 using the lidar’s calibration parameters from time k − 1. These
point clouds are then merged and downsampled using the uniform voxel grid filter
presented in Section 2.2.2. The hypothesis is that changes in the pose of a lidar at
time k will increase the number of points in the downsampled point cloud, compared
to the number of points in the downsampled point cloud at time k−1. The difference
in points between time steps will be referred to as discrepancy.

We assume that the sampling frequency is high, so that the point cloud from time k
is quite similar to the one sampled at time k−1. Consequently, if the discrepancy is
above some threshold it should be due to a change in the lidar’s pose, and the lidar
should be recalibrated. This threshold is referred to as the discrepancy tolerance.
If set too small the algorithm becomes too sensitive and will trigger unnecessary
calibrations. If it is too large the need for recalibration will go undetected.

The procedure outlined above must be executed for all lidars at every time step.

24

2. Methods

2.7.2 Online calibration
When recalibration is needed, the search space is reduced to include only the cal-
ibration parameters of the affected lidars. This ensures that the process does not
affect the calibration of the other lidars. The expectation is that calibrating in a
smaller search space should require fewer evaluations in the optimization algorithm
without affecting the accuracy. Furthermore, as long as at least one lidar remains
calibrated, the constraints presented in Section 2.5 are not needed as the remaining
lidars constrains the recalibrated lidars to the vehicle.

The concepts of discrepancy detection and online calibration are summarized as
pseudocode in Algorithm 1.

25

2. Methods

Algorithm 1: Adaptive calibration
Function adaptive_calibration is

cloudsk−1 ←− initial point clouds
params←− calibrate(cloudsk−1)
cloudsk ←− next point clouds
for lidar ∈ lidars do

nPtsk−1 ←− filter(cloudk−1, cloudk, param)
end
while calibration active do

if new data available then
cloudsk ←− new point clouds
for lidar ∈ lidars do

nPtsk ←− filter(cloudk−1, cloudk, param)
change←− nPtsk − nPtsk−1

if change > threshold then
calibrate←− lidar

end
end
if ∃ lidar ∈ calibrate then

params←− calibrate(∀ lidars ∈ calibrate)
end
cloudsk−1 ←− cloudsk

nPtsk−1 ←− nPtsk

end
end

end

Function filter(cloudk−1, cloudk, param) is
transformedk−1 ←− transform cloudk−1 using param
transformedk ←− transform cloudk using param
concatenated←− concatenate transformedk−1 and transformedk

filtered←− apply voxel grid filter to concatenated
nPts←− number of points in filtered

end

26

3
Results

This chapter will present the results of applying the proposed methods to simulated
data. It includes a brief summary of the tuning parameters’ effect on the perfor-
mance of the GA and PSO, evaluation of different objective functions, evaluation of
robustness to noise, a comparison of the GA, PSO and ICP, and results regarding
adaptive calibration.

3.1 Parameter choice - GA
The GA proved difficult to tune due to its large set of parameters, each of which
has a significant effect on performance. When evaluating the population size, we
saw that the GA did not benefit from increasing the size above a certain threshold.
It was be kept rather small to avoid unnecessary evaluations.

Tournament selection with a small tournament size made the algorithm converge
more reliably than roulette wheel selection, which indicates that the GA benefits
from exploration rather than exploitation. Balancing crossover and mutation was
found to be important. Crossover allowed the population to converge to a solution,
while mutation was required for exploration. Lastly, using decreasing creep rates, as
opposed to constant creep rates, was found to be beneficial. Decreasing creep rates
might let the algorithm explore the solution space at the beginning, while allowing
for fine tuning at the end.

Table 3.1: Final choice of parameters and evolutionary methods for the GA.

Parameter Value

Population size 12
Selection Tournament
Tournament size 4
Tournament probability 0.8
Crossover probability 0.2
Mutation rate 3

nGenes

Initial creep rate Max offsets in solution space
Final creep rate 0.02 m & 0.3°
Decreasing creep rate duration 80% of iterations

27

3. Results

3.2 Parameter choice - PSO
The parameters c1, c2, w, and swarm size were modified until the PSO algorithm
converged reliably to an accurate solution. The tuning of these parameters had a
significant effect on both the speed and the accuracy of convergence.

The swarm size was found to affect how consistently PSO converged. A larger swarm
size gives greater coverage of the solution space at the cost of extra evaluations. If
the solution space is not well-covered by particles, the discovery of good minima is
inconsistent. However, a larger swarm size does not always mean better performance.
Increasing the swarm size was found to yield diminishing returns over a certain
threshold. Therefore, attempts were made to find the smallest viable swarm size.

It was important to balance c1 and c2 properly. The swarm must be able to converge
to a globally superior position, while letting the particles explore the solution space.
The inertia weight, w, mostly affected the speed of convergence. Setting w too low
resulted in fast convergence to subpar solutions, which was probably due to the
particles getting stuck in local minima. Setting w too high resulted in erratic and
random behavior.

Table 3.2: Final parameter choice for PSO.

Parameter Value

Swarm size 30
Cognitive component (c1) 2.0
Social component (c2) 1.7
Inertia weight (w) 0.7

3.3 Evaluation methods
Every result in the following sections is an average of ten repeated executions, as
we determined it was an adequate amount to produce repeatable results. To ensure
fair comparisons between the various methods, all tests were done with a constant
amount of 60000 objective function evaluations. For instance, a GA with a popu-
lation size of 12 ran for 5000 iterations and a PSO with a swarm size of 30 ran for
2000 iterations.

Three different sets of point clouds were used, collected from different environments
in CARLA. These sets will be referred to as scenes from now on. Scene 1 is the same
as the one depicted in Figure 2.1, scene 2 is an urban environment and scene 3 is a
rural environment. For each scene, ten point clouds were created with pre-sampled
noise, as generating new noise at runtime could affect the comparisons.

We defined calibration accuracy as a percentage of successfully determined calibra-
tion parameters, where every parameter was considered individually. For x, y and
z to be considered successfully determined, they had to be within 2.5 cm of ground
truth, and ϕ, θ and ψ had to be within 1.0° of ground truth. The average percent-

28

3. Results

age of ten calibrations is referred to as the success rate, and is used to represent
most results. Root mean square (RMS) errors were also computed. To ensure that
values of translation and rotation were on a similar scale, meters and radians were
used for this computation. As an additional tool to compare the performance of
the algorithms, boxplots are included in Appendix A. They depict the error of the
calibration results in relation to ground truth for all ten calibrations for every scene
and solution space.

The size of the solution space were important when it came to convergence speed
and calibration accuracy. Therefore, three different bounds were chosen. They can
be seen in Table 3.3 and represent different situations. The small bounds represent
recalibrating from previous calibration parameters. The large bounds represent
initial calibration with minimal knowledge of calibration parameters. The medium
bounds represent a case in between.

Table 3.3: Lower and upper bounds on the search space centered at ground truth,
which results in three solution spaces.

Small Medium Large

Translation ±0.2 m ±0.5 m ±1.0 m
Rotation ±5° ±15° ±45°

3.4 Objective functions
The two proposed objective functions were compared to find the best method with
respect to accuracy and consistency. Due to a mistake in the implementation of the
distance varying objective function, the distance was calculated from the vehicle’s
origin instead of the origin of each lidar. This is thought to have a negative effect
on the performance of the distance varying objective function.

The GA and PSO were used to test both objective functions. To ensure convergence,
they were given the small solution space defined in Section 3.3. Lastly, the point
clouds from the three scenes were not corrupted by any noise or outliers, as to not
affect the evaluation of the best possible accuracy.

The resulting success rates are summarized in Table 3.4. As can be seen, the uniform
objective function performed best on all scenes in both algorithms. It will therefore
be used as the objective function for the remainder of the results.

29

3. Results

Table 3.4: Comparison of the objective functions’ success rates.

Uniform Varying

GA PSO GA PSO

Scene 1 90.0% 92.1% 59.6% 70.8%
Scene 2 94.6% 98.3% 65.4% 82.5%
Scene 3 86.7% 92.1% 41.7% 45.8%

3.4.1 Flaw in the objective functions
Ideally, the objective functions should associate the highest possible score to the
ground truth. This was not the case with the proposed objective functions. More
specifically, the calibration algorithms might find incorrect calibration parameters
despite having converged. An example of this flaw can be seen in Figure 3.1, which
shows the score history and final calibration poses from the PSO compared to the
ground truth. Interestingly, higher scores from the uniform objective function seems
to correspond to more accurate calibration parameters than higher scores from the
distance varying objective function.

Iteration

Sc
or

e

(a) Cost plot (b) Pose plot

Figure 3.1: An example of the flaw. A calibration result and its score during
calibration are shown in red, while the ground truth is shown in green.

Another interesting observation was seen in experiments where point clouds were
downsampled prior to running the calibration algorithm. In these cases, the corre-
lation between the score and the ground truth was even worse.

3.5 Robustness to sensor noise
To evaluate the algorithms’ robustness to sensor noise, calibration was performed
using data with and without applied noise. This procedure was done on all three
scenes using the small solution space. The results are summarized in Table 3.5 where
it can be seen that both algorithms are affected by the addition of noise.

30

3. Results

Table 3.5: Comparison of success rates with and without noise.

Without noise With noise

GA PSO GA PSO

Scene 1 90.0% 92.1% 79.2% 72.9%
Scene 2 94.6% 98.3% 87.1% 87.5%
Scene 3 86.7% 92.1% 47.1% 85.4%

3.6 GA, PSO and ICP comparison
To compare the performance of the algorithms, they were all tested against each
other using all three solution spaces defined in Table 3.3. The resulting success
rates are summarized in Table 3.6. In addition, the RMS errors are provided in
Table 3.7. It is important to note that the GA and PSO were given 2 of the 24
calibration parameters through the constraints, which represent 8.33 % success rate.
Similarly, the ICP was given 6 of the 24 calibration parameters, which represent 25
% success rate. With this in mind, the tables show that PSO consistently yields
the most accurate calibration parameters. The GA performs similarly to PSO for
the small solution space, but struggles in larger solution spaces. Both methods beat
ICP, which is especially evident when comparing their RMS errors in Table 3.7 and
boxplots in Appendix A. Moreover, ICP seems to struggle regardless of the size of
the solution space.

The differences in the performance is abundantly clear when comparing e.g. Figure
A.16, A.17 and A.18, which shows boxplots from scene 2 using the large solution
space. Here, PSO manages to successfully calibrate a majority of the parameters,
while the GA and ICP barely gets any parameters right.

Table 3.6: Comparison of the success rates of the algorithms for each scene. Scenes
1-3 are abbreviated S1-3.

Small Medium Large

GA PSO ICP GA PSO ICP GA PSO ICP

S1 79.2% 72.9% 45.0% 44.6% 70.0% 44.6% 37.1% 74.2% 45.8%
S2 87.1% 87.5% 43.8% 72.9% 92.1% 50.8% 9.2% 75.8% 53.3%
S3 47.1% 85.4% 62.5% 39.6% 82.5% 59.6% 10.4% 65.8% 63.8%

31

3. Results

Table 3.7: Comparison of the RMS error of the algorithms for each scene. Scenes
1-3 are abbreviated S1-3.

Small Medium Large

GA PSO ICP GA PSO ICP GA PSO ICP

S1 0.020 0.020 0.828 0.078 0.021 0.941 0.229 0.026 0.775
S2 0.015 0.013 0.723 0.022 0.012 0.789 0.499 0.024 0.797
S3 0.038 0.016 0.901 0.155 0.019 0.977 0.642 0.034 0.833

3.7 Adaptive calibration
A number of assumptions and expectations were presented in Section 2.7, which must
be evaluated to conclude whether the proposed methods for discrepancy detection
and online calibration are feasible.

3.7.1 Discrepancy detection
For discrepancy detection to be feasible, it must be sensitive to small changes in the
calibration parameters, while avoiding false detections. The sensitivity to changes
is determined by the discrepancy tolerance. We chose this tolerance as the largest
discrepancy observed when driving around in CARLA without altering the lidars’
poses. The speed of the vehicle was set to 30 km/h, and the sampling frequency
was set to 30 Hz. The test data was gathered from a series of simulations conducted
at the same locations as those used to decide the discrepancy tolerance. In each
simulation, one of the pose parameters of the FL lidar was modified ten times with
a magnitude according to the values in Table 3.8. After each modification the
parameter was reset to its original value. Note that all modifications in translation
were positive, since negative translations would move the lidar inside the vehicle.
For rotation this was not an issue, so these modifications were alternated between
being positive and negative.

Table 3.8: Magnitude of modifications applied to the FL lidar in the different tests.

Tiny Small Medium Large

Translation 0.01 m 0.05 m 0.10 m 0.20 m
Rotation ±0.05° ±0.10° ±0.50° ±1.0°

The resulting sensitivity of the discrepancy detection algorithm is summarized in
Table 3.9. It shows that the sensitivity is highly dependent on the parameter being
altered. False detections can occur, an example of which can be seen in the x-
column for the medium test. In the same test, the algorithm only detected negative
modifications to ψ.

32

3. Results

Table 3.9: Results on discrepancy detection given as a percentage of detections
made by the algorithm out of the ten introduced modifications.

x y z ϕ θ ψ

Tiny 10% 0% 0% 30% 10% 0%
Small 60% 0% 100% 100% 80% 0%
Medium 110% 0% 100% 100% 100% 50%
Large 100% 100% 100% 100% 100% 100%

3.7.2 Search space reduction
New data had to be generated to examine the effects of calibrating on a reduced
search space, so three scenarios were produced with different numbers of modified
lidar poses. The data was collected by running the same simulation in CARLA
three times, and modifying lidar poses by a given amount. The lidar poses that
were modified in each scenario can be seen in Table 3.10.

Table 3.10: The lidar poses that were modified in each scenario.

FL FR RL RR

Scenario 1 7

Scenario 2 7 7

Scenario 3 7 7 7

PSO was used for calibration, together with the small solution space defined in
Table 3.3. Note that the solution space was centered around the previous ground
truth, but we ensured that the new ground truth was within the solution space.
Calibrating using a reduced search space was compared to calibrating using the full
search space by running the PSO for 60000 evaluations on all three scenarios.

We expected that reducing the search space would yield faster and more accurate
calibration. This was not the case at all. As can be seen in Table 3.11, reducing the
search space resulted in worse accuracy for all three scenarios.

Table 3.11: Comparison of success rates when calibrating using the full search
space and the reduced search space.

Full Reduced

Scenario 1 97.9% 94.2%
Scenario 2 96.3% 77.5%
Scenario 3 95.4% 53.3%

33

4
Discussion

This chapter will discuss the methods used in the thesis and the results from the
previous chapter. It will also explore to what degree the research questions posed
in the introduction were answered.

4.1 Objective functions
The first research question is stated as follows:

How can an objective function be defined for calibrating 3D lidars? How does
the choice of objective function influence the calibration algorithm’s ability to
consistently converge to accurate calibration parameters?

This question is answered by the objective functions presented in the Section 2.2,
and the results in Section 3.4. It is evident from the results that a well-defined
objective function is paramount for successful stochastic optimization. Even though
the distance varying objective function performed a similar operation as the uniform
objective function, they produced very different results.

The flaw presented in Section 3.4.1 indicates that the uniform objective function
does not work exactly as desired. Similar behavior was observed, but to a higher
extent, when we attempted to speed up the calibration process by downsampling the
point clouds prior to calibration. Consequently, we believe this issue is correlated to
the downsampling that is performed as part of the objective function. To verify if
this is the case, calibration should be performed on higher resolution data. Higher
resolution means less downsampling, which should in turn mitigate the flaw if the
hypothesis is correct. Regardless, the inaccuracies introduced by this issue are very
minor and should not be a problem for the intended application.

The distance varying objective function was believed to mitigate this issue by vary-
ing the filter size depending on the distance. On the contrary, it performed much
worse than the uniform objective function. We do, however, believe that the distance
varying objective function would have performed better if it was implemented cor-
rectly. Regardless of the implementation, we think there is a problem with the shape
of the voxels. The combination of the restrictions imposed by equation (2.10), and
the fact that the voxels are cubical is believed to introduce discontinuities between
the grids. Instead, downsampling should be performed with some kind of spherical
mesh, where the mesh size is varied according to the resolution and distance. An

35

4. Discussion

example that might work is a cubed-sphere grid. These mistakes were unfortunately
not discovered during development, as point clouds downsampled using the distance
varying objective function looked reasonable.

As an alternative approach, using a neural network as an objective function could
be interesting. Such a neural network could take a candidate point cloud as input
during evaluation, and output a numerical measure of its “calibratedness”. It could
be trained on a large variety of uncalibrated lidars by simply altering the calibration
parameters for each lidar. We think this is worth looking into, as neural networks of-
ten perform well at visual tasks such as classification, which this problem essentially
is.

4.2 Comparison
The second research question reads as follows:

How do the GA and PSO compare with respect to robustness, i.e. initial es-
timation, accuracy, consistency and sensor noise? How do they compare to
ICP?

The answers to these questions are presented in Section 3.5 and 3.6, which together
shows that PSO is superior in all respects.

The addition of sensor noise to the point clouds also introduces noise in the objective
functions. Noisy objective functions are thought to make convergence more difficult
for the GA and PSO, yet the results in Section 3.5 indicate that the algorithms are
able to converge nonetheless. However, we only introduced white Gaussian noise
and outliers as explained in Section 2.1.1, so a more realistic noise model should be
developed for testing robustness.

We are surprised to see how much better PSO performed compared to the GA. How-
ever, as stated in [20, Ch. 1], some stochastic optimization algorithms do outperform
others on specific classes of problems. While this might be true, the GA was very
difficult to tune and might have performed better using another combination of pa-
rameters or other evolutionary methods. A notable example is Boltzmann selection,
which is a selection scheme that gradually shifts from exploration to exploitation.
We also recommend trying other stochastic optimization algorithms, as some might
perform even better than PSO.

The ICP algorithm performed poorly on all tests, and was outperformed by the
proposed methods. We believe that ICP struggles since the point clouds from the
lidars are not identical. As a result, the nearest neighbour search yields incorrect
point-correspondences. Subsequently, the distance minimization is performed on
incorrect correspondences, and the algorithm diverges. It is possible that more
sophisticated versions of ICP would perform better. However, these usually rely on
feature extraction techniques and are not considered comparable to the objective
functions used in the GA and PSO.

36

4. Discussion

4.3 Adaptive calibration
The third research question is stated as follows:

Which, if any, modifications and additions must be made to the proposed cal-
ibration algorithm to make it adaptive? How can an algorithm be defined to
detect changes in lidar poses? What are the advantages and challenges with
using such an algorithm?

The question was answered by adding discrepancy detection and reducing the search
space as described in Section 2.7, and by the results in Section 3.7. Several challenges
and potential improvements were discovered during development.

The discrepancy detection worked quite well for angular changes, but was not very
sensitive to translational changes. We believe the reason is that angular changes
affects the overlap in the merged point cloud much more significantly than trans-
lational changes. However, it is very unlikely that a change in pose only affects a
single parameter, so the concept should work. Unfortunately, it makes big demands
with regards to the update frequency of the data, and requires an uninterrupted
chain of comparisons between each time step. Recalibration must be done in be-
tween time steps to not break this chain. The result is an algorithm that requires
vast amounts of computing power constantly, which is a limited resource on vehicles.
An alternative approach to discrepancy detection could be to use neural networks
to determine if calibration is needed, in the same way as discussed in Section 4.1.

A surprising result is that calibrating a subset of the lidars performed worse than
calibrating all the lidars. Intuitively, reducing the search space of a problem should
make it easier to optimize, which this result seems to contradict. A possible ex-
planation is that optimizing in the entire search space has an infinite amount of
solutions, as the lidars are constrained to the vehicle after the optimization process.
Removing one or more lidars from the search space effectively constrains the prob-
lem beforehand, which results in the optimization problem having a unique solution.
As a consequence, the optimization problem becomes much harder, and the PSO’s
parameters might need to be retuned.

Future work on adaptive calibration should explore terminating the calibration al-
gorithm as soon as it has converged. Usually, this is not possible, as the maximum
score of any given scene is unknown. However, in online calibration, knowledge of
the previous score can be used. The calibration algorithm can, for instance, ter-
minate at a certain percentage of the score it had before the lidar poses changed.
This approach assumes that the score stays fairly constant as long as the lidars are
calibrated.

An alternative approach to adaptive calibration could be to calibrate each lidar
intertemporally. The idea is to compute a relative transformation between point
clouds from two time steps for each lidar, and use it to transform the previous lidar
pose. This approach would theoretically handle all four lidars changing pose, as the
calibration is done relative to their previous calibration, and not relative to each
other.

37

4. Discussion

4.4 Geometric constraints
An important part of the calibration algorithm is the constraints introduced in
Section 2.5. The measurements required for this constraining method will introduce
errors as they are done manually. However, our approach only needs measurements
on the translations of all lidars. Since the translations are assumed to be symmetric
around the vehicle’s coordinate system, we consider these measurements simpler to
obtain than determining the orientation and translation of a single lidar, and should
thus introduce less errors.

Ideally, the constraints should be determined automatically, for which additional
information is required. A combination that could work is a 3D map of the envi-
ronment and knowledge of the vehicle’s position.

4.5 Methodological issues
During the course of the thesis, some weaknesses in the methods, the proposed
solutions, and the results were discovered.

We implemented the GA, voxel grid filters, and data collection ourselves. As a
consequence, we cannot exclude the possibility of bugs in the code affecting the
results.

A multitude of scenes should be used to evaluate the performance of each algorithm
more diversely. Only three scenes were used for collecting the results, as the main
purpose was to check if the proposed algorithms worked, and for comparing the
different approaches. Furthermore, we set the constraints using the ground truth. In
reality, such accuracy cannot be achieved, so the results might be slightly misleading.
Additionally, as the adaptive part of the calibration was defined as a secondary aim,
the related methods were not tested and tuned as thoroughly as the rest. Therefore,
we could have missed something that would emerge from doing more tests.

An unrealistic assumption regarding the sensor model was a FOV of 270°, which
is significantly larger than specifications of planned solid-state lidars. Larger FOV
corresponds to more overlap between the lidars, which probably results in faster
convergence and more accurate calibration. Accordingly, the algorithms’ should
have been tested on lidar data with less overlap than 180°.

38

5
Conclusion

The purpose of this thesis has been to develop a fully automatic calibration al-
gorithm for four lidars. The proposed algorithm successfully calibrates all lidars
simultaneously using only point cloud data, without the need for any calibration
environment or feature-extraction techniques. Additionally, the algorithm should
work for an arbitrary number of lidars as long as there exist sufficient overlap in the
lidars’ field of view.

Two stochastic optimization methods were explored, namely a genetic algorithm and
particle swarm optimization. They were compared with respect to initial estimation,
accuracy, consistency and sensor noise. In the end, only the PSO algorithm performs
well enough to be considered robust and should work for the intended task.

An objective function based on a voxel grid filter was successfully defined, which
allows the calibration algorithm to converge reliably to accurate calibration pa-
rameters. Feature-extraction and other application-specific functions were not in-
troduced, so the algorithm should work regardless of the environment where the
calibration is performed.

The secondary objective of making the algorithm adaptive was partially success-
ful. Temporal differences in individual lidars’ point clouds can be used to detect
changes in lidar pose, but might be too computationally demanding for use in real
applications. Additionally, calibrating only a subset of lidars performs worse than
calibrating all lidars at once.

Future work
The proposed objective function is not perfect, as ground truth is not the global
optimum. Therefore, alternatives should be looked into. One approach could be to
use neural networks to determine the quality of the calibration parameters. Such a
network could be used as an objective function and for detecting changes in lidar
pose for adaptive calibration.

Currently, the proposed calibration algorithm requires knowledge of the relationship
between the lidars and the vehicle’s coordinate system to geometrically constrain
the lidars. The relationship must be must be determined manually, which requires
human intervention and introduces errors. If this information could be determined
automatically, the overall accuracy could be improved.

39

Bibliography

[1] L. Brown and G. Lindberg, “Extrinsic calibration of multiple 2D Lidars using
a Genetic Algorithm,” Master’s thesis, Chalmers University of Technology,
2019. [Online]. Available: https://hdl.handle.net/20.500.12380/256909

[2] M. Khader and S. Cherian, “An Introduction to Automotive LIDAR,”
Dallas, 2018. [Online]. Available: http://www.ti.com/lit/wp/slyy150/slyy150.
pdf?&ts=1589273697450

[3] F. Lu and E. Milios, “Robot pose estimation in unknown environments by
matching 2d range scans,” Journal of Intelligent and Robotic Systems, vol. 18,
no. 3, pp. 249–275, Mar 1997. [Online]. Available: https://doi.org/10.1023/A:
1007957421070

[4] S. T. Pfister, K. L. Kriechbaum, S. I. Roumeliotis, and J. W. Burdick,
“Weighted range sensor matching algorithms for mobile robot displacement
estimation,” in Proceedings 2002 IEEE International Conference on Robotics
and Automation (Cat. No.02CH37292), vol. 2, May 2002, pp. 1667–1674 vol.2.

[5] B. Jensen and R. Siegwart, “Scan alignment with probabilistic distance metric,”
in 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS) (IEEE Cat. No.04CH37566), vol. 3, 2004, pp. 2191–2196 vol.3.

[6] M. Magnusson, “The three-dimensional normal-distributions transform : an
efficient representation for registration, surface analysis, and loop detection,”
Ph.D. dissertation, Örebro University, School of Science and Technology, 2009.

[7] F. Pomerleau, F. Colas, and R. Siegwart, “A Review of Point Cloud
Registration Algorithms for Mobile Robotics,” Foundations and Trends
in Robotics, vol. 4, no. 1, pp. 1–104, 2015. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-01178661

[8] A. Censi, “An ICP variant using a point-to-line metric,” in 2008 IEEE Inter-
national Conference on Robotics and Automation, 2008, pp. 19–25.

[9] Z. Pusztai, I. Eichhardt, and L. Hajder, “Accurate calibration of multi-LiDAR-
multi-camera systems,” Sensors, vol. 18, no. 7, p. 2139, Jul. 2018. [Online].
Available: https://doi.org/10.3390/s18072139

[10] Y. Park, S. Yun, C. Won, K. Cho, K. Um, and S. Sim, “Calibration
between color camera and 3d LIDAR instruments with a polygonal planar

41

https://hdl.handle.net/20.500.12380/256909
http://www.ti.com/lit/wp/slyy150/slyy150.pdf?&ts=1589273697450
http://www.ti.com/lit/wp/slyy150/slyy150.pdf?&ts=1589273697450
https://doi.org/10.1023/A:1007957421070
https://doi.org/10.1023/A:1007957421070
https://hal.archives-ouvertes.fr/hal-01178661
https://doi.org/10.3390/s18072139

Bibliography

board,” Sensors, vol. 14, no. 3, pp. 5333–5353, Mar. 2014. [Online]. Available:
https://doi.org/10.3390/s140305333

[11] E. Kim and S. Park, “Extrinsic calibration of a camera-lidar multi sensor sys-
tem using a planar chessboard,” in 2019 Eleventh International Conference on
Ubiquitous and Future Networks (ICUFN), 2019, pp. 89–91.

[12] M. A. Fischler and R. C. Bolles, “Random sample consensus: A paradigm for
model fitting with applications to image analysis and automated cartography,”
Commun. ACM, vol. 24, no. 6, p. 381–395, Jun. 1981. [Online]. Available:
https://doi.org/10.1145/358669.358692

[13] M. Pereira, V. Santos, and P. Dias, “Automatic calibration of multiple lidar sen-
sors using a moving sphere as target,” in Robot 2015: Second Iberian Robotics
Conference, L. P. Reis, A. P. Moreira, P. U. Lima, L. Montano, and V. Muñoz-
Martinez, Eds. Cham: Springer International Publishing, 2016, pp. 477–489.

[14] K. S. Arun, T. S. Huang, and S. D. Blostein, “Least-squares fitting of two 3-d
point sets,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. PAMI-9, no. 5, pp. 698–700, 1987.

[15] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
International Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, Nov.
2004. [Online]. Available: https://doi.org/10.1023/b:visi.0000029664.99615.94

[16] J. L. Schönberger, H. Hardmeier, T. Sattler, and M. Pollefeys, “Comparative
evaluation of hand-crafted and learned local features,” in 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 6959–6968.

[17] E. Simo-Serra, E. Trulls, L. Ferraz, I. Kokkinos, P. Fua, and F. Moreno-Noguer,
“Discriminative learning of deep convolutional feature point descriptors,” in
2015 IEEE International Conference on Computer Vision (ICCV), 2015, pp.
118–126.

[18] R. Hänsch, T. Weber, and O. Hellwich, “Comparison of 3d interest
point detectors and descriptors for point cloud fusion,” ISPRS Annals of
Photogrammetry, Remote Sensing and Spatial Information Sciences, vol.
II-3, pp. 57–64, Aug. 2014. [Online]. Available: https://doi.org/10.5194/
isprsannals-ii-3-57-2014

[19] T.-H. Yu, O. J. Woodford, and R. Cipolla, “A performance evaluation of
volumetric 3d interest point detectors,” International Journal of Computer
Vision, vol. 102, no. 1-3, pp. 180–197, Sep. 2012. [Online]. Available:
https://doi.org/10.1007/s11263-012-0563-2

[20] M. Wahde, Biologically inspired optimization methods: an introduction.
Southampton, UK Boston, MA: WIT Press, 2008.

[21] J. M. Maroli, Ü. Özgüner, K. Redmill, and A. Kurt, “Automated rotational
calibration of multiple 3d lidar units for intelligent vehicles,” in 2017 IEEE
20th International Conference on Intelligent Transportation Systems (ITSC),
2017, pp. 1–6.

42

https://doi.org/10.3390/s140305333
https://doi.org/10.1145/358669.358692
https://doi.org/10.1023/b:visi.0000029664.99615.94
https://doi.org/10.5194/isprsannals-ii-3-57-2014
https://doi.org/10.5194/isprsannals-ii-3-57-2014
https://doi.org/10.1007/s11263-012-0563-2

Bibliography

[22] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “CARLA: An
open urban driving simulator,” in Proceedings of the 1st Annual Conference on
Robot Learning, 2017, pp. 1–16.

43

A
Boxplots

This appendix contains boxplots which illustrates the accuracy and consistency of
the three calibrations algorithms, and is meant as a supplement to Chapter 3. The
plots illustrate the error between the ground truth and the calibration result of ten
executions of each algorithm. As in Chapter 3, calibration is considered successful
when parameters are within 2.5 cm or 1.0° of ground truth.

Contents
A.1 Scene 1 . II
A.2 Scene 2 . XI
A.3 Scene 3 . XX

I

A. Boxplots

A.1 Scene 1

PSO, small solution space

x F
L

y F
L

z F
L

x F
R

y F
R

z F
R

x R
L

y R
L

z R
L

x R
R

y R
R

z R
R

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Er
ro

r
[m

]

Successful calibration
Ground truth

φ F
L

θ F
L

ψ F
L

φ F
R

θ F
R

ψ F
R

φ R
L

θ R
L

ψ R
L

φ R
R

θ R
R

ψ R
R

−1.5

−1

−0.5

0

0.5

1

1.5

Er
ro

r
[d

eg
]

Figure A.1: Box plots of errors in translation and orientation from calibration
using PSO with the small solution space on scene 1.

II

A. Boxplots

GA, small solution space

x F
L

y F
L

z F
L

x F
R

y F
R

z F
R

x R
L

y R
L

z R
L

x R
R

y R
R

z R
R

−0.1

−0.05

0

0.05

Er
ro

r
[m

]

Successful calibration
Ground truth

φ F
L

θ F
L

ψ F
L

φ F
R

θ F
R

ψ F
R

φ R
L

θ R
L

ψ R
L

φ R
R

θ R
R

ψ R
R

−1.5

−1

−0.5

0

0.5

1

1.5

2

Er
ro

r
[d

eg
]

Figure A.2: Box plots of errors in translation and orientation from calibration
using the GA with the small solution space on scene 1.

III

A. Boxplots

ICP, small solution space

x F
L

y F
L

z F
L

x F
R

y F
R

z F
R

x R
L

y R
L

z R
L

x R
R

y R
R

z R
R

−3

−2

−1

0

1

2

3

4

Er
ro

r
[m

]

Successful calibration
Ground truth

φ F
L

θ F
L

ψ F
L

φ F
R

θ F
R

ψ F
R

φ R
L

θ R
L

ψ R
L

φ R
R

θ R
R

ψ R
R

−40

−20

0

20

40

60

Er
ro

r
[d

eg
]

Figure A.3: Box plots of errors in translation and orientation from calibration
using ICP with the small solution space on scene 1.

IV

A. Boxplots

PSO, medium solution space

x F
L

y F
L

z F
L

x F
R

y F
R

z F
R

x R
L

y R
L

z R
L

x R
R

y R
R

z R
R

−0.1

−0.05

0

0.05

0.1

Er
ro

r
[m

]

Successful calibration
Ground truth

φ F
L

θ F
L

ψ F
L

φ F
R

θ F
R

ψ F
R

φ R
L

θ R
L

ψ R
L

φ R
R

θ R
R

ψ R
R

−1.5

−1

−0.5

0

0.5

1

1.5

2

Er
ro

r
[d

eg
]

Figure A.4: Box plots of errors in translation and orientation from calibration
using PSO with the medium solution space on scene 1.

V

A. Boxplots

GA, medium solution space

x F
L

y F
L

z F
L

x F
R

y F
R

z F
R

x R
L

y R
L

z R
L

x R
R

y R
R

z R
R

−0.4

−0.2

0

0.2

0.4

Er
ro

r
[m

]

Successful calibration
Ground truth

φ F
L

θ F
L

ψ F
L

φ F
R

θ F
R

ψ F
R

φ R
L

θ R
L

ψ R
L

φ R
R

θ R
R

ψ R
R

−8

−6

−4

−2

0

2

4

6

Er
ro

r
[d

eg
]

Figure A.5: Box plots of errors in translation and orientation from calibration
using the GA with the medium solution space on scene 1.

VI

A. Boxplots

ICP, medium solution space

x F
L

y F
L

z F
L

x F
R

y F
R

z F
R

x R
L

y R
L

z R
L

x R
R

y R
R

z R
R

−4

−2

0

2

4

6

Er
ro

r
[m

]

Successful calibration
Ground truth

φ F
L

θ F
L

ψ F
L

φ F
R

θ F
R

ψ F
R

φ R
L

θ R
L

ψ R
L

φ R
R

θ R
R

ψ R
R

−100

−50

0

50

100

Er
ro

r
[d

eg
]

Figure A.6: Box plots of errors in translation and orientation from calibration
using ICP with the medium solution space on scene 1.

VII

A. Boxplots

PSO, large solution space

x F
L

y F
L

z F
L

x F
R

y F
R

z F
R

x R
L

y R
L

z R
L

x R
R

y R
R

z R
R

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

Er
ro

r
[m

]

Successful calibration
Ground truth

φ F
L

θ F
L

ψ F
L

φ F
R

θ F
R

ψ F
R

φ R
L

θ R
L

ψ R
L

φ R
R

θ R
R

ψ R
R

−1

0

1

2

3

Er
ro

r
[d

eg
]

Figure A.7: Box plots of errors in translation and orientation from calibration
using PSO with the large solution space on scene 1.

VIII

A. Boxplots

GA, large solution space

x F
L

y F
L

z F
L

x F
R

y F
R

z F
R

x R
L

y R
L

z R
L

x R
R

y R
R

z R
R

−1

−0.5

0

0.5

Er
ro

r
[m

]

Successful calibration
Ground truth

φ F
L

θ F
L

ψ F
L

φ F
R

θ F
R

ψ F
R

φ R
L

θ R
L

ψ R
L

φ R
R

θ R
R

ψ R
R

−40

−20

0

20

40

Er
ro

r
[d

eg
]

Figure A.8: Box plots of errors in translation and orientation from calibration
using the GA with the large solution space on scene 1.

IX

A. Boxplots

ICP, large solution space

x F
L

y F
L

z F
L

x F
R

y F
R

z F
R

x R
L

y R
L

z R
L

x R
R

y R
R

z R
R

−3

−2

−1

0

1

2

3

4

5

Er
ro

r
[m

]

Successful calibration
Ground truth

φ F
L

θ F
L

ψ F
L

φ F
R

θ F
R

ψ F
R

φ R
L

θ R
L

ψ R
L

φ R
R

θ R
R

ψ R
R

−60

−40

−20

0

20

40

60

Er
ro

r
[d

eg
]

Figure A.9: Box plots of errors in translation and orientation from calibration
using ICP with the large solution space on scene 1.

X

A. Boxplots

A.2 Scene 2

PSO, small solution space

x F
L

y F
L

z F
L

x F
R

y F
R

z F
R

x R
L

y R
L

z R
L

x R
R

y R
R

z R
R

−0.04

−0.02

0

0.02

0.04

Er
ro

r
[m

]

Successful calibration
Ground truth

φ F
L

θ F
L

ψ F
L

φ F
R

θ F
R

ψ F
R

φ R
L

θ R
L

ψ R
L

φ R
R

θ R
R

ψ R
R

−1.5

−1

−0.5

0

0.5

1

Er
ro

r
[d

eg
]

Figure A.10: Box plots of errors in translation and orientation from calibration
using PSO with the small solution space on scene 2.

XI

A. Boxplots

GA, small solution space

x F
L

y F
L

z F
L

x F
R

y F
R

z F
R

x R
L

y R
L

z R
L

x R
R

y R
R

z R
R

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Er
ro

r
[m

]

Successful calibration
Ground truth

φ F
L

θ F
L

ψ F
L

φ F
R

θ F
R

ψ F
R

φ R
L

θ R
L

ψ R
L

φ R
R

θ R
R

ψ R
R

−2

−1

0

1

2

Er
ro

r
[d

eg
]

Figure A.11: Box plots of errors in translation and orientation from calibration
using the GA with the small solution space on scene 2.

XII

A. Boxplots

ICP, small solution space

x F
L

y F
L

z F
L

x F
R

y F
R

z F
R

x R
L

y R
L

z R
L

x R
R

y R
R

z R
R

−2

−1

0

1

2

3

4

Er
ro

r
[m

]

Successful calibration
Ground truth

φ F
L

θ F
L

ψ F
L

φ F
R

θ F
R

ψ F
R

φ R
L

θ R
L

ψ R
L

φ R
R

θ R
R

ψ R
R

−40

−20

0

20

40

Er
ro

r
[d

eg
]

Figure A.12: Box plots of errors in translation and orientation from calibration
using ICP with the small solution space on scene 2.

XIII

A. Boxplots

PSO, medium solution space

x F
L

y F
L

z F
L

x F
R

y F
R

z F
R

x R
L

y R
L

z R
L

x R
R

y R
R

z R
R

−0.06

−0.04

−0.02

0

0.02

0.04

Er
ro

r
[m

]

Successful calibration
Ground truth

φ F
L

θ F
L

ψ F
L

φ F
R

θ F
R

ψ F
R

φ R
L

θ R
L

ψ R
L

φ R
R

θ R
R

ψ R
R

−1

−0.5

0

0.5

1

Er
ro

r
[d

eg
]

Figure A.13: Box plots of errors in translation and orientation from calibration
using PSO with the medium solution space on scene 2.

XIV

A. Boxplots

GA, medium solution space

x F
L

y F
L

z F
L

x F
R

y F
R

z F
R

x R
L

y R
L

z R
L

x R
R

y R
R

z R
R

−0.1

−0.05

0

0.05

0.1

Er
ro

r
[m

]

Successful calibration
Ground truth

φ F
L

θ F
L

ψ F
L

φ F
R

θ F
R

ψ F
R

φ R
L

θ R
L

ψ R
L

φ R
R

θ R
R

ψ R
R

−4

−3

−2

−1

0

1

2

3

Er
ro

r
[d

eg
]

Figure A.14: Box plots of errors in translation and orientation from calibration
using the GA with the medium solution space on scene 2.

XV

A. Boxplots

ICP, medium solution space

x F
L

y F
L

z F
L

x F
R

y F
R

z F
R

x R
L

y R
L

z R
L

x R
R

y R
R

z R
R

−6

−4

−2

0

2

4

6

Er
ro

r
[m

]

Successful calibration
Ground truth

φ F
L

θ F
L

ψ F
L

φ F
R

θ F
R

ψ F
R

φ R
L

θ R
L

ψ R
L

φ R
R

θ R
R

ψ R
R

−40

−20

0

20

40

60

Er
ro

r
[d

eg
]

Figure A.15: Box plots of errors in translation and orientation from calibration
using ICP with the medium solution space on scene 2.

XVI

A. Boxplots

PSO, large solution space

x F
L

y F
L

z F
L

x F
R

y F
R

z F
R

x R
L

y R
L

z R
L

x R
R

y R
R

z R
R

−0.2

−0.1

0

0.1

0.2

Er
ro

r
[m

]

Successful calibration
Ground truth

φ F
L

θ F
L

ψ F
L

φ F
R

θ F
R

ψ F
R

φ R
L

θ R
L

ψ R
L

φ R
R

θ R
R

ψ R
R

−4

−2

0

2

4

Er
ro

r
[d

eg
]

Figure A.16: Box plots of errors in translation and orientation from calibration
using PSO with the large solution space on scene 2.

XVII

A. Boxplots

GA, large solution space

x F
L

y F
L

z F
L

x F
R

y F
R

z F
R

x R
L

y R
L

z R
L

x R
R

y R
R

z R
R

−1.5

−1

−0.5

0

0.5

1

1.5

Er
ro

r
[m

]

Successful calibration
Ground truth

φ F
L

θ F
L

ψ F
L

φ F
R

θ F
R

ψ F
R

φ R
L

θ R
L

ψ R
L

φ R
R

θ R
R

ψ R
R

−60

−40

−20

0

20

40

60

Er
ro

r
[d

eg
]

Figure A.17: Box plots of errors in translation and orientation from calibration
using the GA with the large solution space on scene 2.

XVIII

A. Boxplots

ICP, large solution space

x F
L

y F
L

z F
L

x F
R

y F
R

z F
R

x R
L

y R
L

z R
L

x R
R

y R
R

z R
R

−3

−2

−1

0

1

2

3

4

5

Er
ro

r
[m

]

Successful calibration
Ground truth

φ F
L

θ F
L

ψ F
L

φ F
R

θ F
R

ψ F
R

φ R
L

θ R
L

ψ R
L

φ R
R

θ R
R

ψ R
R

−40

−20

0

20

40

Er
ro

r
[d

eg
]

Figure A.18: Box plots of errors in translation and orientation from calibration
using ICP with the large solution space on scene 2.

XIX

A. Boxplots

A.3 Scene 3

PSO, small solution space

x F
L

y F
L

z F
L

x F
R

y F
R

z F
R

x R
L

y R
L

z R
L

x R
R

y R
R

z R
R

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Er
ro

r
[m

]

Successful calibration
Ground truth

φ F
L

θ F
L

ψ F
L

φ F
R

θ F
R

ψ F
R

φ R
L

θ R
L

ψ R
L

φ R
R

θ R
R

ψ R
R

−1

−0.5

0

0.5

1

Er
ro

r
[d

eg
]

Figure A.19: Box plots of errors in translation and orientation from calibration
using PSO with the small solution space on scene 3.

XX

A. Boxplots

GA, small solution space

x F
L

y F
L

z F
L

x F
R

y F
R

z F
R

x R
L

y R
L

z R
L

x R
R

y R
R

z R
R

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Er
ro

r
[m

]

Successful calibration
Ground truth

φ F
L

θ F
L

ψ F
L

φ F
R

θ F
R

ψ F
R

φ R
L

θ R
L

ψ R
L

φ R
R

θ R
R

ψ R
R

−2

−1

0

1

2

Er
ro

r
[d

eg
]

Figure A.20: Box plots of errors in translation and orientation from calibration
using the GA with the small solution space on scene 3.

XXI

A. Boxplots

ICP, small solution space

x F
L

y F
L

z F
L

x F
R

y F
R

z F
R

x R
L

y R
L

z R
L

x R
R

y R
R

z R
R

−2

0

2

4

Er
ro

r
[m

]

Successful calibration
Ground truth

φ F
L

θ F
L

ψ F
L

φ F
R

θ F
R

ψ F
R

φ R
L

θ R
L

ψ R
L

φ R
R

θ R
R

ψ R
R

−60

−40

−20

0

20

40

Er
ro

r
[d

eg
]

Figure A.21: Box plots of errors in translation and orientation from calibration
using ICP with the small solution space on scene 3.

XXII

A. Boxplots

PSO, medium solution space

x F
L

y F
L

z F
L

x F
R

y F
R

z F
R

x R
L

y R
L

z R
L

x R
R

y R
R

z R
R

−0.15

−0.1

−0.05

0

0.05

0.1

Er
ro

r
[m

]

Successful calibration
Ground truth

φ F
L

θ F
L

ψ F
L

φ F
R

θ F
R

ψ F
R

φ R
L

θ R
L

ψ R
L

φ R
R

θ R
R

ψ R
R

−1

−0.5

0

0.5

1

1.5

Er
ro

r
[d

eg
]

Figure A.22: Box plots of errors in translation and orientation from calibration
using PSO with the medium solution space on scene 3.

XXIII

A. Boxplots

GA, medium solution space

x F
L

y F
L

z F
L

x F
R

y F
R

z F
R

x R
L

y R
L

z R
L

x R
R

y R
R

z R
R

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Er
ro

r
[m

]

Successful calibration
Ground truth

φ F
L

θ F
L

ψ F
L

φ F
R

θ F
R

ψ F
R

φ R
L

θ R
L

ψ R
L

φ R
R

θ R
R

ψ R
R

−20

−15

−10

−5

0

5

10

15

20

Er
ro

r
[d

eg
]

Figure A.23: Box plots of errors in translation and orientation from calibration
using the GA with the medium solution space on scene 3.

XXIV

A. Boxplots

ICP, medium solution space

x F
L

y F
L

z F
L

x F
R

y F
R

z F
R

x R
L

y R
L

z R
L

x R
R

y R
R

z R
R

−2

−1

0

1

2

3

4

Er
ro

r
[m

]

Successful calibration
Ground truth

φ F
L

θ F
L

ψ F
L

φ F
R

θ F
R

ψ F
R

φ R
L

θ R
L

ψ R
L

φ R
R

θ R
R

ψ R
R

−60

−40

−20

0

20

40

60

Er
ro

r
[d

eg
]

Figure A.24: Box plots of errors in translation and orientation from calibration
using ICP with the medium solution space on scene 3.

XXV

A. Boxplots

PSO, large solution space

x F
L

y F
L

z F
L

x F
R

y F
R

z F
R

x R
L

y R
L

z R
L

x R
R

y R
R

z R
R

−0.4

−0.2

0

0.2

0.4

Er
ro

r
[m

]

Successful calibration
Ground truth

φ F
L

θ F
L

ψ F
L

φ F
R

θ F
R

ψ F
R

φ R
L

θ R
L

ψ R
L

φ R
R

θ R
R

ψ R
R

−6

−4

−2

0

2

4

6

Er
ro

r
[d

eg
]

Figure A.25: Box plots of errors in translation and orientation from calibration
using PSO with the large solution space on scene 3.

XXVI

A. Boxplots

GA, large solution space

x F
L

y F
L

z F
L

x F
R

y F
R

z F
R

x R
L

y R
L

z R
L

x R
R

y R
R

z R
R

−2

−1.5

−1

−0.5

0

0.5

1

Er
ro

r
[m

]

Successful calibration
Ground truth

φ F
L

θ F
L

ψ F
L

φ F
R

θ F
R

ψ F
R

φ R
L

θ R
L

ψ R
L

φ R
R

θ R
R

ψ R
R

−100

−50

0

50

100

Er
ro

r
[d

eg
]

Figure A.26: Box plots of errors in translation and orientation from calibration
using the GA with the large solution space on scene 3.

XXVII

A. Boxplots

ICP, large solution space

x F
L

y F
L

z F
L

x F
R

y F
R

z F
R

x R
L

y R
L

z R
L

x R
R

y R
R

z R
R

−4

−2

0

2

4

6

Er
ro

r
[m

]

Successful calibration
Ground truth

φ F
L

θ F
L

ψ F
L

φ F
R

θ F
R

ψ F
R

φ R
L

θ R
L

ψ R
L

φ R
R

θ R
R

ψ R
R

−40

−20

0

20

40

Er
ro

r
[d

eg
]

Figure A.27: Box plots of errors in translation and orientation from calibration
using ICP with the large solution space on scene 3.

XXVIII

	
	

	
	

	
	
	
	

DEPARTMENT OF MECHANICS AND MARITIME SCIENCES
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden
www.chalmers.se

www.chalmers.se

	Acronyms
	Introduction
	Lidar variants
	Calibration
	Aim
	Related work
	Iterative closest point
	Feature-based calibration
	Biologically inspired optimization methods
	Conclusions on related work

	Research questions and limitations

	Methods
	Data collection
	Data modification

	Objective function
	Voxel grid filter
	Uniform objective function
	Distance varying objective function

	Genetic algorithm
	Initial population
	Fitness evaluation
	Evolution
	Termination

	Particle swarm optimization
	Initialization
	Evaluation
	Velocity and position update
	Termination

	Geometric constraints
	Iterative closest point
	Adaptive calibration
	Discrepancy detection
	Online calibration

	Results
	Parameter choice - GA
	Parameter choice - PSO
	Evaluation methods
	Objective functions
	Flaw in the objective functions

	Robustness to sensor noise
	GA, PSO and ICP comparison
	Adaptive calibration
	Discrepancy detection
	Search space reduction

	Discussion
	Objective functions
	Comparison
	Adaptive calibration
	Geometric constraints
	Methodological issues

	Conclusion
	Bibliography
	Boxplots
	Scene 1
	Scene 2
	Scene 3

