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Abstract

In recent years, breakthroughs in artificial intelligence (AI) have drawn the attention to the subject from
many fields including the automotive industry, where it could become a cornerstone in order to develop
fully autonomous vehicles. In the automotive industry the applications for these AI-techniques varies from
classification of a vehicle’s surroundings to behavioral-reflex approaches that mimics human behaviour. In
this master thesis, the capability to navigate a truck in mining environments using neural networks has been
investigated, tested and verified in a simulated 3D environment. As input to the neural networks, Light
Detection And Ranging (LIDAR) sensors in different configurations has been used. The main focus has been to
create an algorithm that can create short paths at a high rate using limited computational power. Consequently,
the networks has been tried on Raspberry Pi to prove their capability. Several approaches are proposed using
both 2D LIDARs as well as 3D LIDARs. The developed networks are simple, does not require high performance
computational units and are able to make decisions at intersections according to a global planner. Apart from
the developed networks, a tool-chain for collection of training data, network training and testing in simulated
environment is described in detail in the report.

Keywords: neural network, autonomous vehicles, short path generation, decision making, end-to-end learning,
machine learning
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1 Introduction

As technology advances, the possibility to develop autonomous vehicles of different kinds increases. The
challenges in this field are huge and ranges from technical issues to ethical aspects. It has the potential to
change the automotive transportation sector radically in terms of efficiency, safety and accessibility, which will
have big impact on the society. The idea of autonomous vehicles is not novel and can be traced back to the
1930s science fiction literature and later in the 1960s as a problem that has been investigated by the academic
research community [1]. Many expert systems [2, 3, 4, 5, 6] that supply solutions needed for fully autonomous
vehicles already exist and have been combined in recent years to create systems which can drive autonomous in
different environments [7, 8, 9, 10] with great success. The advances in the field between early 2000s until now
have been faster than most experts predicted.

A fully autonomous vehicle needs to have the ability to adapt to all kinds of situations while following the
traffic rules that may apply. For all of these situations, decisions need to be made at a high pace and without
failures. A human driver still outperforms these systems in terms of generality, since many of the current
systems still struggle with difficult weather conditions, complicated urban road environments or to simply
follow the traffic rules, but this gap is closing fast. A drawback, however, is that the most advanced systems
still rely on hardware and sensors that are too expensive to fit in most commercial vehicles. It is therefore of
great interest to investigate different approaches for autonomous vehicles to find techniques that are as general
as possible and examine which hardware and sensors are crucial for good performance.

Since the human mind is capable to adapt to different weather conditions and traffic situations, artificial
intelligence (AI) techniques that resemble the human way of thinking could be a stepping stone in the
development of fully autonomous vehicles. Neural networks show the ability to learn similar to the way that
can be seen in biological systems [11]. With the advent of deep neural nets, it may be possible to create an AI
inspired algorithm that understands the different tasks that driving is composed of [12]. In a recent report
from Nvidia [13], a convolutional neural network was used to create an end to end solution, which took camera
images as input to directly generate steering angles used in a car with good results. One could argue that
even if the results are good, it is still hard to know a priori how the network will act in all situations. Could
there be a blind spot in the network where it will generate steering commands that are potentially dangerous?
Another approach is to let the network generate plausible local short paths to be acted upon by a decision
layer based upon criteria such as safety. This approach enhances flexibility, since the network could be used as
a low level system to create collision free paths first in a local environment, then be used by the high level
system for safety check or global planning. In [14], a fully convolutional network (FCN) in combination with a
long short-term memory (LSTM) recurrent neural network is used to predict future vehicle motion based on
camera observations which could be used as paths as described above.

When making maps for control of autonomous vehicles, it is often inefficient to store every detail in the
surrounding environment as this would take up large amount of storage. It would also be hard to monitor
changes in the environment in great detail in an efficient way. Further on, following a pre-defined track in
absolute coordinates would require an accuracy that could be hard to achieve under all conditions as well.
Instead, local short paths could be generated at high update rate according to immediate surroundings. Given
the sensor data from e.g. LIDAR sensors, a path is then preferably directly generated.

1.1 Purpose and scope

The project investigates how different neural network techniques could be used to calculate short paths at high
rate given readings from Light Detection and Ranging (LIDAR) sensors. The main focus is to create a network
that could be implemented on low performance hardware with good results. The goal is to have an algorithm
which generates short paths fast and with high accuracy, hence enables a truck to run autonomously, provided
the paths are followed.

1.1.1 Limitation of scope

• The resulting planner will generate local plausible paths. It will need a global planner that gives
instructions of choosing paths that comply with the planned global path at intersections. This global
planner will not be a part of this project.
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• The intended environment for the local planner will be limited to mines, since the neural network will be
trained with data from these environments.

1.2 Planning in autonomous driving

The framework of autonomous driving planning is often divided into several hierarchical layers as in [15, 16,
17]. In one recent survey [15], these four layers are discussed:

• Route planning

• Path planning

• Manoeuvre choice

• Trajectory planning

The route planner is responsible for finding the best route between a starting point and a destination, and
could be seen as a global planner which makes high level decisions. The three latter layers concern control with
respect to the vehicle dynamics, interaction with traffic as well as handling dynamic obstacles on the path.
These sub-systems are often combined together to one unit. More specifically, using the definitions from [15],
path planning solves the problem of finding a feasible path that avoids collisions and applies traffic laws that
may come into place. Manoeuvre choice concerns the problem of making the best decision when taking both
the path from the path planner and the global route into account. Lastly, trajectory planning is the layer that
solves the control problem that consists of following the proposed reference path given from the path planner,
while taking dynamic constrains of the vehicle as well as the environment into account. Since the idea in this
thesis is to use neural networks to generate short paths directly based on raw sensor data, the above layered
structure is not applicable. However, it is helpful to have a understanding of these concepts in order to be able
to compare our results with other techniques as well as compare the different networks that we present in this
report.

1.3 Path planning

Autonomous driving is achieved by utilizing information from the surroundings obtained by different sensors,
in order to enable the vehicle to make decisions which move it between two locations without any need of
any interventions from a driver [18]. To that extent, the topic of path planning is an essential step to be able
to realize autonomous vehicles [19]. The path planner’s responsibility is to find a collision-free path from a
starting point to a target point in a known environment. Commonly used techniques for path planning are cell
decomposition, road-map and potential fields [20, 21, 19]. Path planning could be divided into two different
fields, namely global and local path planning. Global path planning requires knowledge of the environment
and calculates the full path offline or before execution since the terrain is, here, known beforehand [22]. As
mentioned in the introduction, it is hard to monitor changes and often inefficient to store all the data that is
needed for the global path planner to be able to complete a path. Even if this could be done for more long
lasting changes such as road works, it will still pose problems with more dynamic obstacles such as other
vehicles, humans, etc., which are not part of the static map. This problem could be addressed by using a local
path planner to handle collision avoidance and calculate paths based on current position and sensor input. A
local path planner is usually combined with a global path planner [23]. In this case, the global path planner
controls the vehicle from the information that is known in advance, i.e. a static map, in the same way as a
route planner does, and the local path planner responds to the surrounding environment of the vehicle’s current
position based on different sensors.

1.4 Localization

In order to navigate, a vehicle needs to be able to determine its current position and orientation based on
readings from sensors [24], which is termed localization. The localization technique can be classified into two
main categories [25]:
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• Absolute (global) localization - Use beacons, landmarks or satellite signals (e.g. Global Positioning
System (GPS)) to obtain the vehicles absolute position.

• Relative (local) localization - Use various on-board sensors (gyroscopes, accelerometers etc) to obtain the
position and orientation.

Relative localization utilizes filtered odometry information to obtain a vehicle’s relative location to a starting
location, commonly known as dead-reckoning [26]. Since the on-board sensors are updated at a high rate
they can be used to capture short term deviation from a specified path with ease. But it also suffers from
inaccuracies since the underlying models used for the sensor fusion are simplified, which gives rise to errors over
time. Absolute localization is used to estimate the position of a vehicle in the global frame, and is independent
of time and current location. Therefore it can act as a correction to the previous relative localization. However,
absolute localization is not feasible in all circumstances, since it could be cumbersome and expensive to setup
necessary infra-structure or because GPS signals could be too weak to use. To reduce these drawbacks, absolute
and relative localization are often combined [27].

1.5 End-To-End Learning

As described in the introduction, the need for different path planning and localization techniques could be
bypassed by using an end-to-end approach, which generates control input directly to the actuators based on raw
sensor input. Using end-to-end learning in the neural network framework means that the optimization done
in the training of the neural network will eliminate the need for feature design and hand-tuning of different
parameters in dynamic models used for localization and path planning. It could therefore utilize the information
available directly from a sensor to calculate a response compared to conventional techniques that first have to
classify the environment, then find a plausible path from that information and make a decision based on that.
Advantages are that it will require a less computing power while still getting good results [13, 28]. However,
the behavior of this approach could be hard to control, since it does not have clear directions.

1.6 Outline of the report

The report is divided into five chapters starting with the introduction. The introduction chapter is followed by
a theory chapter regarding the background of artificial neural networks along with brief explanations of the
training techniques and network structures used in this project.

In chapter 2, the environments and frameworks where the project has been developed are introduced together
with information regarding the modelling of the truck and sensor configurations. This chapter also explains
how training data has been collected and processed. To be able to compare the different approaches that has
been tested during the project, an evaluation process has been created, which concludes this chapter.

In chapter 3, the different approaches that has been investigated during the project is described in detail.

In chapter 4, the results from the evaluation process for all approaches are shown. The results for each
approach are discussed in detail and finally compared against each other based on different criteria. The chapter
ends with a general discussion on the project and bring up several thoughts on the differences observed in the
results based on the evaluation.

In chapter 5, conclusions from the project are presented alongside a discussion on the future of neural
networks in the domain of autonomous vehicles.
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2 Artificial neural networks

Just as many other technologies inspired by the nature, artificial neural networks (ANN) started as an attempt
to mimic biological neural networks (BNN) by abstracting it to a mathematical model [29]. The aim was to
create a model influenced by how the human mind learn solutions. Simple tasks for a human, e.g driving a
car, differentiating a viable path from the environment, recognizing obstacles and pedestrians as well as other
vehicles, might be very difficult for conventional approaches that are based on rules and instructions. Using an
ANN is one way to address the problem. In this chapter, the basics of artificial neural networks and several
models related to this work are briefly introduced.

2.1 Biological neurons

The basic unit of a human brain is a kind of cell called a neuron. As seen in Figure 2.1, there are three types of
components that are mainly responsible for information processing and transfer: the dendrite, the axon and the
soma. The dendrites close to the soma as well as the soma itself receive signals from surrounding axons. These

Figure 2.1: The biological neuron [30]

signals are processed by the somas and sent to other neurons over the axon. Unlike the numerous dendrites
that one neuron can have, neurons generally have only one axon. However, the end of an axon can connect to a
large number of other neurons. An axon sends the signal to dendrites or somas of other neurons through a
synapse, a structure that can transmit excitatory or inhibitory signals between neurons.

When sufficient excitatory inputs are received by a neuron compared to its inhibitory inputs, the neuron
will send out an excitatory output to other neurons. Conversely, the neuron will transmit an inhibitory output,
when sufficient inhibitory inputs are received. This output is binary, which means it is either excitatory or
inhibitory, no intermediate levels.

The learning process in the neural level can be explained as the process of neurons changing the weights on
the input from connected neurons. It is worth mentioning that there is still a lot of work left to fully understand
the process of learning, but the pattern described above is what the artificial neurons are initially based on.

2.2 Artificial neurons

As the counterpart of biological neurons, artificial neurons use mathematical equations to model the functions
of biological neurons. The model introduced below is the most commonly used model proposed by McCulloch
and Pitts [29].
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Figure 2.2: The artificial neuron

As shown in Figure 2.2, similar to the dendrites of a bio-neuron , an artificial neuron has inputs. Every
input is given a weight and sent to a summation function (Equation 2.1). In addition to the inputs, there is
usually a bias term, denoted by b in Equation 2.1.

s =

n∑
i=1

wiAi + b (2.1)

The result of the summation function is passed to an activation function that controls the state of the neuron
based on the input.

2.2.1 Activation function

An activation function g can be described by Equation 2.2, where y is the output of the neuron and s is the
summation function.

y = g(s) (2.2)

The type of activation function varies from different applications. As stated above, the activation function is a
binary function in biological neurons. However, that is not practical in some applications. Instead, differentiable
non-linear functions are generally used in artificial neurons to give a graded output. Historically, the most
common one is the sigmoid function (Equation 2.3).

σ(s) =
1

1 + e−s
(2.3)

Though the sigmoid is not a binary function, it is still motivated by biological neurons. One can interpret the
output of the sigmoid function as the ”firing” frequency or probability of a neuron output given its input [31].
Another popular activation function related to sigmoid is the hyperbolic tangent function, or tanh function
(Equation 2.4).

tanh(s) = 2σ(2s)− 1 =
2

1 + e−2s
− 1 (2.4)

As seen in Equation 2.4, the tanh is basically the sigmoid function shifted 1 units downwards, squeezed 2 times
along the x-axis and stretched 2 times along the y-axis. Therefore, it has larger gradients around the origin
and a non-zero output when strongly negative input is given, compared to the sigmoid.

In recent years, the rectified linear unit (ReLU) activation function has been vastly adopted in various
applications. It is defined as Equation 2.5.

g(s) = max(0, s) (2.5)

Compared to the sigmoid and tanh, the most important benefit is that ReLU avoids the vanishing gradients
problem. The gradients of the sigmoid and tanh vanishes away from the origin quickly, which is not ideal for
gradient-based learning methods. The ReLU activation function does not require any expensive operations in
implementation either as sigmoid and tanh functions that requires exponentials in implementation. However,
ReLU has the so-called “dying ReLU” problem. When s < 0, the gradients and output from ReLU are both 0,
which means gradient-based learning methods will never change the weights and the neuron will never fire
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again. To mitigate this issue, it is important to set a proper learning rate and monitor the amount of neurons
in the network that are “dead” after training. Other ways of solving the “dying ReLU” problem include the
leaky ReLU. It introduces small gradients for s < 0 as seen in Equation 2.6. The constant α is a small positive
number that prevents the activation function from being zero at negative inputs.

g(s) =

{
αs (s < 0)

s (s >= 0)
(2.6)

It is worth noticing that the ReLU is not differenciable at s = 0. To enable gradient-based learning methods
during training of nets, the derivative at s = 0 is defined as 1.

2.3 Topologies of neural networks

An artificial neural network consists of an organized set of connected artificial neurons, therefore different ways
of organizing the neurons, in other words, different topologies of the network have been proposed. In this
section, some types which are applied in this work are briefly introduced.

2.3.1 Feed-forward neural networks

One of the simplest and earliest artificial network topology is shown in Figure 2.3. It is called feed-forward
neural network, since data passes through each layer in only forward direction, from left to right, without any
feed-back.

Figure 2.3: Feedforward neural network [32]

A feed-forward neural network usually consists of three different types of layers: input, hidden and output
layer. The neurons in each layer are called nodes. In an input layer, the nodes do not usually perform any
computations but associate the data. Nodes in the hidden layers get data from the input layer and associate it
with different weights, then the activation function generates a response to the next layer. These nodes in the
hidden layers are isolated from the environment during deployment of the net, and therefore called “hidden”.
The last layer is the output layer, which is associated with the output data. Unlike the input layer, the nodes
in an output layer may perform computations as well. It is worth mentioning that when there are more that
one hidden layer, the network is called deep network, corresponding to a subset of machine learning which is
called deep learning.

2.3.2 Convolutional neural networks

One popular type of feed-forward neural network is called convolutional neural network (CNN). It assumes
that the input has spatial relations which drastically reduces the number of parameters in the network.
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Figure 2.4: The lenet [33]

An example of convolutional neural network is shown in Figure 2.4. As seen in the example, a CNN
commonly has three types of main layers: convolution layer, sub-sampling layer and fully connected layer. In
addition, it also has an auxiliary layer that works as an interface to the data, the input layer.

Convolution layer In a convolution layer, the neurons work like filters. These filters are applied to the input
data convolutely and generate feature maps, containing matrices of the neuron activation. The convolutional
layer has many hyperparameters controlling the output from the layer, including the number of features, kernel
size, stride and padding. The number of features sets the number of filters we want to use on the input. Each
filter in the layer will be used to abstract one different feature of the input. The kernel size sets the size of
the filter that will slide over the input. By setting the stride, the step length that the filter is moved over the
input is changed. Stride is used to reduce the output volume from the layer. In many cases, it is useful to pad
the input volume with zeros to enable preserving of the spatial size of the input. By changing the padding
parameter the border of zeros padded around the input is changed.

Sub-sampling layer The sub-sampling layer, also known as pooling layer, down-samples the output from the
convolutional layer to reduce the spatial size of the representation, thereby reducing complexity and preventing
overfitting. This is done by sliding over the input as in the convolutional layer to downsize the input by a certain
factor. The difference for the sub-sampling layer is that the kernel of a pooling filter use various functions
aiming at reducing the matrix size with static filter parameters as opposed to the filters in the convolutional
layers, which are changed during training. The most general kernel is called max pooling. For example, a 2× 2
max pooling kernel takes a 2× 2 slice of the input in every step, then finds the maximum value of the four input
elements and passes it to the next layer. In this case, the operation reduces size of the input by a factor of four.

Fully connected layer After several convolution and sub-sampling layers, the features extracted are sent to
a fully connected layer to generate the final output. As the name suggests, in a fully connected layer, each
node connects to all the output in the previous layer.

In short, even though there are various models of CNN, the general major steps are:

• Apply several filters to the input data convolutely to form feature maps.

• Subsample the input data or feature maps.

• Connect the last feature maps to a fully connected feed-forward neural network.

The first and second step can be arranged repeatedly until enough high level features are extracted.

2.3.3 Training of neural network

The training of a neural network is done by finding the correct weights in each neuron. Some mathematical
methods to optimize the weights are briefly introduced below. It is worth noting that training is not limited to
only adjust the weights, there are also methods that can change the topology of the networks, like Neuroevolution
[34].
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Stochastic gradient descent

One of the basic weight optimization method is the stochastic gradient descent. It uses the gradient information
of the error function E(wn) to find the direction with the fastest error decrease. It can be described by Eq. 2.7,

wn(k + 1) = wn(k)− α ∂C

∂wn
(2.7)

where C is the cost function and α is called learning rate. It controls the amount of the current gradient to be
used for correction, hence adjusts the step length. To reduce the noise level, the average gradient of a batch of
training data is usually used (Eq. 2.8),

wn(k + 1) = wn(k)− α

m

m∑
i=1

∂Ci

∂wn
(2.8)

where m is the mini-batch size. Another useful technique to attenuate the oscillation is to add a term called
momentum (Eq. 2.9),

wn(k + 1) = wn(k)− α

m

m∑
i=1

∂Ci

∂wn
+ µ∆wn(k) (2.9)

where µ is a coefficient used to determine the magnitude of the previous gradient and ∆wn(k) is the gradient
in the previous iteration. In each iteration, the previous gradients can be used by the algorithm to find the
minimum of the objective function more efficiently.

Backpropagation

The Backpropagation algorithm is used to find the optimal weights in a neural network. Together with a
gradient descent algorithm it makes up the backbone used to train a network. The backpropagation algorithm
is described below:

• Input. The input x is sent in through the input layer l = 1. An activation function g1 is applied to the
input and calculates a set of activations a1.

• Feedforward. In each layer l = 1, 2, 3, · · · , N , the data is propagated sl = wlal−1 + bl and fed through
the activation function al = g(sl).

• Calculate output error E. The error at the output layer denoted EN can be expressed as

EN = ∇aC � g
′
(sN ), (2.10)

where C, � and g are the cost function, Hadamard product and the activation function respectively.

• Backpropagate the error. For each layer l the error can be calculated as

El = ((wl+1)TEl+1)� g
′
(sl). (2.11)

By multiplying the error from the subsequent layer l + 1 and the weights between the layers l and l + 1,
the error at layer l is calculated. In other words, the error at layer l + 1th is propagated backwards.

• Generate gradients. The gradients of the objective function at each layer for the weights and the bias
terms are expressed as

∂C

∂wl
jk

= al−1
k El

j and
∂C

∂bljk
= al−1

k , (2.12)

where j is the index of the neuron in layer l − 1 while k is the kth neuron in layer l.

From the gradients, the weights can be updated using the techniques described in Section 2.3.3.
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2.4 Current development of neural networks

Since the advent of deep learning in 2012, the method has gained a lot of attention and many believe that the
number of AI inspired algorithms will keep increasing in many applications. This has lead to new discoveries,
development of specific deep learning hardware and attempts to enhance older ideas of network structures as
well. Examples include the studies of different types of recurrent neural networks, fully convolutional networks
and neuro-evolutional networks, to name a few. Many of the techniques could be applied to the problem
approached by this project and probably yield good results as well. However, the computational power for
these deeper nets, both in the training stage and deployment stage has not been available. Despite the success
of these complex methods, it is also interesting to investigate the bare minimums required to solve the problem
at hand.
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3 Method

The focus of this thesis was to investigate how neural networks could be used to generate short local paths
using LIDAR sensors. Consequently, the workflow revolved around sequentially collection of training data,
construction of neural networks, training and evaluation. The workflow is illustrated in Figure 3.1. Instead of
pursuing the final purpose directly, i.e. generating a short local path from a 3D laser scan, it was deconstructed
into smaller problems. This was achieved by creating a modular development environment where each module
could be substituted by a new one. This approach also made it easier to pivot between different ideas that we
wanted to try out during the project and gave us a better understanding of the different parts that the main
problem consists of. The remains of this chapter will introduce the tools and frameworks that were used to
create the short path generators.

Figure 3.1: The principal workflow used to create the short path generator

3.1 Development environment

The development environment was required to allow for easy integration of the different algorithms that were
developed, and have the ability to carry out simulations to evaluate them. These requirements were found
in Robot Operating System (ROS) [35] and Gazebo[36]. ROS serves as an interface between the developed
modules and the simulation environment in Gazebo. It is able to handle the communication between the
modules needed for both collecting training data, deployment of the neural networks and could also be used in
the field experiments. As seen in Figure 3.1, the project started with setting up this software environment.
After the setup of the environment was completed, 2D LIDARs were used to develop the first networks. Using
only 2D sensor data initially, had the advantage of creating faster development loops, since the size of the
neural networks would be reduced because of the smaller input size, resulting in shorter training times. It also
had the benefit of lower performance requirements for sensor simulations, easier data manipulation on training
data etc. It was also presumed that an successful approach using 2D sensor data probably would success using
3D LIDAR data as well, since similar information could be extracted from the 3D scan that is present in the
2D scan.

3.1.1 Simulation environment

As mentioned above, Gazebo provides a simulation environment and enables accurate and efficient simulations
in a 3D environment, and it also has good support for simulations for the types of sensors used in this project.
To mimic the environment in a mine, tracks are created in Blender [37] as illustrated in Figure 3.2.

The vehicle in the simulations were a four wheeled truck using Ackermann steering, the same type used in a
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Figure 3.2: 3D model of the training track used in the project.

previous project [38]. Since neural network uses labeled training data to learn a function, quality data is key
in order to succeed. In this case that meant examples of sensor data need to be paired with proper steering
angles or similar. Therefore, simulated driving recordings had to be created. These recordings were created
by first driving the truck along a track using a gamepad. However, this approach does not scale very well,
and since the learning is dependent on the amount of data, especially for complex functions, driving the truck
manually took too much time and effort. To solve this issue, path followers were developed to follow recordings
generated from manual driving. Hence the process was automated, and training data could be generated once
one manual recording was created. The simulation environment was also used during the evaluation of the
different networks. The flowchart in Figure 3.3 shows the data flow during simulations for manual driving with
the gamepad, collecting training data and evaluation of the neural networks.

Figure 3.3: The data flow for development
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3.1.2 Truck model and sensor placements

There were two different truck models used in this project. The one with Ackermann steering, as shown in
Figure 3.4a, was used in the simulation environment. However, a bicycle model shown in Figure 3.4b was used
in calculations for its simplicity. Every local short path is a curvature calculated from the current steering
wheel angle using the bicycle model. The neural network was expected to be insensitive to small derivations
between vehicle model and real vehicle, since the fast update rate yielded quick feedback to the network.

(a) Ackermann model (b) Bicycle model

Figure 3.4: Truck models

In terms of sensors, various sensor configurations were experimented with in this project. As seen in
Figure 3.5a, in 2D cases, the 2D LIDARs were located in the four corners of the truck and merged together
using [39]. The merging of these sensor resulted in one 360-degree scan with its origin in the center of the rear
wheel axle. In 3D cases, two different configurations were used, as seen in Figure 3.5b. In the first configuration
on the left, the 3D LIDAR was located in front of the cab center. The sensor covered 180 degrees of the front
view, but did not have any information on both sides and the rear of the truck. The second configuration on
the right used one 3D LIDAR 2m above the center of the rear wheel axle. It was not feasible in the real truck,
but it resembled the merger used in the 2D case. One could obtain the same coverage by merging four 3D
sensors placed in the four corners of the truck. This configuration was used mainly because the simulation of
four 3D LIDARs took a lot of computational power and was therefore unfeasible on our computing platform.

(a) 2D sensor (b) 3D sensor

Figure 3.5: Sensor placement on the truck model

To enhance the realism of the simulations, sensor noise was added during the simulations according to the
specifications of the simulated sensors. The added noise was Gaussian distributed with a mean of zero for both
of the sensors. The standard deviation was set to 0.01 for all the LIDAR configurations.
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3.1.3 Neural Network Frameworks

In order to build and train the network as described in Section 2.3.3, the deep learning framework Caffe[40]
was used. It is widely used in both academia and industry, and is said to be a deep learning framework made
with expression, speed and modularity in mind, and its BSD 2-Clause license [41] allows for further industrial
applications. On top of Caffe, the Deep Learning GPU Training System (DIGITS) was used [42]. DIGITS
simplifies management of training data and network models. It also enables real time monitoring of training
and visualizations of the neural network structure.

3.2 Collecting training data

Collecting training data was done by first creating reference paths in the Gazebo simulation environment using
a gamepad to control the vehicle and record the position of the truck in global coordinates as mentioned in
Section 3.1.1. These recordings could then be used as references to create training data using a path follower.
Two different path followers were developed with different characteristics.

3.2.1 Simple path follower

The first path follower takes two consecutive points on the reference path and the truck’s current position as
input in each iteration. The distance from one of the points and the truck’s current position is then calculated.
This distance is used as an error and control the steering angle of the wheels of the truck. Thus the path follower
will generate a large steering angle if the truck is far away from the points on the reference path. To determine
if the truck should steer to the left or right, a line between the two consecutive points are drawn and from
this information, it can be concluded if the truck is either on the left or the right side of this line. If the error
between the truck and the points is under a certain threshold, two new consecutive points are selected. The
error is then passed through a P-controller, which is tuned to give reasonable steering angles. This type of path
follower gives rise to oscillations around the reference path, since even if the truck is right on the reference path,
it will generate a steering angle greater than zero, therefore it will always have a distance between the truck
and the reference point. The magnitude of the oscillations can be changed by using different error thresholds,
where the new point should be selected. The reason for using this path follower was to introduce deviations in
the training data, since it is important to have a diverse training set to prevent overfitting, which could be a
problem since the amount of recorded reference paths were low.

3.2.2 Pure Pursuit path follower

The second path follower used was pure pursuit. Pure pursuit is a geometric path follower that calculates the
steering angle by creating the curvature of an arc that connects the rear axle with the current reference point
on the reference path. It simplifies the four wheel Ackermann steered vehicle in Gazebo to a geometric bicycle
model using the geometric relationship

tan δ =
L

R
(3.1)

where L is the wheelbase, R is the radius of the circle that the rear wheel will follow for a given steering
angle δ as seen in Figure 3.6.

The current reference point is determined by a look ahead distance ld ensuring that the truck is following a
point that is in front of the truck. By changing the look ahead distance, the characteristic of the path follower
will change from unstable (short look ahead distance) to poor tracking (large look ahead distance). If the
coordinates of the vehicle’s base axle, front axle and the reference point are known, the angle α between the
reference vector and the heading vector can be calculated. When α is known, the steering angle needed to
intersect the reference point can be determined from the curvature κ, which is calculated by applying the law
of sines to the geometrical relationships seen in Figure 3.7.

κ =
2 sin(α)

ld
(3.2)
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Figure 3.6: Bicycle model

By combining Equation 3.1 and Equation 3.2, the control law is given as

δ = atan

(
2L sin(α)

ld

)
(3.3)

At each iteration, the path follower searches for the next point and updates the reference point if it is in the
look ahead distance.

Figure 3.7: The geometry in pure pursuit

This path follower was much smoother, hence the natural deviations that the first path follower created
from oscillation around the path disappeared. Instead of creating natural deviations in the original data, the
recorded data was shifted by rotating the sensors readings and the corresponding labels that was recorded
during training. This technique allowed for control of the deviations and assured that all training data expresses
correct behaviour in all situations. This could not be said about the first path follower, since its steering
commands is more random because of the oscillations.

3.2.3 Training track and path

It is essential to have variations in the training data to ensure good generality in the developed nets. However,
the efficiency of collecting the data has to be considered as well. Bearing these two factors in mind, a compact,
feature-rich track is designed, shown in Figure 3.8. To accommodate different training requirements, two versions
are built. The one with intersection blocked is shown in Figure 3.8a, and the other with open intersections
is shown in Figure 3.8b. The features in both track are described in Table 3.1. The red and blue line in the
track are the recorded paths, the paths are designed to explore all the features in a short range. There are two
opposite paths on Figure 3.8 to reduce the bias of only turning into left or right at corners.

14



(a) Training track without intersections (b) Training track with intersections

Figure 3.8: Training tracks

Table 3.1: Features for the training tracks

Feature Description
1 Soft turn
2 90◦ turn
3 45◦ turn

(a) Features in the track without intersections

Feature Description
1 Soft turn
2 X crossing, middle to right
3 T crossing, middle to right
4 90◦ left turn
5 T crossing, left to middle

(b) Features in the track with intersections

3.2.4 Labels and recording

Since many approaches to find local paths has been tested during the project, different labels for training the
networks has been collected during training. These approaches will be described in detail in the following
sections. The data was collected in ROS-bags from the path follower.

3.3 Neural network structure and training

The collected data was converted from ROS-bags to a database to meet the requirement that the neural network
framework needed. Transforming the data after the recording also provided an easy way to modify the data
if needed. In the same way, different approaches required different labels, each investigated approach also
explored the results of different network structures. This meant that for each approach, the number of hidden
layers, different activation functions and number of neurons was changed and the result observed. During
training stochastic gradient descent has been used since it can calculate the loss for a few training examples at
a time and still lead to convergence fast. The batch size, learning rate and momentum were adapted as well for
the different structures to prevent the optimization during training from ending up on local minimums or slow
convergence rate.

3.4 Evaluation

After the training, the network was tested in the simulation environment. The output was evaluated in different
ways to compare the performance. The sequence in Figure 3.1 was repeated until an acceptable result was
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gained or the approach was deemed as not suitable for further development. The different approaches are also
benchmarked against each other in terms of

• Complexity of the network

• Stability of the output from the network

• Driving behaviour of the network

To ensure a fair evaluation among the approaches, all networks has been given the same amount of training
data and deployed at an update frequency of 10 Hz. However, it must be noted that due to the available
hardware, the simulation of the 3D LIDAR sensor was only running at 3 Hz, while simulation of the 2D LIDAR
was at 10Hz. The evaluation track is illustrated in Figure 3.9. Like the training track, it was designed to cover
as many as possible different features in a relative short range for efficiency. The list of different features is
given as Table. 3.2.

The deployed networks, which have no ability to make decisions at intersections, should finish the first part
of the evaluation track represented by the red line. The networks that have ability to navigate at intersections,
were supposed to finish the full track.

Figure 3.9: The track used in the evaluation

Table 3.2: Description of regions with different features.

Feature Description
1 Straight corridor
2 Right soft turn
3 Left soft turn
4 Right 90◦ turn
5 Left 90◦ turn
6 T crossing, left to right
7 T crossing, middle to right
8 X crossing, straight
9 X crossing, turn
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4 Approaches

As mentioned in Chapter 3, one of the goals of this work was to explore how and if neural networks are capable
of navigation and short path generation using LIDAR sensors. Therefore, multiple approaches have been
developed and evaluated. These approaches are described in this chapter to give a general idea on how neural
networks can be used to handle these types of problems.

4.1 E2E regression 2D

The first method used an end-to-end regression network that generate a curvature directly from a merged
LIDAR sensor reading as described in Section 3.1.2. Hence, the network output could take any real number.
The goal of this network was to create a network that could find collision free paths in corridors using 2D
LIDAR sensors. Training data was created as described in Section 3.2 using a path follower while recording
the merged laserscans and the corresponding curvature, κ. The curvature was calculated from the average of
current steering angles of the wheels of the vehicle from

κ =
tan (δ)

L
(4.1)

where

δ =
δleft + δright

2
(4.2)

In the merged laserscan, all four sensors was used to utilize all available information around the truck, resulting
in a network that is not as prone to cutting corners as the case where only front sensors are used, since the
detection of the walls and obstacles in the vicinity of the truck’s rear side gets improved in this case as seen in
Figure 4.1.

Figure 4.1: Sketch of merged front sensor readings compared to front and back merged sensor readings

Since the recorded data solely yielded training examples where the error between the prerecorded path and
truck’s heading and position is quite small, the data was modified to enhance the result of the network after
training as mentioned in Section 3.2, by adding a random yaw rotation, γ, to the recorded yaw angle of the
truck. Modifying the data in this way should make the resulting network more inclined to stay in the center of
the track and recover when heading against a wall or an obstacle. The rotation was done around the center of
the merged laserscans and a new curvature was calculated from that position by adding the yaw angle γ to the
steering angle. The added yaw angle, γ, was uniformly selected in the interval -30 degrees to 30 degrees. The
interval was selected as large as possible while still making sure that the truck would not hit any walls after the
rotation.

When all training data was collected and modified the network was trained and could be deployed in the
simulation environment for evaluation. The network consists of two hidden layer with 512 and 23 neurons
respectively and uses the ReLU activation function as seen in Figure 4.2.
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Figure 4.2: The network structure in the E2E regression approach using 2D LIDAR sensor data as input

4.2 E2E classification 2D

A drawback of the first network is that the steering commands from the network could be any real number.
Hence, it cannot guarantee to only generate curvatures that are feasible for the truck to follow. Another
shortcoming of the first proposed neural network structure is that the output size of the network is only one
curvature at each time step, which means that a global planner will have no ability to select among multiple
different paths in the case of an intersection or similar. In an attempt to solve these shortcomings, the output
was changed from one continuous curvature to a set of 23 curvatures corresponding to steering angles from
−π/6 to π/6. The number of curvatures can be any number which is sufficient. A higher number will result in
a more smooth output at the cost of a more complex network. The curvatures were evenly distributed in this
range, with the endpoints set as the maximum steering angle of the real truck. The procedure of collecting
data was then repeated, but instead of storing the calculated curvature, using Equation 4.1, the curvature was
mapped to the closest curvature, κi, in the set κ where

κ =
[
κ0, κ1, . . . , κ22

]
(4.3)

Thus the labels for the sensors sensor reading were rendered as vectors where all but one entries were zero,
which instead was set to one. The change of output meant that the network turned into a classification
network instead of a regression network. Consequently, the output of the network could be seen as a probability
distribution over the different curvatures. The recorded data was augmented in the same way as in Section 4.1
to enhance the performance of the deployed network.

The network structure in this approach was reduced by one hidden layer as shown in Figure 4.3, and since
the output of this network should represent a categorical distribution, the softmax function given as

σ(x)i =
exi∑K

k=1 e
xk

(4.4)

was applied on the output layer which ensured that the output summed up to one.

Figure 4.3: The network structure in the E2E classification approach using 2D LIDAR sensor data as input
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4.3 E2E regression 3D

Even though the simplicity of using 2D LIDAR is appealing, it has its limits, since the sensors are placed
horizontally. Therefore, the truck is limited to sensor readings in a 2D plane, which means that it cannot
discover obstacles that are outside that plane. The sensors will also be sensitive to roll and pitch perturbations
of the truck that can occur on uneven roads. Using a 3D LIDAR, which can discover obstacles in different
heights and provide useful data even if the truck is bumping because of the profile of the road surface, could
solve these issues.

The same end to end approach as in Section 4.2 was tested using a 16-layer 3D LIDAR sensor. These
tests were carried out with two different sensor placements to examine how the sensor placement affects the
performance of the network. In the first configuration, the 3D LIDAR was placed in the front with a 180-degree
view angle. In the other configuration, it was placed in the center of the truck yielding a 360-degree. The
second one will require merging of several sensors, since the truck itself occludes the sensor if it would be placed
there. However, these tests were performed in simulations, which means that the visual of the truck could be
disabled for the sensor yielding a full 360-degree vision with only one sensor. The structure of the network was
the same as in Section 4.2, apart from the change of size of the input layer as seen in Figure 4.4.

Figure 4.4: The network structure in the E2E regression approach using 3D LIDAR sensor data as input

4.4 E2E classification 3D

Similar to Section 4.3, this approach is a repetition of its 2D counterpart introduced in Section 4.2. The aim
of testing this approach is to examine whether 3D information would improve the accuracy of classification.
Moreover, for practical applications, a 2D scan is not enough since the truck need information from more than
a slice of the space to be able to safely move around as mentioned in the previous section. In this approach,
only the 360-degree 3D LIDAR configuration were considered.

Figure 4.5: The network structure in the E2E classification approach using 3D LIDAR sensor data as input

4.5 E2E classification with “Compass” 2D

To approach the decision making problem at intersections, a “compass” was added to the input of the neural
networks. As seen in Figure 4.6, a waypoint was placed in the global coordinates at the intersection, from which
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the direction of the vector, pointing from the center of rear axle in the truck to the waypoint, is determined.
Then along with the heading of the truck, the angle δ between the two directions can be calculated. After
that, the angle was fed to the neural network as an image as shown in Figure 4.7. The input image consists of
two parts, the “compasses” on the top part and LIDAR readings on the bottom. There are several identical
”compasses” instead of just one, since it was an easy way of emphasizing the ”compass” so that the neural
network could recognize it as an important feature. The LIDAR reading was also duplicated and stacked
multiple times vertically on the bottom to balance its importance to the“compasses”.

It is worth mentioning that when the truck is far away from next intersection, the compass is “switched off”
pointing to the top.

Figure 4.6: How the ”Compass” pointing direction is determined.

Figure 4.7: Synthesized input to the neural network

Since this approach considered the decision making problem, several hidden layers was added in order to
handle the more complex task. The structure of the network could be seen in Figure 4.8.

Figure 4.8: The network structure in the E2E classification with “compass” approach using “compass” and 2D
LIDAR sensor data as input
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4.6 E2E classification with ”Compass” 3D

Instead of using 2D sensors as in the last approach, 3D LIDAR input was tested in this approach to examine
the performance. The “compass” part was identical to the last approach. However, since now one 3D LIDAR
reading takes up the same space as the upper part in the input image, it was therefore not needed to duplicate
the LIDAR readings. The structure of the network, seen in Figure 4.9, in this approach is identical to the
network structure in Section 4.5

Figure 4.9: The network structure in the E2E classification with “compass” approach using “compass” and 3D
LIDAR sensor data as input

For evaluation purposes, a convolutional network was created as well. The structure of this network, seen
in Figure 4.10, uses three convolutional layers at the start of the network and ends with two fully connected
layers, which is inspired by the one seen in [43]. One should bear in mind though that different sensors and
different environments were used in this project.

Figure 4.10: The network structure in the convolutional E2E classification with “compass” approach using
“compass” and 3D LIDAR sensor data as input
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5 Results and discussion

In this chapter, the results from the evaluation of the approaches will be presented alongside with general
discussions on the project. During the project, a lot of different network structures have been investigated for
each approach, but in order to give an easier comparison, the differences in the network structures has been
kept at minimum in the evaluation. Instead, these matters will be discussed in a general manner at the end of
this chapter. It is also worth mentioning that each deployed network has been tested multiple times at the
evaluation track with a large degree repeatability. Only minor deviations can be seen if the starting position is
changed.

5.1 E2E regression 2D

The first investigated approach is straightforward, simple and yet it shows promising results even though it
fails to pass the last two features in the evaluation track. The green path in Figure 5.1 shows the trajectory
of the rear axle center in the truck. From the figure it is evident that it has learned the correct behaviour,
and it steer in the right direction. However, in proximity to feature 4 the generated steering angle is too small
and the turn is also initiated too late. Further investigation of this net was done by putting the truck at the
start of feature 4 pointing towards the end of the right turn. From this position, the truck is able to pass the
last two features. Hence the result is considered to be easily improved by increasing the amount of training
data. Another solution would be to extend the network with more layers, which would add complexity to the
nonlinear function that the net approximates. However, the experience gained during the project tells us that
the complexity of this net, using only two hidden layers, is sufficient for these types of tracks given that the
volume of the training data is large enough and covers similar scenarios.

Figure 5.1: The path created by the truck shown in green during one run at the evaluation track using the E2E
regression network with 2D LIDAR sensor data as input.

From Figure 5.2, two observations can be made. First, the steering commands from the network is noisy
and unfiltered, it could wear out steering actuators if not handled properly. The origin of the noise is probably
generated from the LIDAR sensors. It might be mitigated by using a deeper net, which could tell apart the
noise from the readings. The second observation from Figure 5.2 is the extreme values of the output. It exceeds
the limit of what the truck is capable of handling. The behaviour is expected, since the network output can
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take any real number as explained in Section 4.1. In the simulation, this signal has been saturated at the
steering controller of the truck. Even though none of the labels in the training data had larger values than the
truck could cope with, it still generates these extreme values when the truck is getting closer to a wall. This
could be due to the fact that since the network is that shallow, the nonlinearites cannot express the intended
behaviour which should keep the output between reasonable values. Instead, when the truck gets close to the
wall, the extrapolation has low fidelity and diverges from the expected value.

Figure 5.2: Generated steering commands, κ, using E2E regression approach with 2D LIDAR

5.2 E2E classification 2D

Moving from the simple regression approach to the classification approach, each steering angle value in the
training data was classified to the closest match in the set of different curvatures. Thus, the output changes
from one real number to the probability for each curvature in a categorical distribution. The certainty of
generated steering command of the net is consequently exposed, which could be used to evaluate how well the
network has learned to classify the input. For instance, the network should be confident in inferring a straight
curvature in a straight corridor. The top predictions for the straight corridor should thereby be curvatures that
are adjacent to the straight one, including the straight curvature itself. Investigations on this network showed
that the certainty for the network was usually really high and that the top five curvatures were adjacent to
the one selected, which is the intended behaviour. Figure 5.3 shows the generated network output using one
example from the evaluation set as input.

Since the output could be seen as a categorical distribution, the certainty of the network for each steering
command could be used by a global planner directly. However, since the global planner has been regarded to
be outside of the scope in the project, the output with the highest probability was selected at each time step.
This is done for all of the classification networks, and since the certainty and accuracy of the network is high it
was considered to be sufficient to use the highest peak as output directly. To ensure a smoother steering, one
could interpolate between the top predictions, which should reduce flickering between arcs that might occur,
since the number of different arcs is limited. Increasing the number of arcs would also be a possible solution to
mitigate this issue at the cost of increasing the complexity of the resulting network.
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Figure 5.3: Screenshot from DIGITS where the neural network has inferred the correct arc from sensor input
labeled 11 from the evaluation set

In contrast to the regression network, the logistic regression network is able to navigate through all the
features on the evaluation track as seen in Figure 5.4. The same amount of training data is used, but since the
output size is changed from just one real number to 23 values, the connections between the hidden layer and
the output layer is increased, which makes the network capable of distinguish between different sensor inputs
in a better way. Hence, it allowed us to remove one of the hidden layers while getting a better result as well. In
the first three features, the truck is able to navigate close to the center of the track as intended. In feature 4
and 5, the truck overshoots the center line in the turns but is still capable of going through them.

Figure 5.4: The path created by the truck shown in green during one run at the evaluation track using the E2E
classification network with 2D LIDAR sensor data as input

The generated steering commands from one lap can be seen in Figure 5.5. By investigating the steering
output from this network, one could observe that flickering among different curvatures occurs during the first
features. However it does not affect the path noticeably, since the difference between two adjacent curvatures
is small. The performance could be enhanced either by interpolation or extending the number of curvatures
as mentioned previously. There is also a big step between the selected curvatures in the beginning of the lap.
This is probably due to the fact the truck is starting outside the evaluation track, where most of the rays from
sensor readings of the LIDAR are returning the maximum value, a case that is not present in the training data
at all. This makes the behaviour in the beginning inpreditable, but it is still capable of completing feature 1
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without any trouble. At the end of the lap (around sample 1500), there is a large peak before the last turn is
initiated. This could suggest that the network tries to avoid cutting the corner. However, this large difference
in steering output under a small amount of time is not generally preferred.

Figure 5.5: Generated steering commands, κ, using E2E classification approach with 2D LIDAR

5.3 E2E regression 3D

In this approach, two different sensor configurations are evaluated. The resulting path of front-placed 180-degree
3D sensor trial is shown in Figure 5.6, and steering commands in terms of kappa is shown in Figure 5.7. The
truck succeeds to pass the full lap. However, unstable behaviour can be seen at the end of feature 2 and it goes
too close to the inner wall at feature 3. Therefore, it is believed that using this sensor configuration, the ability
of the network to position the truck correctly is limited.

Figure 5.6: The path created by the truck shown in green during one run at the evaluation track using the E2E
regression network with 3D LIDAR sensor placed at the front of the truck
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Figure 5.7: Generated steering commands, κ, using E2E regression approach with 3D LIDAR placed at the
front of the truck

The other configuration with a 360-degree 3D LIDAR at the center passes the full track with a better
positioning than front-placed LIDAR configuration at corners. It can be observed at feature 5 in Figure 5.8 and
the corresponding area in Figure 5.9 that the truck reduces the turning angle in the middle of the turn, when it
sees the potential of cutting corner. It suggests that the center arrangement shows a better performance in
corners.

Figure 5.8: The path created by the truck shown in green during one run at the evaluation track using the E2E
regression network with 3D LIDAR sensor placed in the center of the truck
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Figure 5.9: Generated steering commands, κ, using E2E regression approach with 3D LIDAR placed in the
center of the truck

5.4 E2E classification 3D

As shown in Figure 5.10 and Figure 5.11, the configuration using LIDAR in the center of the truck passes the
evaluation track successfully while the other, which has the LIDAR placed in the front failed at feature 3, a
soft turn to the left.

Figure 5.10: The path created by the truck shown in green during one run at the evaluation track using the E2E
classification network with 3D LIDAR sensor placed in the center of the truck

With the LIDAR at the center, the result is quite similar to that of the E2E classification 2D approach.
They share almost identical behaviors at all features in the map. However, it can be seen in Figure 5.12 that
compared to the E2E classification 2D approach, the output is more stable which means the network is more
confident in predictions utilizing the additional information given using 3D LIDAR.
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Figure 5.11: The path created by the truck shown in green during one run at the evaluation track using the E2E
classification network with 3D LIDAR sensor placed at the front of the truck

Figure 5.12: Generated steering commands, κ, using E2E classification approach with 3D LIDAR placed in
center of the truck

Though the configuration with LIDAR at the front failed to complete a full lap, some interesting observations
can be drawn. The truck shows oscillatory behaviour at feature 2, which can be seen from both the trajectory
and the κ plot, but it still manages to finish this part of the track. At feature 3, the truck hits the wall which
is identical to feature 2 apart from the direction. After several trials, it is observed that as long as the truck
enters the corners at the center line with a heading pointing to the right angle (parallel to the tangent line of
the track curvature), it can pass all the features on the map. This behaviour strengthen the belief that with
only 180-degree view, it is difficult for the network to generate paths for the truck to position itself correctly.

28



Figure 5.13: Generated steering commands, κ, using E2E classification approach with 3D LIDAR placed at the
front of the truck

5.5 E2E classification with “compass” 2D

As shown in Figure 5.15, in this approach, the truck successfully navigates through intersections as well as
corridors, and is able to finish a full lap without collisions. In the first part of the track, the result is not as
good as that of E2E classification 2D in Section 5.2. The truck oscillates at feature 2 and gets too close to the
wall at feature 4 as shown in Figure 5.15 and Figure 5.14. It suggests that the balance between the features
in 2D LIDAR input and the compass is not handled well. For example, when the compass is “switched off”
(pointing upwards), the network may rely on the “compass” part of the input data to much and is therefore
reluctant to adjust the positioning of the truck or jumps between decisions, which lead to getting to close to
the wall or oscillations respectively.

In the second half of the track, since the compass now points to the next waypoint, the performance of
both stability and positioning is much better compared to the first half. The oscillation and corner-cutting
behaviour is largely reduced and decisions are made as expected without any hesitation.

It is believed that with more training data, the problems at the first half can be solved, since a more precise
balance between features from the LIDAR and the compass can be found.

Figure 5.14: Generated steering commands, κ, using E2E regression approach with “compass” and 2D LIDAR
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Figure 5.15: The path created by the truck shown in green during one run at the evaluation track using the E2E
classification network with “compass” and 2D LIDAR sensor data as input

5.6 E2E classification with “compass” 3D

It can be seen in Figure 5.16 that the current approach finishes a full lap with similar behaviour to the 2D
result stated above. Nonetheless, a more stable output is gained with 3D information as shown in Figure 5.17.
Since there are more features in the 3D input that the network can rely on, the balance between features from
the LIDAR sensor and the compass is easier to achieve, resulting in a better performance at the first and second
half of the evaluation track than that in the 2D case. However, behaviours like oscillations and getting too
close to the wall still exists, leading us to conclude that more training data is needed to gain a better result.
With that being said, the result shows the compass approach of dealing with decision making works with 3D
input as well.

As mentioned in Section 4.6, a convolutional network was trained for comparission. Figure 5.18 shows the
path of the truck from one lap using this network. As seen in the figure, the performance is not as good as
in the fully connected network. The truck drives close to the wall in feature 2 and cuts the corners feature 4
and 5. However, when the “compass” is turned on in the later parts of the evaluation track, it is able to make
decisions and handles the turns in feature 7 and 9 as well as the fully connected network.

Investigation of the steering commands in Figure 5.19 reveals that the output from the network is not
as stable when the “compass” is turned off compared to when it is active. However, compared to the fully
connected network, it is evident that the convolutional network is not as stable in general. One reason for this
could be that the convolutional neural network puts too much focus on the spatial relation between adjacent
rays from the LIDAR sensor, instead of utilizing the range information present in each ray alone.
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Figure 5.16: The path created by the truck shown in green during one run at the evaluation track using the E2E
classification network with “compass” and 3D LIDAR sensor data as input

Figure 5.17: Generated steering commands, κ, using E2E regression approach with “compass” and 3D LIDAR
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Figure 5.18: The path created by the truck shown in green during one run at the evaluation track using the
convolutional E2E classification network with “compass” and 3D LIDAR sensor data as input

Figure 5.19: Generated steering commands, κ, using convolutional E2E regression approach with “compass”
and 2D LIDAR
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5.7 Discussion

As mentioned in Section 3.4, the network should be evaluated from the point of complexity and driving behaviour.
A simplified subjective overview of the different approaches using these metrics has been summarized in Table 5.1.
Each approach is listed as the section number in the report and is graded at each feature. It is worth noting
that the results are repeatable and the grades are given based on multiple runs of every approach. The grades
used for each feature are the following:

• + Given if the truck is able to pass the feature with a safe margin from the wall without any oscillations

• 0 Given if the truck is able to pass the feature but is close to the wall and/or show signs of oscillations

• - Given if the truck is not able to pass the feature

• N/A Given if the truck is not intended to pass that feature during the evaluation

To measure complexity, the execution time of one propagation from input to output in each net is measured.
These measurements has been running on a Raspberry Pi 2 model B [44] running at 1Ghz.

Table 5.1: Summary of the approaches

Approach Feature Net. exec. time (s)
1 2 3 4 5 6 7 8 9

5.1 + + + 0 - N/A N/A N/A N/A 0.0072
5.2 0 + + 0 0 N/A N/A N/A N/A 0.0072

5.3 front + + 0 + + N/A N/A N/A N/A 0.0766
5.3 center 0 + 0 0 0 N/A N/A N/A N/A 0.0748
5.4 front + 0 - - - N/A N/A N/A N/A 0.0740
5.4 center + + + 0 0 N/A N/A N/A N/A 0.0740

5.5 0 0 0 + + + + + + 0.1543
5.6 + 0 0 + + + + + + 0.1543

5.6 cov + 0 + 0 0 0 + + + 0.9891

Limitations in the experiments

Due to limitations in DIGITS, the training data has to be formatted to 8-bit images. This means the resolution
is limited to 0.156m according to Equation 5.1 if the LIDAR range is kept to 40m.

Resolution =
LIDARrange

imagedepth
(5.1)

Since the simulation of 3D LIDAR can be very computational demanding, the update rate of the LIDAR
output in the simulation is approximately 3Hz for 3D LIDAR and 10Hz for 2D LIDAR in all the experiments.
However, all the networks evaluated can operate at above 10Hz using Nvidia GTX970 GPU , therefore the
radar input is fed in repeatedly if it has not been updated before the next iteration of the network, so that
the update rate of all the network output can be kept to 10Hz. This delay might introduce oscillations in the
simulations that would not appear in a field experiment using real hardware.

Apart from the input and output, the comparison among the structure of neural networks has its limitations
as well. As stated above, the structure of the networks are kept as similar as possible in the experiments.
However, parameters related to input size and output type are inevitably different. For example, when the
input size is 1× 720, every node in the first layer of the network has 720 weights while the input size is 16, the
number of weights is 11520. Besides, classification networks need to match the number of categories, resulting
in 23 nodes, in the output layer, while regression ones need only 1 node.

Performance of the approaches

Bearing the evaluation limitations in mind, the summary of the performance of all approaches is listed below.
In addition to discussion within the evaluation results, some observations and experience gained throughout
the project are incorporated into the discussion to give a more complete review.
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• 2D v.s. 3D
As stated before, for practical applications, 3D input performs better since more obstacles can be detected
and less affected by pitch and roll movement of the vehicle. However, apart from performance, when
using 3D input, the number of features in the input grows as well as the complexity of the network. This
means more training data is needed and the deployment is more computational demanding, while 2D
input is able to provide a similar performance with simpler network structure and less computational
demand.

• Regression v.s. Classification
From the experiments, it is observed that regression networks are more sensitive to small deviations. It
leads to a smoother and better positioned trajectory in corners with a small curvature. However, when
the size of the training set is limited, the extrapolation of the regression network is not so accurate. Its
performance usually drops at hard corners and when the truck is positioned with a large angle against
the wall. The classification network, on the other hand, performs well in hard corners, but not as good
as regression networks in soft corners given the same training data. It is believed that the classification
network does not need to balance between straight corridors and hard corners, since the different labels
from the dataset are not relevant to each other in the training and the network can therefore more easily
be optimized for different input situations. In contrast, regression networks need high nonlinearities to
cope with both situations which makes it harder to optimize, however the interpolation enables fine
adjustments to minor changes of the input data.

• Execution time
In the approaches without “compass” where 2D LIDAR are used, the execution time is significantly
faster compared to the 3D LIDAR case. However, both of them can be executed above 10 Hz using
the Raspberry Pi, suggesting that they are efficient enough for the application using limited hardware.
The approaches with “compass” is able to be executed at a rate that is slightly slower than 10 Hz. We
believe that the input size of the network can be reduced by using a more compact representation of the
“compass” to get a shorter execution time. As expected, the convolutional network requires significantly
longer execution time. It is also worth mentioning that the Raspberry Pi is executing the networks on
the CPU. If GPU accelerated hardware is available the execution time could be reduced further.

• Center-configuration v.s. Front-configuration
As explained in Section 4.1, it is assumed that center-configuration gives the network more information
to determine the relative position of the truck in the track. This assumption conforms to the observation
in the experiments. The center-configuration decreases corner-cutting behaviours and more importantly,
provides more features for classification networks, therefore compensates the low sensitivity of classification
networks to input deviations. However, it is worth mentioning that the packaging limitation in real
applications makes it difficult to use a center-configuration-like input. It usually involves a merger which
processes the data from multiple LIDARs around the vehicle to simulate the output from a center LIDAR.
The merging itself takes a lot of computational effort, especially when high resolution 3D LIDARs are
used. One way to eliminate merging is to feed all the raw sensor reading to the network and let the
network itself to understand how to relate the data from different positions to the output. Actually,
experiments to skip the merging were done with promising results, though they are not shown here due
to the hardware limitation. Simulating multiple 3D LIDARs is too heavy for

• Decision making
When only considering corridors, the networks are capable of positioning the truck in the right place
and driving along the track. However, when the truck is at intersections, the regression networks drives
to a random direction. This behaviour is expected, since the only output from the network is steering
angle and it simply lacks the degree-of-freedom to tackle with intersections. For classification networks,
it was expected to output several high probability paths at the same time when it is in intersections.
However, it becomes, in fact, uncertain for all paths rather than certain for several paths. Hence the
“compass” is introduced to explicitly give the instruction of turning direction to the network, and the
results show that it works. With that being said, this approach needs the information of truck position
and waypoints coordinates, which is not as good as pure relative localization in terms of application,
since global localization system is therefore needed. There are several ways to solve this problem, for
example, using multi-label-classification network. However, the ways of creating valid data has to be
developed. During the project, a lot of effort has been invested to get quality datasets, but the results
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were not stable enough. From our point of view, these datasets must be easy to generate in order to be
feasible in a real product hence the approaches were limited. Except just using the “compass”, other
types of information could be also utilized. In a recent report, [45], Google maps, GPS and IMU are used
with good results. In the report, a fully convolutional network are developed, which can predict long
paths at a high rate on straight roads as well as in intersections. However, it uses a much deeper and
complex net that put much higher requirements on the hardware.

Neural networks and safety

The result of the experiments shows that shallow fully-connected feedforward networks are sufficient for
end-to-end navigation by generating short local paths in the simulated mining environment. The performance
improvement is negligible beyond 5 layers in our studies. Nonetheless, the input variety is much less than that
in reality, therefore much more complex networks might be needed for real world implementation.

One observation worth mentioning is that convolutional networks might not be suitable for the application
type of this project. We believe that convolutional layers are good at feature identification but lose position
resolution of those features. This leads to low performance in relative localization and therefore poor positioning
of the truck. During the project, this issue has been observed when convolutional networks had been tested. The
fully connected layer always tries to recenter the truck when it is perturbed in corridors, while the convolutional
networks has just recovered the truck to be parallel against the walls, indifferent to whether one of the walls is
really close to the truck itself.

Since the detailed mechanism behind neural networks is still unknown, safety evaluation by analysis for
the network itself is not applicable. Instead, safety checks and restrictions could be applied to the output.
Therefore, classification networks might be better, since the safety evaluation can be applied for several high
probability paths instead of just one binary decision on the regression output.
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6 Conclusion and future work

The development of autonomous vehicles has drawn a lot of attention from both academical and industrial
sectors in recent years. Neural networks, another subject undergoing intense study recently, are utilized as
a powerful tool to handle problems within autonomous driving. Especially, the ability of neural networks to
understand camera image fast and accurately has the potential to make autonomous vehicles more intelligent.
However, in terms of end-to-end learning using LIDAR data within automotive applications, it can still be
considered as a less explored area. In this project, attempts have been made to find a way to organize data so
that even shallow neural networks can interpret the data in a useful way efficiently.

First of all, from the experiments, it is clear that the neural networks are capable of relaying LIDAR range
data to generated paths, and more importantly, it is not necessary to implement computational demanding
deep networks for end-to-end learning in simple environment like mining sites. It is also found that when
dealing with LIDAR data which contains rich depth information, fully-connected neural network shows higher
performance than convolutional networks, though convolutional neural network shows a great potential on
interpreting camera data in various studies.

Secondly, 360-degree view is necessary for vehicles with long wheelbase. It is crucial to avoid corner-cutting
behaviour for large vehicles such as trucks. Without information on both sides of the vehicle, the network is
not able to perform high quality relative localization, therefore performs poorly in sharp corners.

At last, with a proper way of giving instructions, the neural network is able to make decisions at intersections
according to the given instructions. In this project, a “compass” is formed as visual signal to the networks, so
that the network knows which direction it should follow at the intersection. The evaluation shows that this
approach is able to inform the network correctly and robustly.

The resulting neural networks of this project are able to drive a truck in simulated tracks with intersections,
and a tool-chain of data collecting, neural network training, deploying and testing in simulated environment is
developed as well. However, there is still plenty of work left to do.

In terms of neural networks, there are many structures and techniques such as recurrent networks and
phase functions that can be implemented to gain a better performance. In addition, the network deploying
program can be multithreaded to reduce the execution time in less powerful hardware such as Raspberry Pi.
Moreover, the training methods for other driving tasks such as speed regulation, reversing and parking need to
be explored to develop a more complete autonomous driving solution. On the other hand, the mathematical
explanation of observed behaviours of different networks in the experiments is an interesting and important,
though challenging topic to pursuit in the future.
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