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Abstract
Search-based test generation is an automated test generation technique that saves
time and energy which developers spend for a manual test generation. In search-
based test generation, the test input creation is framed as a search problem, in
which search algorithms are used to automatically select the optimal solution based
on feedback from one or more fitness functions - scoring functions based on attain-
ment of selected test criteria, such as code coverage or number of crashes detected.
The effectiveness of test input generation depends on the selection of measurable test
goals and the selection of effective fitness functions. Search-based test generation
with support for multi-objective test generation has been applied in other domains
such as desktop software. However, automated test case generation for Android apps
is not a mature field, and existing approaches do not allow testing to be adapted
to specific goals, like identifying excessive CPU usage or maximizing code coverage.
In addition, multi-objective search-based test generation can target multiple fitness
functions at once, shaping a test suite that has multiple properties of interest (for
example, you could both maximize CPU usage and the number of crashes, and you
could shorten test case length, all during one test generation session). However,
we do not know which combinations of fitness functions are effective at triggering
crashes or meeting other testing goals during Android GUI-based testing.

In this study, we developed a search-based test generation framework for Android
GUI-based testing with support for multiple fitness functions, largely based on non-
functional properties such as maximizing CPU or battery usage. We compared
STGFA-SMOG with the Random test generation tool we developed as a baseline in
the intermediate and final evaluations to determine whether STGFA-SMOG gener-
ates tests more adept at maximizing the properties of interest, and whether it gen-
erates tests more effective at triggering crashes. We also assess which configurations
of STGFA-SMOG (fitness function combinations) trigger the most crashes, and the
impact of adjusting the search budget on fitness and crash detection. Based on the
intermediate evaluation STGFA-SMOG produced better fitness values than Random
test generation for all search budgets we applied. Furthermore, STGFA-SMOG with
both search budgets detected more crashes than Random test generation, and more
crashes were detected with a 30 generation search budget than with a 10 generation
budget. However, the comparison between the different configurations of fitness
functions only demonstrated minor differences between fitness function configura-
tions. The empirical results revealed that the best configuration is dependent on
the app-under-test. Ultimately, STGFA-SMOG can enable testers to generate test
cases for non-functional properties of interest, such as CPU, memory, battery, and
network usage, and is able to trigger crashes in Android applications.
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1
Introduction

1.1 Introduction
Mobile devices are becoming popular because of their portability, accessibility, and
connection ability to the Internet. As of August 20, 2020 statista [2] published
that there are around 3.5 billion smartphone users all over the world. Due to the
popularity of smartphones, developers are engaged in developing applications and
pushing them to Google play store, and/or App Store. Based on AppBrain statistics
there are around 3 million Android apps on Google play as of November 23, 2020
[3]. These huge numbers of Android apps need to be properly verified to ensure
that they are reliable and crash free. Testing is one of the prominent techniques of
software verification which is widely used these days. However, software testing is
a time-consuming, tedious and costly activity in the software development life cycle
[4], and becomes more expensive as software complexity increases.

The majority of this cost comes from the manual work done by developers to create
test cases and assess their corresponding expected outcomes. A number of research
projects have been conducted to identify a way to minimize the cost of software
testing. One approach of minimizing the cost of software testing is automating the
process of test generation [4]. For example, with search-based test generation, re-
searchers and practitioners were able to automatically generate test cases that detect
faults and maximize code coverage over a system-under-test (SUT). In search-based
test generation, the test input creation is framed as a search problem, in which
search algorithms are used to automatically select the optimal solution based on
specified test criteria from the space of possible test cases. Search algorithms sys-
tematically select the optimal test cases from the space of possible test cases based
on well-defined test goals and fitness functions – scoring functions that provide feed-
back and shape the test suites to meet high-level goals of the testers [5].

Search-based test generation is a type of automated test generation, in which test
cases are generated using search algorithms guided by fitness functions that com-
pute the approximate fitness of the test cases to a specified test goal [4]. In this
approach, test cases are generated semi-randomly, tested against the SUT, and the
fitness functions compute the closeness of the test result to a specified test goal. If
the test cases generated meet the objective of the test, these test cases are returned
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1. Introduction

as solutions. However, if the test goal is not attained, the search algorithms select
the best test cases that give the closest fitness to the test goal and generate new test
cases based on the selected test cases. This process continues until the test goal is
reached or the search budget is exhausted. The effectiveness of generating test cases
to attain the test goal depends on two things, the selection of measurable test goals
and selection of effective fitness functions [6]. That is, the effectiveness of the test
case generation relies on the approximation functions that compute the closeness to
the test goal. Fitness functions shape the test suites with properties that testers
desire from the generated suites. Many fitness functions have been applied in do-
mains such as desktop software [6], but we do not know yet which will be effective
for triggering crashes or meeting other testing goals when testing Android apps.

Based on different studies search-based testing most likely has better acceptance
than a random generation in producing effective solutions within a given time and
the guidance toward the test goal helps here a lot that is why we are applying
search-based test generation for Android apps in this study. As stated by Shamshiri
[7], while random search relies on encountering solutions by chance, guided searches
aim to find solutions more directly by using a problem-specific “fitness function” and
with a good fitness function, guided search-based approaches are capable of finding
suitable solutions in extremely large or infinite search spaces.

In addition, automated test case generation for Android apps is not a mature field,
and existing approaches are not sophisticated enough to ensure that faults are dis-
covered and existing approaches do not allow testing to be adapted to specific goals,
like identifying excessive CPU usage or maximizing coverage of the source code. A
search-based test generation is a flexible approach that enables testers and develop-
ers to guide the generation in some way and this guidance allow easy adaptation of
the test generation framework to different goals, as well as fine-tuning of the search-
based approach. In particular, multi-objective generation can target multiple fitness
functions at once, shaping a test suite that has multiple properties of interest (for
example, you could both maximize CPU usage and the number of crashes, and you
could shorten test case length, all during one test generation session).

In this study, we developed a search-based test generation framework for testing
Android apps with support for multiple fitness functions that generate test cases for
Android apps, run them, and collect information about how good the test cases are.
We focused on the goal of discovering fatal crashes, as those are a direct indication
of a fault in the Android app. We do not know which fitness functions lead to the
discovery of more crashes, so we conducted empirical research to compare our frame-
work to a Random test generation baseline, and we compare different configurations
of the framework (different combinations of fitness functions) to discover whether
certain combinations of fitness functions can produce more crashes than others.

Search-based test generation framework for Android apps with support for multi-
objective generation (STGFA-SMOG) is a framework that generates test cases with
multifaceted properties for Android GUI-based testing and supports the addition of

2



1. Introduction

new fitness functions over time. STGFA-SMOG allows the creation of more complex
test cases and customization of the framework for specialized testing goals such as
memory usage, CPU usage, code coverage, crashes, etc. STGFA-SMOG generates
test cases by optimizing different combinations of fitness functions that allow testers
to meet different testing goals. The empirical study shows that STGFA-SMOG out-
performed the Random test generation we developed as a baseline in revealing more
crashes and generating test cases with higher fitness values. However, we did not find
a persistent pattern that shows one configuration outperforms the other configura-
tions in all the app-under-test (AUT), where AUT is an Android application that is
being tested using STGFA-SMOG. Rather we observed that the best configuration
that triggers the most crashes differs from AUT to AUT. So, the best configuration
is dependent on the app-under-test. As future work, we recommend extending the
scope of experiments to look at a larger number of apps, a wider variety of fitness
function combinations, and additional search budgets.

1.2 Problem Identification and Motivation
In search-based test generation, in order to generate test cases that are effective at
detecting faults in a software, we need to define test goals that improve the likelihood
of fault detection and corresponding fitness functions that represent those goals. It is
obvious that the number of faults that exist in a piece of software is not known before
it is tested. As a result, test goals are designed with the aim of increasing the prob-
ability of revealing faults. It is important to carefully choose test goals and fitness
functions so as to maximize the probability of revealing faults. Each fitness function
imbues a test case with certain properties related to that function. Single-objective
test generation is often ineffective at fault detection, as the test suites are focused
entirely on that one goal. Multi-objective generation focuses on targeting multiple
fitness functions concurrently, efficiently generating multi-faceted test suites [6, 8].
For multi-objective generation to be effective, we need to understand the effect of
choosing different combinations of fitness functions on the effectiveness of the gen-
erated test suites. An empirical goal of this project is to guide how to choose fitness
functions and which of them to combine for effective multi-objective test generation.

A motivation for this thesis work is the research work done by Salahirad et. al
[6]. In their work, they studied the effect of the combination of fitness functions
in search-based unit test generation. To understand how effective test cases are
generated when we use different combinations of fitness functions, they assessed
the EvoSuite test generation framework. Their study mainly focused on unit test
generation for java based applications using single-objective generation and multi-
objective generation. As far as we know, there is no research study done that shows
the effect of the different multi-objective configurations of fitness functions on the
effectiveness of generated test cases to system testing of Android applications. How-
ever, to carry out this study, there is a lack of publicly available multi-objective test
generation tools for Android GUI-based testing. There is only one multi-objective
test generation tool for Android apps [9] that supports only three fitness functions

3



1. Introduction

and it is an outdated tool at this time. So, we do not know how can a search-
based test generation framework for Android GUI-based testing best be designed
to support multi-objective generation and the addition of fitness functions over time.

Search-based test generation tools iterate over the search process to find the optimal
solutions for the problem at hand until the allocated search budget is finished. The
search budget allocated can be a time budget or a maximum number of iterations
or generations allowed. It is also important to know whether an increased search
budget improves the effectiveness of the generated test cases. There are no research
studies found which investigated the effect of an increased search budget on the ef-
fectiveness of test cases generated for Android GUI-based testing. Since the random
generation of test cases for Android GUI-based testing is the most applied approach
in Android apps testing, it is important to compare the effectiveness of the test
cases generated by the search-based test generation to the test cases generated by
the random test generator prototype.

Therefore, to address the problems discussed above we developed a search-based test
generation framework with support for multi-objective generation for Android apps.
The framework is developed with support for multi-objective generation through
balancing different combinations of fitness functions. Based on the developed frame-
work, we investigated the differences in the effectiveness of generated test cases when
we vary the combination of fitness functions for GUI-based testing of Android apps.
The framework is also run with different search budgets to generate test cases and
compared the effectiveness of the test cases in causing crashes with the respect to
the search budgets allocated.

1.3 Objective of the Research
The objective of this research is to develop a search-based test generation frame-
work with support for multi-objective test generation and the addition of new fitness
functions over time. The goal of this research is to create a framework that can be
used in practice to carry out Android GUI-based testing. Moreover, the framework
can be used to perform empirical studies on test generation for Android GUI-based
testing, especially related to non-functional aspects of execution such as memory
consumption or energy efficiency. With the empirical study, this research attempted
to address research questions such as "whether the framework created can success-
fully identify crashes in Android apps (i.e., check whether the framework is more
effective than a random generation baseline), and see if any particular combination
of fitness functions from the set implemented is more effective at triggering crashes".
The framework is designed to support several fitness functions, including ones based
on coverage, crash detection, and performance aspects such as CPU, memory, net-
work, or energy usage. It is also designed to easily add additional fitness functions
in the future, and allow users to select fitness functions to be used during test case
generation.

The framework is used to test different Android apps by varying the combination of
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fitness functions and evaluate their effectiveness in triggering crashes. An empirical
assessment is carried out to compare the effectiveness of the test cases generated
and find out which combination of fitness functions generated the most effective
test cases based on the results obtained. STGFA-SMOG was run on different An-
droid apps to generate test cases by varying the combination of fitness functions and
keeping the search budget the same. The result data collected in this process are
empirically assessed to know which combination fitness functions generated effective
test cases in terms of causing crashes. A Similar process is carried out by varying the
search budget to understand its effect on the effectiveness of the test cases generated.

1.4 Significance of the Research
The output of this research is a search-based test generation framework with sup-
port for multi-objective generation and an empirical study on the effectiveness of
test cases generated by different combinations of fitness functions and search bud-
gets. Accordingly, this research study has two main contributions. The first is, the
result of this study presents insights on the effect of using different combinations of
fitness functions and balancing them concurrently, and different search budgets on
the effectiveness of the generated test cases for GUI-based testing of Android ap-
plications. This will benefit both researchers and practitioners with advice on how
to select fitness functions in order to generate effective test suites in this domain.
The second contribution is the framework developed also enable the creation of and
experimentation with new fitness functions or existing one targeting the Android
apps. The practitioners can use the tool to generate test cases for Android GUI-
based testing by specifying an appropriate search budget for their purpose. The
researchers can also use the tool as starting prototype to design an advanced search-
based test generation approach for Android apps and conduct further study.

1.5 Thesis Organization
This introductory chapter is followed by seven other chapters, each of which dis-
cusses a particular focus of the study. Chapter 2 presents the literature review of
Android apps testing, automated test generation, search-based test generation, and
genetic algorithms to provide a theoretical background that supports this study. In
chapter 3, a review of related works to this study from the industrial practice and
academic research are discussed in detail. Chapter 4 deals with the approach used to
develop the framework in more detail. Chapter 5 is dedicated to present the method-
ology used in this study. It discusses the design science research methodology, the
iterations of the framework development, tools used, and other configuration de-
tails. The experimental results obtained when running STGFA-SMOG on different
Android apps are presented in Chapter 6 where as Chapter 7 discusses the research
findings based on the empirical analysis performed and threats and limitations the
research. Chapter 8, which is the last chapter, presents the final conclusions based
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the research findings.
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2
Background

2.1 Android Testing
Android is an open-source operating system for smartphone and mobile devices
which runs on the Linux kernel. Developers develop mobile apps using Java pro-
gramming language codes that can control mobile devices with Google-enabled Java
libraries. The Android SDK provides the tools and APIs necessary to begin develop-
ing applications on the Android platform using the Java programming language [10].

As the number of mobile users is increasing every year markets are competing on
providing products with better performance. The performance of mobile devices
relies on how the application runs on the device. The time taken and accuracy of
the operation intended to be done on the mobile app is the basic concern here. To
deal with this concern testers test the applications aiming production of high-quality
applications including testing the security holes, reliability of the app, and its func-
tionality. In other words, Android app testing aims at testing the functionality,
usability, and compatibility of apps running on Android devices [11]. The process
to test an Android app is: the first step is the installation of the app which we
want to test, running it followed by the application of test input. For example, if
we are testing the GUI of an app, we interact (manually or through automation) by
touching, swiping, or applying other actions to the GUI. After the input is applied,
the execution behavior is observed and collected from all sorts of perspectives, from
the changes to the information displayed to the screen to the amount of data down-
loaded. The reaction to the tests will be seen and studied. Running the test cases
provides lots of information on how our app is responding to the tests.

Android testing could be conducted at different levels based on the level of abstrac-
tion where the test is conducted.
Unit Testing:- this level of testing is at the lower level which might be testing a
function or a method in the code whereas unit is to mean a fraction of the code
which has a single return value. According to [12], a unit test is an automated piece
of code that invokes a unit of work in the system and a unit of work can span a
single method, a whole class, or multiple classes working together to achieve one
single logical purpose that can be verified. For example, it could be a function that
calculates the sum of two integer values.
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Integration Testing:- testing in which it tests the interaction between components
in the system or in the app. These components can be as simple as two classes that
interact, or could be two entire subsystems that interact. For example, a developer
may have a component that fetches data from and writes to a database and a second
component that transforms that data and sends it to be written. Tests of the in-
teractions between those components would be considered part of integration testing.

System Testing:- When we test the system in its entirety, we are doing what is
called "system testing" [12]. Testers use this type of testing to capture system-level
bugs while users can test a system as acceptance testing to check the performance
of the software or targeted system. System testing can take place through a pro-
grammable interface (e.g., an API) or through a user interface (e.g., the GUI). We
particularly are focusing on GUI testing of Android apps in this thesis because most
of the time users interact with Android devices through graphical user interfaces.
Making sure that the GUI of these apps is working properly is crucial since end-users
interact with it to perform different activities. In addition, crashing an app is a bad
experience to the end-users that owner of the app probably gets many negative feed-
back and reviews which may lead face a great loss of the market. User Interfaces of
an app can be tested either manually or automatically by generating events.

Additionally, apps can be tested on their performance to check whether they con-
sume resources beyond expected or if they are efficient. Compatibility test is also
done to check if the apps can operate in different versions of the OS and other
platforms. This tells testing is not only about the functional requirement but also
non-functional requirement including the time and memory usage.

Android applications have 4 components [13]. Those are:- Activities which rep-
resent user interfaces and constitute the visible part of Android applications. It
represents a single screen with a user interface that performs actions. Sometimes
a single screen can have several activities and one of the activities would be se-
lected as an activity to be considered during the launch of the App. In Java most
commonly an activity is implemented as a subclass of Activity class. Broadcast
Receivers wait to receive event messages, for example, it could be incoming calls
or text messages, from other components or the system while Content Providers
act as the standard interface to share structured data between applications. The
fourth component Services are the ones that execute tasks in the background. For
example, we play music in the background while we are on other pages. Android
Service Components can open numerous opportunities for malicious actions because
their processing is hidden to the device user.

2.2 Automated Test Generation
Tests can be created either manually or automatically. Nowadays, software in the
market is increasing and complexity to address the needs of users which makes
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thorough manual testing difficult and impractical. It is almost impossible to ensure
the quality of complex software which needs large volumes of manual input to test
thoroughly of inputs manually and it is also unrealistic economically because it is a
lot of work for human beings creating every test case and with every constraint. In
addition, software might be tester-dependent in case of manual testing, if the tester
is skilled he/she can easily manage to address the corner cases and possible holes
and for junior testers, this may not be the case. Automated test case generation
can reduce the human burden. Generating test data by hand is tedious, expensive,
and error–prone [8]. It can also be dependent on the individual’s skills if there is no
standard tool or framework to handle these issues. Automated testing can cover a lot
of cases within a short period of time and can generate better-updated test cases. It
can also help with improving the reliability and quality of the product. But this does
not mean the use of manual testing is negligible. In many industries manual testing
is being used even today because it is helpful in many scenarios including some
activities which need special attention, for example automating software installation
is difficult.

2.3 Search Based Test Generation
A simple approach to test generation in Android would be to randomly generate test
cases, like the monkey tool included in the Android development tools does. But in
some cases, random generation is not smart enough to exercise the deeper features
of the software. A complex piece of software may have a near-infinite number of
possible inputs. Random input generation can only cover a small portion of that
space, and may apply input that is redundant to that already applied. Some critical
features of software may be skipped while we generate randomly and that could
result in failure of the software in the market. So, random generation is not smart
enough to ensure adequate testing of complex apps.

The metaheuristic search technique involves the transformation of test criteria to
fitness functions in which solutions of the search can be compared and contrasted
with respect to the overall search goal and the application of a strategy (the "meta-
heuristic") to sample from the space of possible inputs that incorporates feedback
from those fitness functions [5]. As an example, evolutionary algorithms use simu-
lated evolution as a search strategy to evolve candidate solutions, using operators
inspired by genetics and natural selection. In the genetic algorithm which is a well-
known evolutionary algorithm, the search is driven with the exchange of information
between solutions to breed new solutions while evolution uses mutation. Parents re-
combined and mutated iteratively to give birth to new generations. For example, if
we have two parents they crossover and create two new offspring. Many mechanisms
could be used in order to select which to select for breeding with aim of producing
new offspring.

Fitness functions is the measure of quality of generated test suites according the
goals of the test generation process. For example, we might use coverage of the code
as a fitness function, and attempt to maximize the percentage of the code executed
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by the test cases. Individuals which have good fitness will be selected as the basis
for the next generation of the search process. According to McMinn [1], the use
of metaheuristic search algorithms to generate test input, was firstly published by
two American researchers, Webb Miller and David Spooner in 1976. Their approach
aimed to generate float-type test input. They used the cost function to select bet-
ter input. The inputs which are close to the average line will be selected and the
far ones will be rejected. The new thing they came up with was they used a nu-
merical maximization method unlike what was being used before which is symbolic
execution. A couple of years after researchers applied the genetic algorithm to the
problem interest in the topics started to grow and became a popular research area
for many researchers [1].

How we structure our fitness function is also important here to solve the optimization
problem because this guides our search toward the desired result. For meta-heuristic
searches, guidance can be provided in the form of a problem-specific fitness function,
which scores different points in the search space concerning their ‘goodness’ or their
suitability for solving the problem at hand [1]. It is the way we structure what we
are looking for that determines the ease to come up with required solutions. We
can derive the fitness functions from the given problem keeping in mind how we can
connect it with the format of the solution so that we can use the fitness information
on different optimization algorithms including genetic algorithms & hill climbing.

2.3.1 Hill Climbing
Hill climbing is a metaheuristic search algorithm that finds a better solution in which
it randomly chooses an arbitrary solution from the search space as a starting point
and makes incremental changes to the solution to come up with some somehow bet-
ter solution. When we make incremental changes, we "explore the neighborhood" of
the current solution, attempting to identify a small change that improves solution
quality. This process continues iteratively until time runs out. The last solution
may not be the absolute best (global optimal maximum) but it is sufficiently good
considering the time allotted and it is local optimal. There are several hill climb-
ing algorithms, and each differ in how the new solution is selected. For example,
"steepest ascent" evaluates all neighbors and selects the one that makes the largest
improvement to the score, while "random ascent" evaluates neighbors at random un-
til it identifies the first that is an improvement over the current solution. A common
example here is the Travelling Salesman Problem. Travelling Salesman Problem is
about a traveler needs to visit all the cities from a given list, where distances between
all the cities are known and each city should be visited just once. The problem is
concerned on what is the shortest possible route that he visits each city exactly once
and returns to the origin city. The first solution will be generated randomly that
includes all the cities to be visited in the list. After then making changes to the
solution will continue with changing orders (swapping the order) of the cities and
other operations to find the local optimal solution. The iteration of evaluating the
neighbors and altering the solution will stop where none of the direct neighbors of
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the current solution are better than the current solution. This does not show the so-
lution is the best, it is limited to local optimal not globally because it considers only
one solution at a time and moves only in the local neighborhood of those solutions [1].

Hill climbing is claimed to be highly dependent on the first solution randomly se-
lected. It can turn out a solution that is far from the global optimal. To overcome
the issue of local optimal, most hill climbing algorithms incorporate restarts when
stuck in a local optimal.

2.3.2 Genetic Algorithm
Search-based approaches can use local search or global search, and that hill climbing
is an example of a local search, an algorithm improve solutions by making changes
to them, as explained in the above and genetic algorithm is an example of a global
search where solutions are sampled from the full search space. According to McMinn
[1], genetic algorithms are derived from Darwinian evolution and the concept of sur-
vival of the fittest in which the survived ones can keep their generation for the
future. Each point in the search space currently under consideration is referred to
as an ‘individual’ or a ‘chromosome’. The current set of individuals which is under
consideration for the next generation are collectively referred to as the current ‘pop-
ulation’. An individual is characterized by a set of parameters (variables) known
as genes. Genes are joined into a string to form a Chromosome (solution). Unlike
the Hill Climbing algorithm, genetic algorithms maintain a population of solutions
rather than just one current solution [1]. In addition, the genetic algorithm provides
a decision to use different types of representation of genotype, mapping to pheno-
type. This needs a careful and smart way to choose which representation is better
for the specific problem provided. Genotype is the actual encoded structure of the
solution, appearing in the way that can be manipulated easily by the algorithm.
Phenotype is a decoded structure that is the representation of a genotype after be-
ing altered in some way. In other words, the genotype is the solution’s manipulable
representation, while the phenotype is an evaluable solution to the problem [14].

For example, let’s take the TSP (Travelling Salesman Problem) and the genotype
in this case is the genetic information of an individual of the population that is the
way how we represent the problem in our code. To be specific, it could be either
strings to represent city names or list of city numbers that represent the city. The
phenotype of the TSP is the sequence of cities as they are visited as the information
obtained based on the genotype.

The first step in the genetic algorithm is the initialization of the population in a
random fashion or with some other way such as heuristics to seed the population.
From the population, parents are selected based on their fitness (best fitted will
be a candidate). When a new population is formed, the gene is divided into four
sections. The first section contains some of the best solutions from the previous
population, brought over unchanged. The second section is created by performing
crossover on some of the best solutions. A crossover takes two parents and combines
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Figure 2.1: Genotype and Phenotype representation of the TSP

the segments to form new offspring.
For example let’s take the following two parents;

Parent 1: [0,1,1,0,0,1]
Parent 2: [1,0,1,0,0,1,1]

The parents are first to be split into segments as parent1: [011],[001] and parent2:
[101][011] and the result of the crossover will be half of the segment of parent 2 is
appended to the end of half segment of parent 1 and the vice versa.

Table 2.1: Crossover example

Parent 1 [ 0 1 1 ] [ 0 0 1 ]
Parent 2 [ 1 0 1 ] [ 0 1 1 ]
Offspring 1 [ 0 1 1 ] [ 0 1 1]
Offspring 2 [ 1 0 1 ] [ 0 0 1 ]

For more segments in a given parent, for example for two-point crossover 2 indexes
will be generated randomly on the parent. If we have [1001] and [0010] & the gen-
erated indexes are 1 to 2 then [00] from the first gene and [01] from the second is
selected then these two are the ones that will exchange. As a result, the offspring
will be [1011] and [0000].

The third section is created by mutating some of the best solutions and the fourth
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section is created completely at random to introduce additional diversity into the
population. Mutation is a process where a small incremental change is made to one
of the existing best solutions to create a new member of the population. It is similar
to what would be done in a local search. The summary of what is being done in the
process to find an optimal solution is drawn as follows.

Initial 
Population

Fitness 

Stop

Reinsertion

Selection

Mutation

Crossover
Termination 

Criteria reached?
No

Yes

Figure 2.2: Main steps of a genetic algorithm [1]
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3
Related Work

This chapter discusses different related works of Android test generation tools and
compare them with our framework (STGFA-SMOG).

Table 3.1: Android testing tools with their corresponding type

Tools Type Generate UI events Generate system events
Monkey Random Yes Yes
Dynodroid Random Yes Yes
EvoDroid Search-based Yes No
Sapienz Search-based Yes Yes
GUIRipper Model-based Yes No
SwiftHand Model-based Yes No
STGFA-SMOG Search-based Yes Yes

3.1 Monkey
AMonkey is a testing tool for Android apps that randomly generate events from pre-
defined distribution and send them to the app [15]. Unlike Monkey, STGFA-SMOG
applies search-based technique in generating the test cases because we believe it can
help us in ending up with an effective test than total randomness. The tool Monkey
is known for its good code coverage, ease, and portability. Portability is in the sense
that the tool operates in different version of Android devices. In other words, the
compatibility of Monkey on different versions of Android devices makes it popular
in industries, state-of-practice. The ease to use comes from the random generation
approach, testers should not worry about which test data or test case to use since
they can generate randomly from some given distribution and these random events
simply trigger on random coordinates in the Android screen. Monkey runs on both
emulator and real physical Android devices. It sends a pseudo-random stream of
user events into the system, which acts as a stress test on the application software
you are developing.

Monkey watches the system under test and looks for three conditions, which it treats
specially: [16] The first is if you have constrained the Monkey to run in one or more
specific packages, it watches for attempts to navigate to any other packages and
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blocks them while the second option is if your application crashes or receives any
sort of unhandled exception, the Monkey will stop and report the error. The third
possible scenario is if your application generates an application not responding error,
the Monkey will stop and report the error. Depending on the verbosity level testers
have selected, testers will also see reports on the progress of the Monkey and the
events being generated. According wetzlmaier [17], without knowledge about these
existing defects, the Monkey is likely running into the same failure over and over
again creating from the viewpoint of the developers “false alarms”. Furthermore, if
these defects are easily detectable by the Monkey, they will dominate the results of
the test runs and mask other defects that are harder to find.

Although Monkey generates different types of events such asAPPSWITCH (switch
to a different app) and FLIP flip[15] (open keyboard), we did not apply these events,
as we did not find their corresponding ADB command, in our tool to interact with
the system under test. Monkey does not have a guidance while generating these
events. This probably ends up in the difficulty to address the complex features of
the system and may not be easy to create test cases that visit the corner cases and
other behaviors of the system with a random generation used in Monkey.

3.2 DynoDroid
DynoDroid is an input generation system for Android apps that enables the random
generation of both system events and UI events. The main principle underlying
DynoDroid is an observe-select-execute cycle, in which it first observes which events
are relevant to the app in the current state, then selects one of those events, and
finally executes the selected event to yield a new state in which it repeats this pro-
cess [18]. DynoDroid focuses on User Interface through the generation of UI events
such as click, text box, and others similarly to what we are doing here in our study.
Sometimes it could be needed for human knowledge and intelligence to generate
events. For example, if it is needed to fill in a password and username in an app
that needs login credentials it is better to be human-assisted, in other words, a hu-
man can easily remember and can easily recognize the password format to come up
with an effective test case than random generation. In such cases, DynoDroid en-
ables the tester or user to pause the random generation by the system and generate
arbitrary events manually for the text boxes in which the overall system thereby
combines the benefits of both the automated and manual approaches. Many signif-
icant features of Android are controlled with system events such as managing the
volume of a speaker, notifications of battery alert, and connecting to other devices.
It is difficult to cover all the system events because of the complexity and diver-
sity of the events, it seems impractical to include the permutation of these large
number of system events. This is found challenging for Aravind [18] to achieve
their goals of Robustness, Efficiency, Automation, Versatility, and Black box (does
the system forgo the need for app sources and the ability to decompile app binaries?)

DynoDroid works in Observe-select and Execute cycle in which Observer computes
which are relevant events, events which registered a listener and provide them to
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the selector which selects an event from the list of events and the executor executes
the event in the current given emulator state. Executer uses ADB (Android Debug
Bridge) to send the events to the Emulator where the app under test is running.
As mentioned in the above paragraph DynoDroid allows switching between automa-
tion and human. The executor listens to commands from a console and starts in
human mode, in which it does not trigger any events and instead allows the human
to exercise the app uninterrupted in the emulator until a RESUME command is
sent from the console. RESUME command switches the generation of events to
the machine mode and starts to generate automatically until the goal is achieved or
until PAUSE command is received from the console. STOP command finally stops
the DynoDroid. After then the Observer will continue to compute the relevant event
and returns with a possible small set of events, the minimum number of relevant
events.

According to Aravind [18], DynoDroid found to outperform Monkey on managing
time to reach the peak of code coverage that DynoDroid covers lots of code faster
than Monkey though it is slower in generating events which turned out 5X slower
than Monkey. The reason for this delay is said to be the calling of view hierarchy af-
ter each event generated. But on the other side, reaching comparable code coverage
with Monkey with a small number of inputs seems inspiring. In addition, DynoDroid
is claimed to have a good automation degree in which the study by Aravind [18]
comes out with the ratio of coverage achieved by the intersection of DynoDroid and
Human to the total coverage achieved by Human varies from 8% to 100%.

In addition to the code coverage, DynoDroid is also concerned about the issues of
fault detection. The FATAL EXCEPTION is believed to be severe and causes ap-
plication crashes that DynoDroid specifically addressed only this type of exception.
What they did was mining the Android emulator logs for any unhandled excep-
tions that were thrown from code in packages of the app under test and finally they
checked for false positives manually [18]. When it comes to our study though we
are also focusing on FATAL EXCEPTION similar to DynoDroid we are including
fitness functions unlike measuring fault detection and code coverage as final perfor-
mance evaluation of the framework. We are adding multiple test objectives which
are measured with the fitness functions because it helps the STGFA-SMOG to see
different criterion to ensure the quality of the application. We can use these crite-
rion as final performance evaluation of our framework also. Unlike DynoDroid which
uses random generation of test cases STGFA-SMOG use fitness functions to guide
the generation as it uses search-based generation. This approach helps to save time
used to find solution which are close to the test objective. In addition it is smart
way to address different test objectives using the optimization algorithm, this makes
STGFA-SMOG more realistic because users and testers in the real world needs a
software to address different functional and nonfunctional requirements. Objective
of a test is not always straight and single-objective that leads us to consider the
multi-objective test case generation.
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3.3 EvoDroid

EvoDroid is the first evolutionary testing framework targeted at Android. In other
words, it is a tool that applied an evolutionary technique for system testing of
Android apps, and it is believed that it solved the issue of applying evolutionary
approaches in system testing. This is done by analyzing the ADF (application de-
velopment framework) and its constraint on the way apps can be built [19]. ADF
allows the programmers to extend the base functionality of the platform using a
well-defined API and provides a container to manage the lifecycle of components
comprising an app and facilitates communication among them. In addition, it is
good to have ADF in order to have consistency among developers and for common
consensus. EvoDroid is aimed at finding a set of tests that maximizes the code cov-
erage. According to Riyadh [19], the focus of EvoDroid is on generating test cases
that maximize code coverage, not on whether the test cases have passed or failed.
Code coverage can be expressed as visiting the unique paths from the start node to
the leaf nodes. Reaching high code coverage of apps such as ERS, a simple app used
in EvoDroid requires trying out a variety of inputs which are User Interface events.

EvoDroid starts from the root node and finds a test case that makes the path until
the leaf node. For example, if we have node “A” as the root node and J,K,L are leaf
nodes the aim is to find a test case that actually reaches the leaf nodes. Each test is
also considered as individual and its genes are app input which are specifically events
in the Android case. Similar to other evolutionary based tools such as Sapienz, Evo-
Droid goes through mutation and cross-over to generate new offspring from their
parents and to represent the better solutions throughout generations. Unlike any
prior approach, EvoDroid takes each path in the CGM (Call Graph Model), breaks
it into segments, and runs the evolutionary search for each segment separately [19].
CGM is the graphical representation of sequences in an app and it can be viewed
as the model for function and method calls in the app. The evolutionary process
continues until all the paths and their segments are covered or maybe a specified
criterion is fulfilled (number of test cases, time limit). Code coverage is the focus
area of EvoDroid as its fitness function and seems acceptable to have a single fitness
function as the first to introduce an evolutionary approach for system-level testing.
In addition, segments can be skipped if they are already covered and this seems
helpful to save time and resources. For example, if a segment in a given path is
already visited with some path it can be skipped in the later possible visit. Let’s
say we have paths A-B-E-F and A-C-E-F-G, E-F is a segment and is repeated in
both paths. In such cases, we have the ability to skip it once it has already been
covered.

STGFA-SMOG is different from EvoDroid on the number of fitness function we ap-
plied. We added fitness functions such us memory usage, cpu usage, fault detection
and length of test sequences on top of the code coverage to ensure the quality of the
application considering different testing goals. STGFA-SMOG is flexible where de-
velopers can add new fitness functions over time and allow testers to choose different
combinations of fitness functions to generate test cases for different purposes.
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3.4 Sapienz

Sapienz is another search-based test generation approach for testing Android apps[8].
During the generation of test cases, Sapienz includes randomly generated atomic
events in addition to the mutated solutions and solutions which are passed through
crossover for evaluation of their fitness. This is important to address the diversity
of the test cases and to control speedy convergence of test cases towards the fitness
function. The Sapienz approach focused on the fault revealing and shortest possi-
ble test sequences because the longer the test oracle the less realistic to happen in
reality. Therefore it is good to save time, the energy of developers, and memory by
minimizing non-applicable long test sequences. Sapienz uses three fitness functions,
aimed at maximizing code coverage, maximizing the number of crashes, and mini-
mizing the length of the test sequence.

Sapienz uses a multi-objective (pareto-optimal) genetic algorithm to optimize the
three factors. Pareto optimality is an approach to handle and balance the scores of
the three fitness functions. In multi-objective search increasing on a given objective
can lead to a reduction of the other objective. For example, when people need to
buy a car they are concerned about the cost and quality of the car. So, they cannot
reach maximum quality with very low cost, increasing in quality increases the money
to spend, people want to pay a little price, at the same time they want a new model
car so they have to optimize meaning they have to manage the trade-offs and end up
with optimal solutions. Specifically to this context, it is not mandatory to sacrifice
the length of the test sequence for the sake of maximizing fault revelation neither for
maximizing code coverage. With Pareto multiobjective approach these constraints
can be balanced in order to select a solution that best covers each function without
harming attainment of the other functions.

In other definition, pareto optimality is a formal way to manage these trade-offs in
which solution X dominates another solution Y, if for all objectives X is not worse
than Y and there is one objective X is strictly better than Y. A solution belongs
to the Pareto set if there is no other solution that can improve at least one of the
objectives without degrading any other objective [20]. The set of solutions that
cannot be dominated by others are considered as equally viable, which is named as
Pareto front. Most previous frameworks such as Monkey & Dynodroid were based
on random testing which didn’t apply genetic algorithm & pareto Optimality while
Sapienz ended up with better performance (larger effect size) than Dynodroid and
Monkey [9]. As we see Sapienz focuses on the 3 fitness functions, length of the test
sequence, fault detection, code coverage, and our thesis improves this by adding new
fitness functions & allowing the tester to choose from different fitness functions and
making it easy to implement more functions.

The search-based approach for generating the test and the usage of the Pareto
algorithm to solve the optimization problem is similar to what we are developing
and studying in this paper. The difference between Sapienz and the framework we
are developing is the number and selection of fitness functions. Our framework,
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STGFA-SMOG, allows a tester to choose fitness functions of his/her choice to see
which combination turns out with effective tests. This allows testers to conduct
tests for different test goals by choosing fitness functions from a larger selection so
they can tune test generation towards different goals. It will also allow them to
implement new fitness functions & will be available open-source, which the current
version of Sapienz is not. Providing it as open-source is helpful for the coming
researchers to get the detailed implementation of our framework and they can reuse
and modify it for different purposes of study. Sapienz takes the status of the AUT
into account while generating the test case which is out of the scope of our study,
STGFA-SMOG. For example, if the AUT is on the page which has a form to be
filled, the Sapienz uses this status to generate the corresponding events. Though
this is what we did not include in our study STGFA-SMOG is more flexible than
Sapienz in that testers can select combinations of fitness functions of their choice.

3.5 GUIRipper

GUIRipper is a tool that dynamically builds a model of the AUT by crawling it
from a starting state. When visiting a new state, it keeps a list of events that can
be generated on the current state of the activity and systematically triggers them
[21]. It uses model-based exploration, where Android testing generates a model of
the GUI of the app to generate events and systematically explore the behavior of the
app. These models are usually finite state machines where activities are represented
as states and events as transitions. For example, if we have simply a login page
the event click can be represented as a transition from state active home page to
active manager page. But in the first version of this research GUIRipper, the model
was EFG(Event flow Graph) which is a stateless model. The fact that Android
applications are state sensitive drives the research to focus on the state machines
which has dynamic abstraction and end up with MobiGUITAR tool and left the first
version of GUIRipper unfeasible. MobiGUITAR produces several types of artifacts
(such as crash reports, finite-state-machine models, GUI sequences, and executable
JUnit test cases) that provide information useful for debugging. As an experiment
by Amalfitano [22], MobiGUITAR outperforms Monkey and DynoDroid on fault
detection.

Our focus area in this study, STGFA-SMOG, is in search-based exploration not
model-based exploration but these are also promising Android GUI testing tools
while all tools are aimed to ensure the quality of Android applications specifically
the graphical user interface section since we interact with apps with this section
mainly from clicking to swiping. Model-based tools generate tests from the model
of the app and use this model as a guide for the generation as we have the fit-
ness function to guide our search-based exploration. In addition, model-based test
generation tools can use tester-defined stopping criteria such as 80% of code cov-
erage whereas a maximum number of iterations are used as a stopping criterion in
STGFA-SMOG.
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3.6 SwiftHand

SwiftHand [23] is another model-based test generation tool that aims to maximize
the coverage of the AUT. Similarly to the other tools such as MobiGUITAR, it uses
a dynamic finite state machine model of the app. Automatic exploration algorithms
will occasionally need to restart the app, in order to explore additional states reach-
able from the initial state and one of the main characteristics of SwiftHand is to
optimize the exploration strategy to minimize this restart of the app while crawl-
ing. It uses machine learning to learn the UI model of the app under test and use
this information to generate the test suits. SwiftHand generates only touching and
scrolling UI events and can not generate system events [23]. But our framework
STGFA-SMOG generates both UI events and system events such as adjusting vol-
ume. This makes our tool STGFA-SMOG all rounded and realistic to include the
important system events as well as the UI events such as click and swiping. We
are also guiding the exploration of the test suits in STGFA-SMOG with the fitness
function by measuring the fitness value to choose the better test cases and keep
them for the next generation while SwiftHand uses the learned model to generate
user inputs that visit unexplored states of the app.

3.7 Empirical Studies On Test Suite Generation

In the study by Wang [24], one of the research questions was " how to efficiently com-
bine multiple test generation tools on applicable industrial apps to achieve better
coverage and fault detection than applying these tools individually?" The state-
of-the-art Sapienz and the state of practice Monkey are among the evaluated and
studied Android testing tools. They were able to see the difference in code coverage
achieved and the number of crashes identified on different apps by several Android
generation tools. To answer the research question, they come up to measure and
analyze the statistics of rank-1 method and activity coverage plus rank-1 unique
crashes achieved by each test generation tool on the apps. In rank-n, where "n" is
the number of tools that cover the given method or activity, it could also be the
number of tools that detect a given specific fault. As a result, rank-1 is to means
the crash is unique and detected by one generation tool and the same is true when it
comes to coverage, the given method or activity is covered with one of the generation
tools only. If test generation tool A’s method/activity or unique crash statistics is
‘a/b’ and tool B’s method/activity or unique crash statistics is ‘c/d’, by running
both tool A and tool B (i.e., combining tool A and tool B) we could achieve at
least max(a+d,b +c) percent coverage of methods/activities or unique crashes that
are covered or triggered by all the six test generation tools used in the experiment.
Combination of Sapienz and Monkey is claimed to have the better coverage which is
90% of all covered methods by all the tools on these apps while Monkey with Sapienz
and/or Stoat [25](UI test generation tool for Android apps, with model-based evo-
lutionary testing) is a good combination for revealing more faults. Based on this
analysis they provide suggestions for combining multiple tools for better coverage
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and/or fault detection than applying these tools individually.

An empirical study on the search algorithms conducted by Gordon Fraser and his
team [26] has addressed the influence of using multi-objective optimization, rather
than the generally common approach of optimizing simply for code coverage. In their
study, the simple genetic algorithm they used for line coverage uses mutation, and
crossover which is similar to NSGA-II. The only difference is the NSGA-II used in the
study additionally uses a fitness function minimizing the number of events executed
in the test suite and maximizing the number of crashes produced by the test suite.
In other words, the former optimizes only line coverage while the latter optimizes
line coverage, the number of events, crashes. NSGA-II as used in Sapienz selects
individuals for reproduction randomly whereas the simple genetic algorithm uses
standard fitness proportionate selection. Finally, the number of unique crashes and
code coverage is measured to determine the difference between the multi-objective
and single-objective search approaches. Mean values of code coverage for each app
are calculated and it turned out that NSGA-II achieves better coverage for the apps
easy_xkcd and redreader. On the overall result, the study has shown NSGA-
II achieves about 1% more line coverage on average. Based on the statics of the
number of unique crashes on each app there is only one statistically significant dif-
ference in mean crashes, i.e., for the markor app where NSGA-II discovers about
0.2 crashes more than the simple genetic algorithm on average. Overall NSGA-II
discovers about 0.24 crashes more than the simple genetic algorithm. In conclusion,
the researchers believe the NSGA-II triggers a few more unique crashes than the sim-
ple genetic algorithm because it keeps test suites containing crashes in its population.

Another empirical study on Sapienz [27] is conducted to answer the research ques-
tions such as the contribution of the Algorithm (NSGA-II) and the use of motif
genes on the effectiveness of Sapienz which was measured with statement coverage
in this specific context. NSGA-II with and without motif genes was implemented to
show if motif genes make a difference. The same is done to the random generation,
random search with and without motif genes is compared for checking whether mo-
tif genes contribute to major gains in cases where an evolutionary algorithm is not
applied. In both cases, NSGA-II and Random Search improve their effectiveness
for test cases with motif genes based on the statics of the results. The statistical
analysis also shows the overall statement coverage by NSGA-II turns out better than
the other algorithms though the statistical significance is not observed on the com-
parison with random search, an algorithm that was second for statement coverage.
In other words, evolutionary algorithms do not have a significant contribution to
the effectiveness of test generation for Android. In broadway, [28] took the metric
code coverage to investigate whether the different level of coverage has different fault
detection ability, for example, if statement coverage finds more crash than method
or vice versa. This study is also conducted with Sapienz that ended up that the
joint usage of several granularities of code coverage metric leads to discovering more
bugs though there is no difference among one another. A study on code coverage by
a team in the University of California [23] aimed to reach better coverage quickly
by learning and exploring an abstraction of the model of GUI of an android app
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was one of the interesting researches regarding android testing with code coverage
metrics. This study was initiated with the draw back of random testing tools such
as Monkey that generates random inputs regardless of the structure of the GUI in-
cluding test inputs that touches random coordinates on the screen and this approach
is considered as a problem to reach high code coverage quickly. SwiftHand was used
to generate the sequences test inputs while machine learning was used for learning
the model of the GUI.

Zeng et al. [29] asked the question "Are we really there yet in an industrial case?"
in terms of the applicability of automated test generation for Android apps in an
industrial setting. In their study, they investigated the first industrial applicability
of the Monkey tool and its limitations in an industrial setting. They found that
Monkey achieves low line coverage and low activity coverage for the particular AUT
they used. Based on their study they identified two limitations for Monkey achieving
low code coverage; (1) lack of knowledge of the location of the widgets on a screen,
and (2) lack of knowledge about the context or state of the app. To address these
limitations they developed an enhanced version of Monkey by incorporating widget
awareness and state awareness with guided exploration and achieved better code
coverage than the original Monkey. Another previous work related to Zeng et al.
study is the empirical study done by Choudhary et al. [21] where the researchers
asked the question "Are we there yet?" in terms of the applicability of automated
test generation tools for Android apps. Their case study was mainly focused on
publicly available test generation tools applied to open-source Android apps as the
AUT. They compared the existing test input generation tools for Android in terms
of ease of use, ability to work on multiple platforms, code coverage, and ability to
detect faults. The study result showed that Monkey outperforms the other existing
tools considered in the study in terms of the comparison criteria specified.

Different evolutionary algorithms have been used to generate unit test suites for code
coverage. An empirical study carried out by Campos et al. [30] investigated the
influence of the specific flavor of evolutionary algorithms in the whole test suite gen-
eration. They empirically evaluated different algorithms (such as monotonic genetic
algorithm (GA), standard GA, steady-state GA, many-objective sorting algorithm
(MOSA), DynaMOSA, 1 + (λ, λ) GA, µ+λ EA, Random search, and Random test-
ing) using the EvoSuite tool applied on open-source Java classes. Their study result
showed that µ+λ EA performed better than other complex search algorithms. Gen-
erally, search algorithms that use test suite archives performed better than random
search and random testing, and many-objective search algorithms achieved better
branch coverage than single-objective search algorithms. Hence, they concluded that
the choice of the specific flavor of EA has a significant influence on the effectiveness
of the whole test suite generation. Vogel et al. [31] asked the question "Does di-
versity improve the test suite generation for mobile applications?" in terms of code
coverage, test suite size, and fault detection. To answer this question they carry out
the fitness landscape analysis of Sapienz in terms of genotypic diversity of solutions.
Based on their empirical analysis they found that a decrease in the improvement of
the test suites generation and degradation of diversity in all solutions in the search
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space over generations. To alleviate these limitations, they developed an extended
version of Sapienz by incorporating algorithms that maintain the diversity of the
population in the search space throughout the generations. However, even though
the new version of Sapienz revealed more faults than Sapienz the results do not
show statistically significant differences in terms of fault detection and code cov-
erage. Hence, the diversity promotion approach integrated with Sapienz does not
results in the expected effect.

It is important to understand the underlying structure of the fitness landscape in
order to better understand the performance of search algorithms. Hence, Albunian
et al. [32] carried out an empirical investigation to understand the cause and effect
of the fitness landscape in unit test generation using search-based testing on Java
classes. In their study, they studied the two main properties of the fitness landscape
(i.e. ruggedness and neutrality), and their causes and effect. Based on their
study, they found that ruggedness property provides informative landscapes and
results in better performance of the search while the neutrality property provides
landscapes harder to cover and results in low performance in the search. Their
study result showed that the fitness landscape is highly dominated by the neutrality
property. The main causes for the neutrality dominated fitness landscape are (1)
accessibility of the methods, (2) failing to satisfy preconditions of the method calls,
and (3) boolean comparisons in the code. Finally, to improve the difficulties of the
fitness landscape they suggested incorporating inter-procedural distance information
and testability transformations. Another empirical study done by Yasin et al. [33]
investigated the impact of event sequence length in terms of code coverage and fault
detection. Their study results showed that long events sequence has a small positive
effect compared to short events sequence on code coverage and fault detection. They
also compared different test input generation tools for Android apps in terms of
method coverage, activity coverage, and fault detection, and Sapienz outperformed
all the other tools considered under the study. They also found that most of the
tools studied were able to identify faults triggered by user events but not by system
events.

3.8 Summary
To summarize, through a review of related works, this study identified that multi-
objective generations created to test Java-based desktop applications use a different
combination of fitness functions to guide the search process and generate effective
test cases that cause crashes to happen. This logic also applies to multi-objective
generations used in Android GUI-based testing. Salahirad et. al [6] carried out a
research study on EvoSuite [34], a multi-objective test generator for unit testing to
investigate which combination of fitness functions available in EvoSuite generates
effective test suites in terms of crashes they cause to happen. This research work mo-
tivated us to carry out a similar investigation on multi-objective generation tools for
Android GUI-based testing. However, no mature test generation tools with support
for multi-objective generation for Android GUI-based testing are publicly available
so far. Furthermore, the tools developed for Java-based desktop applications cannot
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be used for this study as they are developed for white-box testing.

Moreover, the review of related works allowed us to understand the trending ap-
proaches used in Android GUI-based test generation. It also helped to understand
which part of Android apps testing is extensively studied and which part is im-
mature and still open for investigation. From the literature review, it is identified
that most of the existing Android GUI-based test generation tools are not search-
based tools. For example, the state-of-the-art [18] and state-of-practice [16] tools use
random fuzzing approach to generate test cases and they do not use fitness functions.

The empirical study [26] gives an insight into implementing different search algo-
rithms in a framework aimed to better understand how search algorithms influence
the effectiveness of search-based testing for Android apps. It shows how various
search algorithms affect the quality of test suites. In addition, it brings an under-
standing of how the output data of the experiment has to be managed and how
the statistic should be analyzed. An interesting point from the empirical study [24]
presented above is that combining different Android test generation tools on apps
has a positive impact on the quality of test suites. In general terms, the study shows
how Android UI test generation tools could be improved to reveal more crashes that
end up with a better quality of tests for industrial apps.

Hence, in this research, a tool called STGFA-SMOG is developed that allows prac-
titioners to choose different combinations of fitness functions easily and carry out
Android GUI-based testing. STGFA-SMOG is structured and modularized in a
way that it can be easy to understand and modify (e.g. adding new testing goals)
by researchers in the future. Many companies still use manual-based testing and
unable to use automatic tools. The reason could be the lack of flexibility of the
automatic test generation tools to configure, modify and understand in a way that
the company needs to apply them. STGFA-SMOG is flexible and allows researchers
or practitioners to choose the fitness functions they need through a single interface
without modifying the internal code. The tool is designed to be easy for adding new
fitness functions over time, which is not applied in the latest search-based test gener-
ation tool Sapienz and the implementation of the framework is organized considering
the possible future researches. Modularizing and structuring the fitness functions
based on their functionality helps in the ease of adding new fitness functions in a
separate module without restructuring what is already done. This minimizes the
time and energy wastage used to understand complex function calls and to identify
where the appropriate place to add the new feature or new fitness function for future
researchers.
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4.1 Framework
To investigate the effect of varying different combinations of fitness functions on
the automated generation of effective and fault-detecting test cases, a framework
called STGFA-SMOG is proposed in this research. The search-based test generation
approach is used to develop the framework with support for a multi-objective gen-
eration. Multi-objective generation is the generation of test cases or test suites that
can achieve multiple objectives simultaneously. The framework is initially developed
to support four fitness functions. In the subsequent iterations of the development,
more fitness functions are added such as code coverage, battery usage, and network
usage. STGFA-SMOG supports testing Android applications available in the APK
format. In search-based test generation, the initial step is to define the genotype
representation of the solution space of the problem domain.

The framework starts by generating semi-random atomic events which are evolved
through generations until the allocated resource is consumed (i.e. maximum number
of generations). The individuals in the population represent individual test cases,
each containing a random number of a sequence of atomic events that ranges between
20 up to 50 atomic events. Every generation’s population is encoded to contain 20
individuals by default. Since it is user-selectable, the user can change the value to
the intended number of individual test cases the population should represent. The
overall architecture of the framework is depicted in Figure 4.1. When a user selects
a code coverage objective in combination with the crash and test case length objec-
tives in the fitness function configuration, the AUT is instrumented using ACVTool1
before test case generation is started. In the instrumentation, probes are inserted
into the bytecode of the AUT so that ACVTool can track their call and measure
code coverage at the classes, methods, and instructions level. If the code coverage
objective is not selected, the AUT is not instrumented and the test cases are run
over the original AUT.

As shown in the figure, the event generator module generates atomic events, and
the test case module organizes them as individuals or test cases and sends them
to the fitness evaluator module. The fitness evaluator part of the genetic algo-

1https://github.com/pilgun/acvtool
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rithm sends the test cases to the test runner module. The test runner module in
turn sends the events one by one to the AUT running on the emulator via Android
Debug Bridge (ADB), where ADB is a command-line tool that is used to commu-
nicate with Android-based devices, and each test case’s fitness is computed by the
fitness functions. After the test cases are executed and evaluated for their fitness,
STGFA-SMOG uses the NSGA-II algorithm to select the best candidate solutions or
individuals and pass them to the variation operator module. The variation operator
performs crossover, mutation, reproduction and introduces randomly generated new
individuals to generate offspring and drive the population.

Figure 4.1: Architecture of STGFA-SMOG

4.2 STGFA-SMOG Parameters
STGFA-SMOG has different parameters (see Appendix A) that need to be set
by the user. The parameters can be seen as three parts. The first part con-
tains the parameters used to set different genetic algorithm parameters. Using
SEQUENCE_LENGTH_MIN and SEQUENCE_LENGTH_MAX user can
set the minimum and the maximum number of atomic events a test case can contain
respectively. The POPULATION_SIZE and OFFSPRING_SIZE parameters
are used to set the number of test cases (individuals) that a population and offspring
in each generation should contain. The maximum number of generations the genetic
algorithm to evolve is set using the NGENERATION parameter. There is no ev-
idence that shows the genetic algorithm parameters are constrained by the search
budget.

The percentage composition of the new offspring to be created using crossover, mu-
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tation, and reproduction is specified using CXPB,MUTPB, and REPROPB re-
spectively. The remaining percentage (i.e. 1− (CXPB+MUTPB+REPROPB))
of the offspring is made of new randomly generated test cases. There are other two
important parameters that allow the user to configure the fitness functions to com-
bine and specify their corresponding fitness weights. The FITNESS_FUNCS
parameter as shown in Appendix A is a Python list that allows users to specify
which combination of fitness functions to use. According to the combination of fit-
ness functions specified, the FITNESS_WEIGHTS parameter allows the user to
specify their corresponding fitness weights. If the fitness function is a maximization
function, its fitness weight is 1.0. Otherwise, its fitness weight is −1.0.

The second part contains the parameters used to specify after how many atomic
events execution of a test case (i.e. interval), the CPU, memory, network, and
battery usage of the AUT is retrieved to evaluate the corresponding test case’s
fitness values. By default, the CPU, memory, network, and battery usage of the
AUT is retrieved after every three atomic events of a test case are executed. The
third part contains the parameter used to specify the number of top best test cases
(solutions) that ever exist throughout the whole generations that the STGFA-SMOG
to output at the end of the generation.

4.3 Problem Representation
In search-based test generation, the first step is to define a representation of the
valid candidate solutions for the problem at hand in a way the search algorithm
can manipulate and use them [1]. In STGFA-SMOG, the candidate solutions called
individuals are encoded to contain a sequence of atomic events (e.g. click, swipe,
and input text). In the context of software testing, the sequence of atomic events
sent to test the AUT is called a test case. The representation of the individuals or
candidate solutions generated by STGFA-SMOG is shown in Figure 4.2. As shown
in the figure, an individual or a test case is made of a sequence of multiple atomic
events, and an atomic event is composed of an action and parameter values. An
action can be tap, keyevent, or swipe and their corresponding parameter values
can be 20 30, KEYCODE_BACK, and "admin" respectively. A solution,
which is a test case T, is represented as a set of atomic events ei. So, given a test case
T with length |T | = n, T will contain T = {e1, e2, e3, . . . , en} where ei is an atomic
event. STGFA-SMOG generates a set of these test cases which is called popula-
tion in evolutionary algorithms. Each individual consists of one chromosome which
is a test case in STGFA-SMOG. Each chromosome contains multiple genes called
atomic events, which are randomly generated and ordered to create the sequence.
Individuals encoded as test cases allow the population to evolve many times with
minimal computational resources compared to individuals encoded as test suites.

Each event in a test case represents an atomic event that has an action type
T (ei) ∈ A, where A is a finite set of Android UI events or system events. Currently,
seven types of android UI events and system events are represented in STGFA-
SMOG, and they are discussed in the next paragraphs. There is no standard cat-
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egorization of Android UI and system events. We classified the Android events
applied in our framework into seven categories based on their similarity in function-
ality.

Android system events: These types of events represent the events that per-
form system-wide operations such as home button press keyevent, back button press
keyevent, increase, decrease, or mute volume keyevent, and end call keyevent etc.
Some of the android system events represented in our framework are listed as follows.

KEYCODE_HOME, KEYCODE_BACK, KEYCODE_CALL,
KEYCODE_ENDCALL, KEYCODE_VOLUME_DOWN,

KEYCODE_VOLUME_MUTE, KEYCODE_MUTE,
KEYCODE_VOLUME_UP

Example of android system event: adb shell input keyevent KEYCODE_HOME

Major Navigation events: These events are events that are used to navigate
major navigation areas of android devices such as menu button press keyevent,
keyevent to select system-defined functions, keyevent that put the device to sleep,
and directional pad center keyevent. The major navigation events represented in
the framework are:

KEYCODE_MENU, KEYCODE_SOFT_RIGHT,
KEYCODE_DPAD_CENTER

Major navigation events are rarely used events and are not recommended to send
many such events during testing [16]. So, such atomic events are rarely sent to the
AUT in our framework as well.
Example of major navigation event: adb shell input keyevent KEYCODE_MENU

Navigation events: These event types allow you to automatically navigate around
the UI of the AUT. They are keyevent used to move DPad down, up, right, and left.
The most common navigation events represented in our candidate solutions are:

KEYCODE_DPAD_UP, KEYCODE_DPAD_DOWN,
KEYCODE_DPAD_LEFT, KEYCODE_DPAD_RIGHT

Example of navigation event: adb shell input keyevent KEYCODE_DPAD_UP

Input text events: This type of event is a command that allows you to automat-
ically enter text to text fields in the UI forms of the AUT. The source of the text
input can be a keyboard or touchscreen and the default one is touchscreen. This text
input event is represented to contain randomly generated characters with a length
ranging from 5 to 10 characters.
Example of input text event: adb shell input text username

Tap event: This type of event allows you to automatically perform click or long-
press action on the UI of the AUT running on an emulator or real device. This type
of event requires the coordinate points that lie in the application display area of the
emulator or real device where the AUT is running on. In STGFA-SMOG, the screen
size of the emulator or real device is first determined and the coordinate points are
generated accordingly.
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Example syntax of tap event: adb shell input tap <x> <y>

Swipe event: Swipe event allows to automatically press down over an element of
the UI and swipe horizontally or vertically. This type of event requires coordinate
points where the swipe event begins and ends. Similar to the case of tap, the start-
ing and ending coordinate points of swipe events are generated based on the screen
size of the emulator or physical device.
Example syntax of swipe event: adb shell input swipe <x1> <y1> <x2> <y2>

Drag and drop event: This event allow users to move data from one view to
another view using automated drag and drop gesture. Similar to the swipe event,
this event also takes x and y coordinates where the drag begins and the drop ends.
Syntax of drag and drop event: adb shell input draganddrop <x1> <y1> <x2>
<y2>

Figure 4.2: Individual’s genotype representation

4.4 NSGA-II
To ensure that this paper is self-contained about the NSGA-II adopted to STGFA-
SMOG, this section briefly discusses NSGA-II; for more details please reference [35].
NSGA-II is a multi-objective evolutionary algorithm (EA) that uses non-dominated
sorting and crowded-comparison operator (≺n) instead of sharing parameter (σshare)
to find Pareto-optimal solutions to a multi-objective problem [35]. A Pareto-optimal
solution is one where no fitness function can be further optimized without negatively
affecting another fitness function value. For a given population the NSGA-II algo-
rithm sorts the individuals in the population into non-domination levels (or non-
domination fronts) using the non-domination strategy. Non-domination strategy is
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the count of how many individuals dominate an individual I and individuals with
count zero are ranked in the first non-domination level, which means they are the
best individuals in the current generation [35]. Individuals dominated only by one
individual are ranked in the second non-domination level. If individuals have the
same non-domination count, NSGA-II calculates the crowding distance of the indi-
viduals, and their crowding-distance is compared during the selection process. That
is, an individual with a higher crowding distance (less dense region) is selected first.
Crowding-distance is the measure of the crowdedness of a solution by other solu-
tions. An individual with a smaller value of this distance is somehow more crowded
by other solutions. That is, the individual is surrounded by more other solutions.

NSGA-II algorithm is good at preventing the loss of elitist solutions which were found
in the previous generation and maintaining the diversity of the Pareto-optimal so-
lutions. To maintain elitist solutions, NSGA-II combines the parent population and
the offspring population and performs a fast non-dominated sorting on the combined
population. This strategy reduces the loss of elitist solutions which were found in
the previous generation (i.e. parent population). The crowded-comparison opera-
tor guides the selection process in each generation toward a uniformly spread-out
Pareto-optimal front. When two individuals have the same non-domination rank
(non-domination level), the operator compares the two individual’s crowding dis-
tance and selects the one with a higher crowding distance (i.e. less dense region).
This strategy enabled the NSGA-II algorithm to achieve diversified Pareto-optimal
solutions for a given multi-objective problem.

In NSGA-II algorithm, every individual I in a population P has two attributes:
1. non-domination rank - Irank

2. crowding distance - Idistance

The NSGA-II algorithm selection strategy is stated as follows. When two individuals
are with different non-domination ranks, the crowded-comparison operator selects
the individual with a lower non-domination rank. However, if two individuals have
the same non-domination rank, the crowded-comparison operator compares their
crowding distance and favours the individual with higher crowding distance.

Hence, due to the fact that NSGA-II has better computational complexity, handles
the loss of elitist solutions, and provides diversified Pareto-optimal solutions, we
adopted it in the STGFA-SMOG implementation. Moreover, it is also a widely used
algorithm in search-based test generation research studies (such as in References
[9, 8, 26]) this time.

4.5 Initial Population
After the individuals’ representation is defined as a sequence of atomic events collec-
tively called a test case, the initial population P0 is created by randomly generating a
sequence of atomic events which denote an individual or a test case. The population
is defined to contain 20 randomly generated individuals. The initial population is
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run on the AUT and each individual’s fitness value is computed against the number
of crashes they triggered, CPU used by the AUT, memory used by the AUT, and
their test case length. Once the individual’s fitness is evaluated, variation operators
(i.e. crossover, mutation, reproduction, and addition of new randomly generated
individuals) are used to create offspring population of the same size as the original
population. The new offspring population created is then handed in to the next
generation, which is discussed in the next section.

4.6 Generations of the Algorithm
STGFA-SMOG iterates over a number of generations, in which the number of gen-
erations is monitored by specifying the maximum number of generations. In the
first generation, the new offspring population generated from the initial population
is run on the AUT and each individual’s fitness value with respect to each objective
function is calculated.

To select the best candidates from the population, the selection operator available
in the NSGA-II algorithm [35] is used. In each generation, the parent and the off-
spring are combined, which is called the µ + λ genetic algorithm, after the fitness
of the offspring population is evaluated. Through non-dominated sorting, the se-
lection operator ranks all individuals into different Pareto front levels. To preserve
diversity and avoid conflict of individuals having the same Pareto front level, the
selection operator calculates each individual’s crowding distance. Crowding distance
computes an estimate of the density of candidate solutions surrounding a particular
solution or individual in the population. The individuals for the next generation
are selected from the Pareto front according to the order of their front level. The
next population is created by selecting the test cases with higher non-domination
rank (i.e. smaller front level value), and if test cases have the same non-domination
rank, the selection operator favors the test case with greater crowding distance (i.e
less dense test case). By using the Pareto-optimal approach, STGFA-SMOG selects
shorter test cases without sacrificing longer test cases, when they are the only ones
that detect faults, or when they are necessary to achieve higher CPU usage, memory
usage, battery usage, network usage, or code coverage. However, STGFA-SMOG
progressively replaces the longer test cases with shorter test cases when they are
equally good.

In each generation, the parent population and the offspring population are combined
so that the diversity of the Pareto-optimal solutions are maintained. The same
procedure as described in the above paragraph continues in each generation until
the maximum number of generations is reached. When the maximum number of
generation is reached, STGFA-SMOG outputs the population of the final generation
to a file, which include the best test cases discovered during the test generation
process, and log history of the test cases. A user can set any positive integer as
a maximum number of generations. The larger the number of generation search
budgets used the longer the computational time it takes when generating the test
cases.

33



4. Approach

4.6.1 Fitness Evaluation
To guide the search process, eight fitness functions are implemented. The fitness
evaluation is recorded as a tuple for each of the objectives and the framework sup-
ports the tester to select different combinations of fitness functions from the available
ones as well as add new fitness functions over time. The minimum and maximum
configuration required on the number of fitness functions to be combined is one and
three fitness functions respectively. NSGA-II is not efficient (struggles) when applied
to more than three combination of fitness functions [36, 37, 38]. The factory method
design patterns is used to implement the support of user-selectable fitness functions
and to support the addition of fitness functions at a later time.

In STGFA-SMOG the fitness functions are implemented as separate classes. How-
ever, the framework does not know which fitness functions to use in advance. The
fitness functions are user-specified according to the objective of the user. So, which
of the fitness function classes to instantiate is not known until the framework is run
by specifying the intended fitness functions. To solve this challenge, the factory
method design pattern is used that allows to dynamically instantiate the appropri-
ate fitness function classes based on the user input of the fitness functions specified.
Factory method is a creational design pattern that provides an interface for creating
an object but it defers instantiation to the subclasses to decide [39]. The factory
method enables to call all fitness functions from one interface and the interface lets
the subclasses decide which fitness function classes to be instantiated corresponding
to the fitness functions selected by the user.

The fitness functions that STGFA-SMOG supports are listed below.
• Number of crashes – maximized
• Length of test cases – minimized
• CPU usage – maximized
• Memory usage – maximized
• Network usage – maximized
• Battery usage – maximized
• Line coverage – maximized
• Method coverage – maximized
• Class coverage – maximized

To calculate the number of crashes triggered by each test case, the crash fitness
function counts the number of “AndroidRuntime: FATAL EXCEPTION” types of
crashes, which are Java and Android specific exceptions, generated by the AUT.
Native crashes or exceptions generated by native codes (i.e. codes implemented in
C/C++) are not handled by the framework and it is out of the scope of this study.
STGFA-SMOG continuously monitors and checks if the AUT crashes. When the
AUT crashes, STGFA-SMOG restarts it and continues running the atomic events.
The CPU and memory usage of the AUT is calculated by querying the CPU and
memory used by the AUT after every three (default configuration) atomic events of
a test case are executed (see Algorithm 2) and the values obtained are accumulated.
However, this is user-selectable and the user can configure it to the required interval.
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After the sequence of atomic events available in one test case are finished, the CPU
and memory fitness value of that corresponding test case is calculated by taking the
average of the accumulated CPU usage and memory usage (see Line 31&34 in Al-
gorithm 2 respectively). In this manner, the fitness value of each test case available
in the population is calculated. The test case length fitness function computes the
fitness value of each test case by counting the number of atomic events each test
case contains. Network usage is the amount of data an Android application sends
and receives while running. Battery usage measures the amount of battery on a
device or emulator the app consumes. Network and battery usage are computed in
a similar procedure as CPU and memory usage are computed. Algorithm 2 is part
of Algorithm 1 and fits to Line 8&12.

For the code coverage measures, a third-party Android code coverage tool in black-
box testing called ACVTool [40] is used. ACVTool instruments the bytecode of
the APK file by inserting probes to track code coverage at method and instruction
levels. So, the method and instruction coverage implemented in STGFA-SMOG are
at the bytecode level not at the source code level. There is a difference in measuring
the statement and method coverage of an Android app at the source code and at
the bytecode levels. Because the instructions and methods within the bytecode may
not exactly correspond to the statements and methods within the original source
code [40]. This is because a single statement within the original source code may
correspond to several instructions within the bytecode as cited by Pilgun et. al [40].
Moreover, the compiler may optimize the bytecode so that the number of methods
is different, or the control flow structure of the app is altered [41, 42].

The STGFA-SMOG developed generates test cases for Android GUI-based testing.
The test cases can be used to trigger crashes, identify excessive usage of CPU,
memory, battery, and network. STGFA-SMOG is run to generate test cases in
order to trigger crashes in the AUT. It can be run repeatedly until more crashes
are identified in the AUT. The test cases generated in this process are reusable and
can be used to test if the crash found is fixed. After the crashes found in the AUT
are fixed, the test cases can also be used for regression testing. The test cases can
be reused to test if the AUT is working as expected after changes are made to fix
the crashes found. It can be run every time the Android app is updated or less
often depending on the interest of the developer. A small sample of data is provided
in Tables 6.17 and 6.18 that show how long STGFA-SMOG runs for each fitness
function configuration in two search budgets.
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Algorithm 1: Overall algorithm of STGFA-SMOG
1 Input: AUT A, selected fitness functions F ← {f1, f2, . . . , fn}, crossover

probability cp, mutation probability mp, reproduction probability rp, diversity
probability dp, population size psize, max generation gmax

2 Output Pareto Front PF , Test Report TR
3 generation g ← 0;
4 Pg ← ∅;
5 boot emulator E;
6 install A;
7 initialize population P0; semi-random events
8 evaluate P0 with F and update (PF, TR); (e.g. see Algorithm 2)
9 while g ≤ gmax do

10 g ← g + 1;
11 OF ← testcaseV ariation(P, cp,mp, rp, dp);
12 evaluate OF with F and update (PF, TR); (e.g. see Algorithm 2)
13 NDF ← ∅; initialize non-dominated Pareto fronts (NDF)
14 NDF ← sortNonDominated(P ∪OF, psize);
15 Pg ← ∅;
16 for each front level F in NDF do
17 if |Pg|+ |F| ≥ psize then
18 break;
19 else
20 compute crowding distance for F ;
21 Pg ← Pg ∪ F ;
22 end
23 end
24 sortCrowedDistance(F ,≺n);
25 Pg ← Pg ∪ F [1 : (psize − |Pg|)]
26 end
27 return (Pg, PF, TR)
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Algorithm 2: CPU, Memory, Network, and Battery usage computation
1 Input: Test case T
2 Output: CPU usage total − cpu− used and memory usage

total −memory − used
3 cpu− info− counter ← 0;
4 mem− info− counter ← 0;
5 net− info− counter ← 0;
6 batt− info− counter ← 0;
7 total − cpu− used← 0;
8 total −memory − used← 0;
9 total − network − used← 0.0;

10 total − battery − used← 0.0;
11 for index, atomicevent in enumerate(T ) do
12 run(atomicevent); run atomic event via ADB
13 if (index+ 1)%3 = 0 then
14 total − cpu− used← total − cpu− used+ getF itnessV alue();
15 cpu− info− counter ← cpu− info− counter + 1;
16 end
17 if (index+ 1)%3 = 0 then
18 total−memory − used← total−memory − used+ getF itnessV alue();
19 mem− info− counter ← mem− info− counter + 1;
20 end
21 if (index+ 1)%3 = 0 then
22 total− network − used← total− network − used+ getF itnessV alue();
23 net− info− counter ← net− info− counter + 1;
24 end
25 if (index+ 1)%3 = 0 then
26 total − battery − used← total − battery − used+ getF itnessV alue();
27 batt− info− counter ← batt− info− counter + 1;
28 end
29 end
30 if cpu− info− counter 6= 0 then
31 total − cpu− used← total − cpu− used/cpu− info− counter
32 end
33 if mem− info− counter 6= 0 then
34 total −memory − used← total −memory − used/mem− info− counter
35 end
36 if net− info− counter 6= 0 then
37 total − network − used← total − network − used/net− info− counter
38 end
39 if batt− info− counter 6= 0 then
40 total − battery − used← total − battery − used/batt− info− counter
41 end
42 return total −memory − used, total − cpu− used
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4.6.2 Candidate Selection
To select the best test cases, STGFA-SMOG combines the evaluated offspring and
the parent population. The combined population is sorted based on the non-
dominated sorting strategy into non-domination levels. The test cases that belong
in the first non-domination level F1 are first selected and added to the next genera-
tion’s (let g1) population (i.e. P1). If the size of the P1 is not full according to the
specified size of a population, the test cases in the second non-domination level F2
are selected and added to P1 (see Line 21 in Algorithm 1).

When P1 is not full but cannot accommodate all the test cases in the current non-
domination level (let Fl) (see Line 17 in Algorithm 1), the solutions in Fl are sorted
in descending order of their crowding distance and if the P1 is left with k solutions to
be filled, the first k solutions from Fl are added to P1. Note that, every time the test
cases in a non-domination level Fi are selected and added to P1, their corresponding
crowding distance is computed (see Line 20 in Algorithm 1). The selection process
continues in a similar way until P1 contains the required number of individuals set
by the user. The best solutions selected are then subjected to variation operations
(see section 4.6.3) in order to create new offspring population.

In each generation, the parent population and the offspring population are combined
to select the best candidate test cases. Combining parent population and offspring
population enables to reduce the loss of elitist test cases found in the previous
generation and maintain the diversity of the Pareto-optimal solutions. The same
procedure as described in the above paragraphs is applied in each generation to
select the best test cases for the next population until the maximum number of
generations is reached.

4.6.3 Variation Operators
Variation operators are used to generate new offspring from the parent individuals
through mutation, crossover, reproduction, or creation of randomly generated new
individuals. The variation operation algorithm used in our framework is shown in
Algorithm 3. The variation operators implemented in STGFA-SMOG works at the
test case level because individuals are encoded as single test cases. STGFA-SMOG
applied fine-grained mutation, crossover, and reproduction operators. A randomly
generated new individuals are also introduced in addition to the individuals obtained
through crossover, mutation, and reproduction. This approach allows to maintain
the diversity of the population.

STGFA-SMOG allows the user to set the percentage composition of the new pop-
ulation to be created through crossover, mutation, reproduction, and addition of
new randomly generated individuals. STGFA-SMOG’s default configuration sets
30%, 30%, 15% of the new population is obtained by performing crossover, mutation,
and reproduction respectively on the top-scoring individuals. The remaining 25% of
the new population is made up of new randomly generated individuals. There is no
standard way that guides a user on how to set these variation operator’s percentage
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compositions. A user can configure the variation operator’s percentage composition
based on its interest. However, to know the globally better configuration for these
variation operator’s percentage composition, we need further investigation with dif-
ferent configurations.

As shown in Algorithm 3, to perform the variation operations STGFA-SMOG gener-
ates a random number between 0 and 1. If the random number generated is less than
the crossover probability (see Line 6 in Algorithm 3), two individuals are selected at
random from the top-scoring individuals and the two individuals are mated using a
uniform crossover operation. With uniform crossover, for each atomic event in the
two individuals, a random number between 0 and 1 is generated and if the number
is below the independent probability specified, the atomic event at the specific index
in the two individuals are swapped. This process continues until all atomic events in
the individuals are traversed. Finally, a random number between 0 and 1 is gener-
ated, and the first child obtained through the uniform crossover is appended to the
offspring population if the result is less than 0.5 and the second child is discarded.
Otherwise, the second child is appended to the offspring population, and the first
child is discarded. The crossover operator performs a uniform crossover operation
to achieve inter-individual variations across the population.

When the randomly generated number is greater than the crossover probability and
below the sum of crossover probability and mutation probability (see Line 11 in
Algorithm 3), one individual is selected at random from the top-scoring individuals
and the order of the atomic events in the selected individual are shuffled at random.
The shuffling function selects two indices or atomic events at random and generates
a random number between 0 and 1. When the random number generated is less than
the independent probability indp specified, the position of the two atomic events is
swapped. Otherwise, the position of the atomic events is kept as it is. This operation
mutates the order of the atomic events in the individual. After this operation, the
action type of each atomic event in the individual is extracted and each atomic event
is recreated by randomly generating new parameter values corresponding to their
action type. For example, if the action type extracted is tap, it takes coordinate
points < x >,< y > on the device or emulator screen as parameter values. So, its
parameter values are changed by randomly generating new coordinate points. After
the mutation operation is done, the child is appended to the offspring population.
The mutation operation is applied to introduce a variation in the internal nature of
an individual.

The randomly generated number could be greater than the sum of crossover prob-
ability and mutation probability and less than the sum of crossover, mutation, and
reproduction probability (see Line 22 in Algorithm 3). In this case, the variation
operator selects one individual at random from the top-scoring individuals and ap-
pend it without making any changes. Reproduction operation is used to leave some
top-scoring parent individuals unchanged and pass them to the offspring population
of the next generation. Finally, when the randomly generated number is greater
than the sum of the crossover, mutation, and reproduction probability (see Line 25
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in Algorithm 3), the variation operator randomly generates a new individual and
appends it to the offspring population.

During evolutionary computation maintaining diversity is also helpful to widen the
possibility of getting an optimal solution to the problem at hand. To achieve popula-
tion diversity we introduced randomly generated new individuals into the offspring.
This helps the solution space from being dominated by the type of events that appear
in the parent individuals. To perform crossover, mutation, reproduction, and intro-
duce a new individual, user-configurable probabilities for each operator are defined
and the operations are performed accordingly as described in the above paragraphs.
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Algorithm 3: Test case variation operator
1 Input: Population P , crossover probability cp, mutation probability mp,

reproduction probability rp
2 Output: Offspring OF
3 OF ← ∅;
4 for i in range(0, |P |) do
5 generate r ∼ ∪(0, 1);
6 if r < cp then
7 randomly select parent individuals x1, x2;
8 x′

1, x
′
2 ← uniformCrossover(x1, x2);

9 OF ← OF ∪ x′
1;

10 end
11 if r < cp+mp then
12 randomly select individual x;
13 shuffleOrderOfAtomicEvents(x);
14 for i in range(0, |x|) do
15 atomic_event e← x[i];
16 action a← extractAction(e);
17 new atomic event e′ ← generateEvent(a);
18 x[i]← e′;
19 end
20 OF ← OF ∪ x;
21 end
22 if r < cp+mp+ rp then
23 OF ← OF ∪ (randomly selected individual x);
24 end
25 else
26 randomly generate new individual x;
27 OF ← OF ∪ x;
28 end
29 end
30 return OF

The most related search-based test data generation tools to STGFA-SMOG are the
Sapienz [9] and EvoSuite [34]. Sapienz is a test data generation tool that generates
test suites for Android GUI-based testing. The STGFA-SMOG architecture is sim-
ilar to the Sapienz’s architecture in the genetic algorithm module. However, unlike
STGFA-SMOG, Spaienz contains a sophisticated modules such as theMotifcore that
generates test suites based on the current context of the AUT. Moreover, Sapienz
also contains a module that perform multilevel instrumentation on the AUT depend-
ing on whether black-box testing, gray-box testing, or white-box testing is needed to
be performed. Evosuite is another test suite generation tool for Java-based desktop
applications unit testing. To compare STGFA-SMOG’s architecture with EvoSuite,
no document is found that explicitly discusses or shows the EvoSuite architecture.
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In this study, the design science research methodology [43] is applied to answer
the research questions formulated. This project has a natural series of cycles, i.e.
literature review, design of a prototype test generator, the addition of a genetic
algorithm, a series of cycles where additional fitness functions are added, and inter-
mediate and final evaluations of the framework. STGFA-SMOG is evolved through
these cycles to assess the difference in the effectiveness of the test cases generated.
That is, STGFA-SMOG is evaluated by assessing the effectiveness of the test cases
in terms of the number of crashes they caused when we vary the combination of
fitness functions. These series of cycles map to the design science research process.

To empirically evaluate the effect of combining different fitness functions on the fault
triggering effectiveness of the test cases generated, the following research questions
are formulated and attempted to answer them in this study.

RQ1 : How can a search-based test generation framework for Android GUI-based
testing best be designed to support multi-objective generation with support
for the inclusion of additional fitness functions over time?

RQ2 : In general, how effective are the generated test suites at causing crashes in
the assessed apps, in comparison to random test generation?

RQ3 : Which combinations of fitness functions is the most effective at causing the
assessed apps to crash?

RQ4 : Does an increased search budget (the number of generations) improve the
effectiveness of the resulting test cases?

The STGFA-SMOG tool is available at:
https://github.com/TeklitB/STGFA-SMOG
The Random test generation tool is available at:
https://github.com/TeklitB/Random-Test-Generation
The experimental data are published on Zenodo and available at:
https://doi.org/10.5281/zenodo.6387568
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5.1 Design Science Iterations
Design science research is a research methodology through which researchers cre-
ate, and evaluate artifacts intended to solve real organizational problems [44]. It
involves a rigorous process to design and create an artifact that solves an identified
real-world problem and contributes knowledge to science, evaluates the artifact cre-
ated and communicates the obtained results to the intended audiences [44]. In this
research, the design science research methodology (DSRM) formulated by Peffers
et. al [43] is followed. The DSRM process model followed in this research study
consists of six activities as shown in Fig 5.1.

To answer the research questions formulated above the research work is divided into
three iterations. After each iteration, we carried out informal and formal evaluations
and decided how to evolve the framework by overcoming the limitations identified in
the evaluation. Iteration I is to develop the test generator prototype with a random
fuzzing approach and an initial set of fitness functions and perform an informal
evaluation to make sure if the tool is working as expected and fix if errors are found.
In Iteration II, a genetic algorithm is added to the prototype developed in iteration I
and integrated with two fitness functions. Moreover, the framework is also designed
to support for users to select different combination fitness functions and support
the addition of fitness functions over time, and carried out an informal evaluation.
In Iteration III, more fitness functions are added to the framework in three sub-
iterations and performed an intermediate evaluation to check if the framework works
as expected, and fix if there are errors. Finally, we carried out the final evaluation
of the framework developed and compared the effectiveness of test cases.

5.2 Objective-centered Solution
Multi-objective generation focuses on targeting multiple fitness functions concur-
rently in order to generate multi-faceted test cases. Test generation tools that sup-
port multi-objective generation use a combination of fitness functions to guide the
search process. For multi-objective generation to be effective, we need to understand
the effect of choosing different combinations of fitness functions on the effectiveness
of the generated test cases to cause crashes on the AUT. Many fitness functions have
been applied to the Java-based desktop applications [34] and the effect of varying
different combinations of fitness functions on the test cases’ effectiveness in terms
of causing crashes was investigated [6]. However, it is still open which combination
of fitness functions generates test cases that are effective at revealing crashes in An-
droid applications. Therefore, to come up with an objective-centered solution for
this research gap, we adopted the DSRM process model shown in Figure 5.1 from
Peffers et. al [43] work.

According to the DSRM process model, the first activity performed in this research
was problem identification and motivation. Based on the problem identified in ac-
tivity 1, the objective of this research study was defined in activity two. The main
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objectives of the STGFA-SMOG study are to design a framework that supports
multi-objective test case generation for Android GUI-based testing and to assess
the effectiveness of the test cases generated in terms of causing crashes when we
vary the combination of fitness functions. To achieve the objectives defined in activ-
ity 2, a prototype of a Random test generation with an initial set of fitness functions
was designed first, a genetic algorithm was added to the prototype, and more fitness
functions are added over time in activity 3.

In activity 4, five Android apps were selected randomly and the initial Random test
generation prototype was demonstrated to generate test cases for Android GUI-
based testing on the selected apps. After the prototype was changed from a random
generator to a search-based multi-objective generator, it was also demonstrated to
generate test cases by varying combinations of the initial set of fitness functions, and
test results were collected for the intermediate evaluation. A similar procedure was
applied when more fitness functions were added in the later iterations of the research
work. After all fitness functions proposed in this research are implemented, ten An-
droid apps were selected using the random sampling technique and STGFA-SMOG
was demonstrated on these apps by varying the combination of fitness functions.
The test results obtained during the demonstration were collected for the final em-
pirical evaluation.

In activity 5 of the research process, using the test results collected the effective-
ness of the test cases generated in causing crashes were evaluated empirically. The
empirical evaluation was to gain insights on which combination of fitness functions
generates effective test cases and draw conclusions. In the last step of the research
process (activity 6 ), documentation of the research work was reported, presented to
the intended audience at Chalmers University of Technology, and a publication will
be prepared for a conference or journal.

The research process for the STGFA-SMOG study iterates over activity 3, 4, and
5 until the desired scope of the framework is achieved. Based on the limitations
or feedback obtained in activity 4 or 5, the research process gets back to activity 3
(i.e. design and development) to improve the limitations of STGFA-SMOG, to add
genetic algorithm, and fitness functions to the framework.

5.3 Iteration I: Design of Prototype and Evalua-
tion

In this iteration, an initial implementation of the artifact is developed with the aim
to understand how can a search-based test generation framework best be designed
to support multi-objective generation and the addition of new fitness functions at
a later time. As a first step towards the development of the prototype, a random
fuzzing test generator with four initial fitness functions is developed. The random
fuzzing test generator generates UI events and system events of Android apps as
streams of events called tests cases to the AUT and the fitness functions score the
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Figure 5.1: DSRM process for the STGFA-SMOG study

test cases’ fitness. No percentage distribution of the events that are sent to the AUT
is defined. The events percentage distribution is completely random. The random
fuzzing test generator continuously generates a stream of user events and system
events until the maximum number of test cases to be generated is reached. The
maximum number of test cases that the random generator tool should generate is
user-defined. After the Random test generation is developed, it is demonstrated on
randomly selected apps, and the fitness values of each test case are collected and
evaluated. The main purpose of the evaluation is to check if the prototype is working
as expected, fitness values are scored for each test case, and fix errors if found.

5.4 Iteration II: Addition of Genetic Algorithm
and Evaluation

The final target of this research work is to develop a search-based test generation
framework with support for a multi-objective generation. Hence, in this iteration, a
genetic algorithm called NSGA-II with two fitness functions (i.e. crash and test case
size) is added to the initial prototype. For the NSGA-II algorithm implementation,
a framework called DEAP [45] that provides a flexible implementation of different
evolutionary algorithms is used. The framework to support user selectable fitness
functions and the addition of new fitness functions over time, the fitness functions
component of the framework is implemented by following the factory method design
pattern. At this iteration, the framework supports two fitness functions, i.e. maxi-
mizing the number of crashes, and minimizing the length of test cases.
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5.5 Iteration III: Addition of More Fitness Func-
tions and Evaluation

5.5.1 Addition of More Fitness Functions
After the genetic algorithm is added in the previous iteration, more additional fitness
functions are added to the prototype in this iteration. STGFA-SMOG is designed
to be customizable to specialized testing goals such as crashes, code coverage, CPU
usage, memory usage, network usage, and battery usage. That is, it allows for
single-objective or multi-objective test generation of user-specified goals. In this
iteration, six fitness functions (i.e. CPU usage, memory usage, battery usage, net-
work usage, method coverage, and line coverage) are added in three sub-iterations.
In the first sub-iterations, CPU usage and memory usage fitness functions are im-
plemented. In the second sub-iterations of this iteration, network usage and battery
usage fitness functions are added. In the last sub-iterations, code coverage fitness
functions (method coverage and line coverage) are implemented using a third-party
tool called ACVTool. In each sub-iteration, the framework was applied to test sub-
jects, evaluated their fitness values compared to the baseline, and get back to the
design iteration to improve the framework based on the evaluation results and add
fitness functions.

5.5.2 Intermediate Evaluation
The aim of the intermediate evaluation was to see if STGFA-SMOG is functioning as
intended so that we can fix errors and make adjustments. An informal experiment
similar in structure to the intermediate evaluation (see section 5.5.3), but on a
smaller scale was carried out for each sub-iteration. The test subjects used, the
configurations applied, and the data collected in the intermediate evaluation are
discussed in the following sub-subsections.

Test Subjects

A small set of Android applications were chosen from the F-Droid store and the
tool is applied to generate test cases by varying the combination of fitness functions
added. The motivation for choosing the F-Droid Android app repository is because
it provides free access to free and open-source Android apps and it is a commonly
used repository in other research studies [9, 46, 47]. A total of 5 Android apps
were collected for the intermediate evaluation of the framework. The test subjects
were selected at random from a collection of open-source apps. Apps that require
authentication and failed to be successfully instrumented by the code coverage tool
are discarded and replaced by other randomly selected apps. This process was re-
peated until we got 5 apps that do not require authentication and are successfully
instrumented by the ACVTool. The Android apps used for the intermediate evalua-
tion are shown in Table 5.1. We believe the size of the app does not have an impact
on the test generation and is not included in the table.
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Table 5.1: Apps used for intermediate evaluation

App Name Version Domain Description
traficparis 2021.04 Navigation Simple, responsive map for your trek
blokish 3.2 Game Board game
billthefarmer 1.36 Currency Simple currency conversion
rpncalc 1.0.3 Science A simple, modern calculator that uses RPN
uaraven 1.4.1 Health Food additives reference

Experiment Configurations

The general configuration of the fitness function combination used to generate test
cases is (number of crashes) + (test case size) + (new fitness function). For the
intermediate evaluation, the following combination of fitness functions were applied:

Sub-Iteration 1:
• (number of crashes) + (test suite size) + (CPU usage)
• (number of crashes) + (test suite size) + (memory usage)

Sub-Iteration 2:
• (number of crashes) + (test suite size) + (network usage)
• (number of crashes) + (test suite size) + (battery usage)

Sub-Iteration 3:
• (number of crashes) + (test suite size) + (line coverage)
• (number of crashes) + (test suite size) + (method coverage)

In the experiment, number of generations were used as a search budget. Two search
budgets of values 10 and 15 generations were used. In each search budget, the pop-
ulation size was set to 10 individuals. The STGFA-SMOG’s crossover, mutation,
reproduction, and addition of random new individual probability were set to 0.3,
0.3, 0.15, and 0.25 respectively. The minimum and maximum length of the test cases
were set to 20 and 50 respectively. In each search budget, five trials were performed
for each app. Additional experimentation with other search budgets and population
sizes was carried out to identify settings for the final evaluation.

In the intermediate evaluation, the focus was on the fitness values of each new fitness
function not on the number of crashes. Because this iteration aimed to see if the
genetic algorithm is working as expected, the fitness values are improved when the
test cases are evolved, and better fitness values than the Random test generation
are obtained at the end of the evolution. The initially developed Random test
generation prototype is used as a baseline to compare with STGFA-SMOG. So,
the final fitness values between the Random test generation baseline and STGFA-
SMOG were compared. The STGFA-SMOG is expected to outperform the Random
test generation prototype (i.e. it should produce better fitness function values than
the Random test generation). Random generation is the process that the random
generator prototype generates one population, executes it against the AUT, and
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prints it to a file, rather than evolving that population.

Test Generation Data Collection

To perform the intermediate evaluation, multiple trials were performed (5 trials) for
each configuration and search budget and collected the following data.

• Number of crashes detected for each test case and app
• Code coverage for each test case and app
• Final fitness values for each test case and app

Based on the collected data the resulting test cases between the STGFA-SMOG and
Random test generation, and search budgets were compared based on their final fit-
ness values per app. The fitness values of the resulting test cases at different search
budgets and for different combinations of fitness functions were evaluated. Mann-
Whitney U-test and Vargha-Delaney nonparametric test were used to measure the
statistical difference and effect size respectively.

5.5.3 Final Evaluation of STGFA-SMOG
The STGFA-SMOG is applied on a randomly selected open-source Android apps
from the F-Droid1 which is an online store of free and open-source Android ap-
plications. Test results are collected and analysed empirically to find out which
combination of fitness functions generate test cases that cause more crashes.

Test Subjects

Free open-source Android apps were collected as test generation targets from the
F-Droid and other databases. A total of around 10 Android apps are collected for
the final evaluation of the framework. Apps with varying complexity (i.e. different
types and ranges of functionality available) and from different product domain-
s/app types are selected. The test generation targets are selected at random from
a collection of open-source apps. The Android applications are collected in APK
format. After the Android apps are collected, they are analysed to identify Apps
on which STGFA-SMOG is not applicable without manual intervention. For exam-
ple, some applications may require login credentials and without successful login,
the functionalities of the applications are not available to the user. In such a case,
STGFA-SMOG will not be applicable and cannot achieve the desired goals of the
test. Furthermore, when the apps are instrumented with the code coverage tool,
some of the apps did not work as in the original app and the apps that failed to
successfully install on the target emulator are discarded from the data set. Apps
that do not fulfill any of those criteria are discarded and a new random app was
selected instead. This process was repeated until we obtained ten apps that fulfilled
all the criteria discussed previously. The selected apps are listed in Table 5.2.

1https://www.f-droid.org/
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Table 5.2: Apps used for final evaluation

App Name Version Domain Description
scoutantblokish 3.4 Game Board game involving four players
sourceforge solitaire 3.4.1 Game Solitaire Card Games
palmcalc 3.0.4 Scientific Retro scientific calculator and converters
dib22alc 0.12.62 Science The crazy calculator (RPN mode)
mousepounce 1.2.1 Game Play Egyptian Rat Screw against humans or cats.
xskat 1.6 Game Play famous German card game Skat
bmicalculator 4.0.2 Health Body Mass Index calculator
simpleaccounting 1.6.1 Money A very simple way to store your balance
salomaxcurrencies 1.5.1 Money An exchange rates currency converter for Android
converteurofranc 2.9 (18) Money Inflation calculator for USA, UK and France

Experiment Configurations

To conduct the experimentation, a combination of crashes, CPU usage, memory
usage, test case length, network usage, and battery usage fitness functions were
used. In the experiment, number of generations is used as a search budget. Two
search budgets of values 10 and 30 generations were used. In each search budget, the
population size was set to 20 individuals. The STGFA-SMOG’s crossover, mutation,
reproduction, and addition of random new individual probability were set to 0.3,
0.3, 0.15, and 0.25 respectively. The minimum and maximum sequence length of
test cases were set to 20 and 50 respectively. The configuration values could be
changed following the intermediate evaluation conducted to identify settings for the
final evaluation. The initially developed random fuzzing test generation prototype
is used as a baseline to compare with STGFA-SMOG.

The main goal of the evaluation was to see if certain configurations of fitness func-
tions can be found that result in more crashes. So, test cases were generated tar-
geting different combinations of three fitness functions from the pool of fitness func-
tions implemented. Generally, the following configuration format of fitness function
combinations is used: (number of crashes) + (test suite size) + (one of the other
functions). Hence, the following configurations of fitness functions were used for the
final evaluation:

• (number of crashes) + (test suite size) + (CPU usage)

• (number of crashes) + (test suite size) + (memory usage)

• (number of crashes) + (test suite size) + (network usage)

• (number of crashes) + (test suite size) + (battery usage)

For each app, five trials were performed in each search budget and for each fitness
function combination. The experiment was conducted on a PC with a five-core
1.60GH CPU and 8GB RAM on Ubuntu 20.04 operating system. Google Pixel 4
XL emulator with Android API 28 was used to run the Android apps.

50



5. Methodology

Test Generation Data Collection

To evaluate the fault-triggering effectiveness of the test cases, the STGFA-SMOG
was run on the Android apps and generated test cases by varying the combination of
the fitness functions according to the configurations specified in section 5.5.3. In an
attempt to answer the research questions formulated, multiple trials were performed
(5 trials) for each configuration and search budget and collect the following data.

• Number of crashes detected for each test case and app
• Final fitness values for each test case and app

Based on the collected data the resulting test cases’ effectiveness was compared and
evaluated. The Effectiveness of resulting test cases at different search budgets and
for different combinations of fitness functions were evaluated. The data collected
are drawn from unknown distribution and do not follow normality. This is from the
fact that outputs of randomized algorithms vary from one run to another run and
the probability distributions of search algorithms are often strongly departing from
normality [48]. Arcuri and Andrea [48] recommended that the non-parameter test
is the appropriate statistical test to empirically assess experimental data obtained
from search algorithms applied to software engineering problems. So, to analyze the
data without any assumptions on their distribution, a non-parametric test was used
in this research. The most commonly used (as in the References [49, 27, 50]) and
recommended by A. Arcuri and L. Briand [48] non-parametric test types to measure
the statistical difference and effect size are Mann-Whitney U-test [51] and Vargha-
Delaney [52] respectively. Hence, Mann-Whitney U-test and Vargha-Delaney were
used to measure the statistical difference and effect size between the pair of the com-
bination of fitness functions, the framework, Random test generation, and search
budgets.
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6
Results

This chapter presents the intermediate and final evaluation results of the research
work. The main interest of this research is to understand which combination of
the fitness functions of the STGFA-SMOG reveals more crashes than others. To
achieve this goal the STGFA-SMOG framework is evolved through different itera-
tion. Section 6.1 shows the intermediate evaluation results that are performed to
assess whether STGFA-SMOG is working as expected and to find errors. Based
on the intermediate evaluation results obtained, STGFA-SMOG is improved when
evolved through the different iteration. Section 6.2 presents the final evaluation
results of the comparison of the different configurations of fitness functions within
STGFA-SMOG, Random test generation, and search budgets in terms of the number
of crashes revealed. The Mann-Whitney Wilcoxon test is applied to check whether
there is a statistically significant difference in the distributions of fitness values or
crashes between different configurations of STGFA-SMOG and Random test genera-
tion or not and an effect size test, Vargha-Delaney, is used to examine the magnitude
of the difference when statistically significant differences are found.

To determine whether a distribution of results for one technique is different from
another using the Mann-Whitney Wilcoxon test, we adopted the most common α
value which is α = 0.05. The corresponding confidence level for the chosen α value
is 95%. If the p-value of the test result is less than 0.05, we reject the null hypothesis
as the test shows the presence of a statistical difference between the distributions.
When a statistically significant difference is found, it is important to determine
which technique is better. As a result, the Vargha-Delaney test is conducted to see
the effect size and compare the performance of the variables. In this test, effect size
less than 0.5 indicates better performance of the second technique from the first
technique in each hypothesis while values greater than 0.5 show better performance
of the first technique from the second technique. The effect size of one technique or
variable over the other technique or variable can be small, medium, or large. Ac-
cording to Vargha-Delaney’s [52] interpretation, a small effect is 0.56 <= A12 < 0.64,
medium is 0.64 <= A12 < 0.71, and large is A12 >= 0.71 where A12 is the effect size.
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Note:
The column names of the tables in Sections 6.1 and 6.2 are short notations
for the combination of the fitness functions as follows.
CLB - denotes the combination of Crash, test case Length, and Battery
fitness functions.
CLC - denotes the combination of Crash, test case Length, and CPU fitness
functions.
CLM - denotes the combination of Crash, test case Length, and Memory
fitness functions.
CLN - denotes the combination of Crash, test case Length, and Network
fitness functions.
CLLC - denotes the combination of Crash, test case Length, and Line
Coverage fitness functions.
CLMC - denotes the combination of Crash, test case Length, and Method
Coverage fitness functions.

The value ’NA’ in the table entries indicates that the two distributions
compared have the same values, which are all zeros. For example, some
apps do not use network data, they operate offline and the comparison of
the Network usage fitness values between STGFA-SMOG and Random test
generation gives ’NA’ such as in Table 6.5, 6.7, and 6.9. Because the network
usage fitness values are all zeros both in STGFA-SMOG and Random test
generation and the Mann-Whitney Wilcoxon test R function gives ’NA’.
Effect size is measured only when a statistically significant difference is found
using the Mann-Whitney Wilcoxon test. Moreover, the table entries in bold
font represent p-values < 0.05 and large effect sizes.

6.1 Intermediate Evaluation Results

This section depicts the intermediate evaluation results for STGFA-SMOG and Ran-
dom test generation. The intermediate evaluation is mainly intended to compare the
fitness values of the different combinations of fitness functions in STGFA-SMOG and
Random test generation with the goal of examining whether search-based test gener-
ation produces consistently higher fitness values than random generation. Moreover,
the search budgets are compared to investigate whether a large search budget (i.e.
15 generations) produces higher fitness values than a small search budget (i.e. 10
generations).

The general hypothesis of the intermediate evaluation is that different techniques:
Random test generation, STGFA-SMOG with different configurations of the fitness
functions, and using different search budgets for STGFA-SMOG make a difference
in performance. To statistically test the experimental data collected, the following
null and alternative hypotheses are formulated.
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Null hypotheses:
• H01: The observations of results for both STGFA-SMOG with a 10 generation

search budget and Random test generation are drawn from the same distribu-
tion.

• H02: The observations of results for both STGFA-SMOG with a 15 generation
search budget and Random test generation are drawn from the same distribu-
tion.

• H03: The observations of results for STGFA-SMOG with both 15 and 10 gen-
eration search budgets are drawn from the same distribution.

Alternative hypotheses:
• H1: Test cases generated using STGFA-SMOG with a 10 generation search

budget have a different distribution of results than test cases generated using
Random test generation.

• H2: Test cases generated using STGFA-SMOG with a 15 generation search
budget have a different distribution of results than test cases generated using
Random test generation.

• H3: Test cases generated using STGFA-SMOG with a 15 generation search
budget have a different distribution of results than est cases generated using
STGFA-SMOG with the 10 generation search budget.

In Table 6.1, 6.2, 6.3, and 6.4 the columns: CLC compares performance between
STGFA-SMOG optimizing the [(crash) + (test case length) + (CPU us-
age)] fitness function combination and random generation. The values listed are
the median fitness values for CPU usage, CLM compares performance between
STGFA-SMOG optimizing the [(crash) + (test case length) + (Memory us-
age)] fitness function combination and random generation. The values listed are
the median fitness values for Memory usage, CLB compares performance between
STGFA-SMOG optimizing the [(crash) + (test case length) + (Battery us-
age)] fitness function combination and random generation. The values listed are the
median fitness values for Battery usage. Similarly, CLN compares performance be-
tween STGFA-SMOG optimizing the [(crash) + (test case length) + (Network
usage)] fitness function combination and random generation. The values listed are
the median fitness values for Network usage, CLLC compares performance between
STGFA-SMOG optimizing the [(crash) + (test case length) + (Line Cover-
age)] fitness function combination and random generation. The values listed are
the median fitness values for Line Coverage, and CLMC compares performance be-
tween STGFA-SMOG optimizing the [(crash) + (test case length) + (Method
Coverage)] fitness function combination and random generation. The values listed
are the median fitness values for Method Coverage. Table 6.1 and 6.2 compares
STGFA-SMOG with 10 generation search budget and Random test generation, and
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Table 6.3 and 6.4 compares STGFA-SMOG with 15 generation search budget and
Random test generation.

In Table 6.5, and 6.7 the columns: CLC shows the p-value from the Mann-Whitney
Wilcoxon test when comparing the distribution of fitness values for the CPU us-
age fitness function between random generation and STGFA-SMOG optimizing the
[(crash) + (test case length) + (CPU usage)] fitness function combination,
CLM shows the p-value from the Mann-Whitney Wilcoxon test when comparing the
distribution of fitness values for the Memory usage fitness function between random
generation and STGFA-SMOG optimizing the [(crash) + (test case length) +
(Memory usage)] fitness function combination, CLB shows the p-value from the
Mann-Whitney Wilcoxon test when comparing the distribution of fitness values for
the Battery usage fitness function between random generation and STGFA-SMOG
optimizing the [(crash) + (test case length) + (Battery usage)] fitness func-
tion combination, CLN shows the p-value from the Mann-Whitney Wilcoxon test
when comparing the distribution of fitness values for the Network usage fitness
function between random generation and STGFA-SMOG optimizing the [(crash)
+ (test case length) + (Network usage)] fitness function combination, CLLC
shows the p-value from the Mann-Whitney Wilcoxon test when comparing the dis-
tribution of fitness values for the Line coverage fitness function between random
generation and STGFA-SMOG optimizing the [(crash) + (test case length) +
(Line Coverage)] fitness function combinations, and CLMC shows the p-value
from the Mann-Whitney Wilcoxon test when comparing the distribution of fitness
values for the Method Coverage fitness function between random generation and
STGFA-SMOG optimizing the [(crash) + (test case length) + (Method Cov-
erage)] fitness function combinations. Similarly, the columns in Table 6.9 shows
p-values from the Mann-Whitney Wilcoxon test as described in the previous sen-
tences but the comparison is between STGFA-SMOG with 10 and 15 generation
search budgets.

In Table 6.6, and 6.8 the columns: CLC shows the effect size values from the
Vargha-Delaney test when comparing the distribution of fitness values for the CPU
usage fitness function between random generation and STGFA-SMOG optimizing
the [(crash) + (test case length) + (CPU Usage], CLM shows the effect size
values from the Vargha-Delaney test when comparing the distribution of fitness val-
ues for the Memory usage fitness function between random generation and STGFA-
SMOG optimizing the [(crash) + (test case length) + (Memory Usage], CLB
shows the effect size values from the Vargha-Delaney test when comparing the dis-
tribution of fitness values for the Battery usage fitness function between random
generation and STGFA-SMOG optimizing the [(crash) + (test case length) +
(Battery Usage], CLN shows the effect size values when comparing the distribu-
tion of fitness values from the Vargha-Delaney test for the Network usage fitness
function between random generation and STGFA-SMOG optimizing the [(crash)
+ (test case length) + (Network Usage], CLLC shows the effect size values
from the Vargha-Delaney test when comparing the distribution of fitness values for
the Line Coverage fitness function between random generation and STGFA-SMOG
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optimizing the [(crash) + (test case length) + (Line Coverage], CLMC shows
the effect size values from the Vargha-Delaney test when comparing the distribution
of fitness values for the Method Coverage fitness function between random gener-
ation and the STGFA-SMOG optimizing the [(crash) + (test case length) +
(Method Coverage]. The columns in Table 6.10 also shows similar effect size
values from the Vargha-Delaney test as described in the previous sentences but the
comparison is between STGFA-SMOG with 10 and 15 generation search budgets.

Table 6.5, 6.7, and 6.9 show the comparison of the distribution of the fitness val-
ues between STGFA-SMOG with 10 generation search budget and random genera-
tion, STGFA-SMOG with 15 generation search budget and random generation, and
STGFA-SMOG with 15 generation and 10 generation search budgets respectively to
determine if there is a statistical difference. Similarly, Table 6.6, 6.8, and 6.10 show
the comparison of the distribution of the fitness values between STGFA-SMOG with
10 generation search budget and random generation, STGFA-SMOG with 15 gener-
ation search budget and random generation, and STGFA-SMOG with 15 generation
and 10 generation search budgets respectively to identify which technique is better
than the other.

In Table 6.1, and 6.2, the median fitness values of STGFA-SMOG with 10 generation
search budget are higher in all configuration of fitness functions for all apps except
the Battery usage and Method coverage median fitness values for the billthe-
farmer app. In the two exception fitness functions (i.e. Battery and Method) for
the billthefarmer app, median fitness values of the random generation are higher
than median fitness values of the STGFA-SMOG with 10 generation search budget.
The reason for this can be the billthefarmer app has a small number of widgets
and most of the widgets are EditText fields. When most of the widgets are EditText
field, it is observed that most of the events generated become input text events as
the keyboard is opened for a long time. This makes it hard for the STGFA-SMOG
to optimize the fitness values and improve over the generations. The Network us-
age fitness values of STGFA-SMOG with 10 generation search budget and random
generation are the same, which are all zero, for blokish, rpncalc, and uaraven
apps. This is because the three apps do not use network data, they function offline,
and no Network usage fitness value is available for these apps.

The results presented in Table 6.3, and 6.4 shows that median values of STGFA-
SMOG with 15 generation search budget are higher than median fitness values of
random generation in all combination fitness functions for all apps except for Net-
work usage which is always zero for the apps that do not use network data. Even
though the median value of Battery and Method coverage for the billthefarmer
app in STGFA-SMOG with 10 generation search budget are less than the random
generation, using a higher search budget (i.e. 15 generation) makes STGFA-SMOG
produce higher fitness values in all combination of fitness functions than produced by
random generation. This indicates STGFA-SMOG improves its performance when
the search budget is increased and produces higher median fitness values from ran-
dom generation.
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Table 6.1: Median values of STGFA-SMOG fitness values with 10 generation search
budget and Random generation for each app

CLC CLM CLB
STGFA-SMOG Random STGFA-SMOG Random STGFA-SMOG Random

blokish 26.00 11.50 42610.50 25790.00 6.83e-07 0.00
billthefarmer 24.00 14.00 46204.50 25398.50 0.00 4.40e-07
traficparis 27.00 18.00 38872.00 28098.00 6.71e-07 0.00
rpncalc 68.00 26.50 136372.50 117998.50 4.66e-07 0.00
uaraven 29.00 15.00 39955.00 25085.50 4.59e-07 0.00

Table 6.2: Median values of STGFA-SMOG fitness values with 10 generation search
budget and Random generation for each app

CLN CLLC CLMC
STGFA-SMOG Random STGFA-SMOG Random STGFA-SMOG Random

blokish 0.00 0.00 7.76 6.57 8.53 7.00
billthefarmer 481614.00 37255.00 4.59 4.00 1.41 1.80
traficparis 2350519.00 124255.40 20.40 18.32 26.26 24.63
rpncalc 0.00 0.00 22.51 20.30 31.80 29.13
uaraven 0.00 0.00 2.19 2.02 2.17 1.96

The p-values shown in Table 6.5 are below 0.05 in most of the fitness functions
which shows the presence of statistically significant difference between the distri-
bution of the fitness values of STGFA-SMOG with a 10-generation search budget
and random generation except the Battery usage fitness function for the billthe-
farmer and rpncalc, and Method coverage fitness function for the rpncalc apps.
Based on the statistical analysis there exists a statistically significant difference in
the distribution of the fitness values of STGFA-SMOG with 10-generation search
budget and random generation except in the distribution of the Battery fitness val-
ues in the billthefarmer and rpncalc apps, and Method coverage fitness values
for the rpncalc apps. Table 6.6 shows the effect size values for the fitness values of
STGFA-SMOG with 10 generation and random generation where statistically signif-
icant difference is found in Table 6.5. The effect size values in all the fitness functions
are above 0.5 except for the Battery fitness function for the billthefarmer and
rpncalc app, Network fitness function in the blokish, rpncalc, and uaraven
apps, and Method fitness function for the billthefarmer app. The results show
that STGFA-SMOG with 10 generation outperforms random generation for the fit-
ness functions Memory, CPU, and Line Coverage in all the 5 apps. Similarly,
STGFA-SMOG outperforms random generation for the Method Coverage fitness

Table 6.3: Median values of STGFA-SMOG fitness values with 15 generation search
budget and Random generation for each app

CLC CLM CLB
STGFA-SMOG Random STGFA-SMOG Random STGFA-SMOG Random

blokish 48.50 10.00 41755.50 24722.50 3.31e-06 1.00e-06
billthefarmer 35.50 23.50 45898.00 25511.50 1.70e-05 8.60e-07
traficparis 29.00 13.50 50705.50 29242.50 0.00 0.00
rpncalc 94.50 52.50 134803.50 120060.50 5.08e-05 0.00
uaraven 42.00 21.50 48234.00 25441.00 1.33e-06 3.10e-07
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Table 6.4: Median values of STGFA-SMOG fitness values with 15 generation search
budget and Random generation for each app

CLN CLLC CLMC
STGFA-SMOG Random STGFA-SMOG Random STGFA-SMOG Random

blokish 0.00 0.00 7.70 6.42 8.16 7.05
billthefarmer 1235955.00 37471.66 4.52 4.03 2.05 1.90
traficparis 1512818.00 135683.00 20.43 18.46 26.81 23.88
rpncalc 0.00 0.00 22.51 20.30 32.39 29.13
uaraven 0.00 0.00 2.22 2.01 2.17 1.96

Table 6.5: P-Values for Mann-Whitney rank-sum test for the fitness values of
STGFA-SMOG with 10 generation versus Random test data generation (baseline)

CLC CLM CLB CLN CLLC CLMC
blokish 0.00 < 2.20e-16 0.00 NA 1.80e-05 1.76e-11
billthefarmer 5.80e-06 < 2.20e-16 0.58 < 2.20e-16 1.13e-08 0.05
traficparis 0.04 2.38e-14 0.00 < 2.20e-16 2.21e-06 1.52e-06
rpncalc 3.73e-10 1.10e-11 0.05 NA 6.61e-10 2.02e-12
uaraven 2.55e-08 1.11e-15 0.00 NA 9.85e-13 1.92e-11

Table 6.6: Results of Vargha-Delaney A Measure for the fitness values of 10G
STGFA-SMOG versus Random test data generation (baseline). Note that large
effect sizes are bolded and effect size is only measured when statistical significant
difference is found using the Mann-Whitney Wilcoxon test.

CLC CLM CLB CLN CLLC CLMC
blokish 0.70 1.00 0.68 - 0.75 0.89
billthefarmer 0.76 1.00 - 1.00 0.83 -
traficparis 0.62 0.94 0.71 1.00 0.77 0.78
rpncalc 0.86 0.89 - - 0.86 0.90
uaraven 0.82 0.97 0.68 - 0.91 0.89
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Table 6.7: P-Values for Mann-Whitney rank-sum test for the fitness values of 15G
STGFA-SMOG versus Random test data generation (baseline)

CLC CLM CLB CLN CLLC CLMC
blokish 1.86e-10 2.03e-14 0.02 NA 2.44e-11 2.18e-07
billthefarmer 0.03 7.48e-16 0.00 < 2.20e-16 1.99e-08 5.20e-09
traficparis 1.42e-08 < 2.20e-16 6.11e-11 < 2.20e-16 1.42e-14 < 2.20e-16
rpncalc 1.00e-11 1.37e-08 2.05e-05 NA 2.93e-13 3.75e-11
uaraven 0.01 < 2.20e-16 0.00 NA 3.42e-13 2.12e-13

Table 6.8: Results of Vargha-Delaney A Measure for the fitness values of 15G
STGFA-SMOG versus Random test data generation (baseline)

CLC CLM CLB CLN CLLC CLMC
blokish 0.87 0.94 0.64 - 0.89 0.80
billthefarmer 0.62 0.97 0.70 1.00 0.83 0.84
traficparis 0.83 0.98 0.87 1.00 0.95 0.99
rpncalc 0.90 0.83 0.74 - 0.92 0.87
uaraven 0.65 0.99 0.69 - 0.92 0.92

function except in the billthefarmer app.

STGFA-SMOG with 10 generations outperforms Random test generation for
the CPU, Memory, Network, and Line Coverage fitness functions in all apps,
often with large effect sizes. It also outperforms Random test generation in
80% of the apps for the Method Coverage fitness function and 60% of the apps
for the Battery fitness function.

In Table 6.7 the p-values for all fitness functions in all apps are less than 0.05 except
for the Network fitness function in the blokish, rpncalc, and uaraven apps
which is ’NA’ as those apps do not use network data. Hence, the p-values show that
a statistically significant difference is found between the distribution of the fitness
values of STGFA-SMOG with 15 generation search budget and random generation.
For all the fitness functions in Table 6.7 where a statistically significant difference is
found, their corresponding effect size values are shown in Table 6.8. All of the effect
size values in Table 6.8 are greater than 0.05 which implies that STGFA-SMOG
with a 15 generation search budget outperforms random generation for all fitness
functions in all the five apps. This indicates that increasing the search budget im-
proves the performance of STGFA-SMOG over the random generation.

A statistical difference exists for all the five apps in the STGFA-SMOG with
a 15 generation search budget and random generation as in Table 6.7 . This
could be due to the improvement in the performance of the STGFA-SMOG
framework with higher search budgets.
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Table 6.9: P-Values for Mann-Whitney rank-sum test for the fitness values of
STGFA-SMOG 15 versus 10 generation, values in the table are bolded for P-value
less than 0.05 and ’NA’ in the Network column shows these apps operates offline

CLC CLM CLB CLN CLLC CLMC
blokish 8.04e-07 0.42 0.11 NA 0.58 0.02
billthefarmer 9.30e-10 2.69e-16 8.46e-05 5.18e-11 0.076 5.22e-12
traficparis 0.11 0.02 0.03 8.20e-07 0.05 0.00
rpncalc 2.81e-14 0.35 0.00 NA 0.03 0.00
uaraven 1.12e-08 0.04 0.05 NA 0.10 0.43

Table 6.10: Results of Vargha-Delaney A Measure for the fitness values of STGFA-
SMOG 15 versus 10 generation, note that effect size is only measured in cases where
differences were detected through the Mann-Whitney Wilcoxon test and values are
bolded for those who have high effect-size.

CLC CLM CLB CLN CLLC CLMC
blokish 0.79 - - - - 0.63
billthefarmer 0.86 0.98 0.72 0.88 - 0.90
traficparis - 0.63 0.63 0.21 - 0.66
rpncalc 0.94 - 0.68 - 0.62 0.69
uaraven 0.83 0.62 - - - -

As shown in Table 6.9, there exists a statistically significant difference in the distribu-
tion of fitness values of STGFA-SMOG with 15 and 10 generation search budgets for
the CPU fitness function in the blokish, billthefarmer, rpncalc, and uaraven
apps, Memory fitness function in the billthefarmer, traficparis, and uaraven
apps, Battery fitness function in the billthefarmer, traficparis, and rpncalc
apps, Network fitness function in the billthefarmer and traficparis apps, Line
Coverage in the traficparis and rpncalc apps, and Method Coverage fitness
function in the blokish, billthefarmer, traficparis, and rpncalc apps. No sta-
tistically significant difference is found in the distribution of the fitness values of
STGFA-SMOG with 15 and 10 generation search budgets for the remaining fitness
function in the corresponding apps. The reason for no statistically significant dif-
ference being found can be due to the small difference in the two search budgets used.

In the comparison between STGFA-SMOG with 15 and 10 generation search bud-
gets as shown in Table 6.9 a significant difference is found for many of the fitness
functions and apps. We reject the null hypothesis for the CPU, and Method
Coverage fitness functions for 80% of the apps, Memory and Battery fitness
functions for 60% of the apps, and Line Coverage for 40% of the apps. We also
reject the null hypothesis for the Network fitness function for 40% of the apps.
Based on the results from Table 6.10, STGFA-SMOG with a 15-generation search
budget performs better than STGFA-SMOG with 10 generation search budget on
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all fitness functions in all cases where we rejected the null hypothesis, except for
the Network fitness function for the app traficparis. In this case, STGFA-SMOG
performed better with a 10 generation search budget.

STGFA-SMOG shows improved performance when the search budget is in-
creased from 10 to 15 generations for 80% of apps when targeting the CPU
and Method Coverage fitness functions, 60% when targeting Memory and Bat-
tery, 50% when targeting Network, and 40% when targeting Line Coverage.
The largest differences are seen in the CPU fitness function.

6.2 Final Evaluation Results
In this section, the final evaluation results of STGFA-SMOG and Random test gen-
eration are presented. In the final evaluation, the number of crashes detected by the
different combinations of the fitness functions is compared to examine whether some
combination of the fitness functions uncover more crashes than others. The number
of crashes triggered by the different combinations of the fitness functions of STGFA-
SMOG is compared against Random test generation, which is the baseline, to assess
if STGFA-SMOG detects more crashes than Random test generation. Moreover, the
number of crashes revealed by the different combinations of the fitness functions are
compared at 30 and 10 generation search budgets to investigate if STGFA-SMOG
with a large search budget reveals more crashes than STGFA-SMOG with a small
search budget. Unlike the intermediate evaluation, in the final evaluation, we ap-
plied only the four fitness function configurations (i.e. CLB, CLC, CLM, and
CLN) due to time constraints. Because of the third-party tool we used to measure
line and method coverage, the time taken by CLLC and CLMC fitness function
configurations is more than twice the time taken by CLB per trial. Hence, we are
forced to run our experimentation over the four configurations because of the time
limitation and the limited computational resource we have.

Similar to the intermediate evaluation, the Mann-Whitney Wilcoxon test, and the
Vargha-Delaney measure are used to find a statistical significance difference and to
measure the magnitude of the effect size when a statistically significant difference is
found respectively. The final values of the crash fitness function for each test case
obtained at the last generation over each trial are merged. Then we feed these fitness
values to the Mann-Whitney Wilcoxon test and Vargha-Delaney test R functions.

In the following subsections, we present and describe our experimental results with
respect to the research question RQ2, RQ3, and RQ4 (see chapter 5). In subsec-
tion 6.2.1 we list the unique crashes revealed across all trials and the average number
of times each crash is triggered per trial. Subsection 6.2.2 presents the comparison
of the techniques (i.e. STGFA-SMOG vs Random test generation) and the fitness
function configurations (i.e. CLB, CLC, CLM, and CLN) keeping the search
budget constant. In subsection 6.2.3 we compare the effect of the search budget by
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varying the search budget values, which are 10 generations and 30 generations, and
keeping the fitness function configurations constant.

6.2.1 Crashes Triggered and Running Time Logs
The crashes uncovered by STGFA-SMOG with 30 generation and 10 generation
search budgets, and Random test generation are depicted in Tables 6.11, 6.13, and
6.15 respectively. In Tables 6.11 and 6.13 we list the unique crashes detected by
STGFA-SMOG with 30 generation and 10 generation search budgets respectively
across all trials, broken by app and configuration. We also list the average number of
times the crashes are triggered by STGFA-SMOG with 30 generation, 10 generation,
and Random test generation per trial in Tables 6.12, 6.14, and 6.16 respectively. A
test case generated by STGFA-SMOG can trigger more than one crash. However,
most of the test cases across all trials revealed one or zero crashes. Hence, we cal-
culated the average number of times each crash is triggered instead of the average
number of crashes triggered per trial. Moreover, Tables 6.17 and 6.18 present a
sample of running time logs that shows how many hours STGFA-SMOG takes for
each fitness function configuration per trial. Even though a higher search budget
is not guaranteed to reveal the same crashes that a lower search budget does, in
our experiment we observed that all crashes uncovered by the 10 generation search
budget are also uncovered by the 30 generation search budget. Based on the stack
trace analysis of the exceptions listed in Tables 6.12, 6.14, and 6.15, each exception
is the same when they occur every time. This means that each discovered crash
is unique. As described in chapter 5, we used ten randomly selected Android apps
to experiment with our framework in the final evaluation. Out of the ten Android
apps used, crashes are found only in four of the apps: scoutantblokish, dib2calc,
palmcalc, and sourceforgesolitaire, and only these apps are used in the statis-
tical analysis of the final experimental results.

As shown in Table 6.11, ActivityNotFoundException is triggered in scoutant-
blokish app by all fitness function configurations of STGFA-SMOG with a 30 gen-
eration search budget. In the dib2calc app, three exceptions are found: Index-
OutOfBoundsException, ArrayIndexOutOfBoundsException, and Null-
PointerException. The first two exceptions are detected by all fitness function
configurations, and the third exception is detected by the CLM and CLN fitness
function configurations. NullPointerException is found in palmcalc app which
is triggered only by the CLC fitness function configuration. Similarly, the CLB
fitness function configuration of STGFA-SMOG revealed ClassCastException in
the sourceforgesolitaire app which is not detected by the other fitness function
configurations. STGFA-SMOG with a 10 generation search budget revealed three ex-
ceptions: ActivityNotFoundException, IndexOutOfBoundsException, and
ArrayIndexOutOfBoundsException in two apps as shown in Table 6.13. Similar
to the STGFA-SMOG with a 30 generation search budget, ActivityNotFoundEx-
ception is triggered by all fitness function configurations of STGFA-SMOG with
a 10 generation search budget in the scoutantblokish app. However, IndexOut-
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OfBoundsException is triggered by CLB, CLM, and CLN fitness function
configurations, and ArrayIndexOutOfBoundsException is detected only by the
CLC fitness function configuration. The Random test generation also revealed two
exceptions: IndexOutOfBoundsException, and ArrayIndexOutOfBound-
sException in the dib2calc app as listed in Table 6.15.

When we compare the number of times crashes are triggered by the fitness function
configurations keeping the search budget constant as shown in Table 6.12, we can see
that ActivityNotFoundException, IndexOutOfBoundsException, and Ar-
rayIndexOutOfBoundsException are more frequently triggered by the CLM,
CLB, and CLC fitness function configurations sequentially. Similarly, as we can
see in Table 6.14 ActivityNotFoundException, IndexOutOfBoundsExcep-
tion, and ArrayIndexOutOfBoundsException are activated more often by the
CLM, CLM, and CLC fitness function configurations respectively.

STGFA-SMOG with a 30 generation revealed more unique crashes compared
to STGFA-SMOG with a 10 generation search budget, and STGFA-SMOG
with a 10 generation uncovered more crashes than Random test generation.
The fitness function configurations under the 30 generation search budget
activated crashes triggered under both budgets more often than the fitness
function configurations under the 10 generation search budget.

CLM and CLN on the app dib2calc, CLC on the app palmcalc, and
CLB on the app sourceforgesolitaire triggered unique crashes that are not
revealed by the other fitness function configurations. Except the IndexOut-
OfBoundsException all of the crashes revealed under the 30 generation
and 10 generation search budgets are triggered more often by the same fitness
function configurations across all search budgets.

Table 6.11: Unique crashes detected by STGFA-SMOG with 30 generation across
all trials

App Exception CLB CLC CLM CLN
scoutantblokish ActivityNotFoundException X X X X
dib2calc IndexOutOfBoundsException X X X X
dib2calc ArrayIndexOutOfBoundsException X X X X
dib2calc NullPointerException X X
palmcalc NullPointerException X
sourceforgesolitaire ClassCastException X
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Table 6.12: Average number of times the crashes are triggered by STGFA-SMOG
with 30 generation per trial

App Exception CLB CLC CLM CLN
scoutantblokish ActivityNotFoundException 6.20 4.00 8.20 2.40
dib2calc IndexOutOfBoundsException 6.80 0.60 1.80 3.60
dib2calc ArrayIndexOutOfBoundsException 2.80 4.20 2.00 3.40
dib2calc NullPointerException 0.00 0.00 0.20 0.20
palmcalc NullPointerException 0.00 0.60 0.00 0.00
sourceforgesolitaire ClassCastException 2.40 0.00 0.00 0.00

Table 6.13: Unique crashes detected by STGFA-SMOG with 10 generation across
all trials

App Exception CLB CLC CLM CLN
scoutantblokish ActivityNotFoundException X X X X
dib2calc IndexOutOfBoundsException X X X
dib2calc ArrayIndexOutOfBoundsException X X
dib2calc NullPointerException
palmcalc NullPointerException
sourceforgesolitaire ClassCastException

Table 6.14: Average number of times the crashes are triggered by STGFA-SMOG
with 10 generation per trial

App Exception CLB CLC CLM CLN
scoutantblokish ActivityNotFoundException 0.80 0.40 1.80 1.00
dib2calc IndexOutOfBoundsException 0.60 0.00 1.60 0.40
dib2calc ArrayIndexOutOfBoundsException 0.00 3.00 0.00 0.60
dib2calc NullPointerException 0.00 0.00 0.00 0.00
palmcalc NullPointerException 0.00 0.00 0.00 0.00
sourceforgesolitaire ClassCastException 0.00 0.00 0.00 0.00

Table 6.15: Unique crashes detected by Random test generation across all trials

App Exception Random
scoutantblokish ActivityNotFoundException
dib2calc IndexOutOfBoundsException X
dib2calc ArrayIndexOutOfBoundsException X
dib2calc NullPointerException
Palmcalc NullPointerException
sourceforgesolitaire ClassCastException
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Table 6.16: Average number of times the crashes are triggered by Random test
generation per trial, (where Random-10 is Random test generation run for 10 gen-
eration, and Random-30 is Random test generation run for 30 generation)

App Exception Random-10 Random-30
scoutantblokish ActivityNotFoundException 0.00 0.00
dib2calc IndexOutOfBoundsException 0.05 0.05
dib2calc ArrayIndexOutOfBoundsException 0.05 0.00
dib2calc NullPointerException 0.00 0.00
Palmcalc NullPointerException 0.00 0.00
sourceforgesolitaire ClassCastException 0.00 0.00

Table 6.17: Time taken by STGFA-SMOG with 10 generation

Configurations No. of Apps No. of Trials Average Time per Trial (hrs)
CLU 10 5 3
CLB 10 5 3
CLN 10 5 3
CLM 10 5 3
CLLC 1 5 6
CLMC 1 5 6

Table 6.18: Time taken by STGFA-SMOG with 30 generation

Configurations No. of Apps No. of Trials Average Time per Trial (hrs)
CLU 10 5 10
CLB 10 5 10
CLN 10 5 10
CLM 10 5 10
CLLC 1 5 24
CLMC 1 5 24

6.2.2 Comparison of Techniques and Configurations
We performed a statistical analysis to assess our experimental results. Hence, in
this subsection, we compared the techniques (i.e. STGFA-SMOG vs Random test
generation) and each pair of fitness function configurations using statistical analysis.
As the number of unique crashes was low, rather than comparing the number of
unique crashes, we assess whether the discovered crashes are triggered more often
by one configuration than Random test generation (or another configuration). This
is indicated by the value of the "number of crashes" fitness function as measured
on the final test suite produced in each trial. The test is run per each pair of
fitness function configurations and techniques. Due to the stochastic nature of the
search, a single run of the Random test generation may yield results of a favorable

66



6. Results

random solution or a badly selected random solution. Therefore, we perform one
trial of Random test generation for each trial of any fitness function configuration of
STGFA-SMOG. For each pair of techniques or configurations (combination of fitness
functions and Random test generation), we perform the Mann-Whitney Wilcoxon
test. Therefore, per each pair of configurations or techniques, we formulated null
hypothesis H0 and its alternative hypothesis, H:

• H0: Given a fixed search budget, the observations of results for techniques
or configurations A and B are drawn from the same distribution. ’A’ and
’B’ represent the fitness function configuration such as CLB, CLM, CLC, and
CLN or a fitness function configuration and Random test generation.

• H: The observations of results for techniques or configurations A and B are
drawn from different distributions.

In Table 6.19, 6.21, 6.23, 6.25, 6.27, and 6.28 the column CLB shows the p-value
from the Mann-Whitney Wilcoxon test when comparing the distribution of fitness
values for the crash fitness function between CLB and the other fitness function
configurations or STGFA-SMOG optimizing the [(crash) + (test case length) +
(Battery usage)] fitness function combination versus Random test generation. The
column CLC in these tables compares fault-finding performance between CLC and
the other fitness function configurations or STGFA-SMOG optimizing the [(crash) +
(test case length) + (CPU usage)] fitness function combination versus Random test
generation. Similarly, the column CLM shows the p-values from the Mann-Whitney
Wilcoxon test when comparing the distribution of fitness values for the crash fitness
function between CLM and the other configurations or STGFA-SMOG optimizing
the [(crash) + (test case length) + (Memory usage)] fitness function combination
versus Random test generation, while CLN shows p-value from the Mann-Whitney
Wilcoxon test when comparing the distribution of fitness values of the crash fitness
function between CLN and the other configurations or STGFA-SMOG optimizing
the [(crash) + (test case length) + (Network usage)] fitness function combination
versus Random test generation.

In Table 6.20, 6.22, 6.24, 6.26, and 6.29 the column CLB shows the effect size values
from the Vargha-Delaney test when comparing the distribution of fitness values for
the crash fitness function between CLB and the other configurations or STGFA-
SMOG optimizing the [(crash) + (test case length) + (Battery usage)] and Random
test generation. The column CLC shows the effect size values from the Vargha-
Delaney test when comparing the distribution of fitness values for the crash fitness
function between CLC and the other configurations or STGFA-SMOG optimizing
the [(crash) + (test case length) + (CPU usage)] and Random test generation.
Similarly, CLN shows the effect size values from the Vargha-Delaney test when
comparing the distribution of fitness values for the crash fitness function between
CLN and the other configurations or STGFA-SMOG optimizing the [(crash) + (test
case length) + (Network usage)] versus Random test generation, while CLM shows
the effect size values from the Vargha-Delaney test when comparing the distribution
of fitness values for the crash fitness function between CLN and the other fitness
function configurations or STGFA-SMOG versus Random test generation.
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First, we examined the 10 generation search budget. The results in Table 6.19 and
6.21 indicate that a statistically significant difference is found in the distribution of
the fitness values of the crash fitness function of STGFA-SMOG with 10 generation
and Random test generation for CLB, CLM, and CLN configurations, and for
CLC and CLN configurations respectively. Hence, we reject the null hypothesis
for these configurations by claiming that results found by STGFA-SMOG with a
10 generation search budget and Random test generation are drawn from different
distributions. Table 6.20 and 6.22 shows the corresponding effect size for the con-
figurations where statistically significant difference is found.

At a 10 generation search budget, theCLC configuration outperforms random
testing with small effect size on the dib2calc app. In all other significant cases,
other configurations outperform random testing, but with only negligible effect
size.

Table 6.19: P-Values for Mann-Whitney rank-sum test of the comparison of the
different combination of the fitness functions of the STGFA-SMOG as well as Ran-
dom test generation by the number of crashes detected in 10 generation in the
scoutantblokish app.

CLB CLC CLM CLN Random
CLB - 0.41 0.15 0.74 0.04
CLC 0.41 - 0.03 0.25 0.16
CLM 0.15 0.03 - 0.27 0.00
CLN 0.74 0.25 0.27 - 0.02

Random 0.04 0.16 0.00 0.02 -

Table 6.20: Results of Vargha-Delaney A Measure of the comparison of the dif-
ferent combination of the fitness functions of the STGFA-SMOG and Random test
generation by the number of crashes detected in 10 generation in the scoutant-
blokish app. Note that large effect sizes are bolded and effect size is only measured
when statistical significant difference is found using the Mann-Whitney Wilcoxon
test.

CLB CLC CLM CLN Random
CLB - - - - 0.52
CLC - - 0.46 - -
CLM - 0.54 - - 0.55
CLN - - - - 0.53
Random 0.48 - 0.45 0.47 -
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Table 6.21: P-Values for Mann-Whitney rank-sum test of the comparison of the
different combination of the fitness functions of the STGFA-SMOG as well as Ran-
dom test generation by the number of crashes detected in 10 generation in the
dib2calc app

CLB CLC CLM CLN Random
CLB - 0.00 0.12 0.47 0.08
CLC 0.00 - 0.08 0.01 3.22e-05
CLM 0.12 0.08 - 0.39 0.05
CLN 0.47 0.01 0.39 - 0.02

Random 0.08 3.22e-05 0.05 0.02

Table 6.22: Results of Vargha-Delaney A Measure of the comparison of the dif-
ferent combination of the fitness functions of the STGFA-SMOG and Random test
generation by the number of crashes detected in 10 generation in the dib2calc
app. Note that large effect sizes are bolded and effect size is only measured when
statistical significant difference is found using the Mann-Whitney Wilcoxon test.

CLB CLC CLM CLN Random
CLB - 0.43 - - -
CLC 0.57 - - 0.56 0.58
CLM - - - - -
CLN - 0.44 - - 0.53
Random - 0.42 - 0.47 -

Next, we compared at the 30 generation search budget. As we can see in Tables 6.23
and 6.25 there exists a statistically significant difference for all the comparisons be-
tween the fitness function configurations and Random test generation. Therefore,
we reject the null hypothesis for these comparisons and we claim that the results
are from a different distribution. In addition, a statistically significant difference
exists between the comparison of CLB configuration and Random test generation
as shown in Table 6.28. Hence, we failed to reject the null hypothesis for all compar-
isons between the configurations and Random test generation except between CLB
and Random test generation. In Table 6.24 and 6.26 we can see that STGFA-SMOG
with 30 generation has a medium effect size over Random test generation for CLB
configuration and for CLN configuration sequentially. Moreover, STGFA-SMOG
has a large effect size over Random test generation for CLM configuration and for
CLB configuration respectively. In contrast, the other effect size values appear to
be a small effect size which can be interpreted as STGFA-SMOG with 30 genera-
tion with a small effect size over Random test generation in the number of crashes
revealed.
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At a 30 generation search budget, STGFA-SMOG outperforms random testing
in all cases where results are found to be drawn from different distributions
(2 large effect size, 2 medium, 5 small). In addition, we see improvements
between 10 and 30 generations.

We now compared the configurations of STGFA-SMOG to each other. First, we
examined a 10 generation search budget. As shown in Table 6.19 we can see a
statistically significant difference only in the comparison of the configurations CLC
vs CLM. Similarly, in Table 6.21 only the comparison of the configurations CLB
vs CLC and CLC vs CLN have a statistically significant difference. Based on
these two tables, it seems that statistical difference does not exist for the major-
ity of the entries. Hence, we reject the null hypothesis only for the comparison of
the configurations CLC vs CLM in Table 6.19 and CLB vs CLC, and CLC vs
CLN in Table 6.21. The corresponding effect size measure for the comparison of
configurations where their null hypothesis is rejected is shown in Tables 6.20 and
6.22. Table 6.22 shows CLC configuration outperformed the CLB and CLN con-
figurations and their effect size values belong to a small effect size. Similarly, as we
can see in Table 6.20 CLM has a higher effect size value than CLC. However, the
effect size value is below the small effect size range.

At a 10 generation budget, CLC outperforms CLB and CLN with small
effect size for the dib2calc app. For scoutantblockish, CLM outperforms
CLC with negligible effect size. We do not see a discernible pattern where
one configuration outperforms the others.

Next, we compared the configurations at 30 generations. As we can see in Tables 6.25
and 6.28 configuration CLB compared to CLC, and configuration CLB compared
to CLM have a statistically significant difference. Similarly, configuration CLB
compared to CLN has a statistically significant difference as shown in Tables 6.23
and 6.28. Furthermore, configuration CLC compared to CLM has a statistically
significant difference in the scoutantblokish app as in Table 6.23 and configuration
CLM compared to CLN does on dib2calc and scoutantblokish apps as shown
in Table 6.25 and 6.23 sequentially. We reject the null hypothesis for the CLB vs
CLC and CLB vs CLM in Table 6.25 and 6.28, and CLB vs CLN in Table 6.23
and 6.28. For the remaining configurations compared in Tables 6.23, 6.25, 6.27, and
6.28, we failed to reject the null hypothesis. Configuration CLB performed better
than CLC and CLM in the dib2calc and sourceforgesolitaire apps as shown
in Tables 6.26 and 6.29, and configuration CLB performed better than CLN in
the scoutantblokish and sourceforgesolitaire apps as listed in Tables 6.24 and
6.29 whereas configuration CLM outperformed CLC and CLN configurations in
the scoutantblokish app (i.e. Table 6.24) and configuration CLN outperformed
CLM in the dib2calc app (i.e. Table 6.26).
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Table 6.23: P-Values for Mann-Whitney rank-sum test of the comparison of the
different combination of the fitness functions of the STGFA-SMOG and Random test
generation by the number of crashes detected in 30 generation in the scoutantblok-
ish app.

CLB CLC CLM CLN Random
CLB - 0.08 0.14 0.00 1.54e-09
CLC 0.08 - 0.00 0.12 2.60e-06
CLM 0.14 0.00 - 3.60e-06 7.97e-13
CLN 0.00 0.12 3.60e-06 - 0.00
Random 1.54e-09 2.60e-06 7.97e-13 0.00 -

At a 30 generation search budget, the CLB configuration shows limited ev-
idence for being the best configuration (for dib2calc, it outperforms CLM
with medium effect size and CLC with small; for sourceforgesolitaire, it
outperformsCLC,CLM, andCLN with small effect size). However, the best
configuration is likely dependent on the app. For example, for scoutant-
blockish, CLM outperformed CLN with medium effect and CLC with
small). More research is needed to find clear patterns when to use certain
configurations.

Table 6.24: Results of Vargha-Delaney A Measure of the comparison of the dif-
ferent combination of the fitness functions of the STGFA-SMOG and Random test
generation by the number of crashes detected in 30 generation in the scoutant-
blokish app. Note that large effect sizes are bolded and effect size is only measured
when statistical significant difference is found using the Mann-Whitney Wilcoxon
test.

CLB CLC CLM CLN Random
CLB - - - 0.60 0.66
CLC - - 0.39 - 0.60
CLM - 0.61 - 0.64 0.71
CLN 0.40 - 0.36 - 0.56
Random 0.34 0.40 0.29 0.44
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Table 6.25: P-Values for Mann-Whitney rank-sum test of the comparison of the
different combination of the fitness functions of the STGFA-SMOG and Random
test generation by the number of crashes detected in 30 generation in the dib2calc
app.

CLB CLC CLM CLN Random
CLB - 0.00 4.95e-05 0.10 5.67e-15
CLC 0.00 - 0.50 0.06 9.43e-07
CLM 4.95e-05 0.50 - 0.01 2.60e-06
CLN 0.10 0.06 0.01 - 3.91e-11
Random 5.67e-15 9.43e-07 2.60e-06 3.91e-11

Table 6.26: Results of Vargha-Delaney A Measure of the comparison of the dif-
ferent combination of the fitness functions of the STGFA-SMOG and Random test
generation by the number of crashes detected in 30 generation in the dib2calc
app. Note that large effect sizes are bolded and effect size is only measured when
statistical significant difference is found using the Mann-Whitney Wilcoxon test.

CLB CLC CLM CLN Random
CLB - 0.62 0.64 - 0.74
CLC 0.38 - - - 0.62
CLM 0.36 - - 0.42 0.60
CLN - - 0.58 - 0.68
Random 0.26 0.38 0.40 0.32 -

Table 6.27: P-Values for Mann-Whitney rank-sum test of the comparison of the
different combination of the fitness functions of the STGFA-SMOG and Random
test generation by the number of crashes detected in 30 generation in the palmcalc
app.

CLB CLC CLM CLN Random
CLB - 0.08 NA NA NA
CLC 0.08 - 0.08 0.08 0.08
CLM NA 0.08 - NA NA
CLN NA 0.08 NA - NA
Random NA 0.08 NA NA -
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Table 6.28: P-Values for Mann-Whitney rank-sum test of the comparison of the
different combination of the fitness functions of the STGFA-SMOG and Random
test generation by the number of crashes detected in 30 generation in the source-
forgesolitaire app.

CLB CLC CLM CLN Random
CLB - 0.00 0.00 0.00 0.00
CLC 0.00 - NA NA NA
CLM 0.00 NA - NA NA
CLN 0.00 NA NA - NA
Random 0.00 NA NA NA -

Table 6.29: Results of Vargha-Delaney A Measure of the comparison of the differ-
ent combination of the fitness functions of the STGFA-SMOG and Random test gen-
eration by the number of crashes detected in 30 generation in the sourceforgesoli-
taire app. Note that large effect sizes are bolded and effect size is only measured
when statistical significant difference is found using the Mann-Whitney Wilcoxon
test.

CLB CLC CLM CLN Random
CLB - 0.56 0.56 0.56 0.56
CLC 0.44 - - - -
CLM 0.44 - - - -
CLN 0.44 - - - -
Random 0.44 - - -

6.2.3 Effect of Search Budget
In this subsection, we compared the effect of the search budget on the number of
crashes detected by the different fitness function configurations. We carry out the
test per each pair of the fitness function configurations of each pair of search bud-
gets. Hence, per the pair of the search budgets, we formulated null hypothesis H0
and its alternative hypothesis, H:

• H0: The observations of results for crashes revealed by STGFA-SMOG with
both 30 and 10 generation search budgets are drawn from the same distribu-
tion.

• H: The observations of results for crashes revealed by STGFA-SMOG with 30
generation search budget have a different distribution than the observations
of results for crashes revealed by STGFA-SMOG with 10 generation search
budget.

In Table 6.30 we can see that a statistically significant difference between the distri-
bution of the fitness values of STGFA-SMOG with 30 generation and 10 generation
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appears in the scoutantblokish app for three configurations: CLB, CLC, and
CLM, in the dib2calc app for three configurations: CLB, CLM, and CLN, and
in the sourceforgesolitaire app for one configuration: CLB. As a result, we re-
ject the null hypotheses for these configurations claiming that the fitness values of
these fitness function configurations are from different distributions. The effect size
measure for these configurations where a statistically significant difference exists is
presented in Table 6.31. STGFA-SMOG with 30 generation for CLB configuration
on the dib2calc app is shown to have a large effect size over STGFA-SMOG with 10
generation. In addition, it can be seen that a medium effect size on the scoutant-
blokish app for two configurations: CLB and CLM, and on the dib2calc app for
one configuration: CLN, and small effect size for the rest of the configurations.

Table 6.30 shows that a statistically significant difference was found in three
configurations (i.e. CLB, CLC, and CLM) on the scoutantblokish app,
three configurations (i.e. CLB, CLM, and CLN) on the dib2calc app,
and one configuration (i.e. CLB) on the sourceforgesolitaire app. From the
statistical analysis of the effect of search budget, we observed that STGFA-
SMOG with 30 generations outperformed STGFA-SMOG with 10 generations
in all the configurations where a statistically significant difference is found.

Table 6.30: P-Values for Mann-Whitney rank-sum test of the crashes detected by
STGFA-SMOG with 30 generation versus 10 generation

CLB CLC CLM CLN
scoutantblokish 5.44e-07 5.00e-05 1.88e-07 0.08
dib2calc 7.80e-13 0.16 0.01 6.15e-08
palmcalc NA 0.08274 NA NA
sourceforgesolitaire 0.00 NA NA NA

Table 6.31: Results of Vargha-Delaney A Measure of the crashes detected by
STGFA-SMOG with 30 generation versus 10 generation

CLB CLC CLM CLN
scoutantblokish 0.64 0.59 0.66 -
dib2calc 0.72 - 0.56 0.66
palmcalc - - - -
sourceforgesolitaire 0.56 - - -
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7
Discussion

In this research, an empirical study was conducted on a newly developed search-
based test generation framework for Android GUI-based testing to investigate whether
a certain combination of fitness functions reveal more crashes than other configura-
tions and whether a large search budget uncovers more crashes than a small search
budget, which is a number of generations of solution evolution in this study. Hence,
this chapter discusses the findings of the research with respect to the four research
questions based on the experimental results depicted in Section 6.2.

7.1 RQ1: Framework Design
How can a search-based test generation framework for Android GUI-based testing
best be designed to support multi-objective generation with support for the inclusion
of additional fitness functions over time?

To design multi-objective generation, we applied a non-dominated sorting genetic
algorithm (NSGA-II). The use of NSGA-II enabled STGFA-SMOG to prevent the
loss of elitist test cases during the generation of test cases. Some elitist test cases
found in one generation may be lost at some point in the next generation. By adopt-
ing NSGA-II we are able to generate multi-objective test cases and overcome the
challenge of losing elitist test cases. Using NSGA-II our framework is also able to
generate diversified Pareto-optimal test cases that fulfill different goals at the same
time. The adoption of a factory method design pattern to implement the fitness
functions enabled our framework to be open for the inclusion of new additional
fitness functions over time. We demonstrated this capability by implementing the
fitness functions in three cycles. In the first cycle, we implemented CPU usage and
Memory usage fitness functions by following the factory method design pattern. In
the second cycle, we added the Battery usage and Network usage fitness functions
without modifying the existing implementation of the existing fitness functions. Fi-
nally, we added the class, method, and line coverage fitness functions by simply
adding the implementation of these fitness functions and including them in the fac-
tory pattern without modifying the existing implementation.

In the intermediate evaluation, we compared the fitness values of STGFA-SMOG
fitness functions configurations and Random test generation. We also compared the
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fitness values of the STGFA-SMOG fitness function configurations at two search
budgets (i.e. 10 and 15 generation search budgets) The intermediate evaluation
showed that our framework was able to generate tests with higher fitness values in
each of these function configurations than Random testing. Similarly, the test cases
generated by the large search budget (i.e. 15 generation) gave higher fitness values
than the test cases generated by the small search budget (i.e. 10 generation). This
means that our framework is better able to show certain qualities of interest (CPU
usage, memory usage, battery usage, network usage, code coverage) than random
test generation. Regardless of the crash results, our framework is effectively able
to generate tests for assessment of non-functional qualities. If testers are interested
in a quality of interest, they can generate tests and see if any pass a set threshold
indicating an issue. For example, a tester concerned with CPU usage could set a
threshold (e.g., 80% usage). They could generate tests, and investigate the results
of any where CPU usage passed 80%. This framework is better able to generate
such tests than the baseline. This can benefit testers interested in non-functional
qualities or performance tests. The intermediate results show that RQ1 has been
answered successfully.

7.2 RQ2: Effectiveness of Test Cases

How effective are the generated test cases at causing crashes in the assessed apps, in
comparison to random test generation?

Our intermediate experimental results confirmed that there is a significant difference
between STGFA-SMOG and random test generation that the effect size turned in
favor of STGFA-SMOG. Some irregularities are observed on the significant difference
when it comes to the final experimental results mainly on the comparison between
STGFA-SMOG with 10 generation and Random test generation where we can see
a small effect size for many of the entries. The size of the search budget might
be the reason for the small significance. As of the final experiment from STGFA-
SMOG with 30 generations, the exceptions ActivityNotFoundException, IndexOut-
OfBoundsException, and ArrayIndexOutOfBoundsException have been triggered
four times each since NullPointerException has been triggered three times (one fault
is triggered twice in app dib2calc while another fault of this type trigger once in app
palmcalc) and ClassCastException was only triggered once. Exception ActivityNot-
FoundException was triggered four times, IndexOutOfBoundsException triggered
three times while ArrayIndexOutOfBoundsException was triggered twice. Only two
types of exceptions (IndexOutOfBoundsException and ArrayIndexOutOfBoundsEx-
ception) are found by the Random test data generation which both were triggered
only once. These results confirm the claim that STGFA-SMOG outperforms Ran-
dom test generation. The triggering of these faults throughout trials is also a good
indication of the credibility of our results. When it comes to the frequency of these
crashes, the average number of times the crashes are triggered by STGFA-SMOG
is found to be much higher than the random test generation for both search budgets.

76



7. Discussion

7.3 RQ3: Effectiveness of the Combinations of
Fitness Functions

Which combinations of fitness functions is the most effective at causing the assessed
apps to crash?

In the final experiment, this study assessed the effect of having a certain type of
combination of fitness function on finding crashes. Combinations of fitness functions
compared with other combinations to see if they affect the effectiveness of the test
cases in terms of the frequency of crashes triggered. This was done by setting the
search budget as a control group. For the 10 generation budget, though statistical
difference exists between combination CLB vs CLC, CLC vs CLM and CLC vs
CLN for apps dib2calc, scoutantblokish and dib2calc respectively all the effect
sizes are negligible. For the 30 generation search budget though there are some more
combinations with a statistical difference the effect sizes are limited to medium and
small. Configuration CLB can be seen outperforming the other configuration on
dib2calc. But it is difficult to claim significant effect with the data we have since
we were unable to see any large effect size and we believe further study is needed
to see if this configuration outperforms the configurations in other apps. Here in
our experiment, there is no permanent configuration that is consistently best at
revealing faults for different apps. In future work, the scope of experiments will
be extended to look at a larger number of apps, a wider variety of fitness function
combinations, and additional search budgets.

7.4 RQ4: Effect of Search Budget
Does an increased search budget (the number of generations) improve the effective-
ness of the resulting test cases?

As it has been mentioned a couple of times in the above sections increasing the
search budget significantly improves the fitness scores and the ability of test cases
to find faults. This is true for the intermediate and final evaluations. The statisti-
cal difference with quite many large effect sizes for the comparing STGFA-SMOG
with 15 versus 10 generations is shown in intermediate evaluation while we can
also confirm based on the number of crashes found in the final evaluation. Based
on the final experiment from STGFA-SMOG with 30 generations, the exceptions
ActivityNotFoundException, IndexOutOfBoundsException, and ArrayIndexOutOf-
BoundsException have been triggered four times each since NullPointerException
has been triggered three times and ClassCastException was only triggered once.
Exception ActivityNotFoundException was triggered four times, IndexOutOfBound-
sException triggered three times while ArrayIndexOutOfBoundsException was trig-
gered twice. In this case, we can see how the frequency where the occurrence of the
faults improved on the 30 generation search budget. The unique exceptions found
by STGFA-SMOG with 30 generations which in this case are five is a little higher
than the 10 generation search budget(three in this case). Similarly, the average
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number of times the crashes are triggered by STGFA-SMOG with a 30 generation
search budget per trial is higher than this of STGFA-SMOG with 10 generations for
all configurations included in our experiment. This shows the test suite’s capability
to find error increases as the search budget increases.

7.5 Threats to Validity

7.5.1 Internal Validity
The test generation takes a long time (see Tables 6.17 and 6.18) which makes it
difficult to have sufficient data for analysis. Having limitations in the quantity of
input data can affect the conclusion of the experiment. It would have been helpful
if we got data for more search budgets as some of the results show inconsistencies
though we can take the pattern seen with the given search budgets. Studying the
effect of selecting a certain type of combination of fitness function on a quality of
test cases which is RQ2 is a good example of this. Ultimately, we were not able
to use line coverage and method coverage in the final experiment and we could not
make it due to time limitation. However, we believe that the quantity of data we
gathered in this experiment is sufficient to demonstrate the potential effectiveness
of this framework (i.e., to demonstrate that it can attain higher fitness values and
trigger more crashes than a baseline), even if we were not able to attain clear answers
regarding which fitness configurations were more effective.

7.5.2 External Validity
We limited the number of android apps in our experiment due to time factors that
may not optimally represent all the other apps out of the study. We chose to ran-
domly select the apps to minimize bias on input selection that might lead to a wrong
conclusion. In addition, our framework is only compared with random test case gen-
eration since comparison with random search is a standard procedure. Hence, we do
not know how it performs in comparison to other existing techniques such as Swift-
Hand, Sapienz, and EvoDroid. As a result, we do not have any claims, suggestions,
or results related to such comparisons. We preferred to study which combination of
fitness functions better reveals more fault as there is no standard to guide testers
which configuration to use and when. In case a specific configuration reveals more
fault than others it will minimize testing cost by saving time that would have been
wasted in generating test cases by many configurations for repetitive work and in-
stead use the better configuration only.

Moreover, we took volume control events, simple atomic events like swipe and tap,
but not complex user gestures such as long-press and sophisticated system events
such as fingerprint recognizer. Our framework is effective on Android UI that does
not have login pages. This is because we did not validate the credentials and that
could be one trade-off when applying our framework beyond the context mentioned
here. In the comparison of performance among different configurations (RQ3) the
result seems inconsistent and what we observed is an unstable pattern. When con-
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clusions are made here in our experiment we carefully saw the results not to conclude
prematurely that we left some issues open for further investigation mainly for those
we were unable to see a clear pattern.

7.5.3 Conclusion Validity
Conclusion validity concerns the empirical design to ensure that a statistical relation-
ship exists between treatment and outcome. So, when selecting statistical analyses
to analyze our experimental results, we have attempted to ensure the base assump-
tions of the selected statistical analyses are met. We have favored non-parametric
methods over parametric methods to analyze our experimental results. This is be-
cause the distribution characteristics of the results of search-based test generation
are not generally known a priori, and normality cannot be assumed.
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Conclusion

8.1 Conclusion

In multi-objective search-based test generation, the effectiveness of the test cases
depends on the selection of effective fitness functions. However, it is not yet known
which combination of fitness functions is more effective at triggering more crashes
and achieving other test goals, such as identifying excessive CPU usage, memory
usage, and maximizing code coverage for Android GUI-based testing. It is also not
well known the effect of search budgets on the effectiveness of the test cases for
Android GUI-based testing. Moreover, existing multi-objective search-based test
generation tools for Android GUI-based testing do not allow testing to be adapted
to different specific goals such as maximizing code coverage, detecting faults, and
identifying excessive CPU, memory, and battery usage. Hence, we are motivated
to conduct this study so that we can add some scientific knowledge to the multi-
objective search-based test generation for the Android GUI-based testing domain.

In this study, to investigate the problems mentioned in the previous paragraph,
we developed a multi-objective search-based test generation for Android GUI-based
testing called STGFA-SMOG. STGFA-SMOG allows users to select three fitness
functions depending on the goal the user wants to achieve and set the search budget
(i.e. number of generations). It also allows the addition of more fitness functions
over time. The tool can be used by developers or testers to generate test cases
that can be used to achieve different goals. It can be used to generate test cases to
trigger faults in the AUT. Other developers can also use it to generate test cases for
performance tests such as for identifying test cases that achieve excessive memory,
CPU, battery, and network usage. Using the framework developed, we also con-
ducted empirical research intending to guide how to choose fitness functions and
which of them to combine for effective test case generation. It also aims to guide
which search budgets performed best with these combinations of fitness functions
that gave effective test cases with respect to the goal set. To achieve these goals
from the empirical research, we formulated a number of research questions related
to how the framework should be designed to ensure effective test cases, the effective-
ness of the generated test cases at triggering crashes in comparison to Random test
generation, which combinations of fitness functions best trigger crashes, and effect
of search budgets on the effectiveness of the test cases at triggering crashes.
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The intermediate evaluation shows that STGFA-SMOG generates test cases with
higher fitness values than Random test generation. Hence, we concluded that
STGFA-SMOG outperformed Random test generation at generating effective test
cases for non-functional tests such as CPU usage, memory usage, battery usage,
network usage, and code coverage. Moreover, the final evaluation also shows that
STGFA-SMOG outperformed Random test generation at generating test cases that
trigger more crashes than test cases generated by Random test generation. For the
comparison of the fitness function configuration of STGFA-SMOG to each other,
we did not see a consistent pattern where one configuration outperforms the other
configurations. When the search budget is increased, we found that some configu-
rations outperformed the other configurations. However, the best configuration is
dependent on the AUT. Our study also revealed that STGFA-SMOG with a large
search budget generated test cases with higher fitness values and test cases that
trigger crashes more often than STGFA-SMOG with a small search budget. That
is an increase in search budget results in increasing the performance of the STGFA-
SMOG.

Our study constitutes a step towards understanding the design of multi-objective
search-based test generation for Android GUI-based testing with support for the
addition of more fitness functions over time, the effect of search budget, and effective
combination of fitness functions to chose for Android GUI-based testing. Our study
results are promising and more research is needed to better understand them. In
the future, we recommend expanding the scope of the experiment to look at a larger
number of apps, a wider variety of fitness function combinations, and additional
search budgets. We also recommend implementing an additional feature that enables
the framework to generate test cases based on the widgets in the current context of
the AUT in addition to randomly generating test cases.
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Appendix 1

settings.py
# === GA parameters ===
SEQUENCE_LENGTH_MIN = 20
SEQUENCE_LENGTH_MAX = 50
POPULATION_SIZE = 10
OFFSPRING_SIZE = 10
NGENERATION = 10
# Crossover p r o b a b i l i t y
CXPB = 0.3
# Mutation p r o b a b i l i t y
MUTPB = 0.3
# Reproduction p r o b a b i l i t y
REPROPB = 0.15
# Configure combination o f f i t n e s s f unc t i on to use
# e . g [ " crash " , " l e n g t h " , " cpu " | " memory " | " network " | " b a t t e r y " ]
FITNESS_FUNCS = [ " crash " , " l ength " , " cpu " ]
# Configure f i t n e s s we i gh t s
# ( crash , l eng th , cpu |memory | network | b a t t e r y )
# (1 .0 , −1.0 , 1 .0 ) order does matter
FITNESS_WEIGHTS = (1 . 0 , −1.0 , 1 . 0 , )

# === Query CPU, Memory , Network , and Bat tery usage ===
CPU_INTERVAL = 3
MEM_INTERVAL = 3
NET_INTERVAL = 3
BATT_INTERVAL = 3

# === Top b e s t i n d i v i d u a l s to re turn ===
BEST_INDIV = 10
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