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Feature point description and classification for urban street scenes using convolu-
tional neural networks.
HENRIK WALLENIUS
Department of Signals and Systems
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Abstract
The positioning problem may be solved by localizing features in a video stream and
matching these with a map of features. However, this technique requires a unique
representation of the features, which is not feasible using traditional methods.
In this thesis one method for a feature point descriptor and one for a feature point
classifier, applicable in urban street scenes, using a convolutional neural network
approach are proposed. The thesis presents the concept of training a feature de-
scriptor to be invariant with respect to scale, rotation and noise given a training set
of image patches modified by these transformations. The feature point classifier is
trained given a predefined partition of stable and unstable classes, where a class is
considered stable if it is expected to always appear at the same location in a scene,
e.g. a building, and unstable otherwise, e.g. a pedestrian.
The results from the trained descriptor were compared with the SIFT descriptor, on
urban street scenes, and were found to perform better by comparing their receiver
operating characteristics. The results from the trained feature point classifier were
compared with a semantic segmentation technique and yield similar performance on
the entire validation set and significant improvements on small objects.

Keywords: computer vision, feature description, feature detection, convolutional
neural networks, neural networks, urban street scenes.
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1
Introduction

The interest of autonomous vehicles has increased substantially during the last few
years. Letting a system control a vehicle’s interactions with its environment and
the vehicle itself has multiple possible benefits, such as increased fuel efficiency,
more efficient parking and increased mobility for non-drivers [24]. Furthermore, the
number of traffic accidents may be decreased by removing the risk of a human error.
A report from the U.S. Department of Transportation claims that the critical reason
behind the accident was in 94% of the cases assigned to the driver [35]. Having a
system to monitor the driver is therefore of great interest to reduce the number of
road traffic victims. Google has taken a step further and plans to by 2020 release
Google car, a fully automatic vehicle without steering wheel or pedals. Instead it
will be operated by a smartphone [21]. By 2017 Volvo Cars plans to have 100 self-
driving cars, used by real-world customers, driven on the ring roads of Gothenburg
that will not require human supervision.

1.1 Background

In order to control all tasks of an autonomous vehicle, a combination of several
systems is needed. Radars have been tested to detect obstacles and vehicles from
far distance [40] while a laser scanner can be used to sweep over the neighborhood
of the vehicle. This can be used to discover pedestrians and distinguish between the
road and curb when parallel-parking [38]. Another technique is to create a network
consisting of the Global Positioning System (GPS) in each car in order to analyze
how drivers interact on an infrastructural level in order to predict and prevent traffic
congestion. A GPS signal may also determine the position of the vehicle, however
due to the lack of accuracy in consumer-grade devices and its lack of ability of
acquiring measurements in e.g. tunnels [28], a more reliable system is needed. One
solution is to use the video stream from a camera to decide the position of the
vehicle. This can be achieved by applying Simultaneous Localization And Mapping
(SLAM) which addresses the problem of acquiring a spatial map of the environment
while simultaneously localizing the vehicle relative to this model [39].

The map created by SLAM can be built upon several approaches. One approach
is through maps containing features. A feature is a local description of an interest
point, e.g. a corner, found in an image. By tracking these features in consecutive
image frames in a video stream, the 3D-position of these interest points can be
estimated given some optimization constraint. The final result is an optimized 3D-
map of the discovered features. When returning and driving through the same
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1. Introduction

location another time the map can be used to position the vehicle. This is done
by relating and matching the currently detected features with the features stored in
the map. When using this approach, it is essential to construct a reliable map such
that it actually reflects the true surrounding. The detected interest points are from
now on referred to as feature points and they are detected by a detector.

1.2 Problem Formulation
Current methods of finding and describing features are handmade, rely on a math-
ematical foundation, e.g. difference of Gaussian and require the user to set some
parameters. It is desirable for the features to be invariant with respect to e.g. illu-
mination, scale, rotation and noise such that the feature can be represented uniquely
and independently of field of view and time of observation. Otherwise there is a risk
of representing the same feature point in multiple ways depending on the external
conditions. The traditional feature description algorithms do not cover all men-
tioned aspects, and creating a map to position via, in a robust manner, is hard due
to the ambiguity. The descriptor problem becomes how to construct robust and
reliable features, invariant of changes in the environment and view point.

The detected feature point shall not only be invariant but also belong to an
object that will always be at the current location. It is therefore also important
to classify each feature point in order to know what kind of object it is placed on.
When creating a positioning map for an autonomous vehicle it is not advantageous
to store features from unstable classes, e.g. a pedestrian or the leaf of a tree; these
will probably not be at the same location when returning next time. Instead the
features should be based on objects from stable classes, e.g. buildings and road signs.
The classification problem becomes how to classify detected feature points in order
to determine whether they belong to a stable class and are suitable, or if they are
unstable and not suitable.

1.3 Related Work
A requirement for a descriptor is repeatability, the capability of finding and de-
scribing the same feature point and its feature description in a unique way despite
changes in the environment. Finding descriptors invariant with respect to scale
can be treated with a scale-space kernel to search for stable feature points in scale-
space. It has been shown by Lindeberg [23] that the only possible scale-space kernel
is the Gaussian. Mikolajczyk found that the optima from the Laplacian of Gaussian
produced the most stable image features compared to other suitable image func-
tions [26]. These findings were the starting point of the Scale Invariant Feature
Descriptor (SIFT) by Lowe [25] where the Laplacian of Gaussian in scale-space is
approximated, which reduces the need for computational resources. In SIFT, a his-
togram of image gradients is constructed and converted to a vector of float numbers
which corresponds to the descriptor. By constructing the descriptor via a normal-
ized histogram, SIFT is to some extent also illumination and rotation invariant
[25]. Searching in all scale spaces and representing the vectors with float precision
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1. Introduction

is however computationally expensive and SIFT is hard to utilize in a real-time
application.

The complexity of a descriptor can be reduced by introducing a binary approach.
Rublee et al. [30] compiled the Oriented FAST and Rotated BRIEF (ORB) descrip-
tor, a binary rotation invariant descriptor which is about two orders of magnitude
faster than SIFT. The computational cost of comparing two descriptors is also re-
duced since in the binary case the comparison is on the form of a bitwise XOR
operation. Binary descriptors are applicable in state-of-the-art real-time applica-
tions, e.g. monocular SLAM solvers [27]. However, using a binary approach confines
the representation of a descriptor.

Instead of decreasing the descriptor’s complexity, research has been done on
how to improve its descriptional power. Zagoruyko et al. [43] proposed a deep
Convolutional Neural Network (CNN) approach to determine similarities between
two patches. Different architectures were tested e.g. the two patches were fed to
the same network or in parallel through two identical networks. The final part of
the network consisted of a decision network to determine the similarity between the
two patches. Simo-Serra et al. [33] proposed a method where the decision network
as a similarity measurement was removed and replaced by an L2-norm. They also
proposed a training procedure where only the most difficult patches were used when
training the network to improve performance. The models generalized well over
different datasets, handles illumination changes well and can be used as an in-
replacement to SIFT. The networks were however trained on image patches samples
on 3D reconstructions and not on real images.

Feature descriptors from e.g. SIFT have been used in classification tasks. Ayers
et al. [1] used SIFT descriptors for indoor room classification to distinguish between
seven room types. Each image was represented by a histogram of the SIFT de-
scriptors in the image and this representation was classified with a Support Vector
Machine (SVM) [9] and Adaboost [13]. However, the classifier had problems to make
the right predictions as the number of room types increased. State-of-the-art tech-
niques to classify images rely today on convolutional neural networks. Top perform-
ing methods on the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
[31], a competition where over 1 000 000 images from 1 000 classes are classified, are
all convolutional neural networks [17, 34, 37]. State-of-the-art techniques to segment
and classify pixel by pixel in an image also rely on convolutional neural networks.
Since each pixel is classified this technique can be used to classify feature points by
mapping the network’s prediction to the predefined partition of stable and unstable
classes. Top performing approaches on the Cityscapes dataset pixel-level semantic
labeling task [8] all propose a solution using convolutional neural networks [22, 42].

1.4 Purpose
The purpose of this thesis is to investigate if a convolutional neural network can
be used to learn a feature descriptor to be invariant with respect to scale, rotation
and noise in urban street scenes. Furthermore, the purpose is also to explore if a
convolutional neural network can be used to classify feature points according to a
predefined division.

3
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1.5 Proposed Solution

In this thesis a trained descriptor through a convolutional neural network is proposed
as solution to the descriptor problem formulated in Section 1.2. The descriptor is
trained using pairs of patches, cropped images, extracted from urban street scenes.
Pair of patches from the same feature point form a positive set and patches not from
the same feature point form a negative set. To make the descriptor invariant with
respect to certain transformations, the patches will be manipulated to handle such
cases. The network is trained to distinguish between positive and negative pairs of
patches and from the trained network a descriptor is extracted which can be used
to describe single patches. Previous work within this field has not dealt with real
images, which is now taken into consideration.

Secondly a classifier is trained through a convolutional neural network as solution
to the classifying problem formulated in Section 1.2. Patches are extracted and
classified as either a stable or unstable patch, using annotated images as reference.
A stable patch is from a feature point belonging to an object one assumes will
always appear at the site such as a traffic sign or a building and hence suitable to
be represented in a positioning map. An unstable patch has a feature point from an
object one assumes will not always appear such as a pedestrian or a car. The patches
are collected from urban street scenes and the separation between suitable and non-
suitable objects are done in a supervised manner before training the network. Using
annotated images to train a convolutional neural network classify feature points has
not, to my knowledge, been done before.

1.6 Dataset

The dataset used in this thesis is the Cityscapes dataset [8] by Daimler AG R&D, TU
Darmstadt, MPI Informatics and TU Dresden. It contains a diverse set of colored
stereo video sequences recorded in street scenes and consists of 25 000 frames of size
2 048 × 1 024, taken from 50 different cities, at different time of the year (spring,
summer, fall). The images are annotated such that each pixel is classified to one
out of 30 classes, e.g. pedestrian, car, vegetation, road, traffic light and bridge. The
annotation is constructed by describing each object through a polygon. 5 000 of
the images have a high quality pixel-level annotation while the other 20 000 images
have a coarse annotation. The method used in this thesis requires finely annotated
images and therefore only the high quality pixel-level annotated images will be used.
An example of an image and its annotated counterpart are shown in Fig. 1.1a and
1.1b.

1.7 Scope

Finding and describing features require both a detector and a descriptor. This thesis
will only deal with the descriptional part and traditional methods will be used to
find feature points. Hence the CNNs will be trained by data extracted from the
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1. Introduction

(a) (b)

Figure 1.1: (a): Example of image from an urban street scene in the Cityscapes
dataset. (b): Example of high quality pixel-level annotated image. There are in
total 30 classes. Example of classes present in this case are car, pedestrian, building
and vegetation.

result of these traditional detector methods. The partition of classes used to train
the classifying CNN is done in a supervised manner in advance.

1.8 Structure of the Report
The following parts of this thesis are organized as follows. Chapter 2 presents
the theoretical foundation this thesis relies on. It is divided into two main paths,
an introduction of concepts in neural networks and a presentation of two popular
handmade descriptors. Chapter 3 describes the methods being used. The main
parts are developing a descriptor and a classifier and covers how the methods were
implemented, what programming language was used and how different parameters
were set. The baseline methods used to compare the compiled methods are also
explained here. Chapter 4 handles the results. These are discussed in Chapter 5.
The thesis is finally concluded in Chapter 6.
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2
Theory

This chapter aims to present the theoretical components used in this thesis. The
foundation lies in neural networks, which will be presented in its simplest form
through a feed forward neural network. The currently used state-of-the-art tech-
niques in neural networks when solving computer vision and image processing prob-
lems are described and their training procedure is explained. The second part of the
chapter presents two commonly used feature detectors and descriptors.

2.1 Neural Networks
Modelling the behaviors of a complex system, such as face recognition, using tra-
ditional mathematical methods is hard. Another procedure to tackle these issues
is by mimicking the structures from nature where problems have been solved by
evolving a measurement. One example is the human nervous system which receives
stimuli from external sources. The stimuli are transduced to electrical impulses and
fed to the human brain where it is processed and converted to new electrical im-
pulses into discernible responses as system output through the effectors [16]. The
electrical impulses are transmitted from one neuron to the next through synapses,
where the electrical signal is converted to a chemical signal and then back to an
electrical. When the system is exposed to a certain stimulus caused by its sur-
rounding environment it either strengthens or weakens the activity of the synapse
depending on how often the activity occurs. This phenomenon is referred to as syn-
tactic plasticity and enables the human nervous system to adapt to its environment.
Connecting thousands and thousands of neurons with synapses enables the human
being to handle and solve highly non-linear and complex tasks. This concept of
a system evolved with respect to its environment is applicable in many computer-
related problems. The mimic of the human brain is often referred to as a neural
network. In this section, the foundation of a neural network will be presented as
well as the state-of-the-art techniques currently used.

2.1.1 Feed Forward Neural Networks
The fundamental unit in a neural network is a neuron. The concept of a neuron is
presented in Fig. 2.1 where the network receives an input x = {x1, . . . , xi, . . . , xm}
of dimension m. The i:th input node, xi, connected to the k:th output node, gets
weighted with the synapse weight ωki. Notice that, compared to the synapse in the
human brain, the synapse weights can obtain negative values. The weighted input
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x1

xi

xn

y1

yk

ym

ωki

Figure 2.1: Illustration of a simple neural network. Input node xi and output
node yk are connected through the weight ωki, denoted by the solid line, and an
activation function φ(·).

is then summed together with a bias term bk through an adder such that the output
uk from the adder becomes,

uk = bk +
m∑
i=1

ωkixi, (2.1)

or by adding a fixed input x0 = 1 and synapse weight ωk0 = bk we obtain

uk =
m∑
i=0

ωkixi. (2.2)

uk is then transferred to a non-linear activation function φ(·) in order to enlarge
the set of functions the network can map against. Examples of commonly used
activation functions [16] φ (uk) are the step function mapped to {0, 1},

φ (uk) =
{

1 if uk ≥ 0
0 otherwise , (2.3)

sigmoid function mapped to [0, 1],

φ (uk) = 1
1 + e−uk

, (2.4)

and hyperbolic tangent function mapped to [-1,1],

φ (uk) = tanh(uk) = euk − e−uk

euk + e−uk
. (2.5)

The activation functions are shown in Fig. 2.2a, 2.2b and 2.2c.
Rectified Linear Units (ReLU) is an activation function which compared to the

traditional sigmoid and hyperbolic tangent function maps to an infinite set, [0,∞),
through the function,

φ(x) = max(0, x) (2.6)

8
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Figure 2.2: Example of activation functions φ(·). (a): Threshold function as
defined in Eq. (2.3). (b): Sigmoid function as defined in Eq. (2.4) with a = 1. (c):
Hyperbolic tangent function as defined in Eq. (2.5). (d): ReLU function as defined
in Eq. (2.6).

hence constantly zero for x ∈ (−∞, 0) and linear for x ∈ [0,∞), see Fig. 2.2d.
The output of the neuron after applying the activation function becomes,

yk = φ (uk) = φ

(
m∑
i=0

ωkixi

)
, (2.7)

hence a weighted linear combination of the input mapped to an interval through a
non-linear activation function. The neurons form a layer which can be fed to an
additional layer and so on. Data is however not transferred back. This kind of
network is referred to as a feed forward neural network (FFNN). When all neurons
in the previous layer are connected to all neurons in the current layer the network
is referred to a fully connected neural network (FCNN).

2.1.2 Convolutional Neural Networks
A drawback with a FCNN is the growth of number of neurons as the input size
increases. Imagine a color image with three color channels and a weight and height
both larger than 600 pixels, treating the input image with a similar approach of a
neural network where each color pixel corresponds to an input neuron. Assuming
the first layer consists of n1 neurons, the network would require 3×600×600×n1 =
1 080 000n1 weights if each input neuron is connected to each neuron in the first layer.
The complexity gets unmanageable as n1 grows. A sparser approach is through a
convolutional neural network (CNN) where only local interactions are considered
between neurons. It is inspired by the receptive fields of a visual system. Each
receptive field is a subarea of the retina from which responses can be elicited by
light [2].

A CNN has been proven to tackle computer vision and image processing tasks
in an efficient manner. He et al. [17] won the 1st place in ILSVRC 2015 object
localization task [31] which consists of classifying images among 1 000 categories.
In this section the foundations of a convolutional neural network will be explained,
considering an image as input. Firstly, two commonly used layers, convolutional
layer and max pooling layer, are presented and lastly two loss functions, describing
which objective the network shall minimize, are explained.

9
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Figure 2.3: Illustration of a convolutional layer. The input is a gray scale image
[3] and the layer consists of three kernels, the weights for each kernel are presented
with its corresponding heat map. The outputs are stacked on top of each other and
fed forward to the next layer of the network. Notice how each kernel finds different
features in the image.

2.1.2.1 Convolutional Layer

A convolutional layer used in image processing tasks consists of three dimensions,
width nw, height nh and depth nd. Hence the size of the input to the layer is
nw × nh × nd. A kernel K of size m × m × nd with m2nd weights is applied to
the input such that a weighted summation occurs among all input neurons inside
the kernel including the entire depth. The procedure is equivalent to the weighted
summation of the neurons in a fully connected layer as described in Section 2.1.1
but the summation is applied in three dimensions instead of one and only to a
window of the input instead of the entire. The output from each summation is a
scalar. The kernel is shifted one step in either width or height direction and the
procedure is repeated until the kernel has covered the entire image. Moving the
kernel over the input refers to the convolutional approach of processing data. The
final output is a two dimensional map of size (nw −m)× (nh −m). Several kernels
Ki, where i ∈ {1, . . . nout} can be applied and for each a two dimensional map is
obtained. Stacking these nout maps on top of each other the final output from the
convolutional layer is of size (nw −m)× (nh −m)× nout. The output is affected by
e.g. a non-linear activation function before it is fed to the next layer. In this manner
the size of the output can be freely set. Instead of moving the kernel only one step
between each convolution the number of steps can be set arbitrarily conditional
that the kernel can cover the entire image without moving outside of it. This will
result in a less dense map. It is also possible to obtain the same spatial dimensions,
nw × nh, by adding an m/2 wide border of zeroes around the input such that the
input becomes (nw +m)× (nh +m)× nd. An example of three convoluted outputs
using three kernels on a gray scale image (the depth of the input is one) is shown in
Fig. 2.3. The weights of each kernel is presented through each heat map.

10
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After each convolutional layer a non-linear activation function is applied to each
neuron. A commonly used activation function is the ReLU. One reason is the sparser
representation it achieves compared to the sigmoid and hyperbolic tangent function.
When the network is randomly generated, the probability that the activation func-
tion f(x) > 0 is 0.5. This implies that only, on average, 50% of the input propagates
through the layer. Another advantage of using a ReLU is the avoidance of vanish-
ing gradients which prevents the network from learning. It has also been shown by
Krizhevsky et al. [20] how ReLUs speeds up the convergence of a convolutional neu-
ral network. By replacing the hyperbolic tangent functions with ReLUs, a training
error rate of 0.25 was reached six times faster when training on the CIFAR-10 data
set [19].

2.1.2.2 Max Pooling

Max pooling is a layer desirable to use in order to reduce the complexity of the
network. The input feature map is transformed into several non-overlapping sub-
regions. From each sub region is the maximum value extracted and the collection
of these forms the output feature map. Imagine a small translation of the original
input. A max pooling layer will not be affected since only the maximum value
within each sub region is propagated to the next layer. Hence, a max pooling
layer is invariant with respect to small translations by reducing the resolution of the
feature map [32]. A spatial kernel Km×m of size m×m determines the size of the sub
regions. Applying a max pooling layer with a kernel of size m×m on a feature map
of size n× n results in an output of size n

m
× n

m
conditional that mod (n,m) = 0.

2.1.2.3 Loss Functions

Depending on what purpose the CNN has, it needs do be trained with respect to
a certain criterion. A loss function at the end on the network describes the total
error of the networks output with respect to its desired output. Given this error,
the loss function tells how the weights should move in weight space to reduce the
error and hence improve the performance of the network. For a classification task
it is common to add some fully connected layers at the end of the network which
final output size is the number of possible classes. The output is mapped such that
its sum is unity, hence each output neuron represents the probability of the input
belonging to the corresponding neuron’s class. The normalization is performed with
a logsoftmax function defined as,

flogsoftmax(yi) = eyi−s∑
j e

yj−s
(2.8)

where yi is the output for the i:th class before normalization, flogsoftmax(yi) is the
probability of the i:th class and s = maxj yj is the shift. The loss function Lclass to
minimize for a classification problem becomes,

Lclass(y, c) = −yc, (2.9)

where y = [y1, . . . , yn]T is the output for all n classes and c ∈ {1, . . . , n} is the
ground truth class. In order to minimize the loss, it is beneficial for yc to tend to 1

11
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for i = c and tend to 0 for i 6= c.
Instead of classifying, the network can be used to determine whether two inputs

are similar or not. A suitable loss function to use is Hinge embedded criterion [33].
The loss function Lsim to minimize is defined as,

Lsim(yi, zi) =
{
yi if zi = 1
max (0,M − yi) if zi = −1 , (2.10)

where yi is a measurement between the two inputs, M is a predefined constant, and
zi is the ground truth. zi is 1 if the two inputs are similar and −1 otherwise. In
order for the loss to be minimized it is beneficial for yi to tend to 0 for similar inputs
and to M or larger for non-similar inputs.

2.1.3 Training
The weights and biases of a network given a loss function can be optimized through
a training procedure. The compiled dataset the network shall handle is normally
divided into three groups, training, validation and testing. The training data, which
contains the ground truth, is fed to the network and the network adjusts to it such
that the error with respect to the loss function is minimized. The validation data,
which contains the ground truth, is fed to the network to examine its performance
but does not affect the network’s weights. If the network gets too specialized on the
training data, it loses its ability to generalize to similar data [16]. The phenomenon
is called overfitting and occurs when the network improves on the training data but
deteriorates on the validation data. By validating the network through a validation
set this can easily be discovered. The test data contains the ground truth and is
used for testing and benchmarking the network but is not used during training.

Instead of feeding the entire training dataset to the network the set can be sent
in partitions, called mini-batches. It is assumed that minimizing the network on one
mini-batch is similar to minimizing on the entire training dataset [4]. A technique
used to train networks on mini-batches is stochastic gradient descent and is explained
in this section. The layers of the network are optimized such that the weights at the
output layer is adjusted first and then by moving backwards the layers are adjusted
one by one. This procedure is called backpropagation and is presented in more detail
in this section.

2.1.3.1 Stochastic Gradient Descent

Given an input x and a desired output y, pairs ζ = (x, y) are constructed. The
loss function for the network is l(ŷ, y) where ŷ is the prediction from the network
and y is the ground truth. Let F be a family of functions fω(x) parameterized by
the weight vector ω describing the weights of the network. Our mission is to find
a function f ∈ F that describes our problem correctly. By assuming the training
data can represent this we want to minimize the loss Q(ζ, ω) = l(fω(x), y), where
fω(x) is the function mapping the input x to the predicted output ŷ [4]. Given the
training set consists of n sample pairs of ζ we want to find the optimal ω∗ such that
empirical risk,
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En(f) = 1
n

n∑
i=1

l(fω(xi), yi), (2.11)

is minimized. A commonly used method to optimize problems as (2.11) is gradient
descent. The weight vector ω is iteratively updated from iteration t to t+ 1 as,

ωt+1 = ωt − γ
1
n

n∑
i=1
∇ωQ(ζi, ωt), (2.12)

where∇ω is the gradient operator with respect to ω and γ is a constant learning rate.
Calculating the gradients is computationally expensive and instead the gradient can
be estimated by randomly selecting a subset Ω of the samples ζi such that the update
of ω at iteration t to t+ 1 instead becomes,

ωt+1 = ωt − γ
1
||Ω||

∑
i:ζi∈Ω

∇ωQ(ζi, ωt), (2.13)

where ||Ω|| is the cardinality of the set Ω. In its simplest form does Ω contain one
sample, ζt, and ||Ω|| = 1 [4]. The learning procedure can be accelerated through
momentum [36]. Instead of only consider ωt also νt is added such that the loss
Q(ζ, ωt) is minimized through,

νt+1 = µνt − γ
1
||Ω||

∑
i:ζi∈Ω

∇ωQ(ζi, ωt) (2.14)

ωt+1 = ωt + νt+1, (2.15)

where γ is the learning rate and µ ∈ [0, 1] is the momentum. Momentum can be
interpreted as an accelerating gradient descent that accumulates previous gradients
as a velocity vector νt which decays by a factor µ at each iteration. A further
modification of momentum is Nesterov’s accelerated gradient (NAG) [36] where the
weight update is,

νt+1 = µνt − γ
1
||Ω||

∑
i:ζi∈Ω

∇ωQ(ζi, ωt + µνt) (2.16)

ωt+1 = ωt + νt+1. (2.17)

NAG behaves more stably than the classical momentum in many situations,
especially when µ is large [36]. Notice that the original stochastic gradient descent
method is obtained when setting µ = 0.

The growth of the network’s weights can be limited by a weight decay factor.
Weight decay has been important for the CNN to learn [20]. Denoting the loss
function as

E0(ωt) = 1
||Ω||

∑
i:ζi∈Ω

Q(ζi, ωt + µνt), (2.18)

an extra term penalizing large weights is added to the loss function such that the
new loss function becomes

E(ωt) = E0(ωt) + 1
2λ||ωt||

2, (2.19)

13



2. Theory

where λ is the weight decay factor. The weight update using NAG becomes,

νt+1 = µνt − γ
1
||Ω||

∑
i:ζi∈Ω

∇ωQ(ζi, ωt + µνt)− γλωt (2.20)

ωt+1 = ωt + νt+1. (2.21)

2.1.3.2 Backpropagation

Backpropagation is a method of training a network. A sample is fed through the
network and the weights are adjusted, starting at the output layer and moving back-
ward, such that the loss is minimized. The procedure differs for different layers but
the concept is similar for all. In this section we have focused on the backpropagation
of a fully connected layer.

The weighted sum vj(n) corresponding to neuron j with yi as input (output from
the previous layer) and weights ωji (connected from neuron i to j) becomes

vj(n) =
m∑
i=0

ωji(n)yi(n), (2.22)

where n ∈ {1, . . . , N} is the batch set. The output of neuron j becomes

yj(n) = φj(vj(n)). (2.23)

The error at neuron j is defined as ej(n) = dj(n)−yj(n), where dj(n) is the expected
output at neuron j. The error energy at neuron j is defined as Ej(n) = 1

2e
2
j(n) and

the total error energy for the layer as

E(n) =
∑
j∈C
Ej(n) =

∑
j∈C

1
2e

2
j(n), (2.24)

where C is the set of neurons in the output layer. The goal is to find ωji such that
E(n) is minimized. Using chain rule we obtain,

∂E(n)
∂ωji(n) = ∂E(n)

∂ej(n)
∂ej(n)
∂yj(n)

∂yj(n)
∂vj(n)

∂vj(n)
∂ωji(n) . (2.25)

We obtain ∂E(n)
∂ej(n) = ej(n), ∂ej(n)

∂yj(n) = −1, ∂yj(n)
∂vj(n) = φ′j(vj(n)) and ∂vj(n)

∂ωji(n) = yi(n). In
total we have

∂E(n)
∂ωji(n) = −ej(n)φ′j(vj(n))yi(n). (2.26)

The weight ωji is updated accordingly to stochastic gradient descent,

ωt+1
ji = ωtji − η

∂E(n)
∂ωji(n) , (2.27)

where η is a positive learning rate. When neuron j belongs to the output layer
determine ej(n) is straight forward since the ground truth dj(n) is known. When
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neuron j does not belong to the output layer the ground truth of the output from
that layer is not predefined. To model this let us define the local gradient

δj(n) = ∂E(n)
∂vj(n) = −ej(n)φ′j(vj(n)), (2.28)

which according to chain rule becomes

∂E(n)
∂vj(n) = ∂E(n)

∂yj(n)
∂yj(n)
∂vj(n) = − ∂E(n)

∂yj(n)φ
′
j(vj(n)). (2.29)

Left to do is determine ∂E(n)
∂yj(n) . Since E(n) = ∑

k∈C
1
2e

2
k(n) we have,

∂E(n)
∂yj(n) =

∑
k∈C

ek(n)∂ek(n)
∂yj(n) (2.30)

=
∑
k∈C

ek(n)∂ek(n)
∂vk(n)

∂vk(n)
∂yj(n) (2.31)

=
{
ek(n) = dk(n)− φk(vk(n))
vk(n) = ∑m

i=0 ωkj(n)y(j)

}
(2.32)

=
∑
k∈C

(−ek(n)φ′k(vk(n)))︸ ︷︷ ︸
≡δk(n)

ωkj(n). (2.33)

(2.34)

Insertion is Eq. (2.28) yields

δj(n) = φ′j(vj(n))
∑
k∈C

δk(n)ωkj(n). (2.35)

Hence, in order to determine the local gradient at neuron j, δj(n), we must know
the local gradients δk(n) for all neuron k ∈ C which are all neurons ahead of neuron
j having a directed connection. In this manner the weights are adjusted, starting
with the output layer and moving backwards, hence backpropagation [16]. The final
update rule becomes,

ωt+1
ji = ωtji − η

∂E(n)
∂vj(n)

∂vj(n)
∂ωji(n) = ωtji − ηδj(n)yi(n). (2.36)

2.1.4 Weight Initialization
Training a network with correctly initialized weights has been shown to be crucial
[36]. Glorot and Bengio have proposed a method of how the weight initialization
should be performed for a deep neural network [14]. The method was expanded by
He et al. who achieved a robust initialization that particularly considers networks
with ReLUs as activation functions. He et al. propose the weights for a layer should
be sampled from a Gaussian distribution with zero mean and standard deviation of√

2
nl

where nl is the number of weights in to the layer l.
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2.2 Feature Detection and Description
It is of great interest in computer vision and image processing tasks to extract in-
teresting information in images in order to understand the scene. The extracted
information can be collected by a detector which traditionally tracks either edges,
corners or blobs. Line segments or edges can be detected by Sobel or Canny [7]
operator which look for discontinuities in pixel intensities among adjacent pixels. A
corner can be seen as an intersection between two lines and can be detected by e.g.
the Harris corner detector [15]. The Harris corner detector is however sensitive to
scale changes [25] and a more commonly used corner detector is the ORB detector,
which is presented in this section. A blob is defined as a compact region lighter or
darker than its background surrounded by a smoothly curved edge [10], i.e. it has
some attributes that are distinguishable compared to its vicinity. A popular blob
descriptor is SIFT and is presented in more detail in this section. The representa-
tion of a detected corner or blob is through a float or binary vector called feature
descriptor. The feature descriptor is desired to be invariant with respect to e.g.
illumination, rotation and affine transformation, which makes it possible to relate
transformations between images. The ORB and SIFT descriptor are also presented
in this section.

2.2.1 SIFT
Scale Invariant Feature Transform (SIFT) is a detector and descriptor by Lowe [25].
A scale space is introduced to find features that are repeatable during different views
of the same object. Lindeberg [23] has shown that the Gaussian function,

G(x, y, σ) = 1
2πσ2 e

−(x2+y2)/2σ2
, (2.37)

is the only possible space kernel, where σ is the scale of the kernel (the smaller σ
the larger scale). Using this kernel, the scale space function L(x, y, σ) becomes,

L(x, y, σ) = G(x, y, σ) ∗ I(x, y), (2.38)

where I(x, y) is the intensity of the pixel at coordinate (x, y) in image I. Lowe
proposed that convoluting the difference of Gaussian

D(x, y, σ) = G(x, y, kσ)−G(x, y, σ) (2.39)

with the image I(x, y) and a factor k in scale difference is an effective method of
finding stable scale space extrema. This is because it is a close approximation to
the Laplacian of Gaussian σ2∇2G which produces the most stable image features
compared to other possible image functions [25]. Using the distributive property of
convolution, we can rewrite D(x, y, σ) ∗ I(x, y) as,

D(x, y, σ) ∗ I(x, y) = [G(x, y, kσ)−G(x, y, σ)] ∗ I(x, y) (2.40)
= G(x, y, kσ) ∗ I(x, y)−G(x, y, σ) ∗ I(x, y) (2.41)
= L(x, y, kσ)− L(x, y, σ), (2.42)
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Figure 2.4: Subtraction of adjacent scale spaces, L(x, y, kσ) and L(x, y, σ), rep-
resented as red planes. The difference corresponds to the difference of Gaussian,
represented as blue planes. When all neighboring scale spaces for one octave is com-
pleted the procedure is repeated for the next one where the size of the scale spaces
is reduced by a factor of four.

where k is the factor in scale between two adjacent scales. The scale spaces are
divided into octaves such that σ doubles for each, i.e. k = 21/s if there are s scales
per octave. When going to a higher octave only every second pixel in each row
and column is taken, reducing the size of the image by a factor of four. The stable
scale space extrema are found by determining L(x, y, σ) for all examined spaces and
subtracting neighboring scale space images to form the set of possible candidates,
see Fig. 2.4. Each candidate has nine neighbors in the scale above and below and
eight on the same scale. The candidate is considered an extreme if it is larger or
smaller than all of its 26 neighbors.

The location of the extreme is however only an estimate since the Laplacian of
Gaussian was approximated with the difference of Gaussian. It has been shown that
fitting a 3D quadratic function around the candidate and interpolating to find a
better estimate of the extreme, increased stability heavily [25]. Making a Taylor
expansion of D(x, y, σ) translated such that its origin is at the candidate point and
denoting (x, y, σ) as x we obtain,

D(x) = D + ∂DT

∂x
x + 1

2xT
∂2D

∂x2 x, (2.43)

where x = (x, y, σ). The better estimate of the extreme, x̂, is obtained by differen-
tiating Eq. (2.43) and solving for when it is zero (occurs for x̂),

∂D

∂x
+ ∂2DT

∂x2 x̂ = 0, (2.44)
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hence,

x̂ = −∂
2D

∂x

−1
∂D

∂x
. (2.45)

Inserting Eq. (2.45) in Eq. (2.43) we obtain

D(x̂) = D + 1
2
∂DT

∂x
x̂. (2.46)

Extrema with a small value of D(x̂) are considered unstable and all extrema
below a predefined threshold τ , D(x̂) < τ , are removed. The final examination
of the candidate points is to exclude all detected points on edges. A point on
an edge has a large principal curvature across the edge and a small one in the
perpendicular direction [25]. The principal curvatures are determined by the ratio
of the eigenvalues of the Hessian matrix H,

H =
[
Dxx Dxy

Dxy Dyy

]
. (2.47)

Since we are only interested in the ratio between the two eigenvalues it is sufficient
to examine the ratio between them through the trace and determinant of H. Letting
λα be the largest eigenvalue and λβ be the smallest the trace and determinant of H
are computed by,

Tr(H) =Dxx +Dyy = λα + λβ (2.48)
Det(H) =DxxDyy −D2

xy = λαλβ. (2.49)

Letting r be the ratio between λα and λβ we can express the ratio between
Tr(H)2 and Det(H) as,

Tr(H)2

Det(H) = (λα + λβ)2

λαλβ
= (rλβ + λβ)2

rλ2
β

= (r + 1)2

r
. (2.50)

Eq. (2.50) only depends on the ratio r between the two eigenvalues and obtains
its minimum for r = 1, hence when the eigenvalues are equal. It is therefore sufficient
to examine if (r+1)2

r
< τ to exclude the candidate point. The threshold τ is a tunable

parameter and Lowe decided, after some experiments, to set τ = 10 [25].
Each candidate fulfilling all the requirements then gets an orientation represen-

tation. Lowe tried different approaches and the one resulting in the most stable
representation was through determine the gradient magnitude m(x, y) and orienta-
tion θ(x, y) for the scale space image L(x, y, σ),

m(x, y) =
√

(L(x+ 1, y, σ)− L(x− 1, y, σ))2 + (L(x, y + 1, σ)− L(x, y − 1, σ))2

(2.51)

θ(x, y) = arctan
(
L(x, y + 1, σ)− L(x, y − 1, σ)
L(x+ 1, y, σ)− L(x− 1, y, σ)

)
. (2.52)

The gradient orientations for points in a predefined neighborhood of the extreme are
calculated. The orientations θ(x, y) ∈ [0, 360) degrees form a histogram with 36 bins
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(a) (b)

Figure 2.5: Concept of descriptor representation by SIFT. (a): Determine gradi-
ents of L(x, y, σ) for points (x, y) around the candidate (marked as a black circle
in the middle). In total there are 16 × 16 = 256 neighboring points, divided into
16 regions, which borders are visualized with bold lines. (b): For each region, an
orientation histogram with 8 bins is obtained. The histogram is weighted with the
magnitude of the gradient and a Gaussian window centered at the feature point.
These 16 histograms with 8 bins each form the descriptor of dimension 128.

(10 degrees in each) which is weighted with the gradient’s magnitude and a Gaussian
window centered at the candidate point. The Gaussian window favors points near
the candidate. The largest bin in the histogram corresponds to the orientation
of the candidate point and enables SIFT to be rotation invariant since all further
calculations can be referred to the orientation. If there is no clear main orientation
from the histogram the candidate is discarded. All approved candidate points are
the detected feature points by the SIFT descriptor and each is characterized by its
location (x, y), scale σ and orientation θ(x, y).

When the detector has found the feature points each point and its vicinity is
represented through a descriptor. A 16 × 16 grid, centered at the feature point in
the scale space image L(x, y, σ), is applied. The magnitude and gradient orientation
for each box in the grid are determined as in Eq. (2.51) and (2.52), see Fig. 2.5a.
The grid is divided into 16 subregions with 16 pixels in each and each region is
described with an orientation histogram of 8 bins. The histogram is weighted with
the magnitude of the gradient and a Gaussian filter centered at the feature point, see
Fig. 2.5b. Combining all 16 subregions and its histogram of dimension 8, a vector of
dimension 128 is obtained. By normalizing the vector, the SIFT descriptor becomes
invariant to affine illumination transformations [25].

2.2.2 ORB

The detector in ORB is based on the FAST detector [29] which is a corner descriptor
where a circle consisting of 16 pixels is applied around each corner candidate point
p. p is defined as a corner if at least 12 contiguous pixels at the circle have a pixel
intensity larger than the intensity of the candidate point Ip plus a threshold t. The
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same holds if the pixel intensity is less than Ip − t. Since all 12 contiguous pixels
(at least) must fulfill this requirement can a non-corner be decided by only examine
3 pixels [29]. An example of a detection is shown in Fig. 2.6. The FAST detector
has no corner measurement. Since edges often also trigger the detector, the ORB
detector has a Harris corner measurement. Determine the partial derivatives Ix and
Iy for image I and applying a Gaussian window w centered at the examined point
(x, y) a Harris matrix, E,

E(x, y) =
∑
u

∑
v

w(u, v)
[

Ix(u, v)2 Ix(u, v)Iy(u, v)
Ix(u, v)Iy(u, v) Iy(u, v)2

]
, (2.53)

is obtained [15]. The Harris corner measurement R is defined as,

R(x, y) = Det(E(x, y))− kTr(E(x, y))2 ≡ λαλβ − k(λα − λβ)2 (2.54)

where Det denotes determinant and Tr trace, λα and λβ are the two eigenvalues
of E and k is a tunable parameter [15]. A corner has a large value of R since a
corner corresponds to E having two large eigenvalues while an edge has one large.
By setting a low threshold r initially such that only points R(x, y) > r are excepted
and gradually increase it until only the N best corner points are found.

Compared to the FAST detector, ORB is rotation invariant. By determining the
intensity centroid C of image I,

C =
(
m01

m00
,
m10

m00

)
(2.55)

where,

mpq =
∑
x,y

xpypI(x, y), (2.56)

the orientation is defined as the vector from the corner to the centroid.
The descriptor in ORB relies on BRIEF (Binary Robust Independent Elemen-

tary Features) [6]. It is a fast and memory efficient descriptor due to its binary
representation. A smoothed patch p of size S × S with its center at the detected
point is extracted and the test τ is applied such that

τ(p,x,y) :=
{

1 if p(x) < p(y)
0 otherwise . (2.57)

p(x) is the pixel intensity of the smoothed patch at pixel x. The pixel pairs
(xi,yi) are predefined from a Gaussian distribution with 0 mean and a standard
deviation of 1

25S
2 (determined after testing different distributions). The binary

descriptor of the detected corner point is defined by,

fn(p) =
n∑
i=1

2i−1τ(p,xi,yi). (2.58)

The similarity between two descriptors is easily determined by the Hamming dis-
tance, a bitwise XOR operation between two descriptors followed by a bit count.
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Figure 2.6: Corner detected by the ORB detector since at least 12 contiguous
pixels in the circle have a pixel intensity larger than the intensity of the candidate
point p plus a threshold t. These pixels are represented with the dotted arc [30].
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3
Methods

This chapter presents the methods and implementations compiled to train and eval-
uate the feature point descriptor and classifier. Firstly, the techniques of how the
datasets for training and validation were obtained are explained. Secondly, the mod-
els, what the training procedure looked like and how the models were implemented
are presented. Lastly the baseline methods to evaluate the models are explained in
detail.

3.1 Programming Tools

The data processing to create the training and validation sets were created in Mat-
lab using its image processing toolbox which has a wide variety of methods to
manipulate images. It also has a setup of handmade feature detectors and descrip-
tors. Neither the SIFT detector nor descriptor are implemented in the toolbox
however. Instead VLFeat, an open source library [41] which contains algorithms to
detect SIFT points and describe them is used.

The methods for training the networks in this thesis were developed in Torch, a
scientific computing framework with support for CNNs based on the programming
language LuaJIT. There are plenty of deep learning frameworks to choose from and
Torch was used in this project due to its clearly documented tutorials and large com-
munity wiki. Using Torch also enabled the training of networks on GPUs provided
by the department. The pretrained networks that were used were either developed
in Torch or converted from another framework. The adjustment of weights and bi-
ases through backpropagation was done with the numeric optimization package for
Torch, optim, which enabled stochastic gradient descent with learning rate, momen-
tum, Nestrov’s momentum and weight decay among others. Training and validation
were performed on the GPU Nvidia Titan X.

3.2 Descriptor

The descriptor is a CNN. Given a cropped area from an image, called patch, the
output of the network is a one dimensional vector, hence a feature descriptor. The
descriptor is trained with the constraint that similar patches should have similar
feature descriptors.
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(a) (b)

Figure 3.1: Example of patches from the generated dataset. (a): Pair of patches
extracted from the same SIFT point creating the positive set. (b): Pair of patches
extracted from different SIFT points creating the negative set.

3.2.1 Generating Data
Patches to train and evaluate the learned descriptor are extracted from Cityscapes
dataset. Each image in the dataset, after converted to grayscale, is divided into
cells by applying a grid of size 12× 6. From each cell, the most stable feature point
is collected. A SIFT detector is used to find the feature points and the stability
is measured by the threshold of the peaks in difference of Gaussian space. By
incrementally increasing the threshold, the number of detected feature points will
decrease. The procedure is repeated until there is only one feature point left in the
cell. In some regions the descriptor will not find any points at the initial threshold.
These cells are discarded. The localized feature points will from now on be referred
to as SIFT points.

Around each SIFT point a patch of size 64×64 pixels is cropped. For each SIFT
point the original grayscale image is duplicated and transformed. The transformed
image is used to create similar and non-similar patches to the patch from each SIFT
point in the original image. Firstly, the duplicated image is rescaled by a factor
fs ∈

[
1√
2 ,
√

2
]
(corresponding to a factor 0.5 to 2 in number of pixels), secondly

rotated by fr ∈ [−5, 5] degrees and lastly added with Gaussian noise with 0 mean
and standard deviation of fn ∈ [0.1, 0.5] pixel intensity (the pixel intensity in the
image is between 0 and 255). fs, fr and fn are all drawn from a uniform distribution
in their respective interval. Since the scale and rotation are known the corresponding
patch in the duplicated image can easily be determined. The procedure is repeated
one additional time for the same SIFT point such that for each point there are three
patches. These triplets correspond to the positive set and a combination of one
of the patches with any patch not belonging to the triplet construct the negative
set. Some examples of positive and negative pairs of patches are shown in Fig. 3.1.
With this generated dataset of patches, the objective is to learn the descriptor to
be invariant to scale, rotation and noise.

3.2.2 Pretrained Model
Using a CNN to compare image patches has been shown to be successful [33, 43].
Instead of learning a descriptor from scratch a pretrained one can be used. The
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descriptor used in this thesis was pretrained on Multi-view Stereo Correspondence
(MSC) dataset [5] by Simo-Serra et al. [33] and is publicly available. MSC consists
of corresponding grayscale 64× 64-patches sampled from 3D reconstructions of the
Statue of Liberty in New York, Notre Dame in Paris and Half Dome in Yosemite.
From the reconstruction, corresponding feature points were found and the patches
were extracted from each feature point. The learned descriptor is a CNN with three
convolutional layers. Each layer has the hyperbolic tangent as activation function
and kernel sizes 7×7, 6×6 and 5×5 respectively. After each convolutional layer an
average pooling layer with kernel size 2× 2 was applied. The input of the network
is a 64× 64 normalized grayscale image with mean 0 and standard deviation 1 and
the output is a descriptor of size 128.

3.2.3 Training Model
The objective is to distinguish between SIFT points and represent them uniquely.
This is equivalent to distinguishing between patches that may or may not be from
the same SIFT point. Patches from the same SIFT point should be represented as
similar while patches from different ones should not. A technique of dealing with
this kind of similarity and dissimilarity problem is through a Siamese network [33].

A Siamese network consists of two identical CNNs connected in parallel, see
Fig. 3.2. The data fed to the Siamese network is grouped in pairs such that one of
the networks processes one part of the data and the other network the other part.
When the CNN is a descriptor the input data consists of pairs of patches as in Fig.
3.1. Since the networks are identical, having the same setup of weights and biases,
data is processed in the same way by the two networks. Siamese networks have been
used to train feature extraction from patches [33, 43], such that similar patches shall
have a similar feature description. The output from each CNN is a one dimensional
vector, hence a descriptor. Since similar patches should have similar descriptors it
is suitable to use Hinge embedded criterion presented in Section 2.1.2.3,

Lsim(p1, p2, z) =
{
||D(p1)−D(p2)||2 if z = 1
max (0,M − ||D(p1)−D(p2)||2) if z = −1 , (3.1)

where the similarity measurement is the L2-norm of the difference between the two
descriptors D(p1) and D(p2) from patches p1 and p2, see Fig. 3.2. Notice that z = 1
if the two patches shall be similar and z = −1 if not. Notice also that since the two
CNNs have the same weight and biases they will be affected exactly the same as
backpropagation is executed through the network. When training is completed one
of the CNNs can be extracted from the Siamese network and be used analogously
to SIFT.

3.2.3.1 Hard Mining

One successful training approach for a Siamese network is hard mining [33]. Instead
of backpropagating all patches in the training batch, only the hardest, the pairs with
the largest loss term, will affect the weights and biases in the Siamese network. If
backpropagation is applied to all negative pairs the network will, once it has reached
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Figure 3.2: Illustration of a Siamese network. Two identical convolutional neural
networks (CNN) sharing the same setup of weights and biases W are fed with two
patches p1 and p2. The output of each CNN is a descriptor, in this case D(p1) and
D(p2). An L2-norm together with the Hinge embedded criterion as loss function are
used as a similarity measurement between two patches. After training, one of the
CNNs can be extracted and used analogously to SIFT.

some level of performance, have an L2-norm larger thanM and hence not contribute
to the training [33]. By using the hard mining approach one diminishes the scenario
of slowing down the learning process.

3.2.3.2 Receiver Operating Characteristic

Receiver operating characteristic (ROC) curves are popular to use when presenting
results from binary decision problems [11]. The binary decision problem encountered
for the descriptor is to decide the threshold of the norm between two descriptors
being positive or negative. A ROC curve shows the relationship between the num-
ber of correctly classified positive pairs with respect to the number of incorrectly
classified negative pairs. By sweeping the threshold over an interval the relationship
is obtained. The area under the ROC curve, AUROC, is often used as a metric of
the performance, the higher the better [5, 11].

3.2.3.3 Implementation

The Siamese network was compiled in Torch using a parallel table. This enabled
the addition of two CNNs in parallel with shared weights, biases and gradients.
The two networks were merged with an L2-norm and Hinge embedded loss as loss
function. These features are implemented in Torch. The training and validation
data were stored in a four dimensional tensor with dimensions patch number, color
channel, width and height. The descriptor was trained with the hard mining ap-
proach and without. The hard mining approach consisted of evaluating the loss
of 1 024 randomly chosen positive pairs and 1 024 randomly chosen negative pairs.
The 128 positive pairs with the largest loss and similarly for the negative set were
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backpropagated through the network. When hard mining was not applied all 2048
pairs were backpropagated.

3.2.4 Baseline Method
The baseline method used to compare the learned descriptor was the SIFT descrip-
tor. The procedure of generating the dataset for the baseline method is quite similar
to the dataset used for training and validation of the trained descriptor. Given an im-
age from the Cityscapes validation set a grid of size 12×6 was applied and not more
than one SIFT point was found in each element by incrementing the peak threshold.
Each SIFT point in the original image p1 was represented with the attributes pixel-
position x1, y1, scale s1 and orientation θ1, hence p1 = {x1, y1, s1, θ1}. The original
image was then duplicated and transformed by scaling of a factor fs ∈

[
1√
2 ,
√

2
]
and

rotation by fr ∈ [−5, 5] degrees. fs and fr were drawn from a uniform distribution.
A SIFT detector was applied on the transformed image with a small peak thresh-

old to obtain many possible matching candidate points to the original image. The
search was performed in a brute-force manner where each SIFT point in the orig-
inal image was compared to each SIFT point in the transformed image. Since the
rotation and scale was known, the transformation from p1 to p̂1 in the transformed
image was easily determined. A match between SIFT point p̂1 and p2 was consid-
ered when the pixel distance |p̂1

x,y − p2
x,y|2 < 0.2, scale difference, |p̂1

s − p̂2
s|1 < 0.1

scale units and rotation difference |p̂1
θ − p̂2

θ|1 < 0.2 degrees. Using these thresholds,
we never encountered multiple SIFT points matching the same SIFT point in the
original image.

When all SIFT point pairs had been localized a Gaussian noise, with mean
0 and standard deviation of fn ∈ [0.1, 0.5] pixel intensity drawn from a uniform
distribution, was applied to the both images. Patches and SIFT descriptors were
extracted at the localized SIFT points.

3.3 Classifier
The classifier consists of a CNN and a FCNN. Given a patch p the CNN transforms
it to a one dimensional deep feature vector and the FCNN, with the same number
of output neurons as classes, classifies the deep feature vector. The patch can either
be classified as stable or unstable, their meanings are described in more details in
Section 3.3.1. An illustration of the concept of the network is shown in Fig. 3.3.

3.3.1 Generating Data
Feature points were detected in the training and validation set of Cityscapes dataset
using the FAST detector. To find points evenly spread over the image, which is
desirable in motion estimation tasks [12], the image was partitioned into a grid, of
size 14× 7, where the detector was applied to each cell. The detected feature points
in a cell were sorted with respect to its Harris corner measurement, see Eq. (2.54),
and only the feature point with the largest measurement was kept. If the detected
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ystable

yunstable

Input

Input layer

Convolutional
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Feature extractor Classifier

Deep feature

Output

Figure 3.3: Illustration of classification network. A color patch is fed to a convolu-
tional neural network (CNN), hence input to the network has three color channels.
The patch is fed to a CNN, containing convolutional layers and max pooling layers,
extracting a deep feature vector. A FCNN maps this deep feature vector and its
output is the probability of the patch belonging to class stable or unstable.

point and a patch centered around it of size 100×100 were not outside of the image
the patch was stored.

In advance the classes according to Table 3.1 were determined to be stable, i.e.
suitable for the positioning map, or unstable, not suitable for the positioning map.
The partition of classes was motivated by how likely it was for the class to always
appear at the scene. E.g. a building or a traffic sign was more likely to appear than
a car or a pedestrian. Areas where it was hard to find good feature points, such as
asphalt, were also set to be unstable. Hence the class road was treated as unstable
despite the well defined lane marks.

The patches for all accepted points were extracted and their labels were deter-
mined from the high quality pixel-level annotated images in the Cityscapes dataset.
The procedure was performed on 2 975 training images and 500 validation images.
Since the test images in Cityscapes do not have accessible annotations, half of the
validation images were used as test images. The total set of training patches con-
sisted of 147 939 patches, the validation set of 13 199 patches and the test set of
12 498 patches.

3.3.2 Pretrained Model
Instead of implementing and training a CNN from scratch a pretrained CNN was
used. The pretrained network used was VGG Net-E, a 19 layers deep CNN for
large-scale image recognition which is publicly available [34]. It was motivated to
be a suitable starting point since the network conquered first and second places in
the localization and classification tracks respectively in the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) 2014 [31]. It has been shown that deep
image representations from networks trained on ILSVRC generalize well to other
datasets, where they have outperformed hand-crafted representations by a large

28



3. Methods

Table 3.1: Division of annotated classes in Cityscapes dataset. The stable classes
are assumed to be more likely to find when returning to the same location another
time. The classifier is trained with respect to this partition.
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margin [34].
The architecture of the network is presented in Table 3.2. Compared to earlier

top performing networks on ILSVRC [20, 44], VGG Net-E has a smaller kernel, 3×3
compared to 7 × 7 and 11 × 11 and a smaller stride of 1 compared to 2 and 4. In
total there are 16 convolutional layers with kernel size 3 × 3, 5 max pooling layers
of size 2 × 2 with stride 2, 3 fully connected layers and a soft-max layer. Between
each layer is a ReLU activation function injected. Stacking convolutional layers
with a small kernel and a non-linear activation function in between can be seen as
a decomposition of one convolutional layer with larger kernel. Adding two 3 × 3
convolutional layers successively is equivalent to one 5 × 5 convolutional layer and
three 3 × 3 convolutional layers corresponds to one 7 × 7 convolutional layer. The
advantage is the number of parameters required. Three 3 × 3 convolutional layers
with C channels require 3(32C2) = 27C2 weights while one 7× 7 convolutional layer
with C channels needs 72C2 = 49C2, hence a reduction by 44.9%. VGG Net-E
has either two or four consecutively convolutional layers and between 64 and 512
channels per layer, see Table 3.2 for further information.

The FCNN at the final layers of VGG Net-E was originally trained on the 1 000
classes in ILSVRC. To adapt the network to our purpose the final three fully con-
nected layers were removed and replaced with three fully connected layers according
to Table 3.3. From the convolutional part of the classifying network a deep feature
vector of size 25 088 was obtained and this was classified on the FCNN.

3.3.3 Training
The objective is to separate patches from stable and unstable classes. Since this
becomes a classification problem is the classifier trained with a class loss function
as defined in Section 2.1.2.3

Lclass(y, c) = −yc. (3.2)

Given a patch p to the network the output, after applying a logsoftmax function,
see Eq. (2.8), becomes y = [ystable, yunstable]T where ystable is the probability of the
patch belonging to the class stable and yunstable of belonging to the class unstable.
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Table 3.2: Network configuration of pretrained network VGG Net-E [34]. The
input is a 224 × 244 RGB image and output a 1 × 1 000 probabilistic prediction
of the input’s class. Convx − y is a convolutional layer with y kernels of size x.
FC-z is a fully connected layer with z neurons. Logsoftmax is a logsoftmax layer to
represent the output as probabilistic.
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Table 3.3: Network configuration of fully connected layer after the pretrained
convolutional part of VGG Net-E [34]. ReLU has been used as activation function
after each fully connected layer and a Logsoftmax is used to convert the prediction
to a probability.

Layer Number of neurons in previous layer Number of neurons in layer
FC-1 25 088 4 096
FC-2 4 096 500
FC-3 500 40
FC-4 40 2

Logsoftmax – –
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The ground truth is represented by c ∈ {stable, unstable}, hence yc is ystable when
the training patch is stable and yunstable if unstable.

3.3.3.1 Implementation

VGG Net-E was developed in the deep learning framework Caffe and was converted
to Torch with the package loadcaffe. Training and validation data were repre-
sented with a four dimensional tensor with dimensions patch number, color channel,
width and height and were preprocessed by mean subtraction and standard devi-
ation division (based on the mean and standard deviation over the entire training
set). Since the pretrained CNN was not adjusted during training, all patches were
preprocessed through the CNN and hence the FCNN was trained on the deep feature
vectors to reduce training time. The FCNN was trained with stochastic gradient
descent in minibatches of size 256 randomly chosen without replacement (until the
entire training set was covered). The weights of the network were initialized using
the approach proposed by Glorot and Bengio [14]. After some testing and inspira-
tion from [34] and [20] the following parameters were used; learning rate γ of 0.001,
momentum µ of 0.9 (using Nesterov’s approach) and weight decay of 0.0005. After
each epoch, which is when all minibatches covering the entire training set is tested,
the validation set was executed. The training lasted until the error of the validation
set had stabilized.

3.3.4 Baseline Method
The baseline method used to compare the classifier was the best performing publicly
available model for semantic segmentation on the Cityscapes dataset pixel-level se-
mantic labeling task [8], Dilation10 [42]. Semantic segmentation corresponds to the
problem of given an image, label each pixel to one of predefined classes. Dilation10
is a convolutional network module that is specifically designed for dense prediction
and is specifically learned on training images from Cityscapes dataset. Since Dila-
tion10 estimates each pixel to one of the classes in Cityscapes it can also classify
feature points to one of the two classes our classifier is trained on. The evaluation
is performed on the validation set of Cityscapes dataset. In total 500 images were
segmented, see Fig. 3.4 for an example and its ground truth. For each segmented
image the annotation made at the feature points found when creating the validation
patches for the classifier were compared with the ground truth. If Dilation10 and
the ground truth classify a feature point to be in the same class (either stable or
unstable) the point is annotated correctly and falsely otherwise.
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(a) (b)

Figure 3.4: (a): Example of segmentation of validation image, on Cityscapes
Dataset, produced by Dilation10 (b): Ground truth segmentation of example image.
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Results

4.1 Descriptor
The Siamese network was trained for 500 iterations using hard mining, where each
iteration consisted of testing two batches of size 1 024. An identical network was
trained for 500 iterations but without hard mining. After 500 iterations the average
error for the validation set for both networks had stabilized. The networks were
tested, on a test set containing positive and negative pairs of patches. Histograms
of the L2-distance between the descriptors of the two patches in each pair were
created. The histogram when applying hard mining is shown in Fig. 4.1 and without
hard mining in Fig. 4.2. A comparison is made using the SIFT descriptor and its
corresponding histogram is shown in Fig. 4.3. A ROC graph of the three examined
descriptors are shown in Fig. 4.4 and the AUROC measurement is shown in Table
4.1

Table 4.1: AUROC measurement of the three tested descriptors.

Descriptor AUROC
Deep descriptor with hard mining 0.990
Deep descriptor without hard mining 0.966
SIFT descriptor 0.962

4.1.1 Runtimes
The runtimes of the learned deep descriptor and the SIFT descriptor were evaluated
by measuring the execution time of calculating the feature descriptors given the
position of the feature point and its scale and orientation. The mean runtime of
calculating one descriptor is shown in Table 4.2

Table 4.2: Average runtime of calculating one descriptor given the position of the
feature point and its scale and orientation in milliseconds.

Descriptor Average runtime [ms]
Deep descriptor (GPU) 0.858
Deep descriptor (CPU) 36.958
SIFT descriptor (CPU) 0.258
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Figure 4.1: Histogram of L2-distance between the descriptors from each pair using
the trained descriptor with hard mining, evaluated on the test set. The blue bars
show the distribution of the L2-distance for the positive pairs and the orange colored
bars for the negative pairs. The brown colored area shows the overlap between the
two histograms.

Figure 4.2: Histogram of L2-distance between the descriptors from each pair using
the trained descriptor without hard mining, evaluated on the test set. The blue bars
show the distribution of the L2-distance for the positive pairs and the orange colored
bars for the negative pairs. The brown colored area shows the overlap between the
two histograms.
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Figure 4.3: Histogram of L2-distance between the descriptors from each pair using
the SIFT descriptor, evaluated on the test set. The blue bars show the distribution
of the L2-distance for the positive pairs and the orange colored bars for the negative
pairs. The brown colored area shows the overlap between the two histograms.
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Figure 4.4: ROC-curve of the learned deep descriptor with and without hard
mining and SIFT descriptor.
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Table 4.3: Validation and test error for classifying network and semantic segmen-
tation (Dilation 10).

Method Validation
error

Test
error

Classifying network
(without weight decay and weight initialization) 11.17% 11.31%

Classifying network
(with weight decay and weight initialization) 10.91% 11.08%

Semantic segmentation
(Dilation10) 8.96% 9.73%

4.2 Classifier
The network was trained for 317 epochs (61 815 iterations) and was terminated when
the validation error had stabilized. The final validation error obtained was 11.17%
and test error of 11.31%. When weight decay and weight initialization was added the
performance did improve to a validation error of 10.91% and test error of 11.08%.
The semantic segmentation approach, using Dilation10, yields a validation error of
8.96% and test error of 9.73%. The results are summarized in Table 4.3. Example
of correctly and incorrectly classified stable and unstable patches are shown in Fig.
4.5.
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(a) (b)

(c) (d)

Figure 4.5: Example of classified patches. (a): Correctly classified stable patches.
(b): Incorrectly classified unstable patches. (c): Incorrectly classified stable
patches. (d): Correctly classified unstable patches.
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5
Discussion

5.1 Descriptor

The results from the descriptor evaluated on the test set are presented in Table 4.1.
From the table one can conclude that the trained descriptor performs better than
the SIFT descriptor on urban street scenes when comparing AUROC. Since AUROC
is a measurement of the overlap between the positive and negative norm histograms
this can be seen in Fig. 4.1, 4.2 and 4.3. The overlap for the trained descriptor
using hard mining is small while it is substantially larger when not training with
hard mining. From this one can conclude that a hard mining approach implies
a significant improvement of the descriptor’s performance. The SIFT histogram
has two distinct distinguishable peaks but a wide overlap in between which implies
that the descriptors have trouble finding a distinct threshold to separate similar
patches with non-similar. The result shows the power of a trained descriptor given
a dataset containing the transformations to handle. In our case it was rotation,
noise and scale, transformations SIFT claims to handle to some extent. By training
on the chosen scenarios a trained descriptor can perform better compared to a
traditional descriptor. However, notice that SIFT is not specifically compiled for
these transformations and not optimized for the performed tests.

From the Cityscapes dataset were 64 002 patches extracted from 21 334 feature
points which resulted in a positive set of cardinality 21 334

(
3
2

)
= 64 002 and negative

set of cardinality ∑21 334
i=1 3(64 002 − 3) = 64 002(63 999) = 4 096 063 998. The huge

number of possible pairs makes it unlikely for overfitting and during the training no
indications of overfitting were encountered. This was expected since neither Simo-
Sierra et al. [33] nor Zagoryuko et al. [43] encountered any overfitting during their
training.

Furthermore, any major conclusions about the descriptor cannot be made since
it has not been tested in any applications yet. The motivation behind compiling a
trained descriptor came from creating robust maps. A fairer evaluation between the
trained and a traditional descriptor would be to test them on, e.g. a SLAM solver.
From such comparison a more extent analysis of the trained descriptor can be made.

5.1.1 Creation of Dataset
The created dataset was fairly easy and did not include any hard challenges. From
our result one can conclude that the trained descriptor is able to outperform a tradi-
tional descriptor despite that the dataset relied on SIFT points and transformations
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the SIFT descriptor is invariant against. Furthermore, the dataset was specifically
constructed for matched SIFT points. This shows the power of a trained descriptor
tweaked for a specific task.

To analyze further the power and capabilities of a trained descriptor, a larger
dataset is needed. The compiled dataset contains patches from different seasons but
all positive triplets are from the same. Adding additional synthetic transformations,
besides the one dealt in this thesis, such as affine transformations is easily done. The
dataset should also contain patches from the same feature point but from different
point of views and weathers, where the images from the two similar patches were
taken from two different places. The required data was, however, not available and
creating it from scratch was out the scope for this thesis.

5.1.2 Replacement of L2 comparison
An L2-distance between the two descriptors was used as a similarity measurement.
Instead of the L2-distance as similarity measurement it could be replaced by a
FCNN, functioning as a decision network. The approach has been used by Zagoruyko
[43] and was tried to be replicated, unsuccessfully however. The training was ex-
tremely sensitive and converged always to label every pair as similar. The decision
network was also trained while the Siamese network was kept unchanged and both
including and excluding hard mining. Despite all these approaches and trying to
mimic Zagoruyko this was not executed successfully.

5.1.3 Runtimes
The SIFT descriptor is faster than running the trained deep descriptor on either a
CPU or a GPU. The convolution layers are more computationally expensive com-
pared to calculating a histogram of gradients at the feature point. The average
runtime for the deep descriptor is of the same order of magnitude as the SIFT
descriptor when introducing a GPU. This illustrates the essence of executing the
computations in the convolutional layers in parallel and carrying out the training
on a GPU.

5.2 Classifier
The results from training and evaluation of the feature point classifier are shown
in Table 4.3. From the table one can conclude that the semantic baseline method
has a slightly better overall performance. This technique managed to classify the
feature points as either stable or unstable with a test error of 9.73 %. The first
training approach of the classifier yields a test error of 11.31 % and the second where
weight decay and weight initialization were introduced the test error was decreased
to 11.08%. Further improvements were sought by tweaking different parameters,
changing the structure of the FCNN and decreasing the learning rate when training
had stagnated. However, they did not increase the network’s performance.

While the overall performance was similar for the feature point classifier and the
semantic baseline method they differed a lot on feature points placed on large and
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(a) (b)

(c) (d)

Figure 5.1: Typical situation where the classifier performs better than the semantic
baseline method. The green circles correspond to a correct prediction of the feature
point and red not. (a): Predictions from the classifier. (b): Predictions from the
semantic baseline method. (c): Ground truth annotations. (d): Annotations by
Dilation10.

small objects. Fig. 5.1 and 5.2 show the prediction of stable and unstable classes of
the classifier and the semantic method as well as the ground truth annotation and the
prediction from Dilation10. A green circle around the feature point corresponds to a
correct prediction and a red not. Comparing Fig. 5.1a and 5.1b it is concluded that
the classifier has no issues with error classifications for small objects such as traffic
lights while the semantic method has major problem. Similarly, can the semantic
method easily determine larger objects such as buildings, see Fig. 5.2b, while the
classifier finds it difficult according to Fig. 5.2a. One reason is the fixed patch size
which is suitable for traffic lights from far distance but not from near buildings. One
improvement would be to include various scales for each feature point to make the
classifier invariant of scale.

The classifier lacks the ability to interact with its neighbors when predicting.
A promising development of semantic segmentation is through conditional Markov
random fields where adjacent pixels should have similar predictions [22]. This might
improve the semantic segmentation on small objects.

5.2.1 Creation of Dataset
The extracted classifications of the patches were decided with the high quality pixel-
level annotation of the Cityscapes dataset images. The annotation is made by rep-
resenting each classified area as a polygon. Since it is likely to detect a feature point
between two objects misclassifications did occur. When creating our dataset, one
only had to take in consideration the borders between stable and unstable classes.
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(a) (b)

(c) (d)

Figure 5.2: Typical situation where the semantic baseline method performs better
than the classifier. The green circles correspond to a correct prediction of the feature
point and red not. (a): Predictions from the classifier. (b): Predictions from the
semantic baseline method. (c): Ground truth annotations. (d): Annotations by
Dilation10.

E.g. classifying a feature point as a rider or a cycle, which both are considered to be
unstable, does not matter while a rider and a building does. This issue was solved
by expanding the annotated area for classes in front of others. E.g. a lamppost with
sky around it was extracted since the feature point was always placed on the lamp-
post and not the sky. The same procedure was applied for pedestrians and vehicles
in front of a building. Using these small ad hoc, no mismatches discovered by the
human eye were encountered.

When dealing with the approach of classifying feature points as stable or unstable
two questions arise. Is the definition of a stable or unstable point representable with
annotated images and if so, what defines a stable point? In this thesis a class was
defined as stable if it was assumed to be localized every time the scene is observed.
An example of such class is a building, while a car or pedestrian clearly is not.
However, the separation is not distinct as e.g. commercials on buildings containing
humans get classified as unstable, see Fig. 4.5c. Instead of determining the partition
of stable and unstable classes in advance the system could learn this. This could
be done by driving through the same area multiple times and looking for feature
points with similar location and description in all drive-through. Each such localized
feature point defines a consistent area suitable for the map. Using this approach, a
front and an advertising poster on a building will be treated differently. However, the
approach requires the production of such a dataset and methods to match feature
points, something that, due to time, was out of the scope for this thesis.

It would be desirable to extend the dataset to be more specific for our task.
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Classes as rider and cyclist is not interesting to distinguish from. However, there
are classes that should be split into several. The classifier had problems classify-
ing feature points between road surface and vehicles. Furthermore, asphalt is not
distinctive and therefore hard to find feature points in. For this reason, road was
treated as an unstable class. However, lane marks are preferable features for a map
and should be a stable class. The same reasoning applies for the trunk of a tree as
a stable class while its leaves and branches are unstable.

5.3 Future Work
The investigation of training a CNN to achieve robust feature descriptors in ur-
ban street scenes has only begun. To further continue the investigation a larger
dataset is needed, containing not only synthetic transformations but also changes
in weather and lighting conditions at the same location. Such a dataset with known
transformation between the images does, to my knowledge, not exist. In addition,
an interesting area to analyze further is the implication of replacing the L2-norm
with a decision network. Perhaps this approach could separate positive and nega-
tive pairs of patches even further. The architecture of the network could also be
experimented with. New observations and discoveries occur on a daily basis within
the field of CNN, and some might be applicable for the feature descriptor. One
approach, proposed by He et al. [17], is a deep residual learning framework where
the depth of the network increases but not necessarily the complexity. The main
reason behind this idea is that as the depth increases the features can be enriched.
Another interesting method to try is batch normalization, proposed by Ioffe et al.
[18]. By normalizing the input to each layer of the network Ioffe et al. claim a larger
learning rate is possible which implies faster convergence.

An obvious improvement of the trained feature point classifier is to extend the
dataset for our purpose. It includes, merging some classes, such as rider and cyclist
and splitting some classes, such as road to asphalt and lane marks. To further
boost the classifier’s performance, training on patches of different scales would be
interesting. By letting the classifier train on different scales it might be able to
handle close and large objects. The Cityscapes dataset was released February 2016
and new records on the pixel-level semantic labeling task are frequently beaten. The
currently best network uses Conditional Random Fields (CRFs) such that adjacent
pixels are favorable to be classified as the same [22]. Adding these CRFs might
improve classification around edges of objects as well as small objects. It would be
interesting to compare such a technique against the feature point classifier.

The descriptor and the classifier has not been evaluated in an application yet.
A possible evaluation would be to create four maps, using SLAM, with either a
traditional or the trained descriptor and with either the classifier or not. These four
maps are evaluated when positioning within the map at a later time with the same
setup of descriptor and classifier as when the map was created.
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6
Conclusion

In this thesis a feature point descriptor and a classifier, applicable in urban street
scenes, using a convolutional neural network (CNN) approach were presented. The
problem of representing a feature point in an unambiguous way was tackled through
a CNN. The descriptor was trained using a Siamese network with the purpose of
differentiating between pairs of similar and non-similar patches, extracted from ur-
ban street scenes. A training technique, called hard mining, where only the most
difficult pairs affected the network during training was included. By including desir-
able scenarios, the descriptor ought to handle in the training, it has been shown how
the trained descriptor adapts to these. The dataset compiled for this part of the
thesis contained scale and rotation transformations and noise adding. The trained
feature point descriptor obtained an AUROC score of 0.990 with hard mining and
0.966 without. Both approaches outperformed the traditional SIFT descriptor with
an AUROC score of 0.962.

The problem of classifying what kind of object a feature point is placed on was
tackled through a CNN. Given a patch around the feature point it was classified
as either stable or unstable. A class is considered stable if it is expected to always
appear at the same location in a scene, e.g. a building, and unstable otherwise, e.g.
a pedestrian. The patch was fed to a pretrained CNN with a deep feature vector as
output. This was classified through a fully connected neural network as either stable
or unstable. The dataset compiled for this part of the thesis was created by the urban
street scenes in Cityscapes dataset and its high quality pixel-level annotations. Given
a partition of the stable and unstable classes the best network achieved a test error of
10.91%. This was compared to a model for semantic segmentation, Dilation10, with
the set partition of classes. This model achieved a test error of 9.73%. The trained
classifier outperformed the semantic approach on small objects but performed worse
on large objects.
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