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Abstract
Third Person View (TPV) is a video game camera perspective where the game
character is seen from behind. Due to decreased prices of Unmanned Aerial Vehicle
(UAV) technology and modern Head Mounted Displays (HMD) it has become more
available to create a system were a user sees themselves from behind. This thesis
describes the process of designing a system for creating the TPV with low latency
video streaming and short range tacking for automatic flight.
A quadcopter is designed to track and follow the user for achieving automatic cam-
era positioning. Location tracking is implemented with triangulation by ultrasonic
sound. Following user rotation is implemented by comparing magnetometers on the
user and the quadcopter. From a camera on the quadcopter live video is transmitted
by Wi-Fi to a laptop connected to an Oculus Rift Development Kit 2 (DK2) which
presents the video feed.
The highest emphasis has been on achieving accurate tracking but also on rapid
quadcopter regulation using PID-controllers for maintaining the view. The result-
ing system works for tracking and reacting to a moving user, however during fast
user rotations or movements the tracking is lost, due to small angle of the ultra-
sonic receivers. For controlling and observing the system during flights and tests, a
graphical tool was developed as well as software for tracking and regulation. These
systems implemented shows promising results and is an area worth of future study.

Keywords: Third Person View, Quadcopter, Ultrasonic, User Tracking, Automatic,
Low Latency, Video Streaming.
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Sammandrag (in Swedish)
Tredjepersonsvy är ett videospelsperspektiv där spelkaraktären ses bakifrån. Tack
vare minskande priser på drönare och huvudmonterade displayer är det numera mer
tillgängligt att se sig själv i tredjepersonsvy. Detta kandidatarbete beskriver hur
processen gick till för att designa ett system som ger användaren en tredjepersonsvy
av sig själv, med hjälp av videoströmmande i låg latens och automatisk följning av
en flygande drönare.
För att få till automatisk kamerapositionering designas en drönare som spårar och
följer en användare. Lokalisering av användaren löses med hjälp av triangulation
där ultraljud används som signaler. För att följa användarens rotation jämförs
magnetometer på användaren med quadcopterns. Från en kamera monterad på
quadcoptern skickas direktsänd video via Wi-Fi, till en laptop som strömmar videon
på Oculus Rift Development Kit 2.
Främsta fokus har legat på precis lokalisering av användaren, men också på snabb
reglering av quadcoptern för att bibehålla rätt perspektiv. Resulterande system
fungerar för automatisk följning och reaktion på olika rörelsemönster. Dock är sys-
temet känsligt för snabba rörelser då ultraljudssensorerna tappar täckningen. För
att observera och kontrollera systemet under testflygning togs ett grafiskt gränssnitt
fram, tillsammans med mjukvara för följning och reglering. De olika systemen visar
lovande resultat och bör följas upp i framtiden.

Sökord: Tredjepersonsvy, Quadrocopter, Ultraljud, Användarspårning, Automatisk,
Låg Latens, Videoströmning
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Vocabulary

API Application Programming Interface, a set of
routines or protocols for using a software li-
brary

APM Ardupilot Mega, the flight controller

Arduino A microcontroller

DK2 Oculus Rift Development kit 2

FPV First Person View

GPS Global Positioning System

GUI Graphical User Interface

HMD Head Mounted Display

Latency Delay from input into a system to desired
outcome

Oculus Rift A Head Mounted Display commonly used for
Virtual Reality video games

PiApp Our software running on the quadcopter mi-
crocomputer

PID controller A feedback control algorithm to regulate an
automatic system from a measured variable

PWM Pulse Width Modulation

Quadcopter Much like a helicopter, it uses rotors to fly,
but has 4 rotors turned downwards instead
of one downward and one on the tail

Raspberry pi A single board computer

RC Radio Controlled

RPM Revolutions Per Minute
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Serial Communication A form of wired communication where one
bit is transferred at a time

SDK Software Development Kit

TCC Third Person View Control Centre, our soft-
ware for system control and monitoring

TPV Third Person View

UAV Unmanned Aerial Vehicle

Ultrasonic Sound with higher frequency than 20kHz
which humans cannot hear

VR Virtual Reality

Wi-Fi A IEEE collection of standards for radio
communication
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1
Introduction

Third person view (TPV) is a popular camera position in the world of comput-
er/video games and can be found in many popular titles like “Grand Theft Auto”
and “Watch Dogs”. Unlike the first person view where the camera shows the same
perspective as the game character sees, TPV gives an image from behind as per fig-
ure 1.1. This enables a better overview of the immediate surroundings, but decreases
the sense of immersion.

Figure 1.1: Illustration of third person view. The captured video (right) shows
person from behind.

This project aims to create a TPV experience in real life. A way to achieve this
is to have a camera hovering in the air behind the user. An Unmanned Aerial
Vehicle (UAV) such as a quadcopter can be used to achieve this. It would have to
navigate at a constant distance and height behind the user and capture video in the
same direction the user looks. The captured video can then be live streamed to a
head mounted display (HMD) to create the immersive TPV. The past years’ fast
technology development, especially in the area of UAVs, virtual reality HMDs and
easily available wireless data transfer solutions makes this project possible.
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1. Introduction

This project is not about solving a particular problem, but rather explores a new
area of research "Immersive Third Person View". A TPV does however have some
theoretical applications. It would make it possible for game designers to create games
where the user have to physically activate himself and thereby break the stationary
game culture. Aside from the gaming world a TPV can be useful in technically
advanced sports. Instead of recording the athlete on video and then analyse the
result after the training session, the athlete can be provided with direct feedback.
The result of the project could also potentially be used in other applications not
directly related to creating an immersive TPV, by for example only using specific
parts of the solution.

1.1 Purpose

The purpose of this project is to develop a solution for a user to get a TPV of
themselves in real-time. The TPV will be from behind like in a video game using
the third person camera view. This involves the development of an automatic user
tracking system which controls a camera equipped UAV as well as a method for
video capture, transfer and presentation. All parts of the system should be fast
enough to give the user a smooth and responsive experience for an immersive TPV.

1.2 Related Work

There are three bachelor theses conducted at Chalmers University of Technology
with the same purpose; J. Allander et al. [1], A. Aronsson et al. [2] and A. Lindgren
et al. [3].

In the thesis written by J. Allander et al. it is mentioned that the calculations of the
control signal to regulate the unmanned aerial vehicle (UAV) is done at a computer
base station. The calculations are done on measurements of height and distance
between user and the quadcopter as well as the UAV’s position. The signals are sent
to the UAV through a communication protocol named MAVLink by the interface
MAVProxy.

A. Aronsson et al. describes how image processing was used to track the user. The
problem was divided into three parts: centring the camera on the user, calculating
distance between the quadcopter and the user and calculating the angle to the user.
For centring, the user was detected in the video feed image and the quadcopter was
regulated to compensate for deviations. For the distance the size of the target object
in the image was measured and related to how large it should be the distance was
calculated. The angle to the user was measured by comparing the compass in the
user’s Oculus Rift and a compass on the quadcopter.

2



1. Introduction

A. Lindgren et al. discussed using three colourful balls in a triangular pattern on
the user back to easy be identified by image processing. The balls were tracked
and from their spanned triangle’s size and skew distance, angle and location was
determined.

1.3 Problem Definition

The selected approach for this project is to use a UAV, more specifically a quad-
copter, along with the head mounted display Oculus Rift Development Kit 2. This
leads to several challenges that need to be addressed. The problem space has been
divided into the subproblems depicted in figure 1.2.

Figure 1.2: A depiction of the problem space, dividing the main goal "Third Person
View" to several smaller subproblems.

1.3.1 Real Time View

The real time view is responsible for presenting the user with live video. One of
the problems with the real time view is to achieve high image quality while keeping
very low latency. This puts hard requirements on all parts of the real time view;
video capture, video transfer and the presentation of the video. In order for the real
time view to feel instantaneous the entire process from image capture to the user
seeing the image cannot take more than 100 ms [4]. The guidelines set up for the
chosen head mounted display provides even stricter recommendations of less than
20ms latency [5]. Further the image quality and refresh rate of the video display
must be high [6] which further increase the amount of data to be transferred in a
short time.

3



1. Introduction

1.3.2 Camera Positioning

To achieve an immersive third person view experience accurate camera positioning
is of major importance. The goal is to keep the camera centred from behind the
user at a constant distance. This is to be done automatically such that the UAV
moves with the user and constantly repositions the camera to centre the user. The
objective is to make sure the camera is capturing video in the same direction as the
user is looking, while maintaining the user in focus. Thus when the user rotates the
UAV must move in an arc around the user, as described in figure 1.3.

Figure 1.3: Rotation around user

In order to achieve this behaviour the orientation and location need to be constantly
measured and the position regulated. There is a state where no regulation will be
performed, and that is the “steady state”. In this state the UAV is located correctly
at a set distance and height, whilst keeping the orientation equal to that of the user.
When a measurement is different from that of the steady state it should result in a
regulation of the UAV in order to counter this difference and return to the steady
state. The parameters must be monitored and regulated fast enough to provide a
safe and satisfying user experience.

4



1. Introduction

1.4 Scope

The approach for the camera positioning will be strictly limited to an UAV, as
per the request if the institution. Further, the developed system will not take its
environment (i.e. obstacles) into consideration and will only focus on following the
user in an open area. This decision was made because of the amount of work to
detect and handle surrounding objects.

The quadcopter will be limited to tracking a user. Hence it will not be able to find
the user, meaning that it will at startup be placed in such a position where it can
immediately detects the user. Further if the quadcopter somehow lose track of the
user it will not be designed in such a way that it can automatically find the user
again.

1.5 Methods

This section presents the method for development and implementation of the proto-
type. As stated this project deals with the development of a real time third person
view system. The method of development was to initially divide the project into
subproblems as described in the problem definition (section 1.3). The subproblems
were composed into three problem areas, which were each assigned to a responsible
team to enable simultaneous development of the different parts. These three areas
were

• Real Time View (video capture, transmission and presentation)

• Tracking of user location and orientation

• Quadcopter operations; including assembly, manoeuvring and automatic con-
trol.

These three areas were developed using an iterative approach, where different ap-
proaches to solve each subproblem were implemented, tested, reviewed and adjusted
as necessary. Ideas for solutions were brought up from literature studies of earlier
Third person view theses and other sources. Subsystems were developed and at this
stage separately tested in a lab setting. The tracking system for example was tested
by moving the sensor equipped quadcopter manually and reviewing the result, parts
of the quadcopter system was tested during manual flights and so on.

5



1. Introduction

Continuous collaboration was done between the working groups to enable the de-
veloped subsystems to share mutual support systems such as computation unit on
the quadcopter and communication links. When the separate parts reached their
completion they were incorporated into the final prototype. Here shortcomings of
the individual systems were identified which were then further developed in the lab;
either by improving the solution or trying alternatives.

Software was developed for handling the incorporation of the different parts and to
provide tools for testing, observation and logging.

An alternative method would have been to create software and models for system
simulations rather than using the trial- and error approach for prototype building.
The outlined method was chosen due to time- and resource constraints for as well
as lack of experience of constructing realistic simulation models.

1.6 Report Outline

In this thesis there are the following chapters: Introduction, Theory, Development
and Implementation, System Tests and Performance and Discussion. Theory covers
the technical knowledge needed to fully appreciate the Development and Implemen-
tation section. Development and Implementation describes the process of developing
and implementing the system as well as the design choices made. It is further di-
vided into describing the different modules, the control software and lastly final
assembly. The system tests and performance section outlines the performance of
the prototype, how well it works and provides technical data from tests. The dis-
cussion concludes what was good, what could have been done different and thoughts
about future work building on this thesis.

6



2
Theory

The development and implementation section of the report requires knowledge about
the technologies used and theory surrounding terms, systems and components. This
section seeks to provide the technical knowledge needed to fully appreciate the de-
velopment and implementation section.

2.1 Digital Video Encoding

For a digital video representation there are various possible encoding standards
suitable for different applications. There are both lossless and lossy encodings used
for compressing video. Two popular lossy encoding standards are MJPEG, where
each frame is encoded according to the JPEG standard, and h264, also called AVC.

Compressing the video data greatly decreases the size of the data. Depending on
the type of compression method used it can however lead to buffering requirements.
h264 encodes a single image frame as either an I- a P- or a B-frame. All types are
usually used in a video stream, but mainly B frames are interesting with regards to
latency. B- (Bi-directive) frames are video frames that can not directly be rendered
as they do not contain a full image, they depend on frames later in the stream
and leads to buffering requirements. For low latency streaming B-frames should be
deactivated in the encoding.

Different video encodings requires different bit rate when transferring and viewing
the video. Bitrate is the amount of data that needs to be processed per second.
Using uncompressed video data requires very high bitrates. A standard full HD
(1080 by 1920 pixels) video stream with 60 frames per second and 8 bits per colour
per pixel would for example require a 3 Gbit/s bitrate. This is also the highest
possible resolution and frame rate the DK2 can use. Using a compressed video
stream with the encoding h264 for the DK2 takes 20 Mbit/s and lastly MJPEG
would take 100Mbit/s [7]. Given enough bandwidth uncompressed video encoding
can lead to very low latency as an uncompressed image from the video camera can
be directly sent without any time consuming processing.

7



2. Theory

Lossless video compression has the same drawback as lossy compression that it
requires time consuming compression algorithms but can theoretically lead to higher
image quality than lossy encoding as it will be possible to recreate all captured data.

2.2 Head Mount Display Optical Distortions

The proposed display to show the real time view is the head mounted display Oculus
Rift Development Kit 2 (DK2). In the DK2 a flat screen is placed a few centimetres
in front of the user’s eyes. For the eyes to be able to focus on the screen lenses are
placed in front of the screen. These lenses have the drawback that the picture will
get distorted. The two kinds of distortions are Barrel distortions and Chromatic
aberrations. The barrel distortions will make the magnification level differ in the
image, objects closer to the middle will look more magnified than objects in the
fringe as illustrated in Figure 2.1.

Figure 2.1: Illustration of Barrel Distortion on square grid

The Chromatic Aberrations makes the colours in the picture smeared. It is due to
the lenses bending light of different wavelengths by different amounts as illustrated
in Figure 2.2. There are video filters limiting the effect of both Barrel distortions
and Chromatic Aberrations at varying success [8].

8



2. Theory

Figure 2.2: Illustration of Chromatic Aberration. By DrBob at the English lan-
guage Wikipedia under CC BY-SA 3.0 license

2.3 Control of a Quadcopter

To be able to make the quadcopter follow the user automatically it is essential to
be familiar with its possible movements. Since a quadcopter is inherently unstable
[9] it needs feedback when controlling the motors to making it stable. That is what
a flight controller is doing. Depending on the input, velocity, rotation and other
data it sets individual RPM (speed) values for each motor. For this project the
flight controller Ardupilot Mega is available, in which there are four user settable
parameters to control the movement of the quadcopter. These are the throttle
parameter which controls the climb rate, the pitch controls the forward tilt, the roll
controls the sideways tilt and the yaw controls the rotation around the quadcopter’s
own axis. The available movements are shown in Figure 2.3.

The flight controller can achieve the possible movements due to the quadcopter ro-
tors spinning at different directions. Thanks to advanced algorithms the quadcopter
can move in all directions just by varying the rotor speeds. How this is implemented
is not in the scope of this project and will not be mentioned further.

Figure 2.3: The movements of a quadcopter.
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2. Theory

2.4 PID

For translating sensor readings to appropriate control commands a control algorithm
must be used. Some sort of controller for regulating autonomous systems is common
[10] and a common controller is the PID-controller. It is used to set appropriate
control commands to a system from measurements on the system, e.g. setting the
upwards throttle on a quadcopter from readings of its height. It provides both
speed and stabilization of the system. A PID-controller has three variable parame-
ters, gain coefficients for the three terms proportional, integral and derivative term
respectively.

Proportional P-effect: The proportional term relates to how far away a reading is
from its target value, the further the stronger control signals are generated. A high
proportional gain will increase the speed of the system and improve compensation
of process interference as well as a rise in signal activity. However, the system runs
a higher risk of instabilities.

Integrating I-effect: The integrating parameter further increases the speed of the
system. It relates to stronger control signals from how long time the system is
away from its target state. In the case of the quadcopter this gives increasing
control signals as long as it is not in place i.e when the quadcopter has yet to reach
its position. Just as the proportional parameter the integrating parameter also
contributes to instabilities. The I-part is also required as a P-controller for many
systems give a constant error, that is one can never reach the target steady state
with just a P-controller as it generates no control signals for zero error.

Derivative D-effect: The derivative part reacts to fast changes in the tracked state.
It adds control signals proportional to the derivative of the measured value thus
gives a fast response to disturbances. Most systems manages with a PI-controller
but when speed is of the essence the D-parameter also makes it possible to have
high proportional and integral parameters without inducing oscillations[10].
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3
Development and Implementation

This section describes the process of developing and implementing the system. It
seeks to first describe the development process of the different modules that the
system was divided into, then the implementation of the final prototype.

3.1 Real Time View

The purpose of the Real Time View module is to achieve low latency, high quality
video streaming from the quadcopter to a HMD. Our choice of method for video
capture, transfer and presentation will affect performance both regarding latency
and video quality. Thankfully it is not the first time this has been done. Previous
works at Chalmers University where J. Allander et al. [1] and A. Aronsson et al.
[2] have attempted to solve the same problem, and gave inspiration for design and
development. This chapter describes the implementation, development and design
choices made to create the real time view module.

3.2 Video Format

In order to achieve low latency in the real time view system the video representa-
tion is important. Video data can be represented in two different formats, digital
and analogue. Today there exists both digital and analogue solutions for all steps
required in the system; video capturing, transmission and presentation. One of the
deciding factors for the video format where the HMD. HMDs in general support
either digital or analogue input. Requirements for the HMD was high frame rate
and resolution for great video quality. There was a digital HMD the DK2 available.
There are both digital and analouge HMDs on the market that performs better, how-
ever no alternative where found that out peprformes the DK2 while being within
our budget. Hence the choiche of HMD was the DK2. The DK2 only has a digital
video input, which means that the video data has to be in a digital format at the
presentation step.
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Hence the option stands between using either a completely digital system or con-
verting from an analogue signal to a digital format somewhere in the process. A.
Aronsson et al. have used the latter approach and got high latency levels from
the video conversion [2]. They argued that a higher quality analogue frame grabber
would be a solution to lower the latency. In an interview with Roger Johansson, Feb.
2016, he stated that well performing analogue to digital converters are in general
very expensive. No low latency frame grabbers was found in the market that could
fit into the project budget. J. Allander et al. used a complete digital approach with
good results [1].

3.2.1 Video Capture

It was decided to use a similar hardware set-up for the video capture as in the work
by J. Allander et al. [1] For capturing video the single board computer Raspberry Pi
model 2B was used, hence after referred to as the Pi, along with the corresponding
camera component developed specifically for the Pi, the Pi camera module V1.
The Pi is relatively cheap and has hardware accelerated h264 encoding capabilities
[11]. The camera component offers the performance required offering high enough
resolution and framerate suitable for the DK2 [12].

J. Allander et al. [1] used the raspivid module, so that would be a natural choice.
However the other alternatives where also interesting for various reasons. There was
an interest in exploring the option of capturing uncompressed video. The picamera
drivers, compared to the alternatives has that option of supporting uncompressed
video. Picamera was discarded however since even the authors of the drivers were
unable to reach video capturing above a 15fps rate [13] and no implementation were
found where a satisfying result could be reached. Instead the UV4L (User space
Video 4 Linux) platform was tested and compared to Raspivid. The UV4L offers
a complete video streaming solution with camera capture drivers and a streaming
server. Raspivid is simply the drivers for capturing a video stream possibly using
pi’s h.264 hardware compression. The UV4L platform was compared with Raspivid
combined with GStreamer for video transfer introduced in the next section.
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3.2.2 Video Transfer

Transmission of the data was done over radio with the well established Wi-Fi proto-
col. Options to radio transmission were explored such as an optical system or audio
system, however no viable alternative to radio transmission was found. Alternatives
to the Wi-Fi protocol were other standards such as Bluetooth, however no compet-
itive alternatives to Wi-Fi was found that could match the speed and simple setup.
For Wi-Fi transmitters and receivers the TP-Link TL-WN722N Wi-Fi dongle was
used on both ends of the connection. They use the IEEE 802.11ac standard and
offers a theoretical speed up to 150Mbps [14]. The receiver was a personal computer
connected to the DK2.

There was an option to use Wi-Fi in ad-hoc mode or infrastructure mode i.e. with
or without a central base station. The infrastructure mode was used with the Pi
acting as a router. A wireless network was set up with the Pi as an access point
with the software hostapd. Maximum throughput was tested with iperf (a standard
network testing tool) and showed a maximum of 28Mb/s with TCP and 46Mb/s
with UDP. The reason for the low speeds was uncertain. One plausible theory was
that the USB link on the Pi throttles the Wi-Fi link performance. Another was
disturbances, however changing environment to one with less radio interference did
not improve the results. The low speeds made it clear that high compression levels
would be needed.

The encoding of the video for the video compression was made with the Raspivid
utility where various encoding and compression options have been tested for opti-
mal performance. The main option for the encoding offered by Raspivid is h264.
J. Allander et al. [1] got the best performance with the MJPEG encoding. There
where however no success in repeating the feat due to lack of documentation of how
J. Allander et al. [1] did it and the lack of software supporting handling MJPEG
streams and pi’s MJPEG hardware acceleration. GStreamer is an open source mul-
timedia framework where various modules can be linked to process video streams in
various ways. There were no competitive alternatives found for handling the video
streaming. The UV4L platform can handle both h264 and MJPEG encoding, how-
ever it did not perform well. Hence GStreamer was used together with the h264
encoded stream from Raspivid.

Raspivid was set to output a h264 stream that was piped to the software GStreamer
1.0. There were few/no research studies available for the optimal GStreamer pipeline
for processing the video stream. Instead ideas from different unscientific sources
where similar attempts had been made were tested. Experiments with various solu-
tions for the pipeline were made and in the end the one with the best performance
for the application was chosen. In this case a GStreamer pipeline was created using
modules for packing the h264 stream in RTP packets and transmitting it by UDP
over Wi-Fi to the receiver. The full command to start the video transfer is listed in
Appendix B.4.
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3.2.3 Video Presentation

The video presentation was done on the DK2 which is connected to a laptop. Tests
were performed to use the Pi instead of the laptop but they were for unknown
reasons unsuccessful. There is no official support for the Pi which is a part of the
complication, therefore a regular laptop running Windows 7 was chosen. When
presenting video on the DK2 there is a need to compensate for Barrel distortion
and Chromatic Abbreviation correction. The DK2 software development kit, hence
after refereed to as the SDK, has libraries for applying both Barrel distortion and
Chromatic Abbreviation correction [15]. However, to utilize these filters one has
to process the video through OpenGL or Direct3D, implementing this seemed like
unnecessary work for 2D-video streaming. It might be possible to make or find
filters correcting the distortions from the HMD that easily integrates into our video
pipeline. However, due to the time constraints these options where not explored
and left as further research. It is also worth to mention that J. Allander et al. [1]
previously succeed with correcting for Barrel distortion and Chromatic Abbrevation
using the SDK. It did however add severely to the latency of their system going
from about 50ms latency to about 195ms latency [1, p. 29].

The laptop was connected over WiFi to the wireless network set up by the Pi. For
receiving the video stream GStreamer was used. The GStreamer pipeline used to
show the image is mostly the reversed send pipeline. A UDP-source is piped to a
rtp depayer via a h264 decoder to an automatic video sink. When launching the
pipeline with gst-launch-1.0 a window is opened that shows the image stream. The
Oculus works as a HDMI-screen. The window with the video is therefore simply
placed on the DK2 screen in fullscreen. The Oculus handles the duplication of the
image to give the same image to both eyes [15]. The performance of the real time
view module is presented under the chapter 4.

3.3 Tracking

The main goal of the tracking module is to continuously track a moving user’s
location and rotation relative to the quadcopter, in order to provide input to the
quadcopter regulation module. The tracking should be accurate and fast enough to
make following of the user feel smooth. In addition to user tracking, the continuous
height measurement will also be described in this section.

For creating the third person view the camera should always have the user centred
and make sure that the camera captures video from behind the user i.e. in the same
direction as the user is facing. The camera should also be at a constant distance from
the user as described in section 1.3. This fact is important for how to represent the
tracking data as there is only a need to track the relative location of the user to the
quadcopter and not to an absolute geographical location. Henceforth the situation
where the third person view alignment is achieved will be called the steady state.
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A relative location can be represented in different ways. One way is by a combination
of the direction towards the location and the distance to the location. Since the user
is moving on the ground plane there is only the need for a single angle to determine
the direction, the angle from the camera centreline. The combination of the angle
and the distance gives a user location in the quadcopter’s coordinate system, but
there is one thing more required by the tracking.

By knowing the location of the user the quadcopter can determine if the user is on
the centreline or otherwise knowing where to move to make it so. As stated the
user should also be viewed from behind. This further requires tracking of the user
rotation, that is where the user is facing compared to where the quadcopter front is
facing. This rotation can also be represented by a single angle if one assume the user
is always looking alongside the horizontal plane, neglecting upwards or downwards
tilt.

This gives three numerical variables to track:

• Distance to user

• Horizontal angle from the quadcopter centreline

• Difference in user and quadcopter angle of rotations

Ideally when the third person view is achieved all these variables should be constant.
Therefore the primary goal of the tracking module is to make the tracking work close
to the steady state with the assumption that the quadcoper regulation module will
make the user stay in the steady state.

3.3.1 Possible Tracking Methods

During early project phases many solutions for a tracking system were evaluated. A
straightforward alternative was video analysis of the available video stream as this
had been implemented by previous instances of the third person view project [1]–[3].

With video object recognition the size and location of the tracked objects in the
video stream are calculated. By knowing the sizes and shapes of the objects the
distance and real location of the tracked objects are determined. By tracking a non-
symmetrical object or several objects in a constellation the angle towards the object
can also be determined. To find objects visually a lot of heavy calculations has to
be done as per A. Lindgren et al. [3], which is non-optimal given the requirement of
rapid tracking capabilities. If these calculations are done on hardware not directly
connected to the camera latency from the video transportation will also add to the
tracking latency.
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In the previous reports [1]–[3] there are mentions that latency was an issue. With
this in mind, and after discussions with the supervisor it was decided to try out
something different; some type of transponder or beaconing system. The prospect
was that this could provide a faster system, avoiding the heavy computations thus
enabling increased sensor data updates.

3.3.2 Distance Measurements Using Waves

Travelling waves, both electromagnetic and acoustic waves can be used to measure
distance. This can be done by a method called Sonar for acoustic waves (or RADAR
for EM-waves in the Radio frequency range), a pulse is generated which travels by a
constant velocity towards the tracked object. The pulse bounces on the object which
means that after some time a pulse response can be sensed. If the pulse transmitter
and generator are close to each other the waves travels two times the distance which
can be calculated as:

distance = travel time · travel velocity
2 (3.1)

For our application both the transmitter and receiver would have been placed on
the quadcopter frame and directed towards the tracked user. There are possibilities
to buy pre-made integrated modules with this range finding ability by ultrasonic
sonar or Infra-red light. Another option is to develop own modules from available
transducers.

An alternative to using echoes or reflections for measuring distances is to have
separate transmitter and receivers. A pulse is transmitted from one side of the
measured length. A receiver is placed on the opposite side and the time from that
the pulse is transmitted and received is proportional to the distance. The principle
is the same as for the previous case, but now the wave is not reflected and the
wave only travels a single distance. With both alternatives it is also possible to
determine angle towards the user as will follow. An advantage of using sonar is that
the absolute distance to the user can directly be calculated from the time difference
between sending a pulse and receiving it. For measuring distance with separate
transmitters and receivers the receiving system need to know the time the pulse was
sent. The drawback with sonar is that much of the pulse energy will be lost in the
reflection, much due to the user not being a flat hard surface. Because of this the
module would have to be perfectly directed at the user so that sufficient energy for
pulse detection is received.
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Direction towards the User

Finding out the direction towards the user relative the quadcopter’s centreline was
based on a simple idea: There are two distance measurements done between different
points on the quadcopter. This can be done by two separated receivers on the
quadcopter that get hit from a signal from the same source. These receivers are
at a known distance, and by comparing the reported distance the centreline angle
deviation can be calculated. The idea is presented in Figure 3.1. In a conference
paper by O. Wijk et al. [16] they use a similar technique but for a different purpose.
The technique works well for angels between ±90, but for larger angles it will be

29
8 

cm

301 cm

Θ

Figure 3.1: This figure shows the angular offset from the the quadcopter’s centre-
line, and the distance measured from two sensors

impossible to determine whether the signal was sent from the front or the back of
the quadcopter. If θ in Figure 3.1 is more than 90°, e.g. θ = 90° + 10 it will yield
the same result as θ = 90° − 10 = 80°. One way to distinguish the two cases is
by adding a third receiver, not placed in line with the other. This setup leads to a
certain determination of the angle.

When the quadcopter is at the steady state it is located 3 meters directly behind the
users head. A well working regulation of the quadcopter keeps the location close to
the steady state, which ensures that |θ| is less than 90°. Therefore the receivers and
transmitter will in practice always be directed towards the user or the quadcopter
and the third sensor becomes redundant. As depicted in Figure 3.1 it was decided
to put two receivers on the quadcopter frame.
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Next choice was to determine what type of signal was to be used. Various alter-
natives were considered, such as laser distance measurement systems, ultrasonic
systems, radio systems and Infra-Red light systems. Laser ranging can provide a
very exact distance measurement[17], but due to being very expensive this was dis-
carded. IR-light was also discussed, but the main idea to measure the time difference
would be hard using light, due to light being so fast. If the sensors would be placed
30 cm apart, a reasonable distance due to quadcopter size, and being hit straight
from the side, it would take 1 nano second between the pulse reaching each sensor.
A computer would need to check if each receive has been hit at least at a 1 GHz fre-
quency just to register a difference in receive time. The Raspberry Pi which would
be used on the quadcopter has a clock frequency of 900 MHz, which is too slow.
Given this the choice fell on ultrasonic sound [18], sending and receiving pulses of
it.

Ultrasonic Modules

With a speed of 343 m/s at normal temperature and air pressure[19] ultrasonic sound
is suitable for the application. Sound is the compression of air, and its spread has
a direction. Available ultrasonic elements (transmitters and receivers) are directed,
with different beam angles. In order to function as intended the ultrasonic receivers
must be directed towards the transmitter and vice versa so they are within the beam
angle.

Ultrasonic sonar modules of the models "Parallax Ping)))"[20] and "HC-SR04"[21]
were tested. These are compatible with both a Raspberry Pi and an Arduino Uno
[22]. The Ping))) does not do anything until provided a digital trigger signal. When
triggered, it sends an ultrasonic pulse, and starts to listen for the echo. As separate
transmitters and receivers were considered, alternatives were searched for which
could continuously listen for pulses without first sending a pulse. Another problem
with Ping))) is its narrow beam angle, which is ideal for sonar if the module is
perfectly directed but not for tracking of a moving target.

To overcome the shortcomings of the combined transmitter/receiver ultrasonic mod-
ules, effort was made to create new modules. Ultrasonic transducers were acquired
which had a better transmit angle. However to make use of these, amplifiers had to
be designed, these were never used but the design process is documented in section
3.3.6.
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The digital sonar module Ping))) was used, they have an inbuilt limitation in that
they only listen for an echo of the sent pulse during the time to detect a three
meter distance, which might be to short. Further it was desired for one transmitter
to send pulses to be sensed by two receivers. Therefore it was decided to go with
separate transmitters and receivers. This can be done by using the combined sonar
modules if the pulse generation is prevented on the receiver module and vice versa.
The receivers will be triggered to send a pulse and wait for a response, but as the
pulse generation is prevented the module will just wait for the identical pulse sent
from the transmitter module. To read a distance with this setup the transmitter
and receivers must be synchronized.

3.3.3 Measuring Distance with Separated Pulse Transmit-
ters and Receivers

As stated before, it is possible to use digital ultrasonic modules. The available
modules are combined transmitters and receivers for sonar ranging, but have been
modified to either work as transmitters or receivers. For measuring absolute dis-
tance and also because the modules are only listening in a short interval after being
triggered there must be perfect synchronization between pulse transmit and the
listening of an incoming pulse.

Initially the proposed method was to use the Wi-Fi link for synchronizing. Both
the transmitter and the receivers were connected to Raspberry Pi:s with Wi-Fi
capabilities. A software was created that sent a short message from the receiver
for requesting a ultrasonic pulse and then triggering listening for incoming pulses.
When the message was received at the transmitter Pi, it sent the ultrasonic pulse.
If the message had been received and the pulse sent in a short enough time, this
would have given an absolute distance reading.

However, the distance readings did not work because of network jitter. Had the
messages been transmitted with a constant latency the delay could have been com-
pensated for, but the message arrived some time after about 8-10 ms. This jitter of
2 ms made it impossible to give an exact distance measurements as it accounts to an
error of 70 cm. A potential solution might have been to instead of a simple request
of pulse transmit, send a message with specific future time for pulse transmitting.
Supposing the clocks was synchronized the transmitter would send the pulse at a
time known by the receiver. Since the clocks on the Pi:s were suspected not to be
perfectly synchronized a frequency based solution was instead implemented, that do
not depend at the Wi-Fi link.
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Method of Clock Synchronization

It was decided that the transmitter on the quadcopter should send ultrasonic pulses
at a constant interval of 60 ms. An Arduino microcontroller is connected to the
transmitter which uses its internal clock to time the pulses.

The quadcopter’s receivers sense the pulses, but must know when they were sent
to determine the distance. To solve this problem there is a start up phase before
flying where the user transmitter and quadcopter is placed at the desired steady
state distance (e.g. three meters). When the receivers sense the first pulse the
current time is saved in a variable tf . Since the pulses are transmitted at a constant
frequency and should travel a constant distance all the next pulses should be detected
at times:

tn = tf + n · 60 ms, where n = 1, 2, 3, 4... (3.2)

If pulses are detected at any other times the distance to the user differ from the
target steady state. The difference between time of detection and closest time tn is
∆t. By using the simple relationship between time and sound velocity the distance
from steady state is calculated as:

∆distance = ∆t · speed of sound (3.3)

As the steady state distance was determined during the start up phase the distance
measuring in theory should now be complete. For how to actually implement this
behaviour with the sensors refer to the source code B.1.

Clock Drifting

A problem was identified after implementation, the distance measuring was drifting.
The reason for this must be that the internal clock of the Pi, the Arduino or both
was not correct and did not measure the time accurately. To overcome this drifting
of the clocks a constant was added called the "clock constant" cc. This constant was
made to compensate for the drifting, the Pi program assumes that the pulses comes
at an interval of not 60 ms according to its internal clock but of 60ms + cc. The
constant was adjusted so that the distance measuring worked without any drifting
and seemed to have solved the problem.

The next problem was identified the next time the system was tested, the distance
measuring drifting had reappeared in spite of the added clock constant. The reason
for this is probably that the clock drifting itself is not constant, and changes due to
unknown causes, this might be because of for example temperature differences or
something else. The clock constant therefore has to be reset at every system use to
compensate for the drifting at that occasion. In the future this might be automated
and done at the start up phase, but now setting the clock constant is done manually
to get a stable distance measurement for each time of flying.
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3.3.4 User Rotation

The Oculus Rift Development Kit 2 has built in magnetometers [15]. By measuring
the magnetic field these can act as a compass [23]. In order to stay directly behind
the user’s head, the DK2’s compass angle would be compared with the compass
angle of the APM i.e. the rotation of the user compared to the rotation of the
quadcopter. The goal is that the quadcopter camera should look the same way as
the user, as the quadcopter is to be placed behind the user.

This together with the correction of angular displacement should keep the quad-
copter in the desired steady state. In practice to read the compass angle from the
DK2 a laptop has to be connected to the DK2 by USB. A program was written in
C++ to get rotation data with the official Rift software development kit. The SDK
provides rotational data round all axis but the one of interest was rotation in the
horizontal plane; the yaw angle.

A problem was found when using the Linux version of the SDK as this did not
actually make use of the magnetometers. It derived the user rotation from the inbuilt
accelerometer. Using accelerometer data to derive location or rotation is prone to
drifting values as even small errors of the accelerometer readings will add up over
time. This proved to be a real problem as the reported angle drifted even when
the DK2 laid still. With a Windows computer another version of the SDK could be
used where the yaw angle was derived from sensor fusion of the accelerometer and
the magnetometer reading which gave a more stable reading.

Another problem was that the SDK API did not report yaw as a value from compass
north as the APM did, but rather from a seemingly random initial value. It should
be possible to derive the real north from using the DK2’s low level sensor values.
As these are not in a form directly usable and would need filtering etc. it was
not investigated further. The problem was instead solved by having an initial phase
before flying; the DK2 is assumed to be started from the steady state position where
the quadcopter’s compass angle is at that point the same as the DK2’s. The offset
between the APM’s real compass bearing and the DK2 SDK’s reported yaw is saved
as a constant. This constant is added in all further calculations so that the reported
yaw is converted to angle from magnetic north.
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3.3.5 Height Measurement

To maintain a given height the initial thought was to use the quadcopter’s built in
barometer. After the first flight test it could be seen that the barometer precision
was ±1 meter, which was not sufficient for our low altitudes. It was therefore
decided to add an ultrasonic sonar facing downwards to measure the height. The
ping sensor provides good height measurement (at best ±3mm) up to 4 meters [21],
which is sufficient for the application. The drawback is the sensitivity for turbulence
and vibrations [24]. Both Parallax Ping))) and HCSR04 was tested during flight.
The hypothesis was that Ping))) would be better as it supports a higher refresh
rate (a new reading can be started directly after the previous is finished) than
HCSR04 which requires a 60ms interval[21]. A higher refresh rate is beneficial for the
regulation, however it was seen that the Ping))) was more sensitive to disturbances
during flight and provided a lot of errors. To get accurate readings HCSR04 was
chosen despite the 60 ms minimum refresh interval (16,7 Hz). When the quadcopter

Figure 3.2: Representation of tilt caused by the quadcopter moving

is rolling or pitching, as explained in Figure 2.3 on page 9, it will not be horizontal
and the ultrasonic sensor will report a higher height than it should since it will
be facing the ground diagonally and not straight downwards as shown in Figure
3.2. Fortunately the APM has an inbuilt gyroscope, the quadcopter inclination is
therefore known. The algorithm used to solve the height measurement problem with
this is:

h√
tan2 αr + tan2 αp + 1

(3.4)

where h is the measured height, αr is the angle of rotation from the roll of the
quadcopter and αp is the angle from the pitch of the quadcopter. The derivation of
this formula can be found in Appendix B.3.
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The readings from the Ping))) sensor are sometimes wrong due to outer circum-
stances or malfunctioning hardware. To decrease the effect of these corrupt readings
a simple filter was implemented. The filter design is based on that a new reading
cannot differ too much from the previous one. The height measurement cannot differ
more than

V ∗ dt (3.5)

where V is the average climb rate between the two most recent readings and dt
is the time between the readings. The average climb is calculated from the APM
accelerometer readings. The new height reading is therefore constrained between

h0 − V ∗ dt <= h <= h0 + V ∗ dt (3.6)

where h0 is the previous reading.

3.3.6 Analogue Sensor Development

The digital ultrasonic sensors that was available (HC-SR04 and Ping))) ) listen with
a given algorithm and was directed with a narrow angle, analogue receiving elements
was looked into. They should be as sensitive and have as wide beam angle as possible.
The receiving sensors produces a signal which is quite low, a few mV at most. In
order to read an analogue value an Arduino would be used, the Raspberry Pi only
supports digital inputs. Because of the functionality of the Arduino, the value would
have to be a few volts, up to maximum of 5V. The Arduino converts the voltage
measured into a value between 0 and 1023, where 5V is represented by 1023, and
0V by 0. Therefore an amplifying circuit needs to be made. The circuit needs two
main functions to be able to read the signals well; amplification and filtering. The
only frequency of interest is the frequency produced by the ultrasonic transmitter
i.e. 40kHz. The best type of filter is a band pass filter. It should be designed so
that the centre frequency of the filter is the same as the receiver’s ideal frequency.
The Arduino’s analogue input should read 0 continuously until the receiver is hit.
Then a higher value should be recorded, and by implementing a software algorithm
it is possible to time the hit.
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Figure 3.3: A first stage amplification with an active 4th order Butterworth band
pass filter. The values were calculated using [27]

Figure 3.4: Bode diagram showing amplification plot for the circuit in Figure 3.3

There are several different filters with different characteristics. The decided model,
seen in Figure 3.3, was based on a Butterworth filter which has a flat pass response
[25]. A three stage circuit was implemented. First stage is an ordinary band pass
filter amplification, and the second and third combined is an active 4th order But-
terworth band pass filter. These should yeild 66.7dB amplification (see Figure 3.4)
as well as reduced noise from both low and high frequencies. After the Butterworth
filter, a diode is placed in order to ensure only positive voltages for the Arduino to
read, as well as a impedance to lead away DC currents, and a capacitance to ensure
no DC current is going into the Arduino. The Arduino could successfully read the
pulses, although, the continuously read value was somewhat inconsistent, leading to
false registered hits. To counter this obstacle an average of previous 50 values was
made as a reference in order to ensure a pulse was properly registered. The built
in function "analogRead(pin)"[26] however proved to be slow, taking some 100µs to
read a value. The pulse sent from a Ping))) is 200µs long, and thus registering more
than one sensor would not work all the times, and most of all, the time difference
would be uncertain. There are ways of converting the signals to digital, but due
to lack of time and no knowledge of signal conversion the idea was scrapped to the
advantage of the digital modules.
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3.4 Quadcopter Assembly and Regulation

This section describes the process of assembling the quadcopter and how the tracking
data produced in section 3.3 is used to navigate the quadcopter.

3.4.1 Quadcopter Assembly

The first step on the path to get an automatic flying quadcopter is to assemble a
basic one, without the ability to fly on its own. Then it is time to interpret the
values from the tracking system described in section 3.3 to regulate the quadcopter
in a way that achieves a third person view.

The vehicle used in this project is built by the components listed in Appendix A.1.
The most important component is the flight controller, which is responsible for
regulating the engines in such a way that the vehicle flies in a desirable direction.
The flight controller that is used is the APM 2.6. It has a built in 3-axis gyro,
accelerometer, barometer and a compass, which provides a lot of useful data to
keep the vehicle stable and at a desired height. The major reason for choosing the
APM is that it uses the open source autopilot ArduPilot. That makes it possible to
modify the code and customize the way the quadcopter flies. The mounting of the
flight controller should be near the centre of gravity and with a vibration damping
attachment, to improve sensor readings. Further information about how to assemble
a quadcopter and calibrate the sensors can be found at the Ardupilot web page [28].

To be able to manually fly the quadcopter a radio transmitter and a receiver were
set up according to a guide at the Ardupilot web page [29]. A control switch on
the transmitter was also configured to change from autonomous to manual mode,
to make it easy for the pilot to regain control if something malfunction.

An optical flow sensor was initially used in hope of getting rid of the drifting move-
ments of the quadcopter, when it was supposed to be in a stable position. The sensor
is capturing images of the ground and compares the pixels to the previous images
pixels. Then it calculates an estimate movement and tries to compensate. After a
test flight it could be seen that the quadcopter was not completely stable and slowly
drifted sideways. The optical flow sensor did not give any visible improvements and
was therefore discarded. The negative result of improvements with the optical flow
sensor can be because of the sensor’s requirements of well lit environment and non
fluorescent light.
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The final prototype can be seen in Figure 3.11, page 36. Several different placements
of the ultrasonic receivers and the ultrasonic height sensor were tested to find a place
where the turbulence from the propellers and the vibrations had least effect. The
best result for the height sensor was achieved at the centre with double-coated
adhesive tape pads. The receivers had to be placed on extended arms to avoid the
propellers and increase the resolution of the measurement of the centreline angular
offset. The extended arms worked well for decreasing turbulence, but caused the
quadcopter to vibrate more and impaired the flight performance. The contributing
factors were probably the length of the arms and the plastic material they were
made of. Another component which placement needs to be considered carefully is
the compass module. It is sensitive for magnetic fields and was therefore placed at
the edge of the main board to have the greatest possible distance to any electrical
current.

3.4.2 Quadcopter Regulation

On the APM there are different flight modes built in, that makes the quadcopter
behave in different ways. Each mode enables different types of flying, e.g Acro mode
is good for acrobatics such as rolls and flips where the user is free to regulate the
quadcopter as desired. While in Loiter mode the user can fly it manually, but when
the sticks on the transmitter are released the quadcopter should hold its position [30].
To make the quadcopter behave in a new way a new flight mode can be constructed
in the APM source code.

To regulate the quadcopter for third person view the new flight mode "Follow" was
implemented. The flight mode is running a 100hz loop where the regulation is
performed. This is done by PID controllers which refreshes each control signal as
new sensor data is read see Figure 3.5. Until new data is received all control signals
remain unchanged. The interval of new sensor data that is sent to the APM is every
60ms so the update frequency is 17Hz.

The APM uses pulse width modulation in order to send signals to the rotors. There
was no need to consider how the APM controlled each engine as there were pre made
methods available. A numerical value in a given interval is set for each axis that
related to the velocity in that direction [31].

It was decided that the angular deviation from the quadcopter’s centreline should
regulate the yaw, and the difference in rotation to regulate the roll of the quadcopter
(see Figure 2.3 for explanation of directions). The central argument for this is that
a person can rotate quite fast, potentially causing the ultrasonic transmitters’ beam
angles to deviate from the quadcopters direction. Thus leaving the receivers unable
to register the signals sent from the user. With angle controlling yaw this should
not pose a problem. The distance to the user naturally controls the forward tilt of
the quadcopter.
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PID regulator

Sensor

Target value

height, 
distance, 
centerline or 
head rotation

Control signal

throttle ∈ [0,1000], 
yaw ∈ [-4500,4500], 
pitch ∈ [-4500,4500], 
roll ∈ [-4500,4500] 

+

Sensor noise

Filter

+
-

Figure 3.5: Schematic overview of quadcopter control loop. Control signals within
the specified range is generated from noisy sensor data

The regulation algorithm for a user rotating is summarized in Figure 3.6. The
quadcopter and user angle deviation from north represented by α and β respectively,
β is the angular deviation of the user from the quadcopter centreline. As the user
rotates clockwise, the quadcopter will react by rolling left induced by the fact that
α < β. Rolling left will generate an angular deviation θ, causing the quadcopter to
rotate clockwise. A fast enough regulation will make the resulting movement a user
centred rotation with a radius of 3 meters. A similar regulation will occur when
the user moves sideways, but the order in which the events happen will differ. First
there will be an angular deviation θ that triggers the quadcopter to rotate. The
rotation causes an angle deviation from north between α and β, which initiates a
rolling movement. The resulting movement will be sideways, since the distance to
the user is kept constant by regulating the pitch angle.

3.4.3 PID Control

A PID controller can be either time continuous or time discrete. Continuous con-
trollers are implemented in analogue circuits and discrete controllers in digital cir-
cuits, sometimes by software.
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Figure 3.6: How the quadcopter reacts to a rotation of the user

At first a simple approximation of a PID controller was implemented in the APM.
When new sensor values are received from the serial port the controller method
updates the quadcopter control signals. This controller works the same way for all
directions with different parameters, to concretize the method the height regulation
will be taken as an example. The difference between measured values and target
values is put in a variable e which is positive if the current height is below the target.
In the following algorithm for calculating the control signal u at point k in time,
∆tk is the difference in time since the last time updating the control signal T .

uk = ek ·Kp +
∑

k
(ek ·∆tk ·Ki) + ek − ek−1

∆tk
·Kd (3.7)
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This algorithm was tried for height regulation with different K-parameters without
good result. The quadcopter would, however not stable, hover for some time and
then suddenly crash or fly up fast. The problem was identified as that when the
height reading for some reason lagged there could go seconds between height read-
ings. Therefore when a reading finally passed through the time passed ∆tk was very
large, resulting in the sum (I-part) being very off. The PID controller was modi-
fied to not take into account the time passed under the assumption that tracking
data was delivered at constant interval. This way the quadcopter did not crash
during sensor data lag. A more advance variant of the discrete PID controller[32]
was implemented for the height regulation. This controller is defined as follows:

[k] = u[k − 1] +K1e[k] +K2e[k] +K3e[k − 2] (3.8)

where:

K1 = Kp +Ki +Kd

K2 = −Kp − 2Kd

K3 = Kd

(3.9)

The implementation in C is shown in the source code provided in Appendix B.1.

The PID parameters needs to be tuned in order to function well. No simulations were
done for tuning the PID parameters, rather manual tuning was made, the controller
was designed to accept changes to the parameters during flight. Depending on which
quadcopter movement was to be regulated, different parameters were chosen. A base
value was used in order to make the height regulation (throttle) simpler, this is just
a constant added to the PID controller output. The base value was chosen to be
the value of the radio controller when the flight mode "Follow" was activated.

The throttle PID controller was tuned in by first increasing Kp until the quadcopter
began oscillating around the target height and slowly sinking. The sinking was due
to the base value being calibrated for a full battery. To compensate the error in the
base value a small I-term was added. Finally a D-term was added to compensate
for the oscillations.

Unlike the throttle for the other movements just a P-controller gave acceptable
results. However, given more time for testing a more optimal controller with I- and
D-parts could give a more responsive system. The final PID controller parameters
for all movements can be seen in Table 3.1.
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Table 3.1: The final PID controller parameters.

Kp Ki Kd

Throttle: 0,5 0,007 7

Roll: 0.3 0 0

Pitch: 10 0 0

Yaw: 100 0 0

3.5 Information Flow and Software

In the final system which will create the third person view experience the different
modules must work together. The video module can work independent of the other
modules. However the tracking module and the quadcopter regulations must be
tightly integrated in order to automatically position the camera correctly. Further
there is a need to control and monitor the system as well as the different modules
for both testing and operation purposes. This section seeks to explain the way
information is passed between modules as well as the software developed to handle
communication, control and monitoring of the system.

3.5.1 Information Flow

One of the main challenges is that the quadcopter regulation software ("Follow")
running on the APM needs information from the tracking module to regulate the
quadcopter. The different components used for the tracking are placed in different
parts of the system. The orientation of the user and the quadcopter come from
compasses on the DK2 and the APM respectively. The distance and the angular
offset between the user and the quadcopter is given by ultrasonic sensors connected
to the Pi as presented in section 3.3.2.

The regulation software Follow regulates quadcopter movements by adjusting control
parameters for yaw, pitch, roll and throttle. A discussion was where the conversion
from sensor data to control signals should take place. The main intention that
determined the choice was minimizing complexity in the information flow. The
orientation of the quadcopter is needed for regulation, which is directly available in
the APM API. This makes it logical to pass all sensor data directly to the APM.
The alternative would have been to send information back and forth between the
Pi and the APM for calculations on the Pi, but that would require a two way
communication link.
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The tracking data originates from both the laptop with the DK2 as well as from
the tracking module on the Pi. Since a Wi-Fi link between laptop and the Pi was
already established for the video module, one of the available options was to use it
for transmitting tracking data to the Pi. The Pi now have all needed data to send
to the APM on a single link.

3.5.2 In-Air Microcomputer Software

The Pi on the quadcopter handles both the tracking module as well as the capture
and transmission of the video. There is a need to be able to receive the sensor data
from the DK2, sending all the sensor data to the APM as well as offer control over
the modules. To offer this functionality a software has been developed called piApp.

Its main component is a TCP/IP server module receiving connections from the
laptop over Wi-Fi. The piApp server offers an API for clients to control both video
capturing and tracking as well as regulation settings. This is also how tracking data
from the DK2 is received.

The interface uses JSON formatted strings, sent from the clients connected to the
server. The piApp decodes the JSON strings to different commands. The available
commands is listed in Appendix B.2 and includes settings as well as tracking data
updates.

The piApp has been developed in the programming language Python 3. One of the
main reasons is that the implementation of a threaded asynchronous TCP server
is fairly easy in Python. The reason a threaded server is needed is because of the
time critical operations piApp executes. Among these are the use of the tracking
module to get the sensor data and the transmission of the sensor data to the APM.
Further the tracking module has also been developed in Python to make it easy to
integrate with the server module. Python also offers an easy native way to use serial
communication which is used to communicate with the APM.

The APM has support for both I2C (Inter-Integrated Circuit) and serial communi-
cation. The I2C port at the APM was used for the compass module and therefore
serial communication with the unused GPS port was chosen.

Receiving data is done in a method running by 50 Hz. Messages are not overflowing
the incoming 256 byte buffer as reading is done more often than new tracking data
is sent. Messages only need to be sent when new tracking data is available, which
is at a 17 Hz frequency.
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A problem was that the APM and Pi had different working voltages, 5 V and 3.3
V respectively. To overcome this at first a regular Arduino was connected between
the Pi and APM only passing messages, as this supported both voltages. However
this for unknown reasons was not a stable solution and messages was often distorted
causing the APM to halt. Instead a Logic Level Converter was bought that enabled
the Pi and APM to communicate directly by serial communication.

['\002', '1', '|', '2', '|', '3', '|', '4', '|', '5', '|', '\003']

STX ETX

ID

Oculus compass

Centerline error

Height

Distance

Figure 3.7: An example of a message to the ardupilot containing sensor data.

A communication protocol was developed and a typical message to the APM can
be seen in Figure 3.7. The message is encoded in ASCII and the start and end of
the message are identified by the standard control characters STX and ETX. The
first number works as an identifier, which tells the APM how many and what type
of values to expect. Each value is separated by a divider character (’|’). Apart from
updates of tracking data, which is the most common message sent, there are messages
for updating target height and PID-controller parameters as well as enabling and
disabling parts of the automatic control. One option is for example to only regulate
height automatically and control the other axes with an RC controller.

3.5.3 Software for System Monitoring and Control

The Third Person View Control Centre (TCC) is a developed software component
that offers a graphical user interface to observe and control most parts of the system.
It also handles extracting the DK2 sensor data. TCC connects to the piApp server
on the Pi and offers a user interface to the functionality that piApp offers. It
is intended to mainly run on the user worn laptop which the DK2 is connected
to. Under normal operations it must send sensor data to the piApp and starts up
GStreamer for the video link. Extra instances of TCC can be run on other machines
in order to observe the system and get access to the system controls on separate
machines.

The DK2 sensor data is provided by the DK2 SDK. In order to easily access the
sensor data the TCC as the SDK was implemented in C++. Further, since the
intention of the TCC software was to offer a user interface the QT platform was
used. The QT platform is a C++ framework offering extensive functionality for
creating user interfaces [33]. QT also offers several modules, among them a module
for network communication. This made it easy to connect as a client to the TCP/IP
server that piApp runs.
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The user interface of TCC is extensive and offers a way to both observe and control
the system. The main features of the user interface are to make it easy to manage
the connection to the piApp server and provide piApp with user orientation data
from the DK2. It can also receive sensor data from the piApp and graph this.
There is further a possibility to change the quadcopter PID controller parameters
and other regulation settings. All this data is packed in a JSON string and sent to
the piApp. The user interface is further explained in Figure 3.8.

Figure 3.8: The GUI of the TCC software.
The orange box indicates the controls for connecting to the server running on the Pi. It
also offers a network communication log. The red box is the GUI for sending settings to

the software on the APM, mainly PID parameters. It also allows for choosing what
directions should be manually controlled. The yellow box offers an interface towards the
DK2s sensor data and the frequency it should be sent to the piApp can be adjusted here.
The green box is where the settings for the video stream can be adjusted. The blue box
displays the sensor data available on the Pi for debug, testing and observation purposes.
The black box further graphs sensor data on the Pi, the left graph shows the height
readings over time while the right graph shows a combination of distance and user

centreline offset.
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3.6 System Overview

This section will give an overview of the final prototype. An overview of the pro-
totype with the different modules and their communication links are presented in
Figure 3.9.

Figure 3.9: Overview of the components in the system and their communication
links. The large boxes shows division between system components worn by the user
and components mounted on the quadcopter frame.

The user will carry the head mounted display Oculus Rift Development Kit 2 con-
nected to a laptop as well as a ping transmitter. The DK2’s inbuilt compass is
used for collecting the user’s current head rotation. The DK2 is further used for
presenting the video stream. The laptop handles radio communication with the
quadcopter; sending compass data from the DK2 and receiving the video stream.
This communication is done over 802.11 Wi-Fi. From the laptop there is also pos-
sible to change settings for the automatic control system on the quadcopter. The
ultrasonic transmitter is made up from a battery driven Arduino connected to an
ultrasonic ping module. The Arduino’s internal real time clock is used to make the
module send ultrasonic pulses by a constant 60 ms interval. This equipment is to
be worn at the back head of the user so that the pulses reaches the receivers on the
quadcopter as per Figure 3.10.
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Figure 3.10: The ultrasonic pingtransmitter worn at the back of the user’s head

The quadcopter has many different components, and they are mounted according
to Figure 3.11. The microcomputer Raspberry Pi acts a central coordinating unit.
The Pi communicates with the user worn laptop by broadcasting a Wi-Fi network.
The Pi also receives height measurement data from the ultrasonic distance sensor
directed towards the ground. At a 60 ms interval it activates the two other ultrasonic
receivers as described in Figure 3.1 on page 17, which will sense the pulse transmitted
from the user. The distance to the receiver from the transmitter is given by a simple
calculation from the travel time of the pulse. By comparing the measured distance
from each receiver one can determine the users centreline offset. For measuring
distance the Pi software must know when the pulse was transmitted. At an initial
stage the internal clock in the Pi is synchronized with the clock on the user side
Arduino microcontroller.

All track data is sent by the 60 ms interval from the Raspberry Pi to the APM
flight controller over a serial data connection. The order of tracking data and/or
setting data is according to a predefined protocol which minimizes overhead. The
APM runs a constructed control system which first filters the incoming data to
remove potentially incorrect tracking values. The reported height is adjusted for
the quadcopter’s inclination as shown in Figure 3.2.

The filtered sensor data is used by PID regulators, which generate control signals
according to Figure 3.5. The control signals adjust the movement of the quadcopter
to track the user as in Figure 3.6. A compass offset triggers a sideways motion
(roll), a height offset triggers a throttle adjustment, an angle offset triggers a rotat-
ing movement and a user distance offset triggers forwards or backwards movement
(pitch).
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The real time view system is what creates the third person immersion when the
camera is positioned. For capturing the video a Raspberry Pi Camera module is
used. The camera module is connected to the Pi, where the video is captured and
converted to a raw h264 stream at requested dimensions and quality using hardware
encoding at the GPU. This functionality is made possible by the Pi’s official Raspivid
software.

The h264 stream is encapsulated in RTP packets and transported to the user worn
laptop by UDP/IP. This is done with GStreamer using a custom pipeline of existing
modules for encapsulation etc. The video stream is transmitted over the same Wi-
Fi network as the one for receiving tracking data. At the laptop side the stream is
unpacked also by a GStreamer pipeline and duplicated so that a side-by-side image
is finally presented on the DK2 acting as an external monitor.

Pi camera modulePi camera module

Ultra sonic Ultra sonic 
sonarsonar

Wi-Fi antennaWi-Fi antenna
Raspberry PiRaspberry Pi

Ardupilot MegaArdupilot Mega

Figure 3.11: The assembled quadcopter with some components marked. The
ultrasonic receivers extend outside the image
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In this chapter test results are presented for the video link and the different sensor
systems as well as the regulation software. The tests have been performed on in-
dividual components separately as well as together in flight through different flight
tests.

4.1 Video

The video latency was tested by filming a digital clock with the video capture device
and then taking still photos with a high speed camera comparing the times at the
clock and displayed video. An example of such a photo is in Figure 4.1. Known
error sources are the refresh rate of the monitor used which was 60HZ. Further the
timer used might not be exact. In Figure 4.2 latency was compared for UV4L and
Raspivid with GStreamer. The Wi-Fi link was not throttled. Other settings is 42
frames per second, h264 used 30 as quantum parameter for compression and MJPEG
used compression level 5. The results are the average latency derived from several
stills.

37



4. System Tests and Performance

Figure 4.1: Example of photo used for testing latency. It is a single photo taken
of the digital timer and the rendering device (DK2) at the same time.
On the picture the delay is shown. The blue box contains the reference time, a timer
running on a laptop. The red box contains the reference time and latency difference as

rendered on the DK2.

Figure 4.2: Video latency comparison between Raspivid+GStreamer and UV4L
over Wi-Fi with UDP. It shows the average latency over 20 stills.
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4.2 Ultra Sonic Sensor Performance

The ultrasonic sensors are responsible for measuring height, user distance and user
centreline offset. They where tested when the quadcopter was standing still with the
transmitter at a constant distance. This gives information of the long term stability
of the system and variances in measurement results. The results for eight minutes
of measuring is presented in Figure 4.3.
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Figure 4.3: Sensor data during 8 minute ground test. Graphs sensor data from
the Ultra Sonic Sensors.

There are several interesting things to note here. Regarding the height the reading
is not drifting, and the standard deviation is about 5 cm. There are several spikes
occurring regularly. However, the height sensor data is filtered before regulation
according to the method in section 3.3.5.
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The user distance is measured when the drifting of the internal clocks was taken
in consideration as discussed in section 3.3.3. However, it is evident that the clock
drifting is not constant, it is still drifting, but it is not linear. The standard deviation
is 8.6 cm.

The centreline offset is rather constant. The centreline offset standard deviation
0.76 cm. Why it is not entirely stable is uncertain. It is also worth to note the
relatively low resolution of 1cm.

Further tests were also performed for the maximum detectable user angle Θ as in
Figure 3.1. Since the ultrasonic sensors have a narrow sensing angle the quadcopter
will not be able to track the user if it deviates from its steady state. In order to test
this the transmitter was placed on a known distance and moved in a line parallel
to the quadcopter. When the receivers stopped receiving a signal the distance was
noted and the angle measured. The result was that the receivers worked at an angle
of incidence of up to 23° with regards to the transmitters.

4.3 Flight Tests

Flight tests were conducted to see how the quadcopter behaved in air. The quad-
copter needs to regulate the different directions throttle (height), pitch (distance),
yaw and roll. These were tested first separately where the PID-parameters for each
direction were set to what was found as optimal. Then they were tested together
in different configurations. Lastly the system was tested while all directions were
regulated automatically.

4.3.1 Test Round 1: Altitude Hold Performance

The height was tested by visually observing if the quadcopter were able to hover
stable on its own. Further testing is required for getting optimal PID-parameters.
No tests were made where the target height was altered in order to see how it
behaves to changes. This would be required to optimise the PID-parameters. The
quadcopter is successfully capable of holding its height with the PID-parameters
found in Table 3.1. The current algorithm does not allow significant changes to the
target height, due to the d-parameter reacting aggressively to a sudden change in
target height.
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4.3.2 Test Round 2: Distance and Height Hold Performance

The next test round involved testing the distance regulation. While testing the
distance the quadcopter regulated both the distance (pitch) and the height on its
own while the pilot adjusted the other directions. The quadcopter began at the
desired distance from the user, the user then performed a movement towards the
quadcopter. The reaction of the quadcopter was observed. Interesting observations
was how fast it reacted and how long time it took to reach a steady state again.
Test data from one of the tests is presented in fig 4.4 where two movements, or
thrusts were made. The quadcopter had a hard time stabilising after a movement,
both slow and fast movement. Regarding the height it seems to be able to hold the
height despite the rapid movements. Worth to note is that the figure presents the
height values before they are adjusted for the orientation of the quadcopter.

It was not trivial to regulate the PID-parameters to minimise the time for the
quadcopter to stabilise after movement. The reaction time from a movement of
the user was however very good. The final PID-parameters used for the pitch is
presented in the PID-controller parameter Table 3.1.

4.3.3 Test Round 3: Yaw and Roll

The yaw is adjusted with the data from the centreline offset. The yaw regulation
was tested by simply letting the user walk around the quadcopter and see how
well the quadcopter rotated aiming at the user. The roll was similarly tested by
letting the user rotate the DK2 and then observing how well the quadcopter follows
by regulating its roll. The roll and yaw seemed to regulate well, however further
testing is needed to see how fast it reacts and how long time it takes to stabilize
after movement with regards to yaw and roll. The final PID-parameters used for
the roll and yaw is presented in the PID-controller parameter table 3.1.

4.3.4 Test Round 4: Full Auto

In the last test round the quadcopter regulated all four directions: throttle, yaw,
roll and pitch. The results vary a lot and while the quadcopter handled a steady
state well, different types of fast movements from the user could lead to irregular
behaviour. A lot of further testing is needed to see if the different PID-parameters
can be optimized for better performance. One of the main theories for irregular
behaviour is that the quadcopter cannot react fast enough to user rotation, meaning
that it no longer gets sensor data from the centreline offset. This can be solved by
increasing the angle presented under Section 4.2.
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Figure 4.4: Sensor data for a test with throttle and pitch automatically regulated.
The upper graph indicates the measured height (before adjustment for quadcopter

orientation and without filtering) where 70cm is the target height. The bottom graph
shows the distance from the user, where 0 is the target distance which is the deviation

from 3 meters. The highlighted areas of the graphs is where a thrust where made
towards the quadcopter by the user.

Sensor data from one of the tests is shown in Figure 4.5. Unfortunately the logging
does not support sensor data from the DK2 and the compass in the flight computer.
It shows an example of about 20 seconds automatic flight. During this particular
test the user first took some step backwards and then rotated 90 degrees slowly
counter-clockwise and then 90 degrees fast clockwise. When rotating clockwise the
quadcopter lost tracking data from the centreline offset and the pilot landed the
quadcopter with manual control. This is shown in the graph where the distance and
centreline offset show 0. The oscillation present from 30 seconds forward started
after the user took two steps backwards. Trying to correct for the about 2m distance
movement was enough to make it hard for the quadcopter to stabilize.

It is clear that further testing and improvement is necessary before the quadcopter
can regulate well for user movement. As of this time it can only handle very slow
movement with regards to user rotation, and fast difference in distance causes it to
be unstable for an unfavourable amount of time.
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Figure 4.5: Sensor data from a fully automatic test.
The figure shows the sensor data for height, distance and centreline offset from the full
auto test. The green highlight indicates the time when the quadcopter was regulated
automatically. For take-off the pilot had control, and when the quadcopter lost sensor
data for distance and user centreline offset due to fast movements from the user, the

pilot took control again towards the end of the testing. The red line indicates the target
height. The target distance and target centreline offset is 0 and is the deviation from

where the quadcopter should be.
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4.4 Analogue Circuit

The analogue ultrasonic amplifier circuit developed as in section 3.3, which can be
seen in Figure 3.3 on page 24, was built on a breadboard to see how well it did its
job. The theoretical amplification of the first stage amplification and the active 4th
order Butterworth bandpass filter for 40kHz is supposed to be 66.7dB. But it was
measured to 52.7dB. After the diode and DC isolating capacitance the amplification
should be the same, but it was measured to a lower amplification, 49dB. See Table
4.1 for conversion.

Table 4.1: The theoretical and measured values for a 40kHz signal given by the
circuit seen in Figure 3.3

Type Amplitude [dB] Gain

Theoretical value 66.7 2163

Measured value before diode 52.7 432

Measured value for Arduino input 49 282
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5
Discussion

In this section the results, progressions and development will be discussed. Sug-
gestions on further improvements and alternative methods will be made to make
it easier for future projects as well as to ascertain what went right and wrong for
self-evaluation.

5.1 Regulation

The regulation was tested sparsely, but it does work. The quadcopter is responsive
and the regulation software worked well. However, further optimization of the PID
parameters is necessary, and that is not difficult considering how easy it is to upload
new PID parameters thanks to the software’s developed. Some of the reasons the
regulation is not working as good as intended, apart from the lack of testing and
optimization, is because of the limitations in the ultrasonic measurement.

5.2 Ultrasonic Tracking

The use of synchronized ultrasonic sensors to measure relative distance and angular
offset worked rather well. The sensor values were adequate enough to use to regulate
the quadcopter, but the tracking system had a few flaws. One problem that emerged
was the short term stability of the processors clocks. This caused the quadcopter
to drift the distance to the user. The attempt of using linear compensation gave
a positive effect on the distance measurement and made the tracking work well for
relatively short flight times.
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5. Discussion

The drawback is that the compensating clock constant has to be set at each flight
occasion as the amount of clock drifting varies. Also calibrating the clock constant
is not enough to fully compensate for the clock drifting, as it is not even short time
stable. As can be seen in Figure 4.3 of the Result section the distance reading is not
stable even with a perfectly calibrated clock constant. The sensor error varies by
up to half a meter during the eight minute sensor test. For a more accurate reading
external high precision clocks might be used both at the Arduino and Raspberry Pi,
although there was not time to test this. At a minimum automatic calibration of
the constant should be implemented.

Another unforeseen issue was the turbulence from the rotors affect on the ultrasonic
sensors. The extension arms for the sensors on the quadcopter greatly reduced the
interference from the rotors. Unfortunately the extension arms oscillated during
flight, leading to decreased flight performance. It further gave the quadcopter un-
balanced mass, negatively affecting regulation of the pitch movement. This could
potentially be solved with different material for the arms and counterweights or a
redesign of the ultrasonic placement entirely.

The ultrasonic sensor measurement worked well for slow user movements where the
quadcopter always was kept in the steady. During rapid movements the quadcopter
moved out of the sideways range of the ultrasonic transmitters. This is partly
because of the limitations in the receivers and transmitters beam angle. In order
to achieve greater angle an increase in signal amplification might be needed for
both transmitter and receivers [34]. This can be accomplished by using stronger
transmitters as well as more sensitive receivers including amplifiers, possibly by
them by yourself. The attempts to create amplifier circuits to be used with wider
ultrasonic elements failed but should be possible.

Another option for improving the angle is to use an array of several synchronized
transmitters and receivers. Individually only listening/transmitting in a narrow
direction but combined providing a 360deg angle. An improved tracking angle would
decrease the chance of the quadcopter moving out of range of the sensors. To finetune
the PID parameters for the yaw and roll to keep the quadcopter closer to steady
state would help the quadcopter to not moving out of range of the sensors but would
probably not be enough.

Regarding the height measurement it is only accurate for low heights. Even at as low
as 2 meters the measurement quality was unsatisfactory. One of the factors could
be that the sound have to travel further at higher altitudes making it more prone
to disturbances such as turbulence. However, for a third person view experience
heights over 2 meter might not be relevant.
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5. Discussion

Apart from the issues presented there was also some irregularities detected in the
form of "hickups" where the tracking module would freeze for some time, or skip
some measurement loops. The use of a Raspberry Pi for ultrasonic measurement
might be one of the sources for these errors. A microcomputer with an multitasking
operating system is running several different processes, thus leaving the measure-
ments vulnerable to errors caused by an undedicated processor. Further it is not
made for real time critical operations. Thus a dedicated microcontroller might serve
better, such as an Arduino.

5.3 Real Time View

The initial goal was to implement, and then improve upon the solution that J.
Allander et al. [1] used. It turned out that it was difficult to replicate their solution.
One of the main reasons is that their solution is largely undocumented. Instead we
experimented with alternatives using the same hardware set-up. Unfortunately the
results were below our initial goal with regards to latency with 115ms as presented
by Figure 4.2. As the problem with low latency had already been solved in an earlier
project limited effort was made to improve the video streaming and more time was
spent on other project parts.

We also carried on using the DK2 as an external display displaying the video but
without doing the rendering through the DK2 SDK as per J. Allander et al [1].
This means that there are image distortions not handled so that the experience is
arguably impacted. However, it remains uncertain if rendering through the DK2
SDK can be done with low enough latency. We believe that it would be better to
work with designing modules for the GStreamer pipeline that adds filters to the
video stream to compensate the DK2 induced distortions.

Regarding the video quality we reached good results. The resolution is at DK2
maximum and the compression is good enough for the video to be sent over the
Pi’s relatively low bandwidth Wi-Fi link. It is our opinion that the video quality is
good enough for high immersions with the DK2. The DK2 only supports a 1080p
resolution which is in itself a limiting factor. J. Allander et al [1]. uses MJPEG with
a rather high compression level leading to worse image quality than we achieved.
It is possible to reach even higher video quality with h264 but that would require
improving the bandwidth of the Wi-Fi link. One option might be to use another
microcomputer, maybe one with inbuilt Wi-Fi.
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5. Discussion

For the DK2 a laptop was used. The laptop was impractical for the user to carry
around. Attempts where made to use the DK2 with other hardware such as a Pi
but without good results. DK2 has no official support for other hardware than
computers running Windows with a dedicated graphics card. It is worth to consider
if the DK2 is simply too unsuited for mobile operation. A possibility might be to
use regular smart phones with VR head mounts for a more mobile experience and
for some phones even getting higher resolution.

Over all the real time view performs okay, but below our expectations and require-
ments. There are various reasons for the results. As mentioned the DK2 is not
suited for mobile operations. The alterations of the video stream that has to be
done in order to get a good experience on the DK2 is also a problem. It is also clear
that it is very difficult to reach low latency results with a completely digital system.

The camera used was the Pi camera module which has limitations in the amount of
frames per second it can record video. Upgrading to the newer Raspberry Pi HD
camera module which can record at 60 frames per second at 720p would be a nice
increase in quality and would heighten the user experience if the bandwidth problem
is solved.

5.3.1 Analogue Circuits

The tested analogue circuit was working, the Arduino could register the values. But
due to the time cost of reading an analogue value the idea was scrapped. A viable
option is to implement a solution in order to read it as a digital value. A digital
read is much faster. The circuit also produced a much lower amplification than
expected. It might partly be because of the test being done on a breadboard. This
is to be considered when creating analogue circuits. The used resistances, capacitors
etc. was not of high performance quality, which probably would improve the real
amplification. Our chosen filter, the Butterworth band pass, might not be the most
efficient. There are a lot of different characteristics of different filters and chosen cut
off frequencies to be considered. Overall, the circuitry requires a lot of knowledge
and insight into the world of electronics. Choosing components might not yield a
great result unless one is informed of what is important.
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5. Discussion

5.4 Ethical and Economical Aspects

The technology presented in this thesis is under rapid development. As Brynjolfsson
and McAfee presents in their book "The second machine age" [35], the technical
advancements move very fast, and with that the technology becomes cheaper. The
first version of the Raspberry Pi was released 2012 [36] and DJI, one of the leading
companies in video capable quadcopters, was founded in 2006 [37]. 10 years ago
(2006) this project might have been doable, although much more expensive and
most certainly a lot harder. The progress is ongoing and it is easy to believe that
all the products used will be more common in the future.

The possibilities of this implementation are vast. As mentioned in section 1 there are
several benign possibilities for using this system, or parts of it. It is probable that it
can be profiteered on, there are already today complete systems for live views from
a quadcopters perspective. The quadcopter together with the view could be used for
recreational purposes, or decrease work accidents in dangerous environments, such
as burning houses, mines and nuclear reactors.

There are also a risk of someone using the technology presented here for maliciously
intended purposes. If the video stream would be hijacked, the integrity of the
user is compromised. It could also become monitored by a government in order
to accumulate data. A worse scenario would be if the quadcopters system would
be hacked. In our implementation it’s possible to load up new parameters for the
regulation, and someone could change them in order to hurt the user or someone
around. The drone creates a lot of sound, if used in public, it could be perceived
as noisy, as well as threat. The drone could easily hurt persons and property by a
crash.

5.5 Future Recommendations

We recommend future works to change video capture and presentation system.
There are a few complete system on the market like the Fatshark, which are wireless
and promises low latency.

As for the height measurement it might work better using the method used for
the centreline offset. Placing two receivers distanced vertically from each other, the
quadcopter can regulate to be on the centreline between the two. Using a barometer
together with accelerometers might also work, it would not get the error values
caused by wind turbulence and sound from the rotors. Another solution would be
laser which has very good resolution [17] and would not be disturbed by turbulence,
but it is rather expensive.
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5. Discussion

The centreline offset measurement had an interval between -23 to 23 degrees. This
limited how fast the user could move since the quadcopter have to regulate so the
user will stay in this interval. A solution for this is to use ultrasonic sensors that
have a wider beam angle. Also sensors with longer distance measure would decrease
measurement failures. An improvement would be to use a digital receiver that can
register a hit any time. This enables a higher resolution for the centreline offset, but
leaves no solution for distance.

Some type of filter should be used on the regulation, in order to decrease measure-
ment errors impact, to improve the overall stability and response time.

Further development to detect and avoid unforeseen objects or structures is a topic
not touched in this report. Further advancement could manage people walking in
between the user or follow the user alongside a wall, even if it is "supposed" to hit
the wall. This would be the next step to get a usable product.

5.6 Wrap-up

The subproblems presented in chapter 1.3 Introduction were all solved to some de-
gree. The Real Time View presented video with a latency of 115 ms, performing
slightly below the initial goal of at most 100ms. The method of ultrasonic tracking
together with the regulation of the quadcopter looks very promising with fully au-
tomatic tracking possible for a slowly moving user. As the result from section 4.3.4
shows, when the user makes even modestly fast movements the tracking system can
lose track of the user completely. Further improvements to make it more robust is
needed; with ideas for so have been discussed. That being said, the final system
performs rather well, showing potential of delivering an immersive TPV experience.
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Appendix 1

A.1 Components

Frame DJI Flame wheel F450

Propeller 4 x DJI 1038 10-inch

Motors 4 x DJI 2212/920KV

ESC 4 x DJI 30A OPTO

Flight controller Ardupilot APM 2.6

Landing gear DJI landing gear for flame wheel
F450/F550

Battery Gravity 5500 3S 30-40 C LiPo

GPS 3DR uBlox GPS with Compass Kit

Telemetry 3DR Radio set 433 MHz

Receiver FrSky V8FR

Ultrasonic sensor 3 x Parrallax PING))), 1 HC-SR04

Single chip computer Raspberry Pi 2B

Microcontroller Arduino Uno

Voltage converter Hobbywing UBEC, 3A
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Camera Raspberry Pi Camera Module

HMD Oculus Rift DK2
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B.1 Source Code

The source code is available as a git repository hosted on Github. It is available
here: https://github.com/JMilleson/tredjepersonsvy.git

B.2 piApp

The specification for the interface to the pyApp server. It uses formatted Strings in
the form of JSON. The following JSON objects are accepted:

{
" requestVideo ": {

" timeout ": t,
"width": w,
"height": h,
" bitrate ": b,
"QP": q,
"port": p

}
}

Attempts to start a video stream using
raspivid and pipe it using UDP over the
Wi-Fi using gstreamer with the settings
specified. It stops after t seconds. It will
stream to the ip of the requester on port
p.

{
" abortVideo ": ""

}

This kills the camera immediately and
drops all streaming pipelines.
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{
" requestSensorData ": {

" intervall ": x
}

}

Starts sending sensor data to the client
who requested it with the interval of about
x milliseconds. If no interval is specified
it sends sensor data whenever it wants.
The sensor data comes from the Pinger.py
module and includes the distance between
the quadcopter and the user and the cen-
tre line off-set.

{
" calibrateSensors ": ""

}

Immediately calibrates the tracking mod-
ule. This temporary disables the capabil-
ity of getting distance and centre line off-
set. It presumes the user is 300cm from
the quadcopter and calibrates accordingly.
Calibration is needed before attempting to
get the distance between the user and the
quadcopter.

{
" sensordataoculus ": {

"roll": x,
"pitch": y,
"yaw": z,

}
}

This is used to send sensor data describing
the rotation of the user. piApp stores the
information and sends it to the ARC the
next time it is going to send data.
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{
" settings ": {

"target": {
" targetHeight ": x,
" targetDistance ": y

},
"pitch": {
"p": x1 ,
"i": y1 ,
"d": z1

},
"roll": {
"p": x2 ,
"i": y2 ,
"d": z2

},
"yaw": {
"p": x3 ,
"i": y3 ,
"d": z3

},
" trottle ": {
"p": x4 ,
"i": y4 ,
"d": z4

}
}

}

Tells piApp to send new settings to ARC.
Takes settings for the p,i and d parame-
ters for all the PIDs as well as the tar-
get height and the target distance for the
quadcopter. It sends the settings the next
time it is possible to do so.

B.3 Quadcopter Height Calculation

The measured height h0 from the ping sensor can be represented by the length of a
vector in the three dimensional room.

~v = x ∗ x̂+ y ∗ ŷ + z ∗ ẑ

(∗)h0 = |~v| = 2
√
x2 + y2 + z2

Where z is the real height acquired after h0 have been compensated for the pitch
angel αp and the roll angle αr.
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~v is then projected on the yz plane respectively the xz plane to be able to form two
equations with αp respectively αr.

projyz(~v) = 0 ∗ x̂+ y ∗ ŷ + z ∗ ẑ =>

tan(αp) = y

z
=>

y = z ∗ tan(αp)

projxz(~v) = x ∗ x̂+ 0 ∗ ŷ + z ∗ ẑ =>

tan(αr) = x

z
=>

x = z ∗ tan(αr)

The two expressions for x and y are then put into the (*) expression.

h0 = 2
√
z2 ∗ tan(αr)2 + z2 ∗ tan(αp)2 + z2 =>

z = h0
2

√
tan(αr)2 + tan(αp)2 + 1

B.4 Video Transfer

To start the video transfer the following command is used:
r a s p i v i d −t 00 −w 1080 −h 948 −f p s 30 −b 000 −n −o − | \
gst−launch −1.0 −v f d s r c ! h264parse ! rtph264pay \
con f ig−i n t e r v a l=1 pt=96 ! udpsink host =192.168 .42 .11\
port=1337

VI
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