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Abstract
Quantum gases is a novel field of experimental research, where it is possible to study the universal
behaviour of quantum particles under controlled circumstances. In two experiments by Zürn
et al. and Holten et al., patterns such as paring effects, magic numbers and Pauli crystals
have emerged in a quantum gas consisting of a few ultracold 6Li atoms confined in an optical
trap. By modelling these experiments and using the universal behaviour of quantum particles,
we can achieve a greater understanding of how the building blocks of our universe behave and
then apply that knowledge to more complicated systems, such as neutron stars or the atomic
nucleus. This thesis aims to model the mentioned experiments as a few interacting fermions in
a harmonic potential. By treating the interaction as a minor perturbation and calculating the
energy of the system numerically with perturbation theory, we were able to compare our results
with the experiments by Zürn et al. and found that they were in good agreement. Both showed
a pronounced shell structure, resulting in magic numbers, and the emergence of pairing between
fermions. Furthermore, the results were consistent with our analytically derived solution for two
particles. Additionally, Pauli crystals in one and two dimensions were simulated using Matlab
and the Metropolis algorithm, resulting in us successfully recreating the very recent experimental
results by Holten et al.. Finally, interactions were added to Pauli crystals in 1D, showing new
pairing patterns and opening up for further research.

Keywords: Quantum gas, Fermi gas, Fermions, Magic numbers, Pauli crystals, Separation energy,
Perturbation theory

Sammandrag
Kvantgaser är ett intressant område för experimentell forskning där det är möjligt att studera
det unviersalla beteendet hos kvantpartiklar under kontrollerade omständigheter. I experiment
av Zürn et al. och Holten et al. har mönster såsom pareffekter, magiska tal och paulikristaller
observerats i kvantgaser bestående av ett fåtal ultrakalla 6Li atomer fångade i en optisk fälla.
Genom att modellera dessa experiment och utnyttja det universella bettende hos kvantpartiklar
är det möjligt att få en djupare förståelse för hur universums byggstenar fungerar och sedan
applicera den kunskapen på mer komplicerade system, såsom neutronstjärnor och atomkärnor.
I det här arbetet avser vi modellera de nämnda experimenten som ett fåtal interagerande
fermioner i en harmonisk potential. Genom att behandla interaktionen som en mindre störning
och beräkna systemets energi numeriskt med störningsteori, kunde vi jämföra våra resultat med
experimenten av Zürn et al. och fann att de stämde väl överens. Båda visade en tydlig skalstruktur
som resulterade i magiska tal och uppkomsten av parbeteende mellan fermioner. Vidare var
resultaten konsistenta med den härledda analytiska lösningen för två partiklar. Därtill simulerades
paulikristaller i en och två dimensioner med hjälp av Matlab och Metropolisalgoritmen, som
resulterade i att vi framgångsrikt återskapade fjolårets resultat i Holten et al.. Slutligen,
undersöktes paulikristaller med interaktioner i 1D, som visade nya parningsmönster och öppnar
upp för mer framtida forskning.

Nyckelord: Kvantgas, Fermigas, Fermioner, Magiska tal, Paulikristaller, Separationsenergi,
Störningsteori
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Mönster i interagerande
kvantgaser

Bakgrund
En kvantgas är en fas hos ett partikelsystem som uppkommer antingen vid extremt höga
densiteter, såsom återfinns i en neutronstjärna, eller vid väldigt låga temperaturer runt absoluta
nollpunkten. Partiklarnas låga rörelsemängd gör att deras position smetas ut enligt Heisenbergs
osäkerhetsprincip, vilket leder till att deras de Broglie-våglängder överlappar och att kvanteffekter
tar över [1]. Det har på senare årtionden uppkommit forskningfält som studerar dessa kvantgaser
i optiska fällor. En anledning till detta är att det universella beteendet hos kvantpartiklar gör
att modeller som utvecklas för system med endast ett fåtal partiklar kan tillämpas på mer
komplicerade system som neutronstjärnor och atomkärnor. Kvantgaser som består av fermioner,
Fermigaser, är av extra betydelse då fermioner som exempelvis elektroner och nukleoner utgör
materia och därför kan ge oss en djupare förståelse för världens uppbyggnad. Vidare uppvisar de
intressanta mönster på grund av pauliprincipen, som dikterar att fermioner inte kan befinna sig i
samma tillstånd och alltså inte uppta samma plats i rummet [4].

I det här arbetet avser vi att teoretiskt återskapa två experiment, Zürn et al. [2] och Holten et al.
[3], som gjort mätningar på interagerande Fermigaser bestående av ett fåtal partiklar fångade i en
harmonisk potential nära absoluta nollpunkten. Genom att modellera dessa experiment är målet
att finna en överenskommelse mellan vår modell och experimenten samt undersöka mönstrena som
uppkommer i Fermigaser. Först undersöker vi mönster mellan stabiliteten hos systemet och vissa
“magiska” tal av partiklar och sedan de geometriska strukturerna kända som paulikristaller, som
uppkommer på grund av pauliprincipen.

Teori
För att förstå ett system med många interagerande partiklar krävs det det först en förståelse
för den enskilda partikeln. På kvantskalan beskrivs partiklens tillstånd av dess vågfunktion
ψ(x). Vid observation kollapsar vågfunktionen till en partikel enligt dess sannolikhetsfördelning∣∣ψ(x)

∣∣2. Vågfunktionen ges av den stationära Schrödingerekvationen Ĥ(x)ψ(x) = Eψ(x) med
Hamiltonianen Ĥ och partikelenergin E. I vår modell befinner sig partiklarna i en kvantharmonisk
oscillator som har Hamiltonianen

ĤQHO(x) = p̂2

2m + 1
2mω

2x̂2 = − ~2

2m
d2

dx2 + 1
2mω

2x2, (0.1)

där m är partikelmassan, ω oscillatorns karaktäristiska vinkelfrekvens och x positionen. Den
första termen är partikelns kinetiska energi, och den andra den omgivande potentialen V (x). Den
karakteristiska längdskalan för kvantharmoniska oscillatorn är oscillatorlängden lho =

√
~/mω ,

och den karakteristiska energin är ~ω. Vågfunktionen på dimensionslös form med huvudkvanttalet
n ges som

ψ̃n(ξ) =
√
lho · ψn(ξ) = 1√

2nn!
1
π

1
4
e−

ξ2
2 Hn (ξ) , (0.2)

med den tillhörande energin En = ~ω
(
n+ 1

2
)

som också kan göras dimensionslös genom
att dividera med den karaktäristiska energin ~ω. Grundtillståndet hos en endimensionell
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kvantharmonisk oscillator är när kvanttalet n = 0, vilket motsvarar energin ~ω/2.

För flera partiklar blir den totala Hamiltonianen summan av de enskilda partiklarnas
Hamiltonianer. Likartat är vågfunktionen för urskiljbara partiklar produkten av de enskilda
partiklarnas vågfunktioner. Men fermioner av samma spinn går inte att urskilja från varandra
och är dessutom antisymmetriska under utbyte. Alltså måste den totala vågfunktionen för N
partiklar beskrivas med den så kallade Slaterdeterminanten, som tar hänsyn till antisymmetrin.
Slaterdeterminanten skrivs på kompakt form som

Ψn1,...,nN (x1, x2, ..., xN ) = 1√
N !

∑
p∈SN

sign(p)

 N∏
j=1

ψnp(j)

(
xj
) . (0.3)

1/
√
N ! är en normaliseringskonstant, xi positionen för partikeln numrerad i och ni visar ett

ockuperat tillstånd. Vidare är SN permutationsgruppen för N , som innehåller alla möjliga
permutationer p av N komponenter, och sign(p) = ±1 beroende på om permutionen p är jämn
eller udda. I ett system med fler spinnkomponenter multipliceras Slaterdeterminanterna för alla
spinnkomponenter, då partiklar med olika spinn är urskiljbara. Vidare är partiklar av olika spinn
degenererade och kan ockupera samma energinivå.

Härledningar
För att kunna studera effekten av interaktioner på ett systems stabilitet beräknar vi energin för
ett tillstånd med två spinn vi kallar upp, ↑, och ned, ↓, utan interaktioner. Denna blir

E = ~ω

N
2 +

N↑∑
i=1

n↑i +
N↓∑
j=1

n↓j

 , (0.4)

där N = N↑ + N↓ är det totala antalet partiklar, bestående av N↑ partiklar med spinn
upp och N↓ partiklar med spinn ner. Detta resultatet säger att energin för ett tillstånd i ett
icke-interagerande system är summan av de enskilda partiklarnas energier. Med det etablerat inför
vi interaktioner mellan partiklar av olika spinn som modelleras med en deltafunktionspotential.
Detta går bra eftersom den stora de Broglie-våglängden för kvantgaser kommer göra detaljerna hos
den interagerande potentialen irrelevanta [11]. Den totala Hamiltonianen med interaktionstermen
blir

Ĥ =
N↑∑
i=1

ĤQHO(x↑i) +
N↓∑
j=1

ĤQHO(x↓j) +
N↑∑
i=1

N↓∑
j=1

αδ(x↑i − x↓j), (0.5)

där α är interaktionsstyrkan mellan två partiklar. För två partiklar med olika spinn kan energin
som resulterar från ovanstående Hamiltonian tas fram analytiskt. Problemet har ett sedan tidigare
känt svar i 1D, men vi härleder uttrycket själva genom att dela upp Hamiltonianen i en del för
masscentrum och en relativ del. Masscentrum-delen ger energin för en vanlig harmonisk oscillator,
medan den relativa delen ger sambandet mellan energin och den skalade interaktionsstyrkan β =
α/lho~ω som

β(E) = −2
√

2
Γ
(
−E2 + 3

4

)
Γ
(
−E2 + 1

4

) . (0.6)

För att beräkna energin för det interagerande systemet med fler än två partiklar används
störningsteori [4], då den analytiska lösningen blir för komplicerad. Korrektionerna till den ostörda
energin fås genom att överlappsintegralen 〈Ψ| Ĥ

∣∣Ψ′〉 beräknas. I vårt fall finns det bara fem olika
fall för överlappsintegralen, vilket förenklar beräkningar och dessa redogörs för i tabell 0.1.
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Fall 〈Ψ|Ĥ ′|Ψ′〉

Fall 1: 1
lho

∑N↑
i=1
∑N↓
j=1

∫
dξ |ψ̃ni(ξ)|2|ψ̃nj (ξ)|2

Fall 2: 1
lho

∑N↓
j=1

∫
dξ ψ̃∗nκ(ξ)ψ̃n′

λ
(ξ)|ψ̃nj (ξ)|2

Fall 3: 1
lho

∑N↑
i=1
∫

dξ ψ̃∗nµ(ξ)ψ̃n′ν (ξ)|ψ̃ni(ξ)|2

Fall 4: 1
lho

∫
dξ ψ̃∗nκ(ξ)ψ̃∗n′

λ
(ξ)ψ̃nµ(ξ)ψ̃n′ν (ξ)

Annars: 0

Tabell 0.1: De fem fallen för överlappsintegralen beror på hur många ockuperade
enpartikel-tillstånd n som skiljer sig åt mellan Ψ och Ψ′. Om Ψ och Ψ′ är identiska blir det
fall ett. Om de skiljer sig med ett ockuperad enpartikel-tillstånd med spinn upp eller spinn ner blir
det fall två respektive fall tre. Om de skiljer sig med en ockuperad enpartikel-tillstånd i både upp-
och nedspinnspartiklarna blir det fall fyra. Annars blir det fall fem.

Resultat och diskussion
Med hjälp av ovan nämnda fall av överlappsintegralen kan energin för ett interagerande system
med flera spinn beräknas. Vid ultrakalla temperaturer befinner sig partiklarna för det mesta i
systemets gruntillstånd [10, p. 277-278] och ett exempel för ett system med fyra spinn, både med
och utan interaktioner, ses i figur 0.1a. Redan utan interaktioner observeras en tydlig skaleffekt,
då lutning på grafen endast förändras vid multiplar av antalet spinn. Detta kan förklaras av att
se energinivåerna i den harmoniska oscillatorn som skal, där ökningen i energi är konstant medan
ett skal fylls med partiklar av olika spinn i 1D. När interaktionerna läggs på blir skaleffekten
tydligare, och dessutom minskar systemets energi även inom ett skal. Mindre energi motsvarar
ökad stabilitet; dessa tal kan jämföras med de magiska talen i 1D, som är det orsaken till att vissa
nukleontal är mer stabila i kärnfysik.

För att jämföra resultaten med experimenten i [2] används storheten “separation energy” Esep(N),
vilket är energin som frigörs när den N :te atomen tunnlar ut ur den begränsande potentialen och
lämnar N − 1 partiklar i grundtillståndet. Som kan ses i figur 0.1b matchar våra modeller med
första och andra ordningens störningsteori beteendet hos den experimentella mätningen i [2] väl,
och sammanfaller också bra med de teoretiska beräkningarna i [17]. Effekten i [2] där ett jämnt
antal partiklar har större amplitud på separationsenergin, och därmed motsvarar ett stabilare
system, syns tydligt i våra simuleringar och verfierar alltså vår modell. Vidare stämmer vår modell
väl överens med den analytiska härledningen för två partiklar, vilket bekräftar att interaktionen
får behandlas som en störning för små α. Att vår modell lyckas återskapa experiment i en
dimension kan ses som grund för att generalisera modellen till högre dimensioner vid fortsatta
studier.

Efter att ha studerat interagerande system, övergår vi till att studera mönstrena som uppkommer
i icke-interagerande system på grund av pauliprincipen. Genom att utföra upprepade mätningar
av ett fåtal fermioner och behandla mätningarna kommer särskilda mönster uppkomma som
speglar denna princip, så kallade paulikristaller. Mönstrena mättes experimentellt förra året
i [3] och vi har lyckats simulera dessa mätningar. Genom att använda Metropolisalgoritmen
[21] väljer vi mätningar som har en realistisk spridning i sannolikhet |Ψ|2. När varje mätnings
masscentrum flyttas till origo syns det tydligt att deras vågfunktion kollapsar i enlighet med deras
sannolikhetsfördelningen, som dock inte tar hänsyn till partiklarna positioner gentemot varandra.
För att få en känsla för korrelationen mellan partiklar används istället en annan algoritm som
beräknar partiklarnas mest sannolika positioner, då visar det sig att partiklarna lägger sig i
cirkulära skal för att maximera deras inbördes avstånd. Se för sex partiklar i figur 0.2a. Med den
informationen är det möjligt att ytterligare processera datan från Metropolisalgoritmen genom att
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(a) (b)

Figur 0.1: (a) ger energin för ett system med fyra spinnkomponenter som uppvisar en
tydlig skalstruktur. Den gula linjen representerar en ökning av energi med multipler av antalet
spinnkomponenter. (b) visar separationsenergin som funktion av partikelnummer, med optimerad
interaktionsstyrka för att bäst följa experimentell data som svarta felmarginaler från [2]. Resultat
med exakt diagonalisering från D’Amico och M. Rontani syns i grönt och de röda kryssen är våra
beräknade resultat med andra ordningen störningsteori och samma interaktionsstyrka.

göra vinkelkorrektioner för varje mätning. Resultatet i 2D syns i figur 0.2b, och det lyckas tydligt
återskapa de experimentella mätningarna i [3]. Utöver återskapandet av paulikristaller i 2D har vi
utfört helt ny forskning som studerar hur interaktioner mellan partiklar påverkar paulikristaller i
1D och denna syns i 0.2c. Slutsaten är att repulsiva interaktioner gör att partiklarna befinner sig
längre ifrån varandra och attraktiva att partiklar av olika spinn upplever en pareffekt i rummet
där de dras mot varandra.

-2 -1 0 1 2

-2

-1

0

1

2 N=6

(a) (b)

-4 -2 0 2 4
0

0.5

1

=0

=-1

=1

(c)

Figur 0.2: (a) visar sex partiklars mest sannolika konfiguration i den harmoniska potentialen, och
(b) visar ett histogram över 5 · 104 masscentrum- och vinkelkorrigerade mätningar av sex partiklar.
Paulikristallen för sex partiklar är synlig. (c) visar den mest sannolika positionen för fem partiklar
för tre interaktionsstyrkor.

En intressant fortsättning på vår forskning hade varit att simulera paulikristaller med och utan
störning i högre dimensioner, med fler partiklar, nya interaktionsmodeller eller till och med
fermioniska molekyler [24].
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1
Background

In recent years, great advancements have been made in the field of quantum gases. A quantum
gas is a system of particles where one cannot distinguish the particles based on their position,
meaning that it is not possible to talk about that particle, but merely a particle [1]. These
particles exhibit a universal behaviour, making it possible to model complicated systems by only
studying the principles that govern a few particles. Quantum gases have become an intriguing
field of research, where a small number of atoms are cooled and held in place for a short time
by utilising the electrical field of a highly focused laser. Recent experiments in Zürn et al. [2]
and Holten et al. [3] have studied specifically quantum gases consisting of a few 6Li atoms in an
optical trap. Their results showed clear patterns forming, such as pairing effects, magic numbers
and Pauli crystals. This thesis aims to theoretically recreate these results by modelling the system
as a few interacting fermions in a harmonic potential.

The following chapter is intended to give the reader an understanding of some essential concepts
of quantum physics. We will go deeper into what constitutes a quantum gas, and concepts like
fermions, bosons, and spin and their significance. Furthermore, we will go on to explain the general
setup of an experiment with quantum gases and some basic mechanisms in play. Lastly we will
mention what we want to achieve with this thesis, discuss how this knowledge can be applied to
current matters and how research of quantum gases can contribute to our modern society.

1.1 Fermions, Bosons, and Spin
Everything in our known universe: energy, forces, and mass, can be divided into a smallest
possible component. These components, or rather elementary particles, are then split into two
categories: fermions like quarks and electrons, which constitute matter, and bosons like photons
and gluons, which make up forces and energy. What determines this difference between bosons
and fermions is a property called spin. It can be thought of as the quantum equivalent to angular
momentum around a particle’s own axis, although the particles are not actually spinning. Every
species of elementary particle have a certain spin number that is either an integer, making it a
boson, or a half-integer, making it a fermion [4]. A quantum gas can consist of either bosons,
making it a Bose gas, or fermions, making it a Fermi gas. The latter is what will be studied in
this thesis.

In the case of particles consisting of multiple elementary particles, the spin of its components is
combined to form a total spin number [5]. An atom consisting of fermions like protons, neutrons
and electrons can thus be regarded as either a boson, like 7Li which has an integer total spin
making it a composite boson, or a fermion, as in the case of 6Li with its half-integer total spin
making it a composite fermion. Furthermore, there are effects such as spin-orbit and spin-spin
coupling that gives rise to fine and hyperfine corrections to the total angular momentum [4]. Two
different hyperfine states of 6Li were used in the modelled experiments [2], [3] and these will be
treated as two different spin components σ, labelled up σ =↑ and down σ =↓ in the thesis.

The difference between composite fermions and bosons might seem insignificant at ordinary
temperatures and pressures, where the two lithium atoms mentioned earlier exhibit very similar
chemical properties. However, below a certain temperature quantum effects dominate and the
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1. Background

quantum nature of the atoms will emerge, showing some key differences [1]. This makes fermions,
but not bosons, unable to occupy the same quantum state due to the Pauli exclusion principle.

The Pauli exclusion principle, or just the Pauli principle, states that two or more fermions in a
system can not be in the same quantum state simultaneously [4]. Consequently, two fermions
cannot occupy the same position in space. The Pauli principle is the driving factor for a number
of effects such as the electron shell structure of atoms, Fermi gases, and Pauli crystals, where
the latter will be studied extensively in chapter 5. The effect of the Pauli exclusion principle is
especially evident in Fermi gases.

1.2 Quantum Gases
A quantum gas is a quantum-mechanical phase of matter that can be compared to an ideal classical
gas, where the particles can move freely. However in contrast to classical gases, quantum gases
exhibit a strict energy hierarchy and only exist at extremely high densities, like the conditions
found in neutron stars, at least 1017 kg/m3 [6], or extremely low temperatures at only a few
nano-Kelvin. When a system of particles is cooled to temperatures close to absolute zero the
speed of the particles, and therefore their momentum, becomes very small. As the momentum of
the particles becomes less uncertain, Heisenberg’s uncertainty principle claims that this makes the
position of the particles more ambiguous. Consequently, the particles get “smeared out”, which
makes the de Broglie wavelength comparable to the interparticle distance. It is the latter that
determines if the particles are considered to be a quantum gas, and if their behaviour is governed
by quantum rules rather than classical physics. [1]

At these low temperatures Fermi gases and Bose gases exhibit very different behaviours. A Fermi
gas will adhere to the Pauli principle and the particles will avoid being in the same positions, causing
the gas to spread out. A Bose gas on the other hand is free from these constraints, which means
that in theory all of the particles can occupy the same state. This will happen close to absolute
zero and turn a Bose gas into a Bose-Einstein Condensate, which Carl Wieman, Eric Cornell,
Wolfgang Ketterle were awarded the Nobel prize for in 2001. Since quantum gases are created
in very controlled settings and the results can be generalised to more complicated systems due to
the universal behaviour of the quantum particles, they are a exceptionally suited for experiments
studying the effects of interactions and geometries.

1.3 Experimental Setup
Most experiments that study Fermi gases, such as [2], have similar experimental set ups, where
they use a combination of an optical trap and a magneto-optical trap. Broadly speaking, an
optical trap is when a highly focused laser is used to hold and move small particles. In the
case of quantum gases, the electric field in the laser beam pulls the atoms towards the axis of
the beam by inducing dipoles in the atoms. The electron density around the atom will always
be higher at the end in the opposite direction of the electric field, and will therefore exert
a force in that direction, while the positive pole of the atom will exert a force in the same
direction as the field. Due to these opposing forces the atom will be slightly elongated. Since
the forces of the electric field is strongest towards the middle of the beam, the pole of the
atom closest to the beam axis will then exert the strongest force, thus dominating the direction
of the movement of the atom. This results in a net inward force on the atom, keeping it in place. [1]

Before trapping the atoms in the single laser trap, they need to be cooled down in order to
not just pass right through it, which they would do at room temperature. This is done with a
magneto-optical trap and a phenomenon called “laser cooling”. A magneto-optical trap consists
of three perpendicular pairs of opposite facing lasers. The atoms are slowed down by utilising
the Doppler effect and the fact that light has momentum. Since atoms moving towards a laser
and away from the center of the trap will experience a blueshift, the laser wavelength is set to be
slightly longer than the wavelength required for excitation. Then an atom moving against the laser
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perceives the photon as slightly more energetic and will be able to absorb it. When an atom relaxes
from an excited state, a photon is emitted in an arbitrary direction. On average, the atom is thus
subject to a net force in the direction of the lasers, since it only absorbs photons from particular
directions whereas emission occurs in all directions. Hence, the atoms are trapped and cooled.
Lastly, the atoms are moved to the dipole trap and cooled to their final temperature by lowering
the potential walls of the trap, simply letting redundant atoms evaporate through collision before
restoring the trap. [1]

1.4 Applications
These experiments open up a world of potential applications, as a result of the universal behaviour
of fermions. Firstly, it is possible to recreate the same patterns in Fermi gases that have been
observed in atomic nuclei, where certain numbers of fermions have been noted to result in
extra stable systems. These numbers are commonly referred to as magic numbers and are
important within nuclear physics, as they are connected to the stability and decay of a nucleus
[7]. Consequently, more research on magic numbers could for instance help us better understand
heavier isotopes.

Secondly, experiments have shown that fermions in a Fermi gas tend to pair up in constellations
known as Cooper pairs. This allows the fermions to form a sort of composite boson, and
experience the phenomenon of superfluidity [5]. Superfluidity is when a fluid has zero viscosity
and thus experiences no friction. For electrons, this is known specifically as superconductivity.
Implementations of superfluidity has great value, as it allows paired fermions to move with
an infinitesimal loss of energy, opening up possibilities of making more efficient energy
systems. Consequently, modelling Fermi gases with pairing behaviour could lead to applications
directed towards sustainable energy, as well as advancements within condensed matter physics.
Furthermore, this pairing of fermions is also believed to exist in neutron stars. In neutron stars the
density becomes so high that protons and electron fuse together forming neutrons, simultaneously
as the Pauli principle of said neutrons prevents the star from imploding [6]. Consequently, by
studying the Pauli principle and pairing in small controlled systems, it might be possible to
construct models for systems such as neutron stars and superconductors.

1.5 Method and Delimitations
This project aims to model the behaviour of interacting Fermi gases consisting of a few particles
trapped in a harmonic potential at temperatures near absolute zero. The purpose of this is to
recreate the recent experimental work in [2] and [3], verifying the validity of our model. To
achieve this, we firstly theoretically derive expressions for the non-interacting many-body wave
function and its energies. Next, we add interactions between the particles and analytically derive
the energy for two interacting particles. Because of the complexity of the analytical solution,
we then treat the interaction as a perturbation for more than two particles and calculate the
perturbed energy numerically. The results are compared with the experiments in [2] in chapter
4, where we find a pattern between the stability of the system and certain “magic” numbers of
particles. Furthermore, we simulate Pauli crystals in chapter 5, comparing the results to [3], as
well as conducting new research on the effect of interactions on Pauli crystals. The code used for
simulations are numerical calculations are found in [8].

The thesis is restricted to primarily studying weakly interacting quantum gases with a few particles
in one dimension, with the exception of Pauli crystals.
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2
Theory and Analytical Derivations

In order to model multiple interacting particles in a trap we first need to understand the quantum
mechanical description of non-interacting particles, and the confinement in which they reside.
In the ultracold environment, atoms will be modelled as non-relativistic point particles with
a trapping potential. This chapter will first introduce the single-particle wave function in a
quantum harmonic oscillator and the corresponding Hamiltonian. Then, we study the many-body
system by constructing the fermionic many-body wave function with a Slater determinant,
introducing multiple spin components and calculating the energy of a non-interacting system.
The non-interacting energy will form the basis for our own research in the next chapter, in which
we calculate the energy for interacting systems.

2.1 The Single-Particle Wave Function
In contrast with classical physics where a particle can be described as confined to a point, a
quantum particle is described as a wave spread out over all of coordinate space. The state of a
single particle is represented by its wave function Ψ(~x, t) [4]. Born’s statistical interpretation says
that

∣∣Ψ(~x, t)
∣∣2 gives the probability of finding the particle at point ~x and time t. Upon observation,

the wave function collapses to one measured state dictated by the probability density. The wave
function is acquired by solving the Schrödinger equation

i~
∂

∂t

∣∣Ψ(t)
〉

= Ĥ
∣∣Ψ(t)

〉
, (2.1)

where Ĥ is the Hamiltonian of the system. In quantum mechanics, the wave function Ψ(~x, t)
is merely the coordinate representation of a general vector

∣∣Ψ(t)
〉
residing in a Hilbert space and

projected onto position space as Ψ(~x, t) =
〈
~x
∣∣Ψ(t)

〉
[4]. A Hilbert space H is a vector space defined

with the inner product
〈f |g〉 =

∫
Rd

d~x f∗(~x)g(~x) <∞, (2.2)

where d is the number of dimensions in the system and f, g ∈ H.
∣∣Ψ(t)

〉
can be expanded in terms

of a basis of eigenvectors {|ψn〉} of a system’s Hamiltonian Ĥ without losing any information. In
coordinate space, the eigenstates are 〈~x|ψn〉 = ψn(~x) and the wave function expanded using its
eigenstates is

Ψ(~x, t) =
∑
n

cnψn(~x)e−
iEnt

~ , (2.3)

where
∑
n |cn|2 = 1 and |cn|2 is the probability of measuring the particle in a state ψn(~x). To

obtain the eigenstates of a Hamiltionian, the stationary Schrödinger equation is solved

Ĥ(~x)ψn(~x) = Enψn(~x), (2.4)

where En is the eigenenergy corresponding to the eigenvector ψn(~x). The eigenenergies are
calculated with the help of the inner product and with the use of orthonormality between
eigenstates, 〈ψm|ψn〉 = δmn, as

En = 〈ψn| Ĥ |ψn〉 =
∫
Rd

d~xψ∗n(~x)Ĥψn(~x). (2.5)
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2.2 The Quantum Harmonic Oscillator (QHO)
Having established the single particle wave function, we move on to the trapping potential where
the particle resides and its Hamiltonian. A harmonic oscillator arises when the restoring force is
linear, for example a spring obeying Hooke’s law. Since the trap we model has a high intensity
laser which keeps displacement from the focus small, we can make a first order Taylor series
expansion. This is equivalent to assuming a linear restoring force, and thus a harmonic potential.
The laser trap potential will therefore be modelled as a quantum harmonic oscillator (QHO).
It is a favourable potential, being a quantum-mechanical system with an analytic solution to
the Schrödinger equation. Furthermore, it is not difficult to generalise the QHO to multiple
dimensions. In recent experiments [2], [9] a combination of the optical trapping methods described
in 1.3 have been have been used to freeze out one and two dimensions respectively. Hence, it
meaningful to create models that handle one, two and tree dimensions respectively.

The Hamiltonian for the one-dimensional QHO (1D-QHO) is written as

ĤQHO(x) = p̂2

2m + 1
2mω

2x̂2 = − ~2

2m
d2

dx2 + 1
2mω

2x2. (2.6)

where m is the particle mass, ω the characteristic angular frequency of the oscillator and x the
position. The first term is the kinetic energy of the particle and the second term the surrounding
potential V (x). The nth eigenstate ψn(x) = 〈x|ψn〉 is

ψn(x) = 1√
2nn!

(
mω

π~

) 1
4

e−
mωx2

2~ Hn

(√
mω

~
x

)
, (2.7)

Figure 2.1: A visualisation of an
occupied level of the 1D-QHO. The
dimensionless characteristic energy is
on the y-axis and the dimensionless
length on the x-axis. Furthermore,
|ψ̃n(ξ)|2 of the first four quantum
number and the potential V (ξ) = 1

2ξ
2

are shown. The arrow ↑ indicates that
the ground state ψ̃0(ξ) is occupied.

with n being the principal quantum number and Hn(x)
the nth Hermite polynomial. Using the characteristic
length of the harmonic oscillator lho =

√
~/mω , we can

define the dimensionless coordinate ξ = x/lho.With this,
equation (2.7) can be rewritten on dimensionless form as

ψ̃n(ξ) =
√
lho · ψn(ξ) = 1√

2nn!
1
π

1
4
e−

ξ2
2 Hn (ξ) , (2.8)

satisfying ∫ ∞
−∞

dξ |ψ̃n(ξ)|2 = 1, (2.9)

which will be used in numerical calculations. The energy
corresponding to the nth eigenstate is En = (n + 1

2 )~ω,
where ~ω is the characteristic energy. An essential
property in quantum mechanics is the “ground state”,
i.e. the state with the lowest energy. This is of interest
because, according to the third law of thermodynamics,
a system at zero temperature is in its ground state
[10, p. 277-278]. The ground state of the 1D-QHO
correspond to n = 0 with the energy E0 = ~ω/2. A
visual representation of an occupied level, specifically
the ground state of the one dimensional QHO is shown
in figure 2.1.

In d dimensions, the quantum harmonic oscillator is separable into d one dimensional harmonic
oscillators

ĤQHO(~x) =
d∑
i=1

(
− ~2

2m
d2

dx2
i

+ 1
2mω

2x2
i

)
= − ~2

2m∇
2 + 1

2mω
2|~x|2. (2.10)

Every harmonic oscillator will yield states with their own quantum numbers nd and energies En,d,
which can be added to form a quantum number ~n and energy E respectively. Specifically for
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2. Theory and Analytical Derivations

d = 3 we get ~n = (nx, ny, nz) and En = (nx + ny + nz + 3
2 )~ω. This means that in higher

dimensions, several states can correspond to the same energy eigenvalue, which is a phenomenon
called degeneracy. Generally the degeneracy gn is 1/2 · (n+ 1)(n+ 2) in 3D and (n+ 1) in 2D.

2.3 The Many-Body System
The single-particle system introduced now forms a foundation to build on as we move onto the
many-body system. The Hamiltonian for many non-interacting particles is simply the sum of the
single-particle Hamiltonians. Using equation (2.21), the Hamiltonian for N particles becomes

Ĥ =
N∑
i=1

(
− ~2

2m
∂2

∂x2
i

+ 1
2mω

2x2
i

)
. (2.11)

Observe that the many-particle case is identical to the many-dimension case, except that the
subindex i denotes particle number, not dimensions and xi is the position of the ith particle.
What the subindex refers to in a given situation will be made clear from context.

For N particles the many-body wave function is a product of single particle wave functions. In
the case of two distinguishable particles in the two states ψa and ψb, the wave function can be
expressed as ψ(x1, x2) = ψa(x1)ψb(x2), called the Hartree product. However, fermions with the
same spin are indistinguishable and antisymmetric under interchange, ψ(x1, x2) = −ψ(x2, x1).
They must therefore be described with a wave function that fulfills the antisymmetry criteria [4].
Thus, the normalised wave function for two fermions is

Ψa,b(x1, x2) = 1√
2
(
ψa(x1)ψb(x2)− ψa(x2)ψb(x1)

)
. (2.12)

If two fermions are in the same state this wave function becomes zero, adhering to the Pauli
exclusion principle. This many-body wave function can also be expressed as a determinant of a 2×2
matrix of all possible combinations of states and positions, which is called the Slater determinant
for the system. A set of Slater determinants form a basis for the fermionic Fock space, which is the
Hilbert space describing a quantum many body system with N indistinguishable particles. This is
analogous to the single particle wave functions forming a basis for the Hilbert space. The scalar
product that will be used in future calculations in the Fock space with N particles is defined as

〈f |g〉 =
N∏
l=1

∫ ∞
−∞

dxl f∗(xl)g(xl) <∞. (2.13)

2.3.1 The Slater Determinant
The Slater determinant is an algebraic construction which takes a many-body wave function and
forces it to adhere to the Pauli principle. In chapter 5, the consequence of the Pauli principle on
the wave function will be studied in more in detail. For N states and particles with the same spin
it can be neatly written as a determinant of an N × N matrix with all the wave functions and
coordinates:

Ψn1,...,nN (x1, x2, ..., xN ) = 1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣

ψn1(x1) ψn1(x2) .... ψn1(xN )
ψn2(x1) ψn2(x2) .... ψn2(xN )

. . . .

. . . .

. . . .
ψnN (x1) ψnN (x2) .... ψnN (xN )

∣∣∣∣∣∣∣∣∣∣∣∣
. (2.14)

A normalisation constant 1/
√
N ! is introduced, and as previously, ψni is a single particle state and

ni denotes an occupied state, for example ni = 0 is the occupied ground state. A more compact
way of expressing the Slater determinant that we will use in calculations is
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Ψn1,...,nN (x1, x2, ..., xN ) = 1√
N !

∑
p∈SN

sign(p)

 N∏
j=1

ψnp(j)

(
xj
) . (2.15)

SN is the permutation group of N , containing all possible permutations p of N components.
sign(p) = ±1 depending on if the permutation p is even or odd. Written explicitly the many-body
wave function is a sum of all possible permutations of the states and positions of N particles.
Occupied single particle 1D-QHO states in the many-particle case can neatly be visualised in
figure 2.2.

(a) First three 1D-QHO states occupied. (b) Two 1D-QHO states occupied.

Figure 2.2: Occupied 1D-QHO states for many particles visualised. The state three-particle state
in (a) is a determinant of a 3×3 matrix and according to equation (2.14) the wave function would
be Ψ0,1,2(x1, x2, x3). Similarly, the two-particle state in (b) is a 2 × 2 Slater determinant with the
wave function Ψ0,2(x1, x2). The state in (a) is the ground state for three particles and the state
in (b) is an excited state for two particles.

The many-body wave functions constructed from the Slater determinant are orthonormal, which
we prove by taking the inner product (2.13) of two wave functions Ψ′n′1...n′N and Ψn1...nN . Inserting
equation 2.15 yields

〈
Ψ′
∣∣Ψ〉 = 1

N !
∑
p′∈SN

sign(p′)
∑
p∈SN

sign(p)
N∏
l=1

∫
dxl ψ∗n′

p′(l)
(xl)ψnp(l)(xl). (2.16)

The orthonormality of the single particle wave function {ψni(xl)} turns the integral into a product
of Kronecker deltas δn′

p(l)np′(l)
, which is zero unless p′ = p and n′ = n. Hence, the wave functions

Ψ′ = Ψ must be equal for non-zero solutions and the result is

〈Ψ′|Ψ〉 = 〈Ψ|Ψ〉 = 1
N !

∑
p∈SN

sign2(p) = 1
N !

∑
p∈SN

1 = 1
N ! ·N ! = 1. (2.17)

In summary, the inner product of two many-body wave functions is 1 if the wave functions represent
the same state and 0 otherwise, proving the orthonormality. This result will be used in future
calculations.

2.4 The Many-Body System: Multiple Spin Components
Everything up to this point has regarded systems with only one spin component, for example one
hyperfine state of 6Li. According to our interaction model that will be introduced properly in
chapter 3, only particles of different spin interact, as we show in appendix A. Since our goal is to
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study an interacting system, we consequently introduce the many-body wave function of multiple
spin components and use it to calculate the energy in such a system. However, the interactions
are not included in the calculation until the next chapter.

2.4.1 The Wave Function with Multiple Spin Components
For convenience the two spins in a two spin component ultracold Fermi gas will be denoted with
spin up (σ =↑) and spin down (σ =↓). These are not necessarily the spin up and down states of an
electron as the spin values are not important for the calculations; they could for example be the
two hyperfine states of lithium used in [2] and [3]. The total number of particles is N = N↑ +N↓,
where N↑ is the number of particles in the spin up state and N↓ the number of particles in the
spin down state. Due to particles of different spin being distinguishable, the wave function with
two spin components is given by the Hartree product of the two spin states

Ψn↑1,...,n↑N↑ ,n↓1,...,n↓N↓
(x↑1, ..., x↑N↑ , x↓1, ..., x↓N↓)

= Ψ↑ n↑1,...,n↑N↑
(x↑1, ..., x↑N↑) · Ψ↓ n↓1,...,n↓N↓

(x↓1, ..., x↓N↓),
(2.18)

where xσi is the coordinate of the ith particle with spin σ and nσi is the ith state for a particle with
spin σ. Note that the left subindex always indicates what spin a particle is in and the right subindex
counts particles. This can be generalised to multiple spin components and written compactly as

Ψ =
∏
σ

Ψσ nσ1,...,nσNσ
(xσ1, ..., xσNσ ), (2.19)

where the total number of particles is N =
∑
σ Nσ. Furthermore, the wave function Ψσ is given

by (2.14) as

Ψσ nσ1...nσNσ
(xσ1, ..., xσNσ ) = 1√

Nσ!
∑

p∈SNσ

sign(p)

Nσ∏
i=1

ψnσp(i) (xσi)

 (2.20)

The orthonormality of the many-body wave function with many spin components is shown by
applying equation (2.17). Furthermore, an important property of a many spin component system
is that every 1D-QHO energy level can now hold up to one particle of each spin component.

2.4.2 The Energy of an Eigenstate with Multiple Spin Components
To study the correlation between certain particle numbers and stability, we must calculate the
eigenenergies of a many-body system. The Hamiltonian without interactions between particles of
a two spin component system is a sum of the Hamiltonian of each spin component

Ĥ =
N↑∑
i=1

ĤQHO(x↑i) +
N↓∑
j=1

ĤQHO(x↓j) = Ĥ↑ + Ĥ↓ . (2.21)

To solve the stationary Schrödinger equation ĤΨ = EΨ and obtain the eigenenergy of a many-body
eigenstate, we use the eigenvalue problem of single-particle wave functions. Inserting the single
particle Hamiltonian ĤQHO(x) into the stationary Schrödinger equation

ĤQHO(x)ψni(x) = εniψni(x), (2.22)

gives the single particle energies εni = ~ω
(
ni + 1

2
)
. Because the wave function Ψ is a product of

two single spin wave functions, separation of variables is applicable. Consequently, we can solve
the eigenvalue problems Ĥ↑ Ψ↑ = E↑ Ψ↑ and Ĥ↓ Ψ↓ = E↓ Ψ↓ separately and gain the total energy
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E = E↑ + E↓ . Equation (2.22) gives the eigenvalue of Ĥ↑ Ψ↑ as

↑Ĥ Ψ↑ = 1√
N↑!

∑
p∈SN↑

sign(p)
N↑∑
i=1

ĤQHO(x↑i)

N↑∏
j=1

ψn↑p(j)

(
x↑j
)

= 1√
N↑!

∑
p∈SN↑

sign(p)

 N↑∑
i=1

εn↑p(i)

 N↑∏
j

ψn↑p(j)

(
x↑j
)

=

 N↑∑
i=1

ε↑i

 Ψ↑ .

(2.23)

The calculation is identical for the spin down case. The total eigenvalue of the Hamiltonian is thus

ĤΨ =

 N↑∑
i=1

ε↑i +
N↓∑
j=1

ε↓j

Ψ (2.24)

with the eigenenergy

E = ~ω

N
2 +

N↑∑
i=1

n↑i +
N↓∑
j=1

n↓j

 (2.25)

The important conclusion to be drawn from (2.25) is that without any interaction between particles
of different spin, the energy of a many-body wave function is the sum of energies of occupied
single-particle states. Generalising the calculations to multiple spin components gives

Ĥ =
∑
σ

Ĥσ and E =
∑
σ

Eσ, (2.26)

with the total eigenenergy written explicitly as

E = ~ω

N
2 +

∑
σ

Nσ∑
i=1

nσi

 , if Ψ′ = Ψ, else 0. (2.27)
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3
Interacting Many-Body System

Since realistic interactions between particles are rather complicated, it is commonplace to use a
shape-independent approximation consisting of an interaction potential with zero range. Hence,
a delta function will be used to model the interaction between particles. This is an appropriate
approximation because at ultracold temperatures, the de Broglie wavelength h/p 1 will be large
enough for the wave functions of particles to overlap, hence render the finer details of the interaction
potential irrelevant [11]. The total Hamiltonian for our model for two spins thus becomes

Ĥ =
N↑∑
i=1

ĤQHO(x↑i) +
N↓∑
j=1

ĤQHO(x↓j) +
N↑∑
i=1

N↓∑
j=1

αδ(x↑i − x↓j), (3.1)

where the interaction term only involves particles of different spin. A verification of the model
where only particles of different spin interact is found in appendix A. The interaction strength α is
possible to tune experimentally using an external magnetic field by a mechanism called Feshbach
resonance, provided the atoms are in an ultracold environment [12].

In this chapter we will first derive an analytical expression for the energy of two interacting particles.
Due to the complexity of the analytical solutions for more than two particles, we will then transition
to treating the interactions as a perturbation and use perturbation theory to calculate the energy of
the interacting system for one and multiple spin components. From there, we can start modelling
experiments in the next chapter, finding magic numbers and pairing effects.

3.1 Analytical Solution of Two Interacting Particles in 1D

As previously mentioned, the Schrödinger equation for two particles with two different spin can
be solved analytically with N↑ = N↓ = 1. The problem already have a known solution, which
was derived by Busch et al. for two fermions in three dimensions in [11]. We calculate the
one-dimensional case. The solution is our own original work, and the full, detailed solution is
available in appendix C.

To start off, the Hamiltonian for the two-particle system can be written as the sum of two
single-particle Hamiltonians and an interaction potential

Ĥ = − ~2

2m
∂2

∂x2
1
− ~2

2m
∂2

∂x2
2

+ Vpot(x1) + Vpot(x2) + Vint(x1 − x2), (3.2)

where Vpot(x) = mω2x2/2 and Vint(x) = αδ(x). This Hamiltonian can be split into two parts by
defining two new coordinates, R = (x1 + x2)/2 and r = (x1 − x2), which are a centre-of-mass
coordinate and a relative coordinate, respectively. We can thereby split the Hamiltonian into a

1The most probable velocity of a particle in thermal equilibrium with its environment is given by the
Maxwell–Boltzmann distribution as v =

√
2kBT/m . For an ultracold (∼ µK) 6Li atom h/p ≈ 104 Å, while a

typical atom is ∼ 1 Å across.
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3. Interacting Many-Body System

centre-of-mass part and a relative part:

ĤCoM (R) = − ~2

2M
∂2

∂R2 + 1
2Mω2R2,

Ĥrel(r) = − ~2

2µ
∂2

∂r2 + 1
2µω

2r2 + αδ(r).
(3.3)

M = 2m is the total mass and µ = m/2 is the reduced mass. The centre of mass part, ĤCoM ,
is just a harmonic oscillator with eigenenergies ~ω(n + 1/2), while the relative part, Ĥrel, looks
like a one-dimensional QHO with a delta function potential at the origin. We focus on solving the
relative part. To continue, we define a new harmonic oscillator length for the relative equation as

λho =

√
~
µω

=
√

2 lho, (3.4)

where lho is the standard harmonic oscillator length. The Hamiltonian is turned into its
dimensionless form

Ĥr(ξ) = −1
2
∂2

∂ξ2 + 1
2ξ

2 + α

~ωλho
δ(ξ) = −1

2
∂2

∂ξ2 + 1
2ξ

2 + β√
2
δ(ξ) (3.5)

and β is defined as

β =
√

2 α
~ωλho

= α

~ωlho
. (3.6)

We insert the new dimensionless Hamiltonian Ĥr into the the stationary Schrödinger equation
ĤrΨ(ξ) = EΨ(ξ), where E is the eigenenergy for the relative Hamiltonian. To solve the
Schrödinger equation we expand Ψ(ξ) in the basis of the free single particle wave functions, ψn(x),
with the expansion coefficents cn. Then, we calculate cn by projecting on ψ∗n(x) and insert the
1D-QHO energies En. By simplifying the resulting expression we get

− 1
β

= 1√
2

∑
m

ψ∗m(0)ψm(0)
Em − E

= 1√
2

∑
m

|ψm(0)|2

Em − E
. (3.7)

To continue and gain an explicit correlation between the interaction strength and energy we need
to evaluate the sum. As ĤQHO is a normal harmonic oscillator, its wave functions ψ̃m(ξ) are
known from equation (2.8), where we replace ψ̃m(ξ) with ψm(ξ) for simpler notation. For odd m,
the wave function at ξ = 0 becomes zero due to the Hermite polynomial and the solution becomes
trivial. The physical interpretation of this would be that states with an odd relative wave function
cannot interact through the delta potential Vint. To eliminate the redundant parts, we use the
variable substitution m = 2n. Inserting ψ2n and E2n into one term of the sum from equation (3.7),
we get

1√
2
|ψ2n(0)|2

E2n − E
= 1√

2π
(H2n(0))2

(22n(2n)!)(2n+ 1
2 − E)

= 1
2
√

2π
1

22n

(H2n(0))2

(2n)!

n− (E2 −
1
4 )
. (3.8)

From here, an integral substitution allows us to use the generating function for the squared Hermite
polynomials [13, p. 250] to get rid of any n-dependence, which means we can write equation (3.7),
the entire sum, as

− 1
β

= 1
2
√

2π

∫ ∞
0

dx(x)−ν−1 (1 + x)−1/2+ν
, (3.9)

where ν =
(
E
2 −

1
4

)
. The integral looks like the integral representation of Tricomi’s confluent

hypergeometric function [14, p. 505], which allows us to exchange the integral. Finally, the
properties of this confluent hypergeometric function allows us to attain an expression for β(E),
linking the relative energy between the particles and the interaction strength:

β(E) = −2
√

2
Γ
(
−E2 + 3

4

)
Γ
(
−E2 + 1

4

) . (3.10)
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3. Interacting Many-Body System

By inverting this function numerically, we can find the energy as a function of interaction strength,
E(β) = E(α/lho~ω). In figure 3.1 we see the function E(α/lho~ω). Its asymptotic behaviour occurs
due to the gamma function diverging for negative integer inputs. The branches of the function can
be interpreted as belonging to different states of the relative part with some quantum number k;
we write the energy as Ek(α/lho~ω) to clarify this. Note that Ek(0) corresponds to the energies
~ω(1/2 + 2k). This function completely models the energy of the relative part of the Hamiltonian,
while the energy for the centre-of-mass part is simply ~ω(n + 1

2 ), for some quantum number n.
Thus, the energy for the entire system is

Etotal(n, k, α) = ~ω
2 + n~ω + Ek

(
α

lho~ω

)
. (3.11)

The process for analytically calculating the interaction between particles is very difficult and time
consuming, even only considering two particles. Needless to say, extending this solution to many
particles of different spins would be practically impossible. Clearly, an approximate solution like
perturbation theory is necessary.

Figure 3.1: A plot of the implicitly derived function E(β) = E(α/lho~ω).

3.2 Time-independent Perturbation Theory
Perturbation theory is a procedure to approximating solutions of the Schrödinger equation for a
potential with an already known solution that is slightly perturbed. This is achieved by calculating
the order of corrections to the eigenenergies En and eigenstates Ψn. This section will introduce
the theory behind non-degenerate perturbation theory as it is presented in [4] and the following
sections will implement it on interacting systems.

The unperturbed system satisfies the time-independent Schrödinger equation Ĥ(0)Ψ(0)
n = E

(0)
n Ψ(0)

n .
Adding the perturbation αĤ ′, where α is of small amplitude, results in

Ĥ = Ĥ(0) + αĤ ′ (3.12)
Ψn = Ψ(0)

n + αΨ(1)
n + α2Ψ(2)

n . . . (3.13)
En = E(0)

n + αE(1)
n + α2E(2)

n . . . (3.14)

where E(k)
n and Ψ(k)

n is the kth order correction to energy, respectively energy eigenstate. Up to
first order in α, the first order energy correction is given by

E(1)
n =

〈
Ψ(0)
n

∣∣∣H ′ ∣∣∣Ψ(0)
n

〉
, (3.15)

12



3. Interacting Many-Body System

and the energy eigenstate correction

Ψ(1)
n =

∑
n6=m

〈
Ψ(0)
m

∣∣∣H ′ ∣∣∣Ψ(0)
n

〉
E

(0)
n − E(0)

m

Ψ(0)
m . (3.16)

Up to second order in α, the expression of the second order energy correction is

E(2)
n =

∑
m6=n

∣∣∣∣〈Ψ(0)
n

∣∣∣H ′ ∣∣∣Ψ(0)
m

〉∣∣∣∣2
E

(0)
n − E(0)

m

. (3.17)

3.3 Interaction in a Two-Component System
Having introduced perturbation theory, we can derive expressions for the eigenenergies of an
interacting system with two spin components. This will later be compared to the experiments
in [2]. The interaction, where only particles of different spin interact, is written as

Ĥ ′ =
N↑∑
i=1

N↓∑
j=1

δ(x↑i − x↓j). (3.18)

In appendix A it is shown that particles of the same spin do not interact through a delta potential.
This interaction will be treated as a perturbation and to calculate the corrections from the previous
section, we need to evaluate 〈Ψ| Ĥ ′

∣∣Ψ′〉, called the overlap integral. We will look at the general case
with an overlap integral between different states Ψ and Ψ′, where the first order energy correction
E(1) is attained with Ψ = Ψ′. The case Ψ 6= Ψ′ is relevant when calculating the perturbed
eigenstate in (3.16) and the second order energy correction in (3.17). Inserting the compact Slater
determinants into the overlap integral and simplifying gives

〈Ψ| Ĥ ′
∣∣Ψ′〉 = 1

N↑!N↓!
∑

p,p′∈SN↑

sign(p) sign(p′)
∑

p̃,p̃′∈SN↓

sign(p̃) sign(p̃′)

×
N↑∑
i=1

N↓∑
j=1

∫
dx↑i dx↓j ψ∗np(i)

(x↑i)ψ∗np̃(j)
(x↓j)δ(x↑i − x↓j)ψn′

p′(i)
(x↑i)ψn′

p̃′(j)
(x↓j)

×
∏
l 6=i

∫
dx↑l ψ∗np(l)

(x↑l)ψn′
p′(l)

(x↑l)
∏
k 6=j

∫
dx↓k ψ∗np̃(k)

(x↓k)ψn′
p̃′(k)

(x↓k).

(3.19)

The delta function acts on the second line, while the orthonormality of the single particle wave
function turns the third line into Kronecker deltas, yielding the expression

〈Ψ| Ĥ ′
∣∣Ψ′〉 = 1

N↑!N↓!
∑

p,p′∈SN↑

sign(p) sign(p′)
∑

p̃,p̃′∈SN↓

sign(p̃) sign(p̃′)

×
N↑∑
i=1

N↓∑
j=1

∫
dx↓j ψ∗np(i)

(x↓j)ψ∗np̃(j)
(x↓j)ψn′

p′(i)
(x↓j)ψn′

p̃′(j)
(x↓j)

×
∏
l 6=i

δnp(l)n
′
p′(l)

∏
k 6=j

δnp̃(k)n
′
p̃′(k)

.

(3.20)

This expression sets limitations on the quantum numbers and by varying them we get all the
different cases for the overlap integral. Fortunately, most cases can be excluded immediately.
Firstly, if Ψσ and Ψσ ′ have two or more particles occupying different single particle states, the
Kronecker deltas make 〈Ψ| Ĥ ′

∣∣Ψ′〉 = 0. Furthermore, the expression is also zero if the states have

13



3. Interacting Many-Body System

different numbers of particles. The remaining cases have the restriction that np(l) = n′p′(l) and
np̃(k) = n′p̃′(k) due to the Kronecker deltas, and are therefore only dependent on the remaining
quantum numbers np(i), n′p′(i), np̃(j), and n′p̃′(j). The four possible cases are

Case 1: np(i) = n′p′(i) and np̃(j) = n′p̃′(j),

Case 2: np(i) 6= n′p′(i) and np̃(j) = n′p̃′(j),

Case 3: np(i) = n′p′(i) and np̃(j) 6= n′p̃′(j),

Case 4: np(i) 6= n′p′(i) and np̃(j) 6= n′p̃′(j).

(3.21)

Case 1: This is equivalent with Ψ = Ψ′. Consequently, the overlap integral becomes the expression
of the first order energy correction according to equation (3.15). Since p = p′ and p̃ = p̃′, the first
row in equation (3.20) is simply 1. By using this simplification and by inserting the dimensionless
wave function, the overlap integral for the first case becomes

E(1) = 〈Ψ| Ĥ ′ |Ψ〉 = 1
lho

N↑∑
i=1

N↓∑
j=1

∫
dξ |ψ̃ni(ξ)|2|ψ̃nj (ξ)|2. (3.22)

Case 2: For the inequality we simplify the expression by setting np(i) = nκ and n′p′(i) = n′λ, with
nκ 6= n′λ. The equality implies the equivalence np̃(j) = n′p̃′(j) ⇔ p̃ = p̃′ ⇔ Ψ↓ = Ψ↓ ′. Thus the spin
down states are the same, while the spin up states differ with one particle. This can be visualised
in figure 3.2 for the particular case of N↑ = N↓ = 3. Referring to the visual representation of
occupied single particle state, Ψ could be represented by figure 3.2a and Ψ′ by figure 3.2b.

(a) (b) (c)

Figure 3.2: Three different occupied states for N = 6 with N↑ = 3 and N↓ = 3. Each energy
level can be twice occupied, once by σ =↑ and once by σ =↓.

Using the conclusions from above and repeating similar steps as for case one, shown explicitly in
equation (B.1), the overlap integral becomes

〈Ψ|Ĥ ′|Ψ′〉 = 1
lho

N↓∑
j=1

∫
dξ ψ̃∗nκ(ξ)ψ̃n′

λ
(ξ)|ψ̃nj (ξ)|2. (3.23)

Case 3: This is very similar to the second case. The equality in equation (3.21) implies the
equivalence np(i) = n′p′(i) ⇔ p = p′ ⇔ Ψ↑ = Ψ↑ ′, meaning that the occupied spin up levels are the
same, while the occupied spin down levels differ with one particle. This case can be visualised in
figure 3.2, where Ψ could be represented by 3.2b and Ψ′ by figure 3.2c. We denote the quantum
numbers that differ by np̃(j) = nµ and n′p̃′(j) = n′ν , and similarly to case two, nµ 6= n′ν . The overlap
integral in case three is derived in exactly the same manner as case two but instead of the sum in
(3.23) running over all occupied spin down levels, case three runs over all occupied spin up levels:

〈Ψ|Ĥ ′|Ψ′〉 = 1
lho

N↑∑
i=1

∫
dξ ψ̃∗nµ(ξ)ψ̃n′ν (ξ)|ψ̃ni(ξ)|2. (3.24)
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3. Interacting Many-Body System

Case 4: This means that the states σΨ and σΨ′ differ by one occupied level and can be visualised
in figure 3.2, where Ψ could be represented by 3.2a and Ψ′ by 3.2c. Referring to equation (3.21),
we set np(i) = nκ and n′p′(i) = n′λ, with nκ 6= n′λ, as well as np̃(j) = nµ and n′p̃′(j) = n′ν , with
nµ 6= n′ν . With similar derivation to the previous cases, shown explicitly in equation (B.2), the
overlap integral becomes

〈Ψ|Ĥ ′|Ψ′〉 = 1
lho

∫
dξ ψ̃∗nκ(ξ)ψ̃∗n′µ(ξ)ψ̃nλ(ξ)ψ̃n′ν (ξ). (3.25)

For the second order energy perturbation approximation, equation (3.17) indicates that we must
calculate a sum over many different overlap integrals. However, we have now shown that there
are only five different cases for how these overlap integrals may look, and consequently, these are
found in table 3.1.

Example state in Fig. 3.2

Cases 〈Ψ|Ĥ ′|Ψ′〉 (a) (b) (c)

Case 1: 1
lho

∑N↑
i=1
∑N↓
j=1

∫
dξ |ψ̃ni(ξ)|2|ψ̃nj (ξ)|2 Ψ = Ψ′

Case 2: 1
lho

∑N↓
j=1

∫
dξ ψ̃∗nκ(ξ)ψ̃n′

λ
(ξ)|ψ̃nj (ξ)|2 Ψ Ψ′ -

Case 3: 1
lho

∑N↑
i=1
∫

dξ ψ̃∗nµ(ξ)ψ̃n′ν (ξ)|ψ̃ni(ξ)|2 - Ψ Ψ′

Case 4: 1
lho

∫
dξ ψ̃∗nκ(ξ)ψ̃∗n′µ(ξ)ψ̃nλ(ξ)ψ̃n′ν (ξ) Ψ - Ψ′

Else: 0 -

Table 3.1: The overlap integral for the five different cases. The right column refer to which figure
in 3.2 the states Ψ and Ψ′ could correspond to. The last case, labelled else, applies when σΨ and
σΨ′ occupy two or more different levels, or if they have different particle numbers.

Conclusively, most terms in the sum for the second order correction will be zero, which greatly
simplifies calculations. Interpreting the results further, we observe that the magnitude of the
interaction depends directly on how much the wave functions overlap. In the following chapter,
these overlap integrals will be evaluated numerically and compared to the experimental results in
[2] by using both first and second order perturbation theory.

3.4 Interaction in a Multiple Spin Component System
Before the results are compared, we generalise the conclusions to multiple spin components.
Assuming pairwise interaction between particles, the perturbation describing the interaction
between particles becomes

Ĥ ′ =
∑
σ 6=σ′

Nσ∑
i=1

Nσ′∑
j=1

δ(xσi − xσ′j)

 , (3.26)

where only particles of different spin interact, in accordance with equation (A.4). The derivation of
the first order energy correction to the unperturbed system is identical to equation (3.22), except
for the additional use of the orthonormality of the many-body wave function (2.17), yielding

E(1) =
∑
σ 6=σ′

Nσ∑
i=1

Nσ′∑
j=1

1
lho

∫
dξ|ψ̃nσi(ξ)|2|ψ̃nσ′j (ξ)|

2

 . (3.27)
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4
Numerical Results

In the previous chapter, necessary expressions for computing interactions with perturbation theory
were derived. Here, we present our results for the energy of an interacting system. First, we discuss
the convergence of second order perturbation theory and make a comparison to the analytical
two particle solution from section 3.1. Second, we present the ground state energy for multiple
spin components and the concept of shells is explained. Next, the experiment that we model
by Zürn et al. [2] is described and the experimentally measured quantity, separation energy, is
introduced. Lastly, this chapter compares our numerical result with the experimental data in [2]
and we determine the magic numbers.

4.1 Discussion of Numerical Results with Two Spin
Components

In an ultracold environment, particles will primarily be in the ground state of the system. If
we consider the non-degenerate 1D-QHO, we expect fermions to occupy the lowest energy levels
possible from bottom and up in accordance with figure 2.2a. Therefore, it is possible to calculate
the ground state energy, with and without a perturbation, as a function of fermion number. The
first order energy correction to the ground state E(1)

n=0 is obtained by computing Case 1 in table
3.1. However, the second order ground state energy correction E(2)

n=0 from equation (3.17) is more
complicated as it is an infinite sum and numerically, this means truncating the sum at some definite
cut-off. Though, if there exist a solution which converges, we can extrapolate the results to infinity.
We define the cut-off L as the highest 1D-QHO level considered, or highest single-particle excited
state taken into account, and compute the overlap integrals in table 3.1. In the extrapolation
process, we make the ansatz

E
(2)
0 (L) = a+ b

L
, (4.1)

Table 4.1: Results of the first and second order ground
state energy corrections with two spin components using
perturbation theory.

N E
(1)
0 E

(2)
0 (L→∞)

2 0.3989 -0.1046

3 0.5984 -0.1097

4 1.0971 -0.1967

5 1.4212 -0.2081

6 2.0009 -0.2857

and fit the parameters a and b
to computed data for L ≥ 40.
The result of the extrapolation is
shown in figure 4.1a as dashed black
lines. We can clearly see how
the second order energy correction
converges, although more slowly
with increasing particle number.
The reason for a slower convergence
as N increase is because of the
additional overlap integrals needed
to be computed. By letting the
cut-off approach infinity, we extract
the energy correction from equation
(4.1) as E(2)

0 (L→∞) and table 4.1
shows the extrapolated second order
energy corrections together with the
first order energy corrections.
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4. Numerical Results

(a) Second order energy correction as a
function of the single particle Hilbert space

cut-off L.

(b) Ground state energy of two particles as a
function of the dimensionless interaction

strength α/(lho~ω).

Figure 4.1: (a) contains the calculations of E(2)
0 (L) with second order perturbation theory for

N = 2 to N = 6 and power law fits (black dashed lines) according to equation (4.1). We can see
an excellent match between our calculations and the fitted power laws. (b) is a comparison of our
results with perturbation theory to the exact analytical two-particle solution in section 3.1.

Having established the convergence of the second order energy correction, we proceed to compare
the results for N = 2 in table 4.1 to our two particle analytical solution from section 3.1 in
figure 4.1b. We see an excellent agreement for |α/(lho~ω)| < 0.2 but the solutions deviate as the
interaction strength increases. Although, second order perturbation theory agrees very well for
interaction strengths up to |α/(lho~ω)| ≈ 0.7. The agreement between perturbation theory and
the analytical solution for two particles implies that the numerical results are accurate, and we
move on to applying our computed results.

4.2 Ground State Energy and Shells of the 1D-QHO
The ground state energies for two, three and four spin components as a function of particle number
are shown in figure 4.2. The non-interacting energy is calculated using equation (2.27) and the
energy with interactions is calculated using first order perturbation theory.

Figure 4.2: The ground state energy with and without interactions as a function of particle
number for different numbers of spin components. The dimensionless interaction strength
α/(lho~ω) is −0.8. We see that the energy is particularly lowered for multiples of the number
of spin components when interactions are present. In addition, we note the convexity of the orange
lines, i.e. E0(N = k·#σ) where k ∈ N0. The energy is a convex function of particle number without
interactions, and convex with multiples of the number of spin components with interactions.

17



4. Numerical Results

The emergence of shells is already visible without interactions: the slope only changes for multiples
of the number of spin components. This shell effect is explained by interpreting a 1D-QHO energy
level as a shell, where the increase in energy will be constant while a level is being filled with
particles. In order to minimise the ground state energy, particles will occupy the lowest energy
levels possible. However, due to Pauli’s exclusion principle, a level can only be occupied by
particles of different spin components. We therefore observe a constant increase in energy between
consecutive multiples of the number of spin components, i.e. shells.

The shell effect is magnified by the interactions and becomes more apparent with more spin
components. We also find that energy is no longer a convex function1 of particle number but
instead displays a closed shell effect. This can be observed in figure 4.2 where e.g. E0(3) < E0(2)
for three spin components and E0(4) < E0(3) for four spin components. However, we notice
that the orange lines which show E0(N = k · #σ), with k ∈ N0, are still convex functions. This
mathematically quantifies the shell effect: the energy of partially filled shells always lie above
the orange line, indicating that such configurations of particles are not as strongly bound. That
filled shells correspond to a significant decrease in energy, and hence increased stability, can be
explained by the interaction energy depending on the overlap between wave functions of different
spin. Realising that two fermions of different spin occupying the same 1D-QHO energy state have
the same unperturbed spatial wave function, we can expect a significant increase in overlap. The
overlap can hence be translated into how much particles interact. With an attractive interaction
(α < 0), the ground state energy is subsequently decreased. A similar shell effect is observed in
nuclear physics where closed shells correspond to particular stable nuclei, i.e. magic numbers [7].
The concept of shells is important when we in the following sections will interpret experimental
results.

4.3 Description of the Experiment by Zürn et al.
In [2], a few weakly interacting fermions with two spin components (two hyperfine states of 6Li)
were prepared in the ground state of a quasi-1D harmonic potential with methods described in
section 1.3. The quasi-1D system was created by using a longitudinal frequency ω|| = 2π · 1.488
kHz and a perpendicular frequency ω⊥/ω|| ≈ 10, making the energy scale ~ω in the longitudinal
direction much smaller than in the perpendicular. Thus, a one dimensional treatment of the
system is sufficient [15]. To intuitively realise how a quasi-1D system is created, one can consider
building the ground state in the experiment described; it is first after 20 atoms (10 atoms of
each spin component) that an additional atom could find it energetically favourable to occupy an
excited state in the perpendicular direction where the level spacing is ω⊥ ≈ 10 · ω||.

Following the preparation of a fixed number of weakly interacting atoms in the ground state of the
trap, a magnetic field gradient was applied, tilting the trapping potential to a well-defined height
for a variable time. A tilted trapping potential is illustrated in figure 4.3. By modifying the tilted
potential height such that only the most energetic atom could tunnel through the barrier within
the experimental timescale, single particle tunnelling rates were measured. The experimentally
obtained tunnelling rates were subsequently used to extract a quantity called “separation energy”
through an iterative process of matching WKB calculations (a way of approximating solutions to
linear differential equations) with experimental data. The separation energy is the energy released
as the N th atom tunnels out of the confinement and leaves N − 1 particles in their ground state.
It is defined as

Esep(N) =
(
EN − E(0)

N

)
−
(
EN−1 − E(0)

N−1

)
, (4.2)

where EN is the ground state energy of an interacting system with N atoms and E
(0)
N the

non-interacting energy [16]. Separation energy is thus a quantity that gives us information about
the interaction strength of the atoms. It can also show increased stability with certain magic
numbers of atoms in the trap and pairing effects between atoms.

1If a line segment connecting two points on the graph of a function always lies above or on the graph, a function
is convex.
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4. Numerical Results

(a) Two atoms of different spin
confined.

(b) One atom has tunneled through
the barrier.

Figure 4.3: An illustration of the tilted 1D-QHO harmonic potential in the experiment by Zürn
et al. [2] with two atoms of different spin. In (a), two atoms are confined in the tilted trapping
potential whereas in (b), the σ =↓ atom has tunnelled through the barrier.

4.4 Numerical Results of Calculating the Separation Energy
To reproduce the experimental data in [2], we construct the separation energy as a function of
particle number according to equation (4.2) with the results from table 4.1. The interaction
strengths α are chosen to minimise χ in equation (4.3), and the result is shown in figure 4.4a.

χ =
6∑

N=2

(
Ecalculated

sep (N)− Eexperiment
sep (N)

)2
(4.3)

(a) Two spin components (b) Multiple spin components.

Figure 4.4: Separation energy as a function of particle number. In (a) our results with
perturbation theory are compared to experimental data by Zürn et al. [2], which are shown as
black error bars. Bars connected by blue is the first order perturbation theory with the interaction
strength α/(lho~ω) = −0.444 and bars connected by red is the second order perturbation theory
with the interaction strength α/(lho~ω) = −0.416. Furthermore, with α/(lho~ω) = −0.45, the
results from exact diagonalisation in [17] are shown as green circles and our results with second
order perturbation theory are shown as red crosses. In (b) the first order perturbation theory
is used with α/(lho~ω) = −0.444. We can see spikes in magnitude of the separation energy for
multiples of the spin components.
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4. Numerical Results

Although the calculated separation energy do not always lie within the experimental uncertainty
bars in figure 4.4a, we can see that the qualitative behaviour is successfully reproduced.
Furthermore, we find that the first order perturbation theory actually match the experimental
data better, but the second order perturbation theory results do not differ by much. This implies
that atoms in the experiment are weakly interacting, i.e. the system is only slightly perturbed
and perturbation theory is a good approximation. Hence, we expect our model to be a good
description of the experiment.

In [17], the Hamiltonian in equation (3.1) was expressed in matrix form and diagonalised. The
resulting eigenvalues correspond to the energy of the system, and these are shown as green
circles in figure 4.4a. The red crosses that almost perfectly intersect the green circles are our
results with second order perturbation when we set the same interaction as was used in [17] i.e.
α/(lho~ω) = −0.45; the first order perturbation hardly changes from what is seen in figure 4.4a.
That the second order perturbation theory and exact diagonalisaton are in excellent agreement is
also consistent with the comparison between perturbation theory and the analytical two particle
solution in figure 4.1b: at α/(lho~ω) = −0.45 the first order perturbation theory fails to reproduce
the analytical solution accurately, whereas the second order perturbation theory succeeds. One
reason why our results fail to match experimental data better could be from the anharmonicity of
the true level spacing in the confining trap, meaning our harmonic approximation breaks down.

Having established the success of our model, we can now discuss the behaviour observed in figure
4.4a. We can see that for an even number of atoms the magnitude of the separation energy
increases, meaning that the system is more stable. This odd-even effect observed is reminiscent
of a pairing effect seen in nuclear physics, where an even number of protons or neutrons have
larger binding energies, and hence, are more resilient against decay [7]. Despite a nucleus having
completely different structures and forces acting between its constituents, compared to the
modelled 1D-QHO system, both systems are comprised of fermions which follow Pauli’s exclusion
principle. Consequently, we see a similar shell effect in both systems. With two spin components,
an even number of atoms correspond to filled 1D-QHO shells and as discussed in section 4.2, the
ground state energy is significantly lowered for attractive interactions as a consequence. Therefore,
a system of an even number of atoms experience an effective higher potential to tunnel through
than an odd number of particles. Consequently, a lower tunnelling rate is observed, indicated
by figure 4.4a. Another effect seen is a general increase in magnitude of separation energy with
the number of atoms. This can be explained by more atoms being able to interact with one another.

In figure 4.4b, the separation energy is calculated using first order perturbation theory, and the
result is shown for up to four spin components. The behaviour in figure 4.4b is in accordance
with the shell model described in section 4.2. Whenever an atom occupies an energy level (shell)
by itself, i.e. N = k · #σ + 1, k ∈ N0, it interacts less with other atoms and the magnitude of
the separation energy is decreased. Another thing worth noting is that the slope is linear within
a shell with first order perturbation theory. This can be understood by the pairwise interaction
potential: the difference in interaction energy of removing two consecutive particles of different
spin is the interaction energy between the first and second particle removed. Detailed calculations
for the difference in interaction energy can be found in appendix B (equation (B.3)) and we only
state the result here as

∆Esep(N) = α

lho

∫
dξ|ψ̃n(ξ)|4. (4.4)

We find that with first order perturbation theory, the slope within the nth shell is not only linear,
but also the same independently of the number of spin components.

Finally, in figure 4.4, we can clearly see spikes in the magnitude of the separation energy when
the number of particles equal multiples of the spin components. This strengthens the notion that
the shell model used to interpret the experimental results is successful, i.e. a filled shell is more
bound. Subsequently, we assign magic numbers to the system of a 1D-QHO with weak attractive
interactions as an integer times the number of spin components.
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5
Pauli Crystals

Having studied the effect of interactions on the energy of a many-body system, we now initially
return to the non-interacting system with one spin component. This chapter introduces the
phenomena of Pauli crystals, a natural consequence of the Pauli principle. After a brief introduction
to the subject, the chapter will explain the probability density of the many-body wave function
and the algorithms used to simulate the Pauli crystals. Then, the crystals will be simulated in
both 1D and 2D, successfully verifying very recent experimental results in [3]. Finally, completely
new research will be presented that applies perturbation theory to Pauli crystals in 1D.

5.1 Introduction to Pauli Crystals
As mentioned in the background, no two fermions can occupy the same quantum state due to
the Pauli principle. One manifestation of the Pauli principle arises when fermions confined to a
potential are cooled to a sufficiently low temperature. Due to the principle, the fermions try to
maximise the distance between themselves as they are trapped in the bottom of a bowl-shaped
potential. This results in the atoms arranging themselves in a sort of crystal pattern known
as Pauli crystals. The field is experiencing a recent surge of research, with experimental work
done just last year by Holten et al. [3] resulting in pictures taken of Pauli crystals, seen in figure 5.6.

Experimentally Pauli crystals can be observed thanks to fluorescent imaging, which revolves around
exciting atoms suspended in an optical trap through illumination and collecting the emitted
photons when the atoms relax. In [3], this technique was used to take snapshots of the fermions,
collapsing the many-body wave function and showing the individual particles. With multiple
snapshots, the particles will simply collapse according to their probability density and show no
correlation between themselves. It is only following image processing, which is described in detail
in [18], [19], that the crystals appear. The aim of this chapter is mainly to recreate the results in
[3] by simulating repeated measurements of N particles and then employing the image processing
to reveal the particle correlation. To understand the results, we also look at the probability density
and most probable positions of the particles. In the end, the simulations should form patterns that
reflect the Pauli principle and match the patterns in figure 5.6.

5.2 The Probability Density

For one particle the probability density is simply
∣∣ψ(x)

∣∣2. However, for many particles there are
multiple probability densities depending on whether or not it is taken into consideration how the
particles are correlated, i.e. how they are placed in relation to each other [20]. The highest
order correlation gives the probability of finding N particles at given positions. However, for
visualisation it is sufficient to use the first order correlation, i.e. the probability density, which
display the probability of finding a particle at a given position r.
We introduce the density operator

n̂σ(r) =
Nσ∑
i=1

δ(r − x̂σi) (5.1)
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5. Pauli Crystals

and insert it into 〈Ψ| n̂↑(r) |Ψ〉 to obtain the probability density. Details concerning the derivation
of this expression is given in appendix B.3 and given here is only give the final result

〈Ψ| n̂σ(r) |Ψ〉 =
Nσ∑
i=1
|ψnσi(r)|2. (5.2)

As can be seen, the probability density at position r is simply the sum of one-particle wave
functions for one spin species, meaning that it has lost the information regarding how the particles
are correlated.

5.3 Algorithms
The Pauli crystals were simulated using two algorithms: The Monte Carlo Algorithm and the
Metropolis algorithm [21], where the former can be considered a special case of the latter. The
Monte Carlo algorithm is a Markov chain that aims to find the most probable particle positions. In
contrast, the Metropolis algorithm instead samples the the wave function, offering particle positions
with different probabilities and simulating experimental measurements.

5.3.1 Monte Carlo Algorithm
The Monte Carlo algorithm works by using the highest order correlation of probability density∣∣Ψ(~r1, ..., ~rN )

∣∣2 for N particles in order to keep the information about the particles relation to
each other and maximising it. This gives the most probable positions for the particles. The most
probable outcome is important since it firstly gives an indication of where the Pauli crystals will
form and and how they will arrange themselves, and secondly, is required for making the angular
corrections needed in 2D, discussed more in section 5.5. At the start of each measurement of N
particles, the algorithm assigns all particles random positions ~rstart within the interval ξ ∈ [−10, 10]
in 1D, or in a circle square with the radius five in 2D. Then, a new set of positions are randomised
for all particles ~rnew within an interval 2λ in 1D, or a square of side length 2λ in 2D, where
lambda is a parameter chosen so that the particles converge to their most probable positions.
The probabilities |Ψ|2 of the those two positions are calculated, and a comparison is made to check
whether the new probability is higher. If it is, the new configuration ~rnew is set as the starting point
for the next iteration. Otherwise the next iteration is repeated with the same starting positions
as before, ~rstart. With a sufficient number of iterations i and a well chosen λ, the probability
converges to the most probable positions, in our case with λ = 10−2 and i=104.

5.3.2 The Metropolis algorithm
The Metropolis algorithm works very similarly to the Monte Carlo algorithm, but adds one extra
if-statement if the probability is lower after moving the particles within the interval 2λ. We call
the quotient between the new probability and the old probability after a move p. If the new
probability is lower than the old and p < 1, there is still a chance p that the particles move to
the new position. Furthermore, there is a probability (1 − p) that the particles stay in their old
positions for the next iteration, similarly to how the Monte Carlo algorithm works. This results
in more spread out measurements where the particles are unlikely to end up in either the most
probable positions or really improbable positions, mimicking real life measurements. [18], [21]

5.4 Simulating Pauli crystals in 1D
The probability density and introduced algorithms will now be employed to simulate Pauli crystals
and explain theoretically why they appear. The process will first be done in 1D and then repeated
in 2D. Using equation (5.2) we plot the probability density in blue for one spin species in figure 5.1
for three and six particles. In the same figure, we also plot the most probable positions in red for
three and six particles using the Monte Carlo algorithm. It is noteworthy how the number of peaks
in the figures corresponds to the number of particles, and the fact that the particles in their most

22



5. Pauli Crystals

probable outcome closely align with those peaks. The number of peaks in the probability density
give an indication that the particles might not occupy the same position in 1D space, despite the
probability density containing no information on particle correlation. The most probable outcome
then confirms it by placing the particles evenly, as to maximise the distance between them in the
potential, clearly obeying the Pauli principle.

-5 0 5
0

0.5

1

(a) Three particles.

-5 0 5
0

0.5

1

(b) Six particles.

Figure 5.1: Plots of the most probable configurations for three and six particles in 1D. The
blue lines are the probability densities and the red dots are the particles in their most probable
configuration.

In order to simulate real measurements, we employ the Metropolis algorithm. Due to the Law of
large numbers [22, p. 177-178], which dictates that a large number of measurements are required
to achieve convergence, 105 measurements are used. These form the histogram in 5.2a for three
particles with no clear pattern. This is because of quantum fluctuations in position and to reveal
the correlation between particles, the centre of mass for each measurement is calculated as ξCoM =
1/N

∑
i ξi and then aligned with ξ = 0. The results can be seen in figure 5.2b. The three peaks

verify that the wave functions collapses in accordance with its probability density, figure 5.1a,
and that the Metropolis algorithm is capable of simulating it. A parallel can be drawn between
these simulations and the double-slit experiment, where the purpose is to demonstrate the wavelike
properties of particles through interference and observe a distribution which is only made visible
after many measurements.

(a) Histogram of measurements for
three particles.

(b) Centre of mass corrections.

Figure 5.2: Histogram of the measured positions for three particles for 105 measurements.

5.5 Pauli Crystals in 2D
Having simulated the Pauli crystals in 1D, we move onto the 2D case where we will verify the
experimental results in figure 5.6 theoretically. First, we need to define some basic characteristics
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5. Pauli Crystals

of the dimensionless harmonic oscillator in two dimensions. The coordinates in two dimensions
are x and y and their dimensionless equivalents are ξ = x/lho and η = y/llo, respectively. The
single-particle wave function for the harmonic oscillator in two dimensions becomes a product of
two 1D wave functions with an adjusted normalisation constant:

ψ̃nξnη (ξ, η) = 1√
2nξ+nηnξ!nη!

√
π

e−(ξ2+η2)/2Hnξ(ξ)Hnη (η). (5.3)

An additional challenge in 2D is the degeneracy briefly mentioned in section 2.2. It means that
only filled shells with 1, 3, 6, 10, 15,... particles are non-degenerate and can be simulated. In
addition, the wave function exhibits a rotation symmetry in the ground state. Hence, angular
corrections are necessary to view the Pauli crystals.

5.5.1 Simulating Pauli Crystals in 2D
The 2D probability density for one, three and six particles can be viewed in figure 5.3, where we
can see circles forming where it is more likely to find a particle. However, very little can be said
about the correlation of the particles. The relationship between the particles only becomes clear
after inspecting the most probable positions for one, three and six particles in figure 5.4, plotted
by using the Monte Carlo algorithm. There we see that the particles form circular shells to try
to maximise the distance between themselves. It is tempting to draw parallels between this and
the shells formed by magic numbers. Although, as was pointed out in [20], the number of shells
in Pauli crystals do not correspond to the number of degenerate energy levels in the system, nor
do the shells in the Pauli crystals have the same number of particles in each shell as would be
expected for the magic numbers.

(a) One particle. (b) Three particles. (c) Six particles

Figure 5.3: The probability densities in 2D for one, three and six particles.

-2 -1 0 1 2

-2

-1

0

1

2 N=1

(a) One particle.

-2 -1 0 1 2

-2

-1

0

1

2 N=3

(b) Three particles.
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2 N=6

(c) Six particles.

Figure 5.4: The blue dots represent the most probable configuration for one, three and six
particles in 2D. The particles clearly obey the Pauli exclusion principle, trying to maximise their
distance and forming circular shells.

Keeping the probability density and the most probable outcome in mind, we simulate experimental
measurements by using the Metropolis algorithm in 2D. Without any image processing, quantum
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5. Pauli Crystals

fluctuations in the particles positions once again lead to histograms without any clear patterns.
However, by using the same centre of mass correction as in the 1D-case, we obtain the plots 5.5a
and 5.5c for three and six particles, respectively. As can be seen, the Metropolis algorithm clearly
samples the wave function in accordance with its probability density in figure 5.3 and verifies the
experimental measurement in figure 5.6a for three particles.

To see the actual Pauli crystals in 2D, we also need to perform angular corrections for each
measurements. Firstly, each measurement ~r is transformed into polar coordinates and the particles
in a measurement, with coordinates ~ri = (ri, φi), are sorted by decreasing angle φi. Secondly, each
particle in a measurement is assigned to a particle from the most probable outcome in figure 5.4,
with the coordinates ~rprob,i = (rprob,i, φprob,i). Finally, each measurement is rotated as to best
align with the most probable outcome. This is done by finding the angle θ that minimises

d =
N∑
i=1

(
φi − φprob,i

)2
. (5.4)

The results can be viewed in figures 5.5b and 5.5d. As can clearly be seen, the crystals form around
the most probable positions, as showcased in the figures of 5.4. Furthermore, when comparing this
to the experimental results in 5.6 we can safely say that our models and algorithms have successfully
simulated the experimental results.

(a) (b)

(c) (d)

Figure 5.5: The left side shows histograms of 5 · 104 measurements for three and six particles
gained from the Metropolis algorithm with centre of mass corrections. The right side shows the
same measurements after angular corrections were made.
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5. Pauli Crystals

Figure 5.6: Experimental measurements showing Pauli crystals in [3]. Figure (a) shows the
single-particle density in a 2D histogram without implementation of angular corrections. Figures
(b) and (c) are the histograms with angular corrections for three and six particles.

5.6 Perturbing the Crystals in 1D

The previous sections studied Pauli crystals as they naturally arise without interactions and
explained experimental results. In this section we will cover new theoretical ground by studying
how the Pauli crystals in one dimension are affected when interactions are added between two spin
components. This is done by combining the results from section 3.3 with the Monte Carlo algorithm
and adding the first order correction of the wave function to the unperturbed wave function in 1D
as Ψ = Ψ(0) + αΨ(1). α is the interaction strength and Ψ(1) is given by equation (3.16) with the
sum truncated at 20 excited states. This is done to reduce computing time and is deemed viable
as the goal is to study the general effect of interactions, rather than simulate exact expected results.

The Monte Carlo algorithm is again used in order to maximise the probability |Ψ|2. However,
there is an issue with the results not always converging towards a single, most probable position.
The issue is reduced with larger λ ≈ 1, though not completely alleviated. The most likely
explanation for the less likely outcomes is that the algorithm gets stuck in local maximums of
the wave function, arising because of the excited states added from first order correction. The
issue might possibly be removed completely with an adaptable λ, although we leave this to future
studies due to time constraints. The most probable positions are shown in figure 5.7 for two, three
four and five particles. Spin up and down particles and their unperturbed probability densities
are marked with blue and red, respectively. Furthermore, the spin down particles have been made
slightly bigger than the spin up particles to visualise potential overlap. Note that a negative α
means attraction and a positive repulsion between particles of different spin. Particles of the same
spin do not interact by the delta potential, as shown in appendix A.

Let us first study the case with two and four particles in figure 5.7a and 5.7c, with the same number
of particles in the spin up and spin down state. For α = 0 and α < 0 the results are the same, since
the spin up and spin down particles have the same shaped probability density, and the attractive
interaction cannot bring the particles any closer than they already are in the unperturbed case.
However, for α > 0, the particles repel each other, occupying equidistant positions from the peaks in
the probability density. This was expected, as the particles are confined by the symmetric potential
while being repelled by each other. For three and five particles in figure 5.7b and 5.7d, the particles
align with the peaks of their probability densities in the unperturbed case as expected. Repulsive
interactions simply increases the distance between the particles. However, attractive interactions
are particularly interesting as the spin up and spin down particles seem to form the beginning of
pairs, with one particle being left out for odd N .
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(a) Two particles.
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(d) Five particles.

Figure 5.7: Most probable configuration for two, three, four and five particles in the ground state
with different values of α. Spin up and down particles and their unperturbed probability densities
are marked with blue and red, respectively. α = 0, means no interactions between particles. α < 0
and α > 0 means attractive and repulsive interactions, respectively, between particles of different
spin.
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6
Conclusions

This chapter summarises what has been achieved in the thesis and presents possible future
applications and new fields of study. The goal of the thesis was to recreate the experimental
results in Zürn et al. [2] and Holten et al. [3] and hence, simulate patterns in an interacting
quantum gases, specifically pairing, magic numbers, and Pauli crystals.

6.1 Interactions in a 1D Few-Fermion Gas
We introduced our model of a few fermions in a harmonic potential in one dimension, where
particles of different spin interact with a zero-point potential. The energy of such a system was
calculated analytically for two particles and two spins, and numerically with perturbation theory
for multiple particles and multiple spins. From these calculations we can draw a number of
conclusions. Firstly, the analytical and numeric results are in agreement, supporting that the
calculations with perturbation theory are correct. Secondly, a visible shell effect emerged for the
non-interacting system, which was made even more visible by adding interactions. From this, we
could see the magic numbers, which corresponded to multiples of the number of spin components
in the system. Finally and most importantly, the energies calculated with perturbation theory
matched the experimental results in [2], confirming the validity of our model and showing a clear
pairing effect between the fermions. In addition, our results for the second order perturbation
theory almost perfectly matched the theoretical work done in [17].

Having established the success of our model, a generalisation to higher dimensions is appealing
to future research. The recent experimental advancements make an ideal playground for testing
theoretical models; just last year, Bayha et al. [9] prepared a two dimensional system of interacting
ultracold fermions. Thus, exploring interactions in two dimensions is a promising area for future
research. Furthermore, it would be interesting to study the correlation between a more pronounced
shell effect in 2D and interactions.

6.2 Pauli Crystals
In the section on Pauli crystals, we gained an understanding of how Pauli crystals are formed by
studying the probability density and simulating the crystals in 1D. Furthermore, we successfully
simulated the experimental measurements in [3] by using the Monte Carlo and Metropolis
algorithms, verifying our model. Finally, we conducted original research, showing how interactions
between two spin states likely affect Pauli crystals in one dimension. In conclusion, we have shown
that simulating Pauli crystals is not only possible, but gives accurate recreations of experimental
data. This provides a foundation for further research to expand upon, such as incorporating higher
dimensions [23], simulating a greater number of particles, new interaction models, introduce heavier
atoms or even simulate fermionic molecules [24].
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A
Showing that Particles with Same

Spin do Not Interact

In order to prove that particles of the same spin do not interact in our model, we will calculate
the perturbed energy in a system with one spin component and N particles. The interaction that
will be treated as the perturbation is

αĤ ′ = 1
2

N∑
i=1

N∑
j=1

αδ(xi − xj). (A.1)

Since the particles are indistinguishable, we divide the Hamiltonian by two because every particle
is counted twice. We will calculate the first order perturbation energy E(1) and by inserting the
compact Slater determinant (2.15) into the expression for the perturbed energy and simplifying
we get

αE(1) = 〈Ψ|αĤ ′ |Ψ〉

=A
N∑

i,j=1

∫
dxi dxj ψ∗np(i)

(xi)ψ∗np(j)
(xj)δ(xi − xj)ψnp̃(i)(xi)ψnp̃(j)(xj)

×
∏
l 6=i,j

∫
dxl ψ∗np(l)

(xl)ψnp̃(l)(xl)

(A.2)

A is the factor α/2N !
∑
p,p̃∈SN sign(p) sign(p̃). The delta function operates on the second line in

(A.2), while the orthonormality of the wave function turns the scalar product on the final line in
into δp(l)p̃(l). For the product of Kronecker deltas to be non-zero the condition is that p(l) = p̃(l)
for l 6= i, j, resulting in either 

p(i) = p̃(i)

p(j) = p̃(j)
or


p(i) = p̃(j)

p(j) = p̃(i)
(A.3)

However, due to the anti-symmetry of the Slater determinant, interchanging two elements in a
permutation leads to a sign change. Hence, the final result including N ! · 2 terms is

αE(1) = α

2N !
∑
p̃∈SN

(±1∓ 1) sign(p̃)
N∑

i,j=1

∫
dxj |ψnp̃(i)(xj)|

2|ψnp̃(j)(xj)|
2 ≡ 0. (A.4)

The result shows the Pauli exclusion principle manifesting itself; two identical fermions cannot
occupy the same spatial position, making the perturbed energy zero. Thus, the energy for a
single-component system is the same as for a non-interacting two-component system: the sum of
single particle energies E =

∑N
i=1 εi. This has shown that particles of the same spin do not interact

via delta function interactions.
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B
Complete Relevant Calculations

This appendix includes calculations that are deemed not necessary to understand the thesis, but
which we have derived ourselves in order to obtain results. It can be of a pedagogical value for the
interested reader. The sections are unrelated to each other.

B.1 Overlap Calculation

This sections shows some steps in the derivation of the overlap integrals from section 3.3 that are
excluded from the chapter. Firstly, a step in the derivation for the overlap integral in case two
(equation (3.21)):

〈Ψ| Ĥ ′|Ψ′〉 = 1
N↑!N↓!

∑
p∈SN↑−1

sign2(p)
∑
p̃∈SN↓

sign2(p̃)

×
N↑∑
i=1

N↓∑
j=1

∫
dx↓j ψ∗nγ (x↓j)ψnβ (x↓j)|ψnp̃(j)(x↓j)|

2

=(N↑ − 1)!N↓!N↑
N↑!N↓!

N↓∑
j=1

∫
dx↓j ψ∗nγ (x↓j)ψnβ (x↓j)|ψnp̃(j)(x↓j)|

2

= 1
lho

N↓∑
j=1

∫
dξ ψ̃∗nγ (ξ)ψ̃nβ (ξ)|ψ̃nj (ξ)|2.

(B.1)

Case three in equation (3.21) follow in the exact same manner as above. Secondly, steps in the
derivation for the overlap integral in case four:

〈Ψ| Ĥ ′|Ψ′〉 = 1
N↑!N↓!

∑
p∈SN↑−1

sign2(p)
∑

p̃∈SN↓−1

sign2(p̃)
N↑∑
i=1

N↓∑
j=1

×
∫

dx↓j ψ∗nγ (x↓j)ψ∗nζ (x↓j)ψnβ (x↓j)ψnη (x↓j)

=(N↑ − 1)!(N↓ − 1)!N↑N↓
N↑!N↓!

∫
dxψ∗nγ (x)ψ∗nζ (x)ψnβ (x)ψnη (x)

= 1
lho

∫
dξ ψ̃∗nγ (ξ)ψ̃∗nβ (ξ)ψ̃nζ (ξ)ψ̃nη (ξ).

(B.2)

B.2 Separation Energy

The calculation of the slope in separation energy within a shell. If we assume the Nσ′th particle
of spin σ′ is removed, followed by the Nσ′′th particle of spin σ′′, equation (4.2) can together with

II



B. Complete Relevant Calculations

equation (3.27) be written as

∆Esep(N) = Esep(N)− Esep(N − 1)

=
∑

σ 6=σ′,σ′′

Nσ∑
i=1

α

lho

∫
dξ|ψ̃nσi(ξ)|2

(
|ψ̃nσ′N

σ′
(ξ)|2 − |ψ̃nσ′′N

σ′′
(ξ)|2

)

+
Nσ′′∑
i=1

α

lho

∫
dξ|ψ̃nσ′′i(ξ)|

2|ψ̃nσ′N
σ′

(ξ)|2

−
Nσ′−1∑
i=1

α

lho

∫
dξ|ψ̃nσ′i(ξ)|

2|ψ̃nσ′N
σ′′

(ξ)|2

(B.3)

where the constraint is
∑
σ

∑Nσ
i=1 = N . Hence, if particles within a shell is removed, the wave

functions ψnσ′′i(ξ) = ψnσ′i(ξ), especially nσ′Nσ′ = nσ′′Nσ′′ = n, the single particle wave function
of the n th shell. Equation (B.3) thus becomes

∆Esep(N) = α

lho

∫
dξ|ψ̃n(ξ)|4, (B.4)

B.3 Density Operator
Here, we do a derivation leading up to equation (5.2) in section 5.2. Using the density operator
defined in that section, the probability density is calculated as

〈Ψ| n̂↑(r) |Ψ〉 =
N↓∏
k=1

N↑∏
l=1

∫
dx↓k dxl Ψ↓ ∗(x↓k) Ψ↑ ∗(x↑l)n̂↑(r) Ψ↓ (x↓k) Ψ↑ (x↑l)

=
N↓∏
k=1

∫
dx↓k Ψ↓ ∗(x↓k) Ψ↓ (x↓k)

N↑∏
l=1

∫
dxl Ψ↑ ∗(x↑l)n̂↑(r) Ψ↑ (x↑l).

(B.5)

The inner product of the spin down states becomes 1 due to orthonormality. The expression for the
density operator is is inserted and the spin up states are expressed as compact Slater determinants
given in equation (2.20):

〈Ψ| n̂↑(r) |Ψ〉 = 1 · 1
N↑!

∑
p,p̃∈SN↑

sign(p) sign(p̃)
N↑∑
i=1

×
∫

dx↑i ψ∗n↑p(i)
(x↑i)δ(r − x↑i)ψn↑p̃(i)(x↑i)

∏
l 6=i

∫
dx↑l ψ∗n↑p(l)

(x↑l)ψn↑p̃(l)(x↑l).
(B.6)

The delta function operates on the left integral and right integral can be simplified to a product
of delta functions δp(l)p̃(l) with index l:

〈Ψ| n̂↑(r) |Ψ〉 = 1
N↑!

∑
p,p̃∈SN↑

sign(p) sign(p̃)
N↑∑
i=1

ψ∗np(i)
(r)ψnp̃(i)(r)

∏
l 6=i

δp(l)p̃(l). (B.7)

If we set p = p̃ the product of delta functions will then assume the value 1 and sign(p) sign(p̃) can
be simplified to sign2(p). Otherwise, the expression is zero.

〈Ψ| n̂↑(r) |Ψ〉 = 1
N↑!

∑
p∈SN↑

sign2(p)
N↑∑
i=1
|ψnp(i)(r)|

2 =
N↑∑
i=1
|ψni(r)|2, if p = p̃. (B.8)
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B. Complete Relevant Calculations

The result in Eq. (B.8) can thus generalised for a given spin σ as

〈Ψ| n̂σ(r) |Ψ〉 =
Nσ∑
i=1
|ψnσi(r)|2. (B.9)

The probability density at position r is simply the sum of one-particle wave functions for one spin
species.
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C
Full Analytical Solution of Two

Interacting Particles in One
Dimension

The Hamiltonian for the two-particle system can be written as the sum of two single-particle
Hamiltonians and an interaction potential

Ĥ = − ~2

2m
∂2

∂x2
1
− ~2

2m
∂2

∂x2
2

+ Vpot(x1) + Vpot(x2) + Vint(x1 − x2), (C.1)

where

Vpot(x) = 1
2mω

2x2,

Vint(x) = αδ(x).
(C.2)

This Hamiltonian can be split into two parts, a centre-of-mass part and a relative part. To do this
we define the variables

R = 1
2(x1 + x2),

r = (x1 − x2),

x1 = R+ 1
2r,

x2 = R− 1
2r,

(C.3)

which means, by the chain rule, that

∂2

∂x2
1

= 1
4
∂2

∂R2 + ∂2

∂r2 + ∂

∂r

∂

∂R
,

∂2

∂x2
2

= 1
4
∂2

∂R2 + ∂2

∂r2 −
∂

∂r

∂

∂R
.

(C.4)

Implementing these variables leads to the Hamiltonian

Ĥ =− ~2

2m
∂2

∂x2
1
− ~2

2m
∂2

∂x2
2

+ 1
2mω

2(x2
1 + x2

2) + αδ(x1 − x2)

=− ~2

2m

(
1
4
∂2

∂R2 + ∂2

∂r2 + ∂

∂r

∂

∂R

)
− ~2

2m

(
1
4
∂2

∂R2 + ∂2

∂r2 −
∂

∂r

∂

∂R

)

+ 1
2mω

2

((
R+ 1

2r
)2

+
(
R− 1

2r
)2
)

+ αδ(r)

=− ~2

2m

(
1
2
∂2

∂R2 + 2 ∂
2

∂r2

)
+ 1

2mω
2
(

2R2 + 1
2r

2
)

+ αδ(r).

(C.5)
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C. Full Analytical Solution of Two Interacting Particles in One Dimension

We introduce the masses M = 2m and µ = 1
2m that are the total and reduced mass respectively

and set Ĥ(R, r) = ĤCoM (R) + Ĥrel(r). ĤCoM (R) and Ĥrel(r) are defined as

ĤCoM (R) = − ~2

2M
∂2

∂R2 + 1
2Mω2R2,

Ĥrel(r) = − ~2

2µ
∂2

∂r2 + 1
2µω

2r2 + αδ(r).
(C.6)

The first part, ĤCoM , is just a standard harmonic oscillator with eigenenergies ~ω(n+ 1/2), while
Ĥrel looks like a one-dimensional QHO with a delta-function potential at the origin. We focus
on solving the relative part. To continue, we define a harmonic oscillator length for the relative
equation as

λho =

√
~
µω

=
√

2 lho, (C.7)

where lho is the standard harmonic oscillator length. The equation is turned into its dimensionless
form using the relation

r = λhoξ ⇒
∂2

∂r2 = 1
λ2
ho

∂2

∂ξ2 (C.8)

and becomes

Ĥrel(ξ) =− ~2

2µ
1
λ2
ho

∂2

∂ξ2 + 1
2µω

2(λhoξ)2 + αδ(λhoξ)

=− ~ω
2

∂2

∂ξ2 + ~ω
2 ξ2 + α

λho
δ(ξ).

(C.9)

Here we redefine Ĥrel(ξ) as its dimensionless form by dividing it by the characteristic energy; i.e.
we set Ĥr(ξ) = Ĥrel(ξ)/~ω.

Ĥr(ξ) = −1
2
∂2

∂ξ2 + 1
2ξ

2 + α

~ωλho
δ(ξ) = −1

2
∂2

∂ξ2 + 1
2ξ

2 + β√
2
δ(ξ). (C.10)

In the final step we define β as

β =
√

2 α
~ωλho

= α

~ωlho
. (C.11)

With our new dimensionless expression Ĥr, the time independent Schrödinger equation tells us

ĤrΨ(ξ) = EΨ(ξ)⇒
(
−1

2
∂2

∂ξ2 + 1
2ξ

2 + β√
2
δ(ξ)

)
Ψ(ξ) = EΨ(ξ), (C.12)

where E is the eigenenergy. To solve this we need to express the unknown Ψ(ξ) in terms of ψn(ξ),
the wave functions of the harmonic oscillator for a single particle corresponding to

ĤQHO = −1
2
∂2

∂ξ2 + 1
2ξ

2. (C.13)

In other words, we must expand Ψ(ξ) in the basis of the free 1D-QHO states. This is done by a
series expansion in terms of eigenstates which looks like

Ψ(ξ) =
∞∑
n=0

cnψn(ξ). (C.14)

By inserting this expression into equation (C.12) above we get
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C. Full Analytical Solution of Two Interacting Particles in One Dimension

(
−1

2
∂2

∂ξ2 + 1
2ξ

2 + β√
2
δ(ξ)

)∑
m

cmψm(ξ) = E
∑
n

cnψn(ξ)

∑
m

cm

(
−1

2
∂2

∂ξ2 + 1
2ξ

2

)
ψm(ξ) +

∑
m

cmψm(ξ) β√
2
δ(ξ) = E

∑
n

cnψn(ξ).
(C.15)

Using the eigenenergies for the single-particle wave function ĤQHOψm(ξ) = Emψm(ξ) the
expression becomes

∑
m

cmEmψm(ξ) +
∑
m

cmψm(ξ) β√
2
δ(ξ) = E

∑
n

cnψn(ξ)

∑
m

cmEmψm(ξ)− E
∑
n

cnψn(ξ) +
∑
m

cmψm(ξ) β√
2
δ(ξ) = 0.

(C.16)

We can express the QHO-term in either m or n, as it is just a series expression of Ψ(ξ) in some
variable. Thus, we replace m in the first term with n:

∑
n

cnEnψn(ξ)− E
∑
n

cnψn(ξ) +
∑
m

cmψm(ξ) β√
2
δ(ξ) = 0

∑
n

cn(En − E)ψn(ξ) + β√
2
δ(ξ)

∑
m

cmψm(ξ) = 0.
(C.17)

As a reminder, the energies En are the energies of the harmonic oscillator in equation (C.13), and
E the energy from equation (C.12). The next step is calculating the coefficients cn, which can be
done by projecting equation (C.17) on ψ∗k(ξ), where k is some positive integer or zero, which gives

∫
dξψ∗k(ξ)

(∑
n

cn(En − E)ψn(ξ) + β√
2
δ(ξ)

∑
m

cmψm(ξ)
)

= 0∫
dξ
∑
n

cn(En − E)ψn(ξ)ψ∗k(ξ) + β√
2

∫
dξψ∗k(ξ)δ(ξ)

∑
m

cmψm(ξ) = 0.
(C.18)

The orthonormality of the wave function
∫
ψ∗k(x)ψn(x)dx = δkn and the operation of the delta

function
∫
δ(x)f(x)dx = f(0) turns the equation into

∑
n

cn(En − E)δkn + β√
2
ψ∗k(0)

∑
m

cmψm(0) = 0

ck(Ek − E) + β√
2
ψ∗k(0)

∑
m

cmψm(0) = 0

ck(Ek − E) + β√
2
ψ∗k(0)Ψ(0) = 0

⇒ cn = A
ψ∗n(0)
En − E

,

(C.19)

where A = β√
2 Ψ(0) is some normalisation constant. By reinserting this expression for cn into the
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C. Full Analytical Solution of Two Interacting Particles in One Dimension

second row of equation (C.19) again, we get

cn(En − E) + β√
2
ψ∗n(0)

∑
m

cmψm(0) = 0

Aψ∗n(0) +A
β√
2
ψ∗n(0)

∑
m

ψ∗m(0)ψm(0)
Em − E

= 0

1 + β√
2

∑
m

ψ∗m(0)ψm(0)
Em − E

= 0

− 1
β

= 1√
2

∑
m

ψ∗m(0)ψm(0)
Em − E

= 1√
2

∑
m

|ψm(0)|2

Em − E
.

(C.20)

To continue we need to evaluate the sum. As ĤQHO is a normal harmonic oscillator, with ψm(ξ)
being its wave functions, we can insert a known expression for it: equation (2.8), where we write
ψ̃m(ξ) as ψm(ξ) for simpler notation.

ψm(ξ) = 1√
2mm!

1
π

1
4
e−

ξ2
2 Hm (ξ)⇒ ψm(0) = Hm(0)

π
1
4
√

2mm!
. (C.21)

Similarly, the energies Em of the harmonic oscillator in terms of the characteristic energy is also
known as (m + 1

2 ); However, for odd m, the wave function in ξ = 0 becomes zero due to the
Hermite polynomial and the solution becomes trivial. The physical interpretation of this would be
that states with an odd relative wave function cannot interact through the delta potential Vint. To
eliminate the redundant parts, we use the variable substitution m = 2n. With this substitution,
we get

ψ2n(0) = H2n(0)
π

1
4
√

22n(2n)!
, (C.22)

and E2n = (2n+ 1
2 ). Inserting these expressions for ψ2n and E2n into equation (C.20) we get

1√
2
|ψ2n(0)|2

E2n − E
= 1√

2π
(H2n(0))2

(22n(2n)!)(2n+ 1
2 − E)

= 1
2
√

2π
1

22n

(H2n(0))2

(2n)!

n− (E2 −
1
4 )
. (C.23)

By letting
(
E
2 −

1
4

)
= ν, we can use an integral substitution:

1
n− ν

=
∫ ∞

0

dx
(1 + x)2

(
x

1 + x

)n−ν−1
. (C.24)

Our expression for −1/β now reads

− 1
β

= 1√
2

∑
n

|ψ2n(0)|2

E2n − E
= 1

2
√

2π

∑
n

1
22n

(H2n(0))2

(2n)!

n− ν

= 1
2
√

2π

∑
n

∫ ∞
0

dx
(1 + x)2

(
x

1 + x

)n−ν−1 1
22n

(H2n(0))2

(2n)! .

(C.25)

The reason for doing this substitution is to use the generating function for the squared Hermite
polynomial [13, p. 250]. It says that

∑
n

(H2n(x))2

(2n)!

(
z

2

)2n
=

exp
(

2x2z
1+z

)
√

1− z2
⇒
∑
n

(H2n(0))2

(2n)!

(
z

2

)2n
= 1√

1− z2
. (C.26)

To get rid of all n-dependence, we want z to be
√

x
1+x , which can be achieved by reordering the

terms.
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1
2
√

2π

∑
n

∫ ∞
0

dx
(1 + x)2

(
x

1 + x

)n−ν−1 1
22n

(H2n(0))2

(2n)!

= 1
2
√

2π

∫ ∞
0

dx
(1 + x)2

(
x

1 + x

)−ν−1∑
n

(
x

1 + x

)n 1
22n

(H2n(0))2

(2n)!

= 1
2
√

2π

∫ ∞
0

dx
(1 + x)2

(
x

1 + x

)−ν−1∑
n

(
1
2

√
x

1 + x

)2n
(H2n(0))2

(2n)! .

(C.27)

Now we use equation (C.26) to get

− 1
β

= 1
2
√

2π

∫ ∞
0

dx
(1 + x)2

(
x

1 + x

)−ν−1
(

1−
(

x

1 + x

))−1/2

= 1
2
√

2π

∫ ∞
0

dx
(1 + x)2

(
x

1 + x

)−ν−1( 1
1 + x

)−1/2

= 1
2
√

2π

∫ ∞
0

dx
(

x

1 + x

)−ν−1( 1
1 + x

)3/2

= 1
2
√

2π

∫ ∞
0

dx (x)−ν−1
(

1
1 + x

)−ν−1( 1
1 + x

)3/2

= 1
2
√

2π

∫ ∞
0

dx(x)−ν−1 (1 + x)−1/2+ν
.

(C.28)

Here, we can rewrite this concisely using the integral representation of Tricomi’s confluent
hypergeometric function U [14, p. 505]:

Γ(a)U(a, b, z) =
∫ ∞

0
dte−ztta−1(1 + t)b−a−1. (C.29)

By inspecting each variable we can see that z is 0, a is −ν, and b is 1
2 . Thus we can rewrite

equation (C.28) as

− 1
β

= 1
2
√

2π

∫ ∞
0

dx(x)−ν−1(1 + x)−1/2+ν = 1
2
√

2π
Γ (−ν)U

(
−ν, 1

2 , 0
)
. (C.30)

This representation is initially only valid for ν < 0, which would severely limit its usefulness, but
with analytic continuation this problem is removed for all E 6= En [11]. According to [14, p. 504],
Tricomi’s confluent hypergeometric function can be written

U(a, b, 0) = π

sin(πb)
M(a, b, 0)

Γ(1 + a− b)Γ(b) , (C.31)

Where M is Kummer’s confluent hypergeometric function. M(a, b, z) can be expressed as a series
expansion in z, which makes the first term of said expansion M(a, b, 0).

M(a, b, z) = 1 + az

b
+O(z2)⇒M(a, b, 0) = 1. (C.32)

Thus we get

U(−ν, 1
2 , 0) = π

sin
(
π 1

2
) 1

Γ(1− ν − 1
2 )Γ( 1

2 )

= π

Γ( 1
2 − ν)Γ( 1

2 )
=

√
π

Γ( 1
2 − ν)

.

(C.33)

Finally, by inserting this expression for U into equation (C.30) we get
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− 1
β

= 1
2
√

2π
Γ(−ν)U

(
−ν, 1

2 , 0
)

= 1
2
√

2
Γ(−ν)

Γ( 1
2 − ν)

= 1
2
√

2

Γ
(
−
(
E
2 −

1
4

))
Γ
(

1
2 −

(
E
2 −

1
4

))

= 1
2
√

2

Γ
(
−E2 + 1

4

)
Γ
(
−E2 + 3

4

) .

(C.34)

Thus we have a function β(E), linking the interaction strength with the relative energy of the
system:

β(E) = −2
√

2
Γ
(
−E2 + 3

4

)
Γ
(
−E2 + 1

4

) . (C.35)

By inverting this function numerically, we can find the energy as a function of interaction strength,
E(β) = E(α/lho~ω).
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