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Abstract

Quantum gases is a novel field of experimental research, where it is possible to study the universal
behaviour of quantum particles under controlled circumstances. In two experiments by Ziirn
et al. and Holten et al., patterns such as paring effects, magic numbers and Pauli crystals
have emerged in a quantum gas consisting of a few ultracold °Li atoms confined in an optical
trap. By modelling these experiments and using the universal behaviour of quantum particles,
we can achieve a greater understanding of how the building blocks of our universe behave and
then apply that knowledge to more complicated systems, such as neutron stars or the atomic
nucleus. This thesis aims to model the mentioned experiments as a few interacting fermions in
a harmonic potential. By treating the interaction as a minor perturbation and calculating the
energy of the system numerically with perturbation theory, we were able to compare our results
with the experiments by Ziirn et al. and found that they were in good agreement. Both showed
a pronounced shell structure, resulting in magic numbers, and the emergence of pairing between
fermions. Furthermore, the results were consistent with our analytically derived solution for two
particles. Additionally, Pauli crystals in one and two dimensions were simulated using Matlab
and the Metropolis algorithm, resulting in us successfully recreating the very recent experimental
results by Holten et al.. Finally, interactions were added to Pauli crystals in 1D, showing new
pairing patterns and opening up for further research.

Keywords: Quantum gas, Fermi gas, Fermions, Magic numbers, Pauli crystals, Separation energy,
Perturbation theory

Sammandrag

Kvantgaser &ar ett intressant omrdde for experimentell forskning dédr det &r mojligt att studera
det unviersalla beteendet hos kvantpartiklar under kontrollerade omstédndigheter. I experiment
av Zurn et al. och Holten et al. har monster sdsom pareffekter, magiska tal och paulikristaller
observerats i kvantgaser bestaende av ett fatal ultrakalla °Li atomer fangade i en optisk filla.
Genom att modellera dessa experiment och utnyttja det universella bettende hos kvantpartiklar
ar det mojligt att f& en djupare forstaelse for hur universums byggstenar fungerar och sedan
applicera den kunskapen pa mer komplicerade system, sdsom neutronstjarnor och atomkérnor.
I det héar arbetet avser vi modellera de ndmnda experimenten som ett fatal interagerande
fermioner i en harmonisk potential. Genom att behandla interaktionen som en mindre stérning
och berékna systemets energi numeriskt med stérningsteori, kunde vi jaimfora vara resultat med
experimenten av Ziirn et al. och fann att de stdmde vil 6verens. Bada visade en tydlig skalstruktur
som resulterade i magiska tal och uppkomsten av parbeteende mellan fermioner. Vidare var
resultaten konsistenta med den hérledda analytiska losningen for tva partiklar. Dértill simulerades
paulikristaller i en och tva dimensioner med hjilp av Matlab och Metropolisalgoritmen, som
resulterade i att vi framgangsrikt aterskapade fjolarets resultat i Holten et al.. Slutligen,
undersoktes paulikristaller med interaktioner i 1D, som visade nya parningsmoénster och 6ppnar
upp for mer framtida forskning.

Nyckelord: Kvantgas, Fermigas, Fermioner, Magiska tal, Paulikristaller, Separationsenergi,
Storningsteori
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A Swedish Summary of the Thesis



Monster 1 interagerande
kvantgaser

Bakgrund

En kvantgas &r en fas hos ett partikelsystem som uppkommer antingen vid extremt hoga
densiteter, sdsom aterfinns i en neutronstjirna, eller vid vildigt laga temperaturer runt absoluta
nollpunkten. Partiklarnas laga roérelseméngd gor att deras position smetas ut enligt Heisenbergs
osékerhetsprincip, vilket leder till att deras de Broglie-vagléngder 6verlappar och att kvanteffekter
tar 6ver [1]. Det har pé senare artionden uppkommit forskningfélt som studerar dessa kvantgaser
i optiska féllor. En anledning till detta &r att det universella beteendet hos kvantpartiklar gor
att modeller som utvecklas for system med endast ett fatal partiklar kan tillimpas pa mer
komplicerade system som neutronstjarnor och atomkérnor. Kvantgaser som bestar av fermioner,
Fermigaser, ér av extra betydelse da fermioner som exempelvis elektroner och nukleoner utgor
materia och déarfér kan ge oss en djupare forstéelse for varldens uppbyggnad. Vidare uppvisar de
intressanta monster pa grund av pauliprincipen, som dikterar att fermioner inte kan befinna sig i
samma tillstind och alltsd inte uppta samma plats i rummet [4].

I det hir arbetet avser vi att teoretiskt aterskapa tva experiment, Ziirn et al. [2] och Holten et al.
[3], som gjort métningar pa interagerande Fermigaser bestdende av ett fatal partiklar fAngade i en
harmonisk potential nira absoluta nollpunkten. Genom att modellera dessa experiment dr malet
att finna en 6verenskommelse mellan var modell och experimenten samt undersdka moénstrena som
uppkommer i Fermigaser. Forst undersoker vi monster mellan stabiliteten hos systemet och vissa
“magiska” tal av partiklar och sedan de geometriska strukturerna kénda som paulikristaller, som
uppkommer pa grund av pauliprincipen.

Teori

For att forsta ett system med manga interagerande partiklar krédvs det det férst en forstaelse
for den enskilda partikeln. Pa kvantskalan beskrivs partiklens tillstand av dess vagfunktion
¥(x). Vid observation kollapsar vagfunktionen till en partikel enligt dess sannolikhetsfordelning

2
e Q
Hamiltonianen H och partikelenergin E. I var modell befinner sig partiklarna i en kvantharmonisk
oscillator som har Hamiltonianen

. Végfunktionen ges av den stationira Schrédingerekvationen H(z)y(z) = Ei(z) med

2 2 72
N D 1 5., h® d 1 5
H T)="—+4+ -mw it =———75 4+ —mwx”, 0.1
Quo®) = 50 + 3 omda? 2 (0.1
didr m &ar partikelmassan, w oscillatorns karaktéristiska vinkelfrekvens och z positionen. Den
forsta termen ar partikelns kinetiska energi, och den andra den omgivande potentialen V(x). Den
karakteristiska ldngdskalan for kvantharmoniska oscillatorn &r oscillatorlangden i, = /h/mw
och den karakteristiska energin ar hiw. Vagfunktionen pa dimensionslés form med huvudkvanttalet
n ges som

~ 1 1 ¢2
n =V lho * ¥n = T "1 “TH, ) 2
'l/} (f) h w (g) \/W s e 2 (5) (0 )
med den tillhérande energin F,, = hw (n + %) som ocksa kan goras dimensionslés genom

att dividera med den karaktéristiska energin Aw. Grundtillstandet hos en endimensionell

ix



kvantharmonisk oscillator &r nér kvanttalet n = 0, vilket motsvarar energin fiw/2.

For flera partiklar blir den totala Hamiltonianen summan av de enskilda partiklarnas
Hamiltonianer. Likartat &r vagfunktionen for urskiljbara partiklar produkten av de enskilda
partiklarnas vagfunktioner. Men fermioner av samma spinn géar inte att urskilja fran varandra
och &r dessutom antisymmetriska under utbyte. Alltsa méaste den totala vagfunktionen for N
partiklar beskrivas med den sa kallade Slaterdeterminanten, som tar hénsyn till antisymmetrin.
Slaterdeterminanten skrivs pa kompakt form som

N
1 .
\Ijnl,...,nN (1‘1, Z2, ...,J?N) = Z Slgn(p) H wnp(j) (Z‘]) . (03)
j=1

PESN

1/v/N'! &r en normaliseringskonstant, x; positionen for partikeln numrerad i och n; visar ett
ockuperat tillstand. Vidare &r Sy permutationsgruppen for N, som innehaller alla mojliga
permutationer p av N komponenter, och sign(p) = 1 beroende pad om permutionen p &r jamn
eller udda. I ett system med fler spinnkomponenter multipliceras Slaterdeterminanterna foér alla
spinnkomponenter, d& partiklar med olika spinn &dr urskiljbara. Vidare ar partiklar av olika spinn
degenererade och kan ockupera samma energiniva.

Harledningar

For att kunna studera effekten av interaktioner pa ett systems stabilitet berdknar vi energin for
ett tillstand med tva spinn vi kallar upp, 1, och ned, |, utan interaktioner. Denna blir

N M N,
E=hw 5+;nﬁ+;nu : (0.4)

dir N = N; + N, ar det totala antalet partiklar, bestdende av N; partiklar med spinn
upp och N partiklar med spinn ner. Detta resultatet siger att energin for ett tillstdnd i ett
icke-interagerande system ar summan av de enskilda partiklarnas energier. Med det etablerat infor
vi interaktioner mellan partiklar av olika spinn som modelleras med en deltafunktionspotential.
Detta gar bra eftersom den stora de Broglie-vaglingden for kvantgaser kommer gora detaljerna hos
den interagerande potentialen irrelevanta [11]. Den totala Hamiltonianen med interaktionstermen
blir

H = ZHQHO(xTi) + Z Hgnro(zy;) + Z Zad(x“- —x5), (0.5)
=1 j=1 =1 j=1

dédr « ar interaktionsstyrkan mellan tva partiklar. For tva partiklar med olika spinn kan energin
som resulterar fran ovanstdende Hamiltonian tas fram analytiskt. Problemet har ett sedan tidigare
kéant svar i 1D, men vi hérleder uttrycket sjdlva genom att dela upp Hamiltonianen i en del for
masscentrum och en relativ del. Masscentrum-delen ger energin fér en vanlig harmonisk oscillator,

medan den relativa delen ger sambandet mellan energin och den skalade interaktionsstyrkan g =
a/lpohw som

NG EE)
B(E) = —zﬁw. (0.6)

For att berdkna energin for det interagerande systemet med fler dn tva partiklar anvinds
storningsteori [4], da den analytiska losningen blir for komplicerad. Korrektionerna till den ostorda
energin fas genom att éverlappsintegralen (| A ’\I/’ ) beriknas. I véart fall finns det bara fem olika
fall for overlappsintegralen, vilket férenklar berdkningar och dessa redogors for i tabell 0.1.



Fall (U|H|W)

Fall 1: = i S [ A€ [ n, ()P, (€)1
Fall 2: e S [ €D (&)t ()|, (€I
Fall 3: e S [ A (€0 ()], (€) 2
Fall 4: nes J A€W, () (), () (€)
Annars: 0

Tabell 0.1: De fem fallen for Overlappsintegralen beror p& hur manga ockuperade
enpartikel-tillstdnd n som skiljer sig 4t mellan ¥ och ¥’. Om ¥ och ¥’ &r identiska blir det
fall ett. Om de skiljer sig med ett ockuperad enpartikel-tillstand med spinn upp eller spinn ner blir
det fall tva respektive fall tre. Om de skiljer sig med en ockuperad enpartikel-tillstand i bade upp-
och nedspinnspartiklarna blir det fall fyra. Annars blir det fall fem.

Resultat och diskussion

Med hjilp av ovan ndmnda fall av 6verlappsintegralen kan energin for ett interagerande system
med flera spinn beridknas. Vid ultrakalla temperaturer befinner sig partiklarna for det mesta i
systemets gruntillstand [10, p. 277-278] och ett exempel for ett system med fyra spinn, bade med
och utan interaktioner, ses i figur 0.1a. Redan utan interaktioner observeras en tydlig skaleffekt,
da lutning pa grafen endast férdndras vid multiplar av antalet spinn. Detta kan forklaras av att
se energinivaerna i den harmoniska oscillatorn som skal, dar kningen i energi &r konstant medan
ett skal fylls med partiklar av olika spinn i 1D. Nar interaktionerna laggs pa blir skaleffekten
tydligare, och dessutom minskar systemets energi dven inom ett skal. Mindre energi motsvarar
Okad stabilitet; dessa tal kan jamforas med de magiska talen i 1D, som &r det orsaken till att vissa
nukleontal 4r mer stabila i kdrnfysik.

For att jamfora resultaten med experimenten i [2] anvénds storheten “separation energy” Ege,(V),
vilket &r energin som frigoérs nér den N:te atomen tunnlar ut ur den begrinsande potentialen och
lamnar N — 1 partiklar i grundtillstindet. Som kan ses i figur 0.1b matchar vara modeller med
forsta och andra ordningens storningsteori beteendet hos den experimentella méatningen i [2] vil,
och sammanfaller ocks& bra med de teoretiska berdkningarna i [17]. Effekten i [2] dar ett jamnt
antal partiklar har stérre amplitud pa separationsenergin, och dédrmed motsvarar ett stabilare
system, syns tydligt i vara simuleringar och verfierar alltsd var modell. Vidare stimmer var modell
val 6verens med den analytiska hérledningen for tva partiklar, vilket bekraftar att interaktionen
far behandlas som en storning for sma «. Att var modell lyckas aterskapa experiment i en
dimension kan ses som grund foér att generalisera modellen till hogre dimensioner vid fortsatta
studier.

Efter att ha studerat interagerande system, dvergar vi till att studera monstrena som uppkommer
i icke-interagerande system pa grund av pauliprincipen. Genom att utféra upprepade méatningar
av ett fatal fermioner och behandla maéatningarna kommer sarskilda monster uppkomma som
speglar denna princip, sa kallade paulikristaller. Monstrena méttes experimentellt férra aret
i [3] och vi har lyckats simulera dessa métningar. Genom att anvidnda Metropolisalgoritmen
[21] véljer vi métningar som har en realistisk spridning i sannolikhet |U|°. Néir varje métnings
masscentrum flyttas till origo syns det tydligt att deras vagfunktion kollapsar i enlighet med deras
sannolikhetsférdelningen, som dock inte tar hadnsyn till partiklarna positioner gentemot varandra.
For att f& en kénsla for korrelationen mellan partiklar anviands istdllet en annan algoritm som
berdknar partiklarnas mest sannolika positioner, da visar det sig att partiklarna ldgger sig i
cirkuléra skal for att maximera deras inbordes avstand. Se for sex partiklar i figur 0.2a. Med den
informationen ar det mojligt att ytterligare processera datan fraén Metropolisalgoritmen genom att

xi
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Figur 0.1: (a) ger energin for ett system med fyra spinnkomponenter som uppvisar en
tydlig skalstruktur. Den gula linjen representerar en 6kning av energi med multipler av antalet
spinnkomponenter. (b) visar separationsenergin som funktion av partikelnummer, med optimerad
interaktionsstyrka for att bést folja experimentell data som svarta felmarginaler fran [2]. Resultat
med exakt diagonalisering fran D’Amico och M. Rontani syns i gront och de réda kryssen ar vara
berdknade resultat med andra ordningen storningsteori och samma interaktionsstyrka.

gora vinkelkorrektioner for varje métning. Resultatet i 2D syns i figur 0.2b, och det lyckas tydligt
aterskapa de experimentella métningarna i [3]. Ut6ver aterskapandet av paulikristaller i 2D har vi
utfort helt ny forskning som studerar hur interaktioner mellan partiklar paverkar paulikristaller i
1D och denna syns i 0.2¢c. Slutsaten &r att repulsiva interaktioner gor att partiklarna befinner sig
langre ifran varandra och attraktiva att partiklar av olika spinn upplever en pareffekt i rummet
dér de dras mot varandra.

1
2 N=6
° 200
|
] ° 150
=0 ° R .
1 . . 100
_2 50
2 1 0 1 2 n, )
§
(2) (b)

Figur 0.2: (a) visar sex partiklars mest sannolika konfiguration i den harmoniska potentialen, och
(b) visar ett histogram éver 5 - 10* masscentrum- och vinkelkorrigerade métningar av sex partiklar.
Paulikristallen for sex partiklar ar synlig. (c) visar den mest sannolika positionen for fem partiklar
for tre interaktionsstyrkor.

En intressant fortsdttning pd var forskning hade varit att simulera paulikristaller med och utan
storning i hogre dimensioner, med fler partiklar, nya interaktionsmodeller eller till och med
fermioniska molekyler [24].
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1

Background

In recent years, great advancements have been made in the field of quantum gases. A quantum
gas is a system of particles where one cannot distinguish the particles based on their position,
meaning that it is not possible to talk about that particle, but merely a particle [1]. These
particles exhibit a universal behaviour, making it possible to model complicated systems by only
studying the principles that govern a few particles. Quantum gases have become an intriguing
field of research, where a small number of atoms are cooled and held in place for a short time
by utilising the electrical field of a highly focused laser. Recent experiments in Ziirn et al. [2]
and Holten et al. [3] have studied specifically quantum gases consisting of a few °Li atoms in an
optical trap. Their results showed clear patterns forming, such as pairing effects, magic numbers
and Pauli crystals. This thesis aims to theoretically recreate these results by modelling the system
as a few interacting fermions in a harmonic potential.

The following chapter is intended to give the reader an understanding of some essential concepts
of quantum physics. We will go deeper into what constitutes a quantum gas, and concepts like
fermions, bosons, and spin and their significance. Furthermore, we will go on to explain the general
setup of an experiment with quantum gases and some basic mechanisms in play. Lastly we will
mention what we want to achieve with this thesis, discuss how this knowledge can be applied to
current matters and how research of quantum gases can contribute to our modern society.

1.1 Fermions, Bosons, and Spin

Everything in our known universe: energy, forces, and mass, can be divided into a smallest
possible component. These components, or rather elementary particles, are then split into two
categories: fermions like quarks and electrons, which constitute matter, and bosons like photons
and gluons, which make up forces and energy. What determines this difference between bosons
and fermions is a property called spin. It can be thought of as the quantum equivalent to angular
momentum around a particle’s own axis, although the particles are not actually spinning. Every
species of elementary particle have a certain spin number that is either an integer, making it a
boson, or a half-integer, making it a fermion [4]. A quantum gas can consist of either bosons,
making it a Bose gas, or fermions, making it a Fermi gas. The latter is what will be studied in
this thesis.

In the case of particles consisting of multiple elementary particles, the spin of its components is
combined to form a total spin number [5]. An atom consisting of fermions like protons, neutrons
and electrons can thus be regarded as either a boson, like “Li which has an integer total spin
making it a composite boson, or a fermion, as in the case of 6Li with its half-integer total spin
making it a composite fermion. Furthermore, there are effects such as spin-orbit and spin-spin
coupling that gives rise to fine and hyperfine corrections to the total angular momentum [4]. Two
different hyperfine states of Li were used in the modelled experiments [2], [3] and these will be
treated as two different spin components o, labelled up ¢ =1 and down o =J in the thesis.

The difference between composite fermions and bosons might seem insignificant at ordinary
temperatures and pressures, where the two lithium atoms mentioned earlier exhibit very similar
chemical properties. However, below a certain temperature quantum effects dominate and the



1. Background

quantum nature of the atoms will emerge, showing some key differences [1]. This makes fermions,
but not bosons, unable to occupy the same quantum state due to the Pauli exclusion principle.

The Pauli exclusion principle, or just the Pauli principle, states that two or more fermions in a
system can not be in the same quantum state simultaneously [4]. Consequently, two fermions
cannot occupy the same position in space. The Pauli principle is the driving factor for a number
of effects such as the electron shell structure of atoms, Fermi gases, and Pauli crystals, where
the latter will be studied extensively in chapter 5. The effect of the Pauli exclusion principle is
especially evident in Fermi gases.

1.2 Quantum Gases

A quantum gas is a quantum-mechanical phase of matter that can be compared to an ideal classical
gas, where the particles can move freely. However in contrast to classical gases, quantum gases
exhibit a strict energy hierarchy and only exist at extremely high densities, like the conditions
found in neutron stars, at least 1017 kg/m?3 [6], or extremely low temperatures at only a few
nano-Kelvin. When a system of particles is cooled to temperatures close to absolute zero the
speed of the particles, and therefore their momentum, becomes very small. As the momentum of
the particles becomes less uncertain, Heisenberg’s uncertainty principle claims that this makes the
position of the particles more ambiguous. Consequently, the particles get “smeared out”, which
makes the de Broglie wavelength comparable to the interparticle distance. It is the latter that
determines if the particles are considered to be a quantum gas, and if their behaviour is governed
by quantum rules rather than classical physics. [1]

At these low temperatures Fermi gases and Bose gases exhibit very different behaviours. A Fermi
gas will adhere to the Pauli principle and the particles will avoid being in the same positions, causing
the gas to spread out. A Bose gas on the other hand is free from these constraints, which means
that in theory all of the particles can occupy the same state. This will happen close to absolute
zero and turn a Bose gas into a Bose-Einstein Condensate, which Carl Wieman, Eric Cornell,
Wolfgang Ketterle were awarded the Nobel prize for in 2001. Since quantum gases are created
in very controlled settings and the results can be generalised to more complicated systems due to
the universal behaviour of the quantum particles, they are a exceptionally suited for experiments
studying the effects of interactions and geometries.

1.3 Experimental Setup

Most experiments that study Fermi gases, such as [2], have similar experimental set ups, where
they use a combination of an optical trap and a magneto-optical trap. Broadly speaking, an
optical trap is when a highly focused laser is used to hold and move small particles. In the
case of quantum gases, the electric field in the laser beam pulls the atoms towards the axis of
the beam by inducing dipoles in the atoms. The electron density around the atom will always
be higher at the end in the opposite direction of the electric field, and will therefore exert
a force in that direction, while the positive pole of the atom will exert a force in the same
direction as the field. Due to these opposing forces the atom will be slightly elongated. Since
the forces of the electric field is strongest towards the middle of the beam, the pole of the
atom closest to the beam axis will then exert the strongest force, thus dominating the direction
of the movement of the atom. This results in a net inward force on the atom, keeping it in place. [1]

Before trapping the atoms in the single laser trap, they need to be cooled down in order to
not just pass right through it, which they would do at room temperature. This is done with a
magneto-optical trap and a phenomenon called “laser cooling”. A magneto-optical trap consists
of three perpendicular pairs of opposite facing lasers. The atoms are slowed down by utilising
the Doppler effect and the fact that light has momentum. Since atoms moving towards a laser
and away from the center of the trap will experience a blueshift, the laser wavelength is set to be
slightly longer than the wavelength required for excitation. Then an atom moving against the laser
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perceives the photon as slightly more energetic and will be able to absorb it. When an atom relaxes
from an excited state, a photon is emitted in an arbitrary direction. On average, the atom is thus
subject to a net force in the direction of the lasers, since it only absorbs photons from particular
directions whereas emission occurs in all directions. Hence, the atoms are trapped and cooled.
Lastly, the atoms are moved to the dipole trap and cooled to their final temperature by lowering
the potential walls of the trap, simply letting redundant atoms evaporate through collision before
restoring the trap. [1]

1.4 Applications

These experiments open up a world of potential applications, as a result of the universal behaviour
of fermions. Firstly, it is possible to recreate the same patterns in Fermi gases that have been
observed in atomic nuclei, where certain numbers of fermions have been noted to result in
extra stable systems. These numbers are commonly referred to as magic numbers and are
important within nuclear physics, as they are connected to the stability and decay of a nucleus
[7]. Consequently, more research on magic numbers could for instance help us better understand
heavier isotopes.

Secondly, experiments have shown that fermions in a Fermi gas tend to pair up in constellations
known as Cooper pairs. This allows the fermions to form a sort of composite boson, and
experience the phenomenon of superfluidity [5]. Superfluidity is when a fluid has zero viscosity
and thus experiences no friction. For electrons, this is known specifically as superconductivity.
Implementations of superfluidity has great value, as it allows paired fermions to move with
an infinitesimal loss of energy, opening up possibilities of making more efficient energy
systems. Consequently, modelling Fermi gases with pairing behaviour could lead to applications
directed towards sustainable energy, as well as advancements within condensed matter physics.
Furthermore, this pairing of fermions is also believed to exist in neutron stars. In neutron stars the
density becomes so high that protons and electron fuse together forming neutrons, simultaneously
as the Pauli principle of said neutrons prevents the star from imploding [6]. Consequently, by
studying the Pauli principle and pairing in small controlled systems, it might be possible to
construct models for systems such as neutron stars and superconductors.

1.5 Method and Delimitations

This project aims to model the behaviour of interacting Fermi gases consisting of a few particles
trapped in a harmonic potential at temperatures near absolute zero. The purpose of this is to
recreate the recent experimental work in [2] and [3], verifying the validity of our model. To
achieve this, we firstly theoretically derive expressions for the non-interacting many-body wave
function and its energies. Next, we add interactions between the particles and analytically derive
the energy for two interacting particles. Because of the complexity of the analytical solution,
we then treat the interaction as a perturbation for more than two particles and calculate the
perturbed energy numerically. The results are compared with the experiments in [2] in chapter
4, where we find a pattern between the stability of the system and certain “magic” numbers of
particles. Furthermore, we simulate Pauli crystals in chapter 5, comparing the results to [3], as
well as conducting new research on the effect of interactions on Pauli crystals. The code used for
simulations are numerical calculations are found in [8].

The thesis is restricted to primarily studying weakly interacting quantum gases with a few particles
in one dimension, with the exception of Pauli crystals.
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Theory and Analytical Derivations

In order to model multiple interacting particles in a trap we first need to understand the quantum
mechanical description of non-interacting particles, and the confinement in which they reside.
In the ultracold environment, atoms will be modelled as non-relativistic point particles with
a trapping potential. This chapter will first introduce the single-particle wave function in a
quantum harmonic oscillator and the corresponding Hamiltonian. Then, we study the many-body
system by constructing the fermionic many-body wave function with a Slater determinant,
introducing multiple spin components and calculating the energy of a non-interacting system.
The non-interacting energy will form the basis for our own research in the next chapter, in which
we calculate the energy for interacting systems.

2.1 The Single-Particle Wave Function

In contrast with classical physics where a particle can be described as confined to a point, a
quantum particle is described as a wave spread out over all of coordinate space. The state of a
single particle is represented by its wave function W(Z,¢) [4]. Born’s statistical interpretation says
that |\Il(f, t) ’2 gives the probability of finding the particle at point & and time ¢. Upon observation,
the wave function collapses to one measured state dictated by the probability density. The wave
function is acquired by solving the Schrodinger equation

L0 -
zha |W(t)) = H|U(t)), (2.1)

where H is the Hamiltonian of the system. In quantum mechanics, the wave function U(Z,t)
is merely the coordinate representation of a general vector |\I/(t)> residing in a Hilbert space and
projected onto position space as W(Z,t) = (Z|¥(t)) [4]. A Hilbert space H is a vector space defined
with the inner product

o) = [ 4z " @e(@) < . (2.2

where d is the number of dimensions in the system and f,g € H. |\I'(t)> can be expanded in terms
of a basis of eigenvectors {|1),,)} of a system’s Hamiltonian H without losing any information. In
coordinate space, the eigenstates are (Z|¢,) = ¥, (%) and the wave function expanded using its
eigenstates is

_iBpt

(T 1) =D cath(@)e 7, (2.3)

where Y |cn|*> = 1 and |c,|? is the probability of measuring the particle in a state t,,(Z). To
obtain the eigenstates of a Hamiltionian, the stationary Schrodinger equation is solved

ﬁ(f)¢n(f) = Enwn(f)v (2.4)

where E, is the eigenenergy corresponding to the eigenvector ¢,(Z). The eigenenergies are
calculated with the help of the inner product and with the use of orthonormality between

eigenstates, (V¥ |Wn) = Omn, as

B = Wl B ) = [ d03,() 0 (@) (2:5)
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2.2 The Quantum Harmonic Oscillator (QHO)

Having established the single particle wave function, we move on to the trapping potential where
the particle resides and its Hamiltonian. A harmonic oscillator arises when the restoring force is
linear, for example a spring obeying Hooke’s law. Since the trap we model has a high intensity
laser which keeps displacement from the focus small, we can make a first order Taylor series
expansion. This is equivalent to assuming a linear restoring force, and thus a harmonic potential.
The laser trap potential will therefore be modelled as a quantum harmonic oscillator (QHO).
It is a favourable potential, being a quantum-mechanical system with an analytic solution to
the Schrodinger equation. Furthermore, it is not difficult to generalise the QHO to multiple
dimensions. In recent experiments [2], [9] a combination of the optical trapping methods described
in 1.3 have been have been used to freeze out one and two dimensions respectively. Hence, it
meaningful to create models that handle one, two and tree dimensions respectively.

The Hamiltonian for the one-dimensional QHO (1D-QHO) is written as

/\2 2 2
28 pm 1 . h2 d 1
QHO(x) = o + imw%Q = ~ 5% + §mw2x2.

where m is the particle mass, w the characteristic angular frequency of the oscillator and x the
position. The first term is the kinetic energy of the particle and the second term the surrounding
potential V' (x). The n'! eigenstate v, () = (z[tb,) is

1 EE
‘/’”@’m(%) ¢ <\/”§-§"I>’ (2.7)

with n being the principal quantum number and H,(z)

(2.6)

the n'" Hermite polynomial. Using the characteristic Quantum harmonic oscillator
. . 4
length of the harmonic oscillator Iy, = y/h/mw , we can J/\ A~ A~

define the dimensionless coordinate £ = x/lj,,. With this, 35

/
equation (2.7) can be rewritten on dimensionless form as 3 A/\ /\L ]

Tnl©) = Vin () = LT H,(6), (28) 2 \

V2rn! i

satisfying . 7 W
| din©r =1, 29 |

which will be used in numerical calculations. The energy th > : ) A
corresponding to the n'" eigenstate is E, = (n + %)hw, 3
where hw is the characteristic energy. An essential
property in quantum mechanics is the “ground state”,
i.e. the state with the lowest energy. This is of interest
because, according to the third law of thermodynamics,
a system at zero temperature is in its ground state leneth th . Furth
[10, p. 277-278]. The ground state of the 1D-QHQ [&'8Y1 O B X-axis.. HUILACIILONS,
_ . _ [ (£)]? of the first four quantum
correspond to n = 0 with the energy Fy = hw/2. A . 1 o2
. . . ; number and the potential V(§) = 5
visual representation of an occupied level, specifically

2
the ground state of the one dimensional QHO is shown & shown. The arrow 1 indicates that
in figure 2.1.

the ground state 7:/;0 (&) is occupied.

Figure 2.1: A visualisation of an
occupied level of the 1D-QHO. The
dimensionless characteristic energy is
on the y-axis and the dimensionless

In d dimensions, the quantum harmonic oscillator is separable into d one dimensional harmonic
oscillators J
~ h? d? 1 h? 1
H T) = -+ —mw?a? | = —— V2 + —mw?| 72 2.10
Quo(%) ;( omdr? T3 i o 57w |] (2.10)
Every harmonic oscillator will yield states with their own quantum numbers ng and energies F,, 4,
which can be added to form a quantum number 7 and energy FE respectively. Specifically for
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d = 3 we get T = (ng,ny,n,) and E, = (ny +ny + n, + %)hw This means that in higher
dimensions, several states can correspond to the same energy eigenvalue, which is a phenomenon
called degeneracy. Generally the degeneracy g, is 1/2- (n + 1)(n +2) in 3D and (n + 1) in 2D.

2.3 The Many-Body System

The single-particle system introduced now forms a foundation to build on as we move onto the
many-body system. The Hamiltonian for many non-interacting particles is simply the sum of the
single-particle Hamiltonians. Using equation (2.21), the Hamiltonian for N particles becomes

N 2 92
H= Z <—h82 + 1mw2x2> . (2.11)

Observe that the many-particle case is identical to the many-dimension case, except that the
subindex i denotes particle number, not dimensions and x; is the position of the i** particle.
What the subindex refers to in a given situation will be made clear from context.

For N particles the many-body wave function is a product of single particle wave functions. In
the case of two distinguishable particles in the two states v, and 1, the wave function can be
expressed as (a1, x2) = q(x1)p(22), called the Hartree product. However, fermions with the
same spin are indistinguishable and antisymmetric under interchange, ¥ (x1,z2) = —¢(z2,21).
They must therefore be described with a wave function that fulfills the antisymmetry criteria [4].
Thus, the normalised wave function for two fermions is

1
NG

If two fermions are in the same state this wave function becomes zero, adhering to the Pauli
exclusion principle. This many-body wave function can also be expressed as a determinant of a 2 X 2
matrix of all possible combinations of states and positions, which is called the Slater determinant
for the system. A set of Slater determinants form a basis for the fermionic Fock space, which is the
Hilbert space describing a quantum many body system with N indistinguishable particles. This is
analogous to the single particle wave functions forming a basis for the Hilbert space. The scalar
product that will be used in future calculations in the Fock space with N particles is defined as

(Ya(@1)thp(22) — Pala2)tp(21))- (2.12)

U, p(x1,22) =

N 00
(flg) = H/ day f*(x1)g(21) < o0. (2.13)
=177

2.3.1 The Slater Determinant

The Slater determinant is an algebraic construction which takes a many-body wave function and
forces it to adhere to the Pauli principle. In chapter 5, the consequence of the Pauli principle on
the wave function will be studied in more in detail. For N states and particles with the same spin
it can be neatly written as a determinant of an N X N matrix with all the wave functions and
coordinates:

77&”1(‘%1) wnl (l‘g) d)nl (IN)

7/’”2(‘%1) ’(ﬁn,z(l’g) wn2(1’N)
Voo (21,22, .y TN) = ! ’ ' ' ’ . (2.14)

wnw.(ajl) ¢7LN-(JU2) ¢7LN (xN)

A normalisation constant 1/+/N! is introduced, and as previously, v, is a single particle state and
n; denotes an occupied state, for example n; = 0 is the occupied ground state. A more compact
way of expressing the Slater determinant that we will use in calculations is
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N

1

Uty (1,22, oy ZN) = E sign(p) Hwnp(_) (z;) | - (2.15)
VNU S5 el

Sy is the permutation group of N, containing all possible permutations p of N components.
sign(p) = +1 depending on if the permutation p is even or odd. Written explicitly the many-body
wave function is a sum of all possible permutations of the states and positions of N particles.
Occupied single particle 1D-QHO states in the many-particle case can neatly be visualised in
figure 2.2.

. .
'“: 2 - "Q 2
= =
Sy t Sy
L5 L5
0.5 T 0.5 T
-4 —.‘( :‘z -1 0 1 ; f‘k 1 -1 7.15 -2 -1 0 i é 3 1

3 £
(a) First three 1D-QHO states occupied. (b) Two 1D-QHO states occupied.

Figure 2.2: Occupied 1D-QHO states for many particles visualised. The state three-particle state
in (a) is a determinant of a 3 X 3 matrix and according to equation (2.14) the wave function would
be g 1 2(21, 22, x3). Similarly, the two-particle state in (b) is a 2 X 2 Slater determinant with the
wave function Wg o(z1,22). The state in (a) is the ground state for three particles and the state
in (b) is an excited state for two particles.

The many-body wave functions constructed from the Slater determinant are orthonormal, which
we prove by taking the inner product (2.13) of two wave functions \I';L,l . and W, ., . Inserting
ol

equation 2.15 yields

<\If’|nlf>:% Y sign(p) ) sign(p H / da Y (@), (@1)- (2.16)

p’'€SN pESN

The orthonormality of the single particle wave function {t,, (x;)} turns the integral into a product
of Kronecker deltas 9,/ 1) which is zero unless p’ = p and n’ = n. Hence, the wave functions
p(l

¥’ = ¥ must be equal for non-zero solutions and the result is
(W) = (¥|¥) = Z sign?( N' Y 1=—-N=1 (2.17)
pESN pESN

In summary, the inner product of two many-body wave functions is 1 if the wave functions represent
the same state and 0 otherwise, proving the orthonormality. This result will be used in future
calculations.

2.4 The Many-Body System: Multiple Spin Components

Everything up to this point has regarded systems with only one spin component, for example one
hyperfine state of °Li. According to our interaction model that will be introduced properly in
chapter 3, only particles of different spin interact, as we show in appendix A. Since our goal is to
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study an interacting system, we consequently introduce the many-body wave function of multiple
spin components and use it to calculate the energy in such a system. However, the interactions
are not included in the calculation until the next chapter.

2.4.1 The Wave Function with Multiple Spin Components

For convenience the two spins in a two spin component ultracold Fermi gas will be denoted with
spin up (o =1) and spin down (0 =|). These are not necessarily the spin up and down states of an
electron as the spin values are not important for the calculations; they could for example be the
two hyperfine states of lithium used in [2] and [3]. The total number of particles is N = Ny + N,
where N; is the number of particles in the spin up state and NN| the number of particles in the
spin down state. Due to particles of different spin being distinguishable, the wave function with
two spin components is given by the Hartree product of the two spin states

\Ijnﬂ,-n,nrNT,nuwu,mzvi (xTh cooy TNy LLLy ooey xU\U)
4 B (2.18)
= \I]nﬂ,m,ﬂ?NT (leﬂ“"xTNT) . \Dnu,m,nu\u (Q?u,...,wu\[i),

where z,; is the coordinate of the i*® particle with spin o and n.; is the i*? state for a particle with
spin 0. Note that the left subindex always indicates what spin a particle is in and the right subindex
counts particles. This can be generalised to multiple spin components and written compactly as

U=T]%niinoy, (@15 on, ), (2.19)

where the total number of particles is N = ) N,. Furthermore, the wave function “V is given
by (2.14) as

N,
o 1 § : . T
\1]71,‘,1...71(,-1\](7 (IO'17 ceey ona) = \/W Slgn(p) H djnap(i) (IU'L) (220)
g i=1

© pESnN,

The orthonormality of the many-body wave function with many spin components is shown by
applying equation (2.17). Furthermore, an important property of a many spin component system
is that every 1D-QHO energy level can now hold up to one particle of each spin component.

2.4.2 The Energy of an Eigenstate with Multiple Spin Components

To study the correlation between certain particle numbers and stability, we must calculate the
eigenenergies of a many-body system. The Hamiltonian without interactions between particles of
a two spin component system is a sum of the Hamiltonian of each spin component

H:ZHQHO(I‘M)JFZHQHO(IM) =TH4+'H. (2.21)
i=1 j=1

To solve the stationary Schrodinger equation HVU = E¥ and obtain the eigenenergy of a many-body
eigenstate, we use the eigenvalue problem of single-particle wave functions. Inserting the single
particle Hamiltonian Hgpo(x) into the stationary Schrédinger equation

FIQHO(I)¢W'1 (‘T) = 5niwni (1')7 (222)

gives the single particle energies €,, = hw (ni + %) Because the wave function VU is a product of
two single spin wave functions, separation of variables is applicable. Consequently, we can solve
the eigenvalue problems TH T = TETW and YH+¥ = YE4W¥ separately and gain the total energy
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E ="TE + ‘E. Equation (2.22) gives the eigenvalue of TH as

Ny

A 1
\/WPG;VT ») 2 Hanolan) JHI nencs (1)
(2.23)
1
- \/W Z 51gn ZEnTP() Hwnm(y) ‘TT] = ZETZ
" pESN,

The calculation is identical for the spin down case. The total eigenvalue of the Hamiltonian is thus

HU = Zéﬁﬁ"‘rzsu v (2.24)
i=1 j=1
with the eigenenergy
E = hw 5+Znﬁ+zn“ (2.25)
i=1 j=1

The important conclusion to be drawn from (2.25) is that without any interaction between particles
of different spin, the energy of a many-body wave function is the sum of energies of occupied
single-particle states. Generalising the calculations to multiple spin components gives

H=) "Hand E=) E,, (2.26)

with the total eigenenergy written explicitly as

N,
N = e
E = hw 5 + E E Ngi |, if ¥ =V, else 0. (2.27)

o =1
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Interacting Many-Body System

Since realistic interactions between particles are rather complicated, it is commonplace to use a
shape-independent approximation consisting of an interaction potential with zero range. Hence,
a delta function will be used to model the interaction between particles. This is an appropriate
approximation because at ultracold temperatures, the de Broglie wavelength h/p ! will be large
enough for the wave functions of particles to overlap, hence render the finer details of the interaction
potential irrelevant [11]. The total Hamiltonian for our model for two spins thus becomes

) N4 . Ny . Ny Ny
H = ZHQHO(I“) + Z HQHO(15¢j) + Z Za(?(xﬁ — :Z}w'), (31)
i=1 j=1 =1 j=1

where the interaction term only involves particles of different spin. A verification of the model
where only particles of different spin interact is found in appendix A. The interaction strength « is
possible to tune experimentally using an external magnetic field by a mechanism called Feshbach
resonance, provided the atoms are in an ultracold environment [12].

In this chapter we will first derive an analytical expression for the energy of two interacting particles.
Due to the complexity of the analytical solutions for more than two particles, we will then transition
to treating the interactions as a perturbation and use perturbation theory to calculate the energy of
the interacting system for one and multiple spin components. From there, we can start modelling
experiments in the next chapter, finding magic numbers and pairing effects.

3.1 Analytical Solution of Two Interacting Particles in 1D

As previously mentioned, the Schrodinger equation for two particles with two different spin can
be solved analytically with Ny = N, = 1. The problem already have a known solution, which
was derived by Busch et al. for two fermions in three dimensions in [11]. We calculate the
one-dimensional case. The solution is our own original work, and the full, detailed solution is
available in appendix C.

To start off, the Hamiltonian for the two-particle system can be written as the sum of two
single-particle Hamiltonians and an interaction potential

r? 9* Rh? 92

o Mo w e
2m dx?  2m Ox3 *

Vpot(wl) + Vpot(-rQ) + ‘/int(xl - 372)7 (32)
where Vpot(z) = mw?2?/2 and V() = ad(x). This Hamiltonian can be split into two parts by

defining two new coordinates, R = (z1 + x2)/2 and r = (21 — x2), which are a centre-of-mass
coordinate and a relative coordinate, respectively. We can thereby split the Hamiltonian into a

1The most probable velocity of a particle in thermal equilibrium with its environment is given by the
Maxwell-Boltzmann distribution as v = /2kgT/m . For an ultracold (~ pK) SLi atom h/p ~ 10* A, while a

typical atom is ~ 1 A across.

10
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centre-of-mass part and a relative part:

. 2 92 1

Heom(R) = =537 oms + 5 Mw ’R?,
R h2 32 1 (3'3)
H,(r) = + ,uw r? + ad(r).

C2u0r?

M = 2m is the total mass and p = m/2 is the reduced mass. The centre of mass part, Heom,
is just a harmonic oscillator with eigenenergies fw(n + 1/2), while the relative part, Hye;, looks
like a one-dimensional QHO with a delta function potential at the origin. We focus on solving the
relative part. To continue, we define a new harmonic oscillator length for the relative equation as

= 1/i = V2o, (3.4)
Hw

where [, is the standard harmonic oscillator length. The Hamiltonian is turned into its
dimensionless form

. 1 9?
H,(§) = 298

and ( is defined as

32
00 = 5 g + 3¢ + 75000 (35)

]'2
+580+

ﬁa «
p= hwdno  hwlpo (3.6)

We insert the new dimensionless Hamiltonian H, into the the stationary Schrédinger equation
H,U(¢) = EU(E), where E is the eigenenergy for the relative Hamiltonian. To solve the
Schrodinger equation we expand ¥(€) in the basis of the free single particle wave functions, ¥, (),
with the expansion coefficents ¢,,. Then, we calculate ¢, by projecting on 1 (z) and insert the
1D-QHO energies E,. By simplifying the resulting expression we get

Z ¥ (O¥m(0) _ Z W’"i . (3.7)

To continue and gain an explicit correlation between the interaction strength and energy we need
to evaluate the sum. As Hgpo is a normal harmonic oscillator, its wave functions 1,,(£) are

known from equation (2.8), where we replace Jm(g) with 1, (§) for simpler notation. For odd m,
the wave function at £ = 0 becomes zero due to the Hermite polynomial and the solution becomes
trivial. The physical interpretation of this would be that states with an odd relative wave function
cannot interact through the delta potential V;,;. To eliminate the redundant parts, we use the
variable substitution m = 2n. Inserting 19, and Es, into one term of the sum from equation (3.7),
we get

(H2n(0))?
O . <H2n<o>>2 11 ény

V2 B —E 27 (220(2n))(2n + 5 —E) T ovar 22y, — (B 1)
From here, an integral substitution allows us to use the generating function for the squared Hermite

polynomials [13, p. 250] to get rid of any n-dependence, which means we can write equation (3.7),
the entire sum, as

(3.8)

1 —v—1 —1/2+v
——=— ) VT (14 , 3.9
=37 | w@ T ) (39)
where v = (% — i) The integral looks like the integral representation of Tricomi’s confluent

hypergeometric function [14, p. 505], which allows us to exchange the integral. Finally, the
properties of this confluent hypergeometric function allows us to attain an expression for S(FE),
linking the relative energy between the particles and the interaction strength:

B(E) = —2fﬂ. (3.10)

r(-£+1)

11



3. Interacting Many-Body System

By inverting this function numerically, we can find the energy as a function of interaction strength,
E(B) = E(a/lpohw). In figure 3.1 we see the function E(a/lpohw). Its asymptotic behaviour occurs
due to the gamma function diverging for negative integer inputs. The branches of the function can
be interpreted as belonging to different states of the relative part with some quantum number k;
we write the energy as Ej(a/lpohw) to clarify this. Note that Ej(0) corresponds to the energies
huw(1/2 4 2k). This function completely models the energy of the relative part of the Hamiltonian,
while the energy for the centre-of-mass part is simply fiw(n + %), for some quantum number n.
Thus, the energy for the entire system is

hw o
Fiota(n, k,a) = — +nhw+ E . 3.11
() = (i) 3.11)

The process for analytically calculating the interaction between particles is very difficult and time
consuming, even only considering two particles. Needless to say, extending this solution to many
particles of different spins would be practically impossible. Clearly, an approximate solution like
perturbation theory is necessary.

( Ip,:hu,‘ )
———-Asymptote

I I L
-15 -10 -5 0 5 10 15

a/(lphw)

Figure 3.1: A plot of the implicitly derived function E(8) = E(a/lp.hw).

3.2 Time-independent Perturbation Theory

Perturbation theory is a procedure to approximating solutions of the Schrédinger equation for a
potential with an already known solution that is slightly perturbed. This is achieved by calculating
the order of corrections to the eigenenergies F,, and eigenstates W,,. This section will introduce
the theory behind non-degenerate perturbation theory as it is presented in [4] and the following
sections will implement it on interacting systems.

The unperturbed system satisfies the time-independent Schrédinger equation H (0)\11510) = E,(LO)\I/;O).
Adding the perturbation aH’, where « is of small amplitude, results in

H=H0" 4 of (3.12)
T, =00 o) 4 20@ (3.13)
E,=E9 + oEW +a2E? .. (3.14)

where E,(lk) and \Ilglk) is the k' order correction to energy, respectively energy eigenstate. Up to
first order in «, the first order energy correction is given by

E',(«Ll) _ <\Ij£lO)’H/

\If;0>> , (3.15)
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and the energy eigenstate correction
(v |
EY - EY

o0, (3.16)

v ="

n#m

Up to second order in «, the expression of the second order energy correction is

2
oy ’<xpglo> \pgg>>‘

H/

(3.17)

3.3 Interaction in a Two-Component System

Having introduced perturbation theory, we can derive expressions for the eigenenergies of an
interacting system with two spin components. This will later be compared to the experiments
in [2]. The interaction, where only particles of different spin interact, is written as

NT Ni

fI’:ZZd(azﬁ—mu). (3.18)

i=1 j=1

In appendix A it is shown that particles of the same spin do not interact through a delta potential.
This interaction will be treated as a perturbation and to calculate the corrections from the previous
section, we need to evaluate (U] H ‘\If’ >, called the overlap integral. We will look at the general case
with an overlap integral between different states ¥ and W', where the first order energy correction
EW is attained with ¥ = W. The case ¥ # U’ is relevant when calculating the perturbed
eigenstate in (3.16) and the second order energy correction in (3.17). Inserting the compact Slater
determinants into the overlap integral and simplifying gives

A 1
(W A" |9") = NN, > sign(p) sign(p') ) Z sign(p) sign(p')
p,p €SN, PP ESN,
x> Z/dxﬁ dzy; 9, @) 00, ) (213)0(@ = 23) 0w, (@4)n, (215)  (319)
i=1 j=1
x H/dxu Uy @) Pnr, | (10) H/dxw LA CAVY AN CaT
i oy

The delta function acts on the second line, while the orthonormality of the single particle wave
function turns the third line into Kronecker deltas, yielding the expression

- 1 . . N e
(U H' V) =y D sign(p)sign(p) Y sign(p) sign(p)
T ppres, 5.7 €8x,
Ny N,
<33 [yt @) ) (), ) (B20)
i=1 j—1
X H(S"P(l)nlpl(l) H 6"17(k)n/ﬁ/(k)'
1£i ki

This expression sets limitations on the quantum numbers and by varying them we get all the
different cases for the overlap integral. Fortunately, most cases can be excluded immediately.
Firstly, if ¥ and ¥’ have two or more particles occupying different single particle states, the
Kronecker deltas make (¥| A’ |¥") = 0. Furthermore, the expression is also zero if the states have
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3. Interacting Many-Body System

different numbers of particles. The remaining cases have the restriction that n,q = n; ) and
Np(k)y = n%,(k) due to the Kronecker deltas, and are therefore only dependent on the remaining
quantum numbers 7y, N/ ()7 () and n~, )" The four possible cases are

Case L: my) = ;) and mp) = 1,
/

Case 2: ny;) # np (i) a0d 105) = Mgy (3.21)

Case 3: =n’, ., and ngz # n’ .

ase p( y = 40 5(5) p '(3)

Np(i )

Case 4: ) F np ) and ng(;) # np G
Case 1: This is equivalent with ¥ = ¥’. Consequently, the overlap integral becomes the expression
of the first order energy correction according to equation (3.15). Since p = p’ and p = p/, the first
row in equation (3.20) is simply 1. By using this simplification and by inserting the dimensionless
wave function, the overlap integral for the first case becomes

NT NL

B = A0 = =33 [ a1 OF 16, (O (3.22)
1=1 j=1
Case 2: For the inequality we simplify the expression by setting n,;y = n, and np () = = n)y, with

n, # n’y. The equality implies the equivalence n;(;) = n%,(j) & p=p < YU = Y’ Thus the spin
down states are the same, while the spin up states differ with one particle. This can be visualised
in figure 3.2 for the particular case of Ny = N, = 3. Referring to the visual representation of
occupied single particle state, ¥ could be represented by figure 3.2a and ¥’ by figure 3.2b.

E/hw
E/hw

(a) (b) (c)

Figure 3.2: Three different occupied states for N = 6 with Ny = 3 and N| = 3. Each energy
level can be twice occupied, once by ¢ =71 and once by o =|.

Using the conclusions from above and repeating similar steps as for case one, shown explicitly in
equation (B.1), the overlap integral becomes

(W| AW = Z / A€ D, ()P ()i, (O (3.23)

Case 3: This is very similar to the second case. The equality in equation (3.21) implies the
equivalence n;) = n;),(i) & p=yp & "W =T meaning that the occupied spin up levels are the
same, while the occupied spin down levels differ with one particle. This case can be visualised in
figure 3.2, where ¥ could be represented by 3.2b and ¥’ by figure 3.2c. We denote the quantum
numbers that differ by n;(;) = n, and np G) = = n,,, and similarly to case two, n, # n.,. The overlap
integral in case three is derived in exactly the same manner as case two but instead of the sum in
(3.23) running over all occupied spin down levels, case three runs over all occupied spin up levels:

(WA = Z / A€, ()P, ()1, ()2 (3.24)

14



3. Interacting Many-Body System

Case 4: This means that the states 70 and 2 ¥’ differ by one occupied level and can be visualised
in figure 3.2, where ¥ could be represented by 3.2a and ¥’ by 3.2c. Referring to equation (3.21),
we set n,;) = n, and n;,(i) = n)\, with n, # n), as well as nz;) = n, and n%,(j) = nl,, with
n, # n,,. With similar derivation to the previous cases, shown explicitly in equation (B.2), the
overlap integral becomes

N 1 ~. ~ ~ ~
WIEW) = o= [ €3, (57 (€0 (©Dn ©) (3.25)
o
For the second order energy perturbation approximation, equation (3.17) indicates that we must
calculate a sum over many different overlap integrals. However, we have now shown that there
are only five different cases for how these overlap integrals may look, and consequently, these are
found in table 3.1.

Example state in Fig. 3.2
Cases (U|H'|W) (a) (b) (c)
Case L: | 7= 320 30 [ dé i, (€)1, () v=u
Case 2: e Y [ A€ (), (), (62 v v -
Case 3: = i [ A, ()t ()ldhn, ()P - v v
Case 4: o J 67 ()7, (€)n, (), (€) v - v
Else: 0 -

Table 3.1: The overlap integral for the five different cases. The right column refer to which figure
in 3.2 the states ¥ and ¥’ could correspond to. The last case, labelled else, applies when ¥ and
99’ occupy two or more different levels, or if they have different particle numbers.

Conclusively, most terms in the sum for the second order correction will be zero, which greatly
simplifies calculations. Interpreting the results further, we observe that the magnitude of the
interaction depends directly on how much the wave functions overlap. In the following chapter,
these overlap integrals will be evaluated numerically and compared to the experimental results in
[2] by using both first and second order perturbation theory.

3.4 Interaction in a Multiple Spin Component System

Before the results are compared, we generalise the conclusions to multiple spin components.
Assuming pairwise interaction between particles, the perturbation describing the interaction
between particles becomes

N, N_,

o o

IA{I = Z Z Zé(xoi - xa'j) ’ (326)

o#o’ \i=1 j=1

where only particles of different spin interact, in accordance with equation (A.4). The derivation of
the first order energy correction to the unperturbed system is identical to equation (3.22), except
for the additional use of the orthonormality of the many-body wave function (2.17), yielding

No Ngs

BV =3 S03  [ delin, (P, ©F | (3.27)

o#o’! =1 j=1
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4

Numerical Results

In the previous chapter, necessary expressions for computing interactions with perturbation theory
were derived. Here, we present our results for the energy of an interacting system. First, we discuss
the convergence of second order perturbation theory and make a comparison to the analytical
two particle solution from section 3.1. Second, we present the ground state energy for multiple
spin components and the concept of shells is explained. Next, the experiment that we model
by Ziirn et al. [2] is described and the experimentally measured quantity, separation energy, is
introduced. Lastly, this chapter compares our numerical result with the experimental data in [2]
and we determine the magic numbers.

4.1 Discussion of Numerical Results with Two Spin
Components

In an ultracold environment, particles will primarily be in the ground state of the system. If
we consider the non-degenerate 1D-QHO, we expect fermions to occupy the lowest energy levels
possible from bottom and up in accordance with figure 2.2a. Therefore, it is possible to calculate
the ground state energy, with and without a perturbation, as a function of fermion number. The
first order energy correction to the ground state Efll:)o is obtained by computing Case 1 in table

3.1. However, the second order ground state energy correction E,(f:)0 from equation (3.17) is more
complicated as it is an infinite sum and numerically, this means truncating the sum at some definite
cut-off. Though, if there exist a solution which converges, we can extrapolate the results to infinity.
We define the cut-off L as the highest 1D-QHO level considered, or highest single-particle excited
state taken into account, and compute the overlap integrals in table 3.1. In the extrapolation
process, we make the ansatz

EP(L)=a+ +, (4.1)

and fit the parameters a and b

to computed data for L > 40. Taple 4.1: Results of the first and second order ground

The result of the extrapolation is gtate energy corrections with two spin components using
shown in figure 4.1a as dashed black  perturbation theory.

lines. We can clearly see how
the second order energy correction

1 2
converges, although more slowly N Eé ) E(() )(L — )
with increasing particle number. 9 0.3989 -0.1046
The reason for a slower convergence
as N increase is because of the 3 0.5984 -0.1097
additional overlap integrals needed
to be computed. By letting the 4 1.0971 -0.1967
cut-off approach infinity, we extract
the energy correction from equation 5 1.4212 -0.2081
(4.1) as Eéz)(L — 00) and table 4.1
shows the extrapolated second order 6 2.0009 -0.2857

energy corrections together with the
first order energy corrections.
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4. Numerical Results
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—First order perturbation theory
04 —Second order perturbation theory
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L: Highest QHO level included a/(lhohw)
(a) Second order energy correction as a (b) Ground state energy of two particles as a
function of the single particle Hilbert space function of the dimensionless interaction
cut-off L. strength o/ (lpohw).

Figure 4.1: (a) contains the calculations of E(()Z)(L) with second order perturbation theory for
N =2 to N = 6 and power law fits (black dashed lines) according to equation (4.1). We can see
an excellent match between our calculations and the fitted power laws. (b) is a comparison of our
results with perturbation theory to the exact analytical two-particle solution in section 3.1.

Having established the convergence of the second order energy correction, we proceed to compare
the results for N = 2 in table 4.1 to our two particle analytical solution from section 3.1 in
figure 4.1b. We see an excellent agreement for |a/(Inohiw)| < 0.2 but the solutions deviate as the
interaction strength increases. Although, second order perturbation theory agrees very well for
interaction strengths up to |a/(lpofuw)| = 0.7. The agreement between perturbation theory and
the analytical solution for two particles implies that the numerical results are accurate, and we
move on to applying our computed results.

4.2 Ground State Energy and Shells of the 1D-QHO

The ground state energies for two, three and four spin components as a function of particle number
are shown in figure 4.2. The non-interacting energy is calculated using equation (2.27) and the
energy with interactions is calculated using first order perturbation theory.

Ey(N), 2 Spin components Ey(N), 3 Spin components - Ey(N), 4 Spin components
R R R 20 B R . 9 . . .
12| Without interaction -+Without interaction -+Without interaction
10| -+Interaction present r -+Interaction present 20| ~+Interaction present
15
3 8 3 315
< < <
= 6 =10 S
&3] 53] K 10
4
2 ’ g
0 0. 0
0 1 2 3 4 5 6 7 0 2 4 6 8 10 0 2 4 6 8 10 12 14
N N N

Figure 4.2: The ground state energy with and without interactions as a function of particle
number for different numbers of spin components. The dimensionless interaction strength
a/(lpohw) is —0.8. We see that the energy is particularly lowered for multiples of the number
of spin components when interactions are present. In addition, we note the convexity of the orange
lines, i.e. Eo(N = k-#0) where k € Ny. The energy is a convex function of particle number without
interactions, and convex with multiples of the number of spin components with interactions.
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4. Numerical Results

The emergence of shells is already visible without interactions: the slope only changes for multiples
of the number of spin components. This shell effect is explained by interpreting a 1D-QHO energy
level as a shell, where the increase in energy will be constant while a level is being filled with
particles. In order to minimise the ground state energy, particles will occupy the lowest energy
levels possible. However, due to Pauli’s exclusion principle, a level can only be occupied by
particles of different spin components. We therefore observe a constant increase in energy between
consecutive multiples of the number of spin components, i.e. shells.

The shell effect is magnified by the interactions and becomes more apparent with more spin
components. We also find that energy is no longer a convex function' of particle number but
instead displays a closed shell effect. This can be observed in figure 4.2 where e.g. Fy(3) < Ey(2)
for three spin components and FEy(4) < Ey(3) for four spin components. However, we notice
that the orange lines which show Eo(N = k - #0), with k € Ny, are still convex functions. This
mathematically quantifies the shell effect: the energy of partially filled shells always lie above
the orange line, indicating that such configurations of particles are not as strongly bound. That
filled shells correspond to a significant decrease in energy, and hence increased stability, can be
explained by the interaction energy depending on the overlap between wave functions of different
spin. Realising that two fermions of different spin occupying the same 1D-QHO energy state have
the same unperturbed spatial wave function, we can expect a significant increase in overlap. The
overlap can hence be translated into how much particles interact. With an attractive interaction
(a0 < 0), the ground state energy is subsequently decreased. A similar shell effect is observed in
nuclear physics where closed shells correspond to particular stable nuclei, i.e. magic numbers [7].
The concept of shells is important when we in the following sections will interpret experimental
results.

4.3 Description of the Experiment by Ziirn et al.

In [2], a few weakly interacting fermions with two spin components (two hyperfine states of 5Li)
were prepared in the ground state of a quasi-1D harmonic potential with methods described in
section 1.3. The quasi-1D system was created by using a longitudinal frequency w) = 27 - 1.488
kHz and a perpendicular frequency w, /w) ~ 10, making the energy scale /w in the longitudinal
direction much smaller than in the perpendicular. Thus, a one dimensional treatment of the
system is sufficient [15]. To intuitively realise how a quasi-1D system is created, one can consider
building the ground state in the experiment described; it is first after 20 atoms (10 atoms of
each spin component) that an additional atom could find it energetically favourable to occupy an
excited state in the perpendicular direction where the level spacing is wi ~ 10 - w).

Following the preparation of a fixed number of weakly interacting atoms in the ground state of the
trap, a magnetic field gradient was applied, tilting the trapping potential to a well-defined height
for a variable time. A tilted trapping potential is illustrated in figure 4.3. By modifying the tilted
potential height such that only the most energetic atom could tunnel through the barrier within
the experimental timescale, single particle tunnelling rates were measured. The experimentally
obtained tunnelling rates were subsequently used to extract a quantity called “separation energy”
through an iterative process of matching WKB calculations (a way of approximating solutions to
linear differential equations) with experimental data. The separation energy is the energy released
as the N'*" atom tunnels out of the confinement and leaves N — 1 particles in their ground state.
It is defined as

Buep(N) = (EN — E§$>) . (EN_l - E§$>_1> : (4.2)

where Ey is the ground state energy of an interacting system with N atoms and E](\(,)) the
non-interacting energy [16]. Separation energy is thus a quantity that gives us information about
the interaction strength of the atoms. It can also show increased stability with certain magic
numbers of atoms in the trap and pairing effects between atoms.

L1f a line segment connecting two points on the graph of a function always lies above or on the graph, a function
is convex.
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4. Numerical Results

(a) Two atoms of different spin (b) One atom has tunneled through
confined. the barrier.

Figure 4.3: An illustration of the tilted 1D-QHO harmonic potential in the experiment by Ziirn
et al. [2] with two atoms of different spin. In (a), two atoms are confined in the tilted trapping
potential whereas in (b), the o =] atom has tunnelled through the barrier.

4.4 Numerical Results of Calculating the Separation Energy

To reproduce the experimental data in [2], we construct the separation energy as a function of
particle number according to equation (4.2) with the results from table 4.1. The interaction
strengths « are chosen to minimise x in equation (4.3), and the result is shown in figure 4.4a.

6
2
_ calculated experiment
X = E (Esep (N) - Esep (N)) (43)
N=2
03 - 2 0 -
—First order perturbation theory —+Two spin components
——Second order perturbation theory —+—Three spin components
-0.05 I Zuern et al. [2] -0.1f Four spin components
D’Amico et al. [17]

0.1 -02
3 3
£ 2 03

? -0.15 %:}

= N -0.4

-0.2

-0.5
0.25
-0.6
-0.3 - . ] !
1 2 3 4 5 6 2 4 6 8 10
N N
(a) Two spin components (b) Multiple spin components.

Figure 4.4: Separation energy as a function of particle number. In (a) our results with
perturbation theory are compared to experimental data by Ziirn et al. [2], which are shown as
black error bars. Bars connected by blue is the first order perturbation theory with the interaction
strength «/(lpohw) = —0.444 and bars connected by red is the second order perturbation theory
with the interaction strength a/(lpofw) = —0.416. Furthermore, with a/(Ipofiw) = —0.45, the
results from exact diagonalisation in [17] are shown as green circles and our results with second
order perturbation theory are shown as red crosses. In (b) the first order perturbation theory
is used with a/(lpohw) = —0.444. We can see spikes in magnitude of the separation energy for
multiples of the spin components.

19



4. Numerical Results

Although the calculated separation energy do not always lie within the experimental uncertainty
bars in figure 4.4a, we can see that the qualitative behaviour is successfully reproduced.
Furthermore, we find that the first order perturbation theory actually match the experimental
data better, but the second order perturbation theory results do not differ by much. This implies
that atoms in the experiment are weakly interacting, i.e. the system is only slightly perturbed
and perturbation theory is a good approximation. Hence, we expect our model to be a good
description of the experiment.

In [17], the Hamiltonian in equation (3.1) was expressed in matrix form and diagonalised. The
resulting eigenvalues correspond to the energy of the system, and these are shown as green
circles in figure 4.4a. The red crosses that almost perfectly intersect the green circles are our
results with second order perturbation when we set the same interaction as was used in [17] i.e.
a/(lpohw) = —0.45; the first order perturbation hardly changes from what is seen in figure 4.4a.
That the second order perturbation theory and exact diagonalisaton are in excellent agreement is
also consistent with the comparison between perturbation theory and the analytical two particle
solution in figure 4.1b: at a/(Ipohw) = —0.45 the first order perturbation theory fails to reproduce
the analytical solution accurately, whereas the second order perturbation theory succeeds. One
reason why our results fail to match experimental data better could be from the anharmonicity of
the true level spacing in the confining trap, meaning our harmonic approximation breaks down.

Having established the success of our model, we can now discuss the behaviour observed in figure
4.4a. We can see that for an even number of atoms the magnitude of the separation energy
increases, meaning that the system is more stable. This odd-even effect observed is reminiscent
of a pairing effect seen in nuclear physics, where an even number of protons or neutrons have
larger binding energies, and hence, are more resilient against decay [7]. Despite a nucleus having
completely different structures and forces acting between its constituents, compared to the
modelled 1D-QHO system, both systems are comprised of fermions which follow Pauli’s exclusion
principle. Consequently, we see a similar shell effect in both systems. With two spin components,
an even number of atoms correspond to filled 1D-QHO shells and as discussed in section 4.2, the
ground state energy is significantly lowered for attractive interactions as a consequence. Therefore,
a system of an even number of atoms experience an effective higher potential to tunnel through
than an odd number of particles. Consequently, a lower tunnelling rate is observed, indicated
by figure 4.4a. Another effect seen is a general increase in magnitude of separation energy with
the number of atoms. This can be explained by more atoms being able to interact with one another.

In figure 4.4b, the separation energy is calculated using first order perturbation theory, and the
result is shown for up to four spin components. The behaviour in figure 4.4b is in accordance
with the shell model described in section 4.2. Whenever an atom occupies an energy level (shell)
by itself, i.e. N = k- -#0 + 1, k € Ny, it interacts less with other atoms and the magnitude of
the separation energy is decreased. Another thing worth noting is that the slope is linear within
a shell with first order perturbation theory. This can be understood by the pairwise interaction
potential: the difference in interaction energy of removing two consecutive particles of different
spin is the interaction energy between the first and second particle removed. Detailed calculations
for the difference in interaction energy can be found in appendix B (equation (B.3)) and we only
state the result here as

a ~
BE(N) = £ [ aeline)l (14)
We find that with first order perturbation theory, the slope within the n'" shell is not only linear,
but also the same independently of the number of spin components.

Finally, in figure 4.4, we can clearly see spikes in the magnitude of the separation energy when
the number of particles equal multiples of the spin components. This strengthens the notion that
the shell model used to interpret the experimental results is successful, i.e. a filled shell is more
bound. Subsequently, we assign magic numbers to the system of a 1D-QHO with weak attractive
interactions as an integer times the number of spin components.
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Pauli Crystals

Having studied the effect of interactions on the energy of a many-body system, we now initially
return to the non-interacting system with one spin component. This chapter introduces the
phenomena of Pauli crystals, a natural consequence of the Pauli principle. After a brief introduction
to the subject, the chapter will explain the probability density of the many-body wave function
and the algorithms used to simulate the Pauli crystals. Then, the crystals will be simulated in
both 1D and 2D, successfully verifying very recent experimental results in [3]. Finally, completely
new research will be presented that applies perturbation theory to Pauli crystals in 1D.

5.1 Introduction to Pauli Crystals

As mentioned in the background, no two fermions can occupy the same quantum state due to
the Pauli principle. One manifestation of the Pauli principle arises when fermions confined to a
potential are cooled to a sufficiently low temperature. Due to the principle, the fermions try to
maximise the distance between themselves as they are trapped in the bottom of a bowl-shaped
potential. This results in the atoms arranging themselves in a sort of crystal pattern known
as Pauli crystals. The field is experiencing a recent surge of research, with experimental work
done just last year by Holten et al. [3] resulting in pictures taken of Pauli crystals, seen in figure 5.6.

Experimentally Pauli crystals can be observed thanks to fluorescent imaging, which revolves around
exciting atoms suspended in an optical trap through illumination and collecting the emitted
photons when the atoms relax. In [3], this technique was used to take snapshots of the fermions,
collapsing the many-body wave function and showing the individual particles. With multiple
snapshots, the particles will simply collapse according to their probability density and show no
correlation between themselves. It is only following image processing, which is described in detail
in [18], [19], that the crystals appear. The aim of this chapter is mainly to recreate the results in
[3] by simulating repeated measurements of N particles and then employing the image processing
to reveal the particle correlation. To understand the results, we also look at the probability density
and most probable positions of the particles. In the end, the simulations should form patterns that
reflect the Pauli principle and match the patterns in figure 5.6.

5.2 The Probability Density

For one particle the probability density is simply |w(:c)|2 However, for many particles there are
multiple probability densities depending on whether or not it is taken into consideration how the
particles are correlated, i.e. how they are placed in relation to each other [20]. The highest
order correlation gives the probability of finding N particles at given positions. However, for
visualisation it is sufficient to use the first order correlation, i.e. the probability density, which
display the probability of finding a particle at a given position r.

We introduce the density operator

fo(r) = Zé(r—;%m-) (5.1)
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5. Pauli Crystals

and insert it into (¥| A4 (r) |¥) to obtain the probability density. Details concerning the derivation
of this expression is given in appendix B.3 and given here is only give the final result

(2] (1)) = Y P, (1) -2

As can be seen, the probability density at position r is simply the sum of one-particle wave
functions for one spin species, meaning that it has lost the information regarding how the particles
are correlated.

5.3 Algorithms

The Pauli crystals were simulated using two algorithms: The Monte Carlo Algorithm and the
Metropolis algorithm [21], where the former can be considered a special case of the latter. The
Monte Carlo algorithm is a Markov chain that aims to find the most probable particle positions. In
contrast, the Metropolis algorithm instead samples the the wave function, offering particle positions
with different probabilities and simulating experimental measurements.

5.3.1 Monte Carlo Algorithm

The Monte Carlo algorithm works by using the highest order correlation of probability density
| (7, ...,F’N)|2 for N particles in order to keep the information about the particles relation to
each other and maximising it. This gives the most probable positions for the particles. The most
probable outcome is important since it firstly gives an indication of where the Pauli crystals will
form and and how they will arrange themselves, and secondly, is required for making the angular
corrections needed in 2D, discussed more in section 5.5. At the start of each measurement of N
particles, the algorithm assigns all particles random positions 7s¢qr+ within the interval £ € [—10, 10]
in 1D, or in a circle square with the radius five in 2D. Then, a new set of positions are randomised
for all particles 7, within an interval 2\ in 1D, or a square of side length 2X\ in 2D, where
lambda is a parameter chosen so that the particles converge to their most probable positions.
The probabilities |\I/|2 of the those two positions are calculated, and a comparison is made to check
whether the new probability is higher. If it is, the new configuration 77, is set as the starting point
for the next iteration. Otherwise the next iteration is repeated with the same starting positions
as before, Tsiqrt. With a sufficient number of iterations ¢ and a well chosen A, the probability
converges to the most probable positions, in our case with A = 1072 and i=10%.

5.3.2 The Metropolis algorithm

The Metropolis algorithm works very similarly to the Monte Carlo algorithm, but adds one extra
if-statement if the probability is lower after moving the particles within the interval 2A. We call
the quotient between the new probability and the old probability after a move p. If the new
probability is lower than the old and p < 1, there is still a chance p that the particles move to
the new position. Furthermore, there is a probability (1 — p) that the particles stay in their old
positions for the next iteration, similarly to how the Monte Carlo algorithm works. This results
in more spread out measurements where the particles are unlikely to end up in either the most
probable positions or really improbable positions, mimicking real life measurements. [18], [21]

5.4 Simulating Pauli crystals in 1D

The probability density and introduced algorithms will now be employed to simulate Pauli crystals
and explain theoretically why they appear. The process will first be done in 1D and then repeated
in 2D. Using equation (5.2) we plot the probability density in blue for one spin species in figure 5.1
for three and six particles. In the same figure, we also plot the most probable positions in red for
three and six particles using the Monte Carlo algorithm. It is noteworthy how the number of peaks
in the figures corresponds to the number of particles, and the fact that the particles in their most
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5. Pauli Crystals

probable outcome closely align with those peaks. The number of peaks in the probability density
give an indication that the particles might not occupy the same position in 1D space, despite the
probability density containing no information on particle correlation. The most probable outcome
then confirms it by placing the particles evenly, as to maximise the distance between them in the
potential, clearly obeying the Pauli principle.

057 0 @@
0.5 * 0 0 0 0 @
0 0
-5 0 5 -5 0 5
(a) Three particles. (b) Six particles.

Figure 5.1: Plots of the most probable configurations for three and six particles in 1D. The
blue lines are the probability densities and the red dots are the particles in their most probable
configuration.

In order to simulate real measurements, we employ the Metropolis algorithm. Due to the Law of
large numbers [22, p. 177-178], which dictates that a large number of measurements are required
to achieve convergence, 10° measurements are used. These form the histogram in 5.2a for three
particles with no clear pattern. This is because of quantum fluctuations in position and to reveal
the correlation between particles, the centre of mass for each measurement is calculated as Econr =
1/N 3", & and then aligned with & = 0. The results can be seen in figure 5.2b. The three peaks
verify that the wave functions collapses in accordance with its probability density, figure 5.1a,
and that the Metropolis algorithm is capable of simulating it. A parallel can be drawn between
these simulations and the double-slit experiment, where the purpose is to demonstrate the wavelike
properties of particles through interference and observe a distribution which is only made visible
after many measurements.
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(a) Histogram of measurements for (b) Centre of mass corrections.
three particles.

Figure 5.2: Histogram of the measured positions for three particles for 10° measurements.

5.5 Pauli Crystals in 2D

Having simulated the Pauli crystals in 1D, we move onto the 2D case where we will verify the
experimental results in figure 5.6 theoretically. First, we need to define some basic characteristics
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5. Pauli Crystals

of the dimensionless harmonic oscillator in two dimensions. The coordinates in two dimensions
are x and y and their dimensionless equivalents are & = z/lp, and n = y/l;,, respectively. The
single-particle wave function for the harmonic oscillator in two dimensions becomes a product of
two 1D wave functions with an adjusted normalisation constant:

~ 1 2.2
- = +n*)/2 g H ] 5.3
¢n5nn (5777) \/QnngnnnE!nn!\/Fve ne (5) Uz (77) ( )
An additional challenge in 2D is the degeneracy briefly mentioned in section 2.2. It means that
only filled shells with 1, 3, 6, 10, 15,... particles are non-degenerate and can be simulated. In
addition, the wave function exhibits a rotation symmetry in the ground state. Hence, angular
corrections are necessary to view the Pauli crystals.

5.5.1 Simulating Pauli Crystals in 2D

The 2D probability density for one, three and six particles can be viewed in figure 5.3, where we
can see circles forming where it is more likely to find a particle. However, very little can be said
about the correlation of the particles. The relationship between the particles only becomes clear
after inspecting the most probable positions for one, three and six particles in figure 5.4, plotted
by using the Monte Carlo algorithm. There we see that the particles form circular shells to try
to maximise the distance between themselves. It is tempting to draw parallels between this and
the shells formed by magic numbers. Although, as was pointed out in [20], the number of shells
in Pauli crystals do not correspond to the number of degenerate energy levels in the system, nor
do the shells in the Pauli crystals have the same number of particles in each shell as would be
expected for the magic numbers.

05
2 2 06
04 05 0.8
0 03 " 04 056
03
02 0.4
02
2 0.1 2 o1 0.2
-2 0 2 -2 0 2 -2 0 2
(a) One particle. (b) Three particles. (c) Six particles

Figure 5.3: The probability densities in 2D for one, three and six particles.
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(a) One particle. (b) Three particles. (c) Six particles.

Figure 5.4: The blue dots represent the most probable configuration for one, three and six
particles in 2D. The particles clearly obey the Pauli exclusion principle, trying to maximise their
distance and forming circular shells.

Keeping the probability density and the most probable outcome in mind, we simulate experimental
measurements by using the Metropolis algorithm in 2D. Without any image processing, quantum
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5. Pauli Crystals

fluctuations in the particles positions once again lead to histograms without any clear patterns.
However, by using the same centre of mass correction as in the 1D-case, we obtain the plots 5.5a
and 5.5¢ for three and six particles, respectively. As can be seen, the Metropolis algorithm clearly
samples the wave function in accordance with its probability density in figure 5.3 and verifies the
experimental measurement in figure 5.6a for three particles.

To see the actual Pauli crystals in 2D, we also need to perform angular corrections for each
measurements. Firstly, each measurement 7 is transformed into polar coordinates and the particles
in a measurement, with coordinates r; = (r;, ¢;), are sorted by decreasing angle ¢;. Secondly, each
particle in a measurement is assigned to a particle from the most probable outcome in figure 5.4,
with the coordinates 7prop,s = (rpmb,i,cﬁpmb’i). Finally, each measurement is rotated as to best
align with the most probable outcome. This is done by finding the angle # that minimises

N
d="3" (6 — dproni)” . (5.4)

i=1
The results can be viewed in figures 5.5b and 5.5d. As can clearly be seen, the crystals form around
the most probable positions, as showcased in the figures of 5.4. Furthermore, when comparing this
to the experimental results in 5.6 we can safely say that our models and algorithms have successfully
simulated the experimental results.

120
200
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150

100

1150 4150

100 100

(d)

Figure 5.5: The left side shows histograms of 5-10* measurements for three and six particles
gained from the Metropolis algorithm with centre of mass corrections. The right side shows the
same measurements after angular corrections were made.
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Figure 5.6: Experimental measurements showing Pauli crystals in [3]. Figure (a) shows the
single-particle density in a 2D histogram without implementation of angular corrections. Figures
(b) and (c) are the histograms with angular corrections for three and six particles.

5.6 Perturbing the Crystals in 1D

The previous sections studied Pauli crystals as they naturally arise without interactions and
explained experimental results. In this section we will cover new theoretical ground by studying
how the Pauli crystals in one dimension are affected when interactions are added between two spin
components. This is done by combining the results from section 3.3 with the Monte Carlo algorithm
and adding the first order correction of the wave function to the unperturbed wave function in 1D
as U = 0O 4+ (), o is the interaction strength and U(Y) is given by equation (3.16) with the
sum truncated at 20 excited states. This is done to reduce computing time and is deemed viable
as the goal is to study the general effect of interactions, rather than simulate exact expected results.

The Monte Carlo algorithm is again used in order to maximise the probability |\IJ|2 However,
there is an issue with the results not always converging towards a single, most probable position.
The issue is reduced with larger A ~ 1, though not completely alleviated. The most likely
explanation for the less likely outcomes is that the algorithm gets stuck in local maximums of
the wave function, arising because of the excited states added from first order correction. The
issue might possibly be removed completely with an adaptable A, although we leave this to future
studies due to time constraints. The most probable positions are shown in figure 5.7 for two, three
four and five particles. Spin up and down particles and their unperturbed probability densities
are marked with blue and red, respectively. Furthermore, the spin down particles have been made
slightly bigger than the spin up particles to visualise potential overlap. Note that a negative «
means attraction and a positive repulsion between particles of different spin. Particles of the same
spin do not interact by the delta potential, as shown in appendix A.

Let us first study the case with two and four particles in figure 5.7a and 5.7c, with the same number
of particles in the spin up and spin down state. For a = 0 and « < 0 the results are the same, since
the spin up and spin down particles have the same shaped probability density, and the attractive
interaction cannot bring the particles any closer than they already are in the unperturbed case.
However, for a > 0, the particles repel each other, occupying equidistant positions from the peaks in
the probability density. This was expected, as the particles are confined by the symmetric potential
while being repelled by each other. For three and five particles in figure 5.7b and 5.7d, the particles
align with the peaks of their probability densities in the unperturbed case as expected. Repulsive
interactions simply increases the distance between the particles. However, attractive interactions
are particularly interesting as the spin up and spin down particles seem to form the beginning of
pairs, with one particle being left out for odd N.
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Figure 5.7: Most probable configuration for two, three, four and five particles in the ground state

with different values of ov. Spin up and down particles and their unperturbed probability densities

are marked with blue and red, respectively. a = 0, means no interactions between particles. o < 0
and o > 0 means attractive and repulsive interactions, respectively, between particles of different

spin.

(d) Five particles.
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Conclusions

This chapter summarises what has been achieved in the thesis and presents possible future
applications and new fields of study. The goal of the thesis was to recreate the experimental
results in Ziirn et al. [2] and Holten et al. [3] and hence, simulate patterns in an interacting
quantum gases, specifically pairing, magic numbers, and Pauli crystals.

6.1 Interactions in a 1D Few-Fermion Gas

We introduced our model of a few fermions in a harmonic potential in one dimension, where
particles of different spin interact with a zero-point potential. The energy of such a system was
calculated analytically for two particles and two spins, and numerically with perturbation theory
for multiple particles and multiple spins. From these calculations we can draw a number of
conclusions. Firstly, the analytical and numeric results are in agreement, supporting that the
calculations with perturbation theory are correct. Secondly, a visible shell effect emerged for the
non-interacting system, which was made even more visible by adding interactions. From this, we
could see the magic numbers, which corresponded to multiples of the number of spin components
in the system. Finally and most importantly, the energies calculated with perturbation theory
matched the experimental results in [2], confirming the validity of our model and showing a clear
pairing effect between the fermions. In addition, our results for the second order perturbation
theory almost perfectly matched the theoretical work done in [17].

Having established the success of our model, a generalisation to higher dimensions is appealing
to future research. The recent experimental advancements make an ideal playground for testing
theoretical models; just last year, Bayha et al. [9] prepared a two dimensional system of interacting
ultracold fermions. Thus, exploring interactions in two dimensions is a promising area for future
research. Furthermore, it would be interesting to study the correlation between a more pronounced
shell effect in 2D and interactions.

6.2 Pauli Crystals

In the section on Pauli crystals, we gained an understanding of how Pauli crystals are formed by
studying the probability density and simulating the crystals in 1D. Furthermore, we successfully
simulated the experimental measurements in [3] by using the Monte Carlo and Metropolis
algorithms, verifying our model. Finally, we conducted original research, showing how interactions
between two spin states likely affect Pauli crystals in one dimension. In conclusion, we have shown
that simulating Pauli crystals is not only possible, but gives accurate recreations of experimental
data. This provides a foundation for further research to expand upon, such as incorporating higher
dimensions [23], simulating a greater number of particles, new interaction models, introduce heavier
atoms or even simulate fermionic molecules [24].
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A

Showing that Particles with Same
Spin do Not Interact

In order to prove that particles of the same spin do not interact in our model, we will calculate
the perturbed energy in a system with one spin component and N particles. The interaction that
will be treated as the perturbation is

ol = ZZ@5 —xj). (A1)

11]1

Since the particles are indistinguishable, we divide the Hamiltonian by two because every particle
is counted twice. We will calculate the first order perturbation energy E(Y) and by inserting the
compact Slater determinant (2.15) into the expression for the perturbed energy and simplifying
we get

aBEW = <x1;| oH' V)

=A Z /d‘rl dx] wn (i )( )'l/}np(])( ) (‘rl - wj)/(/}nﬁ(i) (xi),l/}nﬁ(j) (xJ)

3,j=1

X H /d.’El ’l/Jn ) xl)wnp(l)(xl)
l#i,j

(A.2)

A is the factor a/2N!3° 5 o sign(p)sign(p). The delta function operates on the second line in
(A.2), while the orthonormality of the wave function turns the scalar product on the final line in
into d0,(;)5(1)- For the product of Kronecker deltas to be non-zero the condition is that p(l) = p(l)
for [ # i, j, resulting in either

or =P (A.3)

However, due to the anti-symmetry of the Slater determinant, interchanging two elements in a
permutation leads to a sign change. Hence, the final result including N!- 2 terms is

aBY = S (415 1) sign() / 0 [y () Py, @) = 0. (A4)
PESN 4,5=1

The result shows the Pauli exclusion principle manifesting itself; two identical fermions cannot

occupy the same spatial position, making the perturbed energy zero. Thus, the energy for a

single-component system is the same as for a non-interacting two-component system: the sum of

single particle energies F = Zf\;l €;. This has shown that particles of the same spin do not interact

via delta function interactions.



B

Complete Relevant Calculations

This appendix includes calculations that are deemed not necessary to understand the thesis, but
which we have derived ourselves in order to obtain results. It can be of a pedagogical value for the
interested reader. The sections are unrelated to each other.

B.1 Overlap Calculation

This sections shows some steps in the derivation of the overlap integrals from section 3.3 that are
excluded from the chapter. Firstly, a step in the derivation for the overlap integral in case two
(equation (3.21)):

W) = S sign?(p) 3 sian?(p)

T NAIN !
NT'Ni' PESN -1 pPESN,

Ny N,

30 [ oy ) 015 g ()
s (B.1)
(Ny — 1)ININ; ) 2

A ; / dzy; ¢y (21)ns (245)[Vn,, (15)]

1

"o

Ny
3 / A€y, (€)1 ()b, ()2

Jj=

Case three in equation (3.21) follow in the exact same manner as above. Secondly, steps in the
derivation for the overlap integral in case four:

NT NL

<\Pﬁ/\1ﬂ>_NT!1N¢! ST sign?(p) Y sign?(m) YD

PESN -1 PESN, -1 i=1 j=1

X / dwyj by, (@15)0n (215)Uns (215, (245) (B.2)

(N; — DN, — 1)IN; N,

B N;IN|! /dz Un, (@) (2) P, (2)¢n, (2)
1

"o

[ 5 (05, (e €10, ©)

B.2 Separation Energy

The calculation of the slope in separation energy within a shell. If we assume the N, th particle
of spin ¢’ is removed, followed by the N, th particle of spin ¢”, equation (4.2) can together with
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B. Complete Relevant Calculations

equation (3.27) be written as

AEsep(N) = Esep(N) - Esep(N - 1)

Y S [l OF (B ©OF 15, (0F)

o#o’,0" i=1

Nu (B.3)

+ Z /d§|1/)n 0 )P n, (O
Ng—1
-3 2 [ 46l (Pl (OF

where the constraint is ) Efv 1 = N. Hence, if particles within a shell is removed, the wave

functions v, _, (&) = n,,.(§), especially ny/n_, = non_, = n, the single particle wave function
of the n th shell. Equation (B.3) thus becomes

AB, o / A€l (©)]*, (B.4)

B.3 Density Operator

Here, we do a derivation leading up to equation (5.2) in section 5.2. Using the density operator
defined in that section, the probability density is calculated as

N, N;
(i) 1) = TLTT [ dose o 0 o) 9 Gor)ng 1) 10 (10 0 o)
k=11=1 (B5)

= H / da g PO () W (g H / day T () (r) O (2.

The inner product of the spin down states becomes 1 due to orthonormality. The expression for the
density operator is is inserted and the spin up states are expressed as compact Slater determinants
given in equation (2.20):

Ny
. 1 . C
(Tl (r) [¥) =1 5~ > sign(p)sign(p) Y
" p.PESN, i=1 (B.6)
/de% %w )(33“)5(7“ - :I:T'L)’L/JHTP( 0 le H / dazyy wnw(z) (le)wnm(z) (le)
l#1

The delta function operates on the left integral and right integral can be simplified to a product
of delta functions d,;)5) with index I:

X 1
(Ul (r) [¥) = 55 > sign(p) sign(p anm M nae, () [T Spws)- (B.7)

" p,PESN, 1£i

If we set p = p the product of delta functions will then assume the value 1 and sign(p) sign(p) can
be simplified to sign®(p). Otherwise, the expression is zero.

Ny Ny
1
@) 10) = 57 3 500 3y (OF = Ll =5 (B
PESN, i=1 i=1
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The result in Eq. (B.8) can thus generalised for a given spin o as

N,
(U] oo (r) [€) = D [, (1) (B.9)
i=1

The probability density at position r is simply the sum of one-particle wave functions for one spin
species.
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C

Full Analytical Solution of Two
Interacting Particles in One
Dimension

The Hamiltonian for the two-particle system can be written as the sum of two single-particle
Hamiltonians and an interaction potential

n? 9% h? 9?

H = 7%5733% — %8713% + Vpot(xl) + Vpot(xz) + Vit (21 — x2), (C.1)
where

Vpot(z) = imwQIQ,

Vint(x) = ad(x).

(C.2)

This Hamiltonian can be split into two parts, a centre-of-mass part and a relative part. To do this
we define the variables

1
R: 5(1’1 +$2),
r=(r1 — x),
1 C.3
x1 =R+ zm, (©:3)
2
1
To=R— 3"

which means, by the chain rule, that

# 1R P D0
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Implementing these variables leads to the Hamiltonian
~ n? 02 h? 92 1
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(C.5)
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C. Full Analytical Solution of Two Interacting Particles in One Dimension

We introduce the masses M = 2m and p = %m that are the total and reduced mass respectively
and set H(R,r) = Hoorr(R) + Hyeei(r). Heopr(R) and H,o (1) are defined as

A n o 2 12
Heoym(R) = mﬁ—k M R,
. h? 9?
Hra(r) = 2,u or2

1 (C.6)
+ 2r2 4 ad(r).

The first part, Heonr, is just a standard harmonic oscillator with eigenenergies hiw(n + 1/2), while
H,.; looks like a one-dimensional QHO with a delta-function potential at the origin. We focus
on solving the relative part. To continue, we define a harmonic oscillator length for the relative
equation as

Aho = M = V21, (C.7)
pw

where [, is the standard harmonic oscillator length. The equation is turned into its dimensionless
form using the relation

9? 1 0?
r= )\hog = or EY0) = ho 852 (CS)
and becomes
. R 1 9% 1
H, o (f) = N2 A¢2 + UW ()\ho£)2 + Oé(S()\hO§>
2 i, O (C.9)
hw 82 hw e '
- 2 652 + 75 Ahoa(g).

Here we redefine_ ﬁ,el(f) as its dimensionless form by dividing it by the characteristic energy; i.e.
we set H,.(§) = Hye1(§)/Tuw.

« 1 92

~ 1 92
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() =358 7

+ 52 + ﬁ(S(g) (C.10)
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In the final step we define 3 as

ﬁa @
b= hwdno  hwlpo (G-11)

With our new dimensionless expression f[r, the time independent Schrédinger equation tells us

2
A,9(0) = BY(E) = (;;’; 3 \%5(5)) w(e) = Q). (€12)

where F is the eigenenergy. To solve this we need to express the unknown ¥(¢) in terms of 9, (),
the wave functions of the harmonic oscillator for a single particle corresponding to

N 1 0? 1

In other words, we must expand ¥(§) in the basis of the free 1D-QHO states. This is done by a
series expansion in terms of eigenstates which looks like

= enthal©). (C.14)
n=0
By inserting this expression into equation (C.12) above we get
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L e B 5)) S entn(©) = BY eatn(®)
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Using the eigenenergies for the single-particle wave function ﬁQHozz;m(g) = E,¥n(§) the
expression becomes

Z cmEm¢m + Z mem T ) =K Z CnPn (5)
Z CmEmwm(g) -E Z Cnd)n(f) + Z Cmd)m(f)ﬁé(g) =0.

m

(C.16)

We can express the QHO-term in either m or n, as it is just a series expression of ¥(£) in some
variable. Thus, we replace m in the first term with n:

S enutnl®) ~ B Y entn(®) + 3 () J0(6) =0
Z Cn(En - E ‘|’ 75 Z mem =

(C.17)

As a reminder, the energies F,, are the energies of the harmonic oscillator in equation (C.13), and
E the energy from equation (C.12). The next step is calculating the coefficients ¢,,, which can be
done by projecting equation (C.17) on 95 (§), where k is some positive integer or zero, which gives

/d&b;’i(ﬁ) (Z Cn(En _E)wn + 75 Zcmwm ) =
/ AT enlBn— DO + / A€vL(©0(E) 3 emtbun(€) = 0.

(C.18)

The orthonormality of the wave function [ ¢} (z)Y,(x)de = 0k, and the operation of the delta
function [ §(z)f(z)dz = f(0) turns the equation into

Z Cn n 6kn Z mem =

Ck (Ek - + 7#’]@ Z cmd}m =

eo(Ey — E) + \j}wz(om(m ~0

(C.19)

where A = %\P(O) is some normalisation constant. By reinserting this expression for ¢, into the
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C. Full Analytical Solution of Two Interacting Particles in One Dimension

second row of equation (C.19) again, we get

cn(En — E) + (0)) " cmthm(0) =

A%@+A3%m2—gffaw
Y (0)1 (0)
fz _E =0
Ym0
z‘*’ - F X ek

To continue we need to evaluate the sum. As ﬁQ o is a normal harmonic oscillator, with ., (§)
being its wave functions, we can insert a known expression for it: equation (2.8), where we write
U (&) as ¥, (&) for simpler notation.

(C.20)

1 1 _¢
2

V2rml wk

Similarly, the energies FE,, of the harmonic oscillator in terms of the characteristic energy is also
known as (m + %), However, for odd m, the wave function in & = 0 becomes zero due to the
Hermite polynomial and the solution becomes trivial. The physical interpretation of this would be
that states with an odd relative wave function cannot interact through the delta potential V;,;. To
eliminate the redundant parts, we use the variable substitution m = 2n. With this substitution,
we get

Hyp (€) = 1 (0) = —2m(@ (C.21)

1
Ti/2mm)!

¢m(§) =

Hj,(0)

Y2,(0) = RENCETCTI (C.22)

and Ea, = (2n+ %) Inserting these expressions for 19, and Es, into equation (C.20) we get

(H2n (0))?
[Yan(0)2 1 (H2n,(0))? 11 Gt

VZ Ewm—E  Var (2"n))2n+1-FE) 2y2m 22in— (E 1y

(C.23)

By letting (g - i) = v, we can use an integral substitution:

1 < de z \"!
n—z/_/o (1+2)? <l—|—z> ' (C.24)

Our expression for —1/8 now reads

(H2,(0))?
|w27’b (22n)‘

ﬂ fZEzn*E_QﬁZ22” n—v

The reason for doing this substitution is to use the generating function for the squared Hermite
polynomial [13, p. 250]. It says that

(C.25)

z

2n ex 122 n 2\ 2"

To get rid of all n-dependence, we want z to be which can be achieved by reordering the

T
14+x ?
terms.
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2‘/1%/000 (113693)2(11%)_” (1 z) o Hzn ) (C.27)
+x

:2F/ <1-T-x> < ] ) H%

Now we use equation (C.26) to get

. o —1/2
_ﬂ:2\/1?/0 (lixx)Q <1—|$—a:> 1<1_<1ix>>
v, e () ()
—v—1 3/2
- 2@/ <1—|—J:> <1—|1—a:> (2

- 2\/ﬁ/omdac(at)_y_l <1J1rx>_y_1 (1J1rz>3/2

2) (1 4 a) VA

| —

ﬁ/o dx(

Here, we can rewrite this concisely using the integral representation of Tricomi’s confluent
hypergeometric function U [14, p. 505]:

I'(a)U(a,b,z) = / dte= ="t (1 + t)b—o~ 1, (C.29)
0

By inspecting each variable we can see that z is 0, a is —v, and b is % Thus we can rewrite
equation (C.28) as

_f_; Ooxx*ufl m71/2u: 1 . _V}
ﬁ_wﬁ/o dx(x) (1+x)~1/2F Nﬁr( )U( ,2,o>. (C.30)

This representation is initially only valid for v < 0, which would severely limit its usefulness, but
with analytic continuation this problem is removed for all E # E,, [11]. According to [14, p. 504],
Tricomi’s confluent hypergeometric function can be written

T M (a,b,0)
sin(7b) T'(1 + a — b)T'(b)’

U(a,b,0) = (C.31)

Where M is Kummer’s confluent hypergeometric function. M (a,b, z) can be expressed as a series
expansion in z, which makes the first term of said expansion M (a,b,0).

M(a,b,2) =1+ ‘Lbz +0(2%) = M(a,b,0) = 1. (C.32)

Thus we get

sin(73) (1 —v—3)I(5)
R
TE-or) TG -)

(C.33)

Finally, by inserting this expression for U into equation (C.30) we get
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r <_ (% a 31)) (C.34)

1

(3= (5-1))
RICED
_2\/51_‘(_%—’—%).

Thus we have a function S(F), linking the interaction strength with the relative energy of the
System:

(C.35)

By inverting this function numerically, we can find the energy as a function of interaction strength,
E(B) = E(a/lpohw).
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