
Master . . .

Server S1 Server S2

. . .
Server SK

Communication Bus

Coding for Distributed Computing
Investigating and improving upon coding theoretical frameworks
for distributed computing

Master’s thesis in Communication Engineering

ALBIN SEVERINSON

Department of Electrical Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2017

Master’s thesis EX014/2017

Coding for Distributed Computing

Investigating and improving upon coding theoretical frameworks for
distributed computing

ALBIN SEVERINSON

Department of Electrical Engineering
Division of Communication Systems

Chalmers University of Technology
Gothenburg, Sweden 2017

Coding for Distributed Computing
Investigating and improving upon coding theoretical frameworks for distributed
computing
ALBIN SEVERINSON

© ALBIN SEVERINSON, 2017.

Supervisor and examiner:
Alexandre Graell i Amat, Department of Electrical Engineering

Co-supervisor:
Eirik Rosnes, Simula@UiB, Bergen, Norway

Master’s Thesis EX014/2017
Department of Electrical Engineering
Division of Communication Systems
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Illustration of the considered distributed computing system model.

Typeset in LATEX
Gothenburg, Sweden 2017

iv

Coding for Distributed Computing
Investigating and improving upon coding theoretical frameworks for distributed
computing
ALBIN SEVERINSON
Department of Electrical Engineering
Chalmers University of Technology

Abstract
Distributed computing has emerged as an effective way of tackling increasingly com-
plex computational problems. However, distributed computing systems bring sig-
nificant challenges. Among them, the problems of straggling servers and bandwidth
scarcity have recently received significant attention. The straggler problem is a
synchronization problem characterized by the fact that a distributed computing
task must wait for the slowest server to complete its computation. On the other
hand, distributed computing tasks typically require that data is moved between
servers during the computation, the so-called data shuffling, which is a challenge in
bandwidth-constrained networks.

We consider the distributed computing task of multiplying a set of vectors with
a matrix. This operation is a key component of machine learning and several other
data-intensive applications. For this scenario, coding theoretical solutions have been
proposed for both the straggler and data shuffling problem by Lee et al. and Li et
al. respectively. Furthermore, Li et al. recently unified these ideas in a common
framework and showed a fundamental tradeoff between computational delay and
communication load. This coding framework is based on maximum distance sepa-
rable (MDS) codes of code length proportional to the number of rows of the matrix,
which can be very large.

We propose a block-diagonal coding scheme consisting of partitioning the matrix
into submatrices and encoding each submatrix using a shorter MDS code. We show
that the assignment of coded matrix rows to servers to minimize the communication
load can be formulated as an integer program with a nonlinear cost function, and
propose an algorithm to solve it. We further prove that, up to a level of partitioning,
the proposed scheme does not incur any loss in terms of computational delay (as
defined by Li et al.) and communication load compared to the scheme by Li et
al.. We also show numerically that, when the decoding time is also taken into
account, the proposed scheme significantly lowers the overall computational delay
with respect to the scheme by Li et al.. For heavy partitioning, this is achieved at
the expense of a slight increase in the communication load.

Keywords: coding, information, theory, distributed computing, machine learning

v

Acknowledgements
I would first and foremost like to thank my two supervisors Alexandre Graell i Amat
and Eirik Rosnes. I have enjoyed working with you greatly and I have learned a
tremendous amount from you along the way. I am also grateful for my partner
Naemi Jönsson and my family, who have supported me through the series of ups
and downs that is research. I would also like to thank my friends from the master’s
thesis room for making the last year a lot more enjoyable!

Albin Severinson, Gothenburg, June 2017

vii

Contents

List of Figures xi

List of Acronyms xii

List of Symbols xiii

1 Introduction 1
1.1 In This Thesis . 2
1.2 Thesis Outline . 3

2 Preliminaries 5
2.1 Erasure Correcting Codes . 5
2.2 Distributed Computing . 6
2.3 Probabilistic Runtime Model . 7
2.4 Bandwidth Scarcity . 8
2.5 The Straggler Problem . 9
2.6 The Unified Scheme . 11

3 Coding for Distributed Computing 13
3.1 Distributed Computing Model . 13

3.1.1 Map Phase . 13
3.1.2 Shuffle Phase . 14
3.1.3 Reduce Phase . 16

3.2 Coded Computing Schemes . 16
3.2.1 Uncoded Computing . 16
3.2.2 Coded MapReduce . 17
3.2.3 Straggler Coding . 17
3.2.4 The Unified Scheme . 17

4 Block-Diagonal Coding 19
4.1 Assignment of Coded Rows to Batches 19
4.2 Performance of the Block-Diagonal Coding 21

4.2.1 Communication Load . 22
4.2.2 Computational Delay . 23

4.3 Assignment Solvers . 24
4.3.1 Heuristic Solver . 25
4.3.2 Branch-and-Bound Solver . 26

ix

Contents

4.3.2.1 Branch . 26
4.3.2.2 Bound . 26

4.3.3 Hybrid Solver . 26

5 Numerical Results 27
5.1 Coded Computing Comparison . 27
5.2 Assignment Solver Comparison . 28

6 Conclusions and Future Work 31

Bibliography 33

x

List of Figures

2.1 a: Standard MapReduce with six messages sent in total. b: Coded
MapReduce with only two messages sent. 8

2.2 The effect of straggling servers. 9

2.3 Coded distributed matrix multiplication. The results returned from
any two servers are sufficient to decode the overall computation output. 10

2.4 a: Server subtask runtime distribution. b: Total computation run-
time distribution. 10

3.1 Servers (yellow boxes) finish their respective subtasks in random order. 14

4.1 BDC scheme for T = 3 partitions. 19

4.2 Storage design for m = 20, N = 4, K = 6, q = 4, µ = 1/2, and T = 5. 20

4.3 Multicasting coded values between servers S1, S2, and S3. 21

4.4 Reduce delay of the unified and SC schemes; normalized by that of
our proposed scheme. (a) As a function of partitioning for m = 6000,
n = 6000, K = 9, q = 6, N = 6, and µ = 1/3. (b) As a function of
system size for µq = 2, n = 10000, µm = 2000, m/T = 10 rows per
partition, and code rate m/r = 2/3. 24

4.5 Assignment of coded rows to servers. 25

5.1 (a) The tradeoff between partitioning and performance form = 6000,
n = 6000, K = 9, q = 6, N = 6, and µ = 1/3. (b) Performance
dependence on system size for µq = 2, n = 10000, µm = 2000,
m/T = 10 rows per partition, and code rate m/r = 2/3. 28

5.2 (a) Solver performance as a function of partitioning for m = 6000,
n = 6000, K = 9, q = 6, N = 6, and µ = 1/3. (b) Performance
dependence on system size for µq = 2, n = 10000, µm = 2000,
m/T = 10 rows per partition, and code rate m/r = 2/3. 29

xi

List of Figures

List of Acronyms

BDC block-diagonal coding

CMR coded MapReduce

MDS maximum distance separable

RS Reed-Solomon

SC straggler coding

UC uncoded computing

WSC warehouse-scale computer

xii

List of Symbols

A input matrix
m number of rows of A
n number of columns of A
Ψ encoding matrix
C coded matrix
r number of rows of C
x input vector
y output vector
N number of input/output vectors
K number of servers
µ fraction of matrix rows stored at each server
B batch
T batch label
S server
S set of servers
q required map phase subtask results for an MDS erasure code
g required map phase subtask results for a general erasure code
σ computational complexity
F(g) runtime of the g-th fastest server
Q set of the first q servers to complete their subtasks
G set of the first g servers to complete their subtasks

Dmap computational delay of the map phase
Dreduce computational delay of the reduce phase
D overall computational delay
L communication load
Z(S)
j set of intermediate values computed by server S for xj
WS set of indices of the vectors server S is responsible for
V(S)
S set of values needed by S and known exclusively by servers in S
T number of partitions
ψ r/T ×m/T MDS encoding matrix
c

(t)
i i-th coded row within partition t
P assignment matrix
U

(S)
Q number of remaining needed values by S in Q
UQ total number of remaining needed values by servers in Q
Qq superset of all sets Q
LQ communication load of the unicast phase for the set Q

xiii

List of Figures

xiv

1
Introduction

We are increasingly dependent on cloud services such as those offered by Google,
Amazon, Facebook, and Microsoft. The computing capacity required to run these
services is increasing proportionally. However, computer processor cores are no
longer becoming significantly faster. Instead, more of them are put into the same
machine [1]. This approach has allowed building more powerful computers. How-
ever, software that can effectively utilize several cores is often much more complex
than its single-core counterpart [2, Chapter 1]. Furthermore, this statement no
longer captures the full complexity of modern computing. Even by building com-
puters with multi-core processors, computing performance is no longer increasing
fast enough. To keep up with demand, building massive distributed computing
clusters has emerged as one of the most effective ways of tackling increasingly com-
plex computation problems [1,3–5]. Theses clusters, referred to as “warehouse-scale
computers” (WSCs) [3], may be composed of thousands of servers.

WSCs are not just data centers. Traditional data centers typically host a large
number of relatively small computing systems, each running a separate application.
Each computing system may be architecturally different, composed of very different
hardware, and may not communicate with other systems in the same data center. In
contrast, a WSC is a single computing system composed of a very large number of
relatively homogeneous hardware and software components. Furthermore, a WSC
runs only a small number of very large applications that may require a significant
amount of communication between servers. WSCs currently power the services
offered by companies such as Google, Amazon, Facebook, and Microsoft [3].

Achieving high availability (Internet applications typically aim for at least 99.99%
uptime, i.e., about an hour of downtime per year [3]) and efficiency for applications
running on WSCs is a major challenge due to the large number of components that
may malfunction. Even if ensuring fault-free operation in a system composed of
10000 servers is possible, it would surely be extremely expensive [3]. Therefore,
WSC applications must be designed to gracefully tolerate large numbers of both
transient and permanent component errors with little or no impact on its avail-
ability and/or performance. These errors can be considered a kind of system noise.
Furthermore, building more robust applications allows building WSCs out of cheaper
(and thus more unreliable) components. Tools from information and coding theory
(the science of information and how to represent it) have been very successful in
dealing with noise and errors in other engineering contexts. For example, codes
are a critical part of modern cellular communication systems and are increasingly
used in distributed storage systems. It is our belief that coding will become a key
component of future computing systems as well.

1

1. Introduction

To effectively utilize the resources of WSCs, several distributed computing frame-
works have been proposed. These frameworks provide a layer of abstraction, thus
allowing a programmer to write applications for WSCs without having to consider
its full complexity. In particular, MapReduce [6] has gained significant attention
as a means of effectively utilizing large computing clusters. For example, Google
routinely performs computations over several thousands of servers using MapRe-
duce [6]. One of the main application areas is machine learning and data analytics.
MapReduce implementations include means of compensating for component failures,
for example by detecting them and rescheduling the failed tasks on other servers.
Among the challenges present in WSCs, the problems of straggling servers and band-
width scarcity have recently received significant attention. The straggler problem is
a synchronization problem characterized by the fact that a distributed computing
task must wait for the slowest server to complete its computation. On the other
hand, distributed computing tasks typically require that data is moved between
servers during the computation, commonly referred to as data shuffling, which is a
challenge in bandwidth-constrained networks.

One of the key operations in distributed computing is that of multiplying a
matrix with a set of vectors. We refer to this as the distributed matrix multiplication
problem. This operation is a key component of machine learning and several other
data-intensive applications. For this scenario, coding theoretical solutions have been
suggested for both the data shuffling and straggler problem by Li et al. [7] and Lee et
al. [8], respectively. In [7], a structure of repeated computation tasks across servers
was proposed, enabling coded multicast opportunities that significantly reduce the
required bandwidth to shuffle the results. In [8], the authors showed that codes can
be applied to a linear computation task (e.g., multiplying a vector with a matrix)
to alleviate the effects of straggling servers and reduce the computational delay. For
the scheme in [8], the output of the computation is encoded and must be decoded
to produce the final result. The decoding is a form of post-processing.

Furthermore, in [9] a unified coding framework was presented and a fundamen-
tal tradeoff between computational delay and communication load was identified.
The ideas of [7, 8] can be seen as particular instances of the framework in [9], cor-
responding to the minimization of the communication load or the computational
delay. However, the code proposed in [9] is complex to decode since the code length
is proportional to the number of rows of the matrix to be multiplied, which may be
very large. We show that the scheme in [9] may slow down rather than speed up
the overall computation due to its high decoding complexity.

1.1 In This Thesis
In this thesis, we introduce a novel encoding scheme for the distributed computing
task of multiplying a matrix A with a set of vectors x1, . . . ,xN . The proposed
encoding is equivalent to partitioning the matrix and applying smaller (and thus
much less complex) codes to each submatrix separately. The storage design for the
proposed block-diagonal encoding can be cast as an integer optimization problem
with a nonlinear objective function, whose computation scales exponentially with the
problem size. We propose a heuristic solver for efficiently solving the optimization

2

1. Introduction

problem, and a branch-and-bound approach for improving on the resulting solution
iteratively. We exploit a dynamic programming approach to speed up the branch-
and-bound operations. Furthermore, we prove that up to a certain partitioning
level, partitioning does not increase the computational delay (as defined in [9])
and the communication load with respect to the scheme in [9]. Interestingly, when
the decoding time is taken into account, the proposed scheme achieves an overall
computational delay significantly lower than the one of the scheme in [9]. This is
due to the fact that the proposed scheme allows using significantly shorter codes,
hence reducing the decoding complexity and the decoding time. Also, numerical
results show that a high level of partitioning can be applied at the expense of only
a slight increase in the communication load.

The results presented in this thesis have resulted in a paper submitted to the
2017 IEEE Information Theory Workshop [10].

1.2 Thesis Outline
This remainder of this thesis is organized as follows. Chapter 2 covers some prelim-
inaries. In Chapter 3, we present the distributed matrix multiplication problem and
system model in detail. We also define the coded schemes of [7–9] in terms of our sys-
tem model. In Chapter 4, we propose a novel block-diagonal coding (BDC) scheme
for the bandwidth scarcity and straggler problem. In the same chapter we present
the performance analysis of the proposed scheme. We also present the storage de-
sign optimization formulation and propose algorithms to solve it. In Chapter 5,
we present numerical results comparing the performance of our proposed scheme to
that of the schemes in [7–9]. Finally, Chapter 6 draws some conclusions and makes
suggestions for future work.

3

1. Introduction

4

2
Preliminaries

In this chapter, we give a brief introduction of the main ideas used in this thesis.
First, we introduce erasure correcting codes. Next, we give an overview of distributed
computing and introduce the probabilistic runtime model used in this thesis. Finally,
we explain the bandwidth scarcity and straggler problem in distributed computing.
We also describe the coded computing schemes introduced in [7–9]. These concepts
are the cornerstones of this thesis.

2.1 Erasure Correcting Codes

Erasure correcting coding is the procedure of adding redundancy to a piece of infor-
mation that may be partially erased during transmission or storage. The information
is commonly referred to as a message that is transmitted over a noisy channel. The
code makes it possible to recover (decode) the original information even if only parts
of the message are received (i.e., erasures occurred during transmission). Two com-
mon scenarios are packet loss during transmission between computers and hard disk
drive failures in storage systems (data storage can be considered transmission over
time). An erasure correcting code encodes a message of m symbols (represented
by a sequence of bits in computers) into a longer message of r coded symbols such
that the original m message symbols can be decoded from a subset of the r coded
symbols.1 Repetition codes and maximum distance separable (MDS) codes are two
of the most important types of erasure correcting codes. Reed-Solomon (RS) codes
are a well known class of MDS codes.

Repetition codes encode a message by repeating it. Specifically, a repetition
code simply repeats each message symbol r times. The message can then be recov-
ered from any one of its r replicas. Repetition codes are widely used due to their
simplicity. For example, a backup hard disk drive is a repetition code.

MDS codes exploit a structure of linear dependence between the encoded sym-
bols. Specifically, a message of m symbols encoded with an (r,m) MDS code results
in r coded symbols, any m of which is sufficient to decode the original m message
symbols. As an example, consider a message consisting of two numbers A and B.
The message can be encoded using a (3, 2) MDS code by producing the coded mes-
sage A, B, and A+B. The original message symbols can be decoded from any two
coded symbols. MDS codes extend to any numbers m and r ≥ m. The encoding

1The number of source and coded symbols are usually denoted by k and n, respectively. We
denote these by m and r instead for consistency with the rest of the thesis.

5

2. Preliminaries

and messages can be represented as matrices Ψ and A. The matrix representation
of the coded message C is then obtained as C = ΨA.

2.2 Distributed Computing
Distributed computing is a method of making software applications that can exe-
cute several computing tasks concurrently. In this thesis, we refer to distributed
computing systems as systems composed of discrete computing units (servers) that
communicate by exchanging messages. For example, a WSC [3] is a distributed
computing system. An application running on a WSC can execute computing tasks
on several servers concurrently and the tasks can communicate by sending messages
over the shared network. Distributed computing systems also allow utilizing re-
sources at geographically separate locations. However, building applications that
can efficiently utilize potentially thousands of servers is challenging [2, Chapter 1].

In response, computing frameworks such as Apache Spark [11] and MapRe-
duce [6] have been proposed. These frameworks provide a layer of abstraction that
allows programmers to more easily write applications that can utilize large numbers
of servers concurrently. By handling most of the complexity inherent to distributed
computing within the framework, the application can be made much simpler. For ex-
ample, by detecting and compensating for component failure within the framework,
the application can be written as if it is executed within a fault-free system.

MapReduce has become one of the most popular frameworks due to its simplicity
and ability to scale to very large numbers of servers. We base the system model of
this thesis on this framework. A computation within the MapReduce framework is
composed of three distinct phases.

1. Map: A distributed mapping of input values to intermediate values. More
precisely, each server performs some computation on the input values it has
been assigned to produce a (potentially different) number of intermediate val-
ues.2

2. Shuffle: Moving intermediate values between servers by sending messages
over the network, i.e., data shuffling.

3. Reduce: Reducing the intermediate values to the final computation output
in a distributed fashion. Specifically, each server computes some number of
output values from the set of intermediate values it has either computed locally
or received in the shuffle phase.

MapReduce applications are created by writing the map and reduce phase compu-
tations. The computing tasks are then automatically assigned to servers by the
framework and executed with no intervention by the programmer. Improvements
to the MapReduce framework can thus improve the performance of MapReduce
applications without any change to the application itself.

2The mapping may in some cases be random. However, this is unusual [6] and we will assume
that the map phase is deterministic.

6

2. Preliminaries

MapReduce may be deployed on the same servers as a distributed storage system
[6]. In this case, input values may be mapped to intermediate values by the same
server that stores those values. Furthermore, the computation output can be stored
in the distributed storage system by simply leaving the data stored on the server
that reduced it (perhaps also sending it to other servers for redundancy). We give
an example of how distributed matrix multiplication can be performed within the
MapReduce framework in Section 2.4.

2.3 Probabilistic Runtime Model

We adopt the probabilistic model of the computation runtime of [8]. We assume that
running a computation on a single server takes a random amount of time according
to the shifted-exponential cumulative probability distribution

F (t) =

1− e−(tσ−1), for t ≥ σ

0, otherwise
,

where σ is the number of multiplications and divisions required to complete the
computation. We do not take addition and subtraction into account as those opera-
tions are orders of magnitude faster [12]. Furthermore, we refer to the parameter σ
associated with some operation as its computational complexity. For example, the
complexity of computing the inner product of two length-n vectors is σ = n as it
requires performing n multiplications. The shift of the shifted exponential should
be interpreted as the minimum amount of time the computation can be completed
in. The distribution tail accounts for transient disturbances such as transmission
and queuing delays. The complexity of an operation σ affects both the shift and the
tail of the distribution. Furthermore, the tail of the distribution is the cause of the
straggler problem.

When the algorithm is split into K parallel subtasks that are run across K
servers, we denote the runtime of the subtask running on server Sk by Fk. As
in [8], we assume that F1, . . . , FK are independent and identically distributed random
variables with distribution F (Kt). We denote by F(g), g = 1, . . . , K, the g-th order
statistic, i.e., the g-th smallest variable of F1, . . . , FK . The runtime of the g-th,
g = 1, . . . , K, fastest server to complete its subtask is thus given by F(g). F(g) is a
Gamma distributed random variable [13] with expectation and variance given by [14]

f(σ,K, g) , E
(
F(g)

)
= σ

1 +
K∑

j=K−g+1

1
j

 , (2.1)

Var
(
F(g)

)
= σ2

K∑
j=K−g+1

1
j2 .

For a system withK servers performing a computation of complexity σ we denote
by f(σ,K, g) the expected runtime of the g-th fastest server F(g).

7

2. Preliminaries

Server S1

Server S2 Server S3

A = A2

A1

A3

Has:

Has: Has:

Needs:

Needs: Needs:

A1x2

A2x1

A1x3

A3x1

A2x3

A3x2

A1x1 A1x2 A1x3

A2x1 A3x1

A2x1 A2x2 A2x3

A3x2 A1x2

A3x1 A3x2 A3x3

A1x3 A2x3

(a)

Server S1

Server S2 Server S3

Has:

Has: Has:

Needs:

Needs: Needs:

⊕A3x2 A1x3

A2x1

A1x1 A1x2 A1x3

A3x1 A3x2 A3x3

A2x1

A2x1 A2x2 A2x3

A1x1 A1x2 A1x3

A3x2

A3x1 A3x2 A3x3

A2x1 A2x2 A2x3

A1x3

(b)

Figure 2.1: a: Standard MapReduce with six messages sent in total. b: Coded
MapReduce with only two messages sent.

2.4 Bandwidth Scarcity

In this section, we explain the bandwidth scarcity problem and the solution proposed
by Li et al. [7] in more detail. Many distributed computing applications require data
to be shuffled among servers. Furthermore, computing clusters are in some cases
limited by the available network bandwidth rather than by the available computing
resources. For example, 50% to 70% of the overall runtime of distributed computing
tasks is spent on data shuffling in some cases [15]. For this scenario, Li et al. [7]
proposed a strategy of trading increased computational delay for a lower communi-
cation load. Specifically, they proposed performing repeated computations to create
coded multicasting opportunities. A coded multicast is a message sent to several
servers simultaneously such that all recipients can cancel parts of the message and
thus recover the data intended for that specific server.

The scheme proposed in [7] extends the MapReduce [6] framework and is referred
to as coded MapReduce. We illustrate both the standard and coded MapReduce for
the task of multiplying three input vectors x1,x2,x3 with a matrix A to produce
three output vectors y1 = Ax1,y2 = Ax2,y3 = Ax3 in Fig. 2.1. We perform
the computation using 3 servers S1, S2, S3 and we assume that the input vectors
x1,x2,x3 are known to all servers at the start of the computation. We require that
server Si, i = 1, 2, 3, stores the output vector yi after the MapReduce computation
is completed. We first cover the standard MapReduce computation and then explain
the extension proposed in [7]. First, A is split into three submatrices A1, A2, A3,
and Ai is assigned to server Si. These are the map phase input values. Next,
server Si maps the input value Ai to the three intermediate values Aix1, Aix2,
Aix3, i.e., the map computation performed by each server consists of multiplying
the submatrix it has been assigned with the 3 input vectors x1, x2, x3. In the
shuffle phase, intermediate values are transmitted over the network such that server
Si stores the intermediate values A1xi, A2xi, A3xi. In Fig. 2.1, the values stored
by each server after the map phase, i.e., the output of the map phase computation
performed by that server, are written under the “Has” heading. The values it

8

2. Preliminaries

Time

Server S3

Server S2

Server S1

Task 1 completed Task 2 completed Task 3 completed

Figure 2.2: The effect of straggling servers.

needs from the other servers are written under the “Needs” heading. In this case, 6
messages have to be sent in total. Finally, in the reduce phase server Si concatenates
the 3 intermediate values A1xi, A2xi, A3xi to obtain the output vector yi.

We now explain how coded MapReduce differs. For the coded MapReduce com-
putation, each submatrix is assigned to a unique set of 2 servers. Specifically, A1 is
assigned to S1, S2, A2 is assigned to S2, S3, and A3 is assigned to S1, S3. The map
phase is performed in the same way as for standard MapReduce, i.e., each server
multiplies the submatrices it has been assigned with the input vectors x1, x2, x3.
After the map phase, each server needs only 1 intermediate value from the other
servers as it has computed 2 values locally. Furthermore, in the shuffle phase one
server can provide the data needed by the two other servers by multicasting a single
coded message to both servers simultaneously. For example, server S1 can provide
the data needed by both servers S2 and S3 by multicasting A3x2⊕A1x3, where ⊕
is the bitwise XOR operation. As each recipient has computed locally one of the
values, it can cancel it from the message and recover the value it needs. Either
server S2 or S3 can then simply transmit A2x1 to S1. Using this coded approach,
only a total of 2 messages have to be transmitted. The reduce phase is unchanged
from standard MapReduce. In this instance, each server has to do twice the work.
However, only a third as many messages have to be transmitted over the network.
If the system performance is limited by the available bandwidth, this may be a
worthwhile tradeoff. In fact, Li et al. showed that this strategy can speed up some
bandwidth-limited computations by a factor of 1.97 to 3.39 [16]. This concept is
generalized in Chapter 3.

2.5 The Straggler Problem

Distributed computing tasks must typically wait for the slowest server to complete
its subtask. This problem is commonly referred to as the straggler problem and
is one of the main bottlenecks in distributed systems [8]. We illustrate the effect
of straggling servers in Fig. 2.2. Servers may straggle for a variety of reasons such
as hard disk issues slowing down read/write performance, or by being temporarily
overloaded [6]. Repetition codes, i.e., assigning the same computing task to several
servers have long been used to deal with stragglers [6]. For example, queries to
Google services may be simultaneously sent to several servers. Only the result

9

2. Preliminaries

A =
A2

A1

A1 +A2

Server S1

Server S2

Server S3

Decoding Ax

A1 ×x

A2 ×x

A1 +A2 ×x

Figure 2.3: Coded distributed matrix multiplication. The results returned from
any two servers are sufficient to decode the overall computation output.

0 σ 2σ 3σ 4σ 5σ 6σ 7σ 8σ 9σ 10σ11σ12σ
Time

0.0

0.2

0.4

0.6

0.8

1.0

Ru
nt
im

e
Pr

ob
ab

ili
ty

D
en

sit
y

Uncoded
Coded

(a)

0 σ 2σ 3σ 4σ 5σ 6σ 7σ 8σ 9σ 10σ11σ12σ
Time

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ru
nt
im

e
Pr

ob
ab

ili
ty

D
en

sit
y

Uncoded
Coded

(b)

Figure 2.4: a: Server subtask runtime distribution. b: Total computation runtime
distribution.

returned by the fastest server is shown to the user [17]. This approach was shown
to speed up computations by close to 70% in [6]. However, Lee et al. showed that
distributed linear computations, such as matrix vector multiplication, could be sped
up further by using MDS codes rather than repetition codes [8].

We illustrate the scheme proposed in [8] for the task of multiplying a matrix
A with a vector x using 3 servers in Fig. 2.3. The matrix A is split into two
submatrices A1 and A2 that are encoded using a (3, 2) MDS code, thus creating
an additional parity submatrix A1 +A2. One submatrix is assigned to each server.
Clearly, the computation output Ax can be decoded from any two of the results
A1x, A2x, (A1 +A2)x. Lee et al. showed that this approach can be generalized to
an arbitrary number of servers.

Example 1 (Runtime distribution of coded and uncoded computing). In Fig. 2.4,
we plot the probability density function of the runtime for coded and uncoded dis-
tributed matrix multiplication. We plot the distribution for a system composed of
27 servers. In the coded case, the input matrix is split into 18 submatrices that are
encoded using a (27, 18) MDS code, i.e., the final computation output can be decoded
from the results returned by any 18 servers. In the uncoded case, the input matrix
is split into 27 submatrices. Thus, each server has to do 27

18 times more work in the

10

2. Preliminaries

coded case than in the uncoded case. The time axis is scaled by the complexity of the
computation.

The runtime distribution of the subtasks running on each server is a shifted
exponential (see Section 2.3). Furthermore, coding increases the subtask runtime
as each server is assigned a larger submatrix. However, the runtime of the first 18
out of 27 servers to finish their respective subtasks in the coded case is a Gamma
distributed random variable whose mean is lower than the average runtime of the
uncoded computation, i.e.,

f
(27

18σ, 27, 18
)
< f(σ, 27, 27),

where f is defined in (2.1). Coding has thus sped up the computation. Furthermore,
the variance of the runtime is significantly lower for the coded computation than for
the uncoded. Note that we are not yet taking the decoding time into account.

2.6 The Unified Scheme
Li et al. recently proposed a coded framework for the distributed matrix multipli-
cation problem that unifies the ideas of [7, 8] in [9]. The framework is based on
combining an erasure correcting code as suggested in [8] with repeated computa-
tions to enable coded multicasting as in [7]. The ideas of [7, 8] can be seen as
particular instances of the framework in [9], corresponding to the minimization of
the communication load or the computational delay.

In particular, [9] suggests the use of MDS codes, whose dimension is equal to the
number of rows of A, to generate some redundant computations. This is in contrast
to the scheme of [8] where the code length is proportional to the number of servers.
More precisely, for an m × n matrix A, the authors of [9] proposed computing the
coded matrix C by multiplying A with an (r,m) MDS encoding matrix ΨMDS, i.e.,
C = ΨMDSA. We denote the rows of the coded matrix C by c1, . . . , cr. Due to the
MDS property, the source matrix A can be recovered from any m out of r unique
coded rows c1, . . . , cr. Furthermore, for some input vector x of length n the output
vector y = Ax can be recovered from any m out of r values c1x, . . . , crx.

In practice, the size of A can be very large. For example, Google performs
matrix-vector multiplications with matrices of dimension of the order of 1010× 1010

when ranking the importance of websites [18]. Since the decoding complexity of
MDS codes on the packet erasure channel is quadratic (for RS codes) in the code
length [19], for very large matrix sizes the decoding complexity may be prohibitively
high.

11

2. Preliminaries

12

3
Coding for Distributed Computing

We consider the problem of multiplying a set of vectors with a matrix. In particular,
given an m × n matrix A ∈ Fm×n and N vectors x1, . . . ,xN ∈ Fn, where F is
some field, we want to compute the N vectors y1 = Ax1, . . . ,yN = AxN . The
computation is performed in a distributed fashion using K servers, S1, . . . , SK . Each
server stores µm matrix rows, for some 1

K
≤ µ ≤ 1. We refer to µ as the fraction of

rows stored at each server and we assume that µ is selected such that µm is integer.
Prior to distributing the rows among the servers, A is encoded by an r×m encoding
matrix Ψ, resulting in the coded matrix C = ΨA, of size r × n, i.e., the rows of
A are encoded using an (r,m) linear code with r ≥ m. This encoding is used to
alleviate the straggler problem as discussed in Section 2.5.

We allow assigning each row of the coded matrix C to several servers to enable
coded multicasts (see Section 2.4). Let q = Km

r
, where we assume that r divides

Km and hence q is an integer. The r coded rows of C, c1, . . . , cr, are divided into(
K
µq

)
disjoint batches, each containing r/

(
K
µq

)
coded rows. Each batch is assigned to

µq servers. Correspondingly, a batch B is labeled by a unique set T ⊂ {S1, . . . , SK},
of size |T | = µq, denoting the subset of servers that store that batch. We write BT
to denote the batch stored at the unique set of servers T . Server Sk, k = 1, . . . , K,
stores the coded rows of BT if and only if Sk ∈ T .

3.1 Distributed Computing Model

We consider the coded computing framework introduced in [9], which extends the
MapReduce [6] framework described in Section 2.2. Specifically, the map, shuffle,
and reduce phases are augmented to make use of the coded multicasting strategy
proposed in [7] and the coded scheme proposed in [8] to alleviate the straggler
problem. We assume that the input vectors x1, . . . ,xN are known to all servers
at the start of the computation. The overall computation then proceeds in the
following manner.

3.1.1 Map Phase
In the map phase, we compute in a distributed fashion coded intermediate values,
which will be later used to obtain vectors y1, . . . ,yN . Server S multiplies the input
vectors xj, j = 1, . . . , N , by all the coded rows of matrixC it stores, i.e., it computes

Z(S)
j = {cxj : ∀c ∈ {BT : S ∈ T }}, j = 1, . . . , N.

13

3. Coding for Distributed Computing

1:st 2:nd
. . .

q:th
. . .

g:th Incomplete
. . .

Incomplete

(K − g) incomplete subtasks.Q G

Subtask completion order

Figure 3.1: Servers (yellow boxes) finish their respective subtasks in random order.

The map phase terminates when a set of servers G ⊆ {S1, . . . , SK} that col-
lectively store enough values to decode the output vectors have finished their map
computations. We denote the cardinality of G by g. The (r,m) linear code proposed
in [9] is an MDS code for which y1, . . . ,yN can be obtained from any subset of q
servers, i.e., g = q. We illustrate the completion of subtasks in Fig. 3.1.

We define the computational delay of the map phase as its average runtime per
source row and vector y, i.e.,

Dmap = 1
mN

f
(
σmap

K
,K, g

)
.

Dmap is referred to simply as the computational delay in [9]. As allK servers compute
µm inner products, each requiring n multiplications for each of the N input vectors,
we have σmap = KµmnN .

After the map phase, the computation of y1, . . . ,yN proceeds using only the
servers in G. We denote by Q ⊆ G the set of the first q servers to complete the
map phase. Each of the q servers in Q is responsible to compute N/q of the vectors
y1, . . . ,yN . LetWS be the set containing the indices of the vectors y1, . . . ,yN server
S ∈ Q is responsible for. The remaining servers in G assist the servers in Q in the
shuffle phase.

3.1.2 Shuffle Phase
In the shuffle phase, intermediate values calculated in the map phase are exchanged
between servers in G until all servers in Q hold enough values to compute the vectors
they are responsible for. As in [9], we allow creating and multicasting coded messages
that are simultaneously useful for multiple servers. At a high level the shuffle phase
proceeds in three steps:

1. Coded messages composed of several intermediate values are multicasted among
the servers in Q.

2. Intermediate values are unicasted among the servers in Q.

3. Any intermediate values still missing from servers in Q are unicasted from the
remaining servers in G, i.e., from the servers in G \ Q.

For a subset of servers S ⊂ Q and S ∈ Q \ S, we denote the set of intermediate
values needed by server S and known exclusively by the servers in S by V(S)

S . More
formally,

V(S)
S , {cxj : j ∈ WS and c ∈ {BT : T ∩ Q = S}}.

14

3. Coding for Distributed Computing

We transmit coded multicasts only between the servers inQ. Each coded message
is simultaneously sent to j servers. Let αj ,

(q−1
j)(K−qµq−j)
q
K (Kµq)

. We denote by sq the smallest
number of recipients of a coded message,

sq , inf
(
s :

µq∑
l=s

αl ≤ 1− µ
)
.

More specifically, for each j ∈ {µq, µq − 1, . . . , sq}, and every subset S ⊆ Q of size
j + 1, the shuffle phase proceeds as follows.

1. For each S ∈ S, we evenly and arbitrarily split V(S)
S\S into j disjoint segments

V(S)
S\S = {V(S)

S\S,S̃ : S̃ ∈ S \ S}, and associate the segment V(S)
S\S,S̃ with server

S̃ ∈ S \ S.

2. Server S̃ ∈ S multicasts the bit-wise XOR of all the segments associated with
it in S. More precisely, it multicasts ⊕S∈S\S̃ V

(S)
S\S,S̃ to the other servers in S\S̃.

Each recipient of a coded message has computed locally all values the message
is composed of except for one. More precisely, for every pair of servers S, S̃ ∈ S,
since server S has computed locally the segments V(S′)

S\S′,S̃ for all S ′ ∈ S \ {S̃, S},
it can cancel them from the message sent by server S̃, and recover the intended
segment. We finish the shuffle phase by either unicasting any remaining needed
values until all servers in Q hold enough intermediate values to decode successfully,
or by repeating the above two steps for j = sq − 1, selecting the strategy achieving
the lower communication load.
Definition 1. The communication load, denoted by L, is the number of messages
per source row and vector y exchanged during the shuffle phase, i.e., the total number
of messages sent during the shuffle phase divided by mN .

The communication load after completing the shuffle phase is given in [9]. If the
shuffle phase finishes by unicasting the remaining needed values, the communication
load after completing the multicast phase is

µq∑
j=sq

αj
j
.

If instead steps 1 and 2 are repeated for j = sq − 1, the communication load is
µq∑

j=sq−1

αj
j
.

For the scheme in [9], the total communication load is

LMDS = min

 µq∑
j=sq

αj
j

+ 1− µ−
µq∑
j=sq

αj ,
µq∑

j=sq−1

αj
j

 . (3.1)

As in [9], we consider the cost of a multicast message to be equal to that of a
unicast message. In real systems, however, it may vary depending on the network
architecture.

15

3. Coding for Distributed Computing

3.1.3 Reduce Phase
Finally, in the reduce phase, the vectors y1, . . . ,yN are computed. More specifically,
server S ∈ Q uses the locally computed sets Z(S)

1 , . . . ,Z(S)
N and the received messages

to compute the vectors yj, ∀j ∈ WS. The computational delay of the reduce phase
is its average runtime per source row and output vector y, i.e.,

Dreduce = 1
mN

f

(
σreduce

q
, q, q

)
,

where σreduce is the computational complexity (see Section 2.3) of the reduce phase.

Definition 2. The overall computational delay, D, is the sum of the map and reduce
phase delays, i.e., D = Dmap +Dreduce.

3.2 Coded Computing Schemes

In this section, we formally define the coded computing schemes of [7–9] in terms of
our system model. We refer to the scheme in [7] as the coded MapReduce (CMR)
scheme, that in [8] as the straggler coding (SC) scheme, and the scheme in [9] as
the unified scheme. We also define the uncoded computing (UC) scheme. The sys-
tem model we consider consists of two separate coding theoretical components: An
erasure correcting code used to alleviate the straggler problem and a structure of
repeated computations used to create coded multicasting opportunities. To accu-
rately assess the performance impact of each component we need to compare the
performance of the combined scheme with that of the CMR and SC schemes, i.e., the
corresponding coded scheme using only either component. Specifically, for a coded
computing system with parameters K, q, m, and µ, we define the corresponding UC,
CMR, SC, and unified schemes. These corresponding schemes are used for compar-
ison purposes. In particular, we compare against the corresponding CMR scheme
to analyze the impact of the erasure correcting code on the computational delay
and with the corresponding SC scheme to understand the impact of the repeated
computations on the load and the delay. When referring to system parameters of a
corresponding UC, CMR, SC, or unified scheme, we write the scheme name in the
subscript. We only explicitly mention the parameters that differ. The number of
servers K is unchanged for all schemes considered.

3.2.1 Uncoded Computing
The UC scheme uses no erasure correcting coding and no coded multicasting. This
is the traditional scheme used for distributed matrix multiplication. We measure
the performance of other (coded) computing schemes primarily relative to the per-
formance of the uncoded scheme. We define the corresponding uncoded scheme as
the system with parameters µUC = 1

K
and qUC = K, implying µUCqUC = 1. Further-

more, the encoding matrix ΨUC is the m×m identity matrix and the coded matrix
is CUC = A.

16

3. Coding for Distributed Computing

3.2.2 Coded MapReduce
The CMR scheme [7] uses only coded multicasting, i.e., CCMR = A and qCMR = K.
Furthermore, the fraction of rows stored at each server is µCMR = µq

K
. We remark

that there is no reduce delay for this scheme, i.e., Dreduce = 0.

3.2.3 Straggler Coding
The SC scheme [8] uses an erasure correcting code but no coded multicasting. For
the corresponding SC scheme, the code rate is unchanged, i.e., qSC = q and the
fraction of rows stored at each server is µSC = 1

qSC
. The encoding Ψ of the SC

scheme is equivalent to splitting the rows of A into qSC equally tall submatrices
A1, . . . ,AqSC and applying a (K, qSC) MDS code to the elements of each submatrix,
thereby creating K coded submatrices C1, . . . ,CK . The coded matrix CSC is the
concatenation of C1, . . . ,CK , i.e.,

CSC =

C1
...
CK

 .

3.2.4 The Unified Scheme
The unified scheme [9] uses both erasure correcting codes and coded multicasting.
The system parameters of the corresponding unified scheme are all unchanged. Fur-
thermore, the encoding matrix, Ψunified, of the unified scheme is an (r,m) MDS code
encoding matrix.

17

3. Coding for Distributed Computing

18

4
Block-Diagonal Coding

We introduce a block-diagonal encoding matrix of the form

Ψ =

ψ1

. . .
ψT

 ,
where ψ1, . . . ,ψT are r

T
× m

T
encoding matrices of an (r

T
, m
T

) MDS code, for some
integer T that divides m and r. Note that the encoding given by Ψ amounts to
partitioning the rows of A into T disjoint submatrices A1, . . . ,AT and encoding
each submatrix separately. We refer to an encoding Ψ with T disjoint submatrices
as a T -partitioned scheme, and to the submatrix of C = ΨA corresponding to ψi as
the i-th partition. We remark that all submatrices can be encoded using the same
encoding matrix, i.e., ψi = ψ, i = 1, . . . , T , reducing the storage requirements, and
encoding/decoding can be performed in parallel if many servers are available. We
further remark that the case Ψ = ψ (i.e., the number of partitions is T = 1) corre-
sponds to the scheme in [9], which we will sometimes refer to as the unpartitioned
scheme. We illustrate the block-diagonal encoding scheme with T = 3 partitions in
Fig. 4.1.

ΨBDCA = ψ2

ψ1

ψ3

A2

A3

A1

= ψ2A2

ψ1A1

ψ3A3

Figure 4.1: BDC scheme for T = 3 partitions.

4.1 Assignment of Coded Rows to Batches

For a block-diagonal encoding matrix Ψ, we denote by c(t)
i , t = 1, . . . , T and i =

1, . . . , r/T , the i-th coded row of C within partition t. For example, c(2)
1 denotes

the first coded row of the second partition. As described in Chapter 3, the coded
rows are divided into

(
K
µq

)
disjoint batches. To formally describe the assignment

of coded rows to batches we use a
(
K
µq

)
× T integer matrix P = [pi,j], where pi,j

19

4. Block-Diagonal Coding

c
(1)
1 c

(1)
3 c

(1)
5 c

(2)
1 c

(2)
3

c
(1)
2 c

(1)
4 c

(1)
6 c

(2)
2 c

(2)
4

Server S1

c
(1)
1 c

(2)
5 c

(3)
1 c

(3)
3 c

(3)
5

c
(1)
2 c

(2)
6 c

(3)
2 c

(3)
4 c

(3)
6

Server S2

c
(1)
3 c

(2)
5 c

(4)
1 c

(4)
3 c

(4)
5

c
(1)
4 c

(2)
6 c

(4)
2 c

(4)
4 c

(4)
6

Server S3

c
(1)
5 c

(3)
1 c

(4)
1 c

(5)
1 c

(5)
3

c
(1)
6 c

(3)
2 c

(4)
2 c

(5)
2 c

(5)
4

Server S4

c
(2)
1 c

(3)
3 c

(4)
3 c

(5)
1 c

(5)
5

c
(2)
2 c

(3)
4 c

(4)
4 c

(5)
2 c

(5)
6

Server S5

c
(2)
3 c

(3)
5 c

(4)
5 c

(5)
3 c

(5)
5

c
(2)
4 c

(3)
6 c

(4)
6 c

(5)
4 c

(5)
6

Server S6

Figure 4.2: Storage design for m = 20, N = 4, K = 6, q = 4, µ = 1/2, and T = 5.

describes the number of rows from partition j that are stored in batch i. Note that,
due to the MDS property, any set of m/T rows of a partition is sufficient to decode
the partition. Thus, without loss of generality, we consider a sequential assignment
of rows of a partition into batches. More precisely, when first assigning a row of
partition t to a batch, we pick c(t)

1 . Next time a row of partition t is assigned to
a batch we pick c(t)

2 , and so on. In this manner, each coded row is assigned to a
unique batch exactly once. For example, for the assignment P in Example 2 (see
(4.1)), rows c(1)

1 and c(1)
2 are assigned to batch 1, c(1)

3 and c(1)
4 are assigned to batch

2, and so on. The rows of P are labeled by the subset of servers the corresponding
batch is stored at, and the columns are labeled by its partition index. We refer to
the pair (Ψ,P) as the storage design. The assignment matrix P must satisfy the
following conditions.

1. The entries of each row of P must sum to the batch size, i.e.,

T∑
j=1

pi,j = r/

(
K

µq

)
, 1 ≤ i ≤

(
K

µq

)
.

2. The entries of each column of P must sum to the number of rows per partition,
i.e.,

(Kµq)∑
i=1

pi,j = r

T
, 1 ≤ j ≤ T.

Example 2 (m = 20, N = 4, K = 6, q = 4, µ = 1/2, T = 5). For these
parameters, there are r/T = 6 coded rows per partition, of which m/T = 4 are
sufficient for decoding, and

(
K
µq

)
= 15 batches, each containing r/

(
K
µq

)
= 2 coded

rows. We construct the storage design shown in Fig. 4.2 with assignment matrix

P =

1 2 3 4 5
(S1, S2) 2 0 0 0 0
(S1, S3) 2 0 0 0 0
(S1, S4) 2 0 0 0 0
(S1, S5) 0 2 0 0 0

... ...
(S4, S6) 0 0 0 0 2
(S5, S6) 0 0 0 0 2

, (4.1)

20

4. Block-Diagonal Coding

c
(1)
1 c

(1)
3 c

(1)
5 c

(2)
1 c

(2)
3

c
(1)
2 c

(1)
4 c

(1)
6 c

(2)
2 c

(2)
4

Server S1

c
(1)
1 x3 ⊕ c(1)3 x2

c
(1)
1 c

(2)
5 c

(3)
1 c

(3)
3 c

(3)
5

c
(1)
2 c

(2)
6 c

(3)
2 c

(3)
4 c

(3)
6

Server S2

c
(1)
2 x3 ⊕ c(2)5 x1

c
(1)
3 c

(2)
5 c

(4)
1 c

(4)
3 c

(4)
5

c
(1)
4 c

(2)
6 c

(4)
2 c

(4)
4 c

(4)
6

Server S3

c
(1)
4 x2 ⊕ c(2)6 x1

Figure 4.3: Multicasting coded values between servers S1, S2, and S3.

where rows are labeled by the subset of servers the batch is stored at, and columns are
labeled by the partition index. For this storage design, any g = 4 servers collectively
store at least 4 coded rows from each partition. However, some servers store more
rows than needed to decode some partitions, suggesting that this storage design is
suboptimal.

Assume G = {S1, S2, S3, S4} is the set of g = 4 servers that finish their map
computations first. Also, assign vector yi to server Si, i = 1, 2, 3, 4. We illus-
trate the coded shuffling scheme for S = {S1, S2, S3} in Fig. 4.3. S1 multicasts
c

(1)
1 x3⊕ c(1)

3 x2 to S2 and S3. Since S2 and S3 can cancel c(1)
1 x3 and c(1)

3 x2, re-
spectively, both servers receive one needed intermediate value. Similarly, S2 multi-
casts c(1)

2 x3⊕ c(2)
5 x1, while S3 multicasts c(1)

4 x2⊕ c(2)
6 x1. This process is repeated for

S = {S2, S3, S4}, S = {S1, S3, S4}, and S = {S1, S2, S4}. After the shuffle phase,
we have sent 12 multicast messages and 30 unicast messages, resulting in a com-
munication load of (12 + 30)/20/4 = 0.525, a 50% increase from the load of the
unpartitioned scheme (0.35, given by (3.1)). In this case, S1 received additional in-
termediate values from partition 2, despite already storing enough, further indicating
that the assignment in (4.1) is suboptimal.

4.2 Performance of the Block-Diagonal Coding
In this section, we analyze the impact of partitioning on the performance. In the
following theorem, we show that we can partition up to the batch size without
increasing the communication load and the computational delay of the map phase
with respect to the original scheme in [9].

Theorem 1. For T ≤ r/
(
K
µq

)
there exists an assignment matrix P such that the

communication load and computational delay of the map phase are equal to those of
the unpartitioned scheme.

Proof. The computational delay of the map phase is equal to that of the unparti-
tioned scheme if any q servers hold enough coded rows to decode all partitions. For
T = r/

(
K
µq

)
we let P be a

(
K
µq

)
×T all-ones matrix and show that it has this property

21

4. Block-Diagonal Coding

by repeating the argument from [9, Sec. IV.B] for each partition. In this case, any
set of q servers collectively store µqm

T
rows from each partition, and since each coded

row is stored by at most µq servers, any q servers collectively store at least µqm
µqT

= m
T

unique coded rows from each partition.
To see that the communication load is unchanged, we note that after having sent

all multicast messages, all servers hold the same total number of coded intermediate
values regardless of the level of partitioning. Since all servers need m/T values
from each partition, if we can show that each server will hold the same number
of coded values from each partition at this point, we have also shown that the
communication load is unchanged. First, for the given assignment, all servers store
the same number of rows from each partition before the shuffle phase. Second, in
the shuffle phase, all servers S ∈ Q receive the values in V(S)

S\S for all S ⊆ Q such that
|S| = µq+ 1, µq, . . . , sq + 1. V(S)

S\S is computed from a union of batches and therefore
guaranteed to contain an equal number of coded intermediate values from each
partition for this assignment. These arguments together show that all servers will
hold an equal number of coded values from each partition after all multicast messages
have been sent. For T < r/

(
K
µq

)
we can split partitions into smaller partitions until

we have exactly r/
(
K
µq

)
partitions, and repeat the same argument.

4.2.1 Communication Load
For the unpartitioned scheme of [9], G = Q, and the number of remaining values
that need to be unicasted after the multicast phase is constant, regardless which
subset Q of servers finish first their map computations. However, for the block-
diagonal (partitioned) coding scheme, both g and the number of remaining unicasts
may vary.

For a given assignment P and a specific Q, we denote by U (S)
Q (P) the number

of remaining values needed after the multicast phase by server S ∈ Q, and by
UQ(P) , ∑

S∈Q U
(S)
Q (P) the total number of remaining values needed by the servers

in Q. We remark that all sets Q are equally likely. Let Qq denote the superset of
all sets Q. Furthermore, we denote by LQ the average communication load of the
messages that are unicasted after the multicasting step (see Section 3.1.2),

LQ(P) , 1
mN

1
|Qq|

∑
Q∈Qq

UQ(P).

Then, for a given storage design (Ψ,P), the communication load of the block-
diagonal coding scheme is given by

LBDC(Ψ,P) = min
 µq∑
j=sq

αj
j

+ LQ(P),
µq∑

j=sq−1

αj
j

+ LQ(P)
 , (4.2)

where LQ(P) depends on the shuffling scheme (see Section 3.1.2) and is different in
the first and second term of the minimization in (4.2). To evaluate U (S)

Q , we count
the total number of intermediate values that need to be unicasted to server S until
it holds m/T intermediate values from each partition.

22

4. Block-Diagonal Coding

For a given Ψ, the assignment of rows into batches can be formulated as an
optimization problem, where one would like to minimize LBDC over all assignments
P . More precisely, the optimization problem is

min
P∈P

LBDC(Ψ,P),

where P is the set of all assignments P , and where the dependence of LBDC on P
is nonlinear. This is a computationally complex problem since both the complexity
of evaluating the performance of a given assignment and the number of assignments
scale exponentially in the problem size. We address this problem in Section 4.3.

4.2.2 Computational Delay
We consider the delay incurred by both the map and reduce phases (see Definition 2).
We do not consider the delay incurred by the shuffle phase as the computations it
requires are simple in comparison. Note that in [9] only Dmap is considered, i.e.,
D = Dmap. However, one should not neglect the computational delay incurred by
the reduce phase. Thus, one should consider the overall computational delay

D = Dmap +Dreduce.

The reduce phase consists of decoding the N output vectors and hence the delay
it incurs depends on the underlying code and decoding algorithm. We assume that
each partition is encoded using an RS code and is decoded using the Berlekamp-
Massey algorithm. We measure the decoding complexity by its associated shifted-
exponential parameter σ (see Section 2.3).

The number of field multiplications required to decode an (r/T,m/T) RS code
is (r/T)2ε [12], where ε is the fraction of erased symbols. With ε upperbounded by
1− q

K
(the map phase terminates when a fraction of at least q

K
symbols from each

partition is available) the complexity of decoding the T partitions for all N output
vectors is upperbounded as

σreduce ≤
r2(1− q

K
)N

T
. (4.3)

The decoding complexity of the unified scheme in [9] is given by evaluating (4.3) for
T = 1. By choosing T close to r, we can thus significantly lower the delay of the
reduce phase. On the other hand, the scheme in [8] uses codes of length proportional
to the number of servers K. The decoding complexity of the SC scheme in [8] is
thus given by evaluating (4.3) for T = m

q
.

Example 3 (Reduce (decoding) delay). In Fig. 4.4, we plot the reduce delay of
the corresponding unified and SC schemes. We normalize the delay by that of our
proposed scheme. In 4.4(a), we plot the normalized reduce delay as a function of the
number of partitions T . The system parameters are m = 6000, n = 6000, K = 9,
q = 6, N = 6, and µ = 1/3. The reduce delay of our proposed scheme is between
a factor 2 and 3000 lower than that of the unified scheme. On the other hand,
the reduce delay of the SC scheme is lower than that of ours for T ≤ 1000. For

23

4. Block-Diagonal Coding

100 101 102 103 104

T

10−3

10−2

10−1

100

101

102

103

104
D

re
du

ce

Unified
SC

(a)

100 101 102 103

K

10−1

100

101

102

103

104

105

D
re

du
ce Unified

SC

(b)

Figure 4.4: Reduce delay of the unified and SC schemes; normalized by that of
our proposed scheme. (a) As a function of partitioning for m = 6000, n = 6000,
K = 9, q = 6, N = 6, and µ = 1/3. (b) As a function of system size for µq = 2,
n = 10000, µm = 2000, m/T = 10 rows per partition, and code rate m/r = 2/3.

T = 3000, the reduce delay of the SC scheme is about 3 times that of our proposed
scheme.

In 4.4(b), we plot the normalized reduce delay for a constant µq = 2, n = 10000,
µm = 2000, m/T = 10 rows per partition, and code rate m/r = 2/3 as a function of
the number of servers, K. The reduce delay of our proposed scheme is significantly
lower than that of the unified scheme for all systems considered. For small systems
(less than K = 15 servers) the reduce delay of the SC scheme is lower than that of
ours. However, for the largest system considered (K = 201 servers) the reduce delay
of the SC scheme is an order of magnitude higher than that of our proposed scheme.

4.3 Assignment Solvers
We propose two solvers for the problem of assigning rows into batches: a heuristic
solver that is fast even for large problem instances, and a hybrid solver combining
the heuristic solver with a branch-and-bound solver. The branch-and-bound solver
produces an optimal assignment but is significantly slower, hence it can be used
as stand-alone only for small problem instances. We use a dynamic programming
approach to speed up the branch-and-bound solver by caching U (S)

Q for all Q ∈ Qq,
indexed by the batches each U

(S)
Q is computed from. This way we only need to

update the affected U (S)
Q when assigning a row to a batch. For all solvers, we first

label the batches lexiographically and then optimize LBDC in (4.2). We illustrate
how the optimization solver fits into the computing scheme in Fig. 4.5. The solvers
are available under the Apache 2.0 license [20].

24

4. Block-Diagonal Coding

ψ2A2

ψ1A1

ψ3A3

Assignment Strategy

Server S1

Server S2

Server S3

Optimization Solver

P

Figure 4.5: Assignment of coded rows to servers.

4.3.1 Heuristic Solver
The heuristic solver is inspired by the assignment matrices created by the branch-
and-bound solver for small instances. It creates an assignment matrix P in two
steps. We first set each entry of P to γ ,

⌊
r/
((

K
µq

)
· T
)⌋
, thus assigning the first(

K
µq

)
γ rows of each partition to batches such that each batch is assigned γT rows.

Let d = r/
(
K
µq

)
− γT be the number of rows that still need to be assigned to each

batch. The r/T −
(
K
µq

)
γ rows per partition not assigned yet are assigned in the

second step as given in Algorithm 1.

Algorithm 1: Heuristic Remaining Assignment
Input : P , d, K, T , and µq
for 0 ≤ a < d

(
K
µq

)
do

i← ba/dc+ 1
j ← (a mod T) + 1
pi,j ← pi,j + 1

end
return P

Example 4 (Heuristic solver). For the system in Example 2 with parameters m =
20, N = 4, K = 6, q = 4, µ = 1/2, and T = 5, we have γ = 0, and the heuristic
solver creates the assignment matrix

P =

1 2 3 4 5
(S1, S2) 1 1 0 0 0
(S1, S3) 0 0 1 1 0
(S1, S4) 1 0 0 0 1
(S1, S5) 0 1 1 0 0

... ...
(S4, S6) 0 1 1 0 0
(S5, S6) 0 0 0 1 1

.

25

4. Block-Diagonal Coding

4.3.2 Branch-and-Bound Solver
The branch-and-bound solver finds an optimal solution by recursively branching at
each batch for which there is more than one possible assignment and considering all
options. The solver is initially given an empty assignment matrix, i.e., an all-zeros(
K
µq

)
×T matrix. For each branch, we lowerbound the value of the objective function

of any assignment in that branch and only investigate branches with possibly better
assignments. The branch-and-bound operations given below are repeated until there
are no more potentially better solutions to consider.

4.3.2.1 Branch

For the first row of P with remaining assignments, branch on every available as-
signment for that row. More precisely, find the smallest index i of a row of the
assignment matrix P that does not sum to the batch size, i.e.,

T∑
j=1

pi,j < r/

(
K

µq

)
.

For row i, branch on incrementing the element pi,j by 1 for all column indices j that
do not sum to the number of partitions, i.e.,

(Kµq)∑
i=1

pi,j <
r

T
.

4.3.2.2 Bound

We keep a record of all nonzero U (S)
Q for all Q and S, and index them by the batches

they are computed from. An assignment to a batch can at most reduce LBDC
by 1/ (mN |Qq|) for each nonzero U (S)

Q indexed by that batch, and we lowerbound
LBDC for a subtree by assuming that no U (S)

Q will drop to zero for any subsequent
assignment.

4.3.3 Hybrid Solver
The branch-and-bound solver can only be used on its own only for small instances.
However, it can be used to complete a partial assignment matrix, i.e., a matrix P
for which not all rows sum to the batch size. The branch-and-bound solver then
completes the assignment optimally. We first find a candidate solution using the
heuristic solver and then iteratively improve it using the branch-and-bound solver.
In particular, we decrement by 1 a random set of elements of P and then use the
branch-and-bound solver to reassign the corresponding rows optimally. We repeat
this process until the average improvement between iterations drops below some
threshold.

26

5
Numerical Results

In this chapter, we present numerical results for the schemes presented in [7–9]
alongside those for our proposed BDC scheme. We also compare the performance
of the systems with assignment P produced by the heuristic and hybrid solvers.
All results are normalized by the performance of the corresponding uncoded scheme
discussed in Section 3.2.1.

5.1 Coded Computing Comparison
In Fig. 5.1, we plot the performance of the CMR, SC, and unified schemes normalized
by the performance of the uncoded scheme. We also give the performance of the
proposed BDC scheme with assignment P given by the heuristic solver.

In 5.1(a), we plot the normalized communication load L (see Definition 1) and
overall computational delay D (see Definition 2) as a function of the number of
partitions T . The system parameters are m = 6000, n = 6000, K = 9, q =
6, N = 6, and µ = 1/3. The parameters of the CMR scheme are qCMR = 9
and µCMR = 2

9 . The fraction of rows stored at each server for the SC scheme
is µSC = 1

6 . For up to r/
(
K
µq

)
= 250 partitions, the proposed scheme does not

incur any loss in Dmap and communication load with respect to the unified scheme
(see Theorem 1). However, the proposed scheme yields a significantly lower overall
computational delay compared to the unified scheme (about 40% speedup for T >
50). For heavy partitioning (around T = 800) a tradeoff between partitioning level,
communication load, and map phase delay is observed. With 3000 partitions (the
maximum possible), there is about a 10% increase in communication load. Note that
the gain in overall computational delay saturates with the partitioning level, thus
there is no reason to partition beyond a given level. The delay of the SC scheme is
close to half that of our proposed scheme. However, it does not include redundant
computations and thus has a communication load almost twice that of our scheme.
Furthermore, the delay of our proposed scheme is close to 25% lower than that of
the CMR scheme for T > 50 partitions.

In 5.1(b), we plot the normalized performance for a constant µq = 2, n =
10000, µm = 2000, m/T = 10 rows per partition, and code rate m/r = 2/3 as a
function of the number of servers, K. The results shown are averages over 1000
randomly generated realizations of G as it is computationally unfeasible to evaluate
the performance exhaustively in this case. The communication load of our proposed
scheme is within a few percentage points of both the CMR and unified schemes. The
delay is lower than that of the CMR scheme, indicating that the erasure correcting

27

5. Numerical Results

0.5
0.6
0.7
0.8
0.9
1.0

L

Unified
SC
CMR
BDC, Heuristic

100 101 102 103 104

T

1.0

1.5

2.0

2.5

D

(a)

0.4
0.5
0.6
0.7
0.8
0.9
1.0

L

100 101 102 103

K

0

5

10

15

D

Unified
SC
CMR
BDC, Heuristic

(b)

Figure 5.1: (a) The tradeoff between partitioning and performance for m = 6000,
n = 6000, K = 9, q = 6, N = 6, and µ = 1/3. (b) Performance dependence on
system size for µq = 2, n = 10000, µm = 2000, m/T = 10 rows per partition, and
code rate m/r = 2/3.

code provides a speedup. The overall computational delay of our proposed scheme is
twice that of the SC scheme as each coded row is assigned to µq = 2 servers to create
coded multicasting opportunities. On the other hand, the communication load of
our proposed scheme is 42% that of the SC scheme for K = 6 and 66% that of the
SC scheme for K = 201. Our proposed scheme outperforms the unified scheme for
all sizes considered. For the largest system considered, the overall computational
delay of the unified scheme is almost 15 times that of our proposed scheme. The
delay of the unified scheme deteriorates rapidly with system size due to its high
decoding complexity. In fact, most of the delay of the unified scheme is due to the
decoding, even for relatively small systems.

5.2 Assignment Solver Comparison

In Fig. 5.2, we plot the performance of the proposed BDC scheme with assignment
P given by the heuristic and the hybrid solvers. We normalize the performance by
that of the uncoded scheme. We also give the average performance over 100 random
assignments.

In 5.2(a), we plot the normalized communication load L and overall computa-
tional delay D as a function of the number of partitions T . The system parameters
are m = 6000, n = 6000, K = 9, q = 6, N = 6, and µ = 1/3. For T less than about
200, the performance of all solvers is identical. On the other hand, both the compu-
tational delay and the communication load are reduced with P from the heuristic
solver over the random assignments for T larger than 200 (about 3 percentage points

28

5. Numerical Results

0.52

0.54

0.56

0.58

0.60
L

Heuristic
Random
Hybrid

100 101 102 103 104

T

1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0

D

(a)

0.40
0.45
0.50
0.55
0.60
0.65

L

100 101 102 103

K

1.0

1.2

1.4

1.6

1.8

D

Heuristic
Random

(b)

Figure 5.2: (a) Solver performance as a function of partitioning for m = 6000,
n = 6000, K = 9, q = 6, N = 6, and µ = 1/3. (b) Performance dependence on
system size for µq = 2, n = 10000, µm = 2000, m/T = 10 rows per partition, and
code rate m/r = 2/3.

for load and 140 percentage points for delay at T = 3000). A further improvement
in communication load can be achieved using the hybrid solver, but at the expense
of a possibly larger computational delay.

In 5.2(b), we plot the normalized performance for a constant µq = 2, n =
10000, µm = 2000, m/T = 10 rows per partition, and code rate m/r = 2/3 as a
function of the number of servers, K. The results shown are averages over 1000
randomly generated realizations of G as it is computationally unfeasible to evaluate
the performance exhaustively in this case. The heuristic solver outperforms the
random assignments both in terms of load and delay for all system sizes considered.
The difference is larger for small K and the performance difference is diminishing
with larger K. The heuristic solver outperforms the random assignments by about
10 percentage points in terms of delay for the largest system considered. The hybrid
solver is too computationally complex for use with the largest systems considered.

29

5. Numerical Results

30

6
Conclusions and Future Work

In this thesis, we have explored codes for use in distributed computing systems. In
particular, we have investigated the ability of the coded schemes of [7–9] to deal
with the bandwidth scarcity and straggler problem in the context of distributed
matrix multiplication. We see that the schemes in [7] and [8] are effective means of
tackling the bandwidth scarcity and straggler problem, respectively. For instance,
for a system with 9 servers and a 6000× 6000 matrix the communication load using
the scheme in [7] is close to half that of the uncoded computation. Alternatively,
by instead using the scheme in [8] the overall computational delay (including the
decoding latency) is about 50% that of the uncoded computation. The scheme
in [9] provides a unified framework that combines the functionality of both schemes.
However, we show that even for relatively small systems the decoding complexity of
the MDS code proposed in [9] is prohibitively high. For the same system the overall
computational delay of the unified scheme is more than 2.5x that of the uncoded
computation. Furthermore, the difference is increasing with system size.

We have introduced a BDC scheme for distributed matrix multiplication based
on partitioning the matrix into smaller submatrices and encoding each submatrix
separately. Compared to the earlier scheme of [9], the proposed scheme yields a
significantly lower overall computational delay with no increase in communication
load up to a level of partitioning. For instance, for a square matrix with 6000 rows
and columns, the proposed scheme reduces the computational delay by about 40%
when the number of partitions T > 50. Essentially, our proposed scheme retains
both the flexibility of the scheme in [9] and the performance of the schemes in [7,8].

We believe that there are many interesting coding schemes and tradeoffs still
unexplored in this area. For example, we are currently considering rateless codes
(e.g., Luby Transform codes [21] and Raptor codes [22]) as an alternative coding
scheme with low decoding complexity. We would also like to investigate multi-stage
computations, where the output of one coded computation is the input of another.
Another interesting area is codes tailored to specific nonlinear algorithms. Further-
more, we would like to see more implementations of the coded schemes discussed
herein to more accurately assess their performance impact for problems faced by
industry.

31

6. Conclusions and Future Work

32

Bibliography

[1] H. Sutter and J. Larus, “Software and the concurrency revolu-
tion,” ACM Queue, vol. 3/7, pp. 54–62, September 2005. [On-
line]. Available: https://www.microsoft.com/en-us/research/publication/
software-and-the-concurrency-revolution/

[2] M. Ben-Ari, Principles of Concurrent and Distributed Programming. Addison-
Wesley, 2006.

[3] L. A. Barroso and U. Hölzle, The Datacenter as a Computer: An Introduction
to the Design of Warehouse-Scale Machines. Morgan & Claypool Publishers,
2009.

[4] C. L. Philip Chen and C. Y. Zhang, “Data-intensive applications,
challenges, techniques and technologies: A survey on big data,” Information
Sciences, vol. 275, pp. 314–347, Jan. 2014. [Online]. Available: http:
//dx.doi.org/10.1016/j.ins.2014.01.015

[5] B. P. Rimal, E. Choi, and I. Lumb, “A taxonomy and survey of cloud computing
systems,” in Proc. 5th International Joint Conference on INC, IMS and IDC,
Seoul, Korea, Aug. 2009, pp. 44–51.

[6] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on large
clusters,” in Proc. 6th Conference on Symposium on Opearting Systems Design
& Implementation, San Francisco, CA, Dec. 2004, p. 10.

[7] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “Coded MapReduce,” in Proc.
53rd Annual Allerton Conference on Communication, Control, and Computing,
Monticello, IL, USA, Sep. 2015, pp. 964–971.

[8] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” in Proc. IEEE In-
ternational Symposium on Information Theory, Barcelona, Spain, Jul. 2016,
pp. 1143–1147.

[9] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “A unified coding framework
for distributed computing with straggling servers,” CoRR, Sep. 2016. [Online].
Available: http://arxiv.org/abs/1609.01690

33

https://www.microsoft.com/en-us/research/publication/software-and-the-concurrency-revolution/
https://www.microsoft.com/en-us/research/publication/software-and-the-concurrency-revolution/
http://dx.doi.org/10.1016/j.ins.2014.01.015
http://dx.doi.org/10.1016/j.ins.2014.01.015
http://arxiv.org/abs/1609.01690

Bibliography

[10] A. Severinson, A. Graell i Amat, and E. Rosnes, “Block-diagonal coding for
distributed computing with straggling servers,” CoRR, May 2017. [Online].
Available: http://arxiv.org/abs/1701.06631

[11] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave,
X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin, A. Ghodsi, J. Gonzalez,
S. Shenker, and I. Stoica, “Apache spark: A unified engine for big data
processing,” Communications of the ACM, vol. 59, no. 11, pp. 56–65, Oct.
2016. [Online]. Available: http://doi.acm.org/10.1145/2934664

[12] Z. Li, J. Higgins, and M. Clement, “Performance of finite field arithmetic in an
elliptic curve cryptosystem,” in Proc. 9th IEEE International Symposium on
the Modeling, Analysis, and Simulation of Computer and Telecommunication
Systems, Cincinnati, OH, USA, Aug. 2001, pp. 249–256.

[13] N. Balakrishnan, E. Castillo, and J.-M. S. Alegria, Advances in distribution
theory, order statistics, and inference. Birkhäuser Boston, 2006.

[14] B. C. Arnold, N. Balakrishnan, and H. N. Nagaraja, A First Course in Order
Statistics, 2nd ed. Philadelphia, PA, USA: Society for Industrial and Applied
Mathematics, Sep. 2008.

[15] Z. Zhang, L. Cherkasova, and B. T. Loo, “Performance modeling of MapReduce
jobs in heterogeneous cloud environments,” in Proc. 6th IEEE International
Conference on Cloud Computing, Santa Clara, CA, USA, Jun. 2013, pp. 839–
846.

[16] S. Li, S. Supittayapornpong, M. A. Maddah-Ali, and A. S. Avestimehr, “Coded
TeraSort,” CoRR, Feb. 2017. [Online]. Available: http://arxiv.org/abs/1702.
04850

[17] J. Dean, “Achieving rapid response times in large online services,” 2012.
[Online]. Available: https://research.google.com/people/jeff/latency.html

[18] H. Ishii and R. Tempo, “The PageRank problem, multiagent consensus, and
web aggregation: A systems and control viewpoint,” IEEE Control Systems,
vol. 34, no. 3, pp. 34–53, Jun. 2014.

[19] G. Garrammone, “On decoding complexity of Reed-Solomon codes on the
packet erasure channel,” IEEE Communications Letters, vol. 17, no. 4, pp.
773–776, Apr. 2013.

[20] A. Severinson, “Coded Computing Tools in Python,” May 2017. [Online].
Available: https://doi.org/10.5281/zenodo.581121

[21] M. Luby, “LT codes,” in Proc. 43rd Annual IEEE Symposium on Foundations
of Computer Science, Vancouver, BC, Canada, Nov. 2002, pp. 271–280.

[22] A. Shokrollahi, “Raptor codes,” IEEE Transactions on Information Theory,
vol. 52, no. 6, pp. 2551–2567, Jun. 2006.

34

http://arxiv.org/abs/1701.06631
http://doi.acm.org/10.1145/2934664
http://arxiv.org/abs/1702.04850
http://arxiv.org/abs/1702.04850
https://research.google.com/people/jeff/latency.html
https://doi.org/10.5281/zenodo.581121

	List of Figures
	List of Acronyms
	List of Symbols
	Introduction
	In This Thesis
	Thesis Outline

	Preliminaries
	Erasure Correcting Codes
	Distributed Computing
	Probabilistic Runtime Model
	Bandwidth Scarcity
	The Straggler Problem
	The Unified Scheme

	Coding for Distributed Computing
	Distributed Computing Model
	Map Phase
	Shuffle Phase
	Reduce Phase

	Coded Computing Schemes
	Uncoded Computing
	Coded MapReduce
	Straggler Coding
	The Unified Scheme

	Block-Diagonal Coding
	Assignment of Coded Rows to Batches
	Performance of the Block-Diagonal Coding
	Communication Load
	Computational Delay

	Assignment Solvers
	Heuristic Solver
	Branch-and-Bound Solver
	Branch
	Bound

	Hybrid Solver

	Numerical Results
	Coded Computing Comparison
	Assignment Solver Comparison

	Conclusions and Future Work
	Bibliography

