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PER NORDEMAN
Department of Mathematical Sciences
Chalmers University of Technology

Abstract
Although software testing is widely used during the software development phase of
medical technologies (Medtech), there is no common ground regarding identification,
separation, and testing of functional and non-functional requirements within the
development cycle.

The objective of this thesis was to implement a taxonomy for non-functional re-
quirements within the Medtech industry, and to build an automated test framework
including tests for non-functional requirements linked to user experience.

The methodology used for the thesis was action research, iterated through a
research, construction and a simulation phase for each test. Information gathered
regarding test development was collected through interviews, documents, experience,
and prior work.

A taxonomy for identifying, separating, and prioritizing software requirements
was developed. Further, an automated test framework was developed which included
automated tests evaluating the reliability, performance, scalability, and portability
of the software system. Two reliability tests were developed to evaluate the stability
and placement of medical tools within the simulation. An additional test was devel-
oped evaluating the performance, scalability, and portability of the software system.
It was shown that automated tests can detect and notify software developers and
project managers with information regarding non-functional requirements of their
software system.

Although non-functional requirements often can be difficult to comprehend,
the result within this thesis suggests that there is great value in identifying, classi-
fying, and testing non-functional requirements within the Medtech software devel-
opment cycle to secure a satisfied end-user.

Keywords: Requirements engineering, Non-functional requirements, Taxon-
omy, Software development, Medtech software, Automated testing, User experience
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1
Introduction

The profession of a surgeon is a highly skilled occupation which requires a high level
of experience and expertise, generally taking more than two decades to reach the
goals of doing advanced surgical procedures. The common approach has been with
three guiding phrases: “See one, do one, teach one”. Meaning that a surgeon appren-
tice needs to see one or a few procedures being done by a more experienced surgeon,
followed by performing the whole or parts of a procedure, and lastly teaching the
procedure to new apprentices. This approach requires the surgical apprentice early
in their career to choose one specific medical field to operate in. Since the procedures
are often very difficult and can carry high risk, the training of certain procedures
can take up to a whole lifetime to master. This could potentially create a shortage
of valid surgeons due to apprentices not meeting the requirements to proceed with
the training or there might be few to no opportunities to observe specific surgical
procedures. A shortage of skilled surgeons also results in the surgeons being lo-
calized around big hospitals and clinics were they have the highest opportunity to
proceed with their goals and training. The consequences could create a ripple effect
resulting in for example rural hospitals and clinics being shut down, less availability
to good healthcare, and longer waiting time for patients.

Moreover, the methods and tools used within the medical field are developed
over many years with extensive testing and with strict regulatory requirements.
Moving into the digital age, computers have gained more computational power and
modern technologies have slowly been embraced and adopted by the medical field.
This has lead to new possibilities in aiding the medical personnel in areas such
as patient assessment, surgical training, logistics, research, and documentation by
increasing efficiency and safety within these areas. Although this change towards
new digital solutions offers improved healthcare it also puts the industry against
new challenges in securing reliable and safe software in which software testing is
an important step in securing these criterion’s. One ability made possible with the
use of digital technology is digital reconstruction of the human anatomy which can
enable computers to replicate anatomical structures to their finest detail. The ability
to replicate the internal function and structure of the body has helped to visualize
and create perspective on how organs interact with each other. The reconstruction
of human anatomy has also made it possible to simulate surgical procedures. This
creates the opportunity for surgeons to train and improve their skills within a certain
procedure or with a certain tool more frequently and thus obtaining more experience
in a shorter time-frame compared to the old way of practicing on real patients, closing
the gap between the “see one, do one” stage. Moreover, creating simulated surgical
procedures could help companies that are developing surgical tools with showcasing
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1. Introduction

why their tool is recommended for certain procedures, pushing the development of
surgical technology and better healthcare.

The Mentice simulation provides a realistic simulation platform for which sur-
geons, or more accurately, interventional radiologists, can practice on. With their
hardware and software setup, radiologists are able to feel and see how procedures are
done. The possibilities are many but the development of such procedures puts high
demand on how the simulation is portrayed by the user and how accurate it is in
comparison to a real-life surgical situation. To meet these requirements a lot of test-
ing is necessary when developing new procedures. These tests are often constructed
with the help of professional medical personnel since the software and hardware
developers often do not have the same medical expertise and experience as a radiol-
ogist. This creates a gap between how the tester experience the procedure and how
a radiologist experience it, where a tester might not recognize faults in the same way
as a radiologist would. Therefore the need for a testing framework is necessary in
order to develop robust high-end simulations of surgical procedures where aspects
such as user experience are prioritized and where the simulation closely mimics a
realistic surgical scenario.

This thesis focuses on how the user experience within medical simulations could
be measured and evaluated through non-functional requirements (NFRs). Also, how
NFRs for medical software could be broken down and depicted through a taxonomy,
in order to help Medtech companies in navigating the field of non-functional testing
and securing that their product fulfills certain criteria with respect to NFRs and
user experience. NFRs are system requirements which emphasis how the system
“should be”, i.e., how the system or software should behave or what properties
that it should possess. This in relation to functional requirements (FRs), which are
system/software requirements that put functional constraints on what the system/
software should be able “to do”.

Furthermore, apart from the taxonomy, an automated test framework is de-
veloped with tests measuring simulation parameters that mirror specified NFRs and
how these requirements correlate with the user experience. The reasoning behind
measuring parameters to describe NFRs is that NFRs describe a systems behavior.
Meaning that they describe the whole system or a particular aspect of the system
and not a specific function.

The NFRs focused on is reliability, portability, scalability, performance, and
efficiency since these are some requirements that reflect aspects of user experience on
the Mentice simulation platform. The reliability reflects the tool’s behavior within
the simulation and the remainder requirements reflect the behavior of the system
in general during different procedures. The reasoning behind these requirements
is that they reflect different actions that need to work consistently throughout the
procedure and if these functions or actions are unable to meet these requirements
the user experience would be suffering. Creating tests that measure the grade from
which the simulation meets these requirements enables the developer to see how their
procedure is behaving within the simulation. The response from the tests grade the
current state of the software and its output, informing the developer of what and
where the user experience may be inadequate. The tests assist developers during
development, closing the gap between how an experienced radiologist interprets the
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1. Introduction

simulation and how a developer interprets it. Improving the software development
time and quality, enabling the company to deliver products faster and securing
satisfied customers. The tests could also be used for further research within this
type of field by contributing when building a ground truth of how simulated surgical
procedures should behave. Also, the tests could help to recognize aspects of NFRs
for systems outside the field, creating an overall user experience that is to some
degree validated through automated user experience tests.

1.1 Problem Description
There are few research papers and studies in the area of testing NFRs and there
is no commonly accepted approach for specification, documentation, and analysis
of NFRs within software development, not the least in the medical device indus-
try. This lack of research makes it difficult to navigate through the environment
of testing NFRs within the Medtech industry and leaves the industry without a
common ground for their testing procedures [1]. According to [1], “It is true that
these requirements receive little attention relative to functional requirements during
a software development”, although their importance in ensuring patient and user
security is vital for implementing a successful and safe medical product as well as
for following medical device software standards such as IEC 62304 - Medical device
software—Software life cycle process.

According to an industry study performed in 2015, about 62% of software de-
velopment projects take NFRs into account when evaluating testing requirements [2].
The main reason for this lack of focus on NFRs is due to the elusiveness of these
requirements since they are subjective as well as relative and can easily be scattered
across multiple software modules when they are assessed in the software testing
procedure [3].

This problem leaves a gap for providing a common ground by implementing
new road-maps and methodologies for testing NFRs within the Medtech industry.
This is an important step in developing better Medtech products and furthermore
to reduce the number of deaths linked to user errors within the medical industry.
Additionally, if left unnoticed, this could lead to many lives lost due to insufficient
testing of NFRs of medical devices and software [4].

1.2 Purpose and Aim of Study
Figure 1.1 depict the goals of this thesis with their corresponding main questions
and metrics. Each main question also includes sub-questions which are shown in
1.3.
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1. Introduction

Figure 1.1: Depicts how Goals, Questions and Metrics are linked together. Note
that there are two goals in which focus on the road-map/taxonomy and the auto-
mated test framework including its tests.

1.2.1 Purpose

The purpose of this study is to lay out a roadmap for non-functional testing in
the Medtech industry in order to help future developers navigate the field of non-
functional requirements testing. Also to construct an automated test framework that
includes a few tests for non-functional requirements with the purpose of providing
concrete examples of non-functional tests which match user experience with data
collected for a given aspect of Medtech software. In this particular case, the Mentice
simulation software.

1.2.2 Aim

The aim of this project is to construct a roadmap that depicts the various non-
functional requirements available for software development in the Medtech industry.
Additionally, to develop a working automated test framework for evaluating param-
eters connected to the user experience of a few aspects of the Mentice simulation
software. Tests are developed to test some non-functional requirements of the sim-
ulations. The test should provide a result of these requirements and thus evaluate
the user experience of the simulation.
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1.3 Research questions
In order to reach the defined goals the following research questions (RQs) regarding
the road-map and test framework needs to be answered:

1. How to portray and clarify the area of non-functional testing in the Medtech
industry?
(a) What non-functional requirements are applicable to the Mentice soft-

ware?
(b) How to depict a taxonomy for the specific non-functional requirements?
(c) How to link the taxonomy to user experience?

2. How to construct an automated test framework for evaluating user experience
in relation to a given “golden standard” for the aspect being tested?
(a) How does the user interact with the software?
(b) What is the “golden standard” for a specific test within the framework?
(c) What NFRs have the highest impact on user experience?

3. How to connect measurements for a given simulation aspect being tested to
user experience?
(a) What is the connection between the automated test and manual user

interaction?
(b) How would the user interpret the aspect being tested if manual tests were

performed?
(c) How to link test aspects to real-life endovascular surgical procedures?

1.4 Metrics
In order to answer the RQs presented above multiple metrics needs to be collected
regarding:

• Non-functional requirements testing
• Non-functional testing in other industries
• General software testing
• General image analysis
• Mentice simulation software
• Common software bugs within the Mentice simulation
• Construction of non-functional tests
• Real life endovascular surgical procedures
• A “golden standard” for aspects being tested in the testing framework with

respect to real-life endovascular procedures.
• Ranking of test outputs with respect to user experience
• Collection of simulation data from Mentice simulation software.

1.5 Scope and Delimitation
Due to the vast complexity of the Mentice simulation system, the scope of this study
has to be narrowed down and some simplification has to be made. Firstly, all tests
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conducted within this project have been carried out on an emulator instead of the ac-
tual physical product delivered by Mentice. This choice results in a few differences
compared to the physical product which will be further explained in Sect. 2.1.1.
Secondly, due to limited ability at performing medical simulation procedures, pro-
cedures tested are just snippets of complete procedures and do not cover all possible
test cases within a procedure. Furthermore, tests will only be conducted on a few
surgical procedure simulations and will not cover all available procedures within the
Mentice software. Research for our project and tests will be carried out in the form
of action research.

Another limitation is that tests will only show where and how the user experi-
ence is lacking, but they will not cover why the user experience is faulty due to the
vast complexity and scale of the Mentice code-base and simulation software. Also,
due to the structure being large, only snippets of information of relevant functions
in the simulation are gathered in order to deal with the test at hand. Thus aspects
of how the whole underlying code may affect the procedure will be left out.

The lack of programming skills in programming languages such as JavaScript
and QML is another limitation. Tests have mainly been carried out as external
scripts in Python (with a few exceptions) which results in a few drawbacks since
an external program is not able to grab all available data from the simulation, this
means that some significant parameters affecting the test result might be unknown
for our tests. Finally, the use of the record&replay function (described in Sect. 2.1.6)
provided by Mentice could be a limitation since using a record&replay file means
that the actions and collection of data do not necessarily occur in the same way as if
it was run manually by the user. Making the retrieval of data highly reliant on the
input-output of the record&replay system. Procedures that require precise actions
often fail during a record&replay due to the random nature of the simulation and
thus give inaccurate data. Also, for some procedures, only the essential steps are
recorded which means that small variations in user interaction (input) might be left
out during recording and thus not replayed accurately by the system.

1.5.1 Keywords and inclusion criteria

Below are keywords used for finding related research in the field of non-functional
requirements testing as well as the inclusion criteria for this thesis.

Keywords used. “Non-Functional requirements”, “Non-Functional testing”,
“Image analysis”, “Fluoroscopic Image quality”, “Catheter mechanics”, “Perfor-
mance”, “Scalability”, “Portability”, “SIFT”, “SSIM”.

Inclusion criteria. To mainly include articles between 2010-2020 that eval-
uate or review various types of non-functional testing/requirements and/or me-
chanical /image properties that are related to this project(see Keywords). Articles
should be found on scientific platforms such as Science Direct, ACM Digital Library,
Pubmed, IEEE Xplore, and Wiley.
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1. Introduction

1.6 Outline of thesis
Figure 1.2 depicts the structure of this thesis and how thesis sections are linked
together.

Figure 1.2: Outline of the thesis. Note that BACKGROUND and METHODOL-
OGY include multiple sub-chapters which cover necessary parts for the following
sub-chapters or chapters.
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Background

An important aspect when developing simulated environments is to test the software,
to see if the environment mirrors the preferred realistic situation. Generally, testing
NFRs of a system is done manually, either by the developers themselves or by
personnel hired explicitly for testing the system. For surgical simulation the available
testing personnel is few, resulting in developers testing different features themselves.
The consequence could be that aspects are being missed due to lack of time, expertise
and experience. A solution could be to implement automated tests, linked to real
surgical expertise and experience, which verifies the function of different aspects, the
look-and-feel of software, and find bugs that may occur during software development.

One example of how to classify bugs was proposed by Hooper [5], in which
bugs were classified as A, B, C (sometimes even D), which specifies the severity
of the bug. Class A bugs are of the highest severity and are usually specified as
bugs that have an impact on the user’s ability to complete a software run or use
the software. Class B bugs are less severe but they are still a high priority and are
usually connected to the user’s experience of the software. The lowest priority bugs
are Class C and are usually connected to the aesthetics of the software.

In this thesis, the aim is to build a test framework that mainly focuses on
Class A and B bugs, since these are usually the ones having the largest impact on
the user experience of the software.

2.1 Mentice simulation software
The Mentice simulation software is a practice tool for surgical apprentices which, to
a great extent, can serve as a complement to real endovascular surgical procedure
training. The Mentice simulation software is a program featuring user inputs for
controlling medical tools, equipment, C-arm (arm for controlling the fluoroscopic
camera) while also tracking patient status and realistically displaying the fluoro-
scopic image of the patient internals.

2.1.1 Emulator
Compared to the actual product delivered by Mentice described in Sect. 2.1, the
emulator is based solely on software programs and does not include a physical control
module for controlling the surgical table, C-arm and capturing fluoroscopic images.
Additionally, there is no physical hardware that the user put surgical tools into
but instead, computer software gives the user the ability to operate surgical tools,
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2. Background

Figure 2.1: Visualization of typical Mentice hardware setup. In reality, there
are multiple additional medical tools available which are not presented within this
figure.

perform contrast fluid injections and capture cine loops (a re-playable sequence of
fluoroscopic images) within the system. Although the emulator closely mimics the
actual product there are some slight differences due to the emulator being based
solely on software. One difference is that there is no force-feedback system for the
tools within the emulator and thus there is no limitation in terms of how tools could
be navigated throughout the patient when navigating into narrow vessels.

2.1.2 Program execution cycle
The program execution cycle, as depicted in Fig. 2.2, consists of multiple steps
that are performed in each simulation frame of the Mentice software. Ideally, the
simulation runs at an approximate 16 frames per second and the physics for the
tools and collisions between tools and blood vessels is calculated an approximate
1000 times per second.

During this execution cycle, multiple steps are performed to update the under-
lying program state which ultimately leads to a visual representation of the simula-
tion. The state also provides force feedback of the surgical tool to the user’s hand,
representing the inertia experienced when navigating a medical tool into a blood
vessel with equal/smaller diameter compared to the tool.

2.1.3 Featherstone algorithm
Calculating the movement of joints and links when an external force is applied to
these objects is a computationally difficult thing to do and thus there have been sim-
pler algorithms developed to compute these movements more efficiently. One way to
perform these computations is to use the Featherstone algorithm. The Featherstone
algorithm, in comparison to Newton’s second law F = ma, uses the velocity instead
of the acceleration of an object. The Featherstone algorithm, given the current joint
q with velocity q’, a joint torque of G and an external force of F, calculates the joint
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Figure 2.2: Simulation cycle. Note that multiple simulation functionalities are
executed in parallel during each simulation frame. Source: Mentice Documentation.
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acceleration(q”) in linear time:

q′′ = f(q, q′, F,G)

By using this algorithm it is possible to convert the force given from the user’s
hand into a movement within the simulation that is approximate to what would
happen in reality. This is, given the explanation above, a simplification of how the
mechanics of the system work and how force, given by the user to the surgical tool, is
converted into a movement in the simulation. This movement is also scaled upwards
within the simulation, i.e, a 5cm move of the physical tool, in reality, will give a
larger movement of the tool within the system. This simplifies the architecture of
the hardware capturing the movement of the tool within the Mentice simulation
platform.

2.1.4 Randomness in simulation
There are factors within the simulation that has an element of randomness and thus
makes testing the software more difficult. First of all, for the fluoroscopic image
visible to the user there is Gaussian noise added to the image which makes no image
from a current simulation identical to a previous run even though everything else
within the simulation is set the same. This adds to the difficulty of performing image
analysis since this noise will have an impact on the look of a given blood vessel or
tool between simulation iterations.

Other than the applied Gaussian noise there is randomness in other aspects
such as contrast fluid injection. When performing a contrast fluid injection within
the simulation there will be some randomness in how the fluid will spread out across
the blood vessels and thus a contrast fluid injection will not look identical to a
previous injection even if all other settings are equal. This also adds to the difficulty
of performing image analysis across simulation runs since there will never be identical
outcomes for identical inputs across simulation runs.

2.1.5 Debug mode
The Mentice simulation software delivers the possibility to add debug options when
running a simulation. There are plenty of debug options connected to the tool,
blood vessels, physics and fluoroscopic image available to the developer which adds
great value when developing tests for the software. As an example, when developing
tests that focus on blood vessel—tool interaction there is the possibility to remove
all other factors such as skeleton, heart, skin and gaussian noise animation and thus
isolate the tool and blood vessels in the fluoroscopic image and assess how these
interact with each other. It is important to note that for each aspect that is turned
off using the debug mode the simulation diverges further from a realistic scenario.
This has to be taken into consideration when designing test cases in order not to
remove aspects that will alter the quality of the test itself.
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2.1.6 Record&replay function
The Mentice simulation software delivers the possibility of recording each procedure
as a list of inputs which was taken by the user as they performed a procedure.
This list of inputs, the record file, could be used at a later stage for replaying the
same medical procedure. By providing this feature a user can replay the steps of a
previous procedure and experience almost identical software behaviour. The word
almost is stated here since the software is highly complex and non-deterministic with
heavy computations being performed multiple times each second which may alter
the result of the procedure slightly due to factors such as CPU speed and current
workload on the computer CPU and GPU.

2.2 Software Testing
Software testing is an important step in software development that ensures quality
assessment of the software and provides developers with information regarding to
which degree certain functionality within the system works. Software testing consists
of multiple branches that range from single module tests (component testing) to beta
testing which is the final tests conducted before releasing the product to market. In
the computer gaming industry, alpha and beta versions of the software/game are
usually given out for public testing for the company to get customer feedback in the
late stage of the development cycle [6].

2.2.1 Automated testing
Automated testing primarily has one objective, to make manual tests automatic and
to automatically assess whether the output/behaviour of the software is according
to expected output/behaviour or within guidelines for the software. Since manual
software testing is both time consuming and victim to variance in user input an
automated software test can give the same input for each test iteration and only
assess whether the output is correct or not. Thus making the software testing
more robust in comparing input/output but with the drawback of being unable to
detect new test scenarios or software bugs which a human being could have detected
through creativity and curiosity when performing manual tests on software. Even
though there are examples of introducing randomness in automated testing [7][8],
it is still a challenge to introduce the nature of human creativity and curiosity into
automated testing and thus difficult to test all various interactions with the software
which a human would potentially perform.

2.2.2 Testing for user experience
The main objective of software testing could vary depending on the purpose of
the test. Some tests focus only on verifying that a certain functionality within
the software works as supposed to, while other tests focus on testing how well a
certain functionality performs in the software and thus gives a clue regarding how
the user will experience the software (given that the main functionality works in the
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Table 2.1: List of NFRs with a short description. Requirements highlighted in
blue are requirements focused on in this thesis.

Requirement Explanation
Performance Speed at which computer executes a program [12]
Scalability System ability to accumulate loads. [13]
Portability The degree software can be used in different environments. [14]
Efficiency Handling of resources during load/activation [15]
Capacity System volume accommodation when scale-up [16]
Availability System accessibility at a given point in time [17]
Reliability Ability to function without failure [18]
Recoverability Ability to recover from failed states
Maintainability The ease with which an attribute can be maintained [10]
Supportability The ease to regulate updates & errors within the system [10]
Security Protection of system disclosure [10]
Manageability The ease with which system could be managed [19]
Data Integrity Ability to maintain data accuracy and consistency [10]
Usability Capacity of a system to provide good user interaction [10]
Interoperability Degree of clarity in interface interaction [10]
..... ......

first place). These two types of tests can usually be divided into functional, and
non-functional testing in which the later type of testing focuses on how a verified
functionality within the software will “feel” when used by the user.

2.2.3 Functional and non-functional requirements

Functional requirements (FRs) could best be described as “what a software should
do”. An example of a FR for software would be: “If A is pressed, B should happen”.
These requirements focus on the functionality of the software and that certain func-
tions works as supposed to. Functional testing is the act of testing these FRs by
asserting that various functionalities within the software works as supposed to.

On the other hand, NFRs could be described as “how a software should be”.
An example of such a requirement would be: “If A is pressed, How long does it take
until B happens”. This requirement is focused on the performance aspect of the
functionality rather than the actual functionality itself, as in the scenario for the
FR. FRs are usually the most important and mandatory requirements when testing
software. Since if the functionality is not working at all there is a clear malfunction
of the software which will inhibit the user from proceeding. Even though FRs are
important, NFRs determining whether or not a software is reliable, secure, scalable,
user friendly and so on, which are all very important aspects of the software and
how it will be viewed by its users. Figure 2.3 summarizes the difference between
functional and non-functional requirements [9]. Table 2.1 depicts a few examples of
NFRs obtained from [10].
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Figure 2.3: Depicts the difference between functional and non-functional require-
ments. Note that FRs usually are connected to verbs while NFRs deal with system
attributes. Source: [11].
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2.2.4 Specific non-functional requirements
To narrow the many different non-functional requirements of the Mentice simula-
tion, the thesis focuses to develop tests for the following types of non-functional
requirements: reliability, portability, scalability, performance and efficiency.

According to [18], “Reliability engineering is a sub-discipline of systems engi-
neering that emphasizes the ability of equipment to function without failure”. Where
the function/equipment should work under some condition during a specific time. If
the reliability requirement is applied to the Mentice simulation, one example could
be to view how the medical tools within the simulation and how the motion is per-
ceived during the time of the whole procedure. The motion is sometimes subtle and
for an inexperienced person, this movement could seem normal. Thus developing a
test to quantify a non-functional requirement like reliability is necessary since the
simulation is highly dependent on user experience.

The intent for portability is to evaluate the system usability through different
software/hardware environments [14]. One example of this is to see if all surgical
modules of the Mentice simulation perform similar between hardware changes. One
approach to this is to see the software reaction of a button press between different
hardware. If the underlying software of the button reacts too slow for specific
hardware, one could say that the portability of the software is weak for this particular
hardware.

Scalability is a requirement whose intent is to view how the growth of a system
affects itself and how it performs when extra work is added to its architecture [13].
By adding load on the hardware it is possible to view how the simulation performs
by measuring the number of calculations over each second. If a specific Mentice
procedure is in need of very precise calculations in order to match the user experience
aimed for, it would be difficult to achieve if the underlying software took a lot of
processing power to execute surrounding operations. Therefor a test to assess the
scalability of the hardware is needed for each simulation procedure.

Moreover, the Performance NFR is widely used when evaluating computer
systems. The requirement could be divided into different kinds of measurements,
though the general definition is to measure the amount of useful work the system
achieves under a certain time period. The performance is measured in terms of
efficiency, accuracy and speed of executions [12]. The Mentice simulation is built
around heavy computations and therefore needs high performing systems to keep a
high level of user experience. For each execution cycle, thousands of calculations
need to be computed, which requires a good and reliable system setup. Developing
a test for evaluating the performance limit of the system could help in the aspects of
setting parameters and thus tune them to receive the best user experience for given
hardware.

Efficiency requirement is closely related to the scalability requirement. Since
efficiency is defined as the ability to reach a result with as little waste as possible [15].
In context of the Mentice simulation, one could measure how efficient a simulation
procedure is at calculating the physics. If the underlying code is efficient the degree
of scalability is increased since the code takes a short period of time to execute and
leaves room for additional functionality. Knowing the efficiency of the code could
allow the software developers to tune parameters to increase the user experience.
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2.3 Related work
This section aims to describe some related work in the area of requirements engineer-
ing (RE) for NFRs. It covers the importance of NFRs, how they could be classified,
a few examples of integration and whether or not NFRs really are “non-functional”.
Sommerville et al. [20] describes RE as “the process of discovering, documenting
and managing the requirements for a computer-based system”. The goal of RE is to
provide a complete and consistent collection of requirements that are relevant for a
given system. The idea is that these requirements should reflect what the end-user
actually wants and secure that these needs are fulfilled.

2.3.1 Importance of NFRs
Paschali et al. [21] performed a survey on what factors had the highest influence
on user satisfaction when playing computer games. The researchers concluded that
almost all games share a common key requirement: user satisfaction. They also
point out that user satisfaction is not uniform across different computer game genres
but dependent on them. Another conclusion was that what influenced the user
satisfaction the most was different over time [21]. From a previous study by Ham
et al. [22], the authors noted that the greatest driver for user satisfaction was the
graphics, gaming controls and the game character. On the other hand, another study
from the same year performed by Balkin et al. [23], emphasizes the importance
of interactivity between player and game/community and state it as the greatest
driver for user satisfaction. The argument is that, for the player, interaction with a
community is equally important to real-world interaction. It also enables the player
to develop an identity when playing computer games online. In a thesis written
by Young, the author tried to determine whether or not the graphics played an
important role in user satisfaction. This study shows that the majority (54%) of
the participants viewed graphics as not that important when deciding what game
to play [24]. This change, compared to Ham et. al., suggests that graphics play a
smaller role in user satisfaction than before. Although, Paschali et al. state that it
is important not to ignore that the rest (45%) still viewed graphics as an important
factor which leads to the conclusion that graphics still play a major role in satisfying
customers for computer games.

From a paper written by Maiti et al. [25], the authors state that during software
development using an agile methodology, NFRs are not taken into account during
the requirement phase. This results in projects needing to revisit their code due to
failures and bugs. The paper also states that if NFRs were taken into consideration
early on in development, it would increase the stability and reliability of the soft-
ware. The paper analyzed if the αβγ-framework could work for prioritizing NFRs
as good as it prioritised FRs within the “Capture, Elicit and prioritizing” (CEP)
methodology. The data consisted of already rated NFRs from other methodologies
from which the weighted sum could be derived. The gathered parameters were then
applied to the framework. α was collected through the 100-dollar test [26], β was
the weighted sum from previous data, and γ was the weights of each requirement
divided by the average weight of all requirements. This resulted in different NFRs
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gaining higher values, making it easier for Agile processes to consider NFRs with a
different priority level [25].

In a later paper, Memon et al. [27] illustrated how two common NFRs in
software development correlate with the quality of the software. They also state
that there is no unanimous consensus regarding how NFRs are gathered, analyzed
and documented in an organized manner. They identified 270 empirical studies in
which NFRs is the least explored area, even though NFRs are of great importance
and often regarded as the “body and soul” of a software system. Historically this
consideration has not been made and most emphasis has been placed on FRs which
undermines the importance of NFRs.

The Memon et al. paper focuses on how the NFRs reliability and scalability
affect software quality. The paper explains how these two NFRs are interpreted
and used through different stages in the requirement assessment. The paper points
out that standalone NFRs cannot be assessed alone and that they often affect each
other. Futhermore, it also states that a developer’s knowledge of human cognition
helps to write quality software since it is these quality attributes that mirror human
interaction with the software. They claim that if NFRs are considered more at the
beginning of the requirement process, the smoother the following processes will run.
Furthermore, the paper points out that today, researchers are trying to find the true
meaning and functionality of NFRs, and that this research might lead to a better
understanding of what NFRs really are and how these quality attributes can be
analyzed and tested during software development.

2.3.2 Classification of NFRs
Mairiza et al. [28] stated that there is no consensus regarding the notion of NFRs
and present an extensive and systematic review based on three dimensions of NFRs:
Definition and Terminology, Types, and Relevance of NFRs based on system and ap-
plication. Based on their investigation, the authors present two different perspectives
of how NFRs are perceived by the software engineering community: requirements
that describe properties, characteristics or constraints that a system must exhibit or
requirements that describe quality attributes that the software product must possess.
Also, the authors illustrate the vagueness of NFRs by depicting that more than half
(53.51%) of their sample pool (114 NFRs) are without a definition and attribute.
This adds to the difficulty in assessing NFRs during software development. Lastly,
the authors also list the most frequently considered NFRs based on their investiga-
tion which are: performance, reliability, usability, security, and maintainability.

In later years, the use of text classification algorithms along with machine
learning has been tested to create an automated classification test that could clas-
sify NFRs and FRs from text. One paper written by Lu et al. [29], applied this
technique to analyze NFRs within mobile application reviews. The authors point
out that the use of NFRs for mobile app development is crucial and provide good
information for developers on what to change during the software development cy-
cle. The motivation for this tool is that going through each review manually is
very time consuming and important messages could be missed. They also state that
extracting NFRs is especially hard since they are often hidden within the review.
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Instead, Lu et al. proposed a way to extract NFRs and FRs from reviews using
a combination of classification algorithms together with machine learning. The data
used for the paper was from applications such as iBooks (Apple app store) and
WhatsApp (Google play store). The data was labelled by the researchers as they
tried to extract the information by supervised learning. The best result was given
by the setup of “Augmented User Reviews-Bag of Words” (AUR—BoW) algorithm
and a Bagging Machine Learning (BML). The setup was able to extract information
from reviews that only contained single NFRs or FRs and unable to classify reviews
that contained multiple NFRs and FR.

Nurbojatmiko et al. [30] aim to validate and develop a model to obtain appli-
cation features related to NFR attributes and how these attributes are represented
between FR and NFRs. They validate the models commonly used today. The cur-
rent methods provide a sufficient ground from which the features can be obtained,
though there still exists a gap in correctly identifying, classifying, and determining
NFRs. The research was done using the “Prism framework” (a systematic review ap-
proach), where the idea is to gather documentation and papers from current methods
and research. This is followed by sorting the papers by unique domain and topics.
After gathering the unique data, analysis was done on the frequency of NFRs and
the reasoning behind each NFR. The papers analyzed were divided into five groups:
NFR classification, NFR identification, NFR Representation, Environments-based
NFR identification and NFR Agile Development. Within the five groups, the fre-
quency of each NFR was counted which indicated which type of NFR was covered
more frequently and which NFR that was covered less. By the analysis, the result
presented used NFR trends in software development and how software quality was
affected due to the trend.

A later paper, by Majthoub et al. [31], propose a solution for bridging the gap
between NFRs on the business side with NFRs on the system side. They claim that
there is a strong correlation between quality/NFR actions made on the business side
which affect the system side. They also state that currently (as of 2020) there is
no classification method indicating the NFR correlation between the two sides and
that there only exist models that classify NFRs on each side separately. The paper
recognizes that the business side was more affected by NFRs than the system side
since the business side had more manual work related to it. Moreover, if new NFRs
were implemented on the business side it would lead to increased constraints and
load of NFRs on the system side as well. The result of the paper suggests that one
could trace and link the NFRs of the business side with the ones on the system side.
This would result in developers and stakeholders being able to recognize the effects
of implementing and removing NFRs from their development process.

2.3.3 Examples of integration of NFRs
Although this thesis focuses mainly on recent work within the field of NFRs in
software development the importance of integrating NFRs into the software devel-
opment cycle was already brought up over 20 years ago. One paper, written by
Franch et al. [32], describe what characterizes NFRs (the ‘how’) from FRs (the
‘what’) in software development. The authors point out that traditionally, most
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work has been on the FRs. The authors propose a way of putting non-functional
information into the software architecture as a way of pinpointing NFRs important
for the specific software. The paper suggests that non-functional attributes (such
as efficiency, usability, and reliability) should be assigned a certain behaviour that
stands as a NFR for a particular software module. The idea is to add value in terms
of how NFRs should be attached to each software module.

In a following paper carried out a few years later, Barrett [33], similar to Franch
et al., put emphasize on the lack of focus on NFRs within software development. The
author describes NFRs as quantitative or qualitative in which the qualitative NFRs
are more difficult to measure since they often are connected to the “look-and-feel” of
the software and might be overlooked during development. The authors introduce
a model for documenting NFRs called “Performance Cases”. These “Cases” include
a test with a name, goal, and a level of importance as well as what type of test it is.
They also include a number of steps to be performed in order to test the NFR. The
idea behind these “Performance Cases” is to clarify documentation around NFRs
and display the role of a specific NFR during software development.

Dyrkorn et al. [34] provided an open-source toolkit for automated testing of
NFRs. The idea was to provide an alternative to current approaches (e.g., testing
suites) and to provide developers and project managers with reports from software
systems that are under development. The authors suggested, based on experience,
that this toolkit could be a way of reducing risk when developing software by not
overlooking NFRs.

There has also been some work in trying to increase the traceability of NFRs
within software development. One such paper, written by Yrjönen et al. [35], intro-
duce a tooling solution for a “Domain-Specific Modelling” approach, an approach
used during the design and development of computer software. The idea is to en-
able and guide the developers towards non-conflicting requirements by having bi-
directional tracing of NFRs within the software development cycle, from models
to implementation. The tool also provides an up-to-date view of the state of the
NFR and enables the developer or project manager to keep track of the NFR during
development.

In the last year, with climate change more frequently on the agenda, some re-
cent articles focus on integrating sustainability as an NFR in their software testing
activities. A paper carried out by Raturi et al. [36], discuss how sustainability can
be developed as a non-functional requirement and outlines a road-map for how to
integrate it in RE. Since sustainability in many cases can be of minor direct impor-
tance during software development the authors also discuss indirect consequences
linked to consumer behaviour based on how the software is developed.

2.3.4 Are NFRs really non-functional?
There have also been some papers discussing whether or not non-functional re-
quirements really are non-functional. Eckhardt et al. [37], performed an empirical
investigation on 530 NFRs extracted from 11 industrial requirement specifications
to discern to which extent they described the system behaviour. Their findings
suggested that most NFRs were not NFRs and could be handled similarly to FRs.
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The paper pointed out, not only that there exists no commonly accepted approach
for NFR-specific elicitation, analysis, and documentation, but also that NFRs are
usually described quite vaguely. The authors tried to pinpoint NFRs with respect
to ISO standards for quality characteristics and found that most NFRs describe the
same behaviour as FRs. Another note is that NFRs were specified at different levels
of abstraction in which high-level NFRs needs to be refined into low-level FRs, in
which there is no common approach

In another paper written by Broy et al. [38], proposes a model for rethinking
FRs. The author states that the definition of NFRs often is unsatisfactory and
the fuzzy term “nonfunctional” is often reduced to an attribute or constraint of
equal fuzziness. Furthermore, the author states that rigorous classification of re-
quirements often lack precision and concreteness, which leads to poor formulation
of requirements. The author based his model on a system model which suggests
structuring systems by using three levels of abstraction: an architecture structure,
a state machine structure, and their interface abstractions. The requirements were
categorized based on behavioural and non-behavioural aspects. Furthermore, be-
haviour aspects were divided into logical and probabilistic views, in which NFRs
often can be described in terms of probabilistic models. These views were then also
separated between internal and external views of the software system. Lastly, with
the goal of developing a more general notion of functional behaviour the author
proposed to redefine FRs based on syntactic interface and logical or probabilistic
system interface behaviour.

2.4 Software testing tools and image analysis
There are many ways to perform software testing and it usually depends on the
architecture of the software, how various data can be obtained from the software,
and what the pros and cons are for testing with a specific programming language
with respect to its alternatives. In this section, programming languages that are
assumed relevant for the automated tests within this thesis are introduced.

2.4.1 Programming language
Since many software solutions are combinations of many programming languages
there is a need to grasp the fundamentals of various programming languages in order
to understand how the software works. Needless to say, when software and hard-
ware are integrated into a product, additional programming languages are utilized
for their various pros and cons depending on what part of the product is imple-
mented. The Mentice software utilizes multiple programming languages including
C++ for hardware and heavy computations, Javascript for simpler application logic
and HTML, Qt, batch scripts for additional functionality and ease of work.

C++. The C++ programming language was developed at the beginning of 1980
at Bell Labs by Stroustrup. Today it is one of the most popular programming lan-
guages and is used in multiple fields such as computer games, consumer electronics
and other software and hardware where there is a need for efficient and fast computa-
tions. C++ is based on the C programming language but delivers wider functionality
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and supports object-oriented programming [39].
Javascript. JavaScript (JS) was when first implemented, presented as Mocha.

Due to commercial reasons and the development of the Java programming language,
this name was later changed into Javascript. Initially, JS was built in order to pro-
vide a language for building small applications within the web browser. This func-
tionality was then further developed and today JS supports building more advanced
web applications such as games and image analysis [40]. JS is today also used out-
side of the web browser in combination with Node.js. This enables the developer to
build large scale JS applications, command-line tools and server-side scripts which
are more efficient than the original idea of using JS in the web browser [41].

Python. Python is a high-level, general-purpose programming language. The
language is in an interpreted one which means that code is not compiled before
execution. Python delivers a wide range of possibilities from process management,
hardware communication, image analysis and machine learning. Since one main
disadvantage of an interpreted programming language is that it typically runs slower
due to the fact that the program instructions are not compiled, many extensions
built-in C or C++ are available when dealing with computationally heavy programs
in Python [42].

2.4.2 Libraries
There are plenty of programming libraries already supplied by the open-source com-
munity that are available to simplify and reduce the development cycle for auto-
mated software tests. In this thesis, some specific libraries connected to image
analysis have been suggested in order to take advantage of otherwise complex al-
gorithms that are time-consuming to develop from scratch. Additional libraries for
handling sub-processes, capturing computer load parameters (CPU, RAM, SWAP,
GPU) and data handling.

Scikit-Image. Scikit-Image is an open-source image processing library for the
Python programming language, which includes multiple algorithms for processing
images efficiently [43]. In this thesis, the SSIM algorithm supplied by Scikit-Image
is used.

Open-Cv. Open-Cv is a computer vision library that is open source and
delivers multiple simple or advanced algorithms for image analysis, image process-
ing, machine learning, and more. Open-Cv functionalities are available for multiple
programming languages (C, C++ and Python) and simplify the development of au-
tomated tests using image analysis and processing.

Additional libraries. Some additional libraries used for this thesis that
are of importance is the Python subprocess library, psutil library, matplotlib, and
pandas. The subprocess library enables the user to spawn new processes from
within Python and communicate with those [44]. In this thesis, this library is used
for spawning and communicating with the Mentice simulation software from within
Python. The psutil library is a library for grabbing information from processes as well
as information about system utilization within Python [45]. In this thesis, the psutil
library is used for evaluating system utilization (CPU, Memory, Disks). The Pandas
library is a well known Python library for data analysis and manipulation [46]. In
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this thesis, pandas is used for storing a large amount of data in a structured way. It
is also used for performing statistical analysis on large portions of the data efficiently.

Matplotlib. Matplotlib is a visualisation library that is open source and
supplies tools similar to the MATLAB interface. The tools provided by the library
enables users to visualize their data in a static, animated or interactive way to clarify
results and help with analysis.
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Methods

The methodology for this thesis has mainly surrounded action research. This strat-
egy was chosen due to its structure being well fitted for iterating over research and
software development continuously. It also turned out to cover multiple aspects of
the Mentice simulation software, software testing and NFRs classification and frame-
work construction which served as a base for answering the RQ 1–3(abc) enumerated
below.

1. How to portray and clarify the area of non-functional testing in the Medtech
industry?
(a) What non-functional requirements are applicable to the Mentice soft-

ware?
(b) How to depict a taxonomy for the specific non-functional requirements?
(c) How to link the taxonomy to user experience?

2. How to construct an automated test framework for evaluating user experience
in relation to a given “golden standard” for the aspect being tested?
(a) How does the user interact with the software?
(b) What is the “golden standard” for a specific test within the framework?
(c) What NFRs have the highest impact on user experience?

3. How to connect measurements for a given simulation aspect being tested to
user experience?
(a) What is the connection between the automated test and manual user

interaction?
(b) How would the user interpret the aspect being tested if manual tests were

performed?
(c) How to link test aspects to real-life endovascular surgical procedures?

Figure 3.1 depicts the different parts for the action research and the workflow of
this thesis. This workflow is iterated for each RQ. Furthermore, as the figure depicts,
the action research for this thesis is split into three phases: research, construction
and simulation phase.

3.1 Research phase
The action research in the research phase involved qualitative research in the form
of interviews with project managers at Mentice and analyzing prior work within the
area of automated software testing and NFRs. Information regarding what simula-
tion procedures had bugs or visual defects was collected through these interviews.
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Figure 3.1: Flow chart depicting the structure of the methodology for this thesis.
Note that each phase is iterated until satisfactory results are achieved, sometimes
leading to previous phases being executed twice or more.
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Insight of the Mentice software gathered from interviews with project managers
served as a good base for RQ 2c, 3a and 3b.

Through additional discussions with software developers at Mentice, further
insight into RQ 2a could be achieved. These interviews were conducted in order
to get a deeper understanding of how the simulation platform was built, what in-
formation could be made available from a simulation, how the user interacted with
the software, and what obstacles that were important to take into consideration
when constructing an automated test framework. Additional valuable information
connected to RQ 2c regarding user experience could also be gathered from these
interviews. More user experience of the Mentice simulation software was gathered
by practising various medical procedures on a Mentice simulation platform. The
practice was performed both on the actual product as well as the emulator.

Furthermore, dialogue with a professional interventional radiologist served for
increased understanding of how closely the Mentice simulation software mimics re-
ality, and what differences that the radiologist had noted in the software compared
to real endovascular procedures. This dialogue gave a better understanding of how
automated tests could be linked to real-life endovascular surgical procedures, i.e., it
gave insight for RQ 3c.

The research phase was performed in an iterative manner with each iteration
adding more information of a certain RQ. Information gathered was reflected upon
and the phase was iterated until a sufficient amount of information was gathered for
a particular RQ.

3.2 Construction phase
The action research within the construction phase involved putting together suitable
solutions/ideas found in the research phase (Sect. 3.1). To achieve a novel solution
for the RQ being evaluated, it also involved collaboration with developers at Mentice
regarding how data or software functionality, beneficial for the specific RQ, could
be extracted from or built within the simulation software.

Similar to the research phase, this phase was conducted in an iterative manner
for each research question. With each iteration increasing the level of complete-
ness and complexity of the proposed solution. For each iteration, the solution was
reflected upon and another iteration was performed if the solution appeared insuf-
ficient for answering the RQ.

3.3 Simulation phase

In this last phase, which mainly covers RQ 2–3 (and their sub-questions), simulations
of the proposed solution were tested and evaluated against the Mentice simulation
software. The desired outcome for a given simulation was outlined and the actual
output from the simulation was compared to the desired outcome. Results were
shared and discussed with supervisors and Mentice developers. If results turned
out satisfying, documentation was finalized and another RQ was brought under
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evaluation. On the other hand, if results turned out insufficient or dissatisfying,
previous phases were iterated again.

3.4 Non-functional requirements road-map

Apart from the methodology described in Sect. 3.1, in order to answer RQ 1, addi-
tional scientific papers were sought out which focused on NFRs and the construction
of a framework for such requirements. By studying prior work on constructing NFR
classification and frameworks, a better understanding of such could be achieved.

Parallel to this study, NFRs applicable to the Mentice simulation software
was identified with the purpose of answering RQ 1a. With an emphasis on user
experience and the connection between simulation—reality, a few key NFRs linked
to common software bugs were identified and ranked.

By studying a collection of frameworks and classification models from prior
work, an idea of how to answer RQ 1b evolved. A taxonomy based on a combination
of this prior work and knowledge of the Mentice Software served as a base for a
novel NFRs taxonomy for Medtech software. Different from “regular” software, the
Mentice software aims to be used as a training tool and to be perceived by the user
as close to reality as possible. Divergence from reality within the software would
sap the user experience and thus sap the training of a interventional radiologist,
making the simulated training insufficient, or in the worst case, irrelevant. This
aim was taken into great consideration when answering RQ 1c and constructing the
framework since it is the most important aspect in terms of user experience and
the development of a successful surgical training product. Figure 3.2 depicts this
process.

3.5 An automated test framework

To answer RQ 2 and 3, a few automated tests had to be built, which connected
NFRs with the user experience of the Mentice simulation. The NFRs reliability,
performance, scalability, portability and efficiency were explored through automated
tests. Close dialogue with supervisors and Mentice personnel made sure that the
tests developed were relevant for the user experience of the software and for the
NFR framework.

3.6 Non-functional testing: reliability

This section aims to describe the methodology used for developing tests connected
to the reliability of the system. The methodology is based on the phases described
in Figure 3.1 and each test was constructed over 6–7 weeks.
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Figure 3.2: Methodology for constructing a taxonomy for NFRs. Note how differ-
ent sources of information are combined for the solution.
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3.6.1 Test for tool stability
The first reliability test evaluated a specific scenario in which the procedure tool
started to shake/vibrate when entering some of the arteries within the simulated
patient. This defect was proposed as a test case by one of the project managers at
Mentice. The main objective for this test was to look at a set of images for a given
procedure and assess whether or not the tool was shaking when placed in a specific
artery.

By collecting data from the procedure in the form of images, tool coordinates,
and tool translation, the output for multiple procedures could be analyzed and
assessed regarding whether or not the behaviour of the tool was correct.

Iteration 1: Research phase. The first iteration focused on achieving a
better understanding of the record&replay functionality as well as the Mentice sim-
ulation software by practising various medical procedures, replaying these scenarios
and assessing the similarity of the replayed procedure to the one performed manu-
ally on the Mentice software. Various debug options within the simulation software
were explored and assessed, a particular predefined debug option, which enables the
user to view the arterial system, was used for further simulations. Furthermore,
functionality for executing the replay-files automatically from within Python was
added through a script. This script was also built to capture the fluoroscopic image,
at a high rate, while replaying the medical procedure. The captured fluoroscopic
images were stored as a set of BGR-images.

Iteration 2: Research phase. With the objective of isolating the tool from
its surroundings in the fluoroscopic image, multiple image filtering methods were
evaluated and compared for the stored image set. The image set was converted
into three types of sets: RGB (Red, Green, Blue), BGR (Blue, Green, Red) and
HSV (Hue, Saturation, Value). Different filtering ranges for each channel (RGB,
BGR, HSV) were tested with the purpose of finding a sufficient filter for isolating
the tool within the image, setting all elements, except for the tool, to black colour.
By isolating the tool, within the image, from its surroundings, it was possible to
assess whether or not the tool was shaking/vibrating.

This method proved dissatisfying since by only assessing the information within
an image, it was impossible to draw conclusions regarding the user input for the tool.
It was concluded that additional data, such as user input to the tool, was needed
in order to make a robust assessment of whether the shaking/vibrations of the tool
was based on software bugs or user input.

Iteration 3: Research phase. To achieve a more robust evaluation of the
test, this iteration looked at various ways of scraping more data from the simulation.
By discussing different approaches with Mentice software developers it was decided
that additional information could be scraped and logged from the simulation by
implementing a JavaScript (JS) script.

By implementing this script it was possible to grab data for tool coordinates
(x, y, z), tool translation, and in which artery the tool was positioned. Based on
the translation of the tool, additional data regarding tool coordinates etc. could
be logged for the simulation. This new script was also implemented within the
record&replay functionality which made it possible to automatically iterate a recorded
medical procedure multiple times using a Python script. The result from these it-
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erations was then assessed in terms of continuity, accuracy and user perception.
Iteration 4: Construction phase. In this iteration, a complete external

Python script was built for assessing the stability of a tool within the software.
This script was based on previous research iterations, knowledge of the Mentice
simulation platform and its code-base.

It was also decided that the functionality for capturing an image set, built in
Iteration 1, was redundant and unnecessary for sufficient assessment of the tool
behaviour and thus removed from the solution.

Iteration 5: Simulation phase. The JavaScript script built in Itera-
tion 3 was implemented and tested against the Mentice simulation software. A
record&replay file was replayed as input for the simulation, which ensured that the
same input was given for each iteration. Result obtained in the log file by the
JavaScript script was then evaluated using the Python script developed in Itera-
tion 4. Finally, the result given by the Python script was controlled against the
user perception concerning in which artery the tool had been unstable during replay.
By controlling if the test identified the same true positives as the user would do, the
robustness of the test could be evaluated.

Iteration 6: Improvement and finalization In the final iteration for this
test, detecting whether a medical tool placed at a location within the virtual patient
is shaking or not, the test was improved by grabbing tool coordinates at multiple
positions along with the tool. Initially, only a single position along the tool was
evaluated for stability and in order to obtain a degree of “shakiness”/instability ad-
ditional positions were evaluated. This algorithmic change also suggested to reduc-
ing the number of false positives for the test result. Additionally, various thresholds
for changes in coordinates (x, y, z) of the tool was tried in order to answer RQ 2b.
A complete description of the finalized solution and algorithm for this test will be
covered in Sect. 4.4.1.

3.6.2 Detection of tool outside artery walls
The second reliability test focused on the problem of the tool taking shortcuts
through/lay outside of, solid veins. Meaning that the tool could jump and skip
small sections of the simulated endovascular system. The objective was to identify
portions of the tool which lay outside of the arteries. This was done through im-
age analysis. The test could be used to check tool behaviour between software and
hardware updates.

Iteration 1: Research phase. Similar to the first iteration in Sect. 3.6.1,
the development of the test began by gathering images of the tool taking shortcuts
and saving these images into datasets. The Mentice system was put into a specific
debug mode with only arteries and tool visible in the fluoroscopic image. This
specific debug mode allowed the images to have more defined colours, where the
arteries are more defined in the colour red and the tool in blue.

The decision to use the debug mode was made due to the fact that using
the standard fluoroscopic image (gray-scale) or predefined debug modes within the
simulation resulted in images that were difficult to analyse. By using specific debug
settings it was easier to distinguish the arteries from the tool using image analysis
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and a simpler and more robust filtering algorithm could be used for the image.
Iteration 2: Research phase. As a first approach to finding parts of the

tool outside of an artery, basic colour filtering was used. By using Python library
Matplotlib to observe the colour range of each feature (tool and arteries), a notion
for which colour range to filter for each colour channel (RGB) could be obtained. By
tweaking the filter parameters, while simultaneous watching the resulting image, a
good estimate for which range to filter for a given colour channel could be achieved.
Filtering was done using Open-CV (Python library) functions.

Furthermore, this filter was applied to the complete image dataset resulting in
a filtered image set. This filtered image set was then evaluated against the ground
truth (the original image set), in which the user could notice parts of the tool being
outside of a given artery, and evaluate if the filtering method proved to detect these
areas. This filtering method proved sufficient for single image analysis, but when
performed over a set of images, it resulted in high redundancy in the result since
multiple succeeding images being detected by the filtering method looked “similar”
to the user.

Iteration 3: Research phase. The focus for this iteration was to find
a method to avoid redundancy within the resulting image set from the filtering
process. Multiple image analysis algorithms were evaluated for detecting equality
between images within the filtered image set.

Image analysis algorithms evaluated were: Template Matching, Structural
Similarity Index Measurement (SSIM), Scale-Invariant Feature Tracking (SIFT),
and Optical flow. The most promising image analysis algorithms were further ex-
plored for their use within this test case. To solve the redundancy issue, the orien-
tation of the two most promising algorithms, SSIM and SIFT, were explored and
evaluated for finding equality between images in the filtered image set. result is
given as a Structural Similarity Index which is often set as 0 (no similarity) and
1 (complete similarity) [47]. In the following formulas, the comparison is made
between images which are denoted as image x and image y.

Iteration 4: Construction phase. In this iteration, the previously eval-
uated algorithms (SIFT, SSIM), were combined into one script together with the
filtering method evaluated in Iteration 1 and 2. This combined script was evalu-
ated and various thresholds regarding SIFT, SSIM, and the amount of tool area that
was required to be outside of an artery, within an image, in order to be classified as
a problem. By discussing various pros and cons of higher/lower thresholds for the
different algorithms, a better sense of an answer for RQ 2b could be achieved.

Iteration 5: Simulation phase. After evaluation, the combined script con-
structed in Iteration 4 was tested and evaluated against the Mentice simulation
software. To achieve a high degree of accuracy in user input between iterations, a
record&replay file was used as input. The result from the simulation was evaluated
against the user perception of where the tool had travelled outside of an artery. The
redundancy in the test result was also investigated in terms of the uniqueness of test
results (images) and number of hits (images) in the result.

Iteration 6: Improvement and finalization. After testing the structure of
the method in Iteration 5, a decision was made to swap the order of the SIFT and
SSIM algorithms within the constructed Python script. This change was made in
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Figure 3.3: Illustration of how the external program CPUStres steals CPU power.

order to increase the number of hits (images) in the result, but without increasing the
redundancy in the result (low image uniqueness). In order to increase the uniqueness
of the images in the result, morphological skeletonization was performed on the tool
in order to compute its length. The complete algorithm for this case is further
explained and illustrated in Sect. 4.4.2.

3.7 Non-functional testing of performance, scala-
bility, portability, and efficiency

The last test for the automated test framework evaluates the NFRs performance,
scalability, portability and efficiency.

Iteration 1: Research phase. In this iteration, it was decided to mea-
sure how the computer performed during different procedures and different loads,
and how these parameters could affect the user experience. Both existing system
utilization programs for Windows and Python libraries for system utilization were
explored and evaluated in terms of pros and cons.

Iteration 2: Construction phase. After exploring the available alterna-
tives for measuring system utilization, a script was developed, using Python, for
capturing computer performance parameters. The script was evaluated in terms of
what system utilization parameters were relevant for the Mentice software as well
as had a clear connection to the user experience of the software. The different pa-
rameters, measurable by the script, was discussed with supervisors with the aim of
finding the most relevant parameters for measurement.

Iteration 3: Simulation phase. The script constructed in Iteration 2 was
tested using two different medical procedure simulations which required more or
less from the computer hardware. The script was executed on two different hard-
ware (DELL PRECISION M6700/M6800 ) and a program for applying CPU load
(CPUStres [48]) was used for finding bottlenecks within these medical procedures.
The result was analyzed and system utilization for the different loads (on different
hardware) was noted. CPUStres made it possible to increase the load by a step of
25% and setting the priority level of the applied load. Figure 3.3 depicts this.

Due to system utilization parameters having a weak correlation with the actual
user experience of the software, the research and construction phase had to be re-
iterated once more to find a suitable measure for user experience and to achieve a
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better measure for answering RQ 2b.
Iteration 4: Improvement and finalization. By discussing possible ways

of measuring user experience linked to the four NFRs assessed in this test and to an-
swer RQ 2b, additional parameters were taken into the measurement. A JavaScript
script was implemented for logging the frame rate (FPS) of the specific medical
procedure simulation. Through dialogue with Mentice developers, additional infor-
mation regarding the physics engine frame rate (PFPS) was logged through a JS
script.

When the test was improved and finalized, simulations were performed for the
two given medical procedure simulations. Both procedures were executed 3–5 times
each for a specific CPU load using CPUStres. The simulations were performed
an equal amount of times for each hardware setup and all external programs were
terminated leaving only the test script, CPUStres, and Mentice simulation running.
The result received from different hardware and different CPU load was analyzed
and compared. The mean and variance of the FPS and PFPS over all iterations for
a given CPU load was computed and compared across different hardware setups.
The mean simulation time over all iterations of a given procedure and CPU load
was also computed and compared across different hardware setups.
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Results & analysis

This chapter aims to describe the result obtained from the process illustrated in
Chap. 3 and to answer the research questions (RQs) described in Sect. 1.3. The
result includes an NFR taxonomy/road-map, an automated test framework, and
specific test results carried out as part of this automatic test framework. This
chapter also involves an analysis of the results obtained for each RQ.

4.1 Research questions repeated
In the list below are research questions mentioned earlier in Chap. 1 and Chap. 3
restated for clarity. This chapter (Results & analysis) aims to answer these questions
through the results obtained within this thesis.

1. How to portray and clarify the area of non-functional testing in the Medtech
industry?
(a) What non-functional requirements are applicable to the Mentice soft-

ware?
(b) How to depict a taxonomy for the specific non-functional requirements?
(c) How to link the taxonomy to user experience?

2. How to construct an automated test framework for evaluating user experience
in relation to a given “golden standard” for the aspect being tested?
(a) How does the user interact with the software?
(b) What is the “golden standard” for a specific test within the framework?
(c) What NFRs have the highest impact on user experience?

3. How to connect measurements for a given simulation aspect being tested to
user experience?
(a) What is the connection between the automated test and manual user

interaction?
(b) How would the user interpret the aspect being tested if manual tests were

performed?
(c) How to link test aspects to real-life endovascular surgical procedures?

4.2 NFR taxonomy
Based on research findings, gathered through the methodology described in Sect. 3.1
and Sect. 3.4, research question (RQ) 1(a-c) and 2(c) could be answered through a
taxonomy. This taxonomy aims to portray the area of NFR testing in the Medtech

35



4. Results & analysis

Figure 4.1: Taxonomy for creating testable NFRs. Note how each filter reduce the
number of requirements brought into the next layer of the taxonomy thus increasing
clarity within the testing phase.

industry and to link testable aspects to user experience. Figure 4.1 describes this
taxonomy.

The taxonomy serves as a filter for answering RQ 1a by obtaining a clearer
view of what NFRs are applicable to a specific product, in this case, the Mentice
simulation software. Furthermore, the taxonomy aims to depict how NFRs are
integrated into it, i.e., answering RQ 1b and how “user experience is related to the
taxonomy (RQ 1c). Further description of each filter is obtained in Sect. 4.2.1–4.2.5.

4.2.1 NFRs and FRs
The first filter of the taxonomy depicted in Fig. 4.1 separates NFRs from FRs. A
basic fundamental property of this filter is given from [10] in which it is stated:

• FRs: “what a software should do.”
• NFRs: “how a software should be.”

Based on this property, a requirement can be separated based on if it describes
what specific functionality the software should be able to do (FR) or how it should
be able to do a specific functionality (NFR). A concrete example is:

• FR: “Software should be able to navigate a virtual medical catheter through
a virtual patient’s arteries through user input from a user interface.”
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• NFR: “The navigation of a virtual medical catheter through a virtual patient’s
arteries should be smooth and without interruption.”

4.2.2 NFRs applicable to software
The next filter is separating the gathered NFRs based on their level of importance
for the particular software being investigated, i.e., answering RQ 1a by removing
irrelevant NFRs. In the case of this thesis, no NFR linked to network functionality or
software sharing passed this filter. This due to no network topology being necessary
for using the software and the source code is not being shared between Mentice and
a third party agent.

4.2.3 Ranking of NFRs
The following filter aims to rank NFRs based on their relevance. Relevance could
be linked to the frequency of which a specific NFR appears during an assessment.
Relevance could also be linked to a certain aspect and then the ranking will be based
on how much relevance a certain NFR has to the specific aspect.

In this thesis, all applicable NFRs are ranked with respect to the user experi-
ence of the software. This ranking links the taxonomy described to user experience
and thus answers RQ 1c. It is important to note, that although user experience can
be linked to all NFRs in some way, this filter serves to clarify the degree of impor-
tance for a given NFR based on what the user values the most. For the specific
software evaluated in this thesis, which is a training tool for interventional radiol-
ogists, user experience has been linked to how closely the software mimics reality.
Although this link between simulation vs. reality is not the only important aspect
of user experience, it is important for developing a useful training tool that mimics
real-life surgical procedures as closely as possible.

Furthermore, based on [10], sub-categories of NFRs such as
Maintainability where: Analyzability, Changeability, Testability, Reusability are
the sub-catergories, and the sub-categories of Compliance such as: Compliance,
Documentation, Legal & Licensing issues have a weak connection to the user expe-
rience defined above and are thus ranked lower.

4.2.4 Automated testing
The last filter of the taxonomy aims to separate the gathered NFRs which are
automatically testable and which are not. Due to the previous filter, all NFRs left
at this stage of the taxonomy have some link to user experience. The purpose of this
filter is to remove NFRs which are difficult to test automatically given today’s tools
and technology. A few examples of NFRs that could be removed here are usability,
documentation, and accessibility.

4.2.5 Tests specific for thesis
At this stage, out of all FRs and NFRs discovered in Sect. 4.2.1, only a few NFRs
passed all filters within the taxonomy. Out of these existing NFRs, automated tests
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can be built for testing that the software complies with these requirements.
In this thesis, tests developed focused on NFRs linked to reliability, perfor-

mance, scalability, and portability. Tests developed and their corresponding result
is further explained in Sects. 4.4–4.5.

4.3 An automated test framework

The chosen NFRs (see Sect. 4.2.5), which passed through the filters within the tax-
onomy, was further investigated and automatic tests were constructed to test these
requirements. Tests were performed automatically or semi-automatically and each
test developed had its own specific steps and functionality for executing success-
fully. Figure 4.2 depicts a general overview of the framework used when building
tests in this thesis. In this framework, specific medical procedures were chosen for
the evaluation of a specific NFR.

Information regarding a specific NFR and how it could be tested was collected
through interviews with Mentice developers and by reading documentation about
the Mentice software and specific procedures. This information was necessary in
order to answer RQ 2–3, in which all questions relating to how the user interacts,
interpret and evaluate the Mentice simulation platform. This information was used
for building evaluation scripts in Python which assessed these bugs/defects auto-
matically and made sure that the information gathered was assessed automatically
by the script.

The results from the automatic tests were further evaluated, manually, to find
weaknesses in these tests and their results. The golden standard was picked based
on dialogue with a professional radiologist and/or Mentice developers. The golden
standard was not always described as a strict measure but more often as a range of
results that would serve as sufficient for securing the user experience.

Additionally, by discussing how the Mentice simulation is tested manually with
project managers and developers, this information could be used for building eval-
uation scripts within Python which looked for similar defects within the simulation
automatically, thus answering RQ 3b.

Through additional discussions with a professional radiologist, more aspects
linked to real-life endovascular surgical procedures could be brought into the Python
evaluation test script . These additional aspects aimed to answer RQ 3c, i.e., “how
to link test aspects to real-life endovascular surgical procedures”, and to provide a
test that better evaluated the Mentice simulation in relation to reality.

4.4 Non-functional requirement: Reliability

This section presents the results from tests focusing on the reliability of the Men-
tice simulation software. Two tests related to the reliability of the software were
constructed and their results were analysed.
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Figure 4.2: Overview of the general approach for all tests developed within this
thesis. Note how manual testing and interviews, dialogue, and documentation are
combined and brought into test-scripts.

4.4.1 Result: Test for tool stability
The purpose of this test was to detect whether or not a medical tool within the
simulation was stable. By following the multiple steps described in Sect. 3.6.1, it
was possible to construct a test that could determine whether or not a medical tool
was stable within the simulation. By tracking the translation for the tool (user
input) and measuring tool coordinates within the simulation, the stability of the
tool could be evaluated.

Since the record&replay functionality closely mimics the actions of the user,
with exceptions based on the non-deterministic behaviour of the software, the record&replay
file was used as input for each result. This made it possible to answer RQ 2a,
by constructing input manually, which closely mimicked how the user would nor-
mally use the software and then replaying this input. Additionally, by using the
record&replay functionality, the input could be ensured to be as similar as possible
for each test iteration, enabling evaluation of only the output and assuming that
the input stayed equal throughout the testing phase. Furthermore, by using the
record&replay functionality, the connection between manual and automatic user
input could be strengthened since the difference between manual user input and
“automatic computer input” (record&replay file) could be minimized (RQ 3a).

To answer RQ 2b for this test, a threshold was used to identify instability for
a tool. Multiple thresholds were tested and a threshold of ±0.05 coordinate change
between frame proved to be sufficient, i.e., if the x, y or z coordinate moved ±0.05
between two simulation frames, instability of the tool was detected. To deal with the
non-deterministic behaviour of the simulation, the thresholds were set to identify
more than ten instabilities within a specific artery and tool, for the test to detect
an unstable tool for that particular artery. There was no significant difference in
using a slightly lower/higher threshold since if the tool was unstable it would show
a larger movement than ±0.05, and if not, the movement of the tool would be very
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Figure 4.3: Structure of test for detecting shaking tools. Note how an internal
JS-script is used to grab additional simulation information into the logfile.

low, or nonexistent, between simulation frames. This with an exception when the
tool was located close to the heart, in which the tool experienced more force due to
the beating of the heart.

Result 1: Measuring tip of the tool. The first finalized version of the test
tracked user input and evaluated the movement of the tip of the tool when no user
input was given for a certain time period. Figure 4.3 depicts the structure of the
test. Tables 4.1–4.2 show the main steps of the JS and Python scripts.

By executing the test depicted in Fig. 4.3, the following result displayed in
Fig. 4.4 could be obtained. The result was obtained on a DELL PRECISION
M6800 computer (denoted as DELL68 ) and code branch B1. This result proved
different from what the user perceived when watching the simulation run, i.e., the
ground truth. The result shows that the test detected two unstable tools at location
“6_40_453_Aortic_root”. Compared to the ground truth found trough manual
testing and interviews (See Fig. 4.2), this result was false since no drastic instability
was noticed by the user. This suggested that the test had to be improved further.

Result 2: Measuring multiple positions along with the tool. By mea-
suring multiple coordinates along the tools within the virtual patient, it was possible
to achieve a more robust evaluation regarding the stability of each tool. By adding
another parameter relative position to the logfile in Table 4.1, each timestamp, tool,
artery name, and tool coordinates also got a relative position. This relative position
was computed from the tip of the tool and towards the source at which the tool was
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Table 4.1: JS test-script used for capturing data from Mentice simulation.

JS test-script (once every simulation frame, iterated for each tool
within system)

1. Check tool translation and add to buffer: [tt0, ..., tt99]
2. Compute mean-translation from buffer: mtt

3. If buffer is filled more than 50%:
(a) Pick first element of buffer: tt0
(b) If mtt−0.02 < ftt < mtt+ 0.02 (i.e., tool translation buffer mean
≈ tt0:
i. write timestamp, tool, artery name in which tool is at and

tool coordinates (x, y, z) to logfile.

Table 4.2: Python test-script used for evaluating logfile from simulation.

Python test-script (executed with simulation logifle as input)

1. Parse logfile data into separate tool dataframes toolT where:
(a) T = 0, 1, 2
(b) Each toolT includes: time+artery, tool, x, y, z (global coordi-

nates).
2. For each toolT dataframe compute for each artery the difference be-

tween coordinate x, y, z between samples:
(a) toolTdiff [j] = abs(toolTi−1 − toolTi), ∀i ∈ (1, ..., n− 1)
(b) If toolTdiff [j] > th:

i. number of rapid changes in tool at specific artery:
nrcToolT [artery]

ii. nrcToolT [artery] = nrcToolT [artery] + 1
3. For each nrcToolT [artery] check whether number of rapid changes

exceed threshold nrcth:
(a) If nrcToolT [artery] > nrcth:

i. toolTstable[artery]=False
(b) else:

i. toolTstable[artery]=True
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Figure 4.4: Result when measuring tool stability at the tip of the tool on branch
B1 using the DELL68 computer. Note that the scale is only presented as “unstable”
= 1, “stable” = 0.

inserted. Figure 4.5 depicts this change in measurement points for tool coordinates.
Furthermore, the Python script in Table 4.2 was extended by checking tool

stability at each relative position instead of only the tip of the tool. Figure 4.6
displays the new result in which a degree of instability is presented. This result was
gathered on the DELL68 computer and the same code branch as before (B1 ). As
seen in Fig. 4.6, the “6_40_453_Aortic_root” has a degree of instability of 1 for
Tool0 and 2 for Tool1 which better reflects the ground truth, i.e., what the user
perceived when looking at the simulation.

Result 3: Tool stability between different code branches and hard-
ware Tool stability was also evaluated for a newer code branch of the Mentice
simulation platform denoted as B2 here (compared to previous B1 ). In Fig. 4.7,
the same test, and input, is executed on a newer branch of code. As depicted by
the figure, many locations which were evaluated as unstable for branch B1 are now
evaluated as stable. This suggests that the tool stability had been improved be-
tween branch B1–B2. Although most of the locations visited in Fig. 4.6 are visited
in Fig. 4.7, there are some slight differences at which locations the tool visited for
the last measurement of this test. This difference could be explained by the non-
deterministic behaviour of the Mentice simulation system and the variations between
code branches (B1, B2 ).

Tool stability was also evaluated on different hardware for branch B2. The
result, given the same input (record&replay file), is displayed in Fig. 4.8. This re-
sult was obtained on a DELL PRECISION M6700 computer (denoted as DELL67 ).
The output from the test performed on this computer is only slightly different from
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Figure 4.5: Improvement of test algorithm. Measuring, at red circles, tool coordi-
nates (x, y, z) within the simulation.

Figure 4.6: Result when measuring tool stability at multiple positions along tool
for branch B1 using the DELL68 computer. Note how this result, in relation to
Fig. 4.4, presents a degree of instability (0–4).
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Figure 4.7: Result when running test on a newer code branch B2 using the DELL68
computer. Note how the locations visited (x-axis) are slightly different from the ones
visited in Fig. 4.6.

the one displayed in Fig. 4.7. The difference can be seen for “6_16_154_Coro-
nary_arteries_73” in which the test evaluated the tool as stable for the DELL68
computer and a degree of instability of 1, for Tool1, for the DELL67 computer.
This difference could be explained by the non-deterministic behaviour of the simu-
lation and slight variations in hardware with the DELL68 being more powerful and
thus able to perform more computations for the optimal tool position within the
simulation.

Result 4: Physics change of simulation. Lastly, the physical properties
of the tools were modified for the simulation to evaluate the behaviour of the tools
under these new properties. The link length of the tools was shortened thus increas-
ing the number of collision points and flexibility of the tools within the simulation.
Figure 4.9 depicts this physical change of the tools. As shown in the figure, this
modification was performed at two different degrees using shorter links and even
shorter links, which were predefined settings within the JS code for the Mentice
simulation.

By decreasing the link length and running the test, the result depicted in
Figs. 4.10–4.11 could be obtained. As can be seen in these figures, modifying the
link length of the tools changes the output from the test quite drastically with the
locations being different from the locations visited by the test in Figs. 4.7 and 4.8.
This is due to altering the length of the tool will yield a different path of the tool
within the simulation although the same input is used. The difference in locations
visited by the tool is also noted between Figs. 4.10 and 4.11. This problem makes
the comparison difficult between default settings used in the previous test scenarios
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Figure 4.8: Result when running on test on code branch B2 using the DELL67
computer. Note that the result is different for 6_16_154_Coronary_arteries_73
compared to Fig. 4.7.

and these new modified settings.
Another difference is that although the tool visits the same location/artery

within the simulation, though at different timestamps, the tool will not be placed at
the exact same coordinates within these locations and thus the result will be different
when assessing the stability of the tool. Compared to previous test comparisons,
the computer on the same code branch (Figs. 4.7–4.8) or test algorithm (Figs. 4.4–
4.6), there is simply too many parameters such as link length, collision points, and
non-deterministic behaviour of the software that makes the comparison of this test
output implausible to the previous test result with default link length and number
of collision points.

4.4.2 Results: Detection of tool outside artery walls
For the second test, the purpose was to detect areas of the tool being outside of
the artery walls. Using the methodology in Sect. 3.6.2, it was possible to detect
these areas. The camera, which tracks the tool within the simulation, was set to
automatically track the tool of interest. This enables the tool of interest to be
centred in the fluoroscopic view.

The approach of the test was to extract unique images in which the tool was
outside of the artery walls from a dataset captured during simulation. As described
in Fig. 4.17, the images are captured and saved during a replay of a record&replay
file, resulting in a dataset of fluoroscopic images ranging from between 100–4000
images. From these datasets, unique images are extracted using a combination of
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Figure 4.9: Link length modification. Note how the number of collision points for
the medical tool increase as the link length decrease.
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Figure 4.10: Result when shortening the link length on branch B2 using the
DELL68 computer. Note how locations visited and their timestamps (x-axis) are
very different from Fig. 4.7 altough same input and code branch is used.

Figure 4.11: Result when shortening the link length even further on branch B2
using the DELL68 computer. Note how locations visited (x-axis) are different from
the ones visited during short link lengths in Fig. 4.10.
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(a) Default mode (b) Specific debug mode

Figure 4.12: Visualization of the fluoroscopic image in default mode and in a
“specific debug mode”. Note how, apart from information and logos, only the arteries
and tool are visible within the fluoroscopic image.

available image processing tools. The best approach found was to apply the image
processing algorithms in the following order: colour-filtering, image grouping, SIFT,
tool movement tracking, and SSIM. The descriptions of these algorithms are not
covered to their full extent within this section, but only their functionality within
the proposed test. The extensive description of SIFT, SSIM, and tools used for tool
movement tracking can be read in Appendix. A.1. Moreover, in order to detect if
the tool is outside the artery walls, one must be able to isolate and track the tool.

Color filtering. By applying colour filtering, it is possible to separate the tool
from the artery in the fluoroscopic image. The ability to separate the tool within
the fluoroscopic image was made possible by the various debug options available
in the software. Figure 4.12 depicts the fluoroscopic image, the left image shows
the fluoroscopic image in default mode (a), while the image to the right shows the
fluoroscopic image in a “specific debug mode” (b). This test has been developed
using this “specific debug mode”, since separating the tool from the background
was proven to be very difficult in the default fluoroscopic image.

The debug mode made it possible to separate the tool from the arteries by
splitting the image into red, green and blue channels (RGB). An example of splitting
the image into RGB channels can be seen in Fig. 4.13, where the red channel visualize
the isolated arteries, and the blue channel visualizes the isolated tool.

Once the channels are separated, the pixel values of each channel were modified
to get unitary pixel values, e.g, the blue channel was modified to only contain pixel
values of 55 or 0, and the red channel only to contain pixel values of 200 or 0. By
adding the red and blue channels (RB image), with unitary pixel value, the areas
of which the tool was outside of the artery walls could be found. This since each
pixel getting a value of either 0, 55, 200 or 255, where each value describes areas in
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Figure 4.13: Visualisation of RGB channels. Left = red channel, middle = blue
channel, right = green channel. Note how information (tool/artery) can be isolated
within a colour channel using the “specific debug mode” presented in Fig. 4.12

Figure 4.14: Representation of how subsets are collected. Each dot in the red
dotted line represents a image in the dataset. Note how the threshold decides when
a subset should be obtained.

the image. Pixel values equal to 55 indicated an area in which the tool was outside
of the artery wall, meanwhile, pixel values equal to 255 indicated areas of the tool
being inside of the artery wall.

The regional information acquired using the colour filtering technique allowed
for calculating the percentage of the tool being outside of the artery wall. By
counting the number of pixels equal to 55 in the RB image, and dividing that
number with the number of pixels equal to 55 in the blue channel, a measure of the
percentage of the whole tool being outside the artery wall could be achieved. The
method used for colour filtering can be seen in Table 4.3.

By applying a threshold for the percentage of tool outside of an artery, subsets
could be created for as long as the percentage of tool outside of an artery was above
this threshold. Figure 4.14 depicts this method of creating subsets based on the
percentage of the tool being outside of arteries.

SIFT implementation. After gathering the subsets of images where the tool
was located outside artery walls, two problems appeared. The first is the redundancy
of similar images within each subset and the second problem is high non-similarity
within each subset, due to rapid tool movement between frames. The first problem
implies that each image within a specific subset looks very similar due to frames
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Table 4.3: Iterative representation of color filtering.

Color filtering method

1. Iterate for all fluoroscopic images in the dataset, Zi = fluoroscopic
image
(a) For Zi in dataset:

i. Split Zi into channels [Red, Green, Blue]
ii. R1 : ∀Redpixel > 0, R1pixel = 200.
iii. B1 : ∀Bluepixel > 0, B1pixel = 55.
iv. Add the red (R1) and blue (B1) channels that contain unitary

pixel values. Q = R1 +B1
v. Qc = (∑

∀p∈Q where Qp = 55) , e.g , count pixels where Q
= 55.

vi. Divide Qc÷ supp(B1) = µ to get percentage of tool outside.
vii. If µ > ε, Store Zi, Where ε is preset threshold 0 ≤ ε ≤ 1

2. Return subsets of stored images

being captured very frequently. This results in frames displaying more or less the
same fluoroscopic image. For the second problem, some subsets contained images
that had rapid background changes due to a rapid tool movement, making each of
them unique. If only one image is kept from these subsets, relevant locations may
be inaccurately discarded.

The main issue with the two problems is that if one removes all redundant
images within each subset, images within a subset containing rapid background
changes would be lost since all by one image is discarded within each subset. To
solve the issue the SIFT algorithm was applied. The features of the algorithm
allowed for tracking matching keypoints between two image frames. If the distance
between matching keypoints of two frames within a given subset is above a threshold,
the “reference” image is seen as unique and therefore stored, while the frame it was
compared to is used as a “reference” for further comparison within the subset. The
tracking of movement can be seen in Figs. 4.15–4.16, where the matching colours
depict the matching keypoints between two frames. The green line illustrates the
distance that the key points have travelled between the two frames.

Implementation of tool movement tracking. On some occasions, subsets
contained images in which SIFT did not recognize a high enough distance between
frames even though there was major tool movement between frames in the sub-
set. Using the method of only storing one image in a redundant subset resulted in
frames with high tool movement being discarded. The solution was to track the tool
movement between frames within the subset whenever the SIFT algorithm did not
recognize any movement.

The first iteration of tool movement tracking used techniques similar to the
colour filtering method. By counting the number of pixels in the isolated tool image
between frames, a change could be registered if the number of pixels increased
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Figure 4.15: Visualization of how keypoints match, where the match is denoted
by the color of circles between the two frames. Left image shows frame 1 and the
image to the right frame 2. Difference between the two frames can be seen if looked
upon the tool movement.

Figure 4.16: Visualization of how keypoints match, where the match is denoted
by the color of circles between the two frames. Left image shows frame 1 and the
image to the right frame 2. Difference between the two frames can be seen if looked
upon the lower portion of the images, where some arteries have moved out of frame.
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Table 4.4: Iterative representation of SIFT and tool tracking.

SIFT and tool tracking method

1. Iterate for all fluoroscopic images in each subset of images, Sk = Sub-
set, I(k,j) = image in subset i.
(A) Parameters:

i. k = index of subset, j = index of image within subset
ii. N = #Subset
iii. η = Distance threshold for SIFT
iv. λ = Tool area threshold for tool tracking

2. Do for k = 1, 2, . . . N
(A) For I(k,j) in Sk:

i. distance = SIFT(I(k,j), I(k,j+1))
ii. if distance > η:

a. Return I(k,j)
iii. else:

a. F1 = (∑
∀p∈ I(k,j)

where I(k,j) = 55), e.g, count pixels in
I(k,j) = 55

b. F2 = (∑
∀p∈ I(k,j+1)

where I(k,j+1) = 55), e.g, count pixels
in I(k,j+1) = 55

c. if (F1 − F2) > λ→ Return I(k,j)
3. Store Returned images

or decreased. If the number of tool pixels increased, or decreased, past a certain
threshold, the image was seen as unique and thereby stored. The problem with the
first iteration of the tool tracking algorithm was that it did not take the number
of tools, and their width, into consideration. This resulted in a tool with a smaller
width having less to no impact on the tool tracking algorithm while wider tools had
a large impact.

For the second iteration, an algorithm of morphological skeletonization was
used on the isolated tool image. By morphing the tool into single-pixel width (see
Fig. A.4 for explanation), the impact concerning width of the tool was removed,
which resulted in a more accurate measurement of the tool movement between image
frames. The flow of this process can be seen in Fig. 4.17 and the iterative process
can be seen in Table 4.4.

SSIM implementation. The images captured using the colour filtering,
grouping, SIFT and tool movement tracking algorithms are saved as a final set of
images. As a final step, the SSIM algorithm was used to verify that each image in
the final set is unique. This was done by comparing the unique frames, side-by-side,
and if the percentage of similarity was above a certain threshold, the image with
the most tool area outside of the arteries was stored while the other image was
discarded. The whole process from dataset to SSIM can be seen in Fig. 4.17.

Result 1: Test result and physics setting modification. An example
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Figure 4.17: Flowchart for test to detect area of tool which is outside artery walls.
Note how initial dataset is iterated and frames are put into subgroups (Group 1–N)
according to methodology in Fig. 4.14. Furthermore, how SIFT, tool length, and
SSIM algorithms are discarding images of high equality compared to the reference
image.
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Figure 4.18: Example of a unique image. The left image depicts the original frame.
The image to the right depicts the original frame with portions of tool being outside
artery wall highlighted in green.

of a unique image can be seen in Fig. 4.18. The image to the left represents the
original frame and the image to the right represents the original frame with areas of
tool outside of arteries highlighted in green.

By looking closely at the tip of the tool, it is noticeable that the smaller tool is
taking a shortcut on the curved artery (see Fig. 4.19). Without the “specific debug
mode” toggled on, it would be very difficult for the user to see where the tool takes
shortcuts. The possibility of detecting these shortcuts vary between a developer
and an experienced interventional radiologist. Where the experienced radiologist
may recognize it through the fluoroscopic image using default mode due to their
well-established understanding of the artery tree (RQ 3b). “Shortcut” behaviour
threatens the user experience since the expectations of the tool behaviour is not
portrayed accurately in the simulated fluoroscopic image. The behaviour, therefore,
needs to be very reliant and realistic in order to meet these user expectations and
give an accurate medical simulation procedure.

Simulation physics change & Different hardware. Moreover, two sets
of tests were evaluated in order to assess the reliability of the tool behaviour. The
first set consisted of changing the number of links in the tool (similar to Sect. 4.9).
The second was to test the behaviour of the tool between two computers.

Result 1: Simulation physics change. For the first test, changes to the
physics of the tool were evaluated. The following settings were used: “default”,
“short” and “even-shorter”, which already existed as predefined settings within the
JS code (see Fig. 4.9). The “default” setting is the most common tool physics
setting for all of Mentice procedures since these are the settings that reflect the
tool behaviour most accurately compared with a real surgical procedure. “Short”
and “Even shorter” representing short and more links, striding further away from a
realistic tool behaviour and becoming more flexible.

Table 4.5 represents the unique image retrieved from the dataset using the
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(a) Default mode (b) “Specific debug mode”

Figure 4.19: Magnification of areas that is outside artery walls, the green squares
depicts the regions where the tool is outside the walls.

Table 4.5: Resulting break-down of dataset into unique images.

Settings: Default “Short” “Even shorter”
Dataset Images 2269 2107 2104
Unqiue Images 20 16 20

methodology described in Fig. 4.17.
It is important to notice that for “Even shorter” links, the effect on the be-

haviour of the tool during the replaying procedure is quite significant. As mentioned,
using this setting results in the tool having a more flexible type of behaviour and
thus does not necessarily travel to the same locations in the endovascular tree. This
is true even if the same input was given as for the default settings. The same effects
can also be seen on some occasions using the “short” settings. Thus, the result-
ing unique images when using the setting “short”, and “Even shorter”, can not be
condoned as an improvement for this particular behaviour.

Result 2: Comparison between computers. For the test between two
computers, the setup consisted of two computers: DELL PRECISION M6800 and
DELL PRECISION M6700. Both computers used the default tool physics setting,
the same code branch for the Mentice simulation, the same input (record&replay
file) and the same threshold parameters for the Python test script. As described
earlier, the difference between the two computers is the M6800 being more powerful.
The computers are here denoted as DELL67 and DELL68.

Note that the number of images in the dataset is different, though this does
not affect the evaluation of each image. The capturing of images was set manually
and thus the size of the dataset may differ, therefore the ±100 sign in Table 4.6.

Comparing the procedure between the two computers shows that the DELL67
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Table 4.6: Resulting break-down of dataset into unique images between DELL67
and DELL68 using default tool physic settings.

Computer DELL67 DELL68
Dataset Images 2269(±100) 2103(±100)
Unqiue Images 20 18
. . . . . . . . .

Figure 4.20: DELL68, image with the highest percentage of the tool being outside
of arteries. Note how areas outside of the arteries are highlighted in green by the
test algorithm.

is able to find 20 unique images while the DELL68 only found 18 unique images
(Table 4.6). This Indicates that DELL67 computes the tool physics slower than
DELL68, or that DELL68 is better at replaying the procedure.

The comparison of the unique images captured by each computer shows that
the same location has been discovered by the two computers (besides the two ad-
ditional images captured by DELL67), see Figs 4.20–4.21. Meaning 18/18 of the
images discovered by DELL68 was also discovered by DELL67.

Figure 4.22 depicts the percentage of the tool being outside the the artery
walls during the whole procedure. By looking at this graph it is possible to notice
regions in which the two graphs are different. Since samples above the threshold are
grouped together, the DELL68 forms more groups from its data compared to the
DELL67, this explains why the DELL68 has more unique images than the DELL67.
Moreover, in addition to the two additional images captured by DELL67, the other
images captured between the two computers are identical.

Threshold evaluation. There are four major threshold parameters included
in this method that could alter the results. Each threshold gaining its value through
trial and error when developing the test. The order of the following threshold depicts
the range of impact they have on the outcome of the test. The thresholds are:

1. Percentage of tool outside of artery wall threshold
2. Matching keypoint distance threshold
3. Tool movement distance threshold
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Figure 4.21: DELL67, image with the highest percentage of the tool being outside.
Note how areas outside of the arteries are highlighted in green by the test algorithm.

(a) DELL68 (b) DELL67

Figure 4.22: Comparison of percentage of tool outside artery walls during the the
replayed procedure. Left figure depicts DELL68 and the figure to the right show
DELL67. Note the slightly higher values for the DELL67 computer.
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4. Similarity level (SSIM threshold)

The threshold for percentage of tool being outside of the artery wall is the most
important threshold since it is this threshold that determines the degree of accepted
inaccurate tool movement/degree of the shortcuts. It also determines the amount
of images that will be grouped into subsets and later processed by the succeeding
functions. If the threshold is set to low, images where the tool is being recognized
as outside may not be of any interest, this since those images will involve very small
portions of the tool outside of the artery and thus display irrelevant locations. On
the other hand, a too large threshold will miss a lot of interesting images where the
tool take intermediate shortcuts or where only the smallest tool take large shortcuts
but is small in relation to all tools visible in the fluoroscopic view. A threshold value
of 10%, for the whole tool (all tools within the fluoroscopic view), proved sufficient
detecting valid inaccuracies within the fluoroscopic view (RQ 2b).

The remaining thresholds do not carry as much impact as the threshold for the
tool being outside of artery walls, this since they do not partake in any discoveries
of inaccurate tool placement. Their purpose is only to filter out redundant images
within the result to provide the developer with locations within the endovascular tree
in which the tool behaviour fails. If these thresholds are not set properly, the result
will be that the number of redundant images will increase or decrease. Moreover,
the best combination of threshold values was discovered to be the following:

1. 10% of the total tool area being outside of artery walls.

2. 50 pixels difference between matched keypoints of two frames

3. 25% movement of tool between two frames

4. Similarity level (SSIM threshold) = 80% similarity between two images

These threshold values are able to detect the most relevant locations where
the tool is being outside, without presenting any redundant images. Furthermore,
in the ideal case, the graph shown in Fig. 4.22 should be completely flat since if
there are any indication of the tool being outside artery walls the consequence in
a realistic procedure would mean major or fatal injuries to the patient (RQ 3c).
In the simulated case there needs to be an acceptance towards inaccuracies since
with the current software and hardware it is not possible to replicate the ideal
case. Indeed, the result in Fig. 4.22 does not reflect a normal procedure done by
a professional and is only for verification purposes. A normal procedure performed
by an experienced radiologist on the Mentice simulation platform may have fewer
occasions where the tool is outside of the artery walls. Although, if the percentage
of the total tool outside of the artery wall is above 10%, the flaws are clearly visible
and thus jeopardizes the user experience.

Note that the two large spikes seen in the Fig. 4.22 reflects actions with the
intention of pushing the tool outside of the artery walls and should not occur during
a normal procedure. This behaviour is also only possible due to the test being
executed on an emulator which does not incorporate force feedback to the user
when moving the tool into specific arteries.
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4.5 Non-functional requirement: Performance, scal-
ability, and portability

The last test constructed for the automated test framework aims to evaluate per-
formance parameters for the Mentice simulation software. Tests were conducted
for two different medical procedures within the simulation, Procedure A (PA) and
Procedure B (PB), with the latter demanding more CPU power during execution.
For each test setup, a record&replay file was used as input with the test script being
executed three times and the mean being computed for these three runs. Simula-
tion frame rate and physics engine frame rate was measured and compared across
different CPU loads and for different hardware setups (DELL68/DELL67 ). A Mi-
crosoft program CPUStres [48] was used to remove available CPU power from the
hardware as described in Sect. ??. Additionally, “hyperthreading” was evaluated
for both procedures on the DELL67 computer.

As a golden standard for this particular test, a “soft” threshold was set related
to how the simulation was perceived by the user during testing, i.e., how the flu-
oroscopic image and simulation menus were behaving. This in contrast to using a
“hard” frame rate threshold for what is an acceptable frame rate for securing user
experience (RQ 2b).

4.5.1 Result 1: Simulation frame rate
The first test evaluated simulation frame rate for different removals of CPU power
and across different hardware. Figure 4.23–4.26 depicts the result when running PA
on the DELL68 computer and removing no, low, medium, and high (0%, 25%, 50%,
75%), power from the CPU. As depicted by these figures, the mean frame rate of
the simulation drops as more CPU power is removed. Additionally, variance of the
frame rate increase as more CPU power is removed. As can be seen in Fig. 4.26,
there are less samples from the simulation frame rate. This is due to the simulation
crashing when not sufficient CPU power is available for the simulation.

Figure 4.23–4.26 suggests that, for the procedure PA, the simulation runs
without any noticeable drop in frame rate and with reasonable variance for no
and low/25% CPU power removal. For higher CPU power removals, i.e., 50–75%,
the variance increase to a level which has an impact on the performance of the
simulation. Although the frame rate graphs can not determine the quality of the
simulation in isolation, by inspecting the simulation, and looking for noticeable frame
drops, it was concluded that higher CPU removals (50–75%) had an adverse effect
on simulation performance and were not considered to deliver the user experience
seen for no or 25% CPU power removal.

Furthermore, since there is no consensus regarding what mean frame rate and
frame rate variance that is acceptable for keeping high user experience through the
simulation, this inspection of the simulation while removing CPU power suggest
that the Mentice simulation software keeps a sufficient user experience with at least
75% (25% removal) of the CPU available for PA. This implies that for the scalability
of PA, the procedure could be scaled up in complexity without having an adverse
effect on user experience when being executed on the DELL68 computer.
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Figure 4.23: Simulation frame rate of PA with no/0% of CPU power removed
(DELL68 ). As depicted, the variance is very low for with no load applied to the
computer CPU.

Figure 4.24: Simulation frame rate of PA with low/25% of CPU power removed
(DELL68 ). Note how the variance has increased compared to Fig. 4.23.

60



4. Results & analysis

Figure 4.25: Simulation frame rate of PA with medium/50% of CPU power re-
moved (DELL68 ). Similar to Fig. 4.24, a higher variance. The simulation frame
rate also starts to decrease.

Figure 4.26: Simulation frame rate of PA with high/75% of CPU power removed
(DELL68 ). Similar to Fig. 4.25, a higher variance is noted. Additionally, note how
the sampling stops at ≈ 1400 samples due to the simulation crashing.
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(a) PA (b) PB

Figure 4.27: Comparison between DELL68/67 for PA and PB for increasing CPU
power removal. Note how the behaviour across computers during increased CPU
removal is different between procedures.

Simulation frame rate across hardware. Test result similar to Figs. 4.23–
4.26 was obtained for different hardware and for different procedures (PA/PB).
Figure 4.27 depicts the mean simulation frame rate and variance for both hardware
setups when removing CPU power, in steps of 25%, as described earlier and in
Iteration 3.

As depicted by Fig. 4.27, for PA the DELL68 computer has a higher mean
frame rate (measured over three iterations) and a lower frame rate variance compared
to the DELL67 computer. For this computer, as more CPU power is removed,
the simulation frame rate drops and the variance increases, as depicted earlier by
Figs. 4.23–4.26. The same behavior is true for the DELL67 computer, as seen in
Fig. 4.27 (PA), with a higher simulation frame rate drop and a higher variance for
increased CPU power removal. This result suggest that for no and low/25% CPU
removal, the portability of PA between the two computers is sufficient but for higher
CPU removals the DELL67 computer fails to maintain sufficient frame rate and low
frame rate variance.

A more interesting result appears for PB in Fig. 4.27. Since this procedure
is more computationally heavy than PA the mean frame rate is expected to be
lower for both computers. As can be seen in the figure, the frame rate is lower
when no load is applied, 11–12 compared to previous 14–15, but the variance is
high (≈ 5) across all CPU power removals. Another interesting note is that the
DELL67 computer has a higher simulation frame rate for the highest (75%) CPU
power removal which was not the result for PA. This result implies that for PB, the
portability for the procedure is high across all CPU power removals although the
performance of the procedure is of low quality for > 25% power removals for both
hardware. See Appendix. A.2.1 for all tests conducted for procedure PA and PB on
both computers (DELL67/68 ).

4.5.2 Result 2: Physics engine frame rate
Physics engine frame rate, the frame rate at which the C++ physics engine computes
physics features within the simulation, was also evaluated to see whether the frame
rate of these computations was affected when removing CPU power. The idea was
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Figure 4.28: Physics engine frame rate with no CPU power removal for PA on the
DELL68 computer. Note how the frame rate is ≈ 500 for the physics engine.

that this could also be a measure of user experience and used for drawing conclusions
about performance, scalability, and portability of the software.

Figure 4.28 and 4.29 depicts the result for this test performed for PA. This
test was performed similarly to the previous test regarding simulation frame rate,
measuring mean (physics engine) frame rate and variance. As depicted by Fig. 4.29,
the physics engine frame rate appeared unaffected by the CPU power removal with
mean frame rate and frame rate variance being quite constant. This result was sur-
prising and might be due to the Mentice simulation prioritizing these computations
and that the physics engine runs in parallel, and much faster, compared to the other
steps performed during a simulation frame (see Sect. 2.1.2).

For PB, the more computationally demanding procedure, the test showed a
lower overall mean physics engine frame rate and with more variance as well as with
multiple outliers which had an adverse effect on the variance of the measurement.
Similar to PA, this procedure showed no decreasing frame rate when increasing
CPU power removed. The reason behind the outliers in Fig. 4.30 was not fully
understood. One idea was that the physics engine frame rate spiked or dropped
drastically when the user went into the simulation software menus and applied/
removed options within the simulation. Another idea was that this could be due to
the tool being still but when compared to the previous result, Fig. 4.23, this idea
proved dissatisfying since this procedure also included time intervals in which the
tool was not being moved.

Furthermore, PB, similar to PA, showed no significant difference between the
two hardware setups. This result made it implausible to draw any conclusions
regarding the scalability and portability of the software since results were almost
identical across different CPU power removals and for different hardware. For graphs
displaying more of this result, see Appendix A.2.
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Figure 4.29: Physics engine frame rate with increasing CPU power removal for PA
on the DELL68 computer. Note how the frame rate mean and variance is unchanged
during increased CPU removal (same as in Fig 4.28).

Figure 4.30: Physics engine frame rate with no CPU power removal for PB on the
DELL68 computer. Note how outliers in data produce a high variance compared to
Fig. 4.28. For visibility of outliers, variance lines are not visible.
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Figure 4.31: Physics engine frame rate with increasing CPU power removal for
PB on the DELL68 computer. Note how the frame rate, although stable across
CPU removal, is less than half compared to Fig. 4.29. Also, variance is much higher
due to outliers. The same stability as seen for the mean frame rate and variance
in Fig 4.29 is seen across all load for this procedure as well, i.e., same values as in
Fig 4.30 for all loads.
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4.5.3 Result 3: Hyperthreading M6700
In the last result for this test, the “hyperthreading” setting was evaluated on the
DELL67 computer. It was suggested that for optimal simulation performance, “hy-
perthreading” should be turned off in the hardware. Test similar to the previous
ones were conducted with and without “hyperthreading” being active on the hard-
ware. Figure 4.32 depicts the test result when increasing CPU power removal and
having “hyperthreading” active and not active for both procedures (PA and PB).

For no and 25% CPU power removal, the result complies with what was sug-
gested. The simulation performance is higher when “hyperthreading” is not active
for these CPU removals. This is true for both procedures PA and PB. A more
interesting result is that, as CPU power removal increases, the simulation frame
rate stays higher with “hyperthreading” active. This result is true for both proce-
dures investigated. Although frame rate stays higher during increased CPU power
removal for both procedures, frame rate variance is different across procedures. As
depicted by the figure, PA results in higher frame rate variance for increased CPU
power removal. Additionally, frame rate variance measures across both test cases
for this procedure seemed to converge towards higher percentage removals, though
at no CPU power removal, the variance is much lower for the result with no “hy-
perthreading” active.

Furthermore, for PB, the same behaviour is not displayed for the frame rate
variance. Similar to PA, the variance is higher for no CPU power removal but as
more CPU power is removed, the variance decreases with “hyperthreading” active
while it stays the same for no “hyperthreading”.

Lastly, this result suggests that for computers with less CPU power available,
activating “hyperthreading” could lead to improved simulation frame rate and per-
formance (as seen for both procedures). Although, it is also important to note that
the frame rate variance develops differently between these two procedures and thus
there is no conclusion whether frame rate variance decrease or increase for higher
CPU power removals when having “hyperthreading” activated.
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(a) PA (b) PB

Figure 4.32: Simulation frame rate mean and variance for PA and PB using the
DELL67 computer with and without “hyperthreading”. Note how the behaviour
displayed in PA is not similar to the one in PB.
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5
Discussion

This chapter aims to discuss NFRs and the characterization of such. It will also
discuss results presented in Chap.4, what these results mean, why they matter and
what conclusions can, and can not, be drawn from those results.

5.1 Non-functional requirements
The NFRs evaluated in this thesis are reliability, performance, scalability, and porta-
bility. As can be seen in the result, no efficiency measurement or evaluation was
considered. There could have been multiple additional NFRs to evaluate for the
specific product (the Mentice simulation software), but these mainly serve as an
example of tests connected to NFRs which can be evaluated automatically. Due
to the elusiveness of NFRs, these requirements are often picked apart in order to
find a parameter that is measurable by a computer script. This is in contrast to
manual testing by a human, in which “softer” measurement parameters such as the
“look-and-feel” of the software, could be evaluated during testing. The importance
of separating NFRs and FRs from each other has to do with their different coverage
of the software. FRs are often specific and aims to evaluate specific functionality,
while NFRs has more connection to the overlaying software structure, feel, and per-
formance. In this thesis, NFRs evaluated were linked to user experience to evaluate
requirements of the software which had an impact on how the user perceived the
software.

Needless to say, there are many additional NFRs that can be evaluated in terms
of user experience. There are also multiple NFRs connected to the development
phase of the software such as Modifiability, Testability, Extensibility, etc., which
all are possible to test automatically though through a different automated testing
framework and with a different focus compared to this thesis.

5.1.1 Classification
Classification of requirements, into groups of FRs and NFRs, within this thesis was
mainly based on if the requirement stated what the software should do or how the
software should be. This classification was used due to its simplicity in separating
FRs from NFRs. There are arguable more ways to perform this classification, one
of which could be to separate quality attributes (NFRs) from technical constraints
(FRs). Although there are more ways in performing these characterizations, the
value is found in the actual separation and not the method used to do it. By
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separating FRs from NFRs, it is possible to analyze, prioritize, and specify different
kinds of requirements in an effective way. It is also possible to efficiently find the
correct test for a specific requirement through this separation.

Furthermore, by separating FRs from NFRs, different values of the software are
brought to light during software development. As mentioned in Sect. 2.3, historically,
FRs has been the area in which most emphasis has been placed during software
development. Although the functionality of the software is critical, this emphasis
comes with the risk of overlooking the architectural requirements of the software
and the “look-and-feel” requirements of the software.

5.2 NFR taxonomy
There are multiple ways of building a taxonomy for automated testing of NFRs.
The taxonomy constructed in this thesis aims to be simple to use by the developer
or project manager during software development. As mentioned earlier in Sect.2.3,
since there is a lack of a common ground for classification, prioritization, and anal-
ysis of NFRs, this taxonomy aims to help software developers within the Medtech
industry to better understand how different requirements fit into their testing suite
and what tests that should be performed.

5.2.1 Filters
By applying filters, specific to the software and the aspect that will be tested, the
idea is to propose an easy path from requirement identification to testable scenar-
ios. These filters aim to reduce noise during requirement classification by prioritizing
NFRs which have the largest impact on the aspect that will be tested. This will pro-
vide the developer or project manager with a better overview of their requirements
during software testing and help build tests with a clear focus. What these filters
do not include is layers in which regulatory and compliance parameters are taken
into consideration. These parameters are of paramount importance during software
development in the Medtech industry but do not fit into this thesis’ taxonomy in
which user experience is the aspect being evaluated.

5.2.2 Drawbacks of taxonomy
As mentioned in the previous section, regulatory and compliance requirements are
not built into this taxonomy. For software development in the Medtech industry,
regulatory requirements are important and arguably as important as for hardware
development within the industry. In the taxonomy proposed in this thesis, regula-
tory requirements are not taken into consideration since the aspect under evaluation
mainly considered user experience, and more specifically how closely the simulation
mimicked reality. Additionally, the product being evaluated in this thesis does not
possess a medical classification which implies that there are no regulatory require-
ments based on medical software. Due to this classification and the focus on user
experience, no regulatory requirements were considered.
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Furthermore, it is arguable that regulatory requirements have an effect on user
experience as the user might feel bad, or unsafe when using software that lacks proper
testing of regulatory requirements. Because of this, the regulatory requirements
could be integrated as an additional filter for the taxonomy if the product subject
to evaluation had been of medical classification.

5.2.3 User experience

As mentioned in the previous sections, the aspect being focused on within the taxon-
omy and throughout tests developed in this thesis focus on user experience. The idea
is to prioritize all NFRs applicable to the Medtech software based on their relevance
on evaluating user experience connected to the link between simulated medical pro-
cedures and real-life medical procedures. Through automated tests, the simulated
medical procedure could be evaluated with respect to this link and the software
could be brought closer to a realistic scenario thus increasing the user experience
and the value of the training for the interventional radiologist.

Furthermore, it is important to note the elusiveness of the term user experience
and its fuzziness as a measurement. There is no general consensus regarding what a
good user experience is, this since it is highly affected by the actual user evaluating
the experience when using the software and what that user prioritizes the most.
Due to these drawbacks, the emphasis of user experience within the taxonomy,
evaluated as the link between simulated procedures and real-life procedures, aims to
bring the simulated software as close to reality as possible through automated tests
that evaluate parameters which can be different between simulated, and real-life,
procedures.

5.3 An automated test framework

For evaluating NFRs brought to light throughout the taxonomy filtering process, an
automated test framework had to be developed. The automated framework is based
on a set of key factors which are of importance when developing automated tests.
These factors include knowledge of the software, of the medical procedure, how this
knowledge could be integrated into the tests, and what the user looks at, i.e., what
the test should look at during evaluation.

This framework included a few components that were critical for executing test
cases. One component was the record&replay functionality of the software. This
ensured that input could be given automatically to the software and that the same
input could be given for each iteration of the test as well as for different hardware/
computer setups. Another cornerstone was knowledge of the specific procedure being
tested or general knowledge about the Mentice software. This knowledge could
then be used for building evaluating scrips in Python which assessed parameters
connected to user experience which could be measured within the simulation script
or within the fluoroscopic image of the simulation.
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5.3.1 Record&replay function
One of the components of the automated test framework is also one of its drawback,
i.e., the record&replay functionality. Although the record&replay functionality is
good for making sure that equivalent input is given for the test, this functionality is
not flexible enough to be considered robust when used across different code branches,
hardware setups and software settings. This implies that a lot of manual labour still
has to be made in order to construct these record&replay files which often only are
sufficiently robust for a specific code branch, software setting or hardware setup.
An improvement, or consideration, regarding the input to the simulation is further
discussed in Sect. 6.

Furthermore, although these drawbacks are of importance, the record&replay
functionality still proved to be sufficient for the tests constructed within this thesis.
Its drawbacks were noted in a few test scenarios (see Sects. 4.4.1–4.4.2) but overall
the record&replay functionality proved to be robust enough to provide a reliable
comparison between test results for different computers and code branches for spe-
cific medical procedures within the Mentice simulation. It is important to note that
the difference between these code branches and computers was not that large, and
due to this, that might have been the case why it worked out well.

5.3.2 Non-deterministic behaviour
Another Mentice simulation aspect that displayed its impact on the result through-
out the testing phase was the non-deterministic behaviour of the software. This
randomness, partly due to randomly generated functionality within the software,
and partly due to hardware acting differently depending on the temperature at
which they operate as well as the impact of external programs on the hardware,
displayed its impact through minor changes between test iterations. This aspect,
the non-deterministic behaviour, is something that is difficult to remove from the
testing phase and tests have to be robust enough to handle these difficulties.

5.3.3 Emulator
In this thesis, an emulator of the Mentice simulation hardware was used during
testing. This choice was necessary for constructing automatic test input using the
record&replay functionality of the software. Although this emulator acts similar
to the actual product delivered by Mentice, some drawbacks (also mentioned in
Sect. 2.1.1) has to be taken into consideration. Firstly, since the emulator is solely
based on software, no defects related to the connection between hardware vs. soft-
ware will be detected throughout the tests. Additionally, since there is no force-
feedback given to the user while creating the record&replay files, some tool place-
ments within the virtual patient would not have been possible using the complete
Mentice product. This drawback is mainly noted in Test 2 (Sect. 4.4.2), in which
the tools were placed far into small arteries on some occasions, which would simply
not be possible when using the actual product.
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5.4 Automatic tests
A few automatic tests were presented in Sect. 4. These tests display how certain
NFRs could be addressed within the Mentice simulation software or for software
testing in general. In the case of this thesis, no major prior tests were constructed
for the software and thus these examples stand both as examples for how Mentice
can test their software automatically and how software testing, in general, can be
executed on Medtech software. As mentioned earlier, tests focused on user experi-
ence and thus did not cover the majority of possible aspects that could be tested
through NFR testing.

5.4.1 Test for tool stability
This specific test evaluated the stability of medical tools for specific procedures
within the Mentice simulation. The test evaluated tool stability and gave a degree
of instability for each tool at a specific artery within the virtual patient. This to
provide developers and project managers with insight regarding the reliability of their
software throughout development. Since tools, in real-life endovascular procedures,
are stable and do only move slightly due to blood flow and muscle/organ movement,
it is important that the Mentice simulation also possess this behaviour. The test
was only developed for assessing medical catheters and wires within the virtual
patient and did not assess whether other tools, such as medical balloons, stents etc.,
were stable throughout the simulation run. Further suggestions for tool stability
measurement are discussed in Sect. 6.3.

Furthermore, although the test proves sufficient at detecting instability of the
medical catheters and wires, it still requires a developer, or project manager, to look
at the specific locations and assess whether this instability is problematic or not for
delivering a good medical simulation product.

5.4.2 Test for detecting tool outside artery walls
Similar to Sect. 5.4.1 the behaviour of the tool is a vital part to replicate in a sim-
ulated procedure. Where the demand to match a realistic procedure is high. With
this test, it is possible to locate positions in a procedure where the tool is outside the
artery walls. Since this type of behaviour is highly unwanted and unexpected in a
realistic situation. If there were to be a penetration of the artery walls in a realistic
situation, the action is with intention or a mistake, and not due to faulty projection
of the tool in a fluoroscopic image. The test provides the developers and project
managers to locate positions in the virtual patients where this type of inaccurate
tool movement may occur, improving the process of tweaking the code to achieve a
better user experience.

Furthermore, one drawback of this test was that it only “measured” tool out-
side of arteries in a two-dimensional view. This drawback is not of great signifi-
cance when looking at a two-dimensional view in which the arteries do not overlap.
However, if the C-arm (including the fluoroscopic camera) within the simulation is
rotated, i.e., the artery tree is rotated, some arteries may overlap each other with
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one artery in the “foreground” of the fluoroscopic image and another one in the
“background”. In this scenario, the colour filtering method used in this test, to
find parts of the tool outside of arteries, will not be able to identify inaccurate tool
placement within the simulation.

5.4.3 Performance, Scalability, Portability, Efficiency
This test aimed to evaluate multiple NFRs of the Mentice simulation software. The
result suggested that the Mentice simulation software proved efficient at executing
different medical procedures across different hardware. Different procedures dis-
played different performance parameters and the scalability of the procedure was
dependent on the hardware/computer on which it was executed on.

These tests are important to make sure that the Mentice simulation software
maintains high performance, i.e., frame rate, thus deliver a good user experience
for the end-user. They also provide insight into how “scalable” a specific medical
procedure is and if additional functionality can be applied without jeopardizing the
user experience of the medical procedure.

One drawback of this test is that it only evaluates frame rate as the main
parameter for user experience. Although frame rate is a decent measure of what the
user perceives, it does not fully cover the actual “look-and-feel” of the simulation.
Suggestions for further improvement on this NFR test can be seen in Sect. 6.3.
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Although this thesis provides a starting point for automated testing within the
Medtech industry, further work has to be made to achieve better coverage, robust-
ness and automatization of software tests. Suggested improvements of each result
presented in Chap. 4 will be covered in this section.

6.1 Improvement of taxonomy
As mentioned earlier, an improvement of the taxonomy developed in this thesis
would be to incorporate regulatory and compliance requirements into the taxon-
omy. This additional layer would make sure that the testing of Medtech software
address these requirements and comply with the necessary medical device standards.
Another improvement would be to incorporate a layer in the taxonomy which sep-
arates applicable NFRs into buckets depending on what aspect they focus on. This
would make sure that the software developers, and project managers, developing
these tests, has a clear focus and aim for each specific test.

6.2 Improvement of test framework
Due to the drawback of the record & replay functionality within the Mentice simu-
lation, a future improvement might be to implement randomly generated input for
their testing scenarios [7, 8]. This would enable the evaluation of more possible user
inputs (automatically) and find software defects that do not commonly occur during
“normal” user input. Another way of incorporating test input for the Mentice sim-
ulation would be to apply machine learning algorithms. Machine learning could be
used to train an agent for multiple medical procedures and then use this “trained”
agent as input for a testing suite. It is suggested that this machine learning is per-
formed through reinforcement learning, i.e., letting the algorithm itself detect how
to reach its goals within the medical procedure by implementing a reward-structure
based on steps within a specific medical procedure. This would, in our view, reflect
the closest representation of how a human would learn a medical procedure through
“trial-and-error”.

Furthermore, it is important to note that the use of machine learning algo-
rithms always comes with the risk of overfitting the input data and overlooking
other valuable user inputs, which the agent did not detect when being trained for a
specific medical procedure. Although this risk is important, there is still a good rea-
son to implement machine learning models as a complement for building test input.
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This with the argument that it could reduce the manual labour necessary for testing
the software and increase the test coverage by automatically finding valuable test
inputs for different medical procedures. As a suggestion, reinforcement learning can
be used together with software tests during the learning process to detect non-trivial
software defects that might be overlooked during manual testing, which were also
the case for randomly generated test input.

6.3 Improvement of tests
Test of tool stability. As mentioned earlier in Sect. 5.4.1, an improvement of the
test for detecting instability of the medical catheters and wires within the simulation
would be to expand this test to also include other medical tools.

Stability measures of additional tools such as medical balloons, stents, etc„
could be evaluated in a similar fashion by measuring tool coordinates over time
within the simulation and assess whether these are shaking or altering their structure
(physical form).

Detection of tool outside artery walls. The test discussed in Sect. 5.4.2
would be possible to improve in multiple ways. Firstly, instead of only applying
image analysis of the fluoroscopic image, the test could be extended through mea-
surements within the Mentice simulation JS code. Tool coordinates along the tool
and artery coordinates could be grabbed from the simulation and used for analysis
regarding if the tool is outside of an artery or not. Though, this improvement would
only be slight due to how the tools are constructed within the simulation. Since tools
are built upon links and collision points, collision points indicate at which the tool
coordinates can be measured and compared to the artery coordinates. This means
that the link, in-between two collision points, is not possible to measure directly and
thus it is possible that this part of the tool will be outside of an artery. In order to
compute whether this link, between collision points, is outside, excessive computa-
tions would have to be made while the Mentice simulation is running thus affecting
the simulation and test result significantly. Even considering these drawbacks, the
test could be improved for identifying tool areas outside of arteries especially when
arteries are overlapping within the fluoroscopic view (as discussed in Sect. 5.4.2).

Performance, scalability, and portability. As an improvement for the test
discussed in Sect. 5.4.3, additional measures which better reflects the user experience
could be incorporated into the test. One could incorporate image analysis and
analyse whether the fluoroscopic image is lagging during higher performance testing.
This additional measure, together with the frame rate measure, would give a better
overall measurement of the user experience of the medical procedure and comply
more accurately with what the user perceives during the simulation.

6.4 Other
Additional improvements which were not explored in this thesis would be to con-
struct a fully automated test framework that can be executed automatically once ev-
ery night or every time the master branch of the software is updated. This function-
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ality could be implemented by using cloud applications such as Microsoft Azure [49].
Although this would enable fully automatic testing of the Medtech software, it is
important to note the various drawbacks connected to the testing framework and
the use of the emulator (Sects. 5.3.1–5.3.3).
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7
Conclusion

Non-functional requirements (NFRs) are often overlooked during software develop-
ment and the importance of identifying and classifying those within requirements
engineering is paid little attention to. This leads to the architecture and properties
of the software being left out during the testing phase of the software. The reason
may be that NFRs are difficult to comprehend and apply to the software testing
suite. Research points out that if NFRs are not taken into consideration early on
in development, the problems often remain and needs to be fixed later on during
software development (i.e., technical debt).

In applications such as simulated surgical training the demand for an accu-
rate user experience is essential to provide a realistic training scenario that closely
mimics real-life endovascular surgical procedures. The user experience could often
be measured or explained using an NFR or a combination of NFRs, thus if NFRs
are taken more into account during software development, the companies delivering
those products will be able to comply with the expectations of the end-user. Fur-
thermore, the easier it is to associate a certain NFR with the software, the easier
it becomes to develop tests around it. If more tests are developed around a certain
NFR, the easier it becomes to measure these requirements and thus set the level of
user experience that is expected.

This thesis aimed to provide the reader with a taxonomy for NFR identification
and classification within Medtech software development. In this thesis, a set of
NFRs were identified and classified based on common bugs or defects of the Mentice
endovascular surgery training platform. The aim was to find NFRs connected to
the user experience of the platform and to develop an automated test framework for
those. This framework included tests that were meant to evaluate those particular
NFRs with respect to user experience. As a simulation-based training platform for
interventional radiologists, the simulation software needs to provide a quality user
experience that closely mimics realistic surgical scenarios, therefor user experience
was set as the main objective for each test within the framework.

The NFRs selected after using the taxonomy on the Mentice software platform
were reliability, performance, portability, and scalability. These requirements were
picked since if these were not met, the user experience of the platform would be
impaired.

Tests that evaluated the reliability of the platform mainly surrounded medi-
cal tool movement within the simulation. These tests were a focus since Mentice
developers and collaborating Mentice interventional radiologists had noticed some
inaccurate behaviour of the tools within the simulation, more particular, unstable
tools and tools which were traversing outside of arteries within the virtual patient.
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7. Conclusion

Since the tool behaviour is one of the more vital parts of the simulation, tests were
built in order to detect and notify the Mentice developers and project managers
about these inaccurate behaviours. If these inaccurate tool behaviours were not de-
tected and treated, the user experience of the platform would be damaged resulting
in decreased value for surgical simulation training.

Additionally, inaccurate behaviour of the simulation, in relation to reality,
would also result in deficient training and, thus, provide less skilled interventional
radiologists. It was displayed, through these tests, that inaccurate tool behaviour is
possible to detect automatically by measuring parameters linked to these behaviours.
Additionally, by using image analysis it was possible to detect inaccuracies in the
fluoroscopic images and notify developers of these inaccuracies through graphs and
concrete examples (i.e., screenshots).

Moreover, the remaining NFRs, performance, portability and scalability, were
selected from the taxonomy since they cover the overall quality of the software and
inhibit characteristics that are important for delivering a good user experience. The
tests designed for these NFRs verify that the software is within an acceptable region
of performance and that the software delivers a good user experience on multiple
hardware setups. These tests also provide developers with insight regarding which
medical procedures of the software could be changed or extended in order to achieve
a better overall user experience. By measuring the frame rate of the simulation
as a parameter of user experience, when executing specific medical procedures on
different hardware, it was possible to inform the software developers of the overall
performance and portability of a particular medical procedure within the Mentice
simulation. Furthermore, these results could then be used by developers to evaluate
the scalability of the software and whether or not a particular medical procedure
should be modified for increased user experience. It could also inform the develop-
ers whether there was room for extending the functionalities within the procedure
without losing out on the user experience of the procedure.

This thesis provides examples of how NFRs can be identified and classified
during the software development of Medtech software. Furthermore, it provides
examples of how an automated test framework can be built in order to evaluate NFRs
with respect to certain aspects, in this case, the user experience of the software.
Tests developed in this thesis suggest that it is possible to successfully evaluate
NFRs through automated tests, and thus reduce the workload of manual testing for
software developers and project managers. It is suggested, through these results,
that NFRs should not be overlooked during software development and that it is
possible to obtain great value from software testing by incorporating tests of NFRs
that evaluate properties of the software which are of great importance in delivering
a good user experience.
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A
Appendix 1

A.1 Technical description of algorithms used
Here follows an explanation of algorithms used for test: "Detection of tool out-
side artery walls". Algorithms used are scale-invariant feature detection, structural
similarity index measurement, and morphological skeletonization.

A.1.1 SIFT algorithm
SIFT is a feature detection algorithm that is used in computer vision to detect and
describe local features within an image. These features could then be compared
between two images and thus detect movement of objects or if equal features are
present in both images and located in each of the images. The algorithm is com-
puted by performing Scale-space Peak Selection, Keypoint Localization, Orientation
Assignment, Keypoint description, and Keypoint matching [50].

Scale-space peak selection is performed by first separating the image into oc-
taves which, for each octave, halves the size of the original image. The number of
octaves obtained depends on the size of the input image. Next, each octave (sub-
image) is progressively blurred with a Gaussian (blur) kernel for every pixel resulting
in multiple images within each octave being blurred at different grades [50]. The
blurred image is computed as follows:

L(x, y, σ) = G(x, y, σ) ∗ I(x, y)

Where I is an image, G is the Gaussian Kernel, and x, y are image coordinates.
σ is a scale parameter that could be described as the amount of blurring.

G(x, y, σ) = 1
2πσ2 e

−(x2−y2)/2σ2

Next, the Difference of Gaussian (DoG) Kernel is computed by calculating the
difference between each pair of Gaussian blurred images within an octave, i.e., for a
given octave:

DoG = L(x, y, σ)− L(x, y, kσ)

resulting in n − 1 DoG images from a set of n blurred images within an oc-
tave [50].

Next, the DoG is used to calculate Laplacian of Gaussian approximations that
are scale-invariant, i.e., a pixel in an image in an octave is compared with its 8
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Figure A.1: Blue pixel in octave n is compared to its 8 yellow neighbours and 9
yellow neighbours in octave n ±1 to find local extrema.

neighbours as well as compared to its 9 neighbours in the previous and next octave.
By performing a total of 26 checks it is possible to draw a conclusion whether this
pixel in this octave is a local extreme, i.e., a potential keypoint for that specific
octave (scale) (see Fig. A.1) [50].

The next step is to perform Keypoint localization which purpose is to remove
non-useful features detected in the previous step. This step makes use of the Taylor
series expansion of the scale-space to get a more accurate localization of the extrema.
A threshold value is used and if the intensity in the extrema is less than this threshold
the keypoint is rejected. The DoG approach used above has a higher hit rate for
edges within the image that needs to be removed. A Hessian matrix (H) is used to
compute the principal curvature (how the image intensity bends) in a keypoint [50].

Threshold for low intensities: |D(x̂)| < 0.03

Edge rejection: H =
[
Dxx Dxy

Dxy Dyy

]

α = eigenvalue with larger magnitude, β = eigenvalue with smaller magnitude

Tr(H) = Dxx +Dyy = α + β

Tr(H) = DxxDyy −D2
xy = αβ

Tr(H)2

Det(H) = (α + β)2

αβ
= (rβ + β)2

rβ2 = (r + 1)2

r
,where r = αβ and r < 10

After this step, a better representation of the keypoints within an image is
obtained. The scale in which the keypoints was detected is also known resulting in
a scale-invariant measurement [50].

The next step is to perform an Orientation Assignment of the keypoints in
order to make them invariant to rotation. A neighbourhood is taken around the
keypoint location, this neighbourhood is dependent on the scale of the octave. Gra-
dient magnitude and direction are calculated for each pixel in this region resulting
in an orientation histogram (360 ◦) for all pixels in this neighbourhood. The high-
est peak of the histogram bins, and all peaks 20% below this peak, are taken into
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Figure A.2: Visualization of how keypoints match, where the match is denoted
by the color of circles between the two frames. Left image shows frame 1 and the
image to the right frame 2. Difference between the two frames can be seen if looked
upon the tool movement.

consideration when calculating the orientation of the keypoint [50]. After this step,
all keypoints found has a location, scale and orientation [50].

Followed by Orientation Assignment, next is to calculate a Keypoint Descrip-
tor for the keypoint which is highly distinctive and as invariant as possible with
respect to viewpoint and illumination. In order to perform this step a window of
pixels around each keypoint is taken, this window is then divided into sub-windows
and for each sub-window an orientation histogram is calculated which describes the
feature orientation of the pixels surrounding a specific keypoint. In order to deal
with rotation invariance and achieve rotation independence all orientations within
this sub-window are subtracted by the keypoints rotation given in the Orientation
Assignment step. This gives a relative measure of the feature orientation with re-
spect to the feature orientation. Also, in order to achieve illumination dependence,
each feature orientation magnitude within the sub-window is thresholded in order
to achieve a normalized feature orientation vector of the pixels in the window sur-
rounding the keypoint [50].

The last step is to use these features obtained from the steps above for two
images and try to match these features to one another, also known as Keypoint
matching [50]. Keypoints between two images are matched by identifying their
nearest neighbours. There might be multiple matches for the second closest-match
for a given keypoint in another image and in this case, the ratio of the closest-
distance to second-closest is taken, if this ratio is too large the keypoint match is
rejected. According to [50], by performing this step the algorithm eliminates 90%
of false matches while only discarding 5% of correct matches.
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A.1.2 SSIM algorithm
Structural similarity index measure (SSIM) is a method used for comparing two
images. Compared to the Mean-Square Error (MSE) algorithm, which quantifies
the difference in values between each corresponding pixel in the sample and refer-
ence image, the SSIM algorithm is a perception-based model. This means that the
algorithm evaluates the perceived change in structural information within the image
and thus give an image comparison algorithm that closely mimics the human visual
perception system. SSIM extracts three key features from an image: luminance,
contrast and structure. These three features are then compared separately between
two images and then combined to a result. The result is given as a Structural Simi-
larity Index which is often set as 0 (no similarity) and 1 (complete similarity) [47]. In
the following formulas, the comparison is made between images which are denoted
as image x and image y.

Luminance (µ) of an image (x) is measured by averaging over all pixels. This
computation is performed for both images, and compared, by the function L(x, y).

µx = 1
N

N∑
i=1

xi

L(x, y) = 2µxµy + C1

µ2
xµ

2
y + C1

where C1 is a constant ensuring stability by avoiding division by zero:

C1 = (K1L)2

and L is the dynamic range for the pixel values (8-bit = 0–255), K1 is a constant.
Contrast (σ) of an image (x) is measured as the standard deviation of all pixel values.
Same as for luminance, a function C(x, y), computes and compares two images:

σx = ( 1
N − 1

N∑
i=1

(xi − µx)2) 1
2

C(x, y) = 2σxσy + C2

σ2
x + σ2

y + C2

where:

C2 = (K2L)2

The structure of an image is measured by dividing the image signal by its standard
deviation giving a result of unit standard deviation. This standard deviation is
computed and compared between two images by a function S(x, y),

x− µ̂x
σx

S(x, y) = σxy + C3

σxσy + C3
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where the covariance betweeen image x and y is computed as:

σxy = 1
N − 1

N∑
i=1

(xi − µx)(yi − µy)

Lastly, the SSIM score between image x and y is calculated by multiplying the
luminance, contrast and structure functions:

SSIM(x, y) = [L(x, y)]α · [C(x, y)]β · [S(x, y)]γ

α, β and γ denotes the relative importance of each aspect of the comparison and if
set equal to 1, and C3 = C2

2 the SSIM score can be simplified as follows:

SSIM(x, y) = (2µxµy + C1)(2σxy + C2)
(µ2

x + µ2
y + C1)(σ2

x + σ2
y + C2)

Another note is that most SSIM algorithms apply these formulas locally in the image
instead of globally in order to achieve a better image comparison. In this thesis,
the SSIM algorithm used does exactly this. By applying the steps formulated above
locally (over smaller regions) for each image and then calculating the mean for all
regions, the algorithm instead computes the Mean Structural Similarity Index and
the formulas are altered as follows according to [47]:

µx =
N∑
i=1

wixi

σx = (
N∑
i=1

wi(xi − µx)2) 1
2

σxy =
N∑
i=1

wi(xi − µx)(yi − µy)

where, according to [47], w is an 11×11 Gaussian Weighting function in which values
are derived from a Gaussian distribution derived pixel-by-pixel across the image.

Finally, once all computations are made across the complete image the mean
is taken given the Mean Structural Similarity Index measurement [47]:

MSSIM(x, y) = 1
M

∑
j=1

MSSIM(xj, yj)

A.1.3 Morphological skeleton
Mathematical morphology is an approach of image processing in which morphologi-
cal operations simplify image data while preserving the shape characteristics of the
objects within the image [51]. There is both morphological dilation, which adds pix-
els to the boundaries of an object within an image, and morphological erosion, which
removes pixels at the boundaries of an object within the image. Both operations
are performed on binary (0 or 1 pixel value) images. The number of pixels that are
added or removed depending on the size and shape of the structuring element used
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Figure A.3: Visualization of SSIM algorithm. The comparison between the middle
image and the left image results in the image on the right. Darker areas represent
larger structural differences. The result shows darker areas around the tool and
heart since the tool has moved between images and the heart is moving during
continuous animation.

to process the image. Pixels are added (dilation) or removed (erosion) depending on
the values of the surrounding pixels, i.e., if, for a specific pixel in the input image,
any surrounding pixel is equal to 1, the specific pixel is set to 1 in the output image
when performing dilation. For erosion the opposite is true, if any surrounding pixel
is set to 0, the specific pixel in the output image is set as 0. These operations have
the drawback of filling (dilation) or removing (erosion) objects within an image if
the operation is iterated multiple times which leads to an output image missing
certain objects or having objects connected that were not connected in the original
image [51].

The morphological skeleton is achieved by performing erosion but adding a
certain rule to it. The rule is that pixel connectivity has to be maintained. By
eroding an image object as long as the connectivity between the pixels is maintained
an object within an image could be eroded to its maximum without losing the shape
of the object. This results in a ‘skeleton’ representing the shape of the original object.
It is important to note that this action is irreversible, i.e., there is no information
stored of the original shape, and thus impossible to reproduce the original shape
from the skeleton shape.

A.2 Additional graphs from performance, scala-
bility and portability test

This sections include graphs from performance measurements during test: “Non-
functional requirement: Performance, Scalability, and Portability” found in Sect. 4.5.

A.2.1 Simulation frame rate graphs
Following graphs, Fig. A.5–A.15, depict the test result for procedure PA on the
DELL PRECISION M6700 computer (DELL67 ) and test result for both computers,
DELL PRECISION M6700/M6800, for procedure PB.
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Figure A.4: Visualization of morphological skeleton, from left to right illustrates
the process of filtering the image and removing pixels image object until the shape
only has one pixel width left.

Figure A.5: Simulation frame rate of PA with no/0% of CPU power removed
(DELL67 ).
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Figure A.6: Simulation frame rate of PA with low/25% of CPU power removed
(DELL67 ).

Figure A.7: Simulation frame rate of PA withmedium/50% of CPU power removed
(DELL67 ).
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Figure A.8: Simulation frame rate of PA with high/75% of CPU power removed
(DELL67 ).

[Result: Simulation frame rate, Procedure: PB, CPU removal: 0% ,
DELL68]Simulation frame rate of PB with no/0% of CPU power removed

(DELL68 ).
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Figure A.9: Simulation frame rate of PB with low/25% of CPU power removed
(DELL68 ).

Figure A.10: Simulation frame rate of PB with medium/50% of CPU power re-
moved (DELL68 ).
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Figure A.11: Simulation frame rate of PB with high/75% of CPU power removed
(DELL68 ).

Figure A.12: Simulation frame rate of PB with no/0% of CPU power removed
(DELL67 ).
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Figure A.13: Simulation frame rate of PB with low/25% of CPU power removed
(DELL67 ).

Figure A.14: Simulation frame rate of PB with medium/50% of CPU power re-
moved (DELL67 ).
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Figure A.15: Simulation frame rate of PB with high/75% of CPU power removed
(DELL67 ).

A.2.2 Physics engine frame rate graphs
Below are graphs displaying physics engine frame rate over different CPU power
removals. Results displayed in Chap. 4, Sect. 4.5.2, Fig. 4.29/4.31 were based on
these graphs.
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Figure A.16: Physics engine frame rate of PA with no/0% of CPU power removed
(DELL68 ).

Figure A.17: Physics engine frame rate of PA with low/25% of CPU power re-
moved (DELL68 ).
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Figure A.18: Physics engine frame rate of PA with medium/50% of CPU power
removed (DELL68 ).

Figure A.19: Physics engine frame rate of PA with high/75% of CPU power
removed (DELL68 ).
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Figure A.20: Physics engine frame rate of PB with no/0% of CPU power removed
(DELL68 ).

Figure A.21: Physics engine frame rate of PB with low/25% of CPU power re-
moved (DELL68 ).
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Figure A.22: Physics engine frame rate of PB with medium/50% of CPU power
removed (DELL68 ).

Figure A.23: Physics engine frame rate of PB with high/75% of CPU power
removed (DELL68 ).
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