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Modeling and control for object manipulation via in-hand pivoting
LEON AMIRPOUR
Department of Electrical Engineering
Chalmers University of Technology

Abstract
In this thesis in-hand manipulation maneuvers that consist of rotating and sliding
of a grasped object to a desired orientation relative to the robot hand are simu-
lated. We perform pivoting by means of gravity to allow the object grasped by a
one degree of freedom gripper to follow a reference trajectory to a desired angular
position by controlling the grasping force. The contact between the object and the
gripper is modeled based on the concept of the limit surface, which describes the
relation between rotational and translational friction torques and forces and the cor-
responding dynamics. The difficulty of controlling the object orientation is due to
the uncertainty of the torsional friction coefficient. Two different control approaches
are applied to deal with this problem. First, a nonlinear adaptive control approach
is utilized, which allows to estimate the torsional friction coefficient on-line. Second,
a model free control approach is used to exploit prescribed performance guaran-
tees without exact knowledge of the plant. Both controllers are evaluated through
simulation and show good results for a wide range of pivoting tasks.

Keywords: contact modeling, contact and friction dynamics, nonlinear and adaptive
control, simulation, robotics, limit surface, model free control, prescribed perfor-
mance.
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bounds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.18 Angle of the object for the combined model utilizing the model free
controller, desired reference angle and normal force which is applied
from the fingertips to the object. . . . . . . . . . . . . . . . . . . . . 57

5.19 Translational motion in y-direction for the combined model with the
model free controller and normalized error ŝ with the predefined error
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1
Introduction

1.1 Context
Nowadays robots are used very frequently in production utilizing very simple grip-
pers such as parallel jaw grippers or even suction cups. In contrast to robots, the
human hand is capable to reposition the grasped object in the hand, by rolling,
pushing or sliding of the object by coordinated motions of the fingers. The rather
simple robotic grippers with only a few degrees of freedom cannot recreate the dex-
terity of the human hand. To compensate this lack of dexterity, extrinsic dexterity
can be used. Extrinsic dexterity means to make use of external forces or contacts
to enable the robot performing relevant manipulation tasks.
One basic scenario of in-hand manipulation is sliding and pivoting of the object in
the hand with the help of the gravity of the object. More precisely, a one degree
of freedom parallel jaw gripper can be appropriately controlled in order to allow or
prevent the rotation of the object under the effect of the gravitational force. In such
way, the orientation of the object can be controlled to a desired angular position.

1.2 Related work
There exists a considerable array of research work related to in-hand manipulation
tasks. In [1] - [5] different examples have been shown how robots can make effective
use of extrinsic dexterity for in-hand manipulation. Dafle and Rodriguez manipulate
an object grasped by a parallel jaw gripper [1]. The object is manipulated through
pushing it against its environment. Dafle et al. use a gripper with three rigid fingers
to develop twelve open-loop and hand-scripted regrasp actions [2]. Gravitational
forces and motions of the robot arm and fingers are exploited to achieve the desired
motion of the object. Different open-loop pivoting experiments were made by Hol-
laday et al. [3]. The regrasp processes are compared with pick-and-place operations,
which lead to the same regrasping as the in-hand manipulation tasks. Pick-and-place
in terms of regrasping means to put the grasped object on the ground and grasp it at
another grasping point or with another orientation of the gripper. It was found that
manipulating the object via pivoting can be faster than manipulation through pick-
and-place. Shi et al. presented a general framework for planning dynamic in-hand
manipulation and analyzed the dynamics of a grasp with n fingers modeled with
the use of soft-finger limit surface models [4]. Dynamic in-hand manipulation with
a constant normal force between the gripper and the object is performed. Through
precise acceleration of the fingers the object is linear and rotational displaced. Viña
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1. Introduction

B. et al. developed a sliding mode controller for in-hand manipulations to control the
orientation of the object by using gravity [5]. It is assumed that the grasping force
of the parallel jaw gripper is big enough that no translational slippage appears. The
frictional torque is modeled as a combined friction of Coulomb and viscous friction
and the deformation model of the fingertips is assumed as linear.

The same scenario as in this project is presented in [6]. A one degree of freedom
parallel jaw gripper is used and pivoting by means of gravity is performed. An
adaptive controller controls the grasping force to ensure that the object follows a
trajectory and arrives at the desired angular position. The result is evaluated in an
actual robotic gripper using force and tactile sensors. For the control design in [6]
the contact model between the hand and the object is based on Coulomb friction for
the tangential friction and a Coulomb-like model [7], [8] for the torsional friction.
The adaptive controller is derived with the standard adaptive control law [9]. An-
other control approach, which is suitable for this control problem, is considered in
[10]. Karayiannidis et al. present a model free controller for a position and velocity
tracking of a robot joint with prescribed performance guarantees.

To simulate in-hand manipulation, the contact between the gripper and the object
has to be investigated. Liu et al. developed a novel contact sensing algorithm for
a robotic fingertip in [11]. Validation tests show that the contact sensing fingertip
can estimate contact information, such as the magnitude and the direction of the
friction force and local torque generated at the surface and the contact location on
the fingertip. Xydas and Kao show the relationship between the normal force and
the radius of contact for soft fingers [8]. General soft-finger materials are considered,
including linearly and nonlinearly elastic materials. It is shown that the radius of
the contact area is proportional to the normal force raised to the power of γ, where
γ has the range from 0 to 1/3.

A contact friction model between the fingertips of the gripper and the object is
needed to simulate in-hand pivoting and it is of interest which kind of model is
suitable. In [12] a Coulomb friction model is derived and controlled with a PID
controller. This model considers just the motion and the friction in one dimension.
A dependency between translational and rotational dynamics of an object affected
by friction is shown in [13] and [14]. An external torque reduces the static friction
force, which has to be overcome for a contact sliding. To model a more dimensional
contact friction model a limit surface can be used. The concept of the limit surface
was developed by Goyal et al. in [15] and [16]. It is a concept from the mechanics of
sliding bodies that uses kinematic analysis to find the force and moment required to
produce any given sliding motion. The concept of the limit surface is used in [4] and
[6] for in-hand manipulation tasks. The relationship between forces and motions in
sliding manipulation with the help of limit surfaces is shown in [7].

2



1. Introduction

1.3 Approach and Structure
In the presented thesis, a theoretical model is derived, which describes the contact
between the fingertips of the gripper and the object. Using the concept of the
limit surface allows to consider both translational and rotational motions of the
object while pivoting. The credibility of the constructed model is tested through
simulation, implementing the model in MATLAB/SIMULINK.
To control the orientation of the object in a desired way, an adaptive controller
is designed. The adaptive controller estimates the torsional friction coefficient on-
line to compensate for possible uncertainties. Another control approach, which is
utilized to handle the uncertainties of the torsional friction coefficient, is a model
free controller with prescribed performance guarantees. The performance of the
controller is also validated through simulation.
The thesis is structured as follows: in Chapter 2 we introduce the theoretical back-
ground relevant for this thesis briefly. Chapter 3 provides the modeling of the object
and the contact between the fingertips of the robot and the object. Also the models
are evaluated by simulation and compared. The control problem and objectives are
introduced briefly. In Chapter 4, different control approaches suitable for the pivot-
ing task are derived. The results and comparisons of all models and controller are
shown in Chapter 5. The models are evaluated via simulation of several scenarios.
Conclusions are drawn and suggestions for future work are given in Chapter 6.
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2
Background

In this section, the theoretical background relevant for this thesis is introduced
briefly. For the notation convention, time dependencies are generally dropped
throughout the thesis whenever this enhances readability.

2.1 Contact model

A contact model describes the deformation and friction between solid objects that
touch each other at one or several points.

2.1.1 Limit surface

The concept of the limit surface describes the relationship between translational
and rotational friction forces and torques and the corresponding dynamics. It is a
concept from the mechanics of sliding bodies that uses kinematic analysis to find
the force and moment required to produce any given sliding motion.
The concept of the limit surface was developed by Goyal et al. in [15] and [16].
The construction of the limit surface requires an accurate analysis of the pressure
distribution at each point of the contact surface and the contribution of each point
to the total frictional force and moment.
Three basic assumptions were made:

1. The distribution of the normal force or pressure across the contact is known.
2. A body undergoes fully developed sliding on a locally planar surface.
3. The friction force depends only on the local normal force and direction of slip

and not on the slip velocity or slip history.
To ensure the fully developed sliding criteria (2.), the relative velocity field across
the contact area corresponds to a unique center of rotation (discussed below). For
rigid bodies this is always true and can be applied for deformable bodies such as
soft fingertips since the deformations of the contact area are slow compared to the
sliding speed.

A more practical description of the limit surface can be seen in [7]. A two dimensional
case is considered, the contact in the sliding plane can be seen in Figure 2.1. A
instantaneous motion of a rigid body in the plane can always be described as pure
rotation around one point, called the center of rotation (COR).

5
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𝑟𝐶𝑂𝑅

𝑟

𝑑

𝑥

𝑦

dA

𝑣

ω

Contact
Area

Figure 2.1: Clockwise rotation of the contact around the instantaneous center of
rotation (COR) with velocity v at the infinitesimal contact area dA [7].

Let rCOR be the vector from the origin to the instantaneous COR, r = [x y]> be
the vector from the origin to an element of the contact area and d(x, y) = [dx dy]>
be the vector from the COR to an element of the contact area, i.e. d = r − rCOR.
Through the assumption that the friction is independent of the sliding speed, the
velocity can be represented by the unit vector v̂(x, y) = v(x, y)/|v(x, y)|. This
velocity vector is perpendicular to d since the contact is instantaneously rotating
around the COR.

v̂(x, y) = [−dy dx]>
|d(x, y)| (2.1)

The local normal force at any point in the contact area is given by dfn = pdA, with
the local pressure distribution p(x, y) and the infinitesimal area dA at (x, y). The
magnitude of the tangential friction force is calculated with the standard Coulomb
friction model dft = µdfn, with µ(x, y) being the local friction coefficient. The
direction of the friction force is always opposed to the velocity at this point, therefore,
the local frictional force vector is

df t = −µpv̂dA (2.2)
and by integrating over the contact area the total frictional force f t is derived as
follows:

f t =
[
fx
fy

]
=
∫
A
µpv̂(x, y)dA. (2.3)

The local frictional moment is found by the cross product of the vector r and the
local friction force. Since we are in a flat sliding plane, the moment is always
perpendicular to the plane and can be considered as scalar. The total torque τz is
given by the integral

τz = −
∫
A

[r × v̂]µpdA. (2.4)

6



2. Background

2.1.1.1 Axisymmetric contacts

Let us assume axisymmetric pressure distribution. Without loss of generality the
x-axis can be oriented so that it passes through the COR, with the origin located
at the center of the contact region. The vector from the origin to the COR can be
written as rCOR = [r0 0]>, with r0 the distance from the origin to the COR. In
this case, the frictional force in x-direction fx is always zero.
By expressing the integrals of (2.3) and (2.4) in polar coordinates we get

fy = −
∫ 2π

0

∫ R

0
µ(r)p(r) (r cos θ − r0)r√

r2 + r2
0 − 2r0r cos θ

drdθ (2.5)

and

τz = −
∫ 2π

0

∫ R

0
µ(r)p(r) (r − r0 cos θ)r2√

r2 + r2
0 − 2r0r cos θ

drdθ (2.6)

with R being the radius of the contact area. For these elliptic integrals exist analytic
solutions for special cases of pressure distribution.
For a circular contact with uniform pressure distribution Figure 2.2 plots the nor-
malized frictional torque over the normalized frictional force calculated with (2.5)
and (2.6) for different distances of the COR to the origin r0 ∈ [0 ∞). The frictional
force is normalized by the maximal frictional force fy,max = µfn and the frictional
torque is normalized by the maximal frictional torque τz,max = 2/3Rµfn. We assume
the friction coefficient µ(r) = µ is constant.

Figure 2.2: Limit curve [7]: normalized frictional force and torque combinations
in the force-moment plane for a circular contact with uniform pressure distribution
and changing distance of the COR to the origin r0 ∈ [0 ∞).
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2.1.1.2 Limit curve for different pressure distributions

Different pressure distributions lead to different limit curves since the frictional force
and torque calculated with Eq. (2.5) and (2.6) are depended on the local pressure dis-
tribution. We consider three cases of pressure distributions, which can be expected
with soft fingertips on a robotic or human hand. A Hertzian pressure distribution
concentrated at the center [17], an uniform and an annular pressure distribution are
investigated. To compare the different pressure distributions, all limit curves get
normalized by the maximum frictional force fy,max = µfn and maximal frictional
torques, which are shown in Table 2.1 for the different pressure distributions. For
the annular pressure distribution, the parameter s ∈ (0 1) defines the inner radius
of the annulus s ·R.

Table 2.1: Pressure distribution and maximum torque for Hertzian, uniform and
annular pressure distribution [7].

Contact Type Pressure Distribution Maximum Torque

Hertzian p(r) =

 p0

√
1−

(
r
R

)2
, 0 ≤ r ≤ R

0, R < r
p0 = 3fn/(2πR2)

τz,max = 3π
16µfnR

Uniform p(r) =
{
fn/(πR2), 0 ≤ r ≤ R
0, R < r

τz,max = 2
3µfnR

Annular p(r) =


0, 0 ≤ r < sR
ps, sR ≤ r ≤ R
0, R < r

ps = fn/(πR2(1 − s2)), 0 < s < 1
sR = inner radius of annulus

τz,max = 2(1−s3)
3(1−s2)µfnR

The limit curves of this three cases calculated with (2.5) and (2.6) can be seen in
Figure 2.3. We assume that for all three cases the contact radius R is chosen equal
and also the normal force fn is the same each time. The parameter s is set to 0.9.
The dotted black line is a normalized ellipse, which is the same of one quarter of
the unit circle. This analytic curve lies near the limit curves for all three pressure
distributions.
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Figure 2.3: Normalized limit curves [7] for Hertzian, uniform and annual pressure
distribution for a circular contact and changing distance of the COR to the origin
r0 ∈ [0 ∞).

The limit curve shows one quarter of the elliptical limit surface. The other three
quarters can be calculated by using (2.5) and (2.6) and changing the signs. If the
combination of an external tangential force and torque exerted on an object lies
inside the corresponding limit surface shown in Figure 2.2, the object will not start
sliding. If the point is on the limit surface, a steady sliding will occur and if it
is outside the limit surface the contact will slide and accelerate since the applied
force and torque exceed the maximal frictional force and torque that the contact
can resist. The limit curve or surface explicitly demonstrates the coupling between
forces and moments in sliding. The magnitude of the torque required for sliding is
decreased as the exerted force increases and vice versa.
The ratio of the translational to the rotational velocity vt and ω is given by the
ratio of the torque τz and the tangential frictional force fy. For the normalized limit
surface, the ratio of angular to linear velocity is scaled by the same ratio than the
limit surface, τz,max/ft,max

|vt|
ω

= (
f ′y
τ ′z

)(τz,max
ft,max

) (2.7)

with the normalized tangential force f ′y and torque τ ′z, the maximal frictional torque
τz,max and force ft,max. The ratio between the translational and rotational velocity
is equal to the magnitude of rCOR. The direction of the translational velocity vt is
always in y-direction, since fx = 0, and opposed to the direction of fy.
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2.1.1.3 Friction force vector

By approximating the limit surface with an ellipsoid Shi et al. show in [4] how the
relative velocities and the frictional forces and torques are calculated. As seen in
Figure 2.3 the limit surface can be approximated by an ellipsoid in the local contact
force space fx, fy, τz. A mathematical representation of this ellipsoid is given by
the following equation:

f>Af = 1 (2.8)

where f = [fx, fy, τz]> is an arbitrary friction force vector at the contact point
and the matrix A ∈ R3×3 is a positive definite symmetric matrix that defines
the shape of the ellipsoid. The matrix is constructed with the general ellipsoid
definition A = Diag(s−2

1 , s−2
2 , s−2

3 ) where s1, s2 and s3 represent the length of the
semi-principal axes. By assuming isotropic dry friction, the maximum tangential
force, which can be resisted by the contact, is ft,max = s1 = s2 = µfN . The
maximum moment along the normal direction is τz,max = s3 = acµfN where a
denotes the radius of the contact area and c is a constant. The radius of the contact
surface depends on the normal force fN , thus each normal force has a corresponding
contact radius.
While sliding happens, the contact force f c is on the limit surface and the rela-
tive velocity ∆v is along the direction of the normal to the ellipsoid at that point
(Figure 2.4). Therefore, f c and ∆v are not always parallel, but they always satisfy
f c · ∆ v ≥ 0 since friction force can only dissipate energy. For a given friction
force f c and a limit surface we can write the relative velocity ∆v along the direction
of the gradient of the ellipsoid with respect to f at fc:

∆v = η
∂

∂f

(
f>Af

) ∣∣∣∣∣
fc

(2.9)

where η ∈ R scales the normal vector to the relative velocity vector. For a given
relative velocity, the corresponding friction force is

f c = 1
ν
Bη∆v (2.10)

where B = 1
2A
−1. Substituting (2.9) in (2.8) and utilizing (A−1)> = A−1 yields

ν = 1
2

√
∆v>A−1∆v. (2.11)

Using (2.10) and (2.11) we get the friction force vector as a function of a given
relative velocity ∆v

f c = A−1∆v√
∆v>A−1∆v

. (2.12)
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.

𝒇𝑐

∆𝒗

𝜏𝑧

𝑓𝑦
𝑓𝑥

Figure 2.4: Limit surface with a ellipsoidal shape [4]: The tangential friction force
is represented by the axes fx and fy and the frictional torque is represented by τz.
The relative velocity ∆v is along the normal of the ellipsoid at the corresponding
friction force vector f c.

2.2 Soft-finger model
The relation between the normal force and the radius of the contact area of two linear
elastic objects was first studied by Hertz in [18]. Hertz conducted experiments using
a spherical glass lens pressing against a planar glass plate. By using the results of 10
experimental trails, he concluded that the radius of the contact area is proportional
to the applied normal force raised to the power of 1/3.

a ∼ f
1
3
n (2.13)

where a is the radius of the contact area and fn is the normal force. The results of
the experiments were consistent with the analytical model he derived.

An alternative theory for modeling soft finger contacts is proposed in [8].
For incompressible nonlinear elastic materials, the 3-D constitutive relation is given
by following equations [19]

εij =
(
σe
ks

)n ∂

∂σij
(2.14)

σij = σe
∂

∂εij

(
σe
ks

)n
(2.15)

where σij and εij are the stress and strain components in i and j directions. σe is
the Von Mises stress, ks is a constant with stress units and n is the stress exponent
for nonlinear elastic materials (n ≤ 1).
The Von Mises stress is

σe =
√

3
2SijSij =

√
3
2(σij −

1
3σkkδij)(σij −

1
3σkkδij) (2.16)
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where Sij are the components of the stress deviatior tensor and 1
3σkkδij is the hy-

drostatic stress tensor. The strain components are given by

εij = 1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)
(2.17)

where ui is the infinitesimal displacement and ∂uj
∂xi

is the derivative of ui with re-
spect to the jth orthogonal coordinate in the Cartesian coordinates. The stress
equilibrium requires following condition

∂σij
∂xj

= 0. (2.18)

Considering a nonlinear elastic sphere, shown in Figure 2.5, with the radius R0
being pushed onto a rigid plane. In the cylindrical polar coordinates the boundary
conditions at the surface are

σt = σn = 0 for r > a (no contact) (2.19)

u = u(r) = d−
(
R0 −

√
R2

0 − r2
)

for r < a (in contact) (2.20)

where σt and σn are the tangential and normal stresses, respectively, u(r) is the
displacement of the spherical surface in the contact zone, d is the displacement in
the contact zone at r = 0 and a is the radius of the contact area, as shown in
Figure 2.5.

𝑅0

𝑟

𝑧
𝑓𝑛

2𝑎

2𝑎

d

d

𝑓𝑛

𝑅0

Figure 2.5: A model of a nonlinear elastic sphere in contact with a surface [19],
pushed by a normal force fn (top) and a model of a hemispherical soft finger being
pushed on a rigid plane (bottom). In both models the contact area is assumed
circular.
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The force balance for the circular contact area requires that

fn =
∫ 2π

0

∫ a

0
σzzrdrdθ = π

∫ a

0
σzzd(r2) (2.21)

with the stress component σzz normal to the contact surface in polar coordinates.
By defining the following dimensionless variables

r̃ = r

a
, z̃ = z

a
, x̃ = x

a
, ũi = uiR0

a2 (2.22)

where ui is given by (2.20) and substituting x̃ and ũ into (2.17), we obtain

εij = a

R0
ε̃ij (2.23)

where ε̃ij = 1
2

(
∂ũi
∂x̃j

+ ∂ũj
∂x̃i

)
. From Equation (2.14), after the substitution of εij in

(2.23) and σe in (2.16), we get

σij ∼
(
a

R0

) 1
n

σ̃ij (2.24)

Substitute Eq. (2.22) and (2.24) into (2.21) leads to

fn
πa2 =

∫ a

0
σzzd

(
r2

a2

)
∼
(
a

R0

) 1
n
∫ 1

0
σ̃zzd

(
r̃2
)
. (2.25)

The integration of (2.25) is dimensionless. By combining all constant terms, we
obtain

fn = c1a
1
n

+2 (2.26)
or

a = cf
n

2n+1
n = cfγn (2.27)

with the exponent of the normal force γ = n
2n+1 and the constant c = 1/c1, which

depends on the size and curvature of the fingertips and its material properties. The
parameter n is between 0 and 1 [19], thus the exponent in Equation (2.27) is

0 ≤ γ ≤ 1
3 . (2.28)

If γ = 0 we have the case of the ideal soft finger. The radius of the contact area is
constant and independent of the normal force. For γ = 1/3 we have the Hertzian
contact model shown above.

2.3 Nonlinear adaptive control
For some important classes of nonlinear control problems, adaptive control has been
developed [9]. This nonlinear control problems usually satisfy following assumptions:
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1. The full state is measurable.
2. Nonlinearities can be canceled stably with the control input if the parameters

are known.
3. The nonlinear plant dynamics can be parametrized linearly.

We consider nth-order Single-Input and Single-Output (SISO) systems

y(n) +
n∑
i=1

αifi(x, t) = bu (2.29)

with the state vector x = [y ẏ . . . y(n−1)]>, unknown constants αi and b and
known nonlinear functions of the state and time fi. With the assumption, that the
state is measurable and the sign of b is know, Equation (2.29) can be rewritten as

hy(n) +
n∑
i=1

aifi(x, t) = u (2.30)

where h = 1/b and ai = αi/b.
Let us define a combined error

s = e(n−1) + λn−2e
(n−2) + . . .+ λ0e = ∆(p)e (2.31)

with the output tracking error e and a stable polynomial ∆(p) = p(n−1)+λn−2p
(n−2)+

. . .+ λ0 in the Laplace variable p. The combined error s can be rewritten as

s = y(n−1) − y(n−1)
r (2.32)

where y(n−1)
r is defined as

y(n−1)
r = y

(n−1)
d − λn−2e

(n−2) − . . .− λ0e (2.33)

where yd is the desired output given by a reference model.
Consider the control law

u = hy(n)
r − ks+

n∑
i=1

aifi(x, t) (2.34)

with the constant k, which has the same sign as h and y(n)
r , the derivative of y(n−1)

r

y(n)
r = y

(n)
d − λn1e

(n) − . . .− λ0ė. (2.35)

It has to be noted that y(n)
r is a reference value of y(n), which is obtained by modifying

y
(n)
d according to the tracking error. If the parameters h and ai are known the choice
of this control law leads to the tracking error dynamics by substituting (2.34) in
(2.30):

hṡ+ ks = 0. (2.36)

This gives an exponential convergence of s, and therefore guarantees a convergence
of e.
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To get an adaptive control, the constants h and ai of the control law (2.34) get
replaced by their estimates ĥ and âi

u = ĥy(n) − ks+
n∑
i=1

âifi(x, t). (2.37)

The dynamics of the tracking error of this control law is

h ṡ+ k s = h̃ y(n)
r +

n∑
i=1

ãifi(x, t) (2.38)

where h̃ = ĥ−h and ãi = âi−ai for i = 1 . . . n. The tracking error can be rewritten
with the Laplace variable p to

s = 1/h
p+ (k/h) [h̃ y(n)

r +
n∑
i=1

ãifi(x, t)]. (2.39)

Since the transfer function is strictly positive real, the following control law is chosen
by employing Lemma 8.1 of [9]:

˙̂
h = −γ sgn(h) s y(n)

r (2.40)

˙̂ai = −γ sgn(h) s fi. (2.41)

2.4 Prescribed error bounds
A control structure, which is independent from the model, and therefore is suitable
for any nonlinearities, is presented in [10]. Karayiannidis et al. show a guaranteed
prescribed transient and steady state behavior for the position and the velocity
tracking error of a robot joint without compensating for the robot dynamics.

To achieve prescribed performance, each element ei, i = 1, . . . , n of a generic tracking
error e ∈ Rn has to satisfy ∀t ≥ 0:

bi(t) < ei < bi(t) (2.42)

where bi(t), bi(t) : R≥0 → R>0 are the continuous and bounded performance bounds.
Utilizing strictly positive, decreasing and bounded performance functions ρi(t) and
constant overshoot indices Mi ∈ (0, 1], leads directly to the desired transient and
steady state bounds in ei. By denoting e0i = ei(0), the performance bounds of Eq.
(2.42) are given by:

bi(t) = −Miρi(t), bi(t) = ρi(t) for e0i ≥ 0 (2.43)

bi(t) = −ρi(t), bi(t) = Miρi(t) for e0i ≤ 0 (2.44)
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Figure 2.6: Performance bounds [10]: ei(t) denotes the tracking error, ρi(t) is the
performance function. ei0 and ρ0i are the corresponding values for t = 0. Mi is a
constant which scales the performance function and ρ∞i is the maximal allowable
size of ei at the steady state.

For each ei, one of the performance bounds of (2.43) or (2.44) belonging to e0i is
employed. If e0i = 0 either (2.43) or (2.44) can be used. Figure 2.6 shows an
error element evolution with prescribed performance for an exponentially decaying
performance function defined as follows:

ρi(t) = (ρ0i − ρ∞i) exp(−lit) + ρ∞i (2.45)
where ρ0i, li and ρ∞i are strictly positive constants and ρ0i = ρi(0) is chosen such
that ρ0i > |e0i|. The maximum allowable size of ei at the steady state is denoted by
ρ∞i = limt→+∞ ρi(t). The constant li influences the decreasing rate of ρi(t), which
is a lower bound on the required speed of convergence of ei. The maximal allowable
overshoot is less than Miρ0i.
The normalized tracking error is defined as êi , ei

ρi(t) and with ρ0i > |e0i| the
prescribed performance inequalities can be written as êi ∈ Ωi. The open sets Ωi,
i = 1, . . . , n are defined as follows:

Ωi = {êi ∈ R : −Mi < êi < 1} in case of e0i ≥ 0 (2.46)

Ωi = {êi ∈ R : −1 < êi < Mi} in case of e0i ≤ 0 (2.47)
An error transformation proposed in [20] and modified in [21] is used to introduce
prescribed performance. We define the components ξi of the transformed error
ξ ∈ Rn:

ξi = Ti(êi) (2.48)
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where Ti(·), i = 1, . . . , n are the transformation functions which are strictly increas-
ing, smooth functions defining bijective mappings:

Ti : Ωi → (−∞,∞) (2.49)
with Ti(0) = 0.
By the differentiation of (2.48) with respect of the time we get:

ξ̇i = Ji [ėi + αi(t)ei] (2.50)
where Ji, denotes the normalized slope of Ti(êi), and αi(t) are given by:

Ji ,
∂Ti
∂êi

1
ρi(t)

> 0 (2.51)

αi(t) , −
ρ̇(t)
ρi(t)

≥ 0 (2.52)

According to (2.49), a candidate error transformation is defined as:

Ti(êi) = ln
[
Mi + êi
Mi(1− êi)

]
in case of e0i ≥ 0 (2.53)

Ti(êi) = ln
[
Mi(1 + êi)
Mi − êi

]
in case of e0i ≤ 0 (2.54)

Equations (2.53) and (2.54) are plotted in Fig. 2.7.

Figure 2.7: Error transformation with natural logarithm [10]. Illustration of (2.53)
and (2.54).
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By designing prescribed performance controller as proposed in [22], the tracking
error evolves strictly within the prescribed performance bounds of (2.42).
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3
Modeling and Problem

Description

In this thesis we consider specific in-hand manipulation via extrinsic dexterity where
an object is grasped by a one degree of freedom parallel jaw gripper and the gravity
of the grasped object is used to regulate its orientation (Figure 3.1).

𝑥

𝜃0

𝜃

𝜃𝑑

𝑦

𝑧

𝑔

Figure 3.1: Modeling of the in-hand manipulation task: the blue object is grasped
by the gripper and rotates around the z-axis. The orientation of the object is denoted
by θ, θ0 is the initial angular position, θd is the desired end position and g denotes
the gravitational acceleration.

The problem can be divided in two parts. First, a suitable model has to be derived
to simulate the contact between the fingertips and the object. Second, a controller
has to be designed to control the actual orientation of the grasped object to a desired
orientation.

3.1 Modeling
The contact model describes the friction between the object and the fingertips and
the deformation of them. The generalized friction force consist of a frictional force
and torque that are exploited in order to perform the manipulation task. The stan-
dard Coulomb model can handle both of them only separately, independent of each
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other. However, in [13] and [14] it is shown that they have a dependency. One way
to model the contact with depended frictional force and torque is the concept of the
limit surface described in Section 2.1.

Figure 3.2 shows the conceptual model of the dependency between the contact model
and the model of the object. With the normal force of the gripper and the gravi-
tational force and torque of the object, the contact model calculates the frictional
force and torque which is applied at the contact area.

Contact Model

Object Model

𝐹𝑛
frictional
force and
torque

graviational
force and
torque

object
position and
velocity

Figure 3.2: Conceptual visualization of the contact model and its dependency to
the grasped object

An object grasped by a parallel jaw gripper can be seen in Figure 3.3. It is assumed
that the pivoting task is a planar problem.

𝑓𝑒𝑥𝑡

y

Θ0
xg

τ𝑒𝑥𝑡

𝑓𝑔

Figure 3.3: Modeling of the pivoting task (left). g is the gravitational acceleration
and θ is the orientation of the object. On the right side the gripper is replaced with
the friction force and torque, which is applied from the gripper. The gravitational
forcemg is exerted at the center of mass (COM) of the object, which has the distance
lCenter from the grasping point.
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The blue bar is the object, which is grasped at the left side from the gripper (black).
On the right side, the gripper is replaced with the frictional force ft and torque τf ,
which results from the normal force applied from one finger. Since the assumption
is made that the grasp is symmetric, the normal forces exerted by each finger on the
object are equal and therefore, the resulting frictional force and torque is 2ft and
2τf , respectively. The center of mass (COM) of the object has a distance of lCenter
from the grasping point. The rotational dynamics of the object are given by

Iθ̈ = τg + 2τf (3.1)

where I is the moment of inertia of the object around the axis of rotation and θ̈
is the angular acceleration of the object. The gravitational torque is denoted by
τg = fglcenter cos(θ), where fg = −mg is the gravitational force, m is the mass of the
object, g is the acceleration of gravity and θ is the angular orientation of the object.
The combined rotational and translational dynamics of the object are given by

Mq̈ = g + 2fc (3.2)

where M = Diag(m,m, I) is the mass matrix of the object, q̈ = [ax, ay, θ̈]> is the
acceleration vector of the object, fc is the friction force/torque set of the fingers and
g = [0 −mg −mglCenter cos θ]> is the gravitational force and torque applied to
the object.

3.1.1 Limit surface
The robotic fingertip contact model is modeled as soft finger contact. The soft finger
contact model assumes that the finger can exert both friction force tangential to the
contact surface and torsional friction around the direction normal to the contact
surface. The limit surface is the boundary if slippage happens or not and can be
approximated by the ellipsoid [4]

f>Af = 1 (3.3)

with
f = [fx, fy, τz]> (3.4)

where (fx, fy) are the tangential friction force components and τz is the torsional
friction around the normal. By the assumption of isotropic friction the matrix
A ∈ R3×3 becomes a diagonal matrix, whose elements are the maximum friction
force and moment

A = diag(f−2
t,max, f

−2
t,max, τ

−2
z,max) (3.5)

The tangential force can be modeled as Coulomb friction

ft,max = µ · fn (3.6)

where µ is the friction coefficient and fn is the normal force applied from the gripper.
The maximum torsional friction τz,max is given by the equation [6]
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τz,max = aβµfn (3.7)

where a is the radius of the contact surface and β is a constant depending on the
local pressure distribution. In this case we assume Hertzian pressure distribution,
which leads to β = 0.589 [7]. From Section 2.2 we get

a = cfγn (3.8)

where c is a constant, which depends on the size and curvature of the fingertips and
its material properties, and γ is a constant value between 0 and 1/3 depending on
the material of the fingertips [8]. By substituting Eq. (3.8) in (3.7) we get

τz,max = µtors · f 1+γ
n (3.9)

where the torsional friction coefficient µtors = cβµ.
Since there is no force in x-direction, fx is zero and the limit surface is a 2-
dimensional ellipse. To normalize the ellipse, each point (f, τ) is scaled such that
(f ′, τ ′) = (f/ft,max, τ/τz,max). The normalized ellipse is simply a circle, which
is scaled with the normal force applied from the gripper. Figure 3.4 shows the
normalized ellipse. For a given normalized external force f ′g and torque τ ′g, which
correspond to the gravitational force and torque, the resulting normalized frictional
force and torque is f ′t and τ ′f , respectively.

τ′

𝑓′

𝑓′𝑡

τ′𝑓

𝑓′
𝑔
, 𝜏′𝑔

Figure 3.4: Limit surface: normalized ellipse (f ′, τ ′) with the corresponding nor-
malized frictional force and torque f ′t and τ ′f for a given external force and torque
f ′g and τ ′g

This leads to the following equations to calculate the normalized frictional force f ′t
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and torque τ ′t :

f ′t =


sin(arctan(f ′g/τ ′g)− π), (vt 6= 0 ∨ |fg| ≥ 2ft) ∧ (f ′g < 0, τ ′g < 0)
sin(arctan(f ′g/τ ′g)), (vt 6= 0 ∨ |fg| ≥ 2ft) ∧ ¬(f ′g < 0, τ ′g < 0)
− f ′g, (vt = 0 ∧ |fg| < 2ft)

(3.10)

τ ′f =


cos(arctan(f ′g/τ ′g)− π), (θ̇ 6= 0 ∨ |τg| ≥ 2|τf |) ∧ (f ′g < 0, τ ′g < 0)
cos(arctan(f ′g/τ ′g)), (θ̇ 6= 0 ∨ |τg| ≥ 2|τf |) ∧ ¬(f ′g < 0, τ ′g < 0)
− τ ′g, (θ̇ = 0 ∧ |τg| < 2|τf |)

(3.11)
where

f ′g = fg/2ft,max (3.12)

τ ′g = τg/2τz,max (3.13)

and θ̇ and vt are the angular and tangential velocities. By multiplying the normalized
frictional force f ′t and torque τ ′t with the maximal tangential friction ft,max and
maximum torsional friction τz,max respectively we get the frictional force ft and
torque τt

ft = f ′tft,max (3.14)

τf = τ ′fτz,max. (3.15)

The relation between the angular and translational velocity vy and θ̇ is given by the
equation

|vt|
θ̇

= λ
f ′y
τ ′g

(3.16)

with

λ = τz,max
ft,max

(3.17)

with this relationship it is enough to obtain either the rotational or the translational
sliding dynamics and calculate the corresponding translational or rotational velocity
with Equation (3.16).

3.1.2 Rotational model
The rotational model utilizes dynamics for the rotation and calculates the transla-
tional velocity with a dependency to the rotational velocity in most of the pivoting
tasks. The equations derived in Section 3.1.1 are used to deduce the dynamics of
the grasped object.
Figure 3.5 shows the limit surface. In the blue area (A) the rotational dynamics
are considered and the translational velocity is calculated using (3.16). In the green
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3. Modeling and Problem Description

area (B), both the rotational and translational dynamics are considered. Thus, if
the magnitude of the induced torque is bigger than the magnitude of the normalized
gravitational force, the relation between the rotational and translational velocities is
considered and if the magnitude of the normalized gravitational force is bigger than
the magnitude of the induced torque, the object dynamics are used for the rotational
and translational dynamics. We have differentiated the modeling depending on the
region, because the relation between the translational and rotational velocity (3.16)
is not valid if the gravitational torque is zero. A gravitational torque equals to zero
would lead to an infinite translational velocity.

τ′

𝑓′

𝑓′𝑡

τ′𝑓

𝑓′
𝑔
, 𝜏′𝑔

𝐴

𝐴

𝐵𝐵

Figure 3.5: Limit surface: normalized ellipse (f ′, τ ′) with two regions A (blue) and
B (green). In the blue area the normalized torque is bigger than the normalized
force and in the green area it is vice versa.

For region A, the rotational dynamics of the configuration seen in Figure 3.3 are
given by

Iθ̈ =
{
τg − sign(τg)2|τf |, θ̇ = 0
τg − sign(θ̇)2|τf |, θ̇ 6= 0

(3.18)

By inserting τf and resolving the equation to θ̈, (3.18) can be rewritten as

θ̈ =


τg−sign(τg)2| cos(arctan(f ′g/τ ′g))|·τz,max

I
, (θ̇ = 0 ∧ |τg| > 2|τf |)

0, (θ̇ = 0 ∧ |τg| ≤ 2|τf |)
τg−sign(θ̇)2| cos(arctan(f ′g/τ ′g))|·τz,max

I
, θ̇ 6= 0.

(3.19)

The translational velocity can be obtained from Eq. (3.16). The direction of the
translational velocity is always in negative y-direction since the only external force
is the gravitational force, which exerts in this direction.

vy = −|λ
f ′y
τ ′g
θ̇| (3.20)
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3. Modeling and Problem Description

where vy denotes the velocity in y-direction.
For region B, the translational dynamics are given by

may = fg + 2ft (3.21)

where ay is the translational acceleration in y-direction. By inserting ft in (3.21)
and resolving the equation for ay we get

ay =


fg+2 sin(arctan(f ′g/τ ′g)−π)·ft,max

m
, (vt 6= 0 ∨ |fg| ≥ 2ft) ∧ (f ′g < 0, τ ′g < 0)

fg+2 sin(arctan(f ′g/τ ′g))·ft,max
m

, (vt 6= 0 ∨ |fg| ≥ 2ft) ∧ ¬(f ′g < 0, τ ′g < 0)
0, (vt = 0 ∧ |fg| < 2ft).

(3.22)
The rotational dynamics are given by Eq. (3.18) and (3.19). It has to be noted that
the Region A and B have been chosen the same size. However, the border between
both regions can be set different. Since the focus for our model is on the rotational
dynamics where the gravitational torque is much bigger than the gravitational force,
we stay most of the time in region A and the borderline to region B can be seen as
insignificant.

3.1.3 Combined model
The rotational model derived before calculates only the rotational dynamics if the
normalized gravitational torque is bigger than the normalized gravitational force,
which we expect for most of the pivoting tasks. The translational velocity is com-
puted with the help of the ratio of the translational and rotational velocities. This
heuristic can not cover the real translational dynamics since no translational acceler-
ations is considered. To cover both the rotational and the translational dynamics of
the object, a combined model, which is based on the theory shown in Section 2.1.1.3,
is derived. The limit surface constructed in Section 3.1.1 is still used.

To recap the combined rotational and translational object dynamics (3.2) are defined
as

Mq̈ = 2fc + g.

The theory shown in Section 2.1.1.3 is used to calculate the frictional force and
torque fc . We define the relative velocity vector

∆v = −q̇ (3.23)

where q̇ is the velocity vector of the object. The friction force vector is given by

f c =


A−1∆v√

∆v>A−1∆v
, ∆v 6= 0

−1
2g,

√
f ′g

2 + τ ′g
2 ≤ 1 and ∆v = 0

A−1rft√
r>
ft
A−1rft

,
√
f ′g

2 + τ ′g
2 > 1 and ∆v = 0

(3.24)
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3. Modeling and Problem Description

where f ′g and τ ′g are the normalized frictional force and torque respectively. It has to
be noted that in the third case of Eq. (3.24) the relative velocity ∆v is substituted by
the force and torque ratio rft, which corresponds to the velocity ratio of Eq. (3.16)

rft = [0 |λ
f ′y
τ ′g
| − sign(τg)]> (3.25)

where λ = τz,max/ft,max. Since the relative velocity vector is always opposed to the
velocity of the object and the velocity in y-direction of the object is always smaller or
equal to zero, the second component of rft is always positive. The third component
is opposed to the gravitational torque. By inserting (3.24) in (3.2) we obtain the
acceleration of the object:

q̈ =


M−1(2 A−1∆v√

∆v>A−1∆v
+ g), ∆v 6= 0

0,
√
f ′g

2 + τ ′g
2 ≤ 1 and ∆v = 0.

M−1(2 A−1rft√
r>
ft
A−1rft

+ g),
√
f ′g

2 + τ ′g
2 > 1 and ∆v = 0

(3.26)

It is notable that the combined model covers the translational dynamics in x- and
y-direction and the rotational dynamics. However, since we have no forces acting in
x-direction, the acceleration in x-direction is always zero and the problem could be
easily adapted to a two dimensional problem by cutting the first row of all vectors
and matrices.

3.2 Validation and comparison of the models
To validate the derived contact models in Section 3.1.2 and 3.1.3 the models are built
in Matlab and Simulink. An ode3 solver with a step size of 10−4 is used. Table 3.1
shows the parameter of the grasped object. The object parameters are gathered
from [6]. The parameter γ, which depends on the material of the fingertips, is set
to 0.3.

Table 3.1: Parameter of the grasped object.

m [g] 48.5
lcenter [cm] 12.22
I [Kg · cm2] 10.64
µ 0.47
µtors 0.643 ·10−3
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3. Modeling and Problem Description

3.2.1 Constant grasping force

The grasped object has an initial orientation of 27◦, which corresponds to Fig. 3.3.
A constant grasping force of 20N is applied to the object.

The normalized limit surface can be seen in Figure 3.6. The red point is the nor-
malized gravitational force and torque vector at the initial position (θ0/fn). Since
it lies inside the limit surface, no sliding happens and the position and orientation
of the object does not change.

Figure 3.6: The normalized limit surface (f ′t , τ ′f ) = (ft/ft,max, τf/τz,max).
The red point is the normalized gravitational force and torque (f ′g, τ ′g) =
(fg/2ft,max, τg/2τz,max) at the initial position with fn = 20N.

With a changed normal force fn = 15N, the normalized force and torque vector lies
outside the limit surface (Figure 3.7). A rotating movement happens, which can
be seen in Figure 3.8. The plot shows the angle θ and the translational motion of
the grasped object. The blue curve is is the result of the combined model and the
red curve the one of the rotational model. Both curves are nearly identical for the
rotational motion. They start at the initial orientation of θ0 = 27◦ and end at an
angular position of −84◦ after 0.7 seconds.
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3. Modeling and Problem Description

Figure 3.7: The normalized limit surface (f ′t , τ ′f ) = (ft/ft,max, τf/τz,max).
The red point is the normalized gravitational force and torque (f ′g, τ ′g) =
(fg/2ft,max, τg/2τz,max) at the initial position with fn = 15N.

Figure 3.8: Angular orientation and displacement in y-direction of the grasped
object with a constant grasping force fn = 15N and an initial orientation of θ0 = 27◦.

For the translational motion of the combined model the object is displaced by around
−0.2mm and for the rotational model it is moved by −0.27mm. Both motions
happen in the first 0.7 seconds like the rotational motion.
The gravitational force is very small compared to the gravitational torque and there-
fore, the displacement of the object in y-direction is very small. The difference of
both models can be explained because the rotational model calculates the transla-
tional motion depended on the rotational velocity (3.21), while the combined model
uses translational dynamics for the translational motion (3.26).
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3. Modeling and Problem Description

3.2.2 Additional external force and torque
To force the system to do certain rotational or translational movements, an ad-
ditional external torque τext and force fext are applied to the contact point (Fig-
ure 3.9). We define the cumulative external force and torque as fsum = fg +fext and
τsum = τg + τext respectively.

y

Θ0
xg

τ𝑒𝑥𝑡

𝑓𝑒𝑥𝑡 𝑓𝑔

Figure 3.9: Modeling of the pivoting task with an additional external force fext
and torque τext.

Both the rotational and the combined model have to be modified. To calculate the
frictional force and torque, Eq. (3.10) and (3.11) are rewritten as

f ′t =


sin(arctan(f ′sum/τ ′sum)− π), (vt 6= 0 ∨ |fsum| ≥ |2ft|) ∧ (f ′sum < 0, τ ′sum < 0)
sin(arctan(f ′sum/τ ′sum)), (vt 6= 0 ∨ |fsum| ≥ |2ft|) ∧ ¬(f ′sum < 0, τ ′sum < 0)
−f ′sum, (vt = 0 ∧ |fsum| < |2ft|)

(3.27)

τ ′f =


cos(arctan(f ′sum/τ ′sum)− π), (θ̇ 6= 0 ∨ |τg| ≥ 2|τf |) ∧ (f ′sum < 0, τ ′sum < 0)
cos(arctan(f ′sum/τ ′sum)), (θ̇ 6= 0 ∨ |τg| ≥ 2|τf |) ∧ ¬(f ′sum < 0, τ ′sum < 0)
−τ ′sum, (θ̇ = 0 ∧ |τsum| < 2|τf |)

(3.28)
where

f ′sum = (fg + fext)/2ft,max
τ ′sum = (τg + τext)/2τz,max.

The rotational model is modified by rewriting the rotational and translational dy-
namics given by (3.18) and (3.21)

Iθ̈ =
{
τsum − sign(τsum)2|τf |, θ̇ = 0
τsum − sign(θ̇)2|τf |, θ̇ 6= 0 (3.29)

may =
{
fsum − sign(fsum)2|ft|, vy = 0
fsum − sign(vy)2|ft|, vy 6= 0. (3.30)
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3. Modeling and Problem Description

For the combined model the friction force vector becomes

fc =


A−1∆v√

∆v>A−1∆v
, ∆v 6= 0

−1
2gsum,

√
f ′sum

2 + τ ′sum
2 ≤ 1 ∧∆v = 0

A−1rft,ext√
r>
ft,ext

A−1rft,ext
,

√
f ′sum

2 + τ ′sum
2 > 1 ∧∆v = 0

(3.31)

where gsum = [0 − mg + fext − mglCenter cos θ + τext]>. The force and torque
ratio (3.25) is adapted to

rft,ext = [0 |λf
′
sum

τ ′sum
| − sign(τsum)]>. (3.32)

The combined dynamics of Eq. (3.26) can be rewritten as

q̈ =


M−1(2 A−1∆v√

∆v>A−1∆v
+ gsum), ∆v 6= 0

0,
√
f ′sum

2 + τ ′sum
2 ≤ 1 ∧∆v = 0.

M−1(2 A−1rft,ext√
r>
ft,ext

A−1rft,ext
+ gsum),

√
f ′sum

2 + τ ′sum
2 > 1 ∧∆v = 0

(3.33)

In the first scenario the external force is set to zero and the external torque τext
is defined by the user and is shown in Figure 3.10. The other curves in this plot
are the gravitational torque τg, the total external torque τsum and the corresponding
minimal and maximal frictional torque while pivoting with a constant gripping force
of 15N, using the rotational model and the object parameters of Table 3.1.

Figure 3.10: Occurring torques while pivoting with an external torque for the
rotational model. The blue curve shows the gravitational torque, the red curve is
the external torque. Adding the previous torques leads to the green curve. The
black lines are the minimal and maximal frictional torques cause by an gripping
force of 15N.
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The first 0.5 seconds the external torque is zero. The gravitational torque is smaller
than the minimal frictional torque. Thus, the object accelerates in negative direc-
tion, which can be seen in Figure 3.12. After 0.5 seconds there is applied a positive
external torque, which is added with the gravitational torque in between the min-
imal and maximal torque. Hence, there is a positive angular acceleration until the
angular velocity is zero. τsum is inside of the minimal and maximal frictional torque.
Therefore, θ is not changing until 2 seconds. At this point τsum is smaller than the
minimal frictional torque and the object accelerates in negative direction. At around
2.2 seconds, τsum gets bigger than the minimal frictional torque. The object is ac-
celerated until its velocity is zero. The same procedure happens at 3 and 4 seconds.
The object gets accelerated first and than decelerated until it stops. The maximal
and minimal frictional force changes because it depends on the limit surface. The
closer the cumulative external torque τsum is to zero the smaller is the magnitude of
the frictional torque.

Figure 3.11 shows the same as Figure 3.10 just for the combined model. All torques
look similar the rotational model in Figure 3.10. However, there are some minor
differences, which lead to a cumulative external torque τsum very close to zero for
the rotational model from 3.2 seconds to 4 seconds (Figure 3.10) and a little bit
bigger τsum for the combined model (Figure 3.11). Hence, the magnitude of the
maximal and minimal frictional torque is bigger for the combined model than for
the rotational model.

Figure 3.11: Occurring torques while pivoting with an external torque for the
combined model. The blue curve shows the gravitational torque, the red curve is
the external torque. Adding the previous torques leads to the green curve. The
black lines are the minimal and maximal frictional torques caused by a gripping
force of 15N.
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This affects the angular and translational position. From Figure 3.12 can be seen
that for the first 3.2 seconds the angular position of the object for both models
are very similar. After 3.2 seconds, the combined model is more damped than the
rotational model. This can be attributed to the bigger magnitude of the maximal
and minimal frictional torque.

The displacement of the object in y-direction can be seen in the right plot of Fig. 3.12.
As in Figure 3.8 the motions of both models are different here as well. Both models
have a translational motion always if the angular positing is changed. However, the
amount differs.

Figure 3.12: Angular orientation and translational motion of the grasped object
with a constant grasping force fn = 15N, an initial orientation of θ0 = 27◦ and a
changing external torque, which can be seen in Figure 3.10.

The combined model has a smoother, more damped curve with a total displacement
of−0.5mm. The curve of the rotational model is less damped. Its total displacement
in y-direction is around −0.85mm. Since the gravitational force is always in negative
y-direction, the displacement is also always in negative y-direction.

For the second scenario we apply an external force and an external torque, which
are displayed in Figure 3.13 and Figure 3.14 respectively. The pivoting is performed
with the object parameters of Table 3.1, a constant gripping force of 5N and an
initial angular position of θ0 = 90◦.
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Figure 3.13: Occurring forces while pivoting with an external force and torque
for the combined model. The right plot shows the orange sector of the left plot
zoomed in. The black lines are the minimal and maximal frictional forces caused by
a gripping force of 5N.

Figure 3.14: Occurring torques while pivoting with an external force and torque
for the combined model. At 1 second a negative external pulse is given. After that,
τsum = τg. The black lines are the minimal and maximal frictional torques caused
by a gripping force of 5N.

In the first 0.25 seconds τsum = 0 and fsum = 0 lies inside of the maximal and minimal
frictional force from both fingertips. Thus, no movement happens. Between 0.25 and
0.5 seconds an external force is applied such that fsum is smaller than the minimal
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frictional force. The object starts moving in negative y-direction (Figure 3.15).
After that the object is decelerated until its velocity is zero. At 2 seconds, an
external torque pulse is applied to the object. The object starts rotating and swings
around θ = −90◦ until its energy is totally dissipated and it stops at 3.5 seconds.
Additionally, the object moves in negative y-direction due to the gravitational force.
At 2 seconds an external force is applied, which compensates the gravitational force.
Hence, the object stops its translational motion. The occurring torques and forces
for the rotational model are very similar to the ones of the combined model. The
corresponding plots can be seen in Figures A.1 and A.2.

Figure 3.15: Angular orientation and displacment in y-direction of the grasped
object with a constant grasping force fn = 5N, an initial orientation of θ0 = 90◦
and a changing external force and torque, which can be seen in Fig. 3.13 and 3.14.

Figures 3.15 shows the angular and y-position of the object while pivoting with this
scenario. For the rotational movement both models are identical. However, the
displacement in y-direction has differences, which are very similar to the discussed
differences of Figure 3.12. The motions happen at the same time for both models,
but the the rotational model has a bigger displacement.

To conclude this section, we have derived two different contact models, which are
both based on the concept of the limit surface. The first model, the rotational
model, uses the frictional torque calculated directly from the limit surface for the
rotational dynamics. The translational velocity is calculated by a ratio between the
rotational and the translational velocity. Only if the cumulative external torque is
smaller than the cumulative external force, the translational dynamics are calculated
with the frictional force from the limit surface. The second model, the combined
model, using a velocity depended frictional force and torque for the rotational and
translational dynamics.
The simulation results show that both models have a very similar behavior for the
angular position of the object while pivoting. However, the displacements’ response
in y-direction have some differences. In the shown scenarios the displacements of
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the rotational model are bigger than the displacements of the combined model. The
difference between the models can be attributed to the way that the translational
velocity is calculated. The results of the combined model can be seen as more
accurate, because this model uses real dynamics while the rotational model just
calculates the translational velocity as a function of the rotational velocity.

3.3 Control Problem
The aim of this thesis is to control the normal force, which is applied from the
fingertips to the object, in an appropriate way such that the orientation of the
object is changed in a desired way. Since it is only performed passive pivoting with
the help of gravity, the object will always rotate in only one direction. Hence, no
overshooting is tolerable. To achieve this, the trajectory of the object should follow a
reference trajectory, which is generated with a critical damped second order system.
The overall system with its subsystems is graphically illustrated in Fig. 3.16.

Contact And Object
Model

ControllerReference Model

ሷ𝜃𝑚 , ሶ𝜃𝑚 , 𝜃𝑚 𝐹𝑛

ሶ𝜃, 𝜃

Figure 3.16: The simulation model contains three subsystems: The reference
model provides the desired trajectory of the object, the controller calculates the
normal force to follow this trajectory and the contact and object model is the plant,
which contains the object dynamics and the contact between the gripper and the
object.

Since the torsional friction coefficient is difficult to measure, it is seen as a uncertain
parameter. To get good results without knowing the exact value of the friction coeffi-
cient, an adaptive control design introduced in Section 2.3 can be contrived. Another
possible solution to deal with the uncertainty of the torsional friction coefficient is
to derive a model free controller proposed in Section 2.4. This control approach
is independent of the model dynamics, instead it only depends on prescribed per-
formance bounds concerning the tracking error. The translational motion is not
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considered for the control approach, however, it is desirable to find the smallest
possible translational displacement.

3.3.1 Delimitation
For simplicity, we consider the in-hand manipulation task as planar problem. More-
over, centrifugal forces generated through the motion of the object are seen as negli-
gible because they are very small compared to the gravitational force applied through
the mass of the object. It is assumed that we can control the normal force of the
fingertips directly and that we can measure the position and velocity of the object
without any sensor noise. The object is assumed as rigid without any deformations.
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In this chapter, two different control approaches are applied to design controllers for
regulating the actual orientation of the object to a desired orientation.
For the control design several assumptions are made:

1. The inertial parameters (I,m, lcenter) of the object are known but for the tor-
sional friction coefficient µtors small uncertainties are allowed. The initial
parameters can be gathered from experiments using e.g. wrist-mounted force-
torque sensor before the pivoting task is performed [23]. In practice it is
difficult to measure the torsional friction coefficient µtors. Therefore, the use
of an adaptive controller with adaption on µtors is justified.

2. The angular position and the angular velocity can be gathered from the contact
model.

3. The robot’s gripper is force controlled and is modelled without errors. That
means the desired normal force fn is directly applied to the grasped object.

4. The gripper is oriented such that the gravitational torque can rotate the object
to the desired end position, i.e. sgn(τg) = sgn(θd − θ0).

5. the parameter γ from the soft finger model depends on the material of the
fingertips and can be estimated offline. Therefore, this parameter is assumed
as known.

6. Since we perform passive pivoting, the angular position θ must not overshoot.
The control structure can be seen in Fig. 3.16. The reference model has the desired
angular position, velocity and acceleration as output and the controller controls the
normal force of the gripper.
We define the system’s state x(t) = [θ(t), θ̇(t)], which is driven along a state trajec-
tory xm(t) = [θm(t), θ̇m(t)] by the controller. The state trajectory is characterized
by a reference model, which is defined by the user and describes the optimal response
that the system should follow. Since we want to avoid an overshoot in the angular
position response, we design the reference model as a critically damped second order
system [24] with the following transfer function

Hm(p) = θm
θin

= λ2
0

(p+ λ0)2 (4.1)

where the reference input θin has a trapezoidal velocity profile.

First, we introduce a simplified rotational object dynamic model where the theory
of Section 2.3 can be applied. The rotational dynamics are given by the following
equation:
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Iθ̈ = τg + 2µtorsf 1+γ
n . (4.2)

For the rotational model the rotational dynamics are given by Eq. (3.19). By
substituting Eq. (3.9) we get

Iθ̈ = τg + 2µtors
∣∣∣∣∣cos

(
arctan

(
f ′g
τ ′g

))∣∣∣∣∣ f 1+γ
n (4.3)

where f ′g and τ ′g are the normalized gravitational force and torque given by Eq.
(3.12) and Eq. (3.13).
The rotational dynamics of the combined model are given by the third component
of the combined dynamics of Eq. (3.26) and can be written as

Iθ̈ = τg − 2 θ̇µ2
torsf

γ
n√

v2
yµ

2 + θ̇2µ2
torsf

2γ
n

f 1+γ
n . (4.4)

Equations (4.2) - (4.4) can be rewritten as follows:

f 1+γ
n = h∗θ̈ + b∗τg (4.5)

where h∗ ∈ {hsimpl, hrot, hcomb} and b∗ ∈ {bsimpl, brot, bcomb} are parameters of the
simplified dynamics, the rotational model and the combined model, which are de-
fined as:

h∗ =



0.5Iµ−1
tors, h∗ = hsimpl

I

2µtors
∣∣∣cos
(

arctan
(
f ′g
τ ′g

))∣∣∣ , h∗ = hrot

− I
√
v2
yµ

2+θ̇2µ2
torsf

2γ
n

2θ̇µ2
torsf

γ
n

, h∗ = hcomb

(4.6)

b∗ =



−0.5µ−1
tors, b∗ = bsimpl

− 1
2µtors

∣∣∣cos
(

arctan
(
f ′g
τ ′g

))∣∣∣ , b∗ = brot

√
v2
yµ

2+θ̇2µ2
torsf

2γ
n

2θ̇µ2
torsf

γ
n

, b∗ = bcomb

(4.7)

It is notable that Eq. (4.5) is not a explicit notation of the normal force for the
rotational and the combined model since the normalized force and torque f ′g and
τ ′g depend on the normal force. Also, the control theory of Section 2.3 can only
be applied directly to the simplified object dynamics. For the rotational and the
combined model some assumptions have to be made. The parameters hrot, hcomb,
brot and bcomb are not constant during pivoting. They depend on the normal force
and the object orientation.
If vy converges to zero, hcomb = hsimpl = 0.5Iµ−1

tors and bcomb = bsimpl = −0.5µ−1
tors.

If vy converges to infinity, hcomb and bcomb converge to plus or minus infinity as
well. Hence, the parameters are bounded at one side with the minimal absolute
value for vy = 0. The bounds of the parameters hrot and brot are similar since∣∣∣∣cos

(
arctan

(
f ′g
τ ′g

))∣∣∣∣ ∈ [0 1].
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Since the parameters of the rotational model hrot and brot are slow changing if the
gravitational torque is much bigger than the gravitational force and parameters hcomb
and bcomb of the combined model are nearly constant if vy is very small, we assume
that the control approach of Section 2.3 is still valid for most of the pivoting tasks.
The validity and limits of this assumptions is shown by simulation in Chapter 5.
The tracking control error s is defined as

s = ˙̃θ + λθ̃ (4.8)

where θ̃ = θ−θm is the the angular position error, ˙̃θ = θ̇− θ̇m is the angular velocity
error and λ is a constant.

4.1 Adaptive controller

The adaptive control design follows the strategy of [6]. A model reference adaptive
control is considered to perform the pivoting task with errors in the torsional friction
coefficient µtors, which represents parametric uncertainties in the nonlinear models
(4.2) - (4.4).

We formulate the standard adaptive control law [9]

f 1+γ
n = ĥ∗θ̈r − kss+ b̂∗τg (4.9)

where the reference angular acceleration θ̈r = θ̈m−λ ˙̃θ multiplied with ĥ∗ is a velocity
error and feed-forward acceleration term, kss is a tracking error term and b̂τg is a
nonlinear gravity compensation term. ks is a positive control gain and ĥ∗, b̂∗ are
adaptive estimates of h∗ and b∗ given by

˙̂
h∗ = −αhsθ̈r (4.10)

˙̂
b∗ = −αbsτg (4.11)

where αh and αb are positive adaption gains. The initialization of h∗ and b∗ is done
with an estimated torsional friction coefficient and Eq. (4.6) and (4.7). It is notable
that for the initialization of ĥcomb and b̂comb, vy is substituted with −

∣∣∣∣λf ′y(0)
τ ′g(0)

∣∣∣∣ and θ̇
is substituted with sign(cos τg) in Eq. (4.6) and (4.7). This is done the same as in
Section 3.1.3 since hcomb and bcomb are not defined for velocities equals to zero.
It is important to mention that the adaptation estimates calculated online with
(4.10) and (4.11) are not guaranteed to converge to the correct values unless con-
tinuous excitation. However, the control design does guarantee convergence of the
tracking error s. This implies that the orientation of the object converges to the
desired orientation.
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4.2 Model free controller

The torsional friction coefficient is seen as uncertain and therefore, it is difficult to
apply a controller which depends on the model dynamics. The adaptive controller
of the previous chapter can adapt the torsional friction coefficient, however, we had
to make some assumptions, which limit the working range of the controller. In this
section, a model free controller is derived, which is based on the idea of Section 2.4
and guarantees prescribed performance.
We want to follow the reference trajectory defined in (4.1), which leads to the com-
bined tracking error s defined in (4.8). To achieve prescribed performance, following
equation has to be satisfied ∀t ≥ 0:

b(t) < s < b(t) (4.12)

where the performance bounds b(t), b(t) are defined in Section 2.4 and illustrated
in Fig. (2.6).
The theory of Section 2.4 cannot be applied to our control problem directly, since
it is only valid for a class of models which have an input range of u ∈ (−∞,∞).
The contact model between the robot hand and the object with the normal force
as input is limited to fn ∈ [0,∞). Therefore, we have to employ a different error
transformation function T (·), which is smooth and strictly increasing.

ξ = T (ŝ) (4.13)

T : Ω→ (−∞, 0) (4.14)

where ξ is the transformed error and ŝ = s
ρ
is the normalized tracking error. The

open set Ω is defined in Section 2.4.
A candidate error transformation function which satisfies (4.14) is given by:

T (ŝ) = ŝ− 1
M + ŝ

for −M < ŝ ≤ 1 (4.15)

where the constant M ∈ [0, 1]. An illustration of (4.15) is shown in Fig. 4.1.
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Figure 4.1: Illustration of the error transformation of Eq. (4.15).

The control input is then given by:

fn = −KmfJmfξ (4.16)
where Kmf is a positive control gain and Jmf denotes the normalized slope of T (ŝ),
which is given by:

Jmf = ∂T

∂ŝ

1
ρ(t) (4.17)

It has to be noted that the initial error is limited by −M < ŝ(0) ≤ 1. In Section 2.4
we have different error transformations for a normalized error bigger or smaller zero.
In our case we have only one error transformation. Since we perform passive pivoting
and we want to avoid an overshooting in negative direction, a small M is desirable.
The here proposed control law is not proven mathematically, however, it is easy to
see that the combined error always stays inside the bounds since the normal force
increases to infinity if we reach the lower bound and converges to 0 if we reach the
upper bound. Hence, the object cannot move further if the combined tracking er-
ror is close to the lower bound and the combined error remains constant or increases.

It is also possible to change the tracking error for the prescribed dynamics. By
defining

e = λ(θ − θd) + θ̇ (4.18)
and replacing the combined tracking error s with e and ŝ with ê = e

ρ
in all equations

of Section 4.2, we relax the control constraints. The object does not follow any
reference trajectory, instead only the position error to the desired end position and a
penalization of the angular velocity is considered. Since we perform passive pivoting
and every negative position error e means an irreversible overshoot of the desired
position, the constant M is chosen close or equal to zero.
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5
Results

This chapter shows the results of this thesis. The performance of the contact models
derived in Section 3.1 in combination with the controllers of Section 4 is investigated
and compared to each other. First, the adaptive control approach is considered.
The adaptation gains αh and αb are set to zero to prevent an adaptation of the
torsional friction coefficient. The torsional friction coefficient is assumed as know
and therefore, the torsional friction coefficient of the controller is the same as for the
contact model. After that the torsional friction coefficient is assumed as unknown.
Hence, the controller and contact model use different torsional friction coefficients
µtors and µtors,m respectively. The performance is investigated for both cases were
the adaptation gains are set to zero and set bigger than zero for different desired
trajectories and object parameters. Then the model free controller is considered and
compared to the adaptive control approach for some in-hand manipulation tasks.

Table 5.1: Parameters of the object and contact model.

g [m/s2] 9.81
m [g] 48.5
lcenter [cm] 12.22
I [Kg · cm2] 10.64
γ 0.3
µ 0.47
µtors,m 0.643 ·10−3 or 0.85 ·10−3

θ0 [°] 27

Table 5.2: Parameters of the adaptive controller and for the reference model.

αh 0 or 1.5
αb 0 or 7.5 ·10−3

ks 23
λ 10
µtors 0.643 · 10−3

θd [°] 0
λ0 2.5

Table 5.1 and 5.2 show the parameters used for the contact and object model and
the adaptive controller. Each parameter, which has two different values, is changed
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for the different scenarios.

5.1 Reference Trajectory

The reference angular position for the object is given by Eq. (4.1). For the param-
eters of Table 5.1 and 5.2 the trapezoidal input velocity of the reference model can
be seen in Figure 5.1. Through integration the dotted blue line results, which is the
input of the reference model. The blue line is the output of the reference model,
which is the desired angular position of the object.

Figure 5.1: Reference signal: The blue line is the reference angular position θm
which the object should follow. The dotted blue line is the input θin of the reference
model given with Eq. (4.1). The red line is the trapezoidal input velocity θ̇in of the
reference model.

5.2 Non-adaptive control

The controllers of Section 4.1 are first investigated without any adaptation of the
torsional friction coefficient. The adaptation gains αh and αb are set to zero.

5.2.1 Equal friction coefficient

The torsional friction coefficient of the contact model and of the controller µtors,m
and µtors respectively are both set to 0.643 · 10−3. The behavior of the object for
the rotational and the combined model can be seen in Figure 5.2 and Figure 5.3.
Figure 5.2 shows the angular position of the object for both models and the desired
trajectory as well as the normal force which is applied to the object.
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Figure 5.2: Angle of the object for the combined and the rotational model and
desired reference angle for a known torsional friction coefficient and estimation gains
αh and αb equal to zero (top). Normal force applied from the fingertips to the object
(bottom).

Both models can follow the reference trajectory very well without overshooting the
desired angular orientation. The applied normal force is very similar for both models.
The displacement in y-direction while pivoting can be seen in Figure 5.3. Both
models point out a very similar result. The displacement is with around −0.043mm
very small, which is good since we want to avoid translational sliding while pivoting.

Figure 5.3: Sliding of the object in y-direction for the combined and the rota-
tional model, while the object is manipulated from the initial to the desired angular
orientation.
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The translational motion is similar for both models although Section 3.2 pointed out
a different behaviour of both models. Since the velocities while pivoting are much
slower than the velocities in the uncontrolled cases of Section 3.2, we assume that
there is only a different behaviour for the translational motion of both models for
high velocities.

5.2.2 Uncertainty in the friction coefficient
Since the torsional friction coefficient is seen as uncertain, the torsional friction
coefficient of the controller µtors is set different from the torsional friction coefficient
of the contact model µtors,m. The parameter µtors is set to 0.85 · 10−3 while µtors,m
remains at 0.643 · 10−3. Figure 5.4 shows the angular position of the object while
pivoting for both models, as well as the model reference and the normal forces.
Since we cannot adapt the torsional friction coefficient, the object cannot follow the
model trajectory and the angular position of the object ends at around 3◦ under the
desired orientation.
The second plot shows the normal force which is applied to the object. The normal
force is very similar for both models.

Figure 5.4: Angular position of the object for the combined and the rotational
model and desired reference angle for an unknown torsional friction coefficient and
estimation gains αh and αb equal to zero (top). The chosen torsional friction coeffi-
cients can be seen in Table 5.1 (second value) and Table 5.2. Normal force applied
from the fingertips to the object (bottom).

The translational movements of the object for both models can be seen in Fig. 5.5.
As the angular position, the displacement of the object is similar for both models.
The total displacement is with around -0.047mm bigger than in section 5.2. This
can be attributed to the overshooting angular position and therefore, a bigger change
for the orientation.
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Figure 5.5: Sliding of the object in y-direction while the object is manipulated from
the initial to the desired angular orientation for the combined and the rotational
model.

5.3 Adaptive control

For the adaptive control the adaptive estimates ĥrot and b̂rot for the rotational model
and ĥcomb and b̂comb for the combined model have to be calculated with (4.6) and
(4.7) by setting the adaptation gains bigger than zero. The adaptation gains are
set to αh = 1.5 and αb = 7.5 · 10−3, which correspond to the second value of both
parameters seen in Table 5.2.

5.3.1 Uncertainty in the friction coefficient

The torsional friction coefficient µtors = 0.85 · 10−3 for the controller of both models
is set the same as in Section 5.2.2 while using µtors,m = 0.643 · 10−3 as parameter
of the contact models (Table 5.1). Figure 5.6 shows the simulated trajectory of
the angular position of the object for the rotational and the combined model and
the desired trajectory. The trajectory of both models can reach the desired end
orientation. Because of the erroneous initial torsional friction coefficient we get an
error of the angular position in both models in the first 1.5 seconds.
The seconds plot shows the normal force which is applied to the object for both
models. The normal force of both models are the same.
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Figure 5.6: Angle of the object for the rotational and the combined model and
desired reference angle for a different torsional friction coefficient for the model and
the controller. The chosen torsional friction coefficients and the estimation gains
αh and αb can be seen in Table 5.1 and Table 5.2 (second value). The second plot
shows the applied normal force during the pivoting process for both models.

The parameters hcomb, hrot, bcomb and brot, which are assumed as nearly constant and
slow changing during pivoting, can be seen in Fig. 5.7.

Figure 5.7: Parameters bcomb and hcomb of the combined model and brot and hrot
of the rotational model during pivoting.

All parameters vary only very slightly. For the combined model, hcomb and bcomb
change in the beginning from the same values as hrot and brot. This can be attributed
to the fact that the combined model gets initialized with the same velocity ratio
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between the translational and the rotational velocity than the rotational model uses
to calculate the translational motion during the whole process. After this jump in the
beginning, the shape of the parameter evolution of both models look very similar.
However, the parameters of the combined model change less. The assumption of
slow changing parameters is therefore valid for this scenario. The values of the
parameters of Fig. 5.7 at the time t = 0 initialize the estimated parameters ĥcomb,
ĥrot, b̂comb and b̂rot.

Figure 5.8 shows the estimated parameters b̂comb and ĥcomb of the combined model
and b̂rot and ĥrot of the rotational model. As the angular position and the applied
normal force, both models behave the same and the controller of each model estimate
the parameters similar.

Figure 5.8: Estimation of b̂comb and ĥcomb of the combined model and b̂rot and ĥrot
of the rotational model during pivoting.

The displacement in y-direction and the adaption of the torsional friction coefficient
for both models can be seen in Figure 5.9. The adaption of the torsional friction
coefficient is calculated according to Eq. (4.7). Therefore, it depends directly on
b̂comb and b̂rot of Fig. 5.8. Both models show the same behavior for the translational
dynamics. The adaptation of the friction coefficient takes around 5 seconds to reach
the value of the contact model. After that the torsional friction coefficient remains
at this value.
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Figure 5.9: Adaptation of the torsional friction coefficient for the controller of
the rotational and the combined model during pivoting. The yellow line is the
coefficient which is used by the contact models, while the blue and the red curves
are the adapted coefficients of the controllers.

5.3.2 Simulation with a slower trajectory
We investigate if the translational motion of the object depends on the desired
trajectory of the angular position of the object. The simulation is performed with
the same parameters as before seen in Table 5.1 and 5.2, but the desired trajectory
of the objects’ orientation is chosen much slower.

Figure 5.10: Angle of the object for the rotational and the combined model and
the changed desired reference trajectory. The second plot shows the applied normal
force during the pivoting process for both models.
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Figure 5.10 shows the new reference trajectory and the simulated angular position
of the object and the applied normal force for both models. We can see, that both
models behave equal and the object follows the desired trajectory very well except
to the beginning, which is attributed to the wrong initial torsional friction coefficient
of the controller.
The translational motion and the adaption of the torsional friction coefficient can
be seen in Fig. 5.11. The total displacement in y-direction for both models is with
around −0.043mm the same as for the faster trajectory in Section 5.3.1. Therefore,
we assume that the translational motion does not or only little depend on the time
the pivoting requires.

Figure 5.11: Adaptation of the torsional friction coefficient for the controller of
the rotational and the combined model during pivoting. The yellow line is the
coefficient, which is used by the contact models, while the blue and the red curves
are the adapted coefficients of the controllers.

The adaptation of the torsional friction coefficient is also comparable to the section
before. At around 5 seconds, the adaptation reaches the torsional friction coefficient
of the contact model.

5.3.3 Simulation with modified object parameters

The object parameters get changed, such that the ratio of gravitational force to
the gravitational torque becomes bigger compared to the simulations before. The
parameters of the contact and object model can be seen in Table 5.3. The parameters
of the controller remain the same and can be obtained from Table 5.2. Only the
desired object orientation is set to θd = −80◦.
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Table 5.3: Changed parameters of the object and contact model.

g [m/s2] 9.81
m [g] 592.7
lcenter [cm] 1
I [Kg · cm2] 0.79
γ 0.3
µ 0.47
µtors,m 0.85 ·10−3

θ0 [°] -25

The object length is set around 12 times smaller than in the scenarios before. To
keep the applied normal force in the same range as before, the object mass is set
bigger with the same factor. Therefore, the gravitational torque remains the same
for the same angular position of the object. However, the gravitational force is
around 12 times bigger now. The moment of inertia of the object to the grasping
point is approximated with I = 1

3ml
2 where l = 2lcenter, which corresponds the the

moment of inertia of a thin rod.
Figure 5.12 shows the angular position of the rotational and the combined model
and the reference trajectory, as well as the normal force which is applied to the
object for each model.

Figure 5.12: Angle of the object for the rotational and the combined model and
desired reference angle for changed object parameter seen in Table 5.3. The second
plot shows the applied normal force during the pivoting process for both models.

Both models behave the same and can follow the desired trajectory quite well,
however, the angular position overshoots the desired orientation about 1.5◦. The
applied normal force of both models is very similar during the whole process.
Figure 5.13 illustrates the parameters hcomb, hrot, bcomb and brot for the changed
object parameters. The assumption that the parameters are slow varying during
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the in-hand manipulation task is not valid anymore. Especially, hrot and brot of the
rotational model change more than twice of their initial value during the time.

Figure 5.13: Parameters bcomb and hcomb of the combined model and brot and hrot
of the rotational model during pivoting.

The estimated parameters b̂comb and ĥcomb of the combined model and b̂rot and ĥrot
of the rotational model can be seen in Fig. 5.14. It can be noted that b̂comb and
b̂rot do not converge to any value. This can be attributed to the fact, that the
angular position has a steady state error and the adaptation law (4.11) depend on
the tracking error.

Figure 5.14: Estimation of b̂comb and ĥcomb of the combined model and b̂rot and
ĥrot of the rotational model during pivoting.

Figure 5.15 shows the movement in y-direction of the object and the adaptation of
the torsional friction coefficient for both models.
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Figure 5.15: Adaptation of the torsional friction coefficient for the controller of
the rotational and the combined model during pivoting. The yellow line is the
coefficient, which is used by the contact models, while the blue and the red curves
are the adapted coefficients of the controllers.

The displacement of the object for the combined model is bigger than for the rota-
tional model. This can be expected since the angular position has an overshooting
(Fig. 5.12) and therefore, a bigger change. It is also notable that the translational
movement is more than 30 times bigger than in the scenario before (Fig. 5.9). The
torsional friction coefficient of the controllers cannot be adapted to the real coef-
ficient of the contact models. However, as in Section 4.1 explained, a convergence
is not guaranteed. To conclude, the assumption of slow varying parameters hcomb,
hrot, bcomb and brot is not full filled for this scenario. However, the controller can still
manage to follow the desired trajectory quite well. The steady state error of both
models is around 1.5◦.

5.4 Model free control

Now the model free controller of Section 4.2 is utilized. Since both contact models
have been investigated before and the results can be seen as nearly identical for
the pivoting tasks, only the more advanced model, the combined model is consid-
ered here. The object parameters are shown in Table 5.1 again and the additional
parameters for the predefined bounds, the reference trajectory and the model free
controller can be seen in Table 5.4.
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Table 5.4: Parameters for the pivoting with the model free controller.

ρ0 1
ρ∞ 0.05
l 0.8
M 0.5
Kmf 0.08
θd [°] 0
λ 10
λ0 2.5

The control gain Kmf is chosen with the knowledge we got from the previous exper-
iments with the adaptive controller. Since we want to achieve a very small steady
state error, the normal force for s = 0 should be close to the steady state normal
force of Fig. (5.6). Together with the chosen parameter M , ρ∞ and Eq. (4.16) we
can estimate Kmf = 0.08.
Figure 5.16 shows the angular position of the object and the normal force during
pivoting. The model free controller can follow the trajectory very well with a small
error in the beginning, which is comparable to the adaptive controller shown in 5.6.

Figure 5.16: Angle of the object for the combined model utilizing the model
free controller, desired reference angle and normal force which is applied from the
fingertips to the object.

The translational displacement in y-direction and the error bounds with the nor-
malized combined error is illustrated in Fig. 5.17.
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Figure 5.17: Translational motion in y-direction for the combined model with the
model free controller and normalized error ŝ with the predefined error bounds.

The shape of the translational motion follows the shape of the trend of the angular
position. Therefore, the curve looks the same as the translational motion of the
adpative controller in Fig. 5.9. The normalized error starts at zero, jumps to -0.3
and converges after that to zero. This is expected since the angular position starts
at the right value, has an error after that, but converges to the desired angular
position.

5.4.1 Simulation with modified object parameters

By changing the object parameters to the values proposed in Table 5.3 and setting
the desired angular end position of the object to θd = −80◦, we can compare the
model free controller to the adaptive controller, which results are shown in Sec-
tion 5.3.3. The control gain is set accordingly to the steady state normal force of
Fig. 5.12 to Kmf = 0.04. The angular position and the normal force during pivoting
can be seen in Fig. 5.18. Compared to the adaptive controller shown in Fig. 5.12,
the angular position has a similar error in the first second. However, the angular
position does not overshoot the desired end angle.
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Figure 5.18: Angle of the object for the combined model utilizing the model
free controller, desired reference angle and normal force which is applied from the
fingertips to the object.

The translational motion seen in Fig 5.19 is very similar to the adaptive controller
(Fig. 5.15). Only the total displacement is less, which can be attributed to the
fact that the angular position of the model free controller does not overshoot. The
normalized error is compared to the scenario before a little bigger in the beginning.
This can be explained since the controller is optimized for a possibly small steady
state error. Because the needed normal force in the beginning of the process is more
than twice as big as at the end we get a relatively big error in the beginning.

Figure 5.19: Translational motion in y-direction for the combined model with the
model free controller and normalized error ŝ with the predefined error bounds.
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5.4.2 Pivoting without a reference trajectory
In-hand manipulation without a reference trajectory is performed with the model
free controller proposed in Section 4.2 where the tracking error e defined in (4.18)
is utilized. The object parameters of Table 5.1 are applied and the parameters for
the controller and the prescribed error bounds are shown in Table 5.5.

Table 5.5: Parameters for the pivoting with the model free controller without a
reference trajectory.

ρ0 6
ρ∞ 0.05
l 1.5
M 0
Kmf 0.05
θd [°] 0
λ 3

The results for this simulation scenario are shown for both the rotational and the
combined model. The angular position and the applied normal force for both models
can be seen in Fig. 5.20. Since we do not have a reference trajectory, the angular
position is changing faster in the beginning and then converges to the desired orien-
tation. Both models have again the same behavior and no overshoot. The normal
force increases very fast in the beginning and then stays nearly constant.

Figure 5.20: Angle of the object for the rotational and the combined model utiliz-
ing the model free controller without a reference trajectory and normal force which
is applied from the fingertips to the object.

The displacement in y-direction shown in Fig. 5.21 shows different results for both
models. The rotational model ends up at −0.042mm which is comparable to the
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result of the pivoting with a reference trajectory (Fig. 5.17). For the combined
model, the object moves around −0.002mm further. This corroborate the statement
that the translational motion of both models behave different for fast velocities. As
in Section 3.2 proposed, the combined model can be seen as more reliable for these
cases.

Figure 5.21: Translational motion in y-direction for both models with the model
free controller without a reference trajectory and normalized error ê with the pre-
defined error bounds.

The normalized error for both models starts at 1.4 and decreases very fast caused
by the high velocity and then converges to zero. However, it has to be noticed that
ê cannot reach zero because we chose M = 0 and therefore, the normal force would
be infinity for ê = 0 accordingly to (4.15) and (4.16). Therefore, we always get a
positive steady state error for the angular position.

To conclude this chapter, the rotational and the combined model have been evalu-
ated as nearly identical. Only for pivoting without a reference trajectory the trans-
lational motion is different for both models, which can be traced back to the much
higher velocities for this scenario. In this case the more reliable model, the com-
bined model, has a slightly bigger displacement in y-direction, which is also bigger
than the tranlational motion for the same scenario with a reference tracking. There-
fore, it is desirable to pivot with a reference trajectory or penalize the rotational
velocity more to guarantee a smallest possible translational motion. Both control
approaches have shown good results for the in-hand manipulation task where the
gravitational torque is much bigger than the gravitational force. If this is not full
filled the adaptive controller cannot successfully estimate the torsional friction co-
efficient and overshoots the desired angular orientation. The model free controller
showed even for this scenario very good trajectory tracking without overshooting
the desired orientation.
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6
Conclusion and Future Work

In-hand manipulation with the help of gravity is aimed for this thesis. A one degree
of freedom parallel jaw gripper was considered to grasp the object in such way,
that the orientation of the object can be controlled in a desired manner. This is
achieved through precises controlling of the grasping force. To simulate this process,
an accurate model is required that covers the contact between the fingertips of the
gripper and the object.
Two different contact models have been considered. Both models are based on
the concept of the limit surface, which was first introduced by Goyal et al. [15].
The concept of the limit surface describes the relation between translational and
rotational friction forces and torques and the corresponding dynamics.
The first contact model, the rotational model, uses the concept of the limit surface to
directly calculate the frictional torque for the rotational dynamics. The translational
velocity is then approximated with a ratio consisting of external forces and torques
applied to the object and the maximal frictional force and torque, which can be
independently resisted by the contact. The second contact model, the combined
model, uses a friction force vector to calculate both the rotational and the translation
dynamics. The friction force vector depends on the actual velocities of the object
and on the constructed limit surface.
Comparisons of both models have shown a very similar behavior for the rotational
movements of the object. However, the translational motions differ. For the shown
test cases, the rotational model demonstrate a bigger translational movement com-
pared to the combined model if the orientation of the object is close to −90◦, which
corresponds to a low gravitational torque. In other cases it is vice versa. This vari-
ation can be attributed to the reason that the rotational model does not calculate
translational dynamics, but it approximates the translational velocity depended on
the rotational velocity. Therefore, we trust the results of the combined model more
than the results of the rotational model.

To change the orientation of the object in a desired way, different control approaches
were considered. Since the torsional friction coefficient was seen as uncertain, a
nonlinear adaptive controller was used. The adaptive controller was introduced by
Viña B. et al. [6] and estimates the torsional friction coefficient. However, the utilized
control theory does not apply exactly to the contact models. Therefore, its validity
was shown through simulation. Another control approach to handle the unknown
torsional friction coefficient is a model free controller with prescribed performance
guarantees, which was proposed by Karayiannidis et al. [10]. Since we can only
apply a positive normal force to the object, the control input is limited and we had
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to find a suitable error transformation function, which maps the tracking error such
that we get a positive normal force.
The evaluation of both control approaches combined with both contact models
pointed out that both contact models behave the same if the velocities are rea-
sonable slow. If the gravitational torque is much bigger than the gravitational force
both control approaches can reach the control goals. If this is not given, the adaptive
controller misses the control goal by slightly overshooting the desired orientation.
The model free controller can still achieve a very good trajectory tracking. Piv-
oting without a reference trajectory was performed with the model free controller
and pointed out as a valid control strategy since the desired angular orientation
was reached. However, the translational displacement was slightly higher in this
scenario, which was caused by the high velocities. Other scenarios showed that a
slower reference trajectory cannot shrink the translational motion. Therefore, we
conclude, that the displacement in y-direction is independend of the pivoting speed,
as long as the velocities are not too high.

All in all a powerful simulation model was created, which can be improved more in
future work. The contact models and the controllers can be compared to experi-
mental data gathered from sensors while performing in-hand manipulation with a
robot. This will show the accuracy of the models and their power to predict and
investigate the process. The use of elasto-plastic models may improve the accuracy
of the contact model, since it covers stiction, presliding displacement and sliding.
This class of friction models is presented e.g. in [25] and [26]. Another possible
extension to the presented work is including other extrinsic dexterities except of the
gravity. For example, the object could make external contact to a surface to perform
active pivoting and enable other in-hand manipulation tasks.
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Figure A.1: Occurring forces while pivoting with an external force and torque for
the rotational model. The black lines are the minimal and maximal frictional forces
caused by a gripping force of 5N.
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A. Appendix

Figure A.2: Occurring torques while pivoting with an external force and torque
for the rotational model. At 1 second a negative external pulse is given. After that,
τsum = τg. The black lines are the minimal and maximal frictional torques caused
by a gripping force of 5N.
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