

Improvement of the calibration, test and verification process of an interferometric fiber optic gyroscope

Bachelor's thesis in mechatronics engineering

JOHAN MATE

BACHELOR'S THESIS

Improvement of the calibration, test and verification process of an interferometric fiber optic gyroscope

JOHAN MATE

Department of Electrical Engineering CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden 2020

Improvement of the calibration, test and verification process of an interferometric fiber optic gyroscope JOHAN MATE

© JOHAN MATE, 2020

ISSN 1654-4676

Department of Electrical Engineering Chalmers University of Technology SE-412 96 Göteborg Sweden Telephone: +46 (0)31-772 1000

The Author grants to Chalmers University of Technology and University of Gothenburg the non-exclusive right to publish the Work electronically and in a non-commercial purpose make it accessible on the Internet. The Author warrants that he/she is the author to the Work, and warrants that the Work does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a publisher or a company), acknowledge the third party about this agreement. If the Author has signed a copyright agreement with a third party regarding the Work, the Author warrants hereby that he/she has obtained any necessary permission from this third party to let Chalmers University of Technology and University of Gothenburg store the Work electronically and make it accessible on the Internet.

Cover:

Image from Saab: https://www.saab.com/products/fiber-optic-gyro-products Image explanation: Fiber optic gyro from Saab

Chalmers Reproservice Göteborg, Sweden 2020

Improvement of the calibration, test and verification process of an interferometric fiber optic gyroscope

JOHAN MATE

Department of Electrical Engineering, Chalmers University of Technology

Bachelor's thesis

Abstract

The purpose of this project was to investigate if the calibration, testing and verification process of fiber optic gyros from Saab Avionics Husqvarna can be improved upon and to to develop a program in LabWindows based on existing ones that will be able to perform these new processes in a better and more efficient way.

After defining important terms and objects relevant to the rest of the investigation, the current calibration process is observed. From this the potential improvements are formulated in a step by step process. An area of improvement that was formulated is building a model of the thermal process for the calibration process. This will enable the ability to better predict qualities such as the temperature stabilization time. The second improvement which was formulated is the way the gyros are calibrated which may be improved by using other data collection, calibration, calculation and regression processes.

Several different calibration, calculation and regression processes are hypothesised and implemented in a Lab-Windows program. These different processes form several combinations of ways to calibrate the gyros. These are then simulated into the aforementioned LabWindows program. From these two new processes which are predicted to be the best are investigated further. These new processes both have changes to the process that are used to collect the calibration data and to the calculation. One uses an interval gaussian fitting of the data and the other surface fitting of the multidimensional output data from the gyro instead of the current process which uses polynomial regression.

The two best processes are tested on a gyro using the Labwindows program that were implemented and are compared to the current process. The result from this does not give any major conclusion of a better calibration process but it shows the potential of the improvements which may then lead to further optimized calibration processes if time is invested into further tests.

The LabWindows program that was used does itself provide value and improvement to the calibration, testing and verification process by making it simpler and more efficient.

Keywords: Fiber optic gyro, thermal simulation, calibration , LabWindows, gaussian regression, surface regression, software

SAMMANFATTNING

Syftet med detta projekt var att undersöka om kalibrerings-, test- och verifieringsprocessen för fiberoptiska gyron med serienummer 8088 000-4xx från Saab Avionics Husqvarna kan förbättras samt att utveckla ett program i LabWindows som är baserat på befintliga program och kan utföra dessa nya processer på ett bättre och mer effektivt sätt.

Efter att ha definierat viktiga termer och objekt som är relevanta för resten av undersökningen så observeras den nuvarande kalibrerings processen. Utifrån detta formuleras de potentiella förbättringarna i en steg för steg-process undersökning av den nuvarande kalibrerings processen. Ett stort förbättringsområde är att formulera en modell av det termiska förloppet hos kalibrering processen. Detta gör det möjligt att bättre kunna förutsäga egenskaper såsom temperaturstabilisering tiden. Den andra förbättringen som formulerades är hur gyrona kalibreras, vilket kan förbättras med hjälp av andra datainsamling-, kalibrerings-, beräknings- och regressions processer.

Flera olika kalibrerings-, beräknings- och regressions processer formuleras och implementeras i ett LabWindowsprogram. Dessa olika processer bildar flera kombinationer av sätt att kalibrera gyros. Dessa simuleras sedan i det ovannämnda LabWindows-programmet. Från dessa finnes två nya processer som förutses vara de bästa undersöks vidare. Dessa nya processer har båda ändringar i testet som används för att samla in kalibreringsdata och i själva beräkningen. Intervall gaussisk regression av data används i den ena och i den andra används yt-regression av den flerdimensionella datan från utgången av gyrot till skillnad från den nuvarande processen som använder polynom regression.

De två bästa processerna testas på ett gyro med Labwindows-programmet som implementerades och jämförs med den nuvarande processen. Resultatet av detta ger ingen större slutsats av en bättre kalibreringsprocess men det visar potentialen för förbättringarna som sedan kan leda till ytterligare optimerade kalibrerings processer om man investerar tid i ytterligare tester.

LabWindows-programmet som använts i sig ger värde och förbättringar av kalibrerings-, test- och verifieringsprocessen genom att göra den enklare och mer effektiv.

Acknowledgements

This is a bachelor's thesis done for chalmers university of technology, the mechatronics program. It was done at Saab Avionics Husqvarna, Sweden. I would like to thank everyone at Saab for enabling me to meet and learn from them. I would especially like to thank my supervisors Karl-Johan and Daniel for their support and guidance during the process. It has been a very challenging and interesting time in which I learned much new knowledge and skills, these I will definitely find use during the remainder of my life.

Johan Mate, 2020

TERMINOLOGY & ABBREVIATIONS

FOG – Fiber Optic Gyro

- BIT(unit) a digital integer number between $[-2^{23}, 2^{23} 1]$
- Gyro Output The output of gyro given in BIT or volts
- $SF(Scale \ Factor)$ the relation between the output of the fiber optic sensor and the rotation rate
- Bias Offset error A stationary gyro that outputs a rotation rate
- Bias instability Instability of bias offset at any constant temperature
- FS Full scale \iff range of gyro
- RS422 A standardised digital data transmission protocol
- ARW (Angle Random Walk) the noise of the output modeled as a gaussian random walk.
- ADC Analog to Digital Conversion
- DAC Digital to Analog Conversion
- PDE Partial Derivative equation
- FDM Finite Difference Method
- IDE Integrated Development Environment
- ϕ Angle of gyro/rotation table
- θ Rotation speed of gyro
- ω Gyro output(dependent upon θ), in BIT or volt
- Rate synonyms with θ
- L Image/table made/plotted in LabWindows
- M Image/table made/plotted in Matlab
- E Image/table made/plotted in Excel

Contents

Abstract	i
Sammanfattning	ii
Acknowledgements	iii
Terminology & Abbreviations	v
Contents	vii
1 Introduction 1.1 Background 1.2 Purpose 1.3 Delimitations 1.4 Specification 2 Theory/ Background material 2.1 Sagnac effect 2.2 The fiber optic gyroscope	1 1 1 1 1 1 2 2 2 2 2
2.3 Importance of calibration of FOG 2.4 Saab FOG general characteristics overview 2.5 Calibration and test equipment 2.6 Thermal simulation 2.6.1 Thermal PDE 2.6.2 Finite Difference Method 2.6.3 Hopscotch 2.7 LabWindows CVI 2.8 Plotting images & presenting data	$ \begin{array}{c} 3 \\ 3 \\ 4 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 6 \\ 6 \\ \end{array} $
3 Method 3.1 Investigation/observation 3.1.1 Defining the gyro outputs and the relation between analog and digital in calibration 3.1.2 Defining general program function and purpose 3.1.3 Defining product and profile 3.1.4 Observing the current profile 3.1.5 Possible Improvements induced from the standard profile 3.1.6 Simulation and implementation in LabWindows program 3.2.1 Simulation of thermal stabilization process using FDM 3.2.2 Implementation of new profiles 3.2.3 Implementation of new calibration processes 3.2.4 Simulation of calibration process using profile simulation based on collected values 3.3 Testing and verification of best simulated calibration processes on gyro	7 8 9 10 12 12 16 18 22 25 29 29 32 37
4 Results 4.1 CaTV program (Calibration, Test and Verification) 4.2 Test 1: Acyclic independant poly 4.3 Test 1: Verification 4.4 Test 2: Cyclic independant gauss 4.5 Test 2: Verification 4.6 Test 3: Cyclic surface 4.7 Test 3: Verification 4.8 Summary of tests	41 41 50 54 56 60 62 66 68

5 Conclusions & Discussion 5.1 Error factors and Improvements 5.2 Ethics and environment	69 71 72
References	73
A Filter A.1 Weighted average filter A.2 Butterworth IIR freq A.3 Gaussian filter A.4 Fast fourier transform	74 74 76 76 78
B Fiber optic gyro specification 8808 000-4xx	79
C FlowChart of Independent process implemented in CaTV program	81
D Initial flow chart of the program	82
E CaTV program flow chart	83
F CaTV program images	84
G Simulation test results	93

1 Introduction

1.1 Background

Measuring the rotational speed of an object is something a gyroscope is used for. Many applications depend on it, and for Saab Avionics and their FOG system (Fiber Optic Gyroscope) these applications are mainly for stabilized platforms both for civil and military use. Many of these applications require a high performance FOG which in turn requires that the gyro is calibrated. This leads to the task formulated by Saab regarding their new generation of FOG. This version has a built in processor which will automatically correct inaccuracies of the fiber optic sensor element. However as this new FOG is under development the calibration process is not finalized. There are currently a few software programs and procedures that do exist but these require some manual handling. Much improvement can be made on the calibration, test and verification processes for these gyros.

1.2 Purpose

The purpose is to first conduct an investigation on what is being done now and how it can be improved. The result of this investigation will then be implemented in a software program that can automatically calibrate, test and then verify that these gyros are to specification. The existing systems and procedures set some demands on what the program at least needs to do. Even though the end goal of this thesis is to produce a software which fulfills the purpose of automating the calibration procedure the focus of the thesis lies on the investigation of the calibration procedure itself. In explicit terms, the purpose of this thesis is to find areas where the calibration process can be improved upon and the software that is produced in the end implements this new knowledge for the user.

1.3 Delimitations

There are a few areas which are not within the scope. These are the software of the processor within the FOG and the calibration equipment. The software of the processor is out of the scope of this thesis since digging into it is not something the company really needs from this thesis. However this doesn't mean that theoretical findings that might improve the product could be recommended for implementation by this thesis. It simply means that the code part of the processor in the FOG is not something that will be accounted for by this thesis. The calibration equipment is fixed and nothing can be done on this front. The Hardware that is available is the one this thesis will be using.

Furthermore it is not necessary for the result of this investigation to conclude in a fully functional program as this does take time to fully test and verify the functionalities. From the results Saab will have to decide whether they want to continue forward with it, regardless where it concludes.

1.4 Specification

The following questions are to be investigated such that an answer can be found:

- Are there ways in which the current process could be improved such as to reduce the time taken, increase accuracy after calibration or increase reliability of the process?
- Can a program be implemented in Labwindows which contains the found improvements to the calibration, test and verification process?
- Does this program offer any other benefits in accessibility, efficiency or Ease of use over the currently used one?

2 Theory/ Background material

2.1 Sagnac effect

A laser Gyroscope is a device which uses the sagnac effect of two beams of light travelling in the opposite direction to measure the rotation speed. The sagnac effect is the result of special relativity. The two light beams travel in opposite directions with the reference frame rotating with an angular speed of θ . The rotation results in a difference in the effective path of the two light beams which in turn (due to relativistic effects) results in a phase difference. The phase difference is given by the sagnac formula:

$$\Delta \varphi = \frac{8\pi A\theta}{\lambda c} \tag{2.1}$$

Where A = area, c =speed of light, $\lambda =$ wavelength of light

2.2 The fiber optic gyroscope

There are two primary types of laser gyroscopes. The Ring Laser Gyroscope (RLG) and Fiber Optic Gyroscope (FOG). Both use the sagnac effect to measure the rotation speed, the difference between the function of the two is quite significant. In the RLG a laser cavity is used to both generate the lasers and measure the difference of their frequencies (as a result of the sagnac effect), the cavity often take the form of a triangle as shown in image 2.1:A or a square. The FOG on the other hand uses a fiber optic coil to construct the path[5]. There are two different types of FOG: the Interferometric fiber optic gyros (IFOG) and the resonator fiber optic gyros (RFOG). The RFOG has a similar operation to the RLG in that it uses the sagnac effect to generate two light beams with different frequencies and measure the interference of these beams. A IFOG on the other hand measures the phase using fringe patterns (light intensity patterns due to different phases)[5]. The FOG produced by Saab are of the IFOG type.

A principal depiction of a typical IFOG is seen in figure 2.1:B. The light beams are generated in the SLD (SuperLuminescent Diode). The purpose of the first coupler (used to connect fiber optic cables) is to allow the returning light from the fiber coil to enter the detector. The light from the SLD is then polarized and split between the two ends of the fiber coil by a second coupler. The phase modulator consists of a piezoelectric crystal that is used to measure the rotation direction by stretching the fiber optic wire with a frequency resulting in an output intensity that oscillates. The addition of rotation to this oscillation results in a wave that is shifted up or down by: $shift = amplitude \times sine(frequencyofphasemodulator) + shiftduetorotation$

Figure 2.1: A: Example of RLG^1 , B: Example of IFOG

¹Source: Encyclopaedia Britannica, Inc. Rights Managed / For Education Use Only acquired using Britannica ImageQuest

2.3 Importance of calibration of FOG

Due to the inherent properties of the fiber coil, coupler and polarizer elements the FOG are highly dependent upon temperature. The main contributor to the error of the output of the coil is known as the shupe effect [1]. The temperature impacts the output of the gyro in the following ways.

- The Scale Factor(SF) of the gyro changes over temperature
- The Bias Offset changes over temperature[1]
- The Bias Offset changes over temperature change rate[6]

The Scale Factor is defined as the relation between the rotation and the output of the fiber optic sensors. Since this value is pre-calibration not constant over temperature the relation between the gyros output and the actual rotation will be wrong. Thus this has to be modified internally to assure a linear relation of the SF.

The Bias offset can be viewed as the occurrence of a value when the gyro is stationary, this value changes with temperature and thus it as well needs to be calibrated away. The bias can be seen as the base noise of the gyro output, often white noise is used as a model for this. However according to [2] this is better approximated using a gaussian random walk (ARW).

Besides the bias and SF error there is also a linear error over the defined rotation range. This error takes the form of a third degree polynomial that is compensated by an internal polynomial function calculator. This function calculator needs its polynomial coefficients calibrated in order to match the linear error.

Both the scaling factor error and the bias error of these sensors generally take the relation of a second degree polynomial and these are compensated by using an internal array of compensation values. This can be used as a quick and simple way to determine if the calibration process was successful, however for an actual determination of the accuracy a verification procedure is needed. A verification process is the same process as a calibration process but instead of uploading the compensation values to the gyro the values are compared to the specified values of the product. Only when the gyro is well calibrated can it achieve the high requirements for precision measuring of the rotation speed.

2.4 Saab FOG general characteristics overview

General characteristics of Saab 8088 000-4xx gyros are specified in the appendix B. Values of the most relevant characteristics for calibration of the 8088 000-4xx gyros that were used for testing in table 2.1, these values are taken from internal technical documents.

Name	Characteristics	Unit
Range	± 150	$\frac{deg}{s}$
Operating temperature range	[-40, 75]	$^{\circ}C$
Analog SF	26	$\frac{mV}{\frac{deg}{s}}$
Digital SF	0.00001825	$\frac{\frac{deg}{s}}{BIT}$
Bias error OTR	± 40	$\frac{deg}{hour}$
SF error OTR	± 0.5	%
Non-Linearity $0-75\frac{deg}{s}$	± 0.1	% of FS max
Non-Linearity $0-150\frac{deg}{s}$	± 0.2	% of FS max

Table 2.1: Most relevant characteristics for the Saab 8088-00 4xx gyros used for testing

2.5 Calibration and test equipment

For temperature adjustment a temperature chamber, which is a sealed and thermally isolated chamber with adjustable temperature, is used. The max temperature change speed that this device possesses is $\approx 2.5 \frac{C^{\circ}}{min}$. The temperature tests will be run over the temperature range [-40°C, 75°C]. This is due to it being the specified optimal temperature range of the gyros (OTR).

In addition to this a rotation table (precise rotation speed) will be used. The specified range of the gyros are $\pm 150 \frac{deg^{\circ}}{sek}$. According to internal procedures the rate tables have the property of being momentarily inaccurate however are sufficiently accurate over full rotations.

> In explicit terms : $\theta =: desired value of rotation speed$ $\phi =: angle of table$ $\Theta(\phi) =: value achieved at \phi$ $\theta' \neq \theta$ $1 = \ell^{2\pi n}$

$$\theta = \frac{1}{2\pi n} \int_0^{2\pi n} \Theta(\phi) \, d\phi \tag{2.2}$$

Where n=number of rotations

This means averaging over n rotations solves the issue of non momentary accuracy of the rate table. Internal practice says that n should be around 1 rotation. For times when the rotation table is operating at higher speed such as $\pm 150 \frac{deg^{\circ}}{sek}$ this is simple to achieve as staying at that speed for $\approx 3sek$ fulfills the one or more rotations condition. However when the speed is close to zero for example $5 \frac{deg^{\circ}}{sek}$ to reach one rotation it needs to stay at that speed for $\frac{360}{5} = 72 \, sek$, which is over a minute. This could lead to a dilemma as to how to most time efficiently fulfill the one rotation demand using the rate table.

In order to measure the analog value from the gyro an analog measuring card is used. This measuring card takes a specified amount of measurements of the analog outputs of the gyro at a specified frequency and then stores them in an array.

2.6 Thermal simulation

2.6.1 Thermal PDE

In order to simulate the thermal process the heat equation needs to be solved. The general case is:

$$\frac{\partial T}{\partial t} = \alpha \nabla^2 T \tag{2.3}$$

Where α is the thermal Conduction capacity[3] which is defined as.

$$\alpha = \frac{k}{\rho c_p} \tag{2.4}$$

Where k = thermal conductivity, $\rho =$ density, $c_p =$ specific heat capacity

2.6.2 Finite Difference Method

Solving the heat equation exactly is quite a daunting task and that level of accuracy is not necessary here, thus an approximation of the thermal equation is needed. The chosen method is the finite difference method(FDM). Other more accurate methods do exist, however this is chosen due to simplicity in its implementation.

The definition of the derivative is: $f'(x) = \lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$ and one of the simplest finite difference approximations of this is setting h to a nonzero but small value. The approximation then becomes $f'(x) \approx \frac{f(x+h)-f(x)}{h}$ (i) (1D form). Since the approximation of the heat equation uses a finite amount of data points, which is generated as a data grid. Therefore (i) in an equispaced finite form is: $f'[n] \approx \frac{f[n+h]-f[n]}{h}$. However in the heat equation there are only partial derivatives. Thus a FDM approximation is needed. From [8] we get the FDM approximation for partial derivatives:

$$\frac{\partial f}{\partial x} \approx \frac{f[i+1,j] - f[i-1,j]}{2\Delta x} \left(first \ order\right)$$
(2.5)

$$\frac{\partial f}{\partial y} \approx \frac{f[i, j+1] - f[i, j-1]}{2\Delta y} \ (first \ order) \tag{2.6}$$

$$\frac{\partial^2 f}{\partial x^2} \approx \frac{f[i+1,j] - 2f[i,j] + f[i-1,j]}{\Delta x^2} \ (second \ order) \tag{2.7}$$

$$\frac{\partial^2 f}{\partial y^2} \approx \frac{f[i, j+1] - 2f[i, j] + f[i, j-1]}{\Delta y^2} \ (second \ order)$$
(2.8)

where f[i,j] is the i:th datapoint on the x axis and the j:th datapoint on the y axis.

Since these are approximations to the derivative there is an unknown error value, however often what the error is proportional to can be known. For example the error of the FDM approximation of the second partial derivative of x is $\mathcal{O}(\Delta x^2)$. This is useful since if one were to reduce the distance between the points by some fraction (in the x distance), the error gets reduced by the square of that.

2.6.3 Hopscotch

In [[7] page 143] a method for solving the 2D heat equation using FDM is examined. The method is called the Hopscotch method. The method is a two step calculation method where the first step is calculated on every point on the thermal grid where i+j+n=even. Where n is the iteration number. The second step is calculated for the points where i+j+n=odd.

Step 1:

$$\frac{u_{[i,j]}^{n+1} - u_{[i,j]}^n}{\Delta t} = \alpha (\delta_x^2 u_{[i,j]}^n + \delta_y^2 u_{[i,j]}^n)$$
(2.9)

Step 2:

$$\frac{u_{[i,j]}^{n+1} - u_{[i,j]}^{n}}{\Delta t} = \alpha (\delta_x^2 u_{[i,j]}^{n+1} + \delta_y^2 u_{[i,j]}^{n+1})$$

$$\delta^2 u_{i}^m = \frac{u_{[i+1,j]}^m - 2u_{[i,j]}^m + u_{[i-1,j]}^m}{\Delta t}$$
(2.10)

Where ([7]; page 137):

$$\begin{split} \delta^2_x u^m_{[i,j]} &= \frac{u^m_{[i+1,j]} - 2u^m_{[i,j]} + u^m_{[i-1,j]}}{\Delta x^2} \\ \delta^2_y u^m_{[i,j]} &= \frac{u^m_{[i,j+1]} - 2u^m_{[i,j]} + u^m_{[i,j-1]}}{\Delta y^2} \end{split}$$

Where: $u_{[i,j]} \coloneqq$ the temperature grid

Within [7] the terms implicit and explicit solutions to a FDM problem are discussed. The terms can be simplified to be in reference to how the future value $u_{[i,j]}^{n+1}$ is calculated. An explicit calculation uses current values [n] of u to calculate a next value [n+1]. In contrast the implicit solution uses a combination of current and future values, which results in needing it to be solved using algebraic equations. This is somewhat complicated and time consuming. The advantage of implicit is that they are more stable. The Hopscotch method uses two steps, the first step is explicit and the second is implicit. However since the future values for step 2 was calculated in step 1, no algebraic solution is needed [[7] page 144] and thus the method is still explicit but also its unconditionally stable [[7] page 143]. This is why this method was chosen over others; it's simple to implement but still stable.

Notably is also that the error of the hopscotch method is given to be $\mathcal{O}(\Delta t, \Delta x^2, \Delta y^2)$. [[7] page 144]

2.7 LabWindows CVI

The IDE that is used is LabWindows developed by National Instruments, which is used due to much work to control and receive data to hardware and the gyro is already implemented. LabWindows is a C based IDE and much is the same as many similar softwares. However LabWindows has a library called advanced analysis library. Some functions in this library will be relevant for the calibration process, these are briefly explained here in no particular order.

- PolyFitX : Fits data using polynomial fitting where the used algorithm can be chosen.
- GaussFit : Fits data using a gaussian model
- CubicSplineFit : Fits data using a cubic spline fit
- SolveEqs : Solves real linear equation $\mathbf{A} \cdot \mathbf{x} = \mathbf{B}$
- GoodnessOfFit : Calculates how good the fitted data fits the original data
- DifferenceEx : A difference calculator that approximates the derivative

2.8 Plotting images & presenting data

Three different softwares are used to present data. LabWindows, Matlab and Microsoft Excel. figures/tables where these programs were used are indicated by $(\mathbf{L}), (\mathbf{M})$ and (\mathbf{E}) respectively. Labwindows indicate images that use builtin functions to generate a graph object and then save the graph as an image. The different plotting tools are used for different purposes. LabWindows are used whenever data that is internal to a LabWindows program needs to be displayed. LabWindows has limited ability to plot data effectively thus this method is not preferable to the others and is only used whenever the others are not available. Matlab has the best ability to plot good figures, especially in 3D. However it is somewhat time consuming to import the data to the environment and program the plot parameters. Excel is a middle between the two programs.

3 Method

3.1 Investigation/observation

During the investigative phase the primary objective is to identify the areas where the calibration procedure can be improved upon. To achieve this the current calibration process is step by step observed to get a clear picture of what is being done and how. In order to arrive at areas in the current process which could be improved upon, explicit syllogistic arguments for what the further investigation of that area should produce are useful.

The first arguments can be stated before starting the investigation (note: P=premise, C=conclusion, D=definition of words used in argument).

Argument 1:

P1: Undefined or poorly defined object/s could lead to confusion now or in the future

P2: Confusion should be avoided

P3: A undefined or poorly defined object/s is found by the investigation

C: Define the object to avoid confusion

Argument 1 becomes most relevant at the start of the investigation process as many things will be undefined. The following chapters (3.1.1 - 3.1.4) will therefore be employing argument 1.

3.1.1 Defining the gyro outputs and the relation between analog and digital in calibration

The gyro consists of an IFOG sensor that outputs rate value. This value is read by a microcontroller which converts the value into a digital bit value which is used for two outputs one digital and one analog. These have their own compensation values. The digital is compensated and then outputted using RS422, the analog is instead converted from a digital value to an analog via an DAC. This introduces a problem. Since the calibration process collects data on the analog, after the digital to analog conversion, but the error compensation occurs within the microcontroller such that it needs to take the DAC into account. For this a relation between the analog and digital signal is required. For SF this is trivial. Since it is a unitless multiplication of the signal the analog to digital conversion gets included in the calibration of this, or in other words $DAC_{SF}(T)$ becomes included in $A_{SF_comp}(T)$.

For the linearisation it's slightly different, however still relatively simple. The linear function adds a value onto the existing signal that depends on the value of the existing signal. This means that the linear function needs the units BIT to BIT since the analog output has the units volts a conversion between the two is needed. The DAC runs with V_{ref} volts as its analog reference and the digital signal output is a 3 byte integer which has the max value 2^{23} . this results in:

$$\beta = \frac{V_{ref}}{2^{23}} \frac{[V]}{[BIT]} \tag{3.1}$$

 β is needed in general conversion between analog [V] and digital[BIT].

The bias compensation value becomes harder to calculate and a relation between the analog output and the analog bias compensation is needed. Starting with:

$$Analog_{val}(\theta, T) = ((SENSOR_{val}(\theta, T) - A_{bias_comp}(T)) \times A_{SF_comp}(T) + A_{lin_comp}(\omega)) \times \beta \times DAC_{SF}(T) + DAC_{bias}(T)$$

$$(3.2)$$

where $SENSOR_{val}(\theta, T)$ is the rate output from the fiber optic sensor. When 3.2 is used for calculating the bias the following conditions are true:

- $SENSOR_{val}(0,T) = SENSOR_{bias_error}(T)$ (see definition of Bias Offset error)
- $A_{lin \ comp}(\omega) = 0$ (linear compensation is defined as zero at zero rate)
- $A_{bias \ comp}(T) = 0$ (Since when calibrating the bias error values the bias compensation is turned off).
- $A_{SF_comp}(T) = 1$ (Since when calibrating the bias error values the SF compensation is turned off)
- $DAC_{SF}(T) = 1$ (since $A_{SF \ comp}(T)$ includes this)

$$Analog_{val_bias}(T) = \beta \times SENSOR_{bias_error}(T) + DAC_{bias}(T)$$

$$(3.3)$$

 $Analog_{val_bias}(T)$ is the bias error on the analog output, which should be zero. This value should be calibrated away using $A_{bias_comp}(T)$, using 3.2 when $\theta = 0$ after calibration the result is:

$$Analog_{val} = \left((SENSOR_{bias_error}(T) - A_{bias_comp}(T)) \times A_{SF_comp}(T) \right) \times \beta + DAC_{bias}(T)$$
(3.4)

However since the analog port is now calibrated $Analog_{val}$ should be zero and, which results in:

$$0 = (SENSOR_{bias_error}(T) - A_{bias_comp}(T)) \times A_{SF_comp}(T) \times \beta + DAC_{bias}(T)$$
(3.5)

$$A_{bias_comp}(T) = \frac{DAC_{bias}(T)}{A_{SF_comp}(T) \times \beta} + SENSOR_{bias_error}(T)$$
(3.6)

inserting 3.3 gives the final result:

$$A_{bias_comp}(T) = \frac{Analog_{val_bias} - \beta \times SENSOR_{bias_error}(T)}{A_{SF_comp}(T) \times \beta} + SENSOR_{bias_error}(T)$$
(3.7)

These relations are used whenever the analog compensation values are calculated.

3.1.2 Defining general program function and purpose

Since a program needs to be programmed in the end, it is a good practice to try to in advance describe the functionality of the program. In figure 3.1 the black box model is used in order to try to describe the inputs and outputs of the program. The black box model itself is a good tool within the design process in order to avoid problems down the line.

Figure 3.1: Description of the inputs and outputs of the program using the black box model

Another way to help the design of the program in order to make sure that it is useful for the end user is to set up a requirements list with the different categories of requirements, necessities and desirables. The contents of the list was added by using input from Saab.

Requirements (needed for the program to be useful):

- 1 Read data from gyro
- 2 Calculate SF, bias and linearity for analog and digital compensation values
- 3 Upload calibrated compensation values automatically
- 4 Control test machine

Necessities (would definitely be useful):

- 5 Implement auto-baudrate scanning
- 6 Choose calibration process
- 7 Manually set SF for the first calibration
- 8 Read the type and serial number of the gyro

Desirables (would most likely be useful):

- 9 Automatically tests the scale factor at the first calibration run and changes depending on the result
- 10 Different calibration routines
- 11 Calibrating more than one gyro at the time
- 12 Automatic COM port searching for the gyro
- 13 Better average forming of data

At the end in order to verify how good the program itself is, compare the results to this list by checking how many of these were fulfilled. If one of the requirements are not met the program would be considered to not be useful at the current state. A third way in the design process is to describe the intended functions of the program in a flow chart, this can be found in appendix D.

3.1.3 Defining product and profile

There are two definitions that when defining will include a lot of objects relating to the calibration, test and verification process and will be very useful down the line. These are the terms product and profile, these will primarily be defined in relation to the program that will be implemented later. But the definition profile will be very useful for other purposes as well. Starting with the product, in figure 3.2 the flowchart of the contents of the product are shown. The product is defined as containing a profile and settings. The profile will be defined later, settings however containing all relevant information to run the program and the specification of what gyro is run. The purpose of the definition product is to be related to a specific product of FOG from Saab that has specs and optimal settings to calibrate it.

Figure 3.2: Tree of the product

The term profile is defined as a package of instructions for what and how the computer produces the desired result. This includes three different types of subprofiles, where a subprofile is a specific instruction for the computer relating to data collection. It also includes a calibration profile which details what calculations are to be done to get the error compensation values. In figure 3.2, the tree of the definition of the profile is shown. In this the typical subprofiles of the Temperature, rate and data are shown. Temperature subprofiles controls the temperature in the temperature chamber, this is alway given as two points which forms the function $T(t) = K \times t + T_0$ where K is in the unit $\frac{\circ C}{\min}$ (K can be zero). Rate subprofiles control the rotation of the rate table. These subprofiles are always the step function $\theta(t) = \theta_2 \times H(t - t_0) + \theta_1$. The data subprofiles are instructions of what specific action to do when. These takes the form:

Wait: Do not collect data from gyros

Collect Data: Collect data from gyro

Bookmark: A stamp of the data that is used to differentiate between what to do with it during the calibration functions

Calibrate: A command to start a calibrate process, can be used to calibrate in the middle of a profile

Figure 3.3: Tree of the profile

The Calibration profile is divided into three parts: filter, compensation calculation model and statistical model. The filter function is a way to filter the data before the calibration. The compensation calculation model is the type of calculation to be done(what mathematical method is used to derive the compensation values) and the statistical model is what type of regression is used to find the best model who fits those data points. This relation is shown in figure 3.4.

Figure 3.4: Tree of the calibration profile

3.1.4 Observing the current profile

In order to improve a process it is necessary to define and understand the previous process. To achieve this the currently used process is observed. The current process consists of the following profile:

- 1: Collect linear relation data at room temperature using 10 steps over the range $\theta(n) = \pm 15 \times n$ where $\{n \in \mathbb{W}, 0 \le n \le 10\}$ for a total time of $\approx 10 \min$.
- 2: Go down to -40 $^{\circ}C$
- 3: Wait for the temperature of the gyro to stabilize
- 4: Run an OTR data collection over the range $[-40^{\circ}C, +75^{\circ}C]$
- 6: Calculate SF error
- 7: Calculate linearization error by first bias and SF compensation of the linearisation data.
- 8: Use polynomial fitting of bias, SF and linearisation error values in steps 5-7.

The data collection and controlling of hardware is done by a previously existing program. In figure 3.5 to 3.7 the temperature and rate for this profile leading up to step 5 in the process is shown. The data subprofiles are:

- Bookmark 1 (linear data)
- Collect Data for step 1
- Wait for step 2
- Wait for step 3
- Bookmark 4 (bias & SF data)
- Collect Data for step 4
- Calibrate for 5+

Step 5-7 is the compensation calculation model for this calculation profile, step 8 is the statistical model and no filter was used. During the times when data is collected there is an averaging over some seconds such that the end result is ≈ 100 data points. This is the case since the data needs to be handled manually during the calibration and too many data points would be impractical in that case.

Figure 3.5: Temperature and rate subprofiles (L)

Figure 3.6: \underline{L} Close up example of rate loops (L)

Figure 3.7: Close up of linear loop (L)

The next step is to calculate the error values of bias, SF and linearity. The error values calculated using the process described in steps 5-8 values are shown in figures 3.8, 3.9 and 3.10. In order to get the compensation values the error values need to be converted to the appropriate unit (bias: BIT, SF: $\frac{SF_{ideal}}{SF_{err}}$, Linear: BIT \rightarrow BIT).

Figure 3.8: Bias error before calibration (E)

Figure 3.9: SF error before calibration (E)

Figure 3.10: Linearity error before calibration (E)

In order to verify that the calibration was successful and result in a gyro that is within the specs of the product (table 2.1) the current profile is repeated again in the same way only now the gyro has been uploaded with the error compensation values. The resulting values for bias, SF and linearity are shown in figure 3.11, 3.12 and 3.13. In these figures the margins from table 2.1 are plotted as well.

Figure 3.11: Bias error after calibration (\mathbf{E})

Figure 3.12: SF error after calibration (E)

Figure 3.13: Linearity error after calibration (\mathbf{E})

A useful value to calculate is the reduction of the error, since this gives an idea of how good the calibration did. These reduction factors are calculated according to equation 3.8. In table 3.1 the absolute averaged values for the pre-calibration data is shown and in table 3.2 the absolute averaged values for the post calibration. in table 3.3 the reduction percentage is listed, calculated using equation 3.8.

$$f = 1 - \frac{|Error_{after}|}{|Error_{before}|}$$
(3.8)

Name	Digital	Analog	Unit
Bias	$15,\!49158332$	21,30162098	deg/hour
SF	37,223651	36,69312882	% of SF ideal error
Linear	0,188286327	0,18291363	% of FS max

Table 3.1: Listing of the averages of the data

Name	Digital	Analog	Unit
Bias	1,661255986	3,378396673	deg/hour
SF	0,036743828	0,035844137	% of SF ideal error
Linear	0,026890181	0,04638709	% of FS max

Table 3.2: Listing of the averages of the error compensated data

Name	Digital	Analog	Unit
Bias	89,28	84,14	% reduced error
\mathbf{SF}	99.901	$99,\!902$	% reduced error
Linear	85,72	74,64	% reduced error

Table 3.3: Listing of the percentual reduction of the error

3.1.5 Possible Improvements induced from the standard profile

In order to improve the current profile a step by step investigation process is used to figure out possible improvements using the following syllogistic arguments for that. Implementation and testing of these possibilities should reveal whether they are actual improvements (note: P=premise, C=conclusion, D=definition of words used in argument).

Argument 2 for step 1 in current profile:

- P1: For max accuracy the rate table should travel $\phi \geq 2 \times \pi$ at any speed
- P2: The relation $\phi = \theta \times time$ applies
- P3: The rotation speed varies
- C: In order to keep the values accurate the time on each step should change

Argument 2 leads to the possible improvement of changing how long the rate table stays on one level depending on how fast the table rotates.

Argument 3 for step 1 in current profile:

- P1: The chosen linearisation temperature results in an optimal linear relation at or around that temperature
- P2: The average ambient temperature changes depending on where the gyro is used
- C: Adapting the linearity of the sold gyros to the customer using different linearity temperature

Argument 4 for step 3 in current profile:

- P1: The actual stabilization time is unknown
- P2: The wati time is set with a large tolerance using temperature stabilization standards
- P3: There are methods to approximate the actual stabilization time
- C: Finding a stabilization time using an appropriate method could lead to shorter profile

Argument 5 for step 4 in current profile:

- P1: Gyro output error is partially dependent upon temperature change rate
- P2: The current profile does not take temperature change rate into account
- C: Gyro output compensation could be improved if profiles takes temperature change rate into account

Argument 6 for step 5-8:

- D: More advanced = more steps and/or more complicated math that results in some advantages
- D: $Manual \ calculation = A$ manual operator who handles the data and decides which calculations to be done and how, though actual calculations are done in a computer.
- P1: A computer gives access to more advanced calculation methods using more data points than manual calculation
- P2: Something is calculated manually with few data points
- C: There could exist a calculation method that is more advanced when it's done inside a computer

Argument 6 leads to the following new arguments.

Argument 7 for step 5-7:

P1: The output from gyro = $\omega(\theta, T)$

P2: $\omega(\theta, T)$ forms a surface

C: Surface fitting of $\omega(\theta, T)$ could be a new compensation calculation model

Argument 8 for step 5-7:

- P1: The output from gyro = $\omega(\theta, T)$
- P2: The SF is the constant of the relation between ω and θ which should have the ideal property $\omega = F(\theta, T) = SF \times \theta$

P2: $\frac{\partial F(\theta,T)}{\partial \theta} = SF$

C: The partial derivative could be used as new compensation calculation model

Argument 7-8 are new possible ways to calculate step 5-7. To simplify the new methods are named Surface Partial derivative for argument 7 and 8 respectively. For simplified language step 5-7 are named the independent compensation calculation method. The independent name is chosen due to the other methods using the function $\omega(\theta, T)$ whereas the error values in step 5-7 are calculated without the necessity of using information from the other steps.

3.2 Simulation and implementation in LabWindows program

The program that the end user will utilize is the platform where the possible improvements derived from argument 2-8 are implemented. The program is implemented partially from scratch, functions relating to the digital connection of the gyro and controlling of the hardware are taken from pre existing programs. Since multiple possible improvements have been presented which have different combinations of them, the time that it would take to perform all these would not be practical. This since the time of one full test takes around several hours. A solution to this is simulation of the test and calibration. This is also done by implementation in the program.

Since the values collected from rate and temperature are significantly fewer than that of the digital and analog signal. The values for rate and temperature are interpolated. Four interpolation types have been implemented; linear, polynomial, rational and spline. Linear uses the line of the two closest values whilst the others use internal LabWindows functions. The result of a simple test of the different interpolation methods are shown in 3.14, 3.15, 3.16 and 3.17. Here a step function $\sigma(x)$ is tested where 20 data points 0 to 20 are interpolated to 50 data points over 0 to 20 as well. This is done to see what the interpolation functions result in. From these results the polynomial and rational interpolation seems unfit for this case as they frequently result in unstable and odd results. This leaves linear and spline, spline is chosen for these as it is the fastest of the two and it seems to improve the more data points are used. This is tested on real world rate data shown in 3.18 and the result of the interpolation in 3.19.

Figure 3.15: Test of polynomial interpolation on $\sigma(x)$ (L)

Figure 3.16: Test of rational interpolation on $\sigma(x)$ (L)

Figure 3.17: Test of spline interpolation on $\sigma(x)$ (L)

Figure 3.18: Real world rate data 100 data points, as example of the interpolation test. (L)

Figure 3.19: Result of test of spline interpolation on real world rate data 100 to 300 data points. (L)

3.2.1 Simulation of thermal stabilization process using FDM

From argument 4 the conclusion is that the thermal stabilization time needs to be calculated. To solve this thermal process it is simulated by using the FDM. Some assumptions are used during this process:

- 1 The gyro is symmetrical around the cylindrical Z-axis(the form of the gyro is a cylinder), which results in the thermal simulation can be approximated as a 2D- cross section of the cylinder.
- 2 The air convection inside the hollow cylinder is approximated as conduction. The reason for this is that convection usually has higher heat transfer than pure conduction of the same elements. This results in that the actual stabilization time should be faster than the one resulting from pure conduction.
- 3 The boundary layer of the thermal grid is the temperature of the temperature chamber.

Since these 3 assumptions lead to 2D heat conduction using the FDM method hopscotch is now possible. The setup for the simulation of the is displayed in figure 3.20. For this simulation the number of points are chosen to be 40 points in x direction and 20 in the z direction. The thermal conduction capacity of the material A is α_A and material B is α_B which are chosen to be two constants. These values are highly approximative constants which in reality depend upon temperature and pressure. The time step is chosen to be 0.01 sek. Since the error of the hopscotch method is $\mathcal{O}(\Delta t, \Delta x^2, \Delta y^2)$ the values $\Delta x = \frac{X_0}{40}$, $\Delta z = \frac{Z_0}{20}$ and 0.01 is what the error is dependent upon and decreasing these would lead to better accuracy of the model. However increasing the amount of points in the grid or decreasing the time steps would lead to the method taking much longer times. These values seem to be a good compromise between these two factors and sufficient for the accuracy needed here. Although further optimization of those parameters and all parameters involved within the method is possible.

Figure 3.20: Image of thermal simulation setup showing a crosssection

From shupe's general theory of fiber optic sensors dependence on temperature it is stated that the temperature and the temperature change rate impact the error [1]. The temperature errors itself is what will be calibrated away at a later stage. But the temperature change rate error needs to stabilize so that it doesn't get included too much into the temperature error calibration or that the temperature of the coil is not correct when the test starts. Instead of using shupe's equation to find error values the standard deviation of the temperature of the coil surface is used. This is used since after a certain amount of time the temperature of the gyros sensor should be sufficiently stable that a test can be conducted. For this test the trigger value of the standard deviation is $0.001 \,^{\circ}C$. In order to estimate how much the error will be the temperature of the coil surface is taken (coil surface shown in figure 3.20). The values of this coil surface is shown in figure 3.22. In figure 3.23 the average, derivative of the average, standard deviation and the derivative of the standard deviation of the coil surface are shown and in figure 3.21 four results of the thermal simulation process are shown.

The stabilization time is the difference between the time where the temperature chamber reaches the desired temperature and the time when the coil surface has achieved the desired standard deviation. In the current test this is $t_{stable} = 276.29sek$. As a last precaution the stabilization time is increased by a safety factor, this is done due to a lot of the parameters and assumptions could have led to inaccuracies in the final result. With a safety factor of 50% the total wait time of the profile at step 4 is now 414.435sek. Which is significantly less than the current profile which has 40min = 2400sek as its wait time.

Figure 3.21: Plot of the thermal simulation at different times (M)

Figure 3.22: Plot of the values of the coil surface; at leftmost column the temperature is $25^{\circ}C$ and the rightmost is $-40^{\circ}C$. (M)

Figure 3.23: Plot of the average, standard deviation(STD), derivative of the average and the derivative of the STD of the coil surface (L)
3.2.2 Implementation of new profiles

Arguments 2 to 5 is to be implemented programmatically. This is done inside the aforementioned program. The program generates a profile using predefined profile templates that the user can modify with chosen parameters (figure 4.3). Whenever there is a temperature step where the temperature needs to stabilize for some wait time, the thermal simulation process in 3.2.1 is used to calculate this when generating the profile. The current one that is used (step 1-4) can be easily generated by selecting the parameters of it such as steps in linear rate, rate OTR loops, temperature max and min. In figure 3.24 the template for the current profile with thermal simulation enabled is shown.

Figure 3.24: Plot of the template of the current profile but with temperature simulation enabled (L)

Using the possible improvements derived from the arguments the currently used profile can be improved using new templates. Argument 2 presents the possible improvement of constant number of rotations at different speeds. In figure 3.25 the implementation of this template is displayed, here the times of 11 steps are calculated by setting 2 rotations as the constant.

Figure 3.25: Plot of constant rotation template for linear part of profile (L)

Argument 3 is now implemented, this is shown in figure 3.26. The linearization starts at $25^{\circ}C$ (which represents room temperature) and goes to $20^{\circ}C$, then waits for the temperature to stabilize. In figure 3.27 the thermal simulation result of the step is shown.

Figure 3.26: Plot of linear temperature profile which has been temperature adjusted (L)

Figure 3.27: Plot of the average, standard deviation(STD), derivative of the average and the derivative of the STD of the coil surface (\mathbf{L})

Argument 5 leads to 2 main ways of attempting to construct a profile template that takes temperature change rate when collecting the calibration data. The first profile template removes it altogether by implementing a step process in the temperature. The template uses the thermal simulation to wait until the temperature has stabilized to the desired value. In figure 3.28 the step template is shown.

Figure 3.28: Plot of step templatefor profile (L)

The second template uses a cyclical format on the temperature. This should lead to the error that results from the temperature change rate cancels eachother out in the calibration process since the error is symmetric [6]. This template first goes to the middle of the temperature interval and waits for the temperature to stabilize. This template is shown in figure 3.29.

Figure 3.29: Plot of cyclic template for profile (L)

A final template relating to argument 5 is to combine the previous two templates to form a cyclic stepped template. This is shown in figure 3.30.

Figure 3.30: Plot of cyclic step template for profile (L)

For the compensation calibration methods that use the function $\omega(\theta, T)$ (partial derivative and surface) the profiles need their linear profile inside the rate loops. This is because of how they are calculated (by the $\omega(\theta, T)$ function). The template for these calibration methods are the same as before except the linear part is removed from the start and is embedded inside the OTR run. This is shown in figure 3.31 by modifying the current profile template.

Figure 3.31: Plot of a modification to the current profile template with thermal simulation for the surface and partial derivative compensation calculation methods (L)

	Profile Template	[h:m:s]	Image
1	Current (Acyclic)	3:17:35	3.5
2	Acyclic w Therm Sim	2:44:29	3.24
3	Acyclic w Linear in OTR	2:34:29	3.31
4	AcyclicStep@10steps	3:02:29	3.28
5	Cyclic@1 $\frac{\circ C}{s}$	4:14:28	3.29
6	Cyclic@1.3 $\frac{^{\circ}C}{s}$	3:14:30	3.29
7	$Cyclic@1.5\frac{\circ C}{s}$	2:43:25	3.29
8	Cyclic@2 $\frac{\circ C}{s}$	2:05:05	3.29
9	CyclicStep@5steps	3:15:32	3.30
10	CyclicStep@10steps	4:29:25	3.30
11	CyclicStep@15steps	5:47:11	3.30

Table 3.4: Total time taken for each profile

The cyclic templates show the trend of being more time consuming, however table 3.4 row 6-8 shows that since they may calibrate away the temperature change rate. The temperature change rate may justifiably be increased which has a large result on the total time of the profile.

3.2.3 Implementation of new calibration processes

Argument 6-8 is to be implemented into the program. In appendix C the flowchart of the independent calibration process is shown as implemented into the program. The two new compensation calibration methods are described.

Figure 3.32: Flowchart of the partial derivative compensation calibration process that is implemented in the end program (\mathbf{L})

In step [1] in figure 3.32 the function $\omega(\theta, T)$ is calculated by an averaging process. The $\omega(\theta, T)$ function in the partial derivative process will form a finite matrix where the size is going to be dependent upon the steps of the linear steps and number of rate loops in OTR. For example if steps in linear = 11 and rate loops is 100, this will result in:

$$\omega(\theta, T) \Rightarrow \omega[n][m] \text{ where } \{n \in \mathbb{W}, 0 < n < 100\} \text{ and } \{m \in \mathbb{W}, 0 < m < 11\}$$

Here the rows represent the temperature T[n] and columns represent $\theta[m]$. $\omega[n][m]$ is formed by for every step in n, average omega over all steps in m. Due to that the $\omega[n][m]$ function is discrete the partial derivative needs to be approximated. This is done by the DifferenceEx function.

Figure 3.33: Flowchart of the surface compensation calibration process that is implemented in the end program (L)

In step [1] in figure 3.33 the H matrix refers to a matrix where the values of θ and temperature are put in a surface function of the form:

$$F_{surf}(\theta, T) = \sum_{i=0}^{n} \sum_{j=0}^{n-i} C_{i,j} \theta^{i} T^{j}$$
(3.9)

This is a polynomial surface where n is the maximal polynomial order within the surface function. In step [2] in figure 3.33, solving the $\mathbf{H} \cdot \mathbf{c} = \omega$ equation system will result in the coefficients $C_{i,j}$ in $F_{surf}(\theta, T)$ to be known. This is the fitted surface to the data. In step [3] in figure 3.33 to arrive at a parametric curve for the surface one variable in $F_{surf}(\theta, T)$ to a constant. When one variable is set to a constant the function becomes dependent on one variable instead which can be used to find specific relations on the surface.

Next step is to implement some filter functions. The chosen are weighted average, butterworth IIR and gaussian as a good start for some simple filters to implement. With these filters a fast fourier transform was also implemented with the intention to be able to analyse the signal so that optimal frequency parameters for the butterworth IIR can be found. If this can't be done other aspects of gyro signal properties can be

investigated for future purposes. These functionalities will not be tested further though and are explained in more detail in appendix A.

Lastly the statistical models are implemented. These are presented and shortly described in table 3.5. In table 3.6 which statistical models that work with which compensation calibration process.

	Statistical model name	Description		
1	Delamencial	Uses the builtin function PolyFitX		
1	Polyhoimai	to fit the data to the best order		
0	Seling	Uses the CubicSplineFit function		
Ζ	Spine	in labwindows to spline fit the data		
		Divides the data to regress into x amount		
3	Point	of steps and then find the best average		
		that fits the data of these step		
		Divides the data to regress into x amount		
		of steps and forms a histogram of the		
4	Gaussian	data then uses GaussFit to fit the probability		
		of the data. The center of the		
		fitted gaussian fit is the most average		
Б	Surface	Uses SolveEqs to find coefficients		
9	Surface	for the surface function		

Table 3.5: The different statistical models

	Works with compensation model
1	Independant, Partial derivative
2	Independant, Partial derivative
3	Independant, Partial derivative
4	Independant
5	Surface

Table 3.6: table of which statistical models can be used with which compensation calculation process

Figure 3.34: Updated calibration profile with the possible selections that have been implemented

3.2.4 Simulation of calibration process using profile simulation based on collected values

In order to figure out which combination of profile and calculation method would lead to the best accuracy and reliability. Since running multiple tests where every test takes several hours would take a very long time which would be impractical. To solve this a simulation of the calibration process is constructed. The compensation calibration process is the same as for the real case. The profile and data collection of that however needs to be simulated. This will be done by first collecting data about the properties of the different signals in the process then trying to replicate this in the program. In figure 3.35 a static data collection is done where rotation is zero and temperature is room temp. In table 3.7 the STD values of these signals are shown, these values will be important for the simulation.

Figure 3.35: Static noise collection (E)

	Signal	STD
1	Digital	812.718
2	Analog	0.000361
3	Temperature	0.204467
4	Rate	0.000736

Table 3.7: Table of the STD values of the noise

The simulation takes the current active profile and generates certain amounts of data for each signal. From the static data collection the temperature data points are ≈ 1 sek apart and the rate is ≈ 0.2 . The Digital and analog are much faster however due to limitations the data rate is set to 0.1 in the simulation. This is still somewhat realistic as a maximum amount of data points are set in the program in order to not influence performance (time and memory) which removes some amount of data points with an even interval. Next the error values need to be simulated. Since the typical values these are known this is trivial. The values for these are shown in figure 3.36, 3.37 and 3.38 which for easy viewing are set to around 10 times larger than the actual values of the gyro. These are applied in the reverse order of the description in chapter 3.1.1. wich is: $\omega_Error_{Sim} = (SF \times \theta_{sim} + Linear_Error_{Sim}(\omega))/SF_Error_{Sim}(T) + bias_Error_{Sim}(T)$. After this a gaussian noise is applied to all signals which uses the values collected in the static data collection. The end result of this is shown in figure 3.39 where $\omega(\theta, T)$ are simulated and plotted over $\{-150 \le \theta \le 150\}$ and $\{-40 \le T \le 75\}$.

Figure 3.36: Simulated digital and analog linear error (L)

Figure 3.37: Simulated digital and analog SF error (L)

Figure 3.38: Simulated digital and analog bias error (L)

Figure 3.39: The values of the simulated gyro using the error values in figure 3.36, 3.37 and 3.38 (M)

The simulations that are to be done are of the profiles which could have a significant impact on accuracy and reliability. Things such as Argument 2-3 impact versatility when constructing the profile or when optimizing for a specific climate. Thus these should not have to be tested more than that they work as advertised. This primarily results in the temperature profile templates, the compensation calibration process and the statistical model. In table 3.8 a matrix combination shows what simulation tests are to be done. Here 0 represents the base comparison, which is the current profile.

	Acyclic	Acyclic Step	Cyclic	Cyclic step
Independent_poly	0	4	8	12
Independent_spline	1	5	9	13
Independent_point	2	6	10	14
Independent_gauss	3	7	11	15
Partial deriv_poly	16	19	22	25
Partial deriv_spline	17	20	23	26
Partial deriv_point	18	21	24	27
Surface_surface	28	29	30	31

Table 3.8: Table of the STD values of the noise

Each test is simulated with new randomized error parameters and repeated 10 times. The accuracy is determined using the GoodnessOfFit function which uses R_{square} as the measurements of how good the fit is. The formula for this is:

$$R_{square} = 1 - \frac{\sum_{i=0}^{n-1} (y_i - fittedData_i)^2}{\sum_{i=0}^{n-1} (y_i - \overline{y})^2}$$
(3.10)

 R_{square} is a value which is closer to 1 the better the fit, therefore in the test the following modification is done:

$$Accuracy = |1 - R_{square}| \times 10^6 \tag{3.11}$$

The 10^6 is to remove several zeros that would otherwise occupy space. The reliability is determined by STD of these 10 simulation tests. In Figure 3.40 the results of the simulation tests are shown. The accuracy and stability are normalized by dividing by test number 0. This is done to represent an improvement or deterioration

in accuracy or stability with respect to the current profile. The column most to the right displays the tests results as the average of the normalized accuracy and normalized stability.

Number	MeanError	MeanSTD	MeanError %	MeanSTD %	Result
0	96492,83683	26269,3985	1	1	1
1	90915,92535	43082,22282	0,942203881	1,64001558	1,29111
2	31171,65161	40249,56713	0,323046276	1,532184573	0,927615
3	22379,25698	21579,41272	0,231926615	0,82146581	0,526696
4	30353,10907	39115,8024	0,31456334	1,48902543	0,901794
5	28783,85894	20297,57748	0,298300474	0,772670051	0,535485
6	17514,51505	27763,61534	0,181511039	1,056880512	0,619196
7	33718,41676	21717,41772	0,349439584	0,826719261	0,588079
8	28305,84516	52265,78517	0,293346595	1,98960723	1,141477
9	14991,73272	16141,45247	0,155366276	0,614458396	0,384912
10	33683,55648	27072,61577	0,349078311	1,030576158	0,689827
11	11182,78161	11366,88311	0,11589235	0,432704354	0,274298
12	55296,21718	59168,63834	0,573060333	2,252378879	1,41272
13	56003,69044	40611,37162	0,580392206	1,545957423	1,063175
14	43299,89522	35553,63691	0,448736887	1,353424096	0,90108
15	952451,6701	1251884,402	9,870698193	47,65561733	28,76316
16	1286003,173	706755,0946	13,32744704	26,90412172	20,11578
17	1861879,489	1152016,512	19,29552028	43,85393568	31,57473
18	1783591,945	872135,981	18,48419016	33,19969359	25,84194
19	1165569,617	529765,5028	12,07933827	20,16664001	16,12299
20	1441549,453	1026582,945	14,93944525	39,07904269	27,00924
21	2463791,981	2172915,564	25,53341846	82,71660899	54,12501
22	2266333,941	1017445,801	23,48706925	38,73121803	31,10914
23	2956655,113	484416,0912	30,64118757	18,44031911	24,54075
24	3276434,838	550468,0922	33,95521311	20,95472769	27,45497
25	8452047,02	7637851,675	87,59248145	290,7509159	189,1717
26	5614139,187	4499435,495	58,18192698	171,2804918	114,7312
27	11079004,41	6600944,076	114,8168587	251,2788436	183,0479
28	16047,30305	25279,7964	0,166305641	0,962328711	0,564317
29	25673,40861	30497,6674	0,266065435	1,160957964	0,713512
30	12930,45065	12075,37843	0,134004254	0,459674721	0,296839
31	20801,55569	28702,96683	0,215576165	1,092638906	0,654108

Figure 3.40: The results from the simulations, displayed as accuracy, stability, normalized accuracy, normalized stability and result where the 2 best are green, worst is red and best of the worst are blue (\mathbf{E})

From the table in figure 3.40 the best performing simulation results are displayed in green. The best is the independent compensation calibration with a gaussian statistical method using a cyclic temperature template. The second best is the Surface compensation calibration with a cyclic temperature template. The worst performing over all are the partial derivative compensation calibration method with a worst result of 189.17 to a best of 16.12. In order to investigate this the results from the individual tests for 19 are shown in figure 3.41 taken out from appendix G. From this it seems that the partial derivative function is as expected from the very high stability value, very unstable and doesn't seem very reliable. However some iterations result in good accuracy when compared to 0.

	TotAccuracy	linjAccuracy_D	linjAccuracy_A	SFAccuracy_D	SFAccuracy_A	biasAccuracy_D	biasAccuracy_A
1	978371,4865	387544,7155	387224,3082	101291,2769	101299,9849	505,559133	505,641812
2	1646929,471	725789,0077	725852,365	97220,56247	97220,17103	423,387277	423,977178
3	495032,6293	142522,8563	142585,345	104722,8355	104707,6836	246,75462	247,154281
4	1985726,787	885114,1244	885149,4913	104359,8039	104366,5079	3368,19132	3368,668625
5	860002,7553	327164,0108	326909,683	102099,6546	102095,6405	866,768245	866,998306
6	947626,9362	349840,7107	349704,9982	123671,268	123661,4712	374,201223	374,286839
7	987419,1386	394778,0907	395031,4899	97822,25563	97819,19168	983,680913	984,429832
8	512223,9144	143820,3657	143701,3559	112033,4524	112026,0807	321,041874	321,617865
9	1172375,298	493617,2471	493494,3956	91386,57912	91382,72147	1247,548371	1246,806189
10	2069987,749	935047,0691	934790,034	97186,39029	97182,71919	2891,63999	2889,896722

Figure 3.41: Table of a closer examination of tests from 19 found in appendix $G(\mathbf{E})$

3.3 Testing and verification of best simulated calibration processes on gyro

From the simulation the best methods were provided. These are now to be tested on an actual gyro in the calibration equipment, this gyro is a different 4xx gyro from the one tested in 3.1.4 which was not available for these tests. Due to the gyros having slightly different characteristics the results derived from these tests are not directly comparable to the results in chapter 3.1.4 and the noise in figure 3.35, however may still serve as guidelines. This is to be done to verify that the program and the calibration functions that have been implemented does work and how well they work. The three tests to be done is first the acyclic independant poly profile. This is done to give a benchmark on performance of the final test. The others are the two best that were derived from the simulation (Cyclic independent gaussian and cyclic surface). These tests are done by first collecting data using the program then calculating the compensation values from that data, this due to the automatic part of the program is untested at this point. The compensation values are uploaded manually and data is collected again. From these the current error values are calculated using the same calibration method. If the previous compensation values were the error value should be zero for the bias and linear and one for the SF. In table 3.9 the tests are stated with specified parameters used for the templates and some stats when calibration. In figures 3.42, 3.43 and 3.44 these profiles are shown.

Param	Test 1	Test 2	Test 3
Time [h:m:s]	2:46:59	4:14:28	4:04:28
Temperature range	[-40, +75]	[-40,+75]	[-40,+75]
Test Temperature	1	1	1
change rate $\frac{\circ C}{s}$	1	T	T
Steps in linear	21	21	0
Steps in OTR rate	3	3	11
OTR rate loops	100	200	100
Max data points	10k	1M(linear 10k)	1M

Table 3.9: Table of tests to be done and parameters for them

Figure 3.42: Test number 1 (L)

Figure 3.43: Test number 2 (L)

Figure 3.44: Test number 3 (L)

4 Results

4.1 CaTV program (Calibration, Test and Verification)

The result of the implementation in LabWindows is the program now named calibration, test and verification (CaTV), the main panel of this program is shown in figure 4.1, in figure 4.2 the flowchart of the various functionalities of this panel is displayed. The program is roughly 99 megabytes with $\approx 14~000$ lines of code implemented, ≈ 500 of these is code that were previously developed and have been modified for use in this program. The program uses the product and profile definitions discussed in 3.1.3 and has a system which enables creation of new profiles and products and simple switching between them. multithreading was implemented in order to achieve high performance by allowing some parallelization of the data collection process, this parallelization extends to the calculation and calibration process as well. This multithreading has the tendency to lock the interface of the main program due to high priority of the additional threads, this is however probably not necessary and the priority should be lowered in order to make sure the interface does not bugg out or crash. The calculation thread is the tread that handles all calibration, testing and verification tasks. it does so by using a function stack. In this stack functions to be executed are placed depending on the type of operation and when the calculation thread starts it executes these functions one at a time.

The Program data collection process just takes the raw data from the gyros and hardwares and stores them in temporary files. These temporary files are then converted into data files where each individual data point is sorted according to bookmark. the advantage of this process is that little time is that the data can quickly be collected and the accuracy of the time that it was taken maintained more precisely, this in combination with the program utilizing the built in high precision windows timer for timing purposes results in a data collection process which most likely have a good time accuracy and large amounts of data points. Since the collected amounts of data points over a few hours at max data rate speeds for the hardware easily reaches several millions for the signals the program has a function which limits the amount of data. This is done to ensure that the calibration process can be done in reasonable time, without this and the process would take several hours with so many data points at the current iteration. However some calibration processes can handle more data points than others due to their function. The surface compensation calibration process can handle 1 million data points without problems and wears the independent polynomial approximately at the same time with one hundred thousand data points. This is due to a sorting that needs to take place before the polynomial fitting, this is however not needed in the independant gauss compensation calibration process for bias and SF. This results in the independent gauss process being able to as well handle 1 million for bias and SF calibration but since a sorting is done on the third degree linear error polynomial fitting this has to be limited to hundred thousand data points just as the independent poly process.

In order to deal with different temperature chambers, rotation tables, power sourcer and analog measuring cards a DLL(Dynamic Link Library) loader for the hardware controlling functions has been implemented. This will enable the program to much easier be able to be configured to different stations or changes in hardware. The test function enables the user to test filters and their parameters and perform fast fourier transform of the signal, these functionalities have not been tested thoroughly on the gyro though it is implemented.

In figures 4.1 to 4.7 a closer look at the resulting CaTV program itself is taken where figure caption is used to describe the various functionalities.

Figure 4.1: Main panel of CaTV; number of FOG slides is used to quickly set the number of FOGs to use. When a gyro has successfully connected and its signal verified to be correct the lights FOG 1-4 light up green. The green menu ring above start is used to select the operation to be done. Abort and pause functionalities have not been sufficiently tested and although much of the implementation of them are there they are currently quite buggy. The test configuring panel is a panel used to set up a test operation where the configuration tree is used to set up parameters for the filter and FFT tests. The time knob is used to set the test length, test type selects what type of test (data collection, filter or FFT) and gyronumber set which gyro to do the test on. Test whatever is a function where function is not the same as a test operation. The large white box at the bottom with scroll bar to the right is a text box where the status of the program is outputted such as data found, temperature stabilization progress, image printed to which location and which stage of the calibration process is currently being worked on. Lastly there are the two progress bars at the bottom the top indicate progression of the profile data collection part and the bottom one indicate progression on the function stack.

Figure 4.2: Flow chart of main panel of CaTV, the functions of import and print does not currently do anything. Start select(green ring in 4.1) is a ring menu where the type of operation to be done is selected. The connection of the power source, digital gyro, temp chamber, rotation table and analog measuring card uses previous existing functions.

Figure 4.3: Temp/rate profile panel where generate profile with choosable parameters for the different templates is open; The graph of rate has a function that enables the choosing of the interval to plot, to enable this the button to the left of the graph is pushed and then the plot interval can be selected by using the start and width sliders. These indicate which rate subprofile to start at and how many to plot. The different colored panels are used to adjust different parameters which when the large OK button is pressed the program generates a new profile from a template. The red indicates Temperature profile template parameters, the blue the rate loops, the green the linear template and the gray rotation compensation. The type ring is used to set which bookmarks are used on the data (Independent, Partial Derivative and Surface). the bottom colourful table is used to display Data subprofiles.

Figure 4.4: Temp/rate profile panel where custom profile generation is open; The custom profile panel is activated by changing the selection menu to "Custom". This enables the adding and subtraction of individual subprofiles to Temperature, rate and data.

Figure 4.5: Flow chart of temp/rate profile panel

Figure 4.6: Calibration profile panel of CaTV; The calibration profile is changed by selecting one of the filters, calculation model and statistical model. When this is done the calibration profile settings updates and shows which parameters can be changed for that calibration profile. The option to auto pre-adjust the SF is always shown here, rate tolerance refers to the functions tolerance of the values for rate θ , for example when searching for values where $\theta = 0$ during bias calibration the rate tolerance determines which values fall under that.

Figure 4.7: Flowchart of the calibration profile panel

More images and flow charts of the various panels of CaTV can be found in appendix E and F.

Returning to the demands list described in chapter 3.1.2 will show how well the program fulfills the requirements, necessities and Desirables.

Requirements:

- 1 Can successfully read both analog and digital data from the gyro
- 2 Can calculate SF, bias and linearity compensation
- 3 Can upload compensation values automatically although full automatic procedure $(collectData \rightarrow calculateCompensationValues \rightarrow uploadCompensationValues \rightarrow verify)$ has not been fully tested
- 4 Can fully control temperature chamber, rotation table, power source and analog card

Necessities:

- 5 Scan the digital ports after a gyro (found in settings under connection) and adapt the baud rate after the output of the gyro connected (this utilizes a modified previous software)
- 6 This is included in the profile/product and can be changed in various ways
- 7 Is implemented but not tested
- 8 no

Desirables:

- 9 is implemented but not tested
- 10 yes found in calibration profile
- 11 Is implemented but not tested
- 12 yes (found in settings under connection)
- 13 The calibration processes uses a method where large data sets are used to from the average, this should lead to better data average

4.2 Test 1: Acyclic independant poly

Figures 4.8 and 4.9 show the collected data of digital, analog and temperature, rate respectively data of this test. In figure 4.10 the bias error values are shown before the calibration as a result from the independent process finding the values are ≈ 0 within a interval of of $\left[-\frac{range}{numsteps} \times 0.05, \frac{range}{numsteps} \times 0.05\right]$. Figure 4.11 shows the calculated SF values from the independent process.Figure 4.12 displays the linearity error as input into the third degree polynomial fitting function. Both the SF and linearity shows unusual spikes, since this is something that the gyro should not be able to do and does not show up in it is most likely something in the calculation process. What this could be caused by is most likely the interpolation in combination with too low tolerances for the values of the steps. When the function calculates the SF a deviation by the values for rate are needed and if these have some variation it can have a large effect on the en value. What this means is that the value of 0.05 that was used for the tolerance for rate was too high and needed to be tighter. How much this impacts the final results is unknown however it will most likely be a significant factor in inaccuracies. In figures 4.13,4.14 and 4.15 the calculated compensation values are presented in the same units as the specified characteristic in 2.1 with the specified margins. from figures 4.13,4.14 and 4.15 the averages of the data are calculated, these are listed in table 4.1.

Figure 4.8: Digital and analog collected data values (E)

Figure 4.9: Temperature and rate collected data values (E)

Figure 4.10: Figure of bias error value as outputted from the independent function in CaTV (in the units BIT, volt) (left Digital, right Analog) (\mathbf{L})

Figure 4.11: Figure of SF error value as outputted from the independent function in CaTV (in the units $\frac{SF_{error}}{SF_{ideal}}$) (left Digital, right Analog) (L)

Figure 4.12: Figure of linear error value as outputted from the independent function in CaTV (in the units BIT) (left Digital, right Analog) (\mathbf{L})

Figure 4.13: Bias fitted value output from independent poly compensation calibration process (E)

Figure 4.14: SF fitted value output from independent poly compensation calibration process (E)

Figure 4.15: Linear fitted value output from independent poly compensation calibration process in (E)

Name	Digital	Analog	Unit
Bias	38,26506849	40,57801886	deg/hour
SF	26,43983086	24,75685263	% of SF ideal error
Linear	0,313453248	0,296280755	% of FS max

Table 4.1: Listing of the averages of the fitted data

4.3 Test 1: Verification

The same procedure is repeated again to give the verification values, these are shown in figures 4.16, 4.17 and 4.18. From this data the averages of the results are calculated, this is shown if table 4.2. Using the values calculated from the error values in table 4.1 a percentage reduction of the errors is calculated and this is presented in table 4.3.

Figure 4.16: Bias verification (E)

Figure 4.17: SF verification (\mathbf{E}) ; both of the SF values are somewhat shifted up, this could be because of the too weak tolerances

Figure 4.18: Linear verification (\mathbf{E}) ; poor result from linearisation, does not meet requirements in the 0-150 range

Name	Digital	Analog	Unit
Bias	3,267433204	2,474239047	deg/hour
SF	0,1351731	0,1880049	% of SF ideal error
Linear	0,09435305	0,12013718	% of FS max

Table 4.2: Listing of the averages of the compensated data

Name	Digital	Analog	Unit
Bias	91,47	93,9	% reduced error
SF	99,49	99,24	% reduced error
Linear	69,9	59,5	% reduced error

Table 4.3: Listing of the percentage reduction of the error

4.4 Test 2: Cyclic independant gauss

Figures 4.19 and 4.20 show the collected data of digital, analog and temperature, rate respectively data of this test. In figure 4.21, 4.22 and 4.23 shows the bias error, SF error and linearity error of the independent process. This test uses the same rate tolerance of 0.05 for the independent process which results in these spikes in these values showing up again but now more prevalent since the increase to 1 million data points. In figures 4.24,4.25 and 4.26 the calculated compensation values are shown are show gaussian point regressed from the data in 4.24,4.25 and 4.26 respectively. The number of points that were regressed over were equal to the number of rate loops (which were 200).

Figure 4.19: Digital and analog collected data values (\mathbf{E}) ; the reason for the trailing analog signal is unknown

Figure 4.20: Temperature and rate collected data values (E)

Figure 4.21: Figure of bias error value as outputted from the independent function in CaTV (in the units BIT, volt) (left Digital, right Analog) (\mathbf{L})

Figure 4.22: Figure of SF error value as outputted from the independent function in CaTV (in the units $\frac{SF_{error}}{SF_{ideal}}$) (left Digital, right Analog) (**L**)

Figure 4.23: Figure of linear error value as outputted from the independent function in CaTV (in the units BIT) (left Digital, right Analog) (\mathbf{L})

Figure 4.24: Bias fitted value output from independent gauss compensation calibration process (E)

Figure 4.25: SF fitted value output from independent gauss compensation calibration process (E)

Figure 4.26: Linear fitted value output from independent gauss compensation calibration process (E)

Name	Digital	Analog	Unit
Bias	$34,\!3955738$	$35,\!4463633$	deg/hour
SF	26,56330184	24,85952562	% of SF ideal error
Linear	0,237658835	0,283517195	% of FS max

Table 4.4: Listing of the averages of the fitted data

4.5 Test 2: Verification

Same process as in test 1 is redone here now only using the gaussian regression instead. The results from this is shown in 4.27, 4.28, 4.29 and tables 4.5 and 4.6.

Figure 4.27: Bias verification (E)

Figure 4.28: SF verification (\mathbf{E}) ; even more shifted upwards seems to correlate to the increased data point and the increase in noise peaks

Figure 4.29: Linear verification (E); very poor results from linearisation

Name	Digital	Analog	Unit
Bias	$1,\!690415552$	6,733095445	deg/hour
\mathbf{SF}	0,1679937	0,289961776	% of SF ideal error
Linear	0,094985477	0,181164728	% of FS max

Table 4.5: Listing of the averages of the compensated data

Name	Digital	Analog	Unit
Bias	95,09	81	% reduced error
SF	99,4	98,83	% reduced error
Linear	60	36,1	% reduced error

Table 4.6: The percentage reduction of the error

4.6 Test 3: Cyclic surface

The surface profile is fundamentally different to the independent profile and the figures 4.30 and 4.31 where the collected data is displayed, show this difference as the many rate loops which run OTR instead of at one temperature stand out. Since the surface function uses the $\omega(\theta, T)$ for its fitting and since ω is tridimensional it seems logical to plot the output of the gyros in 3D to better represent what the surface function will work with. This is shown in figures 4.32 and 4.33. although the bias, SF and linearization errors are too small in proportion to the range of the output to view in this image one interesting thing that can be seen is a hysteresis error that appears during the linear loops. In figure 4.34,4.35,4.36 bias, SF and linearity errors are shown as they are returned from the surface calibration process.

Figure 4.30: Digital and analog collected data values (\mathbf{E})

Figure 4.31: Temperature and rate collected data values (E)

Figure 4.32: 3D plot of data points of digital gyro output in BIT (M)

Figure 4.33: 3D plot of data points of analog gyro output in volt (M)

Figure 4.34: Bias fitted value output from surface compensation calibration process (\mathbf{E}) ; the digital and analog bias error values differs very much and one is most likely not correct, since the analog is using a values which the bias is typically not in the order of it is most likely wrong.

Figure 4.35: SF fitted value output from surface compensation calibration process (E)

Figure 4.36: Linear fitted value output from independent poly compensation calibration process (E)

Name	Digital	Analog	Unit
Bias	37,5897989	239,8938218	deg/hour
SF	26,54566276	24,8654549	% of SF ideal error
Linear	0,19185623	0,374887409	% of FS max

Table 4.7: Listing of the averages of the fitted data

4.7 Test 3: Verification

Just as in previous tests the compensation data is uploaded and a new test is run and the errors are calculated using the surface function. The result of this is shown in figure 4.37, 4.38, 4.39.

Figure 4.37: Bias verification (**E**); Analog bias is very wrong and has been worsified, a clue of what might be the cause is that the shape and order of the digital and analog values are similar but the values are different by a order of ≈ 100 . This leads to the suspicion that the analog bias errors extreme values are caused by an analog conversion error within the program. Another possibility is that the inaccuracies in both bias compensation values is caused by polynomial overfitting and since the analog is noisier than the digital this results in higher inaccuracies

Figure 4.38: SF verification (E); The digital SF looks very good and the analog the opposite of that, the analog SF errors shift could be caused by the same thing as the analog bias.

Figure 4.39: Linear verification (E) poor result from linearisation, does not meet requirements in the 0-150 range.

Name	Digital	Analog	Unit
Bias	9,77821368	347,9737416	deg/hour
SF	0,032675989	0,310100133	% of SF ideal error
Linear	0,103758385	0,094082378	% of FS max

 $Table \ 4.8: \ Listing \ of \ the \ averages \ of \ the \ compensated \ data$

Name	Digital	Analog	Unit
Bias	73,99	-45	% reduced error
SF	99,88	98,75	% reduced error
Linear	45,92	74,9	% reduced error

Table 4.9: Listing of the percentage reduction of the error

4.8 Summary of tests

Name	Test 0	Test 1	Test 2	Test 3
Digital Bias	1,661255986	3,267433204	$1,\!690415552$	9,77821368
Analog Bias	3,378396673	$2,\!474239047$	6,733095445	347,9737416
Digital SF	0,036743828	0,1351731	0,1679937	0,0322029
Analog SF	0,035844137	0,1880049	0,289961776	0,3101803
Digital Linear	0,026890181	0,09435305	0,094985477	0,103758385
Analog Linear	0,04638709	0,12013718	0,181164728	0,094082378

Here the results of the tests are put in the same tables for easier viewing.

Table 4.10: Listing of the averages of the results

Name	Test 0	Test 1	Test 2	Test 3
Digital Bias	89,28	91,47	95,09	73,99
Analog Bias	84,14	93,9	81	-45
Digital SF	99,90	99,49	99,4	99,88
Analog SF	99,90	99,24	98,83	98,75
Digital Linear	85,72	69,9	60	45,92
Analog Linear	74,64	59,5	36,1	74,9
Average	88,93	85,58	78,40	58,073

Table 4.11: Listing of the error reduction factors of the results and a average of them

5 Conclusions & Discussion

The investigation resulted in several ways to improve the calibration process. The thermal modeling of the process itself is something which could potentially remove some uncertainties and optimize several parameters. From the thermal simulation that was done, significant time could be saved in the calibration process if the temperature stabilization time could be optimized. Even though the time derived from this calculation was significantly less than the currently used there are several parameters which influence the result of this such as the stabilization trigger value and the thermal properties of the materials. Other ways to improve the process is to give more options when creating the profiles that control the hardware. For example the usage of linear rotation compensation optimizes the time that the profile stays on a level, which previously was a constant. Primarily The investigation found that a switch to an automated calibrations system opens up new possibilities for calibration methods, here some alternatives to the current method were formulated and evaluated but this could be drawn even furthur by for example machine learning and similar processes. In conclusion more investigation on the different major parts could be done and a surface level evaluation has been done on some but not fully verified.

Since all but one of the requirements, necessities and desirables of CaTV were implemented (see table 5.1) the program is a potentially a very large success. This is though dependent upon if the functions function as predicted, which will most likely not be the case during the firsts few tests of those. The program itself has many functionalities implemented that are important for the advanced data management and calibration process, however since the program has not been successfully tested multiple times on real world examples it is hard to conclude how well those functionalities perform. The program does at the moment have a few bugs which amongst all can cause a crash such as multitasking priorities causing lockups of the interface. The program does not have many safeguard for the user as misuse of parameters and functions can cause the program to crash. The product and profile functionalities gives smooth and easy creating and visualization of the profiles. The implementation of the product/ profile system is most likely the part of CaTV that will improve the calibration handling overall as it gives a faster and more effective way to handle the management of different gyros.

The average values of the error correction factor in table and 4.11 indicate that the best calibration process based on error reduction is the current (Test 0), Acyclic independent polynomial (Test 1), cyclic independant gauss (Test 2) and then the cyclic surface (Test 3) in that order. However due to many uncertainties such as the test did not use the same gyro. The current method has a previous history of optimized parameters and methodology in which most of the parameters in the new processes are clearly unideal and the methodology has not been tested enough. The software used to collect the data has not been sufficiently verified to conclude it is reliable. It is for these reasons it is hard to draw any broad definitive conclusions from the collected data results. However they can serve as proof of concept for the various new calibration processes as they manage to calibrate the gyros at all and in some cases do so quite well. For example the independent gaussian giving good results on the bias, which since the digital bias noise is gaussian by nature is an indication that there might be a reason for further investigation. Another being the surface function resulting in good digital SF calibration or the acyclic independent polynomial implemented in CaTV getting similar error reduction values as the current process.

To summarize, more work needs to be done in order to get the new profiles and CaTV working at optimal performance. However the values achieved in their first real world calibration test on a gyro gives promising results that this can be done and can be done automatically, better and more efficiently than the currently used profile and software.

Number	Description	Is implemented?
Requirements:		
1	Read data from gyro	yes
2	Calculate SF, bias and linearity for	TOS
	analog and digital compensation values	yes
3	Upload calibrated compensation	TOP
5	values automatically	yes
4	Control test machine	yes
Necessities:		
5	Implement auto-baudrate scanning	yes
6	Choose calibration process	yes
7	Manually set SF for the first calibration	yes
8	Read the type and serial number of the gyro	no
Desirables:		
	Automatically tests the scale factor at the	
9	first calibration run and changes depending	yes
	on the result	
10	Different calibration routines	yes
11	Calibrating more than one gyro att the time	yes
12	Automatic COM port searching for the gyro	yes
13	Better average forming of data	yes

<i>Table 5.1: Table of the of the Requirements, Necessities and Desirables of Ca</i>	<i>Table 5.1:</i>	e 5.1: Table of the of t	the Requirements,	Necessities	and Desirables	of	CaT
--	-------------------	--------------------------	-------------------	-------------	----------------	----	-----

5.1 Error factors and Improvements

The largest error factor in impacting the results is the fact that the same calibration process is used to verify the result of the previous calibration. Since the processes have not been tested and verified to work yet this could lead to cascade errors in the calibration and verification process resulting in that it would be hard assessing how much the error of the process in itself was since the verification process was used to verify it. The process verifying itself was chosen because it is how the errors are verified in the currently implemented program and profile and due to time restrictions. An improvement on this may be a verification profile that is specifically used for verifying the gyro calibration accuracy without time any time restriction, this could then be used to verify other faster processes such as the independent, partial derivative, surface or any other future process.

The thermal conduction capacity of the material A is α_A and material B is α_B are in reality dependent upon the temperature and pressure of the material. Since these are constants at the moment in order to improve the thermal simulation the values could be set to be more realistic. Another way to increase the thermal simulation is to attempt to make the simulation more accurate by adding more elements such as more parts (such as the rotation table the air outside the gyro in the space of the temperature chamber) or adding a way to calculate the convection effects as a result of thermal flows.

The SF and linear errors of the independent process in figures 4.10, 4.11, 4.21, 4.22 shows large noise peaks which should not be possible. This could be one cause of the inaccuracies of the SF and bias calibration. This error is most likely caused by the rate tolerance being too small which causes in between values of the rate getting included in the calibration when they shouldn't. Optimizing these tolerances could fix this issue.

Since the analog signal has had issues with reliability and seems to be somewhat inconsistent there may be some errors in the analysis that result because of this or it may be the cause of some functions failing to perform their functions. Some experiments using different parameters and methods for collecting the analog data may resolve the issue.

The linearity of all of the calibrated results (figures 4.18,4.29 and 4.39) shows a similar error after the calibration. This error is also out of spec and therefore the calibration is not a success. Since the error is similar for all of the different calibration processes this may be caused by a systematic programming error in the software which would then need to be investigated further to locate the issue.

The CaTV program can be improved in many ways, for example streamlining and improving the performance and by many small quality of life stuff such as:

- More help documentation
- Better plotting functionality
- Printing certifications
- Backwards compatibility with previously implemented programs
- More and better code comments
- Adding ability to import products and profiles
- Adding more settings

5.2 Ethics and environment

The possibility of saved resources (primarily time) which can be used on other endeavors. The saved time may not seem significant but during significantly long time spans the time requirements of the current system may add up and an improved methodology is therefore justified. Another aspect is then also the ergonomics of the software used, this is referring to how the interaction between software and user occurs. When an unergonomic system is used, such as the current where editing and controlling the software is done using settings in a text file, this could lead to errors and a difficulty in spotting them. Aswell not to mention it is a system that is unintuitive to learn.

References

- [1] D.M.Shupe. Thermally induced nonreciprocity in the fiber-optic interferometer. *Optical Society of America* (1980).
- [2] A. N. D. I.-H. H. T. M. P. Mintchev. New technique for reducing the angle random walk at the output of fiber optic gyroscopes during alignment processes of inertial navigation systems. *Optical Engineering* (2001).
- [3] C. N. J. Österman. *Physics handbook for science and enginnering eight edition*. Ed. by Studentlitteratur. Studentlitteratur, 2019.
- [4] G. Pascoli. The Sagnac effect and its interpretation by Paul Langevin. *www.sciencedirect.com* (2017). Université de Picardie Jules-Verne, Faculté des sciences, Département de physique.
- [5] J.-N. J. R. Radharamanan. EVALUATION OF RING LASER AND FIBER OPTIC GYROSCOPE TECHNOLOGY. *https://www.semanticscholar.org* (2009). School of Engineering, Mercer University.
- [6] X. C. Shen. Study on error calibration of fiber optic gyroscope under intense ambient temperature variation. *Applied Optics* (2012).
- [7] D. A. J. C. Tannehill; and R. H. Pletcher. *Computational Fluid Mechanics and Heat Transfer*. Ed. by T. bibinitperiod F. G. CRC Press. Boca Raton : CRC Press, Taylor & Francis Group, 2013.
- [8] L. R. B. Westgren. *BETA: Mathematics Handbook for science and enginnering fifth edition.* Ed. by Studentlitteratur. Studentlitteratur, 2015.

A Filter

Figure A.1: The image of the digital data used for the filter tests (L)

A.1 Weighted average filter

The weighted average filter uses a weighted average equation

$$\bar{y}_{weight} = \frac{\sum_{i=1}^{n} w_i y_i}{\sum_{i=1}^{n} w_i}$$
(A.1)

The currently collected value is y_1 , the other values $y_{i>1}$ are the previously collected values. w_1 is set to 1 and the weights of the other values determine what type of filter. Three types have been implemented:

$$Constant: \quad w_{i>1} = C \tag{A.2}$$

proportional to mean:
$$w_{i>1} = \frac{C}{|y_i - \bar{y}|}$$
 (A.3)

proportional to median :
$$w_{i>1} = \frac{C}{|y_i - \tilde{y}|}$$
 (A.4)

The parameters C and n determine the filter strength. With the previous established equations the filter becomes:

Figure A.2: The signal filtered with weighted average using constant with C = 0.5 and n = 50 (L)

A.2 Butterworth IIR freq

Uses the LabWindows builtin functions AllocIIRFilterPtr and IIRCascadeFiltering to construct a butterworth with specified lower cutoff frequency and upper cutoff frequency.

Figure A.3: The signal filtered with butterworth IIR with lower cutoff frequency of 40 and upper of 450 (L)

A.3 Gaussian filter

Filters the data through the following equation:

$$y_{gauss} = Probability \times y + (1 - Probability) \times \bar{y}_N \tag{A.6}$$

The probability is calculated using the gaussian fit with the GaussFit function of a histogram of the N:th previous data. This generated a probability distribution over the axis, this is then normalised and interpolated to get the probability. \bar{y}_N is the center of the fitted distribution generated by GaussFit.

Figure A.4: The signal filtered with gaussian with N = 500, the leftmost 500 values are unchanged due to the filter being initiated (L)

A.4 Fast fourier transform

Uses the LabWindows builtin functions FFTEx to perform a Fast fourier transform of the signal.

Figure A.5: a fast fourier transform of the signal (L)

B Fiber optic gyro specification 8808 000-4xx

The new generation of Saab's high performance Fiber Optic Gyro with both analog and digital output. Backed up by over 50-years' experience in inertial sensors.

AAB

This new generation Fiber Optic Gyro is specifically designed for stabilization applications where there is a need for high performance single-axis rate sensing. The units are equipped with both analog and digital interface in parallel giving the flexibility to be used as a standard configuration in various systems.

Operation:

A Fiber Optic Gyro is based on the Sagnac effect. The time for light to travel in a coil is dependent of the rotation of the coil. In a ring fiber optic gyro light is divided into two beams entering a fiber coil in opposite directions. After exiting the coil the two beams are combined in a coupler and a phase difference proportional to the rate of rotation is measured

Fiber Optic Gyro (FOG).

Applications:

- Gun stabilization
- Missile stabilization
- Inertial measurement units
- Sight stabilization
- Camera stabilization
- · Antenna stabilization
- Autonomous vehicles

Features:

- Solid state
- Low drift
- High shock usability
- No delay on analog interface
- High internal sampling rate
 Low delay on digital interface
- Single +5VDC Supply
- Small size
- Available with EMI protection

Company Background:

Saab has been a producer of gyros of various designs for over 50 years. Production was initially intended for Saab designed aircraft sight and missile requirements.

Since the end of 70's, the gyro production have expanded into a product line of its own including design and production of gyro products for worldwide customers. Up to the present time, we have produced more than 50.000 sensors. Gyros based on FOG technology has been the main product since the end of 90's.

Mechanical Gyros.

SPECIFICATION VERSION 8088 000-40x

CHARACTERISTICS	UNIT	VALUE
Range	*/a	50 -350
Bias at 20°C (initial cond.)	*/h	20
Bias variation peak to peak over temperature range	*/h	40
Bias stability	*/h ms	1
SF error in Room Temperature	%	0.1
SF variation Over Temperature Range	%	0.3
Linearity error 0-150 %	% of Full Scale	0.2
Bandwidth	Hz	<1000
Start up time	msec	100
Weight	grams max	100
Temperature Sensor Output		
Built In Test Output		
POWER REQUIREMENTS		
Supply Voltage	VDC	+5 (4.90 to 5.25)
Input Power	w	1.5
ENVIRONMENTS		
Shock	0 : 0000	90 + 6
Vihration sine	g : Halls	10:20-2000
Vibration, random	oVHz : Hz	0.09 : 20-2000
Operating temperature range (OTR)	°C	-40 to +70
Storage temperature range	°C	-46 to +75
DIGITAL OUTPUT FORMAT RS422		
Beselvtion	Bits	20.24
Transmission Rate	kBaud	115.2 - 2000
Output Update Rate	kHz	1-4
ANALOG OUTPUT FORMAT		
Differential Output	VDC	#2
Output Load	kΩ	10
pedications subject to change without notice	March 2018	
www.saabgroup.com	Saab AB, Autorica Systema Phone: +4	6 36 19 41 50
	ac-or ov nutkiama Sweden	

C FlowChart of Independent process implemented in CaTV program

Figure C.1: Flowchart of the independent compensation calibration process that is implemented in the end program

D Initial flow chart of the program

Contains the initial flow chart of the program

Figure D.1: Initial flow chart of program

E CaTV program flow chart

Figure E.1: Flowchart for the function of start, displays wich functions are added to the function stack and then the starting of the multi threading functionalities

F CaTV program images

Figure F.1: Help panel used for help resources

	Settings	
CaTV File Hardware S	General Thermal Sim Gyro Properties Data Connection Measuring card Hardware Product_Name 80888000_403_DataCollection	
FOG 1 FOG 2 FOG 3 FOG 4	8805200-401 Test_Box_Name 8805200-401 Test_Cable_Name CALIBRATION Test_Type	e [sek] 500 600
1 2 Number of FOG	I Enable_Analog I Enable_Digital	1000
ECHNOLOGE	Assosiated_Profile RealTest_OTR_standard_I_100c_1 Certificate_Output_Location c:\Users\Johan\Desktop\CaTV program Result_Output_Location c:\Users\Johan\Desktop\CaTV program\Results	ever Function
	DataCollectionSettings Load SAVE Save as CANCEL	

Figure F.2: General settings panel used for name, locations and enabling outputs

Figure F.3: Thermal Sim settings panel used for setting thermal simulation parameters

😺 CaTV							_ 🗆 🗙
File Hardware S	Maria na Dasfilas Dasalust I lala						
	Settings						
FOG 1	General Thermal Sim Gyro Properties	Data Connection	Meas	uring card	Hardwa	are	ne [sek]
FOG 2			1	2	3	4	500 600
FOG 3	Digital SF	Range	150.00	150.00	150.00	150.00	700
	₫0.00	BiasOTR	40.00	40.00	40.00	40.00	800
FOG 4	_)	BiasStability	1.00	1.00	1.00	1.00	~900
	AnalogSF	Analog-SF	26.00	26.00	26.00	26.00	1000
Y I	\$ 0.00	Digital-SF	0.00	0.00	0.00	0.00	
1 2	2	SF-Stability	0.01	0.01	0.01	0.01	
Number of FOG	GyroNumber	SFerrorOTR	0.50	0.50	0.50	0.50	
		Non-linearity_75	0.10	0.10	0.10	0.10	
	_	Non-linearity_150	0.20	0.20	0.20	0.20	
	Upload SF Values	StartTime	1.00	1.00	1.00	1.00	
		RandomWalk	0.02	0.02	0.02	0.02	
		Bandwith	440.00	440.00	440.00	440.00	
ECHNOLOGIE		AxisMisaligment	8.00	8.00	8.00	8.00	ever Function
		VoltageSupply	5.00	5.00	5.00	5.00	
		CurrentSupply	300.00	300.00	300.00	300.00	
		AnalogOutputLoad	10.00	10.00	10.00	10.00	
		Built In Test	3.0-3.5	3.0-3.5	3.0-3.5	3.0-3.5	
		Weight	120.00	120.00	120.00	120.00	
		[] []	CAVE			CANCEL	Т
	DataCollectionSettings	Load	SAVE	Save	e as	CANCEL	

Figure F.4: Contains the characteristics of the gyros

Figure F.5: Settings for data management

(Settings	\square
CaTV	General Thermal Sim Gyro Properties Data Connection Measuring card Hardware	
File Hardware S		
	COMport Baudrate UndateBate bits	1
FOG 1	1 7 115200 2000.00 24	ie [sek]
FOG 2	2 9600 2000.00 24	500 600
FOG 3	3 3 9600 2000.00 24	200
FOG 4	4 4 9600 2000.00 24	~ 900
		1000
	1 Number_Of_Gyros	
Number of FOG		
CAAD		
	<u>ل</u> ے	
IIK 🖓 🕽	1	
TECHNOLOGIES	Search Gyms	ever Function 🔻
	DataCollectionSettings	
		<u></u>

Figure F.6: Settings for digital connection of gyros with gyro search function

	🐷 Settings	
😺 CaTV	General Thermal Sim Gyro Properties Data Connection Measuring card Hardware	_ 🗆 🗙
File Hardware S		
FOG 1		e [sek]
FOG 2	ChannelNr Name Config MinVolt MaxVolt GyroNr Type	500 600
FOG 3	1 0 Gyro1_Rate Diff 🚽 -5.00 5.00 1 Rate 🚽	700
	2 1 Gyro1_Temp High -5.00 5.00 1 Temp -	800
FOG 4	3 1 Gyro 1_BIT Low -5.00 5.00 1 BIT -	~900
		1000
1 2		
Number of FOG		
	Add Channel Delete Channel	
GAAD		
I [K 🖓]		
ECHNOLOGIES		ever Function 🔻
SUMULU S		
	DataCollectionSettings Load SAVE Save as CANCEL	
		- 1
1		

Figure F.7: Settings for measuring card channels

	💽 Settings	
😺 CaTV	General Thermal Sim Gyro Properties Data Connection Measuring card Hardware	- • ×
File Hardware S		
	Hardware	
FOG 1		ie [sek]
FOG 2		500 600
FOG 3	☐1 Rate_Table_COMport	800
FOG 4	d 6 Power COMport2	
		1000
i ż		
Number of FOG	JJ	
	Power_Voltage Power_Current	
SAAB	1 0.00 5.00	
	2 0.00 5.00	
TECHNOLOGIES	4 5.00 250.00	ever Function 🔻
	Voltage & Current of Powersupply channels Search	
	DataCollectionSettings Load SAVE Save as CANCEL	
		· •

Figure F.8: Settings for the temperature chamber, power and rotation table

	*				
CaTV	Product			Filter	_ 🗆 X
File Hardware Settings P FOG 1 FOG 2 FOG 3 FOG 3 FOG 4 1 2 3 Number of FOG		ataCollection	<u>ōk</u> (* Cancel	Time [sek] 400 500 600 300 700 200 800 100 900 0 1000 € 0
					7

Figure F.9: Product selection panel where available products are shown

G Simulation test results

				Simulation 0			
	TotAccuracy	linjAccuracy_D	linjAccuracy_A	SFAccuracy_D	SFAccuracy_A	biasAccuracy_D	biasAccuracy_A
1	146429,5525	59082,54977	59074,23514	7541,283648	7549,540374	6570,202821	6611,740775
2	76584,49361	1954,865631	1954,409837	19254,57962	19259,88317	17082,15884	17078,59653
3	72042,47586	13963,76284	13964,55482	7015,327542	7015,77713	14944,29321	15138,76032
4	114372,7437	34451,33149	34443,24125	9051,485553	9045,615979	13530,09521	13850,97418
5	101787,7059	52,04138	51,880355	39096,76212	39083,38294	11717,4055	11786,23361
6	87132,38183	24776,38622	24769,96434	11127,87428	11122,08681	7787,834175	7548,236003
7	65765,60996	18546,24234	18536,21175	6081,114683	6082,294667	8180,958021	8338,788493
8	104695,849	17130,29624	17126,92152	17239,25535	17234,53645	18253,02678	17711,8127
9	66743,65325	8690,013481	8689,10843	16909,78192	16914,51411	7685,778016	7854,457288
10	129373,9026	27469,11258	27468,55399	28597,30207	28579,91357	8514,110132	8744,910301
				Simulation 1			
	TotAccuracy	linjAccuracy_D	linjAccuracy_A	SFAccuracy_D	SFAccuracy_A	biasAccuracy_D	biasAccuracy_A
1	85847,77327	368,799352	368,80389	30304,73126	30302,29165	12347,56835	12155,57877
2	111442,1384	18,856533	18,99251	46320,6311	46325,21535	9381,968042	9376,474886
3	50176,17496	4372,031262	4372,07905	12271,26887	12278,92087	8424,24232	8457,63258
4	41469,71947	6014,148302	6020,422657	2327,992208	2324,311332	12309,94669	12472,89828
5	155820.3976	51213.31562	51205.49999	15879.80107	15908.3439	10750.52759	10862.90941
6	113493.9652	14198,43954	14196.18233	37181.37734	37170.7259	5311,479246	5435.760845
7	70964.7342	91.836909	91,984966	17582.03416	17599.77253	17911.28179	17687.82385
8	68137 87365	2109 032814	2106 402975	24223 89099	24205 58739	7732 687735	7760 271748
9	168834 2559	6815 468172	6811 103535	68743 29165	68728 29822	8874 538982	8861 555352
10	42972 22089	2108 987312	2107 117891	6151 854706	6141 864779	13262 80858	13199 58763
	,	,		,	,	,	,
				Simulation 2			
	TotAccuracy	liniAccuracy D	liniAccuracy A	SFAccuracy D	SFAccuracy A	biasAccuracy D	biasAccuracy A
1	18133 65159	8975 169742	8980 053585	51 043552	51 049738	38 117634	38 217338
2	355,156278	102.593097	101.831379	46.590006	46.578262	28,7861	28,777434
3	5221 207186	2539 301415	2540 990645	37 856935	37 835445	32 626953	32 595793
4	416 815248	102 264397	101 986159	37 332837	37 327535	68 967327	68,936992
5	1771 612118	772 455667	772 227349	41 71164	41 705241	71 744441	71 767781
6	121945 3121	60809 98285	60790 59086	36 931689	36 933461	135 403257	135 470036
7	82180 43451	40983 58583	40984 25016	53 089155	53 089565	53 191134	53 228666
8	5271 74418	2523 382546	2521 455516	37 987896	37 963127	75 493458	75 461638
9	60406.45525	30081.64526	30077.45267	57,238961	57,239281	66.423838	66.45525
10	16014,12757	7908,307746	7913,103324	37,042057	37,037052	59,349312	59,288076
	,	,	,	,	,	,	,
				Simulation 3			
	TotAccuracy	linjAccuracy D	linjAccuracy A	SFAccuracy D	SFAccuracy A	biasAccuracy D	biasAccuracy A
1	5175,85024	2473,589697	2475,939265	42,296887	42,311955	70,868431	70,844005
2	66336,07833	33087,0341	33089,57867	35,992249	36,004852	43,723714	43,744736
3	1121,083865	502,778667	504,573366	30,518396	30,512331	26,354929	26,346176
4	22247,65399	11032,88744	11025,96386	42,725394	42,749679	51,675718	51,651898
5	36408,09341	18124,55311	18131,88199	34,558324	34,558681	41,255353	41,285955
6	221,660658	30,147669	30,161519	41,014779	41,009092	39,641963	39,685635
7	21996,64992	10941,0565	10933,64739	31,704494	31,705385	29,252579	29,28357
8	4872,600603	2357,561797	2358,718355	39,089412	39,103235	39,050483	39,077321
9	13098,72893	6405,297313	6412,516475	35,226077	35,22245	105,279071	105,187547
10	52314,16988	26070,04605	26082,97388	41,898101	41,886397	38,675654	38,689792
				Simulation 4			
	TotAccuracy	linjAccuracy_D	linjAccuracy_A	SFAccuracy_D	SFAccuracy_A	biasAccuracy_D	biasAccuracy_A
1	45461,62141	22587,7289	22583,30302	131,912621	131,86346	13,396684	13,416722
2	71986,1359	35796,41587	35788,80384	189,056663	189,09872	11,364652	11,396141
3	8279,131677	3916,320119	3918,654803	215,757162	215,752506	6,316297	6,33079
4	4674,187902	2204,24598	2204,733327	124,01958	124,054643	8,619025	8,515347
5	32516,49948	16041,11294	16038,64216	212,277476	212,284135	6,088151	6,09462
6	1693,476638	653,908359	653,839549	185,121493	185,020654	7,815378	7,771205
7	3563,837789	1532,403318	1530,974982	243,365013	243,398495	6,854321	6,84166
8	126742,7754	63221,04097	63226,40796	143,119434	143,105553	4,538487	4,562991
9	3715,424198	1717,929165	1718,964229	130,624014	130,586473	8,688757	8,63156
10	4898,0003	2312,793784	2313,22737	126,842037	126,83651	9,154797	9,145801

				Simulation 5			
	TotAccuracy	linjAccuracy_D	linjAccuracy_A	SFAccuracy_D	SFAccuracy_A	biasAccuracy_D	biasAccuracy_A
1	6197,970709	2539,428677	2538,0829	145,828533	145,853295	414,494045	414,283258
2	34721,54805	12841,05404	12836,58761	190,283477	190,25927	4327,709486	4335,654175
3	54192,46101	25294,54833	25296,91947	187,382627	187,417663	1612,827904	1613,365021
4	10221,14272	3426,508378	3418,079708	125,59626	125,564483	1562,70799	1562,685901
5	58312,99781	25169,5162	25158,86822	214,490496	214,448643	3780,933618	3774,740636
6	9470,329437	3544,516169	3543,238949	188,791712	188,776668	1001,75774	1003,2482
7	25687,49478	8093,427065	8088,078078	197,133328	197,109183	4544,593317	4567,153811
8	59140,48624	27772,01481	27774,32633	142,178484	142,205063	1655,049765	1654,711788
9	11386,26293	5353,682266	5359,644531	133,260457	133,211539	203,34785	203,116288
10	18507,89569	8824,674708	8818,468741	153,132775	153,169899	279,253947	279,195621
_	T - + A		1: -: A A	Simulation 6		hing Annual D	higo A coursour A
1	10550 27964	5012 072971	E021 255209	3FACCUIACY_D	SFACCULACY_A	DIASACCUTACY_D	112 004021
	10009,27004	3013,972671	3021,255306	147,901629	147,928245	114,220505	113,994021
2	6416 502674	7909,845408	7903,041005	124,102939	124,171776	122 911106	122 050820
3	00878 04247	2922,002423	2920,027572	110 808008	110 007107	06 226541	06 288235
5	7242 324252	3355 200043	3351 111598	128 889846	128 800680	130 1/1573	130 077347
6	5728 922098	2617 171243	2612 799382	114 281729	114 311565	135 2265	135,131679
7	9001 427319	4272 233601	4284 97269	151 801821	151 796843	70 30135	70,321014
8	3029 299012	1252 12366	1250 374014	117 816832	117 794034	145 669164	145 521307
9	14184 275	6842 052851	6843 79457	108 820419	108 794247	140 510837	140 302074
10	2913.495596	1204.516444	1201.402386	121.394525	121.338327	132,480469	132.363445
				,		,	,
				Simulation 7			
	TotAccuracy	linjAccuracy_D	linjAccuracy_A	SFAccuracy_D	SFAccuracy_A	biasAccuracy_D	biasAccuracy_A
1	17628,32227	8623,562159	8624,283623	93,113843	93,137654	97,107581	97,117411
2	51138,26044	25319,49867	25321,81933	120,995683	121,005378	127,559097	127,382274
3	66383,32149	32934,88306	32974,57136	93,733379	93,719595	143,291186	143,122903
4	64409,04161	31988,08656	31952,91073	100,010569	99,956904	133,96732	134,109519
5	46208,19314	22886,50756	22853,53633	96,36192	96,382102	137,700394	137,704834
6	3417,758656	1528,000747	1529,791864	100,692084	100,672813	79,337625	79,263523
7	31929,15392	15770,34367	15768,10868	95,97444	95,974129	99,440726	99,31227
8	32757,7355	16154,82671	16162,4154	91,051178	91,055261	129,207093	129,179862
9	18492,75863	9030,571893	9026,133601	97,301821	97,300619	120,62399	120,826707
10	4819,621932	2191,047626	2188,934965	89,678417	89,684425	130,162462	130,114037
				o:			
_	T - + A		1	Simulation 8	054		
1		IINJACCURACY_D	IINJACCURACY_A	SFAccuracy_D	SFAccuracy_A	DiasAccuracy_D	DIASACCURACY_A
2	400,275055	202,334955	202,490500	0,721754	0,721047	0,003489	0,002645
2	1601 0221	800 482157	800 66/166	0.384531	0 384745	0,00247	0,002072
	23711 07042	11852 01415	11855 10955	1 523081	1 524355	0.003464	0,003017
5	81 14011	38 906709	38 876953	1 67234	1,624000	0.006723	0.005437
6	2501.07805	1249.52749	1250.446505	0.549015	0.548631	0.003424	0.002985
7	41856.00447	20927.57573	20925.75802	1.330027	1.331759	0.004941	0.003994
8	20099,94372	10049,31751	10048,85912	0,880489	0,879776	0,00367	0,00315
9	180225,8776	90112,14157	90111,31857	1,205034	1,204486	0,004326	0,003647
10	1718,296241	858,74846	858,977193	0,279133	0,278742	0,006978	0,005734
				Simulation 9			
	TotAccuracy	linjAccuracy_D	linjAccuracy_A	SFAccuracy_D	SFAccuracy_A	biasAccuracy_D	biasAccuracy_A
1	15267,71611	7630,014655	7632,798489	1,500145	1,500072	0,95517	0,947575
2	5487,706112	2739,741385	2738,073182	4,115539	4,116134	0,832772	0,8271
3	20254,03958	10125,13205	10123,28584	1,986002	1,987423	0,827109	0,821159
4	1554,730635	774,760819	775,400594	1,164993	1,165107	1,126338	1,112783
5	42535,36258	21261,96773	21263,72485	3,846686	3,848098	0,99	0,985214
6	3633,787746	1812,376463	1812,943837	3,329511	3,330395	0,906014	0,901526
7	47402,29928	23695,72028	23689,32457	4,279218	4,277827	4,356245	4,341142
8	9982,449881	4988,008565	4988,393802	2,24019	2,238441	0,785624	0,783258
9	2539,20332	1264,143469	1265,10213	4,214485	4,212746	0,770769	0,759721
10	1260,032008	621,399451	621,494127	4,014316	4,017238	4,576272	4,530605

				Simulation 10			
	TotAccuracy	linjAccuracy_D	linjAccuracy_A	SFAccuracy_D	SFAccuracy_A	biasAccuracy_D	biasAccuracy_A
1	6420,867007	3142,965139	3140,372542	28,425536	28,414798	40,370062	40,31893
2	25097,47278	12503,05113	12494,71429	23,288688	23,273336	26,572209	26,573136
3	38396,11507	19141,71067	19148,51425	22,47197	22,484062	30,505474	30,428641
4	108722,4614	54315,43647	54305,16414	26,66607	26,649558	24,276488	24,268682
5	32057,54166	15993,44071	15996,80751	17,62214	17,626411	16,025135	16,019762
6	24255,38868	12096,15259	12090,6588	21,84722	21,851374	12,435631	12,443059
7	37062,81155	18496,54732	18494,61043	20,681728	20,681644	15,162041	15,128395
8	25645,45589	12741,38364	12741,27975	45,585631	45,581109	35,808485	35,81727
9	7457,124272	3625,464961	3625,915934	57,593799	57,566377	45,299408	45,283793
10	31720,32644	15809,34152	15822,22294	21,063431	21,062179	23,32672	23,309644
				Simulation 11			
	TotAccuracy	linjAccuracy_D	linjAccuracy_A	SFAccuracy_D	SFAccuracy_A	biasAccuracy_D	biasAccuracy_A
1	7441,380913	3664,978444	3660,516535	20,483749	20,489064	37,455921	37,457201
2	22741,32997	11304,21428	11303,80622	24,853864	24,844617	41,815785	41,79521
3	3599,587893	1638,201774	1640,184051	22,187526	22,188308	138,420587	138,405646
4	3629,520759	1770,2948	1769,648092	29,564547	29,57	15,226633	15,216688
5	14830,36303	7346,24189	7351,271306	33,256622	33,254062	33,162145	33,177006
6	38714,24027	19317,11478	19308,09572	19,529545	19,537045	24,987373	24,975814
7	4735,472512	2274,623574	2270,944217	22,02305	22,034299	72,914971	72,932401
8	1862,184523	833,53795	835,31375	20,012965	20,007465	76,676471	76,635921
9	14116,8178	7020,08733	7020,061142	24,655736	24,651863	13,684568	13,677162
10	156,918369	32,142524	32,117828	15,727604	15,717089	30,620129	30,593195
				Simulation 12			
	TotAccuracy	linjAccuracy_D	linjAccuracy_A	SFAccuracy_D	SFAccuracy_A	biasAccuracy_D	biasAccuracy_A
1	45294,8636	21925,77399	21921,91339	723,610948	723,53869	0,014604	0,011974
2	30010,76198	14243,75783	14245,32545	760,796893	760,863448	0,009743	0,008617
3	11268,22293	4624,875226	4625,158192	1005,062169	1005,047409	4,373339	3,7066
4	20277,38239	9491,899684	9496,39736	644,4963	644,554673	0,017975	0,016395
5	18699,42985	8607,017962	8604,697169	743,8017	743,868274	0,02247	0,022273
6	130919,7377	64702,41492	64703,97096	756,597377	756,620283	0,070152	0,06401
7	202962,329	100773,8641	100764,7953	711,836598	711,785831	0,023783	0,023378
8	21247,18211	9823,755065	9826,750501	798,30877	798,352867	0,008019	0,006891
9	49339,98584	23985,75585	23989,64455	682,29831	682,222832	0,034161	0,030135
10	22942,27637	10664,55965	10661,72733	807,956808	808,006865	0,014572	0,011152
				Simulation 13			
	TotAccuracy	liniAccuracy, D		SEAcouracy D	SEAcouracy A		
1	53600 1108/	26085 21074	26081 07610	758 803831	758 0170/3	2 613526	2 580508
2	52383 95704	25510 21029	25543 00801	656 577824	656 480856	2,010020	2,00000
2	153448 3171	76000 41635	76127 41573	612 730885	612 880071	2,443004	2,000029
1	67213 07362	32032 67875	32038 535/7	668 007634	668 05475	2,440994	2,421040
5	6844 466638	2711 906637	2711 860507	707 707184	707 829263	2 590839	2 572207
6	8942 726661	3627 183072	3629 161052	840 120013	840 243374	3 013306	3 005753
7	43503.34819	20997 7329	20991.78172	754.333382	754.414837	2.537087	2,548255
8	83357.1936	40984.47779	40991.42322	688.183396	688.187469	2,481292	2.440426
9	68665.31167	33567 46854	33572.48054	758.396709	758,414373	4.28739	4.264111
10	21987.49908	10206.11539	10205.7463	783.012903	783,152723	4,721249	4,750509
	,			,	,	.,	.,
				Simulation 14			
	TotAccuracy	linjAccuracy D	linjAccuracy A	SFAccuracy D	SFAccuracy A	biasAccuracy D	biasAccuracy A
1	6498,418905	1844,380417	1852,337454	1307,703838	1307,65964	93,229738	93,107816
2	15572,65251	6108,906243	6107,741821	1637,456707	1637,514059	40,558563	40,475118
3	104895,5964	50218,25699	50153,13439	2188,182845	2187,930873	74,09626	73,995061
4	15475,72754	6257,004094	6251,71355	1446,859684	1446,421469	36,934987	36,793753
5	38095,80958	17716,90872	17722,2137	1262,477763	1261,757025	66,356372	66,095987
6	16561,41748	5417,356473	5429,581022	2826,689899	2828,785388	29,5454	29,459294
7	13891,95102	5019,139828	5019,157684	1780,596335	1780,31266	146,356434	146,388074
8	52153,97348	23206,30951	23195,62934	2788,318221	2787,620451	87,999736	88,096217
9	104906,8783	50834,50384	50755,41896	1609,147577	1609,450254	49,203017	49,154631
10	64946,527	31433,01253	31344,97691	1053,391148	1053,336805	30,957958	30,851646
				Simulation 15			
----------	--------------	----------------	----------------	---------------	--------------	----------------	----------------
	TotAccuracy	linjAccuracy_D	linjAccuracy_A	SFAccuracy_D	SFAccuracy_A	biasAccuracy_D	biasAccuracy_A
1	195276,9706	96179,44886	96195,45616	1406,674311	1407,40347	44,050748	43,937076
2	4244382,806	6711,19421	6716,710358	2115389,7	2115390,312	87,44248	87,446937
3	15149,6504	6278,064676	6282,901637	1263,559436	1263,667116	30,732506	30,72503
4	9312,446706	3299,258481	3299,081675	1211,024445	1211,015031	146,139159	145,927914
5	1309946,527	12320,76866	12317,15421	642601,4616	642595,9708	55,633254	55,53881
6	9732,91528	2256,653668	2253,019789	2476,540745	2477,684168	134,777009	134,239902
7	1158220,547	2468,5918	2469,584291	576590,0262	576590,7612	50,81836	50,765594
8	1830114,054	14549,97387	14538,1397	900450,1297	900450,3243	62,937187	62,54892
9	394456,9767	58246,07728	58261,74772	138938,3999	138937,8574	36,501906	36,392496
10	35/923,8075	56739,21262	56779,16315	122173,004	122171,946	30,335158	30,146474
				Simulation 16			
	TotAccuracy	liniAccuracy D	liniAccuracy A	SEAccuracy D	SEAccuracy A	biasAccuracy D	biasAccuracy A
1	2666884 355	67772 40332	67866 67949	186489 5267	186480 2095	1079164 93	1079110 606
2	967690 1032	319846 4851	320075 7794	163513 6683	163518 028	367 493769	368 648585
3	916073.6898	297825.3404	297983.6366	159975.2089	159971.8904	158,685579	158.927906
4	653868.0837	155668.9342	155849.6551	170865.5819	170873.0617	305.385385	305.465517
5	2174939,847	918152,1168	917853,9128	169205,4734	169206,2316	260,947592	261,164945
6	822985,5849	205181,9515	205270,9752	205430,5252	205451,0364	825,793743	825,302874
7	770455,7331	198586,2845	198616,4791	186566,3281	186530,8608	77,786886	77,993641
8	808628,9257	239104,5783	239048,7339	164651,5528	164670,9638	576,358101	576,738803
9	897423,5547	281603,0347	281402,0343	166594,8935	166610,7184	606,479683	606,39403
10	2181081,852	948888,8845	948587,4175	141717,7205	141727,819	80,055666	79,955305
				Simulation 17			
	TotAccuracy	linjAccuracy_D	linjAccuracy_A	SFAccuracy_D	SFAccuracy_A	biasAccuracy_D	biasAccuracy_A
1	752749,8131	198854,9991	198605,5199	177132,3169	177136,482	509,852458	510,642779
2	3092993,524	366321,6525	366393,6039	154840,0088	154835,8912	1025298,708	1025303,66
3	3123892,022	362820,642	362523,1773	182087,6999	182086,1163	1017188,611	1017185,775
4	3462766,683	558637,0351	558435,1707	203050,5182	203041,262	969822,8372	969779,8602
5	1056424,049	360934,2221	361169,5805	166192,6838	166200,9643	963,680502	962,917416
6	745272,6309	196238,3302	196420,9889	174640,7046	174650,9667	1660,99189	1660,648592
7	1018928,233	308824,4987	308615,3831	200033,9827	200018,7151	717,956113	717,696979
8	3235525,877	282153,6865	282270,3162	195119,04	195117,9973	1140422,691	1140442,146
10	1010213,501	46805,70904	40703,575	222352,6979	222366,3863	538959,8882	538965,3044
10	514020,5025	07541,00000	07559,94079	100042,0009	100050,0201	/10,/0/0/8	111,211134
				Simulation 18			
	TotAccuracv	liniAccuracy D	liniAccuracy A	SFAccuracy D	SFAccuracy A	biasAccuracy D	biasAccuracy A
1	3198398,48	423343,9153	423674,0436	225308,5874	225308,2574	950417,0846	950346,5915
2	1128048,646	360691,0283	361150,6914	181341,618	181324,2342	21767,63796	21773,43594
3	751118,8053	168564,4592	168767,7909	196053,7375	196060,562	10835,80346	10836,45221
4	1004167,252	302729,1168	302892,2616	184926,1063	184914,4077	14351,59241	14353,76689
5	1761719,334	692110,3592	692417,2166	177474,2607	177470,5955	11124,74716	11122,15455
6	1443585,503	506625,4912	506709,4463	204819,0171	204816,4501	10306,23466	10308,86348
7	3571353,66	269274,4248	268991,8714	197274,3682	197269,513	1319277,717	1319265,766
8	1954557,96	781001,9895	781296,6787	170362,934	170366,3847	25762,11999	25767,85272
9	1588312,336	565972,1227	565755,6583	219990,5897	219983,1808	8303,457601	8307,326695
10	1434657,477	515828,6631	515713,4908	185285,3269	185268,2371	16280,50729	16281,25189
	-	11.1A. =		Simulation 19	0.54		h A
<u> </u>	I otAccuracy	IINJAccuracy_D	InjAccuracy_A	SFAccuracy_D	SFAccuracy_A	biasAccuracy_D	DIASACCURACY_A
	9/8371,4865	387544,7155	38/224,3082	101291,2769	101299,9849	505,559133	505,641812
2	1040929,471	140500 0500	140505 045	97220,56247	9/220,1/103	423,38/277	423,977178
3	1085726 707	885114 1244	142000,040	104722,8355	104707,0030	240,70402	241,104281
4	860002 7552	32716/ 0109	326000 683	104339,0039	102005 6405	866 768245	3000,000025
6	947626 0362	349840 7107	340704 0082	123671 269	123661 /712	374 201223	374 286820
7	987419 1386	394778 0907	395031 4800	97822 25563	97819 19168	983 680913	984 429832
8	512223.9144	143820.3657	143701.3559	112033.4524	112026.0807	321.041874	321.617865
9	1172375,298	493617.2471	493494,3956	91386,57912	91382,72147	1247,548371	1246,806189
10	2069987,749	935047,0691	934790,034	97186,39029	97182,71919	2891,63999	2889,896722

				Simulation 20			
	TotAccuracy	linjAccuracy D	liniAccuracy A	SFAccuracy D	SFAccuracy A	biasAccuracy D	biasAccuracy A
1	4268462.766	316773.916	316674.3353	138575.5613	138575.9073	1678936.435	1678926.611
2	1849501.758	826016.6702	825970,1983	96140.25209	96129.04052	2623.450344	2622.146632
3	533686.833	161808.5957	161880.0424	102041.5264	102036.9708	2959.574059	2960,123655
4	1305196.233	533043.5415	533138.6761	114420.2317	114419.9878	5086.978717	5086.817352
5	962618.5686	374627.8698	374212.6103	101173.5427	101179.2668	5712,762236	5712.516752
6	1375207.504	585001.2462	585103.9029	100795.3992	100799.471	1753.690826	1753.79389
7	565184.327	180179.522	180332.4792	100441.8655	100450.9142	1889.223039	1890.323098
. 8	1547674 784	674352 8317	674603 2697	96959 7717	96956 13339	2401 784978	2400 992264
9	737459.0634	260165.152	260243.5599	106050.7513	106044.9154	2477.255603	2477.429282
10	1270502 691	527549 1079	527499 5892	106148 9343	106150 7845	1577 403288	1576 872293
		021010,1010	021100,0002			,	
				Simulation 21			
	TotAccuracy	liniAccuracy D	liniAccuracy A	SFAccuracy D	SFAccuracy A	biasAccuracy D	biasAccuracy A
1	5501120.63	405465 0453	405826 6161	178718 539	178719 7629	2166201 553	2166189 114
2	917280 1567	303912 0038	303804 0006	136723 2658	136719 9222	18065 70099	18055 26342
2	1041345 624	377484 158	377577 7739	118499 92	118500.0976	24640 55531	24643 11956
4	1326773 515	520925 8026	520568 905	129211 3848	129209 7663	13429 42358	13428 23306
5	1958132 989	825267 9558	825185 8495	109859 1171	109855 8347	43981 80654	43982 42527
6	2397699 973	1017237 679	1017120 73	128874 5447	128871 5492	52797 10272	52798 36801
7	7635473 68	593332 7824	593216 8864	178498 2144	178488 251	3045950 998	3045986 548
8	1122255 023	422360 3156	422507 6321	124634 7378	124630 8685	14014 3099	14017 15894
0	634471 5889	180120 8230	1803/7 8632	116402 0963	116400 7344	11509 01505	11601 05597
10	2103366 63	904506 3344	004400 0487	12/188 5/77	12/18/ 2223	22007 28006	23000 19604
10	2100000,00	304300,3344	304430,0407	124100,0477	124104,2220	22337,20030	23000,13004
				Simulation 22			
	TotAccuracy	liniAccuracy D		SEAccuracy D	SEAccuracy A	biasAccuracy D	biasAccuracy A
1	3223191 985	419247 8697	419429 5135	226962 0921	226953 3318	965287 392	965311 786
2	3073693 77	1167103 779	1167055.03	364565 6786	364569 3662	5198 988311	5200 928121
2	2906414.056	275899 2296	275857 1237	256469 6704	256470 2538	920859 7707	920858 0077
4	462958 1139	85358 6263	85460 99927	142255 8191	142256 6657	3813 482839	3812 520655
5	3606278 973	488134 0818	488143 2856	235074 4787	235072 5767	1079926 36	1079928 19
6	3018334 661	344989 5076	344762 2645	223901 3105	223904 0398	940386 1149	940391 4236
7	1154832 451	432174 4809	432064 8725	141332 085	141328 2113	3966 494728	3966 306641
8	1067302 916	394199 9483	394333 612	134437 916	134435 8605	4947 822697	4947 756219
9	2163275 623	677975 3562	678098 22	397914 2487	397908 8128	5690 292839	5688 69254
10	1987056.861	846927,4108	846883.5703	143205.846	143198.8822	3420.09203	3421.059876
	,	,			,	,	,
				Simulation 23			
	TotAccuracy	linjAccuracy D	linjAccuracy A	SFAccuracy D	SFAccuracy A	biasAccuracy D	biasAccuracy A
1	3414720,939	152336,6116	152348,2052	306345,5491	306342,5775	1248669,851	1248678,145
2	3041343,02	253788,3083	253800,6736	305339,3954	305334,5425	961536,2966	961543,8035
3	2739474.259	115956,1509	115961.3584	294945.9797	294945.9827	958828.8386	958835.9487
4	3870744,675	388448,479	388351,7547	282002,79	282000,2307	1264973,091	1264968,33
5	2648976,785	126925,3265	126896,4427	275614,7626	275604,6764	921971,159	921964,4175
6	2585747,683	141139,1146	141100,7078	273557,6294	273554,0375	878212,5168	878183,6775
7	2740463,347	108187,6202	108253,1053	324034,8053	324037,8746	937978,121	937971,8208
8	3307027,833	1509488,901	1509712,82	140090,1022	140086,5332	3824,848631	3824,627782
9	3158314,975	155158,0316	155187,6642	280020,6466	280017,5046	1143965,424	1143965,704
10	2059737,612	130643,2128	130625,49	332859,0782	332867,5219	566378,0125	566364,2967
				Simulation 24			
	TotAccuracy	linjAccuracy_D	linjAccuracy_A	SFAccuracy_D	SFAccuracy_A	biasAccuracy_D	biasAccuracy_A
1	2582445,432	245843,1336	245712,4302	340440,9895	340439,1606	705005,1371	705004,5808
2	3839117,554	333462,523	333367,0384	288856,8573	288851,7011	1297304,94	1297274,494
3	3042962,81	257025,7041	257063,9723	307590,7656	307589,4625	956862,0304	956830,8748
4	2593484,895	75247,03485	75251,46209	274765,5172	274762,9119	946731,2914	946726,678
5	3198917,625	189504,8799	189494,5206	293859,9078	293860,1557	1116098,65	1116099,511
6	3399244,054	302115,9654	302112,3418	297710,0685	297714,5364	1099794,793	1099796,35
7	3459014,948	202410,2907	202398,9151	277923,6357	277922,3858	1249184,974	1249174,747
8	3487837,433	463470,3432	463424,2488	291693,7048	291694,9642	988775,187	988778,9845
9	4425280,833	719055,7233	718918,3712	314996,878	315001,1374	1178642,102	1178666,621
10	2736042,793	162241,6661	162206,6326	298059,8134	298059,153	907741,3432	907734,1845

				Simulation 25			
	TotAccuracy	linjAccuracy_D	linjAccuracy_A	SFAccuracy_D	SFAccuracy_A	biasAccuracy_D	biasAccuracy_A
1	18475008,97	1798827,968	1798963,673	85298,1572	85294,01918	7353328,76	7353296,393
2	2062866,391	971498,0124	971694,4903	55146,87836	55147,76806	4689,477968	4689,764145
3	1322165,939	568134,7456	568283,6237	78311,72832	78314,06433	14560,89014	14560,88668
4	4118610,317	1901252,987	1901290,734	130342,1471	130344,1467	27688,47832	27691,82371
5	4066168,858	1938255,68	1938419,701	64648,27402	64647,36498	30098,03728	30099,8006
6	23840867,57	623592,958	623652,8823	212255,3955	212254,2993	11084597,76	11084514,28
7	4222358,942	2031994,982	2032268,064	59455,63136	59456,65186	19589,54676	19594,06638
8	10023919,33	971767,1788	971773,4394	108322,4805	108322,6539	3931883,52	3931850,06
9	15119814,12	986147,438	986306,9517	102534,6451	102533,2577	6471117,213	6471174,617
10	1268689,757	479375,6792	479709,7189	138510,612	138508,1442	16293,78796	16291,81432
				Simulation 26			
	TotAccuracy	linjAccuracy_D	linjAccuracy_A	SFAccuracy_D	SFAccuracy_A	biasAccuracy_D	biasAccuracy_A
1	653813,6869	174724,7351	174690,582	135262,7446	135263,9958	16936,31185	16935,31755
2	8845812,158	893910,2015	894096,9032	97238,34856	97235,66026	3431654,423	3431676,621
3	12067214,73	476584,1612	476660,317	199045,7916	199046,1889	5357922,14	5357956,128
4	2862675,308	1261276,767	1261093,914	152328,5134	152326,1583	17824,2666	17825,68876
5	2314242,44	1078880,043	1078882,269	61722,02367	61722,40769	16518,9546	16516,74234
6	2853692,59	1277666,317	1277780,738	123753,8924	123753,198	25369,66649	25368,77745
7	2113481,745	888192,5181	888599,6717	137573,0704	137568,8097	30772,9828	30774,69192
8	13666469,22	1063519,828	1063608,836	170055,551	170053,035	5599589,427	5599642,545
9	8734317,602	256133,6922	256254,3539	119469,9614	119468,6194	3991495,418	3991495,558
10	2029672,39	856738,3248	857075,5034	126371,0166	126368,6477	31557,07164	31561,82584
				o:			
	-	1		Simulation 27			
	TotAccuracy	IINJAccuracy_D	linjAccuracy_A	SFAccuracy_D	SFAccuracy_A	biasAccuracy_D	biasAccuracy_A
1	1614929,905	5/1551,1165	5/1685,4/24	162628,0096	162635,0278	73220,1726	73210,10616
2	11/356/2,56	1493878,766	1493265,492	105822,9728	105823,0259	4268428,071	4268454,229
3	9238740,641	339241,8075	339233,5306	214589,87	214594,2081	4065552,413	4065528,812
4	12030011,20	1261177,682	1261536,652	190408,3426	190403,4026	4863500,726	4863584,455
0	14415233,15	1000110,43 E40001 33EE	F41205 4112	190925,2204	190920,5441	12025906 60	12025022.07
0	20032042,23	540991,3255	124652 6921	239407,9034	239406,0316	12035606,69	52210 7611
/ 0	13530750 31	1721340.08	1721131 870	107311,0012	102306,0311	1035242 174	4035245 266
0	11876518.64	877632 5078	877563 0444	175100 7342	175204 600	4933242,174	4933243,200
10	9406429 532	810015 01/2	818361 5175	112547 1015	112547 3457	3771084 056	3771974 407
10	3400423,332	013013,0142	010001,0170	112347,1913	112047,0407	3771304,030	5771574,407
				Simulation 28			
	TotAccuracy	liniAccuracy D	liniAccuracy A	SFAccuracy D	SFAccuracy A	biasAccuracy D	biasAccuracy A
1	516.508444	135.9136	135.91348	121.702841	121.717703	0.628102	0.632718
2	1422.505016	564.117203	564.073405	146.288555	146.309496	0.855795	0.860562
- 3	4405 573521	2050 240707	2050 383448	151 625732	151 626791	0 84438	0.852463
4	8495.548431	4063.9758	4063.842527	183.111732	183.080951	0.770748	0.766672
5	3117,244511	1396,800052	1396.003703	161,394717	161,365694	0.837344	0.843001
6	86426,94347	43107,17845	43107,11345	106.07813	106.066514	0,251224	0.255708
7	30551,85021	15137,4394	15137,02655	138,276454	138,252801	0,427968	0,427045
8	21190,0245	10495,93496	10496,71381	98,178804	98,171132	0,51181	0,513987
9	1559,920964	652,376824	652,260879	126,931448	126,922339	0,719024	0,710452
10	2786,911469	1283,038305	1283,297634	109,748361	109,732497	0,55117	0,543502
				-			
				Simulation 29			
	TotAccuracy	linjAccuracy_D	linjAccuracy_A	SFAccuracy_D	SFAccuracy_A	biasAccuracy_D	biasAccuracy_A
1	10290,57765	5119,823427	5118,27227	26,226572	26,232317	0,012736	0,01033
2	43160,80417	21545,79051	21548,41038	33,293812	33,272919	0,019624	0,016934
3	110740,7613	55341,01312	55339,84196	29,942085	29,957133	0,003586	0,0034
4	18639,84674	9292,036096	9294,044587	26,878605	26,859361	0,015123	0,012968
5	21941,05578	10944,65366	10942,92432	26,714649	26,723066	0,020406	0,019672
6	2536,976732	1242,583283	1241,375107	26,492029	26,500637	0,013554	0,012122
7	1772,107921	856,593513	855,637521	29,935385	29,901302	0,021954	0,018246
8	19742,85658	9841,350319	9838,069708	31,718601	31,702537	0,008034	0,007379
9	9351,326841	4649,651147	4647,493309	27,084407	27,092064	0,003257	0,002656
10	18557,77237	9245,703583	9250,875391	30,597152	30,582092	0,007418	0,006739

				Simulation 30			
	TotAccuracy	linjAccuracy_D	linjAccuracy_A	SFAccuracy_D	SFAccuracy_A	biasAccuracy_D	biasAccuracy_A
1	22668,36984	11242,35409	11241,81148	90,838757	90,848069	1,259959	1,257494
2	6778,777507	3262,474668	3262,588142	124,789738	124,804587	2,058157	2,062216
3	5893,827522	2870,471925	2870,17799	75,602933	75,610695	0,983216	0,980763
4	4702,00672	2195,016715	2194,776799	153,596341	153,560508	2,524266	2,532091
5	36502,91831	18111,89464	18112,26212	137,525883	137,50335	1,866931	1,865384
6	7635,280985	3700,046525	3699,868461	115,992223	115,966434	1,699654	1,707688
7	609,163794	167,413955	167,389166	134,243839	134,254959	2,93435	2,927525
8	12711,4787	6214,923008	6215,68129	138,141539	138,166252	2,286335	2,280279
9	30985,13482	15372,1886	15372,36088	117,39745	117,408082	2,892044	2,887761
10	817,548311	266,711661	266,757365	139,532246	139,522426	2,508085	2,516527
				Simulation 31			
	TotAccuracy	linjAccuracy_D	linjAccuracy_A	SFAccuracy_D	SFAccuracy_A	biasAccuracy_D	biasAccuracy_A
1	5819,435841	2794,441075	2793,727658	115,632661	115,609125	0,013123	0,012199
2	16556,75753	8171,589811	8173,116889	106,022875	106,018211	0,004586	0,005161
3	15286,67104	7519,375772	7519,089412	124,109942	124,078527	0,008642	0,008742
4	25870,23905	12779,90401	12778,25585	156,032079	156,027686	0,00946	0,009968
5	11166,44709	5478,817384	5478,900001	104,370005	104,351628	0,003918	0,004153
6	13669,88544	6696,872196	6696,485949	138,245737	138,268114	0,006834	0,006607
7	585,36366	146,362777	146,426128	146,265605	146,27831	0,016043	0,014798
8	104449,553	52105,19072	52104,69333	119,833058	119,819251	0,008717	0,007904
9	3675,458653	1663,379206	1663,28136	174,359963	174,379706	0,029187	0,029231
10	10935,74565	5372,441103	5371,920529	95,686587	95,680428	0,008498	0,008506