
Improving landfill monitoring programs
with the aid of geoelectrical - imaging techniques
and geographical information systems
Master’s Thesis in the Master Degree Programme, Civil Engineering

KEVIN HINE

Department of Civil and Environmental Engineering
Division of GeoEngineering
Engineering Geology Research Group
CHALMERS UNIVERSITY OF TECHNOLOGY
Göteborg, Sweden 2005
Master’s Thesis 2005:22

Evaluating SWIG using Turbo Codes
Master of Science Thesis in Communication Engineering

OSKAR ARVIDSSON TJÄDER and LINH TRAN

Department of Signals and Systems
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2011
Master’s Thesis EX029/2011

Evaluating SWIG using Turbo Codes
Oskar S. V. Arvidsson Tjäder and Linh M. Tran

c© Oskar S. V. Arvidsson Tjäder and Linh M. Tran, 2011

Technical report no EX029/2011 Department of Signals and Systems
Chalmers University of Technology
SE-41296 Gothenburg
Sweden
Telephone +46-(0)31 772 1000

Department of Signals and Systems
Gothenburg, Sweden 2011

Abstract

Nowadays many larger companies have built up extensive libraries written
in the system programming languages C or C++. These languages are ca-
pable of a wide variety of operations and have very fast execution times
compared to scripting languages. The down-side is that the user friendli-
ness and interactivity can become very low. Simplified Wrapper Interface
Generator (SWIG) is a software development tool that integrates C/C++
modules with scripting languages to exploit the strengths of each language.
The objective of this thesis is to evaluate whether SWIG can be used to wrap
the Ericsson library Baseband Core Library (BCL) so that it can be used in
a Python environment. The concept was proven by wrapping a turbo code
class in the open source library IT++. To do this, two data conversion files
were created to handle the passing of IT++ data structures between C++
and Python.

If the library to be wrapped has few dependencies to other libraries and
only contains standard C++ data types, then wrapping with SWIG is rather
straight forward. The libraries IT++ and BCL however use IT++ defined
data structures which introduces additional complexity. To decide whether
it is beneficial to wrap modules with converter files and glue code one should
consider the amount of time and effort that is required to write the glue codes
compared to the amount of usage.

”Experience is what you get when you didn’t get what you wanted”

— Anders Hansson, quoting Randy Pausch, referencing a quote used at Electronic Arts

Contents

1 Introduction 5
1.1 Background . 5
1.2 Objective and Approach . 6

1.2.1 Scope . 7

2 IT++ 8
2.1 Vector Class . 8
2.2 Turbo Code Class . 9

3 SWIG 10
3.1 Comparison of C++ and Python 11

3.1.1 C++ . 11
3.1.2 Python . 11
3.1.3 Combining the Languages 12

3.2 SWIG Structure . 13
3.2.1 Interface File . 13
3.2.2 SWIG Output . 14

3.3 Templates . 16
3.3.1 Templates in C++ . 16
3.3.2 Templates in SWIG . 17

3.4 Namespaces . 19
3.5 Type Conversion . 19
3.6 SWIG Libraries . 20

3.6.1 std vector.i . 20
3.6.2 std string.i . 21

4 Turbo and Turbo-like Codes 22
4.1 Discrete-time Equivalent Baseband Model 22

CONTENTS 3

4.2 Convolutional Codes . 23
4.2.1 Code Weight and Minimum Distance 27
4.2.2 Recursive Convolutional Encoders 27

4.3 Maximum Likelihood Sequence Decoding and the Viterbi Al-
gorithm . 28

4.4 Maximum A-Posteriori Symbol Decoding 29
4.5 BCJR Algorithm . 29

4.5.1 A Posteriori Information 30
4.5.2 Derivation of α, β, γ 31
4.5.3 Decoding . 33
4.5.4 Outline of the Algorithm 34

4.6 Turbo Codes . 34
4.6.1 Concatenated Codes with Interleaver 34
4.6.2 Extrinsic Information 37
4.6.3 Iterative Decoding . 38

5 Implementation and Results 41
5.1 Wrapping IT++ . 42

5.1.1 Libraries . 44
5.2 Wrapping BCL . 45

6 Discussion and Conclusion 47
References . 50

Acronyms 51

A User’s Guide 53
A.1 Setup . 53
A.2 Wrap . 53

B Code 55
B.1 SWIG modules . 55

B.1.1 demo.cc . 55
B.1.2 demo.h . 57
B.1.3 demo.i . 58
B.1.4 setup.py . 58
B.1.5 turbo.py . 59
B.1.6 converters.cc . 61

CONTENTS 4

B.1.7 converters.h . 64
B.1.8 converters.py . 64
B.1.9 com funcs.py . 65

B.2 Turbo Code . 68
B.2.1 turbo.py . 68
B.2.2 com funcs.py . 73
B.2.3 help funcs.py . 76
B.2.4 outer encoder.py . 79
B.2.5 inner encoder.py . 81
B.2.6 BCJR outer.py . 84
B.2.7 BCJR inner.py . 89

Chapter 1

Introduction

1.1 Background

Nowadays many larger companies have built up extensive libraries to be
used for their development needs. At many times these libraries are crucial
to achieve results that are of direct relevance for the company. They are often
written in the system programming languages C or C++. These languages
are capable of a wide variety of operations from low-level operations such
as flipping bits and manipulating inputs as well as higher-level operations.
This makes them suitable for building up libraries from scratch. C and C++
also have very fast execution times which is required for some applications.
The down-side to all this is that the user friendliness and interactivity can
become very low for users of the library. The sheer size and complexity of
these libraries can make a trivial task complicated. The system programming
languages are also not suitable when small code changes have to be performed
often. After each change, no matter how small, the code will have to be re-
compiled for the changes to come into effect.

Scripting languages on the other hand were not primarily meant for build-
ing programs from scratch but rather for plugging together existing programs
and functions. For this task they are very flexible. Since scripting languages
use interpreters and not compilers there is also no lengthy compilation time
between code changes. They do however have longer execution times because
of this.

As can be seen, both types of languages have their advantages and hence
a way to combine these advantages would be valuable. One way of solving

1.2 Objective and Approach 6

this is by using Simplified Wrapper Interface Generator (SWIG). SWIG is a
software development tool that generates wrappers for C and C++ modules
so that these can be used by scripting languages.

Baseband Core Library (BCL) is a large library developed by Ericsson,
containing functions for simulating baseband communication. It is written
in C++ and is quite large and complex, around 500,000 lines of code in
total. If this library could be wrapped using SWIG, it would greatly aid in
its development and testing.

For Ericsson the desired scripting language to integrate with BCL is
Python. Python has a syntax which is similar to MATLAB and supports
object orientation and advanced data structures which makes it suitable for
Ericsson’s needs.

1.2 Objective and Approach

The objective of this master thesis work is to evaluate whether SWIG can be
used to wrap BCL so that it can be used in a Python environment. A large
and complex library like BCL is however not the ideal starting library to
wrap with SWIG. The details of BCL are also confidential and hence cannot
be covered in this report. However, BCL uses data structures from the open
source library IT++ developed at Chalmers University of Technology. IT++
is a library which contains mathematical, signal processing and communica-
tion classes and functions intended to be used for communications related
simulations. It is also a library, which compared to BCL, contains fewer
dependencies to other libraries. This reduces the complexity of wrapping
it considerably. As a proof of concept, the IT++ library will therefore be
wrapped. This will show how SWIG can be used to wrap a library that is
applicable to Ericsson’s needs. Given how BCL uses IT++ data structures,
successfully wrapping IT++ will also be a step towards wrapping BCL. To
the best of our knowledge this has not been accomplished before in a way
that allows data to be passed back and forth between Python and IT++
using SWIG.

A good choice for showcasing how SWIG can be used by Ericsson is to
wrap the turbo encoder and decoder in IT++. This is a non-trivial class
which can be troublesome to implement. It also requires many computations
which makes it preferable to implement in a language with fast execution
time. On top of this there are few dependencies to other classes which might

1.2 Objective and Approach 7

otherwise cause difficulties. With the Turbo class wrapped, it can be used
interactively in a Monte Carlo loop in Python. The generation of informa-
tion bits, modulation, addition of noise, and other trivial communication
operations can be done in Python while the actual turbo details are done in
the wrapped IT++ turbo encoder and decoder. Once this configuration is
implemented it will be possible to manipulate the inputs and outputs of the
turbo class functions as well as store and plot data using only Python. In this
report we will showcase this by running the Monte Carlo loop and generating
Bit Error Rate (BER) plots for a range of Signal to Noise Ratio (SNR) val-
ues. A turbo encoder and decoder will be implemented in Python to test and
verify the Monte Carlo loop until the IT++ decoder is successfully wrapped.

In order to do this, however, we need to understand how a turbo decoder
works within a communication system. To be able to combine it with Python
and give the various functions the correct inputs and outputs an explanation
of the theory behind turbo codes is covered.

Once IT++ is successfully wrapped the task of wrapping BCL can be
started. As in the IT++ case a single class from BCL will be wrapped. As
mentioned before, the details of this class cannot be presented due to Ericsson
confidentiality but the lessons learned will be explained in this report.

1.2.1 Scope

A comparable solution for intregrating IT++ or BCL with a scripting lan-
guage is to use MEX to integrate the library with MATLAB. Since Ericsson
was interested in Python such a solution was never considered in any detail
and will hence not be covered by this report.

There exists many other programs, such as Pyrex, SIP, and Boost, which
perform similar functions to SWIG. In this master thesis SWIG is covered.
The analyzed version of SWIG is 2.0 which is integrated with Python 3.1.1.

Since BCL and IT++ are both based on C++, modules written in this
language will be wrapped. Focus is mainly put on wrapping a turbo code.

Chapter 2

IT++

IT++ is an open source C++ library of mathematical, signal processing and
communication classes and functions [1]. It is mainly used for simulation and
research in the communications area. The library was originally developed
at the former department of Information Theory at Chalmers University of
Technology in Sweden.

The library contains definitions of classes with associated routines which
makes it possible to create data structures in C++ in a similar way as in
MATLAB or GNU Octave. It covers a wide span of modules in a communica-
tion system, from basic components such as vectors, matrices and classes for
random number generation to more advanced classes for channel modeling,
interleaving, encoding, and decoding.

To demonstrate how IT++ can be used we give two short examples in
the following sections.

2.1 Vector Class

IT++ defines a class Vec<Num T> which utilizes the template feature in
C++. It makes it possible to create vectors of different types, such as int,
double, etc. For example, we can create a vector of type double with the
following line

vec my vector ;

As in MATLAB, many operations can be performed on the vector. For
instance we can create a vector of zeros with length n with

2.2 Turbo Code Class 9

my vector = ze ro s (n) ;

We can also insert, remove or shift elements in a vector, or concatenate
several vectors.

IT++ provides an Application Programming Interface (API) that de-
scribes all classes and functions. In a similar way matrices can be created
and operations performed according to the API.

2.2 Turbo Code Class

One of the more advanced classes implemented in IT++ is Turbo Codec, the
class that will be wrapped in this thesis. It implements a turbo encoder
and decoder which has several parameters such as the choice of decoding
method, interleaver length, encoder generator vectors, number of iterations,
etc. The details of these parameters will be discussed in Chapter 4. Many of
the functions in Turbo Codec takes different types of Vec<Num T> as input.
How these types can be passed from python to C++ are described in section
5.1.

Chapter 3

SWIG

SWIG is a software development tool that connects programs written in
C/C++ with scripting languages such as Python, Perl, and Tcl. By taking
the declarations in the C/C++ header files it generates a glue code (wrapper)
that enables the target languages to call functions within the C/C++ code.
Figure 3.1 illustrates the basic idea behind SWIG.

Script language

SWIG wrapper

C/C++ module

Figure 3.1: Basic idea behind SWIG.

For simplicity’s sake, in the following sections the examples are written
for C++ only.

3.1 Comparison of C++ and Python 11

3.1 Comparison of C++ and Python

Combining a scripting language, such as Python, with a system programming
language like C++ is very powerful since it can exploit the strengths of each
language. In this section the strengths and weaknesses relevant for building
and using large libraries with these languages will be covered.

3.1.1 C++

C++ is a language intended to function on a mid-level of programming,
meaning that it has to be capable of both low- and high-level operations.
This results in a very flexible programming language that can interact with
hardware with few restrictions but also function on a higher level of abstrac-
tion [2]. This allows for almost any complex data structure or algorithm to
be implemented and the flexibility makes it suitable for building a library
such as BCL from scratch. The down-side to this is that the code can often
become quite large and complex. Since the library is built from scratch the
programmer also needs to understand both high- and low-level programming.

C++ is based on static typing which means that the type is checked when
the code is compiled and not during run-time. This allows the compiler to
detect certain type related errors. It also allows the compiler to generate
specialized code. For example, since it already knows the type it can just
generate type specific instructions without any additional instructions for
type checking. This optimization gives very fast execution times. It does
however mean that code cannot be easily re-used. In addition, the code
has to be re-compiled between each change, no matter how insignificant it
may be. For large codes or libraries this can be a considerable delay in
development time [3].

3.1.2 Python

Python on the other hand is a scripting language, which has somewhat dif-
ferent characteristics than C++. The first, and probably greatest, difference
is that unlike C++ a scripting language assumes that useful components,
written in other languages, already exist. In other words it is not designed
to build programs from scratch but rather plugging or ”gluing” together ex-
isting components. For this reason scripting languages are also referred to as

3.1 Comparison of C++ and Python 12

system integration languages or glue languages. In order to allow this con-
nectivity between components, scripting languages are usually typeless. This
means that there are no prior restrictions forced upon the data. Any com-
ponent or value can thereby be used in any situation. This allows for code
to be re-used for tasks the programmer never intended. This does however
require instructions for type checking. Another major difference compared
to C++ is that Python is not compiled but interpreted, which eliminates
compilation time. The price one pays for these advantages is execution time.
This is the result of using interpreters instead of compilers as well as having
the components designed for ease of use instead of efficient mapping onto
underlying hardware.

Python is a higher level programming language than C++ regarding the
number of operations a single statement performs on average. Statements
in a scripting language, such as Python, can produce hundreds to thousands
of machine instructions, whereas a typical statement in languages like C++
executes five machine instructions on average [4]. The main cause for this is
that the primitive operations in scripting languages are much more powerful
than in languages like C++ [4].

As a scripting language, Python distinguishes itself in a number of ways
which is of interest for Ericsson. It has a syntax that can be very similar
to MATLAB, which is a language already used at Ericsson. Additionally,
Python also allows for more advanced data structures than MATLAB. It also
supports object orientation which can be useful in numerous applications.
Another advantage with Python are the many already existing functions
available. Besides the standard libraries there are also many third party
modules.

3.1.3 Combining the Languages

As the two previous sections show there are advantages and disadvantages
of both languages. The purpose of SWIG can hence be seen as combining
the advantages of both languages. By wrapping C++ libraries to Python
the speed and flexibility of C++ can be combined with the interactivity and
ease of use of Python. In theory, this can be used to reduce the development
time.

3.2 SWIG Structure 13

3.2 SWIG Structure

In this section we will go through the structure and components of SWIG.
Figure 3.2 illustrates the key components and their inter-dependencies to
generate the final extension module.

interface file
example.i

setup file
setup.py

Distutils

input

shared library
_example.so

generates

SWIG

input

python file
example.py

generates

import to

wrapper
example_wrap.cxx

generates input

Python

import to

created by user

Figure 3.2: SWIG dependencies.

3.2.1 Interface File

The input to SWIG is a file containing ANSI C/C++ and special SWIG
declarations. Normally this file is a special SWIG interface file denoted with
a .i or .swg suffix. Below follows an example of the most common appearance
of a basic SWIG interface file

%module example
%{
#inc lude ”example . h”
%}
// ANSI C/C++ dec l a r a t i o n s
int func (int x , int y) ;
int another func (int x) ;
. . .

3.2 SWIG Structure 14

The name of the module generated by SWIG is given after the %module

directive. In the %{ ... %} block all header files and declarations that are
needed to make the wrapper code compile should be included. This text is
not parsed or interpreted by SWIG but only copied to the generated wrapper
file. At the end of the file all functions that should be accessible from Python
should be declared.

3.2.2 SWIG Output

The output from SWIG consist of two files: a Python source file and a C++
source file that contains all the wrapper code that is required to build the
extension module.

The command line

swig −c++ −python example . i

will produce a C++ source file example wrap.cxx and a Python source file
example.py. The name of the wrapper comes from SWIG taking the name
of the interface file and appending wrap to it. To create the final extension
module the C++ source file needs to be compiled and linked with the rest of
the C++ program. The Python source file is the file that will be imported
into Python in order to use the module.

The recommended way to build an extension module for python is to use
distutils. Distutils is a package in Python which provides support for build-
ing and installing additional modules into Python installations. It makes
sure that the extension is built with the correct flags and headers etc. for the
Python version that is being used. Distutils compiles the SWIG generated
wrapper code into a shared library (.so-file for Linux and .pyd-file for Win-
dows) that is included in the Python source file. The compilation is done
by using a configuration file that describes the related extensions. Such a
configuration file is conventionally called setup.py but can assume any name.
Below follows an example

from d i s t u t i l s . core import setup , Extension

example module = Extension (’ example ’ ,
s ou r c e s =[’ example wrap . cxx ’ ,

’ example . cpp ’] ,
)

3.2 SWIG Structure 15

setup (name = ’ example ’ ,
v e r s i on = ’ 1 .0 ’ ,
author = ”Linh and Oskar” ,
d e s c r i p t i o n = ””” Simple swig example ””” ,
ext modules = [example module] ,
py modules = [”example”] ,
)

The line example module = Extension(...) generates an extension module ob-
ject using the source code files example wrap.cxx and example.cpp (the original
target source file) and sets the name of the module to example. Extension
modules to SWIG are normally named by using the same name as the python
module prefixed with an underscore. In this case the name of the library
would then be example.so for Linux. The command to build the shared
library using the setup file and distutils is

python setup . py bu i l d ex t −−i np l a c e

where

• python - is the version of Python we want to use

• setup.py - is the name of the configuration file

• build ext - tells distutils to build extensions

• −−inplace - tells distutils to put the extension lib in the current direc-
tory.

An alternative way to create the extension module is to let distutils handle
the generation of the wrapper code and Python source file. Distutils supports
creation of SWIG extension modules and so by modifying the configuration
file slightly we can generate the extension module by only running the last
distutils command. The setup.py file would then look like this

from d i s t u t i l s . core import setup , Extension

example module = Extension (’ example ’ ,
s ou r c e s =[’ example . i ’ ,

’ example . cpp ’] ,
sw ig opt s=[’−c++’]

)

3.3 Templates 16

setup (name = ’ example ’ ,
v e r s i on = ’ 1 .0 ’ ,
author = ”Linh and Oskar” ,
d e s c r i p t i o n = ””” Simple swig example ””” ,
ext modules = [example module] ,
py modules = [”example”] ,
)

A second argument, swig opts, has now been added to the Extension con-
structor which specifies the target language for the generated wrapper. Also,
instead of giving the wrapper file as source we take the interface file. The
build ext command will then run SWIG on the interface file and compile the
resulting C++ file into the final extension module [5].

Other necessary arguments to the Extension constructor are

• include dirs — the paths to directories where include files are stored

• library dirs — the paths to directories where libraries are stored

• libraries — names of included libraries.

Due to circular dependency the listed order of the libraries in the setup
file is important. That is, if library B depend on library A, then A should be
put before B in the list. Also, note that all libraries included in the setup file
should be built with the same compiler version as the one used for SWIG.

3.3 Templates

Templates can be of use in a wide variety of applications. In signal processing
templates can be used for representing different bit widths or hard or soft
information. One can for instance use a float or double that can contain 4
and 8 bytes of data respectively to represent the bit widths.

Templates allows one to create special functions or classes that can op-
erate with generic types. These functions and classes can be adapted to
more than one type without rewriting the entire code for each type by using
template parameters.

3.3.1 Templates in C++

The syntax for declaring a function template with template parameters in
C++ is

3.3 Templates 17

template <class i d e n t i f i e r > f u n c t i o n d e c l a r a t i o n ;

For example this could look like

template <class T> void f unc t i on (T x) ;

where T could be an int, double, float, etc. To call this function we can
write

int x ;
funct ion<int> (x) ;

3.3.2 Templates in SWIG

Compilers do not treat templates as normal functions or classes. Templates
are compiled on demand, which means that they are not compiled until
an instantiation with specific template arguments is required. When it is
required the compiler generates a function specifically for the given arguments
[2]. Because of this characteristic, information about a specific template
instantiation needs to be provided to SWIG in order to wrap a template.
Let us illustrate this with the following example code

// Header f i l e : s t a c k . h

template <class T>
class MyStack {

MyStack () ;
void push (T i) ;
T pop () ;
int top ;
T s t [1 0 0] ;

} ;

// C++ f i l e : s t a c k . cc

#inc lude ” stack . h”

template <class T>
MyStack<T> : :MyStack ()
{

top = −1;
}

3.3 Templates 18

template <class T>
void MyStack<T> : : push (T i)
{

s t [++top] = i ;
}

template <class T>
T MyStack<T> : : pop ()
{

return s t [top−−];
}

These template declarations alone will be ignored by SWIG since it cannot
generate any code until a definition of the type T is given. One way to create
wrappers for templates is to use the %template directive as

%template (in tStack) MyStack<int >;
%template (doubleStack) MyStack<double>;

where the argument to %template() is the name of the instantiation in the
target language.

Since templates are compiled when required, the declaration and defini-
tion of a template function/class must be in the same file. Therefore, if we
have a separate header file for the interface and one with the implementation
(definition), then these must be included in the file that uses the template.
This means that in SWIG we need to include both the .h-file and .cpp-file
in the interface file where the %template directive is used. The interface file
would then have the following look

%module s tack
%{

#inc lude ” stack . h”
#inc lude ” stack . cpp”

%}

%inc lude ” stack . h”
%inc lude ” stack . cc ”
%template (in tStack) MyStack<int >;

With these directives included in the interface file we can create an instanti-
ation of MyStack<int>::MyStack() directly from python as

3.4 Namespaces 19

from s tack import ∗
s = intStack ()
s . push (1)

3.4 Namespaces

SWIG provides support for C++ namespaces, however, the wrapping flattens
the namespaces in the target language. That is, the contents of all names-
paces are merged together in the resulting .py-module. Let us illustrate this
with an example. Given the following code

namespace a {
void func a () ;

}
namespace b {

void func b () ;
}

SWIG will simply create two wrapper functions func a and func b in the
target language without pre-pending a namespace prefix as a :: func a().

3.5 Type Conversion

Type conversion of data types between programming languages is one of the
most problematic tasks in SWIG. For every C++ declaration, wrapper code
must be generated in order to pass values back and forth between C++ and
Python, Figure 3.3 shows the basic idea.

Python

convert pyobj
to c++ struct

convert c++ struct
to pyobj

C++

pyobj

C++ struct pyobj

C++ struct

Figure 3.3: SWIG type conversion

Let us illustrate with an example how this works in more detail. Consider
the following C++ function

3.6 SWIG Libraries 20

int dummy(int n) ;

To access this function from Python, two Python API functions are used
to convert the values. For each function written in C++, a corresponding
function is generated in the wrapper code which handles the conversion. The
pseudo code of such a function would look like this

arg = python to cpp (pyobj) ;
r e s u l t = dummy(arg) ;
r e s pyob j = cpp to python (r e s u l t) ;
return r e s pyob j ;

The Python object is first converted into a C++ data type. With this data
structure, that can be interpreted by C++, we can now input arg to dummy().
The result from the function is then converted back to a Python object so
that it can be passed back into Python.

SWIG has a directive typemap which provides direct access to SWIG’s
low-level code generator. This gives the user possibility to manipulate the
passing of different types between languages. However, use of typemaps is
generally not required and is also not recommended to users unless they are
absolutely confident and very familiar with SWIG [3]. Therefore we just
mention the existence of typemaps and refer to [3] for more information.

3.6 SWIG Libraries

SWIG has its own libraries which contains support files for building extension
modules that can be included in an interface file. These files often define new
SWIG directives that enables access to parts of standard C++ libraries [6].

3.6.1 std vector.i

The std vector . i library provides support for use of the C++ std :: vector

class in the Standard Template Library (STL). To use the vector we need
to include the library and instantiate vector for the different types we would
like to use in the interface file. Below is an example of an interface file that
uses the std vector . i library.

%module example
%inc lude ” s t d v e c t o r . i ”

3.6 SWIG Libraries 21

namespace std {
%template (v e c t o r i) vector<int >;
%template (v e c t o r s) vector<s t r i ng >;

} ;

Here we have made two instantiations of the vector class. One is of the type
int and the other of type string . Assume we have a C++ function that looks
like the following

void p r i n t v e c t o r (vector<int> v) {
for (int i =0; i<v . s i z e () ; i++) {

cout << v [i] << endl ;
}

}

we can then create a vectori object in Python, fill it with data and input it
to print vector . When a vector<int> is returned from C++ to Python it is
interpreted as the Python data structure list .

3.6.2 std string.i

Another library is std string . i which enables passing of the object string in
SWIG. To use the library it should be included in the interface file with the
%include directive similar to the example in section 3.6.1.

Chapter 4

Turbo and Turbo-like Codes

Turbo codes revolutionized the coding community by achieving performance
close to the Shannon limit. Today they are used in many communication
systems. In this chapter we will explain the relevant theory for understanding
the basics of turbo and turbo-like codes.

4.1 Discrete-time Equivalent Baseband Model

Consider the transmission system in Figure 4.1. This is the transmission sys-
tem model that subsequent sections will be based upon. It is a discrete-time
equivalent baseband model similar to the one Schlegel and Perez introduce
in [7]. A way of obtaining this model is through matched filtering.

Convolutional
 Encoder

AWGN DecoderModulation
u c x r û

Figure 4.1: Reference Transmission System

The input to the system is the binary information sequence uK
1 of length

K. Each bit, uk, is assumed to be independently drawn from a uniform
distribution {0, 1}. It can be interpreted as data subject to perfect source
compression, i.e., no redundancy. This information sequence is encoded by
a convolutional encoder, generating the code sequence

cK
1 = (c1, c2, . . . , cK) (4.1)

4.2 Convolutional Codes 23

where the length of each ck is n0. The code sequence is modulated to form
the symbol sequence, xS

1 where each symbol, xs, belongs to some finite dis-
crete alphabet and the length of the sequence, S, depends on the chosen
modulation. Any modulation could be used but for simplicity we will in this
report limit us to only using Binary Phase Shift Keying (BPSK). This results
in the modulated sequence, xK

1 , and each symbol, xk, taking on the values{
−
√
Es,+

√
Es

}
.

The output sequence, xK
1 , is the input to the Additive White Gaussian

Noise (AWGN) channel. The white gaussian noise vector nK
1 is added to the

signal forming the received sequence, rK1 as

rK1 = xK
1 + nK

1 (4.2)

where E {nk} = 0 and E {nknl} = N0/2δkl where δkl is the Kronecker
delta.

The decoder’s task is based on decoding the received sequence, rKk out-
putting the best possible decision, ûK

1 , of the input information sequence.

4.2 Convolutional Codes

Binary convolutional encoders are finite-memory systems which for every k0
information bits inserted generate n0 binary output bits. Hence the code
rate, Rc, is defined as

Rc = k0/n0. (4.3)

The encoder is composed of N shift registers containing k0 bits, giving a
total of Nk0 stages inside the encoder, see Figure 4.2. The parameter N is
called the convolutional code’s constraint length. At each time instance t,
the block of bits inside each shift register is shifted to the next one to the
right and a new block of k0 information bits is inserted into the first, and
now empty, input shift register. The bit values of these positions are then
used by n0 modulo-2 adders to generate n0 code bits that are fed to the
output register. It can be concluded that such encoders’ output code bits
are not only dependent on the current input bits but on all M = k0(N − 1)
previous ones [8]. These bits correspond to the state of the encoder and will
be defined as

Sk =
(
s
(1)
k , s

(2)
k , · · · , s(M)

k

)
(4.4)

4.2 Convolutional Codes 24

1 2 k0
. . . 1 2 k0

. . . 1 2 k0
. . . 1 2 k0

. . .

1 2 . n0
. .

. . .

u

 k0

information bits

c
 n0

coded bits

} } }1 2 N.

Figure 4.2: Block diagram of a convolutional encoder with n0 inputs, k0
outputs and constraint length N

where s
(1)
t represents the contents of the first stage of the second shift register

and the following elements the rest of the stages in the memory. Since the
contents depend on the previous input bit sequence this can also be stated
as

Sk = (uk−1, uk−2, · · · , uk−N) (4.5)

A way of describing a convolutional encoder is by specifying a set of n0

generator vectors, one for each of the n0 modulo-2 adders. Each vector has
length Nk0 corresponding to the connections from the stages of the encoder
to the modulo-2 adder. Having a value of 1 in the ith position of the vector
represents a connection between the ith stage of the encoder and the modulo-
2 adder, similarly a value of 0 represents no connection [8]. An example is
provided in Figure 4.3 below.

The binary convolutional encoder in Figure 4.3 has N = 3, k0 = 1, and
n0 = 2 and can be represented by the two generator vectors

g1 =
[
1 1 1

]
, (4.6)

g2 =
[
1 0 1

]
. (4.7)

Out of convenience the generator vectors are often given in octal form and
hence this encoder could also be presented as (7,5). This is also the format
used in IT++.

If the input to an arbitrary binary convolutional encoder is u then the

4.2 Convolutional Codes 25

uk uk-1 uk-2
uk

ck1

ck2

Figure 4.3: [7,5] encoder

output sequence is given by:

c(1) = u ∗ g1 (4.8)

c(2) = u ∗ g2 (4.9)
...

c(n0) = u ∗ gn0 (4.10)

where ∗ represents convolution using binary arithmetic. The output code
sequence c is then formed in the following manner

cK
1 =

(
c
(1)
1 , c

(2)
1 , · · · , c(n0)

1 , c
(1)
2 , c

(2)
2 , · · · , c(n0)

2 , · · · , c(1)K , c
(2)
K , · · · , c(n0)

K

)
. (4.11)

For our (7,5) encoder the output sequence will be formed as

c
(1)
k = uk + uk−1 + uk−2 (4.12)

c
(2)
k = uk + uk−2 (4.13)

ck = (c
(1)
k , c

(2)
k) (4.14)

It is common that the D-transform is used to explain the operation of a
convolutional encoder. This transform is equivalent to the z-transform except
that the operator is D = z−1. If the discrete time input to an arbitrary binary
convolutional encoder is uk then let the corresponding D-transform be

u(D) =
∑
k

ukD
k (4.15)

4.2 Convolutional Codes 26

The generator vectors can also be represented using the D-transform. For
the (7,5) example the generators would be expressed as

g1(D) = 1 +D +D2

g2(D) = 1 +D2 (4.16)

It is now possible to express the encoder operation for this example as a
function of the input and generator vectors as

c(1)(D) = u(D)g1(D) (4.17)

c(2)(D) = u(D)g2(D). (4.18)

(4.19)

An alternative description of the binary convolutional encoder is the trel-
lis diagram which connects different states over subsequent time steps. An
example of such a trellis diagram is shown in Figure 4.4 which illustrates the
before-mentioned (7,5) encoder. The nodes along the same vertical axis rep-
resent the various states at that discrete time k. In general there will be 2M

such states. Each of these states would have 2k0 branches entering it and 2k0

branches leaving it, one for each possible input segment. The branch from
one state to another represents new inputs affecting the state of the encoder
and generating the corresponding code bits. The code bits generated by each
branch between two states given an input are written alongside these edges
in the format input/code bits in 4.4. The branches between different states
will generate a path through the trellis. This path is unique for a given input
sequence and starting state.

State

00

01

10

11

m

0

1

2

3

k = 0 1 2 3 4 5 6

0/00 0/00 0/00 0/00 0/00 0/00

1/11 1/11 1/11 1/11

0/11 0/11 0/11 0/11

1/00 1/00

0/10 0/10 0/10 0/10

1/01 1/01 1/01

0/01 0/01 0/01

1/10 1/10

Figure 4.4: Trellis for (7,5) code

Customarily the code sequence is started and terminated in the S = 0
state of the trellis.

4.2 Convolutional Codes 27

4.2.1 Code Weight and Minimum Distance

The weight of a codeword, c ∈ C, is the number of nonzero components
of that codeword and is expressed as w(c). For linear codes the distance
between two codewords can be written as d(c1, c2) = w(c1 − c2). A useful
metric for evaluating codes is the minimum distance, dmin, which is the the
minimum of all possible distances between codewords and is expressed as

dmin = min
c1,c2∈Cc1 6=c2

d(c1, c2) (4.20)

4.2.2 Recursive Convolutional Encoders

A systematic encoder is an encoder where the input sequence is a direct
part of the output sequence. It can be proven that systematic convolutional
encoding, in general, will give lower minimum distances than nonsystematic
encoders [8]. Using recursion, it is however possible to construct systematic
encoders from any nonsystematic encoder of rate 1/n0 while maintaining the
same minimum distance as the nonsystematic encoder. As can be seen in
(4.17), in order to have the input sequence included directly in the output,
one of the generator polynomials has to be equal to one. To achieve this, let
us divide each encoder output by g1(D), which results in

c(1)(D) = u(D)
g1(D)

g1(D)
= u(D)

c(2)(D) = u(D)
g2(D)

g1(D)
...

c(n0)(D) = u(D)
gn0(D)

gn0(D)
. (4.21)

This corresponds to a convolutional encoder with feedback [8]. It is realized
with shift registers and feedback. Such codes are commonly referred to as
Recursive Convolution Codes (RCC). An example of how this can be imple-
mented for the (7,5) encoder is shown in (4.21). It can be proven that such
an encoder is equivalent to the original non-recursive non-systematic encoder
since both will generate the same set of codewords, albeit for different input
sequences [9].

4.3 Maximum Likelihood Sequence Decoding and the Viterbi
Algorithm 28

uk-1 uk-2

ck1

ck2

uk
uk

Figure 4.5: (7,5) recursive encoder.

In general the non-recursive encoder will perform better for medium-to-
high SNR while the RCC will perform better for low SNR. This makes the
non-recursive encoder the natural choice for a stand-alone encoder but when
we aim for large coding gains at low SNR, as will be the case for turbo codes,
RCC should be used [8].

4.3 Maximum Likelihood Sequence Decoding

and the Viterbi Algorithm

Maximum Likelihood Sequence Decoding (MLSD) is a Maximum Likelihood
(ML) method that for an AWGN channel seeks to minimize the minimum
distance between the received signal, rK1 , and the set of possible transmitted
code words. For convolutional codes this corresponds to finding the path
through the trellis that is closest to the received signal sequence. For hard
decoding the metric is the Hamming distance while for soft decoding the
Euclidean distance is used.

A decoding algorithm that uses MLSD decoding is the Viterbi algorithm.
It is only applicable to codes that can be represented by a trellis, e.g., convo-
lutional codes. The Viterbi algorithm reduces the complexity of the decoding
by using elimination to reduce the number of sequences that have to be com-
pared. This is achieved by comparing the metrics for each branch entering
a state. The one with the lowest metric is saved, called the survivor, and
the others are discarded. This is done for all states and times of the trellis,

4.4 Maximum A-Posteriori Symbol Decoding 29

thereby greatly reducing the complexity of the decoder. This does not affect
the optimality of the decoder since for any future branches through the trel-
lis the survivor will still have the lowest metric according to the principle of
optimality [10].

4.4 Maximum A-Posteriori Symbol Decoding

Another approach to decoding is to minimize the bit error probability of
each received symbol. One should then aim to maximize the a posteriori
probability (APP) for each bit of the transmitted sequence. This is called
Maximum a Posteriori Probability (MAP) decoding and can be expressed as

ûk = argmax
uk

p(uk|rK1) = argmax
uk

Pr(uk)p(rK1 |uk)

p(rK1)
(4.22)

∝ argmax
uk

Pr(uk)p(rK1 |uk) (4.23)

The main difference between the Viterbi algorithm and APP algorithms is the
type of output. Whereas Viterbi outputs a hard decision of the transmitted
information bits the APP algorithm gives the a posteriori probability. The a
posteriori probabilities can be interpreted as a soft estimate of the probability
that the information bits correspond to a certain input.

4.5 BCJR Algorithm

The BCJR algorithm, named after its inventors: Bahl, Cocke, Jelinek and
Raviv, is an optimal decoding method for linear codes which minimizes the
symbol error probability [11]. Unlike the Viterbi algorithm, which minimizes
the probability of word error using ML decoding, BCJR uses the MAP crite-
rion. The algorithm is sometimes also called Soft Input Soft Output (SISO)
since the information to and from the decoder is soft. The algorithm is
derived using the chain rule and Bayes rule iteratively.

Consider the trellis in Figure 4.4 again. A state transition between the
states m′ and m is controlled by the transition probability

Pr(Sk = m|Sk−1 = m′) (4.24)

and the output by
p(xk = x|Sk−1 = m′;Sk = m) (4.25)

4.5 BCJR Algorithm 30

The algorithm is based on a forward recursion αk(m), a backward recur-
sion βk(m), and a branch metric γk(m′,m). The forward recursion computes
the probability of being in a state, Sk, given that we know all state and tran-
sition probabilities up to a time k. The backward recursion is the probability
of being in the state, Sk, given that we know all state and transition proba-
bilities after time k, i.e. for k + 1 to K. The branch metric is a measure of
the cost of moving from one state Sk to another Sk+1. When these probabil-
ities are calculated, the final step is to compute λk(m) and σk(m′,m), where
λk(m) is the probability of being in state m at time k and σk(m′,m) is the
probability of the transition from any state m′ at time k− 1 to a state m at
k. In the following sections we will derive the just mentioned probabilities.

4.5.1 A Posteriori Information

The BCJR algorithm uses the observations of the received signal up to time
K, to calculate the APP of the states and transitions [11]. The received
signal is represented as K modulated code words

rK1 = (r1, r2, . . . , rK) (4.26)

where the length of each rk is n0. Each node of the trellis in Figure 4.4 is
associated with the APP Pr(Sk = m|rK1) and each branch is associated with
the corresponding p(Sk−1 = m′;Sk = m|rK1). The aim of the decoder is to
calculate these a posteriori probabilities.

It is easier to derive joint probabilities than to work with the conditional
probabilities, therefore we introduce

λk(m) = p(Sk = m; rK1) (4.27)

and
σk(m′,m) = p(Sk−1 = m′;Sk = m; rK1) (4.28)

.
Since p(rK1) is constant for a given rK1 (p(rK1) = λK(0) which is known in

the decoder), we can divide λk(m) and σk(m′,m) with p(rK1) to express the
APPs as

Pr(Sk = m|rK1) =
p(Sk = m; rK1)

p(rK1)
(4.29)

4.5 BCJR Algorithm 31

p(Sk−1 = m′;Sk = m|rK1) =
p(Sk−1 = m′;Sk = m; rK1)

p(rK1)
(4.30)

4.5.2 Derivation of α, β, γ

Let us define the forward and backward recursions and branch metric

αk(m) = p(Sk = m; rk1) (4.31)

βk(m) = p(rKk+1|Sk = m) (4.32)

γk(m′,m) = p(Sk = m; rk|Sk−1 = m′) (4.33)

Now
λk(m) = p(Sk = m; rK1)p(rKk+1|Sk = m; rk1) (4.34)

Since events after time k are independent of rk1 if Sk is known

λk(m) = αk(m)p(rKk+1|Sk = m)

= αk(m)βk(m). (4.35)

In the same way σk(m′,m) can be expressed as

σk(m′,m) = p(Sk−1 = m′; rk−11)p(Sk = m; rk|Sk−1 = m′)p(rKk+1|Sk = m)

= αk−1(m
′)γk(m′,m)βk(m) (4.36)

In words, to calculate the probability of being in a state m at time k we
need to calculate the cost of being at this state using both the forward and
backward recursions. Similarly, the probability of transitioning from state
m′ at time k − 1 to state m at time k is dependent on the cost of being in
state m′ at k − 1 obtained using the forwards recursion, the cost of being in
m at time k using the backwards recursion and the branch metric associated
with this branch.

To derive the forward recursion, consider αk(m) for k = 1, 2, . . . , K

αk(m) =
M−1∑
m′=0

p(Sk−1 = m′;Sk = m; rK1) (4.37)

4.5 BCJR Algorithm 32

Similarly as before, if Sk−1 is known, then rk−11 does not affect events after
time k − 1, so the following can be obtained

αk(m) =
∑
m′

p(Sk−1 = m′; rk−11)p(Sk = m; rk|Sk−1 = m′)

=
∑
m′

αk−1(m
′)γk(m′,m) (4.38)

Assuming the code is initialized in the zero state then for k = 0 we have that

α0(0) = 1 (4.39)

α0(m) = 0 , m 6= 0 (4.40)

In the same way we can derive the backward recursion. Consider βk(m)
for k = 1, 2, . . . , K − 1

βk(m) =
M−1∑
m′=0

p(Sk+1 = m′; rKk+1|Sk = m)

=
∑
m′

p(Sk+1 = m′; rk+1|Sk = m)p(rKk+2|Sk+1 = m′)

=
∑
m′

βk+1(m
′)γk+1(m,m

′) (4.41)

Assuming the code is terminated in the zero state then for k = K we have
the boundary conditions

βK(0) = 1 (4.42)

βK(m) = 0 , m 6= 0 (4.43)

Relations (4.38) and (4.41) show that αk(m) and βk(m) are recursively ob-
tained.

The branch metric can be expressed as

γk(m′,m) = p(Sk = m; rk|Sk−1 = m′) (4.44)

= p(Sk = m|Sk−1 = m′)p(rk|Sk = m,Sk−1 = m′) (4.45)

= Pr(uk)p(rk|uk) (4.46)

= Pr(uk)p(rk|xk) (4.47)

4.5 BCJR Algorithm 33

Now, assuming an AWGN channel, we can express

p(rk|xk) =

n0−1∏
n=0

p(rnk |xnk) (4.48)

=

n0−1∏
n=0

1√
2πσ2

exp (− |rnk − x̃nk |
2 1

2σ2
) (4.49)

where x̃nk is the hypothesized received signal belonging to the modulation
alphabet. For BPSK modulation the variance is σ2 = N0/2.

4.5.3 Decoding

Minimization of the symbol probability of error is done by determining the
most likely input bits, uk from rK1 . Let Ak be the set of transitions corre-
sponding to the input being uk = u, where u ∈ {0, 1}. We can then calculate

p(uk = u; rK1) =
∑

(m′,m)∈A(j)
k

σk(m′,m) (4.50)

This is calculated for both p(u = 0; rK1) and p(u = 1; rK1). In order to obtain
the conditional probability of uk = 1 given rK1 we normalize

Pr(uk = 1|rK1) =
p(uk = 1; rK1)

p(uk = 0; rK1) + p(uk = 1; rK1)
(4.51)

We can now decode uk = 1 if Pr(uk = 1|rK1) ≥ 0.5 and uk = 0 otherwise.

The APP of the encoder output, p(x
(j)
k = 0; rK1) can also be calculated.

Let B
(j)
k be the set of all transitions from Sk−1 = m′ to Sk = m which

correspond to the jth output digit , x
(j)
k , being 0. For time-invariant codes,

which will be assumed here, B
(j)
k is independent of k. Then

p(x
(j)
k = 0; rK1) =

∑
(m′,m)∈B(j)

k

σk(m′,m) (4.52)

and this can be normalized similarly to (4.51) in order to form Pr(x
(j)
k =

1|rK1).

4.6 Turbo Codes 34

4.5.4 Outline of the Algorithm

Let us summarize the steps of the algorithm that need to be performed in
the decoder to obtain λk(m) and σk(m′,m).

1. First, α0(m) and βK(m) for m = 0, 1, . . . ,M − 1 are initialized as in
(4.39) and (4.42).

2. When the whole sequence r1
K is received, γk+1(m,m

′), αk(m) and
βk(m) is computed recursively using (4.44), (4.38) and (4.41). The results
are then stored for all times and states.

3. The decoder then has all information it needs to compute all λk(m)
and σk(m′,m) using (4.35) and (4.36).

4. Using the calculated values the decoder can output the APP of the
input sequence, uK

1 , using (4.50) from which hard decisions can be made. It
can also output the APP of the encoder output sequence xK

1 using (4.52).
From the steps above it can be concluded that the algorithm will require

a lot of memory to store all values α, β, and γ. Also since σk and λk are
dependent on calculations based on all previous and subsequent k in rK1 the
amount of calculations will grow too many if the block lengths and constraint
lengths are not kept low.

4.6 Turbo Codes

Berrou et al. introduced turbo codes in 1993 and achieved performance close
to the Shannon limit [12]. Since then further research has resulted in other
turbo-like codes. Turbo codes and turbo-like codes can be viewed as a re-
finement of a concatenated encoding structure. For decoding the BCJR
algorithm is used iteratively. The purpose of this section is to explain the
basics needed for understanding such codes.

4.6.1 Concatenated Codes with Interleaver

The performance of a convolutional code is mainly defined by its error correc-
tion capability which depends on the minimum distance of the code. Codes
can have different lengths for a given code rate, Rc. Longer codes give larger
minimum distance and thus offer better performance [9]. However, with
increasing lengths the decoding complexity also increases, generally expo-
nentially. A way of obtaining long block lengths and keeping reasonable
complexity is to concatenate codes with shorter block lengths. The code

4.6 Turbo Codes 35

words of the first encoder will act as the input to the second, and so on,
forming increasingly longer code words. In this report only two levels of
concatenation will be considered. The first encoder will be called the outer
encoder and it generates the outer code, co, and the second will be called the
inner encoder and it generates the inner code, ci. If the outer encoder has
rate Ro

c = ko/no and the inner encoder Ri
c = ki/ni then the overall rate of

the concatenated code is simply the product of the two codes [8]:

Rc =
ko
no

ki
ni

= Ro
cR

i
c (4.53)

The main advantage of concatenated codes is that the received, con-
catenated codewords can be decoded by subsequent decoders. The code is
decoded in the reverse encoding order, i.e. first the inner decoder decodes
the inner code and passes on the result to the outer decoder. This has the
effect of breaking up the large code into several, simpler codes. Codes with
such encoding and decoding scheme are often referred to as Serially Concate-
nated Convolutional Codes (SCCC), an example of which can be observed
in Figure 4.6.

CC1 CC2

CC1
-1 CC2

-1

u x

n

r

û

mod

demod

Figure 4.6: Communication system using Serially Concatenated Convolu-
tional Codes

It has been shown that the optimal decoding solution for concatenated
codes is to pass the APP from the inner decoder to the outer decoder [8]. To
reach this optimum one therefore needs the demodulator and inner decoder
to generate soft outputs.

When Berrou et al. introduced turbo codes one of the key components
was a concatenated encoding scheme combined with an interleaver. By in-
troducing a pseudo-random interleaver Parallel Concatenated Convolutional

4.6 Turbo Codes 36

Codes (PCCC) can be constructed as in Figure 4.7 as well as the more intu-
itive serial concatenated codes in Figure 4.8. In the traditional turbo code,
introduced by [11], parallel concatenation was used but as interest grew in
the coding community serial concatenation was also utilized in turbo-like
codes [13]. In the PCCC case both encoders use RCC whereas for SCCCs
the outer encoder is non-recursive, non systematic and the inner is RCC. As
mentioned earlier RCCs are suitable when one aims to gain large code gains
at low SNRs.

mod

mod

mod

CC1

CC2

u

n

n

n

Figure 4.7: Transmission system using Parallel Concatenated Convolutional
Codes with interleaver

CC1 CC2

u x

n

mod

Figure 4.8: Transmission system using Serial Concatenated Convolutional
Codes with interleaver

For both serial and parallel concatenation the interleaving has the effect
of producing codes with very few low-weight codewords. This does not mean
that the free distance of the code is thereby large but does result in the
codewords being relatively sparse and having few nearest neighbors. In other
words, the coding gain is achieved as result of the interleaver introducing this
sparsity, called multiplicity, of codewords of low-weight.

4.6 Turbo Codes 37

The introduction of the interleaver has the side-effect of making the num-
ber of possible states for the entire codeword very large. This is the result of
the interleaver randomly permuting the outer code and feeding this as input
to the inner encoder. Any state diagram over the entire encoding procedure
would hence have to take this into effect and will thereby become impossible
to decode in an optimal way.

4.6.2 Extrinsic Information

An additional performance increasing factor introduced by Berrou et al. is
extrinsic information [12]. Extrinsic information can, from an abstract level,
be viewed as extra knowledge gained from the decoding process. In practice,
this means that the information delivered from the outer to the inner encoder
is no longer the APP but extrinsic information formed by the normalization
of the computed APP by its corresponding a priori probability. In other
words the values are based on information coming from all symbols, except
the one corresponding to the same symbol. A trivial way of realizing this is
by modifying the APP output as

Pr(uk = 1|rK1)
′
= Pr(uk = 1|rK1)/Pr(uk = 1). (4.54)

Pr(uk = 1|rK1)
′
will then be the extrinsic output. The division by Pr(uk = 1)

can however result in numerical problems, especially for the last iterations
where the a priori values can approach 0. An alternate solution to this is
to not include the a priori values when calculating the γk(m′,m) used to
calculate σk(m′,m) [14]. This is expressed as

γ′k(m′,m) = p(rk|xk) (4.55)

and σ′k(m′,m) can now be expressed as

σ′k(m′,m) = αk−1(m
′)γ′k(m′,m)βk(m) (4.56)

The extrinsic output can now be obtained by modifying (4.50) as

p(uk = u; rK1)
′
=

∑
(m′,m)∈A(j)

k

σ′k(m′,m) (4.57)

and from this Pr(uk = 1|rK1)
′

can be formed through normalization as in
(4.51).

4.6 Turbo Codes 38

4.6.3 Iterative Decoding

Since the large number of states in turbo and turbo-like codes make optimal
decoding impossible, Berrou et al. introduced a suboptimal iterative decod-
ing algorithm, known as the turbo decoding algorithm. This algorithm was
based on iteratively using concatenated and locally optimal decoders based
on the BCJR algorithm. This eventually results in an APP estimate of the
transmitted information bits. Since there exists both parallel and serial en-
coder schemes there are also parallel and serial decoder schemes. They both
use the same decoding principles, albeit in different configurations, and hence
only one will be explained in any detail in this report. The decoder for the
serially concatenated code tends to be somewhat simpler to describe and is
thereby chosen here.

The inner decoder feeds the the outer decoder with extrinsic information
calculated from the received signal and a priori values. The outer decoder
calculates the APP of the outer encoder output for each iteration and feeds
this back to the inner decoder in the subsequent iteration, where it is used
as a priori values.

The SCCC decoding scheme can be observed in Figure 4.9. If the feedback
is disregarded one can observe that for each operation in the encoder there
is an inverse operation in the decoder. The order of the decoding operations
is also the reverse of the encoder.

CC1 CC2

CC1
-1 CC2

-1

u x

n

r

û

APPe a priori

mod

-1ĉ' ĉ

c c'

demod

Figure 4.9: Serially Concatenated Convolutional Turbo-like code

The inner decoder receives the soft-valued symbol sequence, rK1 and uses
this information to compute all γ′-values according to (4.55). Since γ′ is not
dependent on the a priori probabilities this can be calculated once for each
received sequence and then stored. With all γ′ calculated the decoder can,

4.6 Turbo Codes 39

for each iteration, calculate the γ-values as

γk(m′,m) = Pr(uk)γ′k(m′,m). (4.58)

During the first iteration the a priori probability used for these calculations
is unknown and is hence set to 0.5 if one uses the probability domain. The
α- and β-values can now be calculated according to (4.38) and (4.41). Now
σ′ can be calculated according to (4.56). With σ′ calculated the extrinsic
information output, called ĉ′ in Figure 4.9, can be computed according to
(4.57).

Thereafter, ĉ′ is de-interleaved to generate ĉ which is used by the outer
decoder. Here one cannot use the BCJR algorithm exactly as in the inner
decoder. Since the input now is a probability the branch cost has to be
calculated differently. The γ-value is obtained according to

γk(m′,m) =

n0−1∏
n=0

Pr(ĉ
(n)
k = c(n)(m′,m)) (4.59)

where c(n)(m′,m) ∈ {0, 1} is the code bit n associated with the trellis tran-
sition (m′,m). In other words

Pr(ĉ
(n)
k = c(n)(m′,m)) =

{
ĉ
(n)
k , c(n) = 1

1− ĉ(n)k , c(n) = 0
(4.60)

This γ will have to be re-calculated for each iteration since it is dependent
on ĉ which varies for each iteration. After this the decoding algorithm can
function as in the inner decoder and calculate α, β, and σ. From σ the APP-
values of the inserted information bits can be formed using (4.50). From
these the most likely bits for this iteration can be computed. The γ values
are also used to calculate the APP of the outer encoder output according to
(4.52). This is then interleaved to form the a priori information and a new
iteration is begun. In the new iteration these priors are now used by the inner
decoder in (4.44). Except for this difference everything else is done in the
same manner as in the first iteration. This iterative process continues until
a fixed number of iterations have been performed or some stopping criterion
has been met. After this the APP-values of the input bits for this iteration
are returned and decisions can be performed on these to form ûK

1 .
For PCCC turbo codes the basics of the algorithm are similar but there

are some differences to take into consideration. These differences are related

4.6 Turbo Codes 40

to the different decoding scheme that PCCC encoding requires, see Figure
4.10.

mod

mod

mod

CC1
-1

CC2
-1

-1

CC1

CC2

u

n

n

n û

Figure 4.10: Parallel Concatenated Convolutional Turbo code

Performance of Parallel and Serial Turbo and Turbo-like Codes

While both PCCC and SCCC achieve performance close to the Shannon
limit there are some differences. For the same interleaver length and rate
PCCC performs better at high values of BER. However, in the low BER
region PCCC the slope of the BER curve has a considerable change of slope,
which is commonly called the ”error floor,” which SCCC does not have. This
results in SCCC outperforming PCCC in the low BER region.

Chapter 5

Implementation and Results

The IT++ turbo decoder that is wrapped using SWIG is not a stand alone
class. It requires other functions such as modulation, adding noise and count-
ing errors in order for any results to be obtained. It also requires the correct
parameters to be passed to it, such as the noise variance and the generator
vectors. Since it functions at such low BER one also needs to send it large
amounts of information bits in order for the simulation results to be statisti-
cally sound. To make sure all this would not cause problems once the IT++
turbo decoder was successfully wrapped, a Monte Carlo loop with an SCCC
turbo-like decoder was implemented in Python beforehand. The main file is
called turbo.py, see Appendix B.2.1.

The Monte Carlo loop has two stopping criteria: it has to have processed
at least a certain amount of blocks and a certain amount of errors. The first
criterion will ensure that at least some blocks are used when the BER is
high, otherwise all errors could occur in a single block. The second criterion
guarantees that for low BER, enough blocks are sent so that the results are
statistically meaningful.

With the Monte Carlo loop tested and completed the SCCC turbo-like
encoder and decoder were implemented. What we wanted to achieve was a
Python code that shows the BER for each SNR value and each iteration the
decoder performs.

The Python code is implemented in such a manner that it is possible to
replace and re-use the different functions. In order to show how SWIG can
be used interactively with Python the encoder and decoder were replaced
with the IT++ encoder and decoder functions. These functions are a part
of the class Turbo Codec and in order to integrate them with Python the

5.1 Wrapping IT++ 42

Figure 5.1: BER plot for recursive [14,15] turbo code.

class needed to be wrapped. The results of running this Monte Carlo loop
are presented in Figure 5.1. The simulated code is a recursive [14,15] turbo
code with interleaver size 16384.

5.1 Wrapping IT++

The main problem encountered when trying to wrap the class Turbo Codec

was to wrap the special data structures that IT++ defines. Let us illustrate
the problem with an example.

Turbo Codec contains an encoder whose function declaration looks like

void encode (const bvec &input , bvec &output)

The arguments to the function are references to the type bvec which is a
binary vector. This vector is not a standard C++ data structure but is
defined by IT++. Therefore we cannot pass the values from Python to
SWIG as is the case when we have an int or double, etc. Since SWIG does
not recognize these special data types and cannot perform a standard type
conversion they have to be handled separately.

Assume we have generated a bit sequence in Python that is of the data
structure list . Now, we want to pass this to the IT++ encoder but in order
to do that the list first has to be converted to a standard C++ data type

5.1 Wrapping IT++ 43

that has the same kind of structure as a list. In section 3.6.1 it was described
how std :: vector can be used. We can utilize this class to pass values back
and forth between Python and SWIG, however, in order to complete a call
to encode, two extra conversions are required. A first conversion is made in
Python by converting the list to a vectori (following the declaration in 3.6.1)
like

Convert from a ”python l i s t ” to v e c t o r i (vec tor<in t >)
def l i s t t o v e c i (v1) :

v2 = ve c t o r i (l en (v1))
for i in range (l en (v1)) :

v2 [i] = v1 [i]
return v2

The binary sequence is now a vector<int> which must be converted into a
bvec before it can be passed as an argument to encode. This conversion is
done as

/∗ Convert vec tor<in t> to bvec ∗/
bvec v e c i t o bv e c (vector<int> v1) {

bvec v2 = ze ro s b (v1 . s i z e ()) ;
for (int i =0; i<v1 . s i z e () ; i++) {

v2 [i] = v1 [i] ;
}
return v2 ;

}

Finally, the returned value from veci to bvec can be used as input to encode.
To pass the output from encode back to Python the values need to be con-
verted back in a similar way.

Now, to handle the required conversions in C++ we have created an
additional glue code which is wrapped instead of the target file. The created
glue code for the encode function looks like

vector<int> encode (vector<int>& i n f o b i t s) {
i tpp : : bvec ou tpu t b i t s ;
turbo . encode (v e c i t o bv e c (i n f o b i t s) , ou tpu t b i t s) ;
return bv e c t o v e c i (ou tpu t b i t s) ;

}

It takes the input, does the needed conversion, calls the target function and
converts the output before it is returned to Python. Each IT++ function
called from Python has its corresponding glue code function written in a file

5.1 Wrapping IT++ 44

called demo.cc. Two files, converters .h and converters .py, with all required
converters have been created, see Appendix B.1.7 and B.1.8. Figure 5.2
shows how these files are used by the C++ and Python modules.

converters.h

demo.cc

converters.py

turbo.pySWIG

Figure 5.2: Dependencies between converters and C++ and Python modules.

Let us now summarize what we have done. Since IT++ uses its own
defined data structures we cannot wrap the IT++ classes and functions di-
rectly. Instead we have created a glue code called demo.cc which is wrapped
instead. This glue code contains functions that call the IT++ functions and
includes converters .h.

The file which implements the Monte Carlo loop is turbo.py. It is also
the file that includes the SWIG generated Python module which enables
calls to demo.cc. It uses converters .py for handling non-standard C++ data
structures, such as list (), to demo.cc.

An alternative and more complex way to handle the IT++ data types is
to write a library similar to std vector . i. However, we will begin with using
converters .h and converters .py since the main task is to determine whether
BCL can be wrapped by SWIG or not.

5.1.1 Libraries

IT++ uses the libraries Basic Linear Algebra Subprograms (blas), Com-
plex Basic Linear Algebra Subprograms (cblas), Linear Algebra PACKage
(LAPACK), and Fastest Fourier Transform in the West (fftw), therefore
these have to be included in the setup file. The libraries blas, cblas, and
LAPACK all give support for linear algebra operations, whereas fftw is used
for computing discrete Fourier transforms.

5.2 Wrapping BCL 45

5.2 Wrapping BCL

The previous section showed how classes in IT++ can be wrapped. The goal
of this thesis however is to wrap a class in BCL.

Due to the Ericsson confidentiality policy we will not mention the real
name of the class or any variables but only show examples that describe the
principles behind certain code sections of the class. For the sake of simplicity
we will refer to the class as bcl class .

We have already seen how classes can be wrapped using converters .h.
However, writing glue code can be somewhat inefficient and cumbersome. A
better way would be to wrap a BCL class without using any glue code. Such
a solution would require a library similar to std vector . i, as mentioned in
section 3.6.1, but written for IT++ data types. This is however not in the
scope of this thesis. Instead, the aim is to examine whether it is possible at all
to wrap a BCL class. An attempt to wrap the BCL class directly was made
but this was prevented by protected sections in bcl class . Generally, SWIG
does not support protected or private declarations and simply ignores these
kind of sections [3]. The program will run until the protected variable is used
and then generate an error message about an unknown variable.

Since the BCL class cannot be wrapped without glue code it has been
wrapped in the same way as for IT++ where converters .h and converters .py

are used for passing IT++ data structures between C++ and Python.
The main problem encountered when wrapping bcl class was to wrap

namespaces. To illustrate, consider the following header file

/∗ Header f i l e ns example . h ∗/

#inc lude ”b . h”

namespace a {
using namespace b ;

}

In normal C++ code this will function without any problem if the declaration
of b is written in b.h. However, in SWIG this would give the error message

Error : Nothing known about namespace ’ b ’

The preprocessor simply ignores the namespace declaration in b.h. A work-
around to this problem is to add %include b.h before %include ns example.h

5.2 Wrapping BCL 46

in the interface file. This solution is based on making sure that SWIG sees
the declaration of namespace b before it processes ns example.h.

The same error will be generated if namespace b is not defined. This can
be solved by defining the namespace in the interface file like

/∗ I n t e r f a c e f i l e ns example . i ∗/

%module ns example

%{
#include ”ns example . h”
%}

namespace b {} ;

%inc lude ”ns example . h”

With the solutions converters .h, converters .py, and glue code it is possible to
wrap BCL.

Chapter 6

Discussion and Conclusion

The result of having a C++ function wrapped using SWIG and having it
accessible in Python can be very useful. The interactivity of Python is com-
bined with the flexibility and fast execution time of C++. As can be seen
from our example of wrapping the IT++ turbo class, SWIG enables a very
convenient way of interacting with a C++ class from Python. The parame-
ters can be quickly altered without the need to recompile. The resulting data
of the C++ class is then available and can be manipulated and presented in
Python.

If the library to be wrapped has few dependencies to other libraries and
only contains standard C++ data types, then wrapping with SWIG is rather
straight forward. The libraries IT++ and BCL however use IT++ defined
data structures which introduces additional complexity. A favorable solution
to handle these data structures would be a library similar to std vector . i.
However, BCL includes protected sections which SWIG does not support,
therefore such a solution is not applicable in this case. Instead we have
implemented a solution to cope with the restraints of BCL. It was achieved,
not by wrapping the functions/classes themselves but rather by wrapping
written glue code for each function/class.

In order to pass special data types between Python and C++ the created
files converters .h and converters .py are used. This solution is somewhat cum-
bersome. Since Python is a typeless language the user needs to understand
what data types are used by the functions and make the appropriate type
conversions. Although writing this glue code might seem ponderous, it only
needs to be done once. To decide whether it is beneficial to wrap modules in
this way one should consider the amount of time and effort that is required

48

to write the glue codes compared to the amount of usage. To give an ex-
ample, consider the IT++ turbo code. If we would have implemented the
Monte Carlo loop in C++, re-compilation would have been needed even af-
ter the slightest change, such as changing generator vectors. Since Python is
interpreted, by implementing the Monte Carlo loop in Python and importing
the wrapped IT++ turbo code, we would avoid these re-compilations. If the
turbo code will have to changed only a couple of times then maybe wrapping
it will not be beneficial. However, if it will be altered often, perhaps in a
testing environment, then using SWIG can have great advantages.

SWIG gives support for most standard C++ directives. There are how-
ever some limitations, such as that SWIG generally cannot handle private
or protected sections. This can be seen as a flaw of the tool, given that
these kind of data types are commonly used. There are work-arounds to this
problem, but it requires additional effort and knowledge from the user (such
as writing glue code). Ideally SWIG should handle this for the user. Apart
from protected sections, if we consider the fact that BCL uses non standard
C++ data types a solution similar to std vector . i should be possible. This
would remove the need for any glue code to be written by the user and would
thereby bring out the full potential of SWIG.

Bibliography

[1] “About it++.” http://itpp.sourceforge.net/current/index.html [Ac-
cessed 19 May 2011].

[2] “Templates.” http://www.cplusplus.com/doc/tutorial/templates/ [Ac-
cessed 19 May 2011].

[3] D. M. Beazley, “Swig-2.0 documentation.” http://www.swig.org/
Doc2.0/SWIGDocumentation.pdf [Accessed 1 June 2011].

[4] J. K. Ousterhout, “Scripting: Higher level programming for the 21st
century,” IEEE Computer magazine, 1998.

[5] “Distutils.” http://docs.python.org/distutils/setupscript.html [Ac-
cessed 19 May 2011].

[6] D. M. Beazley, “Swig-2.0 library.” http://www.swig.org/Doc2.0/Library.html
[Accessed 1 June 2011].

[7] C. Schlegel and L. C. Perez, Trellis Coding. Lightning Source Inc, 1997.

[8] S. Benedetto and E. Biglieri, Principles of Digital Transmission With
Wireless Applications. Kluwer Academic/Plenum Publishers, 1999.

[9] J. G. Proakis and M. Salehi, Digital Communications. McGraw-Hill,
5th ed., 2008.

[10] U. Madhow, Fundamentals of Digital Communications. Cambridge Uni-
versity Press, 2008.

[11] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of
linear codes for minimizing symbol error rate,” IEEE Transactions on
Information Theory, vol. 20, pp. 284–287, March 1974.

BIBLIOGRAPHY 50

[12] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near shannon limit
error-correcting coding and decoding,” in Proc. IEEE International
Conference on Communications, pp. 1064–1070, May 1993.

[13] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “Serial concate-
nation of interleaved codes: Performance analysis, design, and iterative
decoding,” IEEE Trans. Inform. Theory, vol. 44, pp. 909–926, 1998.

[14] S. Benedetto, D. Divsalar, F. Ieee, G. Montorsi, and F. Pollara, “A soft-
input soft-output app module for iterative decoding of concatenated
codes,” IEEE Commun. Lett, vol. 1, pp. 22–24, 1997.

[15] “Install it++.” http://itpp.sourceforge.net/stable/installation.html
[Accessed 6 June 2011].

[16] “Install swig.” http://sourceforge.net/projects/swig/files/swig/ [Ac-
cessed 6 June 2011].

[17] “install python.” http://diveintopython3.org/installing-python.html
#ubuntu [Accessed 9 June 2011].

[18] “Numpy.” http://sourceforge.net/projects/numpy/files/NumPy/ [Ac-
cessed 9 June 2011].

Acronyms

API Application Programming Interface

APP a posteriori probability

AWGN Additive White Gaussian Noise

BCL Baseband Core Library

BER Bit Error Rate

blas Basic Linear Algebra Subprograms

BPSK Binary Phase Shift Keying

cblas Complex Basic Linear Algebra Subprograms

fftw Fastest Fourier Transform in the West

LAPACK Linear Algebra PACKage

MAP Maximum a Posteriori Probability

ML Maximum Likelihood

MLSD Maximum Likelihood Sequence Decoding

OS Operating System

PCCC Parallel Concatenated Convolutional Codes

RCC Recursive Convolution Codes

SCCC Serially Concatenated Convolutional Codes

BIBLIOGRAPHY 52

SISO Soft Input Soft Output

SNR Signal to Noise Ratio

STL Standard Template Library

SWIG Simplified Wrapper Interface Generator

Appendix A

User’s Guide

This guide describes the steps required to wrap the encode() function in IT++
with SWIG and integrate it with Python. Installations vary depending on
the used Operating System (OS). These instructions are written for Linux
Ubuntu.

A.1 Setup

Before writing any code we need to install all required software.
1. Install IT++ following the instructions in [15].
2. Install SWIG. Most popular Linux distributions come with SWIG but

the version may vary depending on which distribution. The version used in
this thesis is 2.0.1 and it can be downloaded from [16].

3. Install Python. Most popular Linux distributions come with Python
but the version may vary depending on which distribution. The version used
in this thesis is 3.1.1 Follow the instructions in [17] to install. The numpy

package is needed in order to use functions such as rand(), sqrt(), etc. Version
1.6.0 is compatible with Python 3.x and can be found at [18].

A.2 Wrap

With all tools installed we can now start to wrap.
1. Create the interface file, see section 3.2.1 and appendix B.1.3. De-

pending on what type of data structures we want to pass between Python

A.2 Wrap 54

and C++ other instantiations of std :: vector can be made. New converters
can be written using std :: vector.

2. Create the glue code and the corresponding header file for the cho-
sen target function, see section 5.1, appendix B.1.1 and B.1.2. Make sure
converters .h is included in the .cc-file.

3. Write the setup file, see section 3.2.2 and appendix B.1.4. As men-
tioned in section 3.2.2 there are two ways to generate the extension module.
Here we use the second mentioned method, therefore, give the interface file,
target file and converters file as input to sources. When including libraries,
make sure they are built with the same gcc compiler version as the one used
for running SWIG.

4. Run the following command to generate the wrapper, python module
and shared library:

python setup . py bu i l d ex t −−i np l a c e

5. We can now import the python module into Python and use it together
with converters .py to pass data to the wrapped function. This can be done
in the command prompt like

>>>from demo import ∗
>>>from conve r t e r s import ∗

or it can be included into a .py-file, see appendix B.1.5.

Appendix B

Code

B.1 SWIG modules

B.1.1 demo.cc

/∗∗ The func t i on s in t h i s f i l e a c t s as g l u e code f o r c a l l i n g IT
++ func t i on s .

∗/

#include <iostream>
#include <s t r i ng>
#include <vector>
#include < i t b a s e . h>
#include <bc l . h>
#include ” turbo . h”
#include ”modulator . h”
#include ” e r r o r c oun t e r s . h”
#include ”demo . h”
#include ” conve r t e r s . h”

using namespace std ;

// Globa l o b j e c t s
i tpp : : Turbo Codec turbo ;

/∗∗ Ca l l s the IT++ func t i on decode
@param rec A vec to r con ta in ing r e c e i v ed data
@return A vec to r con ta in ing the decoded r e c e i v ed data

B.1 SWIG modules 56

∗/
vector<int> decode (vector<double> r e c) {

i tpp : : bvec d e c b i t s ;
i tpp : : i v e c i t e r ;
turbo . decode (vecd to vec (r ec) , d e c b i t s , i t e r) ;
return bv e c t o v e c i (d e c b i t s) ;

}

/∗∗ Ca l l s the IT++ func t i on encode
@param i n f o b i t s A vec to r con ta in ing in format ion b i t s
@return A vec to r con ta in ing the encoded in format ion b i t s

∗/
vector<int> encode (vector<int>& i n f o b i t s) {

i tpp : : bvec ou tpu t b i t s ;
turbo . encode (v e c i t o bv e c (i n f o b i t s) , ou tpu t b i t s) ;
return bv e c t o v e c i (ou tpu t b i t s) ;

}

/∗∗ Ca l l s the IT++ func t i on wcdma turbo in t e r l eave r s equence
@param n In t e r l e a v e r l e n g t h
@return A vec to r con ta in ing the i n t e r l e a v e r sequence

∗/
vector<int> g e t i n t e r l e a v e r (int n) {

return i v e c t o v e c i (i tpp : : wcdma turbo inte r l eaver sequence (n
)) ;

}

/∗∗ Ca l l s the IT++ func t i on se t paramete r s . I n i t i a l i z e turbo f o r
l o g max decoding
@param gen1 A vec to r con ta in ing the genera tor po lynomia l s

f o r the f i r s t c on s t i t u en t encoder
@param gen2 A vec to r con ta in ing the genera tor po lynomia l s

f o r the second con s t i t u en t encoder
@param con s t r a i n t l e n g t h The con s t r a i n t l e n g t h o f the two

con s t i t u en t encoders
@param i n t e r l e a v e r I n t e r l e a v e r sequence
@param i n i t e r a t i o n s The number o f decoding i t e r a t i o n s
@param in l o gmax s c a l e f a c t o r This parameter a l l ow s f o r a

down−s c a l i n g o f the e x t r i n s i c in format ion t ha t w i l l be
passed on to the next decoder

∗/
void i n i t turbo max (vector<s t r i ng>& gen1 , vector<s t r i ng>& gen2 ,

B.1 SWIG modules 57

int c on s t r a i n t l e n g t h , vector<int>& in t e r l e a v e r , int
i t e r a t i o n s , double i n l o gmax s c a l e f a c t o r) {

i tpp : : i v e c gen1 ive c = v e c s t o i v e c (gen1) ;
i tpp : : i v e c gen2 ive c = v e c s t o i v e c (gen2) ;
i tpp : : i v e c i n t e r l e a v e r i v e c = v e c i t o i v e c (i n t e r l e a v e r) ;
turbo . s e t paramete r s (gen1 ivec , gen2 ivec , c on s t r a i n t l eng th ,

i n t e r l e a v e r i v e c , i t e r a t i o n s , ”LOGMAX” ,
i n l o gmax s c a l e f a c t o r) ;

}

/∗∗ Ca l l s the IT++ func t i on se t paramete r s . I n i t i a l i z e turbo f o r
l o g map decoding
@param gen1 A vec to r con ta in ing the genera tor po lynomia l s

f o r the f i r s t c on s t i t u en t encoder
@param gen2 A vec to r con ta in ing the genera tor po lynomia l s

f o r the second con s t i t u en t encoder
@param con s t r a i n t l e n g t h The con s t r a i n t l e n g t h o f the two

con s t i t u en t encoders
@param i n t e r l e a v e r I n t e r l e a v e r sequence
@param i n i t e r a t i o n s The number o f decoding i t e r a t i o n s

∗/
void i n i t turbo map (vector<s t r i ng>& gen1 , vector<s t r i ng>& gen2 ,

int c on s t r a i n t l eng th , vector<int>& in t e r l e a v e r , int
i t e r a t i o n s) {

i tpp : : i v e c gen1 ive c = v e c s t o i v e c (gen1) ;
i tpp : : i v e c gen2 ive c = v e c s t o i v e c (gen2) ;
i tpp : : i v e c i n t e r l e a v e r i v e c = v e c i t o i v e c (i n t e r l e a v e r) ;
turbo . s e t paramete r s (gen1 ivec , gen2 ivec , c on s t r a i n t l eng th ,

i n t e r l e a v e r i v e c , i t e r a t i o n s , ”LOGMAP”) ;
}

/∗∗ Set s c a l i n g f a c t o r
@param Lc Sca l ing f a c t o r

∗/
void s e t s c a l e f a c t o r (double Lc) {

turbo . s e t s c a l i n g f a c t o r (Lc) ;
}

B.1.2 demo.h

#include <vector>
using namespace std ;

B.1 SWIG modules 58

vector<int> decode (vector<double> r e c) ;
vector<int> encode (vector<int>& i n f o b i t s) ;
vector<int> g e t i n t e r l e a v e r (int n) ;
void i n i t turbo max (vector<s t r i ng>& gen1 , vector<s t r i ng>& gen2 ,

int c on s t r a i n t l eng th , vector<int>& in t e r l e a v e r , int
i t e r a t i o n s , double i n l o gmax s c a l e f a c t o r) ;

void i n i t turbo map (vector<s t r i ng>& gen1 , vector<s t r i ng>& gen2 ,
int c on s t r a i n t l eng th , vector<int>& in t e r l e a v e r , int
i t e r a t i o n s) ;

void s e t s c a l e f a c t o r (double Lc) ;

B.1.3 demo.i

%module demo

%inc lude ” s t d s t r i n g . i ”
%inc lude ” s t d v e c t o r . i ”

%{
#include < i t b a s e . h>
#include ”demo . h”
%}

// I n s t a n t i a t i o n s o f v e c t o r (s t d v e c t o r . i)
namespace std {

%template (v e c t o r i) vector<int >;
%template (vectord) vector<double>;
%template (v e c t o r s) vector<std : : s t r i ng >;
} ;

%inc lude ”demo . h”

B.1.4 setup.py

from d i s t u t i l s . core import ∗
demo module = Extension (

’ demo ’ ,
s ou r c e s = [’demo . i ’ , ’demo . cc ’ , ’ c onve r t e r s . cc ’] ,

i n c l u d e d i r s = [’ example/path/ to / inc lude / f i l e / ’] ,

l i b r a r y d i r s =[’ example/path/ to / l i b r a r y / ’] ,

l i b r a r i e s =[’ lapack ’ , ’ b l a s ’ , ’ f f tw3 ’ , ’ cb l a s ’ , ’ i tpp−ex t e rna l ’ , ’
lapack−noopt ’ , ’ g f o r t r an ’ , ’ i tpp ’] ,

B.1 SWIG modules 59

sw ig opt s=[”−c++”]
)
setup (

name = ’demo ’ ,
v e r s i on = ’ 3 .0 ’ ,
author = ”Oskar Arivdsson Tjader , Linh Tran” ,
d e s c r i p t i o n = ” swig demo us ing IT++” ,
ext modules = [demo module] ,
py modules = [”demo”]

)

B.1.5 turbo.py

Note : The IT++ decoder does not return the d i f f e r e n t BER for
each i t e r a t i o n but only for the l a s t . S ince we want to show
i t s performance for each i t e r a t i o n and SNR value we need to
i n s t a n t i a t e a new decoder for each i t e r a t i o n o f each \ac{SNR}
to get around this

from demo import ∗
from conve r t e r s import ∗

from he lp func s import ∗
from com funcs import∗
from he lp func s import∗

from numpy import array

de f main () :

BLOCK SIZE = 16384
c on s t r a i n t l e n g t h = 4
gen = (’ 013 ’ , ’ 015 ’)
metr ic = ’LOGMAP’
l o g s c a l e f a c t o r = 0 .7

SNR dB min = 0 # min SNR
SNR dB max = 50 # max SNR
SNR dB step = 5 # SNR granu l a r i t y
Eb = 1 # Bit (symbol) energy

MIN NO ERRORS = 100 # Limit for number o f e r r o r s (
monte c a r l o)

MIN NO BLOCKS = 100 # Limit for number o f

B.1 SWIG modules 60

t ransmit ted b locks (monte c a r l o)
ITERATIONS = 12 # No o f i t e r a t i o n s in turbo

decoder

SNR dB vec = range (SNR dB min , SNR dB max + SNR dB step ,
SNR dB step)

SNR dB vec real = array (SNR dB vec , f loat) /100

generate i n t e r l e a v e r
i n t e r l e a v e r = l i s t t o v e c i (g e t i n t e r l e a v e r (BLOCK SIZE))

for SNR idx in SNR dB vec real :
len sym=49164
ra t e = BLOCK SIZE/ len sym
SNR linear = pow(10 , SNR idx /10)
N0 = (1/ SNR linear) / ra t e
var=N0/2

for i t e r a t i o n in range (ITERATIONS) :

random . seed (1)
g en ve c i = l i s t t o v e c s (gen)
i f (metr ic ==’LOGMAX’) :

in i t turbo max (gen vec i , gen vec i ,
c on s t r a i n t l eng th , i n t e r l e a v e r ,
i t e r a t i o n +1, metric , l o g s c a l e f a c t o r
)

else :
i n i t turbo map (gen vec i , gen vec i ,

c on s t r a i n t l eng th , i n t e r l e a v e r ,
i t e r a t i o n +1, metr ic)

Generate in fo rmat ion b i t s
i n f o b i t s =l i s t t o v e c i (c r e a t e da ta (BLOCK SIZE))

Encode in fo rmat ion b i t s
ou tpu t b i t s = l i s t t o v e c i (encode (i n f o b i t s))

Modulate b i t s
symbols = modulate (ou tpu t b i t s)

r a t e = (f loat (BLOCK SIZE) / l en (symbols))
No err = 0
no b locks = 0

B.1 SWIG modules 61

while (No err < MIN NO ERRORS) or (no b locks <
MIN NO BLOCKS) :

no i s e = create AWGN(len sym , var)
r ec = l i s t t o v e c d (symbols + no i s e)

#s e t s c a l e f a c t o r
s c a l e f a c t o r = 4/N0
s e t s c a l e f a c t o r (s c a l e f a c t o r)

Decode r e c i v ed symbols
d e c b i t s = decode (r ec)

Count e r r o r s
No err += coun t e r r o r s (i n f o b i t s ,

d e c b i t s)
no b locks += 1

ber = No err /(no b locks ∗BLOCK SIZE)
pr in t (”SNR : ” , SNR idx)
p r i n t (” i t e r a t i o n : ” , i t e r a t i o n +1)
p r in t (” BER : ” , ber)
f i l ename=’BER’+metr ic+’ . txt ’
with open (f i l ename , mode=’ a ’ , encoding=’ utf−8 ’)

as a f i l e :
a f i l e . wr i t e (” ” + s t r (ber))

B.1.6 converters.cc

/∗∗ This f i l e con ta ins f unc t i on s f o r conve r t a t i on between i t p p : :
Vec<Type> and s t d : : vec tor<Type>

∗/

#include <vector>
using namespace std ;
#include ” conve r t e r s . h”

/∗∗ Convert v e c t o r o f type i t p p : : bvec to s t d : : vec tor<in t>
∗ @param v1 vec to r o f b i n a r i e s
∗ @return vec t o r
∗/
vector<int> bv e c t o v e c i (i tpp : : bvec v1) {

vector<int> v2 ;
for (int i =0; i<v1 . s i z e () ; i++) {

B.1 SWIG modules 62

v2 . push back (v1 [i]) ;
}
return v2 ;

}

/∗∗ Convert v e c t o r o f type i t p p : : i v e c to s t d : : vec tor<in t>
∗ @param v1 vec to r o f i n t e g e r s
∗ @return vec t o r
∗/
vector<int> i v e c t o v e c i (i tpp : : i v e c v1) {

vector<int> v2 ;
for (int i =0; i<v1 . s i z e () ; i++) {

v2 . push back (v1 [i]) ;
}
return v2 ;

}

/∗∗ Convert v e c t o r o f type i t p p : : vec to s t d : : vec tor<double>
∗ @param v1 vec to r o f decimal va l u e s
∗ @return vec t o r
∗/
vector<double> vec to vecd (i tpp : : vec v1) {

vector<double> v2 ;
for (int i =0; i<v1 . s i z e () ; i++) {

v2 . push back (v1 [i]) ;
}
return v2 ;

}

/∗∗ Convert v e c t o r o f type s t d : : vec tor<in t> to i t p p : : bvec
∗ @param v1 vec to r o f i n t e g e r s
∗ @return vec t o r
∗/
i tpp : : bvec v e c i t o bv e c (vector<int> v1) {

i tpp : : bvec v2 = itpp : : z e r o s b (v1 . s i z e ()) ;
for (int i =0; i<v1 . s i z e () ; i++) {

v2 [i] = v1 [i] ;
}
return v2 ;

}

/∗∗ Convert v e c t o r o f type s t d : : vec tor<in t> to i t p p : : i v e c
∗ @param v1 vec to r o f i n t e g e r s
∗ @return vec t o r
∗/

B.1 SWIG modules 63

i tpp : : i v e c v e c i t o i v e c (vector<int> v1) {
i tpp : : i v e c v2 = itpp : : z e r o s i (v1 . s i z e ()) ;
for (int i =0; i<v1 . s i z e () ; i++) {

v2 [i] = v1 [i] ;
}
return v2 ;

}

/∗∗ Convert v e c t o r o f type s t d : : vec tor<s t r i n g> to i t p p : : i v e c
∗ @param v1 vec to r o f s t r i n g s
∗ @return vec t o r
∗/
i tpp : : i v e c v e c s t o i v e c (vector<s t r i ng> v1) {

i tpp : : i v e c v2 = itpp : : z e r o s i (v1 . s i z e ()) ;
s t r i n g tmp ;
for (int j =0; j< v1 . s i z e () ; j++){

tmp = ”” ;
for (int i =0; i<v1 [j] . s i z e () ; i++) {

tmp += v1 [j] [i] ;
}
v2 [j] = a t o i (tmp . c s t r ()) ;

}
return v2 ;

}

/∗∗ Convert v e c t o r o f type s t d : : vec tor<in t> to i t p p : : vec
∗ @param v1 vec to r o f i n t e g e r s
∗ @return vec t o r
∗/
i tpp : : vec v e c i t o v e c (vector<int> v1) {

i tpp : : vec v2 = itpp : : z e r o s (v1 . s i z e ()) ;
for (int i =0; i<v1 . s i z e () ; i++) {

v2 [i] = v1 [i] ;
}
return v2 ;

}

/∗∗ Convert v e c t o r o f type s t d : : vec tor<double> to i t p p : : vec
∗ @param v1 vec to r o f doub le
∗ @return vec t o r
∗/
i tpp : : vec vecd to vec (vector<double> v1) {

i tpp : : vec v2 = itpp : : z e r o s (v1 . s i z e ()) ;
for (int i =0; i<v1 . s i z e () ; i++) {

v2 [i] = v1 [i] ;

B.1 SWIG modules 64

}
return v2 ;

}

B.1.7 converters.h

#include < i t b a s e . h>
#include <vector>
using namespace std ;

vector<int> bv e c t o v e c i (i tpp : : bvec v1) ; // i t p p : : bvec
to vec tor<in t>

vector<int> i v e c t o v e c i (i tpp : : i v e c v1) ; // i t p p : : i v e c
to vec tor<in t>

vector<double> vec to vecd (i tpp : : vec v1) ; // i t p p : : vec
to vec tor<in t>

i tpp : : bvec v e c i t o bv e c (vector<int> v1) ; // vector<in t>
to i t p p : : bvec

i tpp : : i v e c v e c i t o i v e c (vector<int> v1) ; // vector<in t>
to i t p p : : i v e c

i tpp : : i v e c v e c s t o i v e c (vector<s t r i ng> v1) ; // vector<
s t r i n g> to i t p p : : i v e c

i tpp : : vec v e c i t o v e c (vector<int> v1) ; // vector<in t>
to i t p p : : vec

i tpp : : vec vecd to vec (vector<double> v1) ; // vector<
f l o a t> to i t p p : : vec

B.1.8 converters.py

from demo import vectori from demo import vectord from demo import vec-
tors

Convert a ”python l i s t ” to v e c t o r i (vector<int>)
inparam : a l i s t o f i n t e g e r s
return : a vector<int>
de f l i s t t o v e c i (v1) :

v2 = ve c t o r i (l en (v1))
for i in range (l en (v1)) :

v2 [i] = v1 [i]
return v2

Convert a ”python l i s t ” to v e c t o r f (vector<f loat >)
inparam : a l i s t o f f l o a t s
return : a vector<f loat>
de f l i s t t o v e c d (v1) :

v2 = vectord (l en (v1))

B.1 SWIG modules 65

for i in range (l en (v1)) :
v2 [i] = v1 [i]

return v2

Convert a ”python l i s t ” to ve c t o r s (vector<s t r i ng >)
inparam : a l i s t o f s t r i n g s
return : a vector<s t r i ng>
de f l i s t t o v e c s (v1) :

v2 = vec to r s (l en (v1))
for i in range (l en (v1)) :

v2 [i] = v1 [i]
return v2

B.1.9 com funcs.py

from he lp func s import ∗

from numpy import array
from numpy import random
from numpy import s q r t
from numpy import z e r o s
from numpy import t ranspose
from math import c e i l

#
−−#

BPSK modulation .
inparam : a b i t
re turn : an i n t (−1 or 1)
def BPSK(b i t) :

return −b i t ∗2 + 1
#
−−#

Generate stream of ones and zeros , (normal ly d i s t r i b u t e d) , e . g
. array ([1 , 0 , 1 , 1 , 0])

inparam : l en g t h o f generated stream
return : array o f ones and zeros
def c r e a t e da ta (n) :

return random . rand int (0 , 2 , (n ,)) . t o l i s t ()
#
−−#

B.1 SWIG modules 66

Generate array wi th AWGN
inparam1 : l en g t h o f generated stream
inparam2 : no i se var iance
return : array o f f l o a t s
def create AWGN(n , var i ance) :

return s q r t (var iance) ∗random . randn (n)
#
−−#

Hard dec i s i on −1 −> 0 , 1 −> 1
inparam : l i s t o f −1 and 1
return : l i s t o f 1 and 0
def hard dec (data) :

for i in range (l en (data)) :
i f (data [i]>0) : data [i]=1
else : data [i]=0

return data
#
−−#

In t e r l e a v e r
inparam : l en g t h o f array
return : l i s t or array wi th i n t e r l e a v e d e lements and array wi th

i nd e c i e s
def g e n i n t e r l e a v e r (n) :

i n t e r l e a v e r=range (n)
random . s h u f f l e (i n t e r l e a v e r)
return i n t e r l e a v e r

#
−−#

In t e r l e a v e r
inparam : l i s t or array o f i n t s or f l o a t s
re turn : l i s t or array wi th i n t e r l e a v e d e lements and array wi th

i nd e c i e s
def i n t e r l e a v e (b i t s , i n t e r l e a v e r) :

b i t s=s t r 2a r r ay (b i t s)
i n t e r l e a v e d b i t s=b i t s [i n t e r l e a v e r]
return i n t e r l e a v e d b i t s . t o l i s t ()

#
−−#

Dein t e r l e a v e r
inparam1 : l i s t or array o f i n t s or f l o a t s

B.1 SWIG modules 67

inparam2 : array wi th i n d e c i e s
re turn : l i s t or array wi th d e i n t e r l e a v e d e lements
def d e i n t e r l e a v e r (i n t e r l e a v e d b i t s , i n t e r l e a v e r) :

s t r 2 a r r ay (i n t e r l e a v e d b i t s)
d e i n t e r l e a v e d b i t s=ze ro s (l en (i n t e r l e a v e d b i t s) , f l o a t)
d e i n t e r l e a v e d b i t s [i n t e r l e a v e r]= i n t e r l e a v e d b i t s

return d e i n t e r l e a v e d b i t s . t o l i s t ()
#
−−#

Modulation wi th BPSK
inparam : l i s t o f s t r i n g s e . g [’ 1 ’ , ’ 1 ’ , ’ 0 ’]
re turn : l i s t o f i n t s [1 ,1 ,−1]
def modulate (data) :

mod data = []
for d in data :

mod data . append (BPSK(in t (d)))
return mod data

#
−−#

Normalize a long columns in a matrix
inparam : a matrix wi th i n t s or f l o a t s
re turn : column−normal ized matrix
def norm mtrx col (mtrx) :

for c o l in range (shape (mtrx) [1]) :
i f (sum(mtrx [: , c o l]) != 0) :

mtrx [: , c o l]=mtrx [: , c o l] / sum(mtrx [: , c o l])
return mtrx

#
−−#

Count number o f e r ro r s
def c oun t e r r o r s (in f o data , hard data) :

return l en (t ranspose ((array (i n f o da t a)−array (hard data))
. nonzero ()))

#
−−#

Normalize a long columns in a matrix
inparam : an array
return : normal ized array
def norm(array) :

sum array=sum(array)

B.2 Turbo Code 68

i f (sum array != 0) :
for idx in range (l en (array)) :

array [idx]= f l o a t (array [idx]) / sum array
return array

B.2 Turbo Code

B.2.1 turbo.py

#
−−#

BLOCK SIZE = 5
GENERATORS = (’ 11 ’ , ’ 1101 ’)
RATE INNER = 1.0/2
RATEOUTER = 1.0/2
RATETOT= RATEOUTER∗RATE INNER

SNR dB min = −25 # min SNR
SNR dB max = −25 # max SNR
SNR dB step = 5 # SNR granu l a r i t y
Eb = 1 # Bit (symbol) energy

MIN NO ERRORS = 0 # Limit f o r number o f e r ro r s (monte
ca r l o)

MIN NO BLOCKS = 1 # Limit f o r number o f t ransmi t t ed
b l o c k s (monte ca r l o)

ITERATIONS = 7 # No of i t e r a t i o n s in turbo decoder

SNR dB vec = range (SNR dB min , SNR dB max + SNR dB step ,
SNR dB step)

#
−−#

import s c ipy . i o as s i o
from oute r encoder import ∗
from i nne r encode r import ∗
from BCJR inner import ∗
from BCJR outer import ∗
from he lp func s import ∗
from com funcs import∗

from numpy import array

B.2 Turbo Code 69

from numpy import random
from numpy import s q r t
from numpy import z e r o s
from numpy import ones
from numpy import t ranspose
from math import c e i l
import matp lo t l i b . pyplot as p l t

#
−−#

Main
def main () :

n = len (GENERATORS) # leng t h o f one code word
k = in t (RATEOUTER∗n) # leng t h o f one input
mem = 0
for g in GENERATORS:

mem = max(mem, l en (g))

BER mtrx=ze ro s ((ITERATIONS, l en (SNR dB vec)))
i n f o b i t s = c r ea t e da ta (BLOCK SIZE) # genera te

in format ion b i t s
i n f o b i t s a r r a y = array (i n f o b i t s . t o l i s t () + ze ro s (mem−1, i n t

) . t o l i s t ()) # append t a i l
i n f o b i t s=a r r ay2 s t r (i n f o b i t s a r r a y)

oute r enc = OUTERENC(GENERATORS,RATEOUTER,mem) #
in s t a n t i a t e outer encoder

f f t a b l e o u t e r , f b t ab l e ou t e r , c ode t ab l e one s ou t e r ,
c o d e t a b l e z e r o s o u t e r = oute r enc . c r e a t e t r a n s t a b l e () #
crea t e outer alpha , be ta t a b l e s

c od ed b i t s ou t e r = oute r enc . encode (i n f o b i t s) # outer
encode

i n t e r l e a v e r = g en i n t e r l e a v e r (l en (c od ed b i t s ou t e r))
c od ed b i t s ou t e r=i n t e r l e a v e (coded b i t s ou t e r , i n t e r l e a v e r) #

in t e r l e a v e coded b i t s
c od ed b i t s ou t e r=ar r ay2 s t r (array (coded b i t s ou t e r , i n t))

i nne r enc = INNER ENC(GENERATORS,RATE INNER,mem) #
in s t a n t i a t e n inner encoder

f f t a b l e i n n e r , f b t ab l e i nn e r , code tab l e one s ,
c o d e t ab l e z e r o s = inne r enc . c r e a t e t r a n s t a b l e () #

B.2 Turbo Code 70

c r ea t e inner alpha , be ta t a b l e s
coded b i t s , s t a t e = inne r enc . encode (coded b i t s ou t e r , ’ ’ .

z f i l l (mem−1)) # inner encode

inner encoder i s r e cu r s i v e −> t e rmina t ing b i t s depend on
s t a t e

i f (s t a t e [0]== ’ 1 ’) :
t e rm b i t s=’ 100 ’

else :
t e rm b i t s=’ 000 ’

coded term , s ta t e t e rm=inne r enc . encode (te rm bi t s , s t a t e) #
encode termina t ing b i t s

coded b i t s=coded b i t s+coded term # append t a i l

mod data = modulate (coded b i t s) # modulate

t t o t i n n e r = in t (c e i l (l en (mod data) ∗RATE INNER)) # number
o f t ransmi t t ed symbols per b l o c k

BER vec = []
BER vec uncod = []
BER vec turbo = []
BER turbo iter = ze ro s (ITERATIONS)
n o e r r t u r b o i t e r = ze ro s (ITERATIONS)
SNR dB vec real = array (SNR dB vec , f l o a t) /100

b c j r i n n e r = BCJR inner (GENERATORS,RATE INNER, t t o t i n n e r ,
mem) # in s t a n t i a t e BCJR inner

b c j r o u t e r = BCJR outer (GENERATORS,RATEOUTER, i n t (c e i l (l en (
c od ed b i t s ou t e r) ∗RATEOUTER)) ,mem) # in s t a n t i a t e BCJR
outer

for SNR idx in range (l en (SNR dB vec real)) :

SNR linear = pow(10 , (f l o a t (SNR dB vec real [SNR idx]))
/10)

N0 = (f l o a t (Eb) /SNR linear) /(f l o a t (BLOCK SIZE) / l en (
mod data))

var = f l o a t (N0) /2 # noise var iance (f o r BPSK)
N0 uncod = f l o a t (Eb) /SNR linear
var uncod = f l o a t (N0 uncod) /2
no e r r = 0 # no of e r ro r s f o r a g iven SNR
no err uncod = 0

B.2 Turbo Code 71

no b locks = 0 # number o f t ransmi t t ed b l o c k s f o r
a g iven SNR

print ”∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ SNR dB : ” + s t r (f l o a t
(SNR dB vec real [SNR idx])) + ”
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗”

while (no e r r < MIN NO ERRORS) or (no b locks <
MIN NO BLOCKS) :
no i s e = create AWGN(len (mod data) , var)
r e c da ta = mod data + no i s e

uncod data = modulate (i n f o b i t s) + create AWGN(len (
i n f o b i t s) , var uncod)

a p p l i s t = (0 . 5∗ ones ((t t o t i n n e r))) . t o l i s t () # i n i t
a p r i o r i v e c t o r to inner decoder

cos t mtrx ex = b c j r i n n e r . c a l c c o s t mt rx ex (rec data
, f f t a b l e i n n e r , var) # gamma e x t r i n s i c

print ”∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ MONTE CARLO ” + s t r (
no b locks+1) + ” ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗”

for u in range (ITERATIONS) :
print ”−−−−−−− ITERARTION ” + s t r (u+1) + ”
−−−−−−−−”

b c j r i n n e r = BCJR inner (GENERATORS,RATE INNER,
t t o t i n n e r ,mem) # in s t a n t i a t e BCJR inner

b c j r o u t e r = BCJR outer (GENERATORS,RATEOUTER,
i n t (c e i l (l en (c od ed b i t s ou t e r) ∗RATEOUTER)) ,
mem) # in s t a n t i a t e BCJR outer

cos t mtrx inner , Pr FF inner = b c j r i n n e r .
f f d e c od e (rec data , f f t a b l e i n n e r , var ,
a pp l i s t , co s t mtrx ex) # alpha recurs ion ,
c a l c u l a t e gamma

Pr FB inner = b c j r i n n e r . fb decode (rec data ,
f b t ab l e i nn e r , c o s t mt rx inne r) # beta
recur s ion

s igma mtrx inner = b c j r i n n e r . ca l c s i gma (
cost mtrx ex , Pr FB inner , Pr FF inner ,
f f t a b l e i n n e r) # ca l c u l a t e sigma e x t r i n s i c

p r o b l i s t = b c j r i n n e r . c a l c p rob (
s igma mtrx inner , a p p l i s t) # ca l c u l a t e a
p o s t e r i o r i to outer decoder (e x t r i n s i c i n f o)

p r o b l i s t=d e i n t e r l e a v e r (p r o b l i s t , i n t e r l e a v e r)
de i n t e r l e a v e a p o s t e r i o r i

B.2 Turbo Code 72

cost mtrx , Pr FF = bc j r ou t e r . f f d e c od e (
f f t a b l e o u t e r , p r o b l i s t) # alpha recurs ion ,
c a l c u l a t e gamma

Pr FB = bc j r ou t e r . fb decode (p r ob l i s t ,
f b t ab l e ou t e r , cost mtrx) # beta recur s ion

sigma mtrx = bc j r ou t e r . ca l c s i gma (cost mtrx ,
Pr FB , Pr FF , f f t a b l e o u t e r) # ca l c u l a t e
sigma

a p p l i s t = bc j r o u t e r . ca l c app (sigma mtrx ,
c ode t ab l e one s ou t e r , c od e t ab l e z e r o s ou t e r
, p r o b l i s t) # ca l c u l a t e a p r i o r i to inner
decoder

a p p l i s t=i n t e r l e a v e (app l i s t , i n t e r l e a v e r) #
in t e r l e a v e a p r i o r i

a p p l i s t = padd (app l i s t , 0 . 5 ,mem−1) # append
t a i l

hard turbo = bc j r ou t e r . ha rd de c i s i on (sigma mtrx
, BLOCK SIZE) # hard de c i s i on f o r t h i s
i t e r a t i o n

no e r r tu rbo = sum(hard turbo != i n f o b i t s a r r a y
[0 : BLOCK SIZE])

print ” no e r r tu rbo : ” + s t r (no e r r tu rbo)
BER turbo = f l o a t (no e r r tu rbo) /BLOCK SIZE
print ”BER: ” + s t r (BER turbo)
BER mtrx [u , SNR idx] += no e r r tu rbo

no b locks += 1
hard uncod = hard dec (uncod data) # hard de c i s i on

f o r t h i s SNR and b l o c k
no e r r += no e r r tu rbo
print ” no e r r : ” + s t r (no e r r)
BER = f l o a t (no e r r) /(no b locks ∗BLOCK SIZE)
print ”BER: ” + s t r (BER)
no err uncod += sum(hard uncod != i n f o b i t s a r r a y)
BER uncod = f l o a t (no err uncod) /(no b locks ∗

BLOCK SIZE)
BER turbo iter=array (n o e r r t u r b o i t e r , f l o a t) /(

no b locks ∗BLOCK SIZE)

BER vec turbo . append (BER turbo iter /(no b locks))

B.2 Turbo Code 73

BER vec . append (BER)
BER vec uncod . append (BER uncod)
BER mtrx [: , SNR idx] /= (no b locks ∗BLOCK SIZE)

print ”BER mtrx : ” + s t r (BER mtrx)
print ” no b locks : ” +s t r (no b locks)

s i o . savemat (’ ber mtrx .mat ’ , { ’BER mtrx ’ : BER mtrx})
p l t . f i g u r e (1)
p l t . subplot (211)
p l t . semi logy (SNR dB vec real , BER vec , ’−o ’)
p l t . semi logy (SNR dB vec real , BER vec uncod , ’−x ’)
p l t . y l ab e l (’BER’)
p l t . x l ab e l (’SNR [dB] ’)
p l t . t i t l e (’BER vs SNR ’)
p l t . l egend ((’ coded ’ , ’ uncoded ’))

p l t . subplot (212)
for vec in BER mtrx [: ,] :

p l t . semi logy (SNR dB vec real , vec , ’−o ’)

p l t . y l ab e l (’BER 1− ’ + s t r (l en (BER vec turbo)) + ’
i t e r a t i o n s ’)

p l t . x l ab e l (’SNR [dB] ’)
p l t . t i t l e (’BER vs SNR ’)
p l t . show ()

B.2.2 com funcs.py

from he lp func s import ∗

from numpy import array
from numpy import random
from numpy import s q r t
from numpy import z e r o s
from numpy import t ranspose

#
−−#

BPSK modulation .
inparam : a b i t
re turn : an i n t (−1 or 1)
def BPSK(b i t) :

B.2 Turbo Code 74

return b i t ∗2 − 1
#
−−#

Generate stream of ones and zeros , (normal ly d i s t r i b u t e d) , e . g
. array ([1 , 0 , 1 , 1 , 0])

inparam : l en g t h o f generated stream
return : array o f ones and zeros
def c r e a t e da ta (n) :

return random . rand int (0 , 2 , (n ,))
#
−−#

Generate array wi th AWGN
inparam1 : l en g t h o f generated stream
inparam2 : no i se var iance
return : array o f f l o a t s
def create AWGN(n , var i ance) :

return s q r t (var iance) ∗random . randn (n)
#
−−#

Hard dec i s i on −1 −> 0 , 1 −> 1
inparam : l i s t o f −1 and 1
return : l i s t o f 1 and 0
def hard dec (data) :

for i in range (l en (data)) :
i f (data [i]>0) : data [i]=1
else : data [i]=0

return data
#
−−#

In t e r l e a v e r
inparam : l en g t h o f array
return : l i s t or array wi th i n t e r l e a v e d e lements and array wi th

i nd e c i e s
def g e n i n t e r l e a v e r (n) :

i n t e r l e a v e r=range (n)
random . s h u f f l e (i n t e r l e a v e r)
return i n t e r l e a v e r

#
−−#

In t e r l e a v e r

B.2 Turbo Code 75

inparam : l i s t or array o f i n t s or f l o a t s
re turn : l i s t or array wi th i n t e r l e a v e d e lements and array wi th

i nd e c i e s
def i n t e r l e a v e (b i t s , i n t e r l e a v e r) :

b i t s=s t r 2a r r ay (b i t s)
i n t e r l e a v e d b i t s=b i t s [i n t e r l e a v e r]
return i n t e r l e a v e d b i t s . t o l i s t ()

#
−−#

Dein t e r l e a v e r
inparam1 : l i s t or array o f i n t s or f l o a t s
inparam2 : array wi th i n d e c i e s
re turn : l i s t or array wi th d e i n t e r l e a v e d e lements
def d e i n t e r l e a v e r (i n t e r l e a v e d b i t s , i n t e r l e a v e r) :

s t r 2 a r r ay (i n t e r l e a v e d b i t s)
d e i n t e r l e a v e d b i t s=ze ro s (l en (i n t e r l e a v e d b i t s) , f l o a t)
d e i n t e r l e a v e d b i t s [i n t e r l e a v e r]= i n t e r l e a v e d b i t s

return d e i n t e r l e a v e d b i t s . t o l i s t ()
#
−−#

Modulation wi th BPSK
inparam : l i s t o f s t r i n g s e . g [’ 1 ’ , ’ 1 ’ , ’ 0 ’]
re turn : l i s t o f i n t s [1 ,1 ,−1]
def modulate (data) :

mod data = []
for d in data :

mod data . append (BPSK(in t (d)))
return mod data

#
−−#

Normalize a long columns in a matrix
inparam : a matrix wi th i n t s or f l o a t s
re turn : column−normal ized matrix
def norm mtrx col (mtrx) :

for c o l in range (shape (mtrx) [1]) :
i f (sum(mtrx [: , c o l]) != 0) :

mtrx [: , c o l]=mtrx [: , c o l] / sum(mtrx [: , c o l])
return mtrx

#
−−#

B.2 Turbo Code 76

Count number o f e r ro r s
inparam1 : o r i g i n a l in format ion b i t s
inparam2 : es t imated b i t s
def c oun t e r r o r s (in f o data , hard data) :

return l en (t ranspose ((in f o data−hard data) . nonzero ()))
#
−−#

Normalize a long columns in a matrix
inparam : an array
return : normal ized array
def norm(array) :

sum array=sum(array)
i f (sum array != 0) :

for idx in range (l en (array)) :

array [idx]= f l o a t (array [idx]) / sum array
return array

B.2.3 help funcs.py

from numpy import array
from numpy import random
from numpy import s q r t
from numpy import z e r o s
from numpy import shape

#
−−#

Append a va lue (i n t or f l o a t) to the end o f a l i s t
inparam1 : a l i s t
inparam2 : number o f e lements to be appended
return : padded l i s t
def padd (l , v , n) :

for i in range (n) :
l . append (v)

return l
#
−−#

Append zeros to the end o f a s t r i n g
inparam1 : a s t r i n g
inparam2 : number o f z e ros to be appended
return : zero padded s t r i n g

B.2 Turbo Code 77

def append zeros (s t r i ng , n) :
for i in range (n) :

s t r i n g = s t r i n g + ’ 0 ’
return s t r i n g

#
−−#

Binary to decimal convers ion
inparam1 : a binary , s t r i n g or l i s t
re turn : decimal r ep r e s en t a t i on o f b inary
def bin2dec (number) :

i f i s i n s t a n c e (number , s t r) :
return i n t (number , 2)

e . g . ,
’110 ’ becomes 6

else :
return sum(number ∗ pow(2 , array (range (l en (number)−1,

−1, −1)))) # e . g . , [1 , 1 , 0] becomes 6

#
−−#

Decimal to b inary convers ion
inparam1 : decimal number
inparam2 : l en g t h o f the b inary output
re turn : b inary r ep r e s en t a t i on o f decimal
def dec2bin (dec num , b in l eng th) :

return bin (i n t (dec num)) . l s t r i p (’−0b ’) . z f i l l (b i n l eng th)

#
−−#

Returns a l l b inary combinat ions f o r an i n t e g e r e . g . 4 −>
[’ 00 ’ , ’ 01 ’ , ’ 10 ’ , ’ 11 ’]

inparam1 : an i n t e g e r
inparam2 : l en g t h o f the b inary output
re turn : l i s t o f b inary combinat ions (s t r i n g s)
def b in range (bin range , b in l eng th) :

l = []
for i in range (b in range) :

l . append (dec2bin (i , b i n l eng th))
return l

#
−−#

B.2 Turbo Code 78

Converts an array to s t r i n g e . g . array ([1 , 0 , 1]) −> ’101 ’
inparam1 : array
return : s t r i n g
def a r r ay2 s t r (a) :

s t r i n g = ’ ’
for elem in a :

s t r i n g = s t r i n g + s t r (elem)
return s t r i n g

#
−−#

Converts a s t r i n g to array e . g . ’101 ’ −> array ([1 , 0 , 1])
inparam1 : s t r i n g
return : array
def s t r 2 a r r ay (s t r i n g) :

array=ze ro s (l en (s t r i n g))
for i in range (l en (s t r i n g)) :

array [i]=(s t r i n g [i])
return array

#
−−#

Converts a s t r i n g to l i s t o f s t r i n g s e . g ’001 ’ −>
[’ 0 ’ , ’ 0 ’ , ’ 1 ’]

inparam1 : s t r i n g
return : l i s t o f s t r i n g s
def s t r 2 l i s t (s t r i n g) :

return s t r (s t r i n g) [1 : −1] . s p l i t (’ , ’)

#
−−#

Finds the index o f the maximum va lue f o r each column in a
matrix

inparam : matrix
re turn : l i s t o f i n d e c i e s
def maxidx mtrx col (Mtrx) :

max ind=ze ro s (((shape (Mtrx)) [1]) , i n t)
for c o l in range ((shape (Mtrx)) [1]) :

max ind [c o l]=((Mtrx [: , c o l]) . t o l i s t ()) . index (max(Mtrx [: ,
c o l]))

return max ind

B.2 Turbo Code 79

B.2.4 outer encoder.py

from numpy import dot
from numpy import t ranspose
from numpy import z e r o s
from math import l og
from numpy import append
from he lp func s import ∗
from operator import xor

#
−−#

class OUTERENC:

Contructor
def i n i t (s e l f , generator s , rate ,mem) :

s e l f . n = len (gene ra to r s) # number
o f codewords

s e l f . k = in t (ra t e ∗ s e l f . n) # number
o f input b i t s

s e l f . g ene ra to r s = gene ra to r s #
genera tor po lynomia l s

s e l f . r a t e = ra t e # code
ra t e = k/n

s e l f .mem = mem # number
o f memory e lements o f the s h i f t r e g i s t e r

s e l f . n o s t a t e s = pow(2 , s e l f .mem−s e l f . k) # number
o f s t a t e s in t r e l l i s

s e l f . s t a t e l e n = in t (l og (s e l f . no s ta t e s , 2)) # number
o f b i t s r ep r e s en t i n g one s t a t e

s e l f . no inputs = pow(2 , s e l f . k) # number
o f inpu t s to encoder

s e l f . g e n l i s t = [] # l i s t
con ta in ing a l l g enera tor s

for g in s e l f . g ene ra to r s :
g padded = g . l j u s t (s e l f .mem, ’ 0 ’)
s e l f . g e n l i s t . append (g padded) # zero

pad so t ha t a l l g enera tor s have same l en g t h

B.2 Turbo Code 80

Create t r a n s i t i o n t a b l e s
feed forward t a b l e (a lpha) : e . g . {0: [{ ’ to ’ : 0 , ’ in ’ : 0 , ’

out ’ : ’00 ’} , { ’ to ’ : 2 , ’ in ’ : 1 , ’ out ’ : ’ 11 ’}]}
The number b e f o r e ’ : ’ i n d i c a t e s from which s t a t e we are

going .
feed backward t a b l e (be ta) : e . g . {0: [{ ’ out ’ : ’00 ’ , ’ from

’ : 0 , ’ in ’ : ’0 ’} , { ’ out ’ : ’11 ’ , ’ from ’ : 1 , ’ in ’ : ’ 0 ’}]}
The number b e f o r e ’ : ’ i n d i c a t e s to which s t a t e we are

going .
cod e t a b l e on e s i n d i c a t e s which branches g i v e a ’1 ’ as

f i r s t output b i t .
c o d e t a b l e z e r o s i n d i c a t e s which branches g i v e a ’0 ’ as

f i r s t output b i t .
re turn : f e ed forward t a b l e , f e ed backward t a b l e ,

c ode t a b l e one s , c o d e t a b l e z e r o s
def c r e a t e t r a n s t a b l e (s e l f) :

f f t a b l e = d i c t ()
f b t a b l e = d i c t ()
c ode t ab l e one s = d i c t ()
c od e t ab l e z e r o s = d i c t ()

inputs = bin range (pow(2 , s e l f . k) , s e l f . k) # ge t
a l l input combinations , pow(2 , s e l f . k) = number o f
inpu t s to encoder

for s t a t e in range (s e l f . n o s t a t e s) :
f f t a b l e [s t a t e] = l i s t ()
f b t a b l e [s t a t e] = l i s t ()

for n in range (s e l f . n) :
c od e t ab l e one s [n] = l i s t ()
c od e t ab l e z e r o s [n] = l i s t ()

for o l d s t a t e in b in range (s e l f . no s ta t e s , s e l f . s t a t e l e n
) : # I t e r a t e over a l l s t a t e s
for i n b i t s in inputs :

output , new state = s e l f . encoder (i n b i t s ,
o l d s t a t e)

o l d i dx = bin2dec (o l d s t a t e)
new idx = bin2dec (new state)
f f t a b l e [o l d i dx] . append ({ ’ to ’ : new idx , ’ in ’ :

i n b i t s , ’ out ’ : output })
f b t a b l e [new idx] . append ({ ’ from ’ : o ld idx , ’ in ’ :

i n b i t s , ’ out ’ : output })
for i , o in z ip (range (l en (output)) , output) :

i f (o == ’ 1 ’) :

B.2 Turbo Code 81

c ode t ab l e one s [i] . append (i n t (o l d s t a t e
, 2) ∗ s e l f . no inputs+in t (i n b i t s , 2))

else :
c o d e t ab l e z e r o s [i] . append (i n t (o l d s t a t e

, 2) ∗ s e l f . no inputs+in t (i n b i t s , 2))
return f f t a b l e , f b t ab l e , code tab l e one s ,

c o d e t ab l e z e r o s

Encodes a stream of i n f o b i t s and re turns the output
inparam : a s t r i n g o f in format ion b i t s
re turn : a s t r i n g o f coded b i t s
def encode (s e l f , i n f o b i t s) :

outputs = ””
o l d s t a t e = ’ ’ . z f i l l (s e l f .mem−1)
for i in range (0 , l en (i n f o b i t s) , s e l f . k) :

output , o l d s t a t e = s e l f . encoder (i n f o b i t s [i : i+s e l f .
k] , o l d s t a t e)

outputs = outputs + output
return outputs

Encodes the input b i t s f o r one t r a n s i t i o n in t r e l l i s and
re turns the output from one t r a n s i t i o n in t r e l l i s and the
new s t a t e

inparam1 : a s t r i n g o f in format ion b i t s
inparam2 : the s t a t e o f encoder (a s t r i n g)
re turn : output o f encoder (s t r i n g) , new s t a t e o f encoder (

s t r i n g)
def encoder (s e l f , i n b i t s , s t a t e) :

s t a t e s i n t e r n a l = i n b i t s+s t a t e
coded b i t s=””
for gen in s e l f . g e n l i s t :

c oded b i t s =coded b i t s + s t r (reduce (xor ,map(int , l i s t
(bin (i n t (gen , 2)&in t (s t a t e s i n t e r n a l , 2))) [2 :])))

s t a t e = s t a t e s i n t e r n a l [:− s e l f . k :]
return coded b i t s , s t a t e

B.2.5 inner encoder.py

from numpy import dot
from numpy import t ranspose
from numpy import z e r o s

B.2 Turbo Code 82

from math import l og
from numpy import append
from he lp func s import ∗
from com funcs import ∗
from operator import xor

#
−−#

class INNER ENC:

Contructor
def i n i t (s e l f , generator s , rate ,mem) :

s e l f . n = len (gene ra to r s) # number
o f codewords

s e l f . k = in t (ra t e ∗ s e l f . n) # number
o f input b i t s

s e l f . g ene ra to r s = gene ra to r s #
genera tor po lynomia l s

s e l f . r a t e = ra t e # code
ra t e = k/n

s e l f .mem = mem # number
o f memory e lements o f the s h i f t r e g i s t e r

s e l f . n o s t a t e s = pow(2 , s e l f .mem−s e l f . k) # number
o f s t a t e s in t r e l l i s

s e l f . s t a t e l e n = in t (l og (s e l f . no s ta t e s , 2)) # number
o f b i t s r ep r e s en t i n g one s t a t e

s e l f . no inputs = pow(2 , s e l f . k) # number
o f inpu t s to encoder

s e l f . g e n l i s t = [] # l i s t
con ta in ing a l l g enera tor s

for g in s e l f . g ene ra to r s :
g padded = g . l j u s t (s e l f .mem, ’ 0 ’)
s e l f . g e n l i s t . append (g padded) # zero

pad so t ha t a l l g enera tor s have same l en g t h

Create t r a n s i t i o n t a b l e s
feed forward t a b l e (a lpha) : e . g . {0: [{ ’ to ’ : 0 , ’ in ’ : 0 , ’

out ’ : ’00 ’} , { ’ to ’ : 2 , ’ in ’ : 1 , ’ out ’ : ’ 11 ’}]}
The number b e f o r e ’ : ’ i n d i c a t e s from which s t a t e we are

going .

B.2 Turbo Code 83

feed backward t a b l e (be ta) : e . g . {0: [{ ’ out ’ : ’00 ’ , ’ from
’ : 0 , ’ in ’ : ’0 ’} , { ’ out ’ : ’11 ’ , ’ from ’ : 1 , ’ in ’ : ’ 0 ’}]}

The number b e f o r e ’ : ’ i n d i c a t e s to which s t a t e we are
going .

cod e t a b l e on e s i n d i c a t e s which branches g i v e a ’1 ’ as
f i r s t output b i t .

c o d e t a b l e z e r o s i n d i c a t e s which branches g i v e a ’0 ’ as
f i r s t output b i t .

re turn : f e ed forward t a b l e , f e ed backward t a b l e ,
c ode t a b l e one s , c o d e t a b l e z e r o s

def c r e a t e t r a n s t a b l e (s e l f) :
f f t a b l e = d i c t ()
f b t a b l e = d i c t ()
c ode t ab l e one s = d i c t ()
c od e t ab l e z e r o s = d i c t ()

inputs = bin range (s e l f . no inputs , s e l f . k)
for s t a t e in range (s e l f . n o s t a t e s) :

f f t a b l e [s t a t e] = l i s t ()
f b t a b l e [s t a t e] = l i s t ()

for n in range (s e l f . n) :
c od e t ab l e one s [n] = l i s t ()
c od e t ab l e z e r o s [n] = l i s t ()

for o l d s t a t e in b in range (s e l f . no s ta t e s , s e l f . s t a t e l e n
) :
for i n b i t s in inputs :

output , new state = s e l f . encoder (i n b i t s ,
o l d s t a t e)

o l d i dx = bin2dec (o l d s t a t e)
new idx = bin2dec (new state)
f f t a b l e [o l d i dx] . append ({ ’ to ’ : new idx , ’ in ’ :

i n b i t s , ’ out ’ : output , ’ out dec ’ : modulate (
output) })

f b t a b l e [new idx] . append ({ ’ from ’ : o ld idx , ’ in ’ :
i n b i t s , ’ out ’ : output , ’ out dec ’ : modulate (
output) })

for i , o in z ip (range (l en (output)) , output) :
i f (o == ’ 1 ’) :

c od e t ab l e one s [i] . append (i n t (o l d s t a t e
, 2) ∗ s e l f . no inputs+in t (i n b i t s , 2))

else :
c o d e t ab l e z e r o s [i] . append (i n t (o l d s t a t e

, 2) ∗ s e l f . no inputs+in t (i n b i t s , 2))

B.2 Turbo Code 84

return f f t a b l e , f b t ab l e , code tab l e one s ,
c o d e t ab l e z e r o s

Recur s i e l y encodes a stream of i n f o b i t s and re turns the
output and new new s t a t e o f the encoder

inparam1 : a s t r i n g o f in format ion b i t s
inparam2 : the i n i t i a l s t a t e o f encoder (a s t r i n g)
re turn : a s t r i n g o f coded b i t s , new s t a t e o f encoder (

s t r i n g)
def encode (s e l f , i n f o b i t s , i n i t s t a t e) :

o l d s t a t e = i n i t s t a t e
outputs=’ ’
for i in range (0 , l en (i n f o b i t s) , s e l f . k) :

output , o l d s t a t e = s e l f . encoder (i n f o b i t s [i : i+s e l f .
k] , o l d s t a t e)

outputs = outputs+output
return outputs , o l d s t a t e

Recur s i v e l y encodes the input b i t s f o r one t r a n s i t i o n in
t r e l l i s and re turns the output and the new s t a t e

inparam1 : a s t r i n g o f in format ion b i t s
inparam2 : the s t a t e o f encoder (a s t r i n g)
re turn : output o f encoder (s t r i n g) , new s t a t e o f encoder (

s t r i n g)
def encoder (s e l f , i n b i t s , s t a t e) :

s t a t e i n t e r=i n b i t s+s t a t e
nom=reduce (xor ,map(int , l i s t (bin (i n t (s e l f . g e n l i s t [0] , 2)&

in t (s t a t e i n t e r , 2))) [2 :]))
s t a t e r= bin (nom) [2 :]+ s t a t e
coded b i t s = s t r (i n b i t s [0])
for gen in s e l f . g e n l i s t [1 :] :

c oded b i t s = coded b i t s + s t r (reduce (xor ,map(int ,
l i s t (bin (i n t (gen , 2)&in t (s t a t e r , 2))) [2 :])))

s t a t e = s t a t e r [:− s e l f . k :]
return coded b i t s , s t a t e

B.2.6 BCJR outer.py

from numpy import dot

B.2 Turbo Code 85

from numpy import t ranspose
from numpy import z e r o s
from numpy import ones
from math import l og
from math import exp
from numpy import append
from he lp func s import ∗
from com funcs import ∗

#
−−#

class BCJR outer :

Contructor
def i n i t (s e l f , generator s , rate , data len ,mem) :

s e l f . n = len (gene ra to r s) # number o f codewords
s e l f . k = in t (ra t e ∗ s e l f . n) # number o f input b i t s
s e l f . g ene ra to r s = gene ra to r s # genera tor po lynomia l s
s e l f . r a t e = ra t e # code ra t e = k/n
s e l f .mem = mem # number o f memory

e lements o f the s h i f t r e g i s t e r

s e l f . n o s t a t e s = pow(2 , s e l f .mem−s e l f . k) # number o f
s t a t e s in t r e l l i s

s e l f . t t o t a l = data l en+1 # number o f
’ time s t a t e s ’ in t r e l l i s

s e l f . s t a t e l e n = in t (l og (s e l f . no s ta t e s , 2)) # number o f
b i t s r ep r e s en t i n g one s t a t e

s e l f . no branches = pow(2 , s e l f . k) # number o f
branches in t r e l l i s

s e l f . Pr FF = ze ro s ((s e l f . no s ta t e s , s e l f . t t o t a l) , f l o a t)
matrix con ta in ing p r o b a b i l i t e s f o r each s t a t e

s e l f . Pr FF [0 , 0] = 1
s e l f . Pr FB = ze ro s ((s e l f . no s ta t e s , s e l f . t t o t a l) , f l o a t)

matrix con ta in ing p r o b a b i l i t e s f o r each s t a t e
s e l f . Pr FB [0 , s e l f . t t o t a l −1] = 1

Decode r e c e i v ed data
inparam1 : f e ed forward t a b l e (a lpha) e . g . {0: [{ ’ to ’ : 0 , ’

in ’ : ’0 ’ , ’ out ’ : ’00 ’} , { ’ to ’ : 2 , ’ in ’ : ’1 ’ , ’ out ’ :
’ 11 ’}]}

B.2 Turbo Code 86

inparam2 : v ec t o r wi th a p r i o r i f ed from inner decoder
re turn : matrix wi th c a l c u l a t e d cos t s , f e ed forward

p r o b a b i l i t y matrix
def f f d e c od e (s e l f , f f t a b l e , p r o b l i s t) :

cost mtrx = ze ro s ((s e l f . n o s t a t e s ∗ s e l f . no branches , s e l f .
t t o t a l −1) , f l o a t)

for t in range (s e l f . t t o t a l −1) :
prob output = p r o b l i s t [t ∗ s e l f . n : t ∗ s e l f . n+s e l f . n]
for s in range (s e l f . n o s t a t e s) :

for b in range (s e l f . no branches) :
t o s t a t e = f f t a b l e [s] [b] . get (’ to ’)
output = f f t a b l e [s] [b] . get (’ out ’)
co s t = s e l f . b r anch co s t ou t e r (output ,

prob output)
cost mtrx [s ∗ s e l f . no branches+b] [t] = co s t
s e l f . Pr FF [t o s t a t e , t+1] += s e l f . Pr FF [s , t

]∗ co s t
s e l f . Pr FF [: , t+1] = norm(s e l f . Pr FF [: , t +1])
cost mtrx [: , t] = norm(cost mtrx [: , t])

return cost mtrx , s e l f . Pr FF

Decode r e c e i v ed data
inparam1 : l i s t con ta in ing r e c e i v ed data
inparam2 : f e ed backward t a b l e (be ta) e . g . {0: [{ ’ out ’ :

’00 ’ , ’ from ’ : 0 , ’ in ’ : ’0 ’} , { ’ out ’ : ’11 ’ , ’ from ’ : 1 , ’ in
’ : ’ 0 ’}]}

inparam3 : matrix wi th c o s t s o f a l l branches in t r e l l i s
based on the r e c e i v ed data and a p r i o r i

re turn : f e ed backward p r o b a b i l i t y matrix
def fb decode (s e l f , r e c b i t s , f b t ab l e , cost mtrx) :

for t in range (s e l f . t t o t a l) [: : − 1] [: s e l f . t t o t a l −1] :
for s in range (s e l f . n o s t a t e s) :

for b in range (s e l f . no branches) :
f r om s ta t e = f b t a b l e [s] [b] . get (’ from ’)
inputs = bin2dec (f b t a b l e [s] [b] . get (’ in ’))
output = modulate (f b t a b l e [s] [b] . get (’ out ’))
r ec output = r e c b i t s [t ∗ s e l f . n−s e l f . n : t ∗ s e l f

. n]
s e l f . Pr FB [f rom state , t−1] += s e l f . Pr FB [s ,

t]∗ cost mtrx [f r om s ta t e ∗ s e l f . no branches+
inputs , t−1]

s e l f . Pr FB [: , t−1] = norm(s e l f . Pr FB [: , t−1])
return s e l f . Pr FB

B.2 Turbo Code 87

Ca lcu l a t e sigma , formed e x t r i n s i c a l l y by d i s ca rd ing a
p r i o r i in format ion

inparam1 : matrix wi th c o s t s o f a l l branches in t r e l l i s
based on the r e c e i v ed data only

inparam2 : f e ed backward p r o b a b i l i t y matrix
inparam3 : f e ed forward p r o b a b i l i t y matrix
inparam4 : f e ed forward t a b l e (a lpha)
re turn : sigma matrix
def ca l c s i gma (s e l f , cost mtrx , Pr fb , Pr f f , f f t a b l e) :

s i g mtrx=ze ro s (shape (cost mtrx))
for c o l in range (shape (cost mtrx) [1]) :

for s in range (s e l f . n o s t a t e s) :
for b in range (s e l f . no branches) :

t o s t a t e = f f t a b l e [s] [b] . get (’ to ’)
row = s ∗ s e l f . no branches+b
s ig mtrx [row , c o l] = P r f f [s , c o l]∗ Pr fb [

t o s t a t e , c o l +1]∗ cost mtrx [row , c o l]
s i g mtrx [: , c o l]=norm(s ig mtrx [: , c o l])

return s ig mtrx

Make hard d e c i s i on s based on sigma matrix
inparam1 : sigma matrix
inparam2 : b l o c k s i z e
re turn : l i s t wi th hard b i t s
def ha rd de c i s i on (s e l f , sigma mtrx , BLOCK SIZE) :

for t in range (shape (sigma mtrx) [1]) :
max = 0
co l = sigma mtrx [: , t]

p rob ze ro s=ze ro s (shape (sigma mtrx) [1])
prob ones=ones (shape (sigma mtrx) [1])
for t in range (shape (sigma mtrx) [1]) :

p rob ze ro s [t]=sum(sigma mtrx [: , t] [0 : : s e l f .
no branches])

prob ones [t]=sum(sigma mtrx [: , t] [1 : : s e l f . no branches
])

p rob ze ro s=prob ze ro s
prob ones=prob ones
d e c i s i o n v e c=prob ones [0 : BLOCK SIZE]
ha rd b i t s=1∗array (d e c i s i o n v e c > 0 . 5)
return ha rd b i t s

B.2 Turbo Code 88

Ca lcu l a t e co s t f o r a branch t r a n s i t i o n
inparam1 : t h e o r e t i c a l output from inner decoder
inparam2 : p r o b a b i l i t y o f an output from inner decoder
re turn : co s t
def branch co s t ou t e r (s e l f , outputs , prob outer) :

c o s t = 1
for idx , output in z ip (range (l en (outputs)) , outputs) :

i f (output==’ 1 ’) :
c o s t∗= prob outer [idx]

else :
c o s t ∗= 1 − prob outer [idx]

return co s t

Ca lcu l a t e the output o f outer decoder
inparam1 : sigma matrix
inparam2 : c od e t a b l e on e s i n d i c a t e s which branches g i v e a

’1 ’ as f i r s t output b i t
inparam3 : c o d e t a b l e z e r o s i n d i c a t e s which branches g i v e a

’0 ’ as f i r s t output b i t
inparam4 : v ec t o r wi th a p r i o r i f ed back from outer decoder
re turn : output o f outer decoder
def ca l c app (s e l f , sigma mtrx , code tab l e one s ,

c od e t ab l e z e r o s , p r o b l i s t) :
a p p l i s t = ze ro s ((s e l f . t t o t a l −1)∗ s e l f . n , f l o a t)
a p p l i s t o n e s=ze ro s ((s e l f . t t o t a l −1)∗ s e l f . n , f l o a t)
a p p l i s t z e r o s=ze ro s ((s e l f . t t o t a l −1)∗ s e l f . n , f l o a t)
for t in range (s e l f . t t o t a l −1) :

for c in range (s e l f . n) :
a p p l i s t o n e s [t ∗ s e l f . n+c]=sum(sigma mtrx [

c ode t ab l e one s [c] , t])
a p p l i s t z e r o s [t ∗ s e l f . n+c]=sum(sigma mtrx [

c od e t ab l e z e r o s [c] , t])
for i in range (l en (a pp l i s t o n e s)) :

i f p r o b l i s t [i] != 0 and p r o b l i s t [i] != 1 :
a p p l i s t o n e s [i] = app l i s t o n e s [i] / p r o b l i s t [

i]
a p p l i s t z e r o s [i] = a p p l i s t z e r o s [i] / (1−

p r o b l i s t [i])
s = app l i s t o n e s + a p p l i s t z e r o s
for i in range (l en (s)) :

i f s [i] != 0 :

B.2 Turbo Code 89

a p p l i s t [i] = app l i s t o n e s [i] / (a p p l i s t o n e s [
i] + a p p l i s t z e r o s [i])

return a p p l i s t

B.2.7 BCJR inner.py

from numpy import dot
from numpy import t ranspose
from numpy import z e r o s
from numpy import ones
from math import l og
from math import exp
from numpy import append
from he lp func s import ∗
from com funcs import ∗

#
−−#

class BCJR inner :

Contructor
def i n i t (s e l f , generator s , rate , data len ,mem) :

s e l f . n = len (gene ra to r s) # number o f codewords
s e l f . k = in t (ra t e ∗ s e l f . n) # number o f input b i t s
s e l f . g ene ra to r s = gene ra to r s # genera tor po lynomia l s
s e l f . r a t e = ra t e # code ra t e = k/n
s e l f .mem = mem # number o f memory

e lements o f the s h i f t r e g i s t e r

s e l f . n o s t a t e s = pow(2 , s e l f .mem−s e l f . k) # number o f
s t a t e s in t r e l l i s

s e l f . t t o t a l = data l en+1 # number o f
’ time s t a t e s ’ in t r e l l i s

s e l f . s t a t e l e n = in t (l og (s e l f . no s ta t e s , 2)) # number o f
b i t s r ep r e s en t i n g one s t a t e

s e l f . no branches = pow(2 , s e l f . k) # number o f
branches in t r e l l i s

s e l f . Pr FF = ze ro s ((s e l f . no s ta t e s , s e l f . t t o t a l) , f l o a t)
matrix con ta in ing p r o b a b i l i t e s f o r each s t a t e

s e l f . Pr FF [0 , 0] = 1
s e l f . Pr FB = ze ro s ((s e l f . no s ta t e s , s e l f . t t o t a l) , f l o a t)

matrix con ta in ing p r o b a b i l i t e s f o r each s t a t e
s e l f . Pr FB [0 , s e l f . t t o t a l −1] = 1

B.2 Turbo Code 90

Ca l cu l a t e s the c o s t s o f a l l branches in t r e l l i s based on
the r e c e i v ed data only (not dependent o f a p r i o r i) .

inparam1 : s t r i n g o f r e c e i v ed data
inparam2 : f e ed forward t a b l e (a lpha)
inparam3 : no i se var iance
return : matrix wi th c a l c u l a t e d c o s t s
def c a l c c o s t mt rx ex (s e l f , r e c b i t s , f f t a b l e , var) :

cost mtrx = ze ro s ((s e l f . n o s t a t e s ∗ s e l f . no branches , s e l f .
t t o t a l −1) , f l o a t)

for t in range (s e l f . t t o t a l −1) :
for s in range (s e l f . n o s t a t e s) :

for b in range (s e l f . no branches) :
output = f f t a b l e [s] [b] . get (’ out dec ’)
r ec output = r e c b i t s [t ∗ s e l f . n : t ∗ s e l f . n+s e l f

. n]
co s t = s e l f . b ranch cos t (output , rec output ,

var)
cost mtrx [s ∗ s e l f . no branches+b] [t] = co s t

return cost mtrx

Decode r e c e i v ed data
inparam1 : l i s t con ta in ing r e c e i v ed data
inparam2 : f e ed forward t a b l e (a lpha) e . g . {0: [{ ’ to ’ : 0 , ’

in ’ : ’0 ’ , ’ out ’ : ’00 ’} , { ’ to ’ : 2 , ’ in ’ : ’1 ’ , ’ out ’ :
’ 11 ’}]}

inparam3 : no i se var iance
inparam4 : v ec t o r wi th a p r i o r i f ed back from outer decoder
inparam5 : matrix wi th c o s t s o f a l l branches in t r e l l i s

based on the r e c e i v ed data only
re turn : matrix wi th c a l c u l a t e d cos t s , f e ed forward

p r o b a b i l i t y matrix
def f f d e c od e (s e l f , r e c b i t s , f f t a b l e , var , a pp l i s t ,

co s t mtrx ex) :
cost mtrx = ze ro s ((s e l f . n o s t a t e s ∗ s e l f . no branches , s e l f .

t t o t a l −1) , f l o a t)
for t in range (s e l f . t t o t a l −1) :

for s in range (s e l f . n o s t a t e s) :
for b in range (s e l f . no branches) :

t o s t a t e = f f t a b l e [s] [b] . get (’ to ’)
output = f f t a b l e [s] [b] . get (’ out dec ’)

B.2 Turbo Code 91

r ec output = r e c b i t s [t ∗ s e l f . n : t ∗ s e l f . n+s e l f
. n]

i n pu t b i t = f f t a b l e [s] [b] . get (’ in ’)
i f (i npu t b i t==’ 1 ’) :

app=app l i s t [t]
else :

app= 1 − a p p l i s t [t]
c o s t=app∗ cos t mtrx ex [s ∗ s e l f . no branches+b , t

]+1e−175
cost mtrx [s ∗ s e l f . no branches+b] [t] = co s t
s e l f . Pr FF [t o s t a t e , t+1] += s e l f . Pr FF [s , t

]∗ co s t
s e l f . Pr FF [: , t+1] = norm(s e l f . Pr FF [: , t +1])

return cost mtrx , s e l f . Pr FF

Decode r e c e i v ed data
inparam1 : l i s t con ta in ing r e c e i v ed data
inparam2 : f e ed backward t a b l e (be ta) e . g . {0: [{ ’ out ’ :

’00 ’ , ’ from ’ : 0 , ’ in ’ : ’0 ’} , { ’ out ’ : ’11 ’ , ’ from ’ : 1 , ’ in
’ : ’ 0 ’}]}

inparam3 : matrix wi th c o s t s o f a l l branches in t r e l l i s
based on the r e c e i v ed data and a p r i o r i

re turn : f e ed backward p r o b a b i l i t y matrix
def fb decode (s e l f , r e c b i t s , f b t ab l e , cost mtrx) :

for t in range (s e l f . t t o t a l) [: : − 1] [: s e l f . t t o t a l −1] :
for s in range (s e l f . n o s t a t e s) :

for b in range (s e l f . no branches) :
f r om s ta t e = f b t a b l e [s] [b] . get (’ from ’)
inputs = bin2dec (f b t a b l e [s] [b] . get (’ in ’))
r ec output = r e c b i t s [t ∗ s e l f . n−s e l f . n : t ∗ s e l f

. n]
s e l f . Pr FB [f rom state , t−1] += s e l f . Pr FB [s ,

t]∗ cost mtrx [f r om s ta t e ∗ s e l f . no branches+
inputs , t−1]

s e l f . Pr FB [: , t−1] = norm(s e l f . Pr FB [: , t−1])
return s e l f . Pr FB

Ca lcu l a t e sigma , formed e x t r i n s i c a l l y by d i s ca rd ing a
p r i o r i in format ion

B.2 Turbo Code 92

inparam1 : matrix wi th c o s t s o f a l l branches in t r e l l i s
based on the r e c e i v ed data only

inparam2 : f e ed backward p r o b a b i l i t y matrix
inparam3 : f e ed forward p r o b a b i l i t y matrix
inparam4 : f e ed forward t a b l e (a lpha)
re turn : sigma matrix
def ca l c s i gma (s e l f , cost mtrx , Pr fb , Pr f f , f f t a b l e) :

s i g mtrx=ze ro s (shape (cost mtrx))
for c o l in range (shape (cost mtrx) [1]) :

for s in range (s e l f . n o s t a t e s) :
for b in range (s e l f . no branches) :

t o s t a t e = f f t a b l e [s] [b] . get (’ to ’)
row = s ∗ s e l f . no branches+b
s ig mtrx [row , c o l] = P r f f [s , c o l]∗ Pr fb [

t o s t a t e , c o l +1]∗ cost mtrx [row , c o l]
return s ig mtrx

Make hard d e c i s i on s based on sigma matrix
inparam : sigma matrix
re turn : l i s t wi th hard b i t s
def ha rd de c i s i on (s e l f , sigma mtrx) :

ha rd b i t s = []
for t in range (shape (sigma mtrx) [1]) :

max = 0
co l = sigma mtrx [: , t]
for i in range (s e l f . no branches) :

Pr sum = sum(co l [i : : s e l f . no branches])
i f Pr sum > max :

max = Pr sum
input dec = i

ha rd b i t s . append (i n t (dec2bin (input dec , s e l f . k)))
return ha rd b i t s

Ca lcu l a t e the output o f inner decoder
inparam1 : sigma matrix
inparam2 : v ec t o r wi th a p r i o r i f ed back from outer decoder
re turn : output o f inner decoder
def ca l c p rob (s e l f , sigma mtrx , a p p l i s t) :

a p p l i s t=a pp l i s t [:−(s e l f .mem−1)]
p r o b l i s t = ze ro s (l en (a p p l i s t) , f l o a t)
p r o b l i s t o n e s=ze ro s (l en (a p p l i s t) , f l o a t)
p r o b l i s t z e r o s=ze ro s (l en (a p p l i s t) , f l o a t)

B.2 Turbo Code 93

for t in range (l en (a p p l i s t)) :
c o l = sigma mtrx [: , t]
p r o b l i s t z e r o s [t] = sum(co l [0 : : s e l f . no branches])
p r o b l i s t o n e s [t] = sum(co l [1 : : s e l f . no branches])

s = p r o b l i s t z e r o s + p r o b l i s t o n e s
for i in range (l en (s)) :

i f s [i] != 0 :
p r o b l i s t [i] = p r o b l i s t o n e s [i] / (

p r o b l i s t z e r o s [i] + p r o b l i s t o n e s [i])
return p r o b l i s t

Ca lcu l a t e co s t f o r a branch t r a n s i t i o n
inparam1 : t h e o r e t i c a l data
inparam2 : r e c e i v ed data
return : co s t
def branch cos t (s e l f , data , rec data , var) :

co s t = 1
for idx in range (l en (data)) :

c o s t ∗= exp(−(pow(data [idx]− r e c da ta [idx] , 2))
∗ (1 . 0/ (2∗ var)))

co s t = cos t + 1e−175
return co s t

