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Abstract
Modern cars require a lot of resources to develop, and future fully autonomous
cars will likely add further complexity. In order to limit the resources spent on
development and testing with a real car on a real track, a technique called hardware-
in-the-loop (HIL) can be used. This means testing new hardware and software on
a separate build consisting of the same hardware as in a real car together with
digital representations of hardware components not physically present, a digital twin.
Chalmers formula student driverless (CFSD) is a project where master students from
Chalmers University of Technology build their own autonomous race car and they
could benefit from the concept of HIL for the same reasons that the industry does.
By accessing the database of CFSD and getting involved in their project, while
taking ethics into account, it should be possible for a group of bachelor students to
provide them with a rig utilising the concept of HIL. This goal was not fully reached
in the time scope of the bachelor thesis described in the report. Nevertheless, a
foundation to build upon has been created, as well as hardware working as intended
and successfully using the same software as the car.

Keywords: HIL, hardware-in-the-loop, CFSD, Chalmers formula student driverless,
digital twin, autonomous race car, bachelor thesis
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Nomenclature

AI Artificial Intelligence
AIR Accumulator Isolation Relay
AMS Accumulator Management System
APU Advanced Processing Unit
ASSI Autonomous System Status Indicator
CAD Computer Aided Design
CAN Controller Area Network
CFS Chalmers Formula Student
CFSD Chalmers Formula Student Driverless
CPU Central Processing Unit
C++ An object oriented programming language
DBC Database Container
DRAM Dynamic Random Access Memory
Docker Virtual Container, runs on many operating systems
EBS Emergency Brake System
FEM Finite Element Method
FSG Formula Student Germany
GPS Global Positioning System
GPU Graphics Processing Unit
GUI Graphical User Interface
HIL Hardware-In-the-Loop
IP Internet Protocol
LXC Linux Containers, similarities with Docker
NAND NOT-AND logical gate
Odvd Open DLV, a software ecosystem
OS Operating System
OTA Over-The-Air
PCB Printed Circuit Board
PE-box Power Electronics Box
PMIC Power Management Integrated Circuit
PXE Preboot Execution Environment
RS232 Recommended Standard 232
SOM System On Module
SPI Serial Peripheral Interface
STL-file Stereolithography-file
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1
Introduction

In recent years cars have become more and more complex. Driver aids have evolved
from cruise control to adaptive cruise control with assisted lane keeping to au-
tonomous driving now being a reality. Because of this trend, development of new
cars require great amounts of resources as drivers, to a greater extent, rely on various
implemented driving aids. As a result, the vehicle industry has developed methods
to test and build new system layouts in easier and faster ways than building a full
car prototype. These methods can allow automation of large amounts of testing,
which previously would have had to be done by car prototypes.

Digital twins are an important part in modern vehicle development. A digital twin
is a digital representation of a physical system, often consisting of 3D-models as well
as mathematical models of the dynamics and electronics of the system. The purpose
of a digital twin is to limit the testing needed in the real world by simulating and
testing different scenarios in a digital environment. In this project a digital twin is
integrated with hardware components, thus becoming a hardware-in-the-loop (HIL)
rig.

Using HIL-rigs is essential when designing and developing modern vehicles. HIL-rigs
are primarily built with the same hardware components as the real car has, stacked
inside a cabinet-like compartment. This concept is used in order to efficiently test
the behaviour of certain systems by performing simulations with varying conditions
in controlled environments. HIL-rigs are most commonly used in the initial stages
of product development to ensure high quality standards and to decrease the time
it takes to discover faults in the system. Building a prototype and performing tests,
which is the alternative, requires a lot more resources to both plan and execute.
Additionally a HIL-rig will operate in a much more controlled environment than a
prototype, which can reduce the risk of unexpected costs and delays.

The purpose of the project described in this report is to develop and build a fully
functioning HIL-rig. The rig will be a digital twin of a subsystem in a physical car
with as similar hardware components as possible. When the rig is finalised the goal
is to be able to seamlessly mix pure simulation with the hardware in the rig. For
example log-files from when the car is running should be possible to use in the rig.
This, so that both the behaviour of the autonomous system can be studied, and
also to test the system and its components during longer periods of time. Another
purpose of the HIL-rig is to make it possible to test new electrical components or
software without having to disassemble the car or test unstable software in the real
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1. Introduction

world. This will save time during future development of the car and increase safety,
since a HIL-rig allows both software and hardware components to be verified before
being installed in the real car.

1.1 Chalmers formula student driverless
Chalmers formula student driverless (CFSD) is a student project carried out an-
nually at Chalmers University of Technology with the primary goals of designing,
developing, and manufacturing an autonomous electric race car. The car is based
on an electrical powertrain and computer solutions for handling the driving of the
vehicle. Besides the technical skills required for designing a race car, the teams are
also expected to demonstrate skills in marketing, such as finding sponsorship and
creating business plans. All these aforementioned activities are then being assessed
during the final stage of the project, which is to, hopefully, compete in an interna-
tional competition for autonomous race cars.

Each year a team is assembled of master students from many countries with different
engineering backgrounds and technical experience. In addition to building a race
car, the project enables students within the CFSD-team to carry out their masters
thesis. Every year the new team is initially supervised by a few team members from
the previous year. Their task is to introduce new members to the project and to
act as mentors during the initial phases of the project, making sure that the project
works smoothly from the start, and to mediate technical knowledge and experience.

The project of CFSD is based on frameworks settled by the international organi-
sation Formula Student Germany (FSG). This organisation holds several Formula
Student competitions in different classes around Europe during summer. The classes
are internal combustion engine vehicles, electric vehicles and driverless vehicles, of
which the team of CFSD is qualifying for the latest of the three. However, in order
to participate in any of the competitions, the team is expected to follow certain
rules and to keep a detailed technical documentation of their cars. Admission to,
and participation in Formula Student competitions are performed in several steps.

Initially, to gain entrance to a competition, a team has to qualify via a quiz which
is provided within a limited time with emphasis on mechanical and electrical en-
gineering problem solving. Once a team manages to qualify for one of the limited
number of places in a competition, the next step is to send detailed documentation
of different subsystems in the car to the competition management.

When a team finally gets qualified to a competition, the fully functioning vehicle
is transported to a competition site where several stages of scrutinising and perfor-
mance tests are conducted before the competition can start. Assessments are then
being made in static events where points are given to teams based on how well their
business plan was developed, the cost of the production and how the design and the
manufacturing was carried out. There are also assessments of dynamic events where
points are given to teams based on how well the race car performed on the track.

2



1. Introduction

At the end of a competition, the team with most points win.

Figure 1.1: The autonomous electric race car built by the CFSD-team in 2018,
driving in a circuit made of cones.

The main task of the autonomous race car, during the dynamic events, is to manage
to drive as fast as possible on different tracks marked by traffic cones, see Fig. 1.1.
A benefit of such a contest is that engineering students are given an opportunity
to sharpen their skills in mechanical and electrical engineering. It is also a chance
for the engineers to learn and implement technical innovations in order to attract
potential employers after finishing their education.

1.2 Delimitations
This project was limited to physically building the low voltage system of the CFSD
race car, powered by 24 V or less, as well as implementing the associated software.
This was decided due to the risks of working with higher voltages and larger currents,
and since it would also be more cost-effective. The rest of the subsystems of the
car was part of the digital twin, and was consequently simulated. This included a
vehicle dynamics model and a simulation of all relevant signals needed to accurately
represent the real car.
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2
System architecture

The following section explains the architecture of the electronics in the race car of
CFSD. The car consists of a high voltage system and a low voltage system. The
high voltage system will not be covered in great depths since it is not a part of
this project. The low voltage system mostly consists of control circuits, sensors and
actuators which sends signals to each other in order to control the car. Specifi-
cally, some of the most important components of the low voltage system, are the
autonomous system node, front node, rear node, APU, PC rotor temperature sen-
sors, damper position sensors, steering angle sensor, brake actuator, steering wheel
actuator, steering wheel and the dashboard. In Fig. 2.1 a general layout of the low
voltage system for both the race car and the HIL-rig is presented. The components
are 1) an autonomous system node, 2) a front node, 3) a rear node, 4) an APU, 5)
the main computer, 6) the accumulator, 7) electric motors, 8) the IMU, 9) camera
and GPS, 10) various sensors for each wheel.

Figure 2.1: Overview of the various components of the race car.
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2. System architecture

The blue areas of the car in Fig. 2.1 represents the various computers in the car,
while the red area shows the high voltage system, the green areas represents the
nodes, and the orange areas represents the various sensors. The sensors mainly con-
sists of an IMU in the front of the car, a camera and GPU in the back, and various
sensors at the wheels and actuators. However, there are other sensors spread through
out the car that are not shown in Fig. 2.1. Each of these sensors are connected to
one of the nodes, which interpret signals from the sensor. The entire high voltage
system is concentrated to the back of the car and consists of the accumulator and
the electric motors, as well as supporting components like the DC-AC converter and
safety systems. There are also two computers in the car; a PC in the back as well
as an APU in the front.

The car of CFSD is based on several different technical principles. To help turn
electricity into movement, power electronics, such as inverters to change direct cur-
rent into alternate current, is used. The software is largely based on microservices
which is the practise of dividing a software application into small, well designed and
easily understood parts in a characteristic architecture [3]. Actuators are mechan-
ical devices which move when needed. Control systems are built into the software
and use feedback loops to stabilise and control the car. Furthermore, sensors are an
essential part of the system as they measure different values within or outside the
system to make this data available for the computers.

A digital twin is a digital copy of a physical system. Digital twins are very useful
for simulating the expected behaviour of a system in an environment, calculating
lifespan or service intervals. Another use case is testing new software or evaluating
new components before changing anything in the physical real world system.

CAD-models can also be a part of digital twins, in which case the twin can be more
of a physical representation and then also be used for packaging, or a so called fi-
nite element method (FEM) strength analysis. Digital twins are also often made of
mathematical models of systems, like for example a vehicle dynamics model, or a
model of an electronic system [7].

A digital twin may be complemented with hardware components by putting them
in a HIL-rig. Conducting simulations using a HIL-rig is, essentially, to use a digital
twin with certain components that are physical hardware instead of simulated. This
will most likely make the twin behave more accurately, like the physical system.
This also allows for swapping hardware to evaluate new hardware, as well as making
it possible to diagnose malfunctioning hardware components in a simulated environ-
ment within a specific sequence of events. This is very valuable for the development
process, since testing hardware in a simulation is both more cost and time effective
than testing in the real world. In many cases it is also safer, especially in vehicle
development [8].

The digital twin server used in this project is a computer with the purpose of
replaying data logs recorded from the real car to the HIL-rig. Therefore, the server
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2. System architecture

had to be connected to the CAN bus and the APU, and the digital twin server was
set to feed video to the HIL-rig.

2.1 High- and low- voltage circuits
The high voltage system of the race car of CFSD is composed of the accumulator, or
battery of 580 V to supply power to the tractive system and the low voltage system
via a DC-DC converter. The accumulator is built up by several accumulator cells
which delivers direct current.

The tractive system of the car is defined as the high voltage system connected to
the motors and the accumulator. From the relay box, the direct current has to be
converted to an alternating current in order to power the motors. This conversion
of voltage is executed by a subsystem known as the inverters, one for each motor.
The system has two motors, to enable torque vectoring. Torque vectoring is when a
car can individually control the torque of a given wheel or axle in order to improve
performance, handling and stability.

High voltage is in this case defined as voltage above 24 V. High voltage is often
needed for certain actuators such as electric motors. However, high voltage is not
needed for all the systems in the car. In order to supply appropriate voltage and
current to each electronic part, some necessary steps are needed to be performed.
Firstly, a relay box is a subsystem needed, closely assembled to the accumulator
which converts from high voltage to low voltage and provides a safety mechanisms
according to the rule book of FSG. Also, two safety systems built in to the relay box
is the accumulator management system (AMS), with the task to monitor and send
signals to indicate certain critical states occurring, and the accumulator isolation
relay (AIR) which isolates the accumulator from the rest of the system.

Low voltage is, in this case, 24 V or less. The low voltage circuit used here is syn-
onymous with a control circuit. Sensors, actuators, micro controllers and computers
are powered by low voltage and are a part of the control circuit. The low voltage
system includes more complicated processors and graphics processors but also more
simple integrated circuits such as NAND-gates and everything in between. The con-
trol circuit or low voltage circuit is used to control the car using either low voltage
actuators, such as the steering actuator, or communicating with the high voltage
tractive system which controls the motors.

2.2 Communication
All the different components in the car needs to communicate with each other. This
section describes different protocols used for communication. It also includes how
the HIL-rig communicates with the car and how this can be tested.
One of the communication protocols is the controller area network (CAN) bus. The
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2. System architecture

CAN bus is a network standard mainly used in vehicles. It consists of two wires
which are shared between all the devices. The two wires are CAN-high and CAN-
low and they send the same signal but mirrored in voltage. The cables are twisted
to reduce noise. The different components are connected in parallel and send their
signals through the same CAN bus. This means that the CAN bus handles the
signal from a single component at any time. In this manner the CAN bus monitors
the system and keeps it from sending out two signals at the same time. CAN buses
are used in vehicles, mainly because of the convenience of only having one wire, but
also since it makes the network robust. Each sent message has a priority level which
helps to decide which message comes first. Usually the transmitters themselves do
not have a priority, but all messages from a certain transmitter can of course be set
to a certain priority.

In the car there are three different CAN networks CAN0, CAN1 and CAN2. CAN0
is connected to the APU and components in the rear of the car. These components
are the rear node and the motors. CAN1 is connected to many of the main com-
ponents of the car such as front node, rear node and the APU. CAN2 is connected
between the APU and the motor controller for the steering actuator. The APU
works as a CAN interface between the high level components, the PC and the cam-
era, and the low level CAN-network.

Serial peripheral interface (SPI) is a widely used serial bus. One of the big benefits
that come with using SPI is that data can be transferred without interruptions. De-
vices that communicates via SPI have a master and one or more slaves. The master
is the controlling device and the slave takes instructions from the master. SPI is a
three or four wire system with different ports. These are MOSI, MISO, SCLK and
SS/CI. The MOSI stands for Master output Slave input and is used so the master
can send data to the slave. MISO stands for Master input Slave output and is used
so that the slave can send signals to the master. SCLK is a clock which is used for
the clock signal. SS/CS stands for slave select/chip select and it tells the master
which slave to send the data to. Because of this, SPIs that only have one slave do
not need the SS/CS and are therefore a three wire system.

The recommended standard 232 (RS-232) is one of the oldest, yet widely used com-
munication protocols. It uses serial communication which means that the data will
be sent bit by bit. The downside with serial communication is that it is slower than
parallel communication but is used for longer data transmissions due to its lower
cost compared to parallel communication.

Ethernet is used to connect network devices with each other. The purpose of Eth-
ernet is that computers and other devices such as APU can share files, data and
information with each other and with the camera. The most common Ethernet cable
is the twisted pair cable which consists of multiple pairs of wires twisted together.
Each signal is transmitted in a twisted pair of wires, one positive signal and one
mirrored negative, this minimises ripple and noise. Ethernet also uses duplex com-
munication which allows for communication in both directions at the same time.
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These two properties allow fast and reliable communication.

Fig. 2.2 displays a schematic figure of the system, Ethernet and the CAN bus. The
goal is for the data received from the database to automatically be played to the rig.
In principle this is to be done by first letting the car do a test drive or a race. Then
the collected req. file is automatically uploaded to the database in the Chalmers
Revere facility. Lastly, the digital twin server is automatically triggered to run on
the HIL-rig and the results of the drive are saved.

Figure 2.2: Schematic figure of the system.

The system can be tested to make sure that the communication between the car
and the HIL-rig works. This can be either done with simulation, data replay, or
a combination of them both. The simulation, as seen in Fig. 2.3, is achieved by
injecting artificial CAN signals generated by a vehicle dynamics model, and an
artificial camera feed generated by a 3D engine. In addition, the digital twin concept
can also be realised by using recorded log files directly from the actual racing car.
In these log files, also referred to as rec files, all high-level signals from the actual
car are present, including the video feed, as shown in Fig. 2.4. By injecting these
recorded signals into the HIL-rig the exact low-level behaviour of the actual car can
be replayed.

9



2. System architecture

Figure 2.3: A simulated vehicle dynamic model.

Figure 2.4: A picture of the video feed of the race car on a test track.

2.3 Nodes
The low voltage system uses three nodes to bundle together sensors, actuators and
micro controllers. The nodes are also connected to the CAN bus to communicate
with each other and the APU. The front node is connected to components located
in the front part of the car, and the rear node connects to components in the rear.
The third node is the autonomous system node, which connects to components

10



2. System architecture

specifically used for the autonomous system. The nodes are used primarily for three
reasons; firstly, to avoid running all cables through the entirety of the car; secondly,
to convert all the different types of signals from the sensors to CAN-messages, and
finally, to assist in troubleshooting. When it comes to troubleshooting, it is bene-
ficial to have the possibility to localise the problem to the system and connecting
it to a particular node before looking for the problem in specific components. It
is easier to find problems with a particular node and then the specific component,
rather than if everything would be connected to a single component.

Fig. 2.5 illustrates the front node and the components connected to it. For example,
the front node collects temperature data from the front tires and brakes, as well as
position data from sensors by the dampers. Information about break pressure and
steering angle is also obtained at the front node. Furthermore, the front node sends
these signals to the dashboard and to the APU through the CAN bus.

Figure 2.5: A schematic figure of the front node and its connections.

As previously mentioned, the front node communicates with the components in the
front of the car. Among other things, these components include sensors by the
wheels, the dashboard and the steering actuator. As shown in Fig. 2.5 the front
node collects signals from the sensors which are then sent to the front node. In
order to make it possible to drive the car manually, the dashboard has a ready-to-
drive button and a tractive system on button. The signals from the buttons and the
sensors are processed and then sent to LEDs in the dashboard to a display in the
steering wheel through the SPI. The signals are also sent to the APU via the CAN
bus.

The rear node works much in the same way as the front node. Fig. 2.6 displays
the different connections of the rear nodes. The rear node collects sensor signals
of the rear damper positions and temperature data from the rear tires and their
brakes. Furthermore, it controls the brake light, radiator fan and is connected to
the PE-box that controls the motors.
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2. System architecture

Fig. 2.6 illustrates the rear node and the components connected to it. The rear node
collects temperature data from the rear tires and brakes, as well as position data
from the dampers. It also controls the brake light and is connected to the PE-box
that controls the motors.

Figure 2.6: A schematic figure of the rear node and its connections.

The autonomous system node collects data from sensors which measures wheel
speed, steering angle position, pneumatic pressures in the break system and position
for the break actuator. With this information, the node then controls the steering
system through a motor controller and motor for an actuator. It also controls the
brake system with a pneumatic compressor and an electric pressure regulator. This
is done through hardlogic on the same PCB as the autonomous node, but completely
separated from each other due to regulations from FSG. The autonomous system
node also controls the lighting process of the autonomous system status indicator
(ASSI) and the emergency brake system (EBS) failure LED.
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2. System architecture

2.4 Actuators
While driving autonomously the car uses actuators to replace the physical inputs
of a human driver to the car. These actuators are used for braking and steering,
while the other systems are controlled digitally. The actuators are responsible for
physically pushing down the brake pedal, as well as turning the front wheels for
steering. The reason why the brake and steering use actuators is because both of
them require physical input. Neither the steering system nor the hydraulic breaking
system work with electrical signals. This is also the reason why there are no other
actuators in the car; every other system is compatible with electrical signals, which
are more flexible and scalable.

2.5 Autonomous system
The purpose of the autonomous system is to replace the human driver’s senses and
decision making, and its core part is the APU and the PC. The senses are replaced
with a camera and the decision making is done with artificial intelligence on a PC
that has a powerful GPU for handling graphic inputs from the camera. The PC is
the main calculating unit of the car. It is connected to the APU and the camera
through Ethernet. The main purpose of the PC is to process the pictures taken by
the camera and then change the direction of the car accordingly.

One of the great challenges of designing a driverless race car, is the determination
of its position at every moment in time, with a limited camera frame rate and with
limited processing power. The reason for this is that when the car moves at high
speeds, the distance it travels between the captured frames and during the image
processing, is non-negligible. In order to reduce this problem, an algorithm that
uses Global Positioning System (GPS) will be implemented in the car in the future.
The GPS tracks the position and the direction of the car by triangulating it with
satellites. By combining these two sources of position data, the position of the
car can be determined with a higher accuracy, than if only one of these sources of
data would be used. More specifically, this is done by projecting the cones that
the camera detects onto the ground, and then rotate them in an absolute frame of
reference that was employed when the car started. The GPS data is used to locate
the car and determine its direction.
The APU is a small computer that does several things. One of these things is to
act as a CAN gateway between the low- and high-level systems, see Sect. 2.2. It
converts the low level CAN messages into OpenDLV (ODVD), and vice versa. The
OpenDLV message can then be sent out on the high-level ethernet network to be
further processed by the various OpenDLV microservices.

2.5.1 Safety system
In order to minimise the risk of accidents, several safety systems were integrated
into the design. These include the emergency brake system (EBS) and the remote
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emergency system (RES). The RES consists of a remote controller and a receiver
connected to the EBS. The EBS is activated either automatically, whenever the
system detects an error that requires the car to stop, or manually through the RES.
When activated, the EBS shuts the tractive system off and brakes the car with
the aforementioned braking actuator. Design of the EBS was made by CFSD in
accordance with FSG 2021 EBS reference design and a copy of CFSD’s EBS could
therefore be implemented in the HIL-rig.

2.5.2 Sensors
In order to enable proper control of the car by the PC, several data collecting sensors
are required. For this reason there are multiple sensors on the car, monitoring tire
temperatures, brake temperatures, hydraulic pressure in the brake system, damper
positions in the suspension, steering angle and pedal positions. These sensors pro-
vide the computer with the necessary information of the status of the car.

One of the most important sensors is the camera since it delivers a lot of information
about the environment. Since the camera has no depth perception, it is difficult,
and takes a lot of time for the AI when it comes to calculating the distance to the
objects. This is especially troublesome in the real world where there are a lot of
different shapes, making it quite difficult to teach the computer all of the edge cases.
However, considering that the track where the CFSD car will compete is relatively
predictable, this weakness of the camera is reduced. The cones visualising the track-
limits make it easier to compute the path. The system also takes other information
into account when calculating the driving path, like for example the wheel speed,
steering angle, et cetera.

2.5.3 Nvidia Jetson AGX Xavier
The Jetson AGX Xavier, which can be seen in Fig. 2.7, is an artificial intelligence
computer created by NVIDIA intended for autonomous robotic applications. It fo-
cuses on deep learning and machine learning tasks. The needs of the CFSD car
fits the intended purpose of the NVDIDA Jetson, and was therefore implemented in
the HIL-rig to evaluate the possibilities of using it in the car. The NVIDIA Jetson
uses a complete system on module (SOM), with CPU, GPU, PMIC, DRAM and
flash storage. The system provides the performance and power efficiency needed
to run autonomous machines software faster and with less power. One advantage
with NVIDIA Jetson is that it supports CAN which is an important communication
protocol in the car.

Earlier CFSD cars have had both a PC and APU. Since the APU does not have
enough processing power to handle image processing, it have been necessary to use
a PC with a GPU to handle the image processing and AI. This means that the APU
is mainly used for its CAN interface capabilities and 4G Internet connectivity for
the purpose of remote monitoring and over-the-air (OTA) software updates.
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One of the main purposes of the HIL-rig is to explore the possibility of merging
the APU and PC to one NVIDA Jetson Xavier unit, handling everything from the
CAN signals to the image processing. This would bring a lot of benefits. The
NVIDIA Jetson is only using a fraction of the power that the PC uses, around 30 W
compared to the PC that can draw around 200 W around peak loads. With this
significantly lower power draw, the NVIDIA Jetson also manages to outperform the
PC in certain types of image processing. And it would lead to a much smaller and
lighter construction, since it would replace both the PC and the APU.

Figure 2.7: An NVIDIA Jetson AGX Xavier chip to the right and a chip with a
large mounted heat sink to the left.

2.5.4 Software automation
In this project all the components of the HIL-rig and car runs the same software. Ev-
ery time the system starts it looks for, and downloads any updates. By introducing
this level of automation we make sure everything is up to date and avoid errors. In
order to achieve this it was necessary to introduce an operating-system-level virtuali-
sation, over-the-air (OTA) update and remote system monitoring, as seen in Fig. 2.8.

Figure 2.8: An operating-system-level virtualisation.

Operating-system-level virtualisation uses a host and containers. The host system
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includes a Hardware Kernel and an operating system. The containers include a small
version of the operating system and an application. The containers use the same
Kernel and hardware as the host. The big advantage with operating-system-level
virtualisation is that no kernel and hardware needs to be simulated. This means that
the system will not receive any performance penalties. By default the containers
are isolated from each other. This way there will be no interference between the
containers. Common implementations used in this context are for example Docker
and LXC. In this project Docker was used which is mainly a software development
platform that makes it easy to develop and deploy apps inside virtual containerised
environments. Meaning apps will run the same no matter which machine they are
running on.
OTA updates are primarily for products in the wild, meaning products that have
been sold, or products that are unavailable. However, it can also be helpful during
development. It allows each developer to deploy their binary in a seamless way.
This way the developer does not need to go to the workshop and manually put in
the binary. The OTA updates therefore enables the engineer to push the newest
software into the product.

Remote system monitoring is a way of assessing system performance of the prod-
uct so that the software can be refined. This is useful because it can measure the
performance between different updates. So if a change is made to the software the
developer will know if it is better than the last one.

By combining the steps above, a full automation chain can be created. The au-
tomation chain includes the following steps. Developer commits changes to the
code repository. The Continuous integration infrastructure checks the code, and
returns to the developer if something is wrong with the code. A tag is made to the
new release on the accepted new binary. The products get the new software entities.
Then the products can send back monitoring data to the developer and the process
can be repeated.

The benefits from having such an automation chain is that the products are always
up to date. Engineers can always check the in-field performance, and the engineers
working on the software will have a better understanding of the products.
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In order to assemble the HIL-rig, knowledge about the low voltage system had to be
gained by collecting information from sources provided by the CFSD team. These
sources were primarily schematics and other technical reports written by previous
CFSD students. The current CFSD team members were also consulted to compli-
ment the documentation. With this information an outline of the low voltage system
was created and the components were ordered.

While awaiting the components, work on various parts of the project began. These
parts included the wooden test bench, the node containers and the wires, as well as
the software.

3.1 Assembly of the HIL-rig
The design of the HIL-rig consists of a constructed wooden structure with space for
mounting various hardware components. The approach was to, primarily, mount
components by the use of Velcro tape and otherwise to use screws to attach heavy
components. The overall purpose of such a test bed is to make it possible to im-
plement new solutions quickly with regards to existing software infrastructure and
to be able to put the new hardware efficiently into work. Initially, the hardware in-
stalled on the HIL-rig consists of a front node, rear node, autonomous system node,
PC, APU, fusebox, power supply, sensors, brake system, steering system, steering
wheel, dashboard and a Nvidia Jetson AGX Xavier.

The wooden structure provides a surface to attach various hardware components to.
This surface needs to be comfortable and ergonomic to work with, and give an easy
overview of the system when building and troubleshooting. To achieve this the rig
is designed with a plywood top board which can be locked in two different angles.
One of the angles is horizontal to use when placing and attaching components. The
other is a display angle, where the top board can be tipped 73 degrees to allow an
easy overview, for example when planning or showcasing.

A number of different designs were evaluated. A detailed production of different con-
cepts was deemed unnecessary since time was of the essence. With a sketch ready,
wood, screws and fittings were acquired from a hardware store. The Chalmers Re-
vere facility, where most of the project was conducted, has a well-equipped workshop
with all the tools necessary to cut, measure, drill and attach the parts to the wooden
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structure. Some issues concerning fastening methods and rigidity had to be solved
during the building phase. In the end, however, no additional material than planned
had to be used.

In order to acquire the correct components, the documentation done by the CFSD
team of the real car was thoroughly studied. Since the documentation was not en-
tirely complete it was also necessary to gather information directly from the people
involved in building the car. The biggest obstacles with this kind of work method
was identifying who has been responsible for a certain function and then clearly
communicate what is needed from them.

There already was a PCB and some components for the fuse box in the Chalmers
Revere facility. In order to create a copy of CFSD’s fuse box, the PCB and its
components were soldered together. In order to make the process easier, CFSD’s
fuse box and the electronic design was used as a template, as seen in Fig. 3.1. By
looking at the electronic design the purpose of each fuse could be discerned.

Figure 3.1: The circuitry for the fuse box design generated in the software Altium.

After the fuse box was soldered, testing was required. This included checking for
continuity and checking that the diodes lit up properly. Continuity was checked by
measuring over input and output and then over each fuse holder. The diodes were
checked by applying a small voltage over each diode to see if they lit up.

The containers for the front and rear node, steering wheel, relay box and autonomous
system node were all manufactured using a 3D printer. The complete design was
saved as a .stl file, and Simplify3D was used to prepare the 3D-model for the printer.
The containers were then mounted to the rig and the PCB’s installed in the con-
tainers.
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3.1.1 Creating the cable harness
To organise the designing of the cable harness the group received an Excel document
from Chalmers formula student (CFS) with all their cable lengths and pin-numbers
for the different connectors. The Excel document was organised with one tab for
each component of the car. Since the CFSD car has some components that the
CFS car does not have, these tabs were added by the group. The document was
organised so that all of the data that the group collected, or verified as correct was
marked green. This way the CFS information could be kept for reference until new
data was collected.

The designing of the cable harness started by measuring all cable lengths in the car.
This was done by placing out the different components in the physical car and then
using measuring tape to measure the distance between all components that would
need some kind of cable between them. Each measured length was then put in the
Excel document received from CFS.

To get all the pin-numbers, the group studied documentation of the circuit boards
of the car. From these files the pin number could be found and was then put in
the Excel document. Finally a standard for the colours of the cables was decided so
that the cables would be easy to separate, depending on what type of cable it was,
see Tab. 3.1.

CAN high CAN low Ground Power Sensors
Purple Yellow Yellow/Green Brown Gray

Table 3.1: The decided colour standard for the cables.

The grey cable which goes to the sensors includes three cables. These are 5 V which
is a brown cable, a ground cable which is green and a white cable for sending signals.
For CAN the CAN-High and CAN-Low, the cables needs to be twisted. To do this
a vise and a screwdriver was used. The ends of the cables were taped together, then
one end was put in the vise, and the other one in the screwdriver. The screwdriver
was then used to twist the cables.

There was little to no experience of wiring in the group when the project started.
The experience in CFSD was also very limited, which led to the whole wiring process
taking a lot of time. The group had to figure everything out by trial and error. Dur-
ing this process some help was received from CFS when one of the group members
visited them to discuss wiring and how it should be done. After that an instruction,
which can be found in App. A was written by one of the group members, including
pictures of how the wiring should and should not be done. This enabled more people
from the group to learn the process which quickened the work rate.

To control the brake light the wiring needed to be adapted, since the LED-strip that
was used was a pull down LED-strip. This means that it is powered by a constant of
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12 V and the colour, or RGB colour combination that should light up, is grounded.
To control this a TIP120 transistor was needed. The LED-strip was connected to
12 V, the R-contact (red) was connected to the collector of the transistor, and the
emitter of the transistor was then connected to ground. Finally, the base of the
transistor was connected to the brake light, to enable signal from the rear node. All
these connections can be seen in Fig. 3.2. By doing this the transistor closes the
circuit when the rear node sends a brake light enable signal, turning on the brake
light.

Figure 3.2: Electrical schematic between the rear node, a transistor and the brake
light

3.2 Software
The APU and the PC are essential components of the HIL-rig, and it is vital that the
software is both as up to date as possible and not bloated by unnecessary programs.
It is also important that there is an easy way back to a steady state. To achieve
this, employees at the Chalmers Revere facility developed a set of scripts to wipe a
devices’ hard drive clean and install a fresh Linux environment with device-specific
settings. To deploy these scripts and initiate them on the device system, a preboot
execution environment (PXE) is used. PXE is a client-server environment which
allows a device to boot from a network. When the device boots from the PXE
server a minimal Linux environment called Tiny Core Linux boots up and engages
the installation scripts to wipe the hard drives and subsequently installs the Arch
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Linux environment on the device. Alongside the installation a pre-made docker-
compose.yml file is included and when it’s automatically started the Docker images,
that are the building blocks of the microservice architecture, are downloaded.
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This process makes it easy to ensure that all parts of the system are up to date with
each other. Only a change in the version number for a specific microservice in the
docker-compose.yml file is all that is required for a new version to be downloaded
automatically on the next system reboot. For purposes such as our HIL-rig it is
even more useful to make sure that the HIL-rig, and the car it is based on, are run-
ning the same software. A simple change in the docker-compose.yml file will make all
copies of a device update their software to the new version the next time they reboot.

For the two components on the HIL-rig, where this method isff used (the PC and
the APU), the process of booting differs slightly in detail although both follow the
same basic idea of booting from a PXE server.

The APU automatically boots from its memory and not a network, so some manual
setups were required before the installation process could begin for the first time.
As the APU has no way of connecting to a monitor of its own, a connection be-
tween a PC and the APU was established through the serial port on the APU. The
necessary configurations for the APU to connect to the PXE was then be applied
through a shell window on the PC. The APU could then be booted from the PXE.
This installed all necessary software and the APU was then ready to boot from its
own memory to be used in the HIL-rig system.

The process for booting the PC was very similar to the one for the APU but instead
of connecting to a separate computer, a screen was connected to the PC to monitor
the progress of the installation. The necessary settings for the PC to boot from a
PXE server were applied and the PC was connected to the internet. The PC could
then be booted from the PXE server which was running on a separate computer and
the process of installation followed the same path as described previously.
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During the span of the project, a wooden structure was constructed, the node con-
tainers were printed, various PCBs were soldered, the PC and APU were booted
and a significant amount of cables were wired. Despite the fact that the HIL-rig was
not completed during this time, it can still be used for various tests and simulations.
The modular nature of the design makes continued work on the rig straightforward,
easy to build upon and perform modifications. An extra shelf for the brake system
was retrofitted.

The rig has a working power supply which has been tested with the PC. Most com-
ponents have been mounted on the rig, either with Velcro or secured with screws,
according to Fig. 4.1. All CAN cables have been connected, as well as most of the
ground- and power cables. The dashboard has been built and most of its lights and
buttons have been connected to their corresponding components.

With the initation the APU and PC, the system now connects automatically to the
PXE server and download the latest update everytime it is started. Furthermore,
both the APU and PC works as intended, at least in isolation.

Figure 4.1: The layout of the rig at the end of the project.

The HIL-rig in Fig. 4.1 illustrates the layout of the components mounted in the rig
and the names of the numbered components are listed in Tab. 4.1
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Table 4.1: Description of the numbers in Fig. 4.1

1 Rear node
2 Fuse box
3 PC
4 NVIDIA Jetson
5 Power supply
6 CAN hub
7 APU
8 Dashboard & steering wheel
9 Front node
10 AS-node
11 Space reserved for sensors
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Discussion and conclusion

In this section the ethics concerning HIL-rigs, in general, will be discussed. There
is also a discussion of the progress during the project, and the effects of external
factors. There are also recommendations for further development of the HIL-rig.

5.1 Ethics
In order to simulate and to have a good understanding of the digital twin, it is re-
quired to collect and extensive amount of data. In a larger context, it is a fact that
more and more activities generate data that is collected and used in ways the public
cannot see, nor control. Whilst data can be used for research, in order to improve,
things like traffic behaviour, it can also be used in ways that violates privacy. For
example, data may be shared with third parties for targeted advertisement and any
recordings of sound or video are always sensitive information.

Data collection for commercial purposes, such as targeted advertisement, can be
tempting, since such information can be very valuable. However this is a good ex-
ample of the kind of data collection that could violate an individuals privacy and
harm their interests.

The second viewpoint is the lack of transparency of how the sensitive data is handled
and processed. In addition, technology develops much faster than policy. There have
also occurred discrepancies in regards to data management, leading to data leaks.
This has, of course, caused a mistrust between consumers and the digital commer-
cial [6].

However, there are ways to solve problems like these, and different approaches may
have different privacy concerns. Monitoring alertness, for example, can be sensi-
tive depending on how it is done. Many car manufacturers use infrared cameras to
track the drivers eyes and head movements, usually this is done in a closed loop
in the car and no data is recorded or transmitted. Tesla uses sensors mounted in
the steering wheel to check if the driver is holding the wheel. This method is not
as reliable as using IR-sensors. In fact, it is quite easy to have one hand on the
steering wheel and still not pay attention to the road. In Tesla’s vehicles there is
a camera they call the “cabin camera”. The camera records and transmits video
footage from inside the cabin. The camera is located in the rear view mirror and
both the driver and passengers can be seen in the footage. The camera is turned off
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by default but can be turned on if the owner chooses to. This camera is, according
to Tesla, used to capture video in the event of a crash or if the automatic emergency
braking system is activated. Tesla uses the footage to develop further safety features
and make improvements to their software. The question here is also, if they have
a camera in the car, why do they not use it to improve the driver alertness moni-
toring? This camera rises privacy concerns and is not really of any use for the driver.

There are always privacy concerns when one person, or multiple persons are being
directly recorded by a company and their faces are visible. The driver, usually the
owner of the car, has agreed to share the video but any passengers in the car might
not have consented to being recorded. The concern here is that other companies or
government authorities may obtain the footage, and someone with bad intentions
may also want to obtain video from inside peoples cars as well. Tesla might also
use the footage for other purposes than safety development, for example targeted
advertising [5].

When developing cars and collecting information for development, it is important
to consider in what ways the data is collected. If the alertness of a driver can be de-
termined by IR-sensors in a closed loop system you should not collect video footage
from inside the entire cabin. It is also important to consider other cameras mounted
on the outside of the vehicle. These cameras record everything around the car and
people near the car can not give consent for being recorded. Probably, they are not
even aware that they are being recorded.

While user data is not directly collected and saved in this project, it is still impor-
tant to keep this aspect in mind. This project might be expanded and evolved in a
direction where this group has no longer control over it. Therefore, it is important
to take ethics into account, already from the beginning.

5.2 Analysis on degree of completion of the project
and further development

The accomplishments of this project were not always easily achieved and the group
had to deal with various obstacles, originating both from the complexity of the
project, as well as from factors during the, as of spring 2021, still ongoing COVID-
19 pandemic.

The base of this project has been the Chalmers Revere facility at Lindholmen in
Gothenburg, Sweden. This is a space that is shared between a number of different
projects. Because of a restriction on the maximum number of people allowed in the
lab, only a fraction of the group could perform practical work on the HIL-rig at
once. This could largely be compensated for by careful work planning and flexibil-
ity in terms of the work site. For example, a team member might borrow a small
amount of equipment from the lab to work with somewhere else. However, it proved
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challenging to make up for the value of quickly and easily being able to see every
member in person. Digital tools like the conference platform Zoom and the texting
platform Slack were helpful, even if they came with a delay of feedback and a slight
distortion of communication. In general, he group adapted well to the special pre-
requisites.

Building the rig involved ordering a lot of different hardware components from
around the world. The delivery times were often much longer than anticipated.
The project coincided with a global shortage of semiconductors and the blockage
of the Suez channel, but it is only speculation that those events might have had
something to do with extended delivery times. To cope with this, some components
had to be adapted to work in the system. For example, some of the connectors
that were used were of the wrong type. Also, since CFSD already possess a lot of
hardware components, it was possible to avoid buying expensive PC parts like GPU
and CPU. As of writing, these components are still in shortage and would otherwise
likely have been a source of delay.

Apart from external factors, some examples of things which required a lot of work
is the wiring, setting up the software on the APU, finding and compiling knowledge
from the CFSD database and, generally, getting well acquainted with the project
during the start up phase. Two things learned from this are that documentation and
communication are very important practises. If a part of the group gain a skill, this
must be passed on to the rest of the group in order to avoid spending unnecessary
work time. When this is achieved, productivity can increase.

The biggest obstacles regarding wiring were the large amount of cables in the car
to replicate, to build and add connectors, and estimate the length of these without
a finished car to compare with. Because of communication delay in the cables, it is
important that they are of similar length to the real car for the HIL-rig to mimic
it as closely as possible. To produce cables of high enough quality also proved to
require some dexterous skills.

Overall, there is still more work to be done before a complete HIL-rig can be pre-
sented. The details on what is left to develop is presented next.

Even though active development of the rig was halted for this group, the hardware
components that were ordered will probably continue to arrive for some time to
come. Therefore a lot of work can likely be done as soon as development is resumed,
either by CFSD, or a future group of bachelor students. As of the time of writing
there are primarily a lot of nodes and sensors which have yet to arrive.

The first step after getting familiar with the project is to organize components and
attach them to the wooden rig. This should be a rather fast process and the biggest
obstacle will probably be for the new group to identify each of the components. It
is likely that it will be very important to test every component before continuing in
order to save troubleshooting time in case of problems with the hardware. Finishing

27



5. Discussion and conclusion

the wiring is presumably the following challenge and will require some additional
knowledge about the components and what they communicate. It is also necessary
to be able to build new cables of decent quality. A guide on this matter has been
produced by this group and can be used in the future development.

After the hardware is in place, or at least along side the fitting of the cables, the
software for APU and PC needs to work with the whole system. Most software is al-
ready written but in order to implement it, some basic Linux knowledge is important.
A suggestion on what to test first is if communication can be established with an
arbitrary node and that communication over the CAN-network is executed correctly.

Soon after this the rig will probably be in a state where it can help its user to gener-
ate new knowledge. This could be done by performing various tests on performance
over time, by switching out components and running experimental software. When
the physical rig is completed, the last step is to implement the digital twin computer
and server, where parts of the car which are not physically present in the rig are
simulated, and where data logs from the real car are received.

Some of the components, which have not yet arrived, are different kinds of actuators.
Actuators are not strictly needed in order to test other hardware, as they do not
affect how the rest of the system works. Instead, they receive instructions from the
system and move accordingly. As such was it not obvious to use so many actuators
in the system, since they’re quite expensive. However, using them in the system
would give visual confirmation that they work in the way intended. As work contin-
ues to progress more actuators should probably be installed, but it is not assessed
to be something which has to be prioritised.

As previously mentioned, it seems like testing a NVIDIA Jetson unit, and evaluating
whether it is a good idea to use such a unit in the car, could be one of the first tasks
for the rig. However, the future use of the rig depends on the needs of CFSD and
can only be a subject of speculation. An attempt on this follows in the next section.

5.3 Future usage of the HIL-rig and conclusion of
the project

With HIL, real time simulations can be performed and evaluated immediately rather
than waiting for the car to be shut down and then having to download the data from
its PC. By acquiring data in this manner, the capacity to interpret and process it
increases. One way to simplify this is to develop a GUI for certain parameters.

The rig will probably come to its best use, and save its user a lot of time, when
all the complete digital logs from testing of the real car is automatically processed
and saved by the rig. This will give deeper insight to the performance of the car.
If something is not working as intended, the software can be updated and the same
data log can be played again to immediately see what will happen by using the new
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code.

By having similar components to the actual car, the HIL-rig can provide a much
faster way of evaluating technical solutions. This makes it a quick way for designers
to try out and verify different software solutions, encouraging an agile development.
This may also result in a decrease of the need to perform tests with actual vehicles
and instead put more time and effort into software implementations.

An important outcome of this project is that both the PC and the APU has suc-
cessfully been set up in the system to automatically install the latest software at
start up, exactly like the real car. This is of great benefit for the CFSD-team as it
is a big step towards routinely taking advantage of all the pros associated with the
concept of HIL.

By making sure that the car and the rig uses exactly the same software, the testing
process is eased. For example, if the rig was not using the exact same software, a
frequent comment on the test track could be “But it worked on the rig yesterday”.
If everything is as similar as possible, differences in run time can be avoided.

Also, knowledge gained in the process of developing the rig can in many cases be
applicable to the CFSD-car and contribute to getting it ready for competitions. This
is especially true in the case of wiring and setting up software in the system.

The project has occasionally challenged the group with difficulties and setbacks.
These have been overcome by cooperation, communication and by trying to match
the problem with a suitable person to target it, often based on the different back-
grounds and the knowledge possessed in the group. While the final goal of a fully
working HIL-rig is yet to be reached, the work has come a long way. The results
achieved will most likely be of great help to CFSD as well as provide the team with
knowledge and experience on working with HIL and digital twins.
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Wiring instructions
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Cable instructions 

Basics 

When cutting a cable you should check the “Kabeldragning” document, cut the cable to the 

length in the green-marked box. Mark each end of the cable with tape that says component 

and pin-number.  

RN  
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Remove the isolation from approximately 7 cm of the cable. 

If the cable is shielded, cut of excess shield, strings and plastic and use the black cable-tape 

to make a nice end.  

 

 

What not to do 

 

As you can see in this picture the shielding, strings and plastic is just left which makes the 

cable messy and could possibly create problems for other cables.  

 



Attaching crimps  

The crimp needs to be attached properly. All wires must be covered by the crimp and the 

crimp should end up round, not flat. The isolation also needs to go all the way to the crimp 

so that no wires are left exposed. A special tool should be used to attach the crimps, see 

picture. If possible, depending on cable thickness, the outer “flaps” on the crimp should be 

around the isolation.  

  

The “flaps” should be on the side of the tool with the number. For most of our cables 1.8 is a good 

size. For the thin signal cables (the grey with smaller cables inside) 1.4 needs to be used. In this case 

you will need to push it a bit with a bigger size first so it fits in the 1.4.  

  

 

 

  



What not to do  

 

 

Plug in to superseal connector  

Open and closing the superseal connector  

To plug in to the connector you first need to make sure that the connector is open, this is 

done by pressing the white part on the bottom of the connector. You can use a flat, small 

screwdriver. When the connector is open the two white pieces on the top is up, when it is 

closed they are at level with the connector. To close the connector you press the white parts 

on the top. If it is not possible to close it, there are (at least) one pin that is not properly 

inserted.  

   
Open Closed  Press this to open  

 



Connect cables 

You then need to check the “Electronic nodes and wiring” document to see the placement 

of the pin-number in the connector. The crimp should go so far in that the connector 

“clicks” when the pin goes in.  

 

 

What not to do 

 



The crimps are not inserted properly, there is a lot of excess copper, shielding is left hanging 

all over the place.  

You should never pull out a cable without making sure that the connector is open (by 

pushing the white part. If you do this, there is a big risk that the crimp will get stuck in the 

connector.  
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