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Abstract

Nowadays, the importance to obtain position in weak signal environments, such
as indoors, has increased in order to take a step forward in the greater use of GPS.
However, the weak signal environment may include several negative factors such as
low signal to noise ratio, signal jamming and interference among others that shall be
studied. The present thesis work proposes an open loop approach to deal with the
signal dynamics. A Doppler model is proposed in order to remove the dynamics of
the incoming GPS signal with the aid of an Inertial Measurement Unit (IMU). The
model is broken down into calculating the satellite dynamics, the receiver dynamics
and the receiver’s oscillator dynamics. An error budget is created in order to see
the unpredictable errors and their influence. A bandwidth analysis is also performed
in order to analyze the effects of the dynamics in the receiver’s phase locked loop
(PLL), more specifically in the loop bandwidth. Available measurements from a high
tech IMU and a GPS receiver oscillator are analyzed to quantify the time dependant
errors.

An algorithm to account for the satellite dynamics is proposed with an accuracy
Doppler error of ±.0005 Hz. It is shown that the errors from the IMU are dominant in
the error budget. However, the receiver dynamics errors are reduced: For a scenario
where a vehicle enters a tunnel at 100 km/h and 50 seconds later exits the tunnel with
a speed of 28 km/h it is shown that the dynamics of the signal can be reduced from
100 Hz to 6 Hz after implementing the open loop approach. The errors introduced by
the oscillator are also shown to be significant with up to 2.58 Hz for L1 GPS signal.

These conclusions give arise to the use of lower bandwidth usage in the PLL.
Higher signal to noise ratio can be deduced and rapid acquisition and reacquisition
of the signal is possible, meaning the GPS signal can be tracked immediately after
blockage situations.

Keywords: GPS, INS, Receiver, Integration, Dynamics, Satellite, Oscillator, Doppler Ef-
fect, Doppler Model, Inertial sensors, Accelerometer, Gyroscope
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1 Introduction

This master thesis is intended to perform a feasibility study on the design of a rapid ac-
quisition Global Positioning System (GPS) receiver based on ultra tightly coupled Inertial
Measurement Unit (IMU) and Global Position System (GPS) strategies.

1.1 Background

During the last years the use of Global Navigation Satellite Systems (GNSS), more specif-
ically Global Positioning System (GPS), for positioning and navigation have been globally
widespread. Nowadays, the importance to obtain position in weak signal environments,
such as indoors, has increased in order to take a step forward in the greater use of GPS.
The weak signal environment may include several negative factors such as low signal to
noise ratio, signal jamming and interference among others.

One of the possible approaches to overcome the weak signals scenario is the coupling of
an Inertial Measurement Unit (IMU) along with the GPS receiver. These IMU-aided GPS
receivers are usually referred to as coupled IMU/GPS receivers. The IMU provides aid to
the GPS phase/frequency and code tracking loops. By calculating the velocity information
from acceleration data, Doppler information can be extracted and then used to remove the
high dynamics of the received signal to improve the tracking in weak signal scenarios.

1.2 Purpose

The purpose of this project is to make a feasibility study on the implementation of an open
loop tracking approach using ultra-tight GPS/IMU strategies. Furthermore, the thesis will
produce a design of a rapid acquisition receiver IMU-supported GPS receiver with improved
tracking in low signal conditions.

The open loop tracking approach involves the design of a Doppler model that considers
all the essential players in the high dynamics scenario that give a arise to a change in
frequency on the received signal. This model will then give us the necessary tools to
improve the signal tracking and calculate an error budget in order to perform the feasibility
study.

The receiver will be an important contribution to the field of indoor navigation and
hostile environment conditions and the mentioned error acquaintances will give some per-
spective in order to realize improvement for future work.

2 Theory

2.1 Global Positioning System

2.1.1 Overview

Global Positioning System (GPS) is a satellite-based radio-navigation system. The system
was developed by the U.S. Department of defense under its NAVSTAR satellite program
(Grewal, 2001). GPS consists of 3 different segments: the space segment, the control
segment and the user segment.

Space Segment The space segment as its name implies involves all the aspects concern-
ing the GPS satellites. GPS has 24 (32 satellites are now in orbit) distributed in 6 equally
spaced circular orbital planes with an inclination of 55 ◦ (relative to the equator) and an
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approximate radio of 22,200 kilometers. The satellites have an orbital period of around 11
hours and 58 minutes. It is important to mention that the orbits are not geosynchronous
leading to a change in geometric view from the end-user’s perspective; these geometric
changes have impact on the position accuracy calculation, however, they are predictable.
The main reason for this GPS constellation design is to assure that the end-user, located
anywhere on the globe, will have a line of sight with at least 4 GPS satellites at the same
time at anytime (Farrel and Barth, 1999).

Control Segment The control’s segment main purpose is to check the status of the
space segment. This segment includes: 1 master control, 6 monitor stations and 4 ground
antennas spread all over the globe. The master control station, located at Colorado Springs
collects the tracking data of the monitoring stations and calculates the satellite’s orbit
and clock parameters using a Kalman estimator. Then, these estimations are sent to the
control ground stations that have the task of uploading the data to the satellites (Hofmann-
Wellenhoff, 2001).

User Segment The user segment consists basically in the GPS users that own a GPS
receiver with its antenna. Inside the user segment there are two important categories:
military use and the civilian use. The equipment receives the signals from the satellites in
order to provide positioning, velocity and precise timing information (Hofmann-Wellenhoff,
2001).

2.1.2 Signals

GPS is a passive system; thereby the availability of the system is intended for an unlimited
number of users. All satellite transmissions are derived from the fundamental frequency
fo = 10.23 MHz that is available from the set of on-board atomic clocks. Each GPS satellite
transmits on two L-band frequencies by using Code Division Multiple Access (CDMA).
When multiplying the fundamental frequency times 154 we obtain 1575.42 MHz, which
is denoted as the L1 carrier; multiplying the same fundamental frequency times 120 gives
arise to L2 carrier at 1227.60 MHz (Leick, 1990).

Three pseudorandom noise (PRN) codes are embedded with each satellite. All codes
are bi-phased modulated on the carrier frequencies L1 and L2, this is known as spread
spectrum and it is used to make the signal more resistant to jamming and interference and
sometimes to limit the power flux density(Farrel and Barth, 1999).

The Course/Acquisition (C/A) code modulates the L1 carrier phase. It has a length
of 1023 chips, a rate of 1.023 MHz and a period of 1 ms. There exists a different C/A
PRN code for each satellite that is nearly orthogonal to each of the other C/A PRN
codes belonging to the other satellites. Although the satellites transmit at the same two
frequencies (L1 and L2) the GPS receiver is able to recognize the satellite by correlating
an internally generated version of the C/A PRN with the received signal(Farrel and Barth,
1999).

The precise code (P) modulates both L1 and L2 carrier phases. It has a rate of 10.23
MHz and a period of 7 days. The last code is the so-called Y code. This Y-code is only
available on the antispoofing (AS) mode of operation. It is an encrypted version of the
P-code and it requires a classified AS module in the receiver, therefore it is only available
to authorized users with cryptographic keys (Farrel and Barth, 1999).

Each satellite also transmits a navigation message, which also modulates the L1 C/A
code signal. The navigation message is a 50 bit/s signal that consists on information
about the satellite’s orbit, health and clock correction among other parameters. The whole
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navigation message frame is divided into 5 subframes. It takes 6 seconds to transmit each
one of them. The first subframe contains polynomial coefficients to correct the on-board
satellite time to GPS time. The second and the third subframes consist on the ephemeris
of the broadcasting satellite. The ephemerides are precise orbital information. The fourth
subframe is mainly for special messages such as ionospheric correction terms and coefficients
for GPS to UTC time conversion. The fifth subframe contains the ephemeris and health
status for one of the 25 (now 32) satellites. This subframe is subcommutated 25 times in
order to receive all the ephemeris from the whole GPS constellation satellites, therefore
it takes 12.5 minutes to get the complete orbital information, which is known as almanac
(Grewal, 2001).

2.1.3 Observables

In order to find the three dimensional position of the user a so-called range should be
determined from the user to at least 4 satellites with known positions in space. This range
can be defined as the distance from the user to each of the satellites. Having these ranges,
then a point can be solved mathematically, where these set of ranges take place. The
ranges can be obtained either from measured time or phase differences and are denoted as
observables Grewal (2001).

However, the ranges are measured by comparing the received signal and the internal
replica generated in the receiver. The received signal is generated by the satellite clocks,
while the replica is generated using the own receiver’s clock. This means that there exist
unavoidable timing errors that will cause the geometric distance to differ from the true
distance value; therefore, the error-influenced ranges are called pseudoranges. Other factors
will also introduce errors in the pseudoranges, such as the troposphere and ionosphere; this
will be discussed later on the thesis work. Meanwhile the simplified pseudoranges’ equations
for the code and phase cases only containing the clock errors can be seen in 2.1 and 2.2 ,
respectively (Hofmann-Wellenhoff, 2001):

R = ρ+ c∆δt (2.1)

Φ =
1

λ
ρ+

c

λ
∆δt−N (2.2)

For the code phase, expressed in meters, R is the code pseudorange, ρ is the true
distance and c∆δt is the combined clock errors (satellite and receiver). For the phase case,
expressed in cycles, Φ is the measurable fractional phase and N symbolizes an integer
ambiguity parameter, in other words, the unknown number of integer cycles at the initial
epoch; these parameters need to be solved prior to calculating the receiver’s position.

If clock errors did not exist, the position of the receiver could be solved only using 3
satellites. However, due to the clock errors at least four satellites are needed.

2.1.4 Error Sources

The pseudoranges (code and phase) are not only affected by clock errors. They are also
affected by other types of errors. Generally, the errors can be divided into three groups:
satellite related errors, propagation errors and receiver errors, see Table 2.1.

First we have the satellite related errors, the satellite clock and orbital errors. The
satellite clock, over time, will drift away from the GPS system time. This error can be
compensated by using the clock correction parameters sent in the broadcast ephemeris.
The orbital errors can be defined as the errors in the predicted orbital parameters sent in
the broadcast ephemeris. The three components of ephemeris error are the radial, tangent,
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Source Effect

Satellite
Clock bias

Orbital Errors

Signal Propagation
Ionospheric refraction

Tropospheric refraction

Receiver
Antenna phase center variation

Clock bias
Multipath

Table 2.1: Error Sources and Effects (Hofmann-Wellenhoff, 2001)

and cross track components where the radial component is the one affecting the ranging
accuracy and turns out to be around 1 meter. To mitigate this error, post-processed precise
ephemeris can be used reducing the radial error even up to .05 meters. Another solution
is to differentiate between two receivers (when available); this solution will eliminate the
satellite biases (Farrel and Barth, 1999).

Second we have the signal propagation errors. These errors can be classified into two
categories: dispersive and nondispersive. The nondispersive portion is related to the tropo-
sphere (although some other atmospheric portions are not considered) and the dispersive
portion is related to the ionosphere. The troposphere, located from 8 to 40 km above
the Earth’s surface, suffers from constant changes in temperature, pressure and humidity.
These changes affect the refractive index of the medium, causing a so called tropospheric
delay, resulting in errors on the measured range at the receiver. The tropospheric de-
lay errors are consistent among the L1, L2, and carrier and code signals since the delay
does not depend on frequency. The delay is commonly represented as having a dry and
a wet component, accounting for 90 % and 10 % of the tropospheric delay, respectively.
The wet component is difficult to model due to the variations and the dependence on the
water vapor content on the troposphere. However, there are different models in order to
compensate for this component. On the other hand, the dry component also known as
hydrostatic delay is relatively easy to model (Farrel and Barth, 1999). The dispersive
portion of the propagation errors is related to the ionosphere, located 50 km above the
Earth’s surface and consisting on ionized air. Changes in the level of ionization affect
the refractive index, therefore affecting the traveling time of the signal. The ionospheric
delay is frequency dependant and is proportional to 1

f2
, where f is the signal frequency.

Due to this dispersive effect, the ionospheric delay can be eliminated by using two signals
with different frequencies, in this case L1 and L2. A simple linear combination between
these signals can account for the errors derived from the ionosphere. In the case of short
baseline relative positioning availability, having two close receivers experiencing from the
same weather and propagation effects, differentiation methods to mitigate the propagation
errors can be implemented (Farrel and Barth, 1999).

Finally we have the receiver related errors: the receiver clock, the antenna phase center
and the multipath errors. The receiver clock bias can be handled with different methods.
One option is to use differencing strategies between two satellites. Another option is to
develop a dynamic model to estimate the change in the clock error using Kalman filtering.
And the third and more common consists on solving for the receiver clock error together
with the receiver coordinates (4 satellites are needed as stated in the observables section).
The antenna phase center variations depend highly in the used antenna; functions depend-
ing on the type of antenna, azimuth and elevation angles have been developed as well
as laboratory tests in order to model this effect. Multipath effect is caused by reflecting
surfaces near the receiver causing signals to arrive via more than one path. There is no
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general model for this effect, however, multipath reduction can be achieved by selecting
the correct antenna and using the antenna in places with few reflection surfaces; improved
receiver technology and signal and data processing are also common solutions. It is impor-
tant to mention that multipath is frequency dependant, therefore, it affects more to code
ranges rather than carrier phases (Hofmann-Wellenhoff, 2001).

Besides the already mentioned error sources, some random noise should be added to the
pseudoranges. This random noise contains observation noise plus some random multipath
effects. The random noise effect on the pseudoranges is depicted in Table 2.2(Hofmann-
Wellenhoff, 2001).

Pseudorange Noise
C/A code range 10-300 cm

P code range 10-30 cm
Phase range 0.2-5 mm

Table 2.2: Pseudoranges’ random noise

2.1.5 Signal Acquisition and Tracking

Before providing a navigation solution in the GPS receiver, a sequence of operations must
be performed by the receiver in order to access the GPS signal. This sequence is enumerated
as follows(Grewal, 2001):

1. Determine visible satellites to the antenna

2. Determine approximate Doppler of each visible satellite

3. Signal search in frequency and C/A code phase

4. Lock and track C/A code

5. Lock and track carrier

6. Data bit synchronization and navigation message demodulation

Determine visible satellites It is always a priority to minimize the time between the
receiver turn-on and the navigation solution. This time is defined as the time to first fix
(TTFF). Therefore, the receiver should focus on the satellite signals available above the
horizon. The receiver can perform a search on the visible satellites when knowing their
approximate location and time either with the almanac saved during last operations or
manually entered satellite positions by the user on the receiver (Grewal, 2001).

Signal Doppler estimation If the Doppler shifts from the visible satellites are known
the TTFF can be further reduced. This Doppler shift can be used to perform a more
efficient frequency search of the signals. The Doppler shift can be calculated knowing the
approximate position, time and valid almanac data from the satellites (Grewal, 2001).
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Signal search in frequency and C/A code phase The C/A code search is necessary
since GPS signals are spread-spectrum signals, where the C/A code spreads the signal
power over a wide bandwidth. The signal needs to be despread in order to raise the signal
to noise ratio to a usable level. This is achieved using a replica code in the receiver aligned
with the received code and correlating them. When the correlation energy is over a certain
threshold, the signal is said to be lock and detected. The frequency search is necessary since
GPS uses high carrier frequencies and the satellites experiment large velocities causing a
doppler shift in the received signals (as much as ± 5 KHz). Moreover, the oscillator in
the receiver will also cause a frequency uncertainty of several hertz. The frequency search
starts from the estimated Doppler frequency and then alternately selects frequencies above
and below the estimate until the frequency is detected (Grewal, 2001).

C/A code lock and tracking After detection, the code tracking loop is triggered, the
tracking is necessary in order to maintain the receiver-generated code replica lined up with
the incoming code as precisely as possible. It is common to use a Delay Locked Loop
(DLL) in GPS receivers (Grewal, 2001).

Carrier lock and tracking The carrier phase tracking has different purposes. First, to
have a phase reference for coherent detection of the GPS biphase modulated data. Another
purpose is to provide velocity measurements (phase rate). Third, to obtain integrated
Doppler in order to aid the code tracking loop. The last purpose is to obtain precise
carrier phase pseudorange measurements. The carrier phase tracking is achieved by means
of a Phase-Locked Loop (PLL) (Grewal, 2001).

Bit synchronization and navigation message demodulation When the PLL is
locked to the GPS signal, bit synchronization is needed in order to locate the bit boundaries.
The input stream is chopped into 20 ms long bins and then an evaluation using statistics
is performed to locate where the bit values change sign. After the synchronization has
been achieved, demodulation of the data bits can occur in order to extract the navigation
message to find the navigation solution (Grewal, 2001).

2.1.6 Tracking Loop Architecture

Conventional GPS receivers use basically two types of tracking loops as we have discussed
in the last section: code and carrier. The code loop despreads the incoming signal using
the proper PRN code, leaving then the modulated data. Thereafter, the carrier-tracking
loop demodulates the data bits.

A phase lock loop (PLL) is a control system that compares the phase of an input signal
with a phase signal derived from its oscillator. The PLL adjusts then the frequency of the
oscillator to keep the phases matched. It is an important part in the GPS receiver since
the carrier tracking loop is essential. In this section an overview of the PLL functions is
presented. A generic GPS carrier phase is shown in Figure 2.1 (Babu and Wang, 2005).

The GPS antenna at the receiver captures all the GPS signals coming from the visible
satellites. The signals go through the radio frequency RF front end normally consisting
on matching circuits, a low noise amplifier (LNA), coarse filters to reject unwanted signals
and mixers circuitry for downconversion. The signals are sampled and downconverted to
an intermediate frequency (IF), normally between 1 and 20 MHz for further processing.
At this point all the GPS signals are superimposed one over another, therefore parallel
channels shall be used to acquire and track each of the different satellite’s signals. The
frequency and carrier tracking is then performed by the individual PLLs (Chiou, 2005).
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Figure 2.1: Generic Carrier Phase Tracking Loop

The next step is called carrier wipeoff operation. The purpose of this step is to down-
convert the signal to the baseband. This is achieved by multiplying the carrier replica
with the incoming digital IF signal. The frequency of the replica is obtained by measuring
the phase and frequency offset due to the receiver and clock dynamics. A device called
voltage controlled oscillator (VCO), numerical control oscillator (NCO) for mathematical
purposes, is in charge of generating the replica. The upper branch is multiplied by the
cosine carrier replica while the lower branch is multiplied by the sine. The result from the
upper branch is called the in-phase channel (I) and the result from the lower branch is
called the quadrature channel (Q). In order to finally take both the I and Q signals to the
baseband they are multiplied by the code replica, that changes with every satellite(Chiou,
2005).

After the signal is downconverted to the baseband an operation called ”integration and
dump” takes place. The operation performs a measurement-averaging over one or more
code periods in order to suppress noise. The longer the averaging time is, more noise is
suppressed.

Thereafter, the signal goes through a phase discriminator. The discriminator measures
the phase offset between the true received carrier and the replicated carrier. The output
of this operation serves as control input to the loop filter.

The loop filter is a compensator designed to track the phase and frequency of the
input carrier with the desired dynamic range and noise suppression performance. The
Loop Filter’s output is a frequency control command for the NCO which then steers the
replicated carrier frequency to maintain the input carrier and the replica locked, in other
words, to keep the phase error as close to zero as possible(Chiou, 2005). The bandwidth of
the loop filter is one of the most important parameters when designing a PLL for a GPS
receiver since the bandwidth is related to the ability of the receiver to track dynamics; this
will be discussed in later sections.

2.2 Inertial Navigation

This section will give an overview of inertial navigation as well as its main sensors and
errors. Inertial navigation can be defined as an autonomous navigation technique used
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to track position and orientation of an object relative to a known starting point, orienta-
tion and velocity. The technique is based on the processing of measurements performed
by the so-called inertial sensors: accelerometers and gyroscopes. Typically, an inertial
measurement unit (IMU) contains three orthogonal gyroscopes as well as three orthogonal
accelerometers. Gyroscopes have the task to measure angular velocity and accelerometers
take care of the linear acceleration (Woodman, 2007).

The most important advantages of inertial navigation are (Grewal, 2001):

• It is an autonomous system, no external aids or visibility conditions (contrary with
GPS) are needed. The system can operate indoors, underwater, outdoors.

• Suited for integrated navigation, guidance and control of the desired object.

• Immune to jamming since the system does not emit or receives detectable radiation.

The most important disadvantages are summed up (Grewal, 2001):

• Navigation errors increase with time due to the sensors’ nature.

• Size and Cost. Early inertial navigation systems weighted tens of kilograms, therefore
increasing the cost in acquisition, maintenance and operation. However, nowadays
we can find systems weighing a few kilograms and more recently micro-machined
electromechanical systems (MEMS) have been developed to shrink size and reduce
weight considerably to only a few centimeters and grams, respectively.

Generally, IMUs are classified into two categories: stable platform systems and strap-
down systems. The main difference relies in the frame of reference in which each of the
systems’ gyroscopes and accelerometers operate. The navigation system’s frame of refer-
ence is denoted as body frame and the frame of reference where the navigation takes place
is denoted as the global frame (Woodman, 2007). The frames’ difference can be better
explained observing Figure 2.2.

Figure 2.2: Global and body frames (Woodman, 2007)
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2.2.1 Stable Platform Systems

In this type of system the inertial sensors are mounted on a rigid platform isolated from the
rotations of the host object by a set of three or four gimbals as can be seen in Figure 2.3. The
gimbals allow the platform freedom in the three axes; consequently, the measurements are
quantified in the global frame. The gyroscopes measure any platform rotation, correction
signals are sent then to torque motors to rotate the gimbals to cancel out the rotations.
Orientation is then tracked by extracting the angles between adjacent gimbals. Position
is calculated from the double integration of the accelerometer signals. The algorithm is
depicted in Figure 2.4 (Woodman, 2007).

Figure 2.3: Stable platform IMU (Woodman, 2007)
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Figure 2.4: Stable platform inertial navigation algorithm (Woodman, 2007)

2.2.2 Strapdown Systems

In this kind of system the inertial sensors are hard mounted (”strapped down”) onto the
host object as can be observed in Figure 2.5, therefore, the measurements in this case
are quantified in the body frame rather than the global frame. Orientation is calculated
by integrating the signals from the rate gyroscopes. To keep track of the position, the
accelerometer signals are mapped into the global frame using the previously calculated
orientation and then the global acceleration is double integrated to end up with the position
solution. The algorithm is shown in Figure 2.6. Nowadays, due to the system’s mechanical
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simplicity and physically smaller size than the stable platform systems, strapdown systems
are more commonly used(Woodman, 2007).

Figure 2.5: Strapdown IMU (Grewal, 2001)
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Figure 2.6: Strapdown inertial navigation algorithm (Woodman, 2007)

2.2.3 Gyroscopes

A gyroscope is a device used to measure orientation. It relies on the principles of angular
momentum. Nowadays, different types of gyroscopes are in use. Among the main types
we can find the mechanical gyroscopes, the optical gyroscopes and the micro-electrical
mechanical system (MEMS) gyroscope.

A conventional mechanical gyroscope consists of a spinning wheel (rotor) mounted
on two gimbals. This configuration allows the spinning wheel to rotate in 3 axes. The
mechanical device is then subjected to any kind of rotation, due to the conservation of
angular momentum the rotation of the wheel will remain at a constant global orientation
changing the angles between the gimbals. These angles are then measured in order to track
orientation.

The optical gyroscopes use the interference of light to measure angular velocity, not
orientation as the mechanical type. It relies in the Sagna Effect. Two light beams are
fired into a coil of optical fibre in opposite directions. When the coil is undergoing under
rotation, the beam travelling in the direction of rotation will take longer to travel through
the fiber to the other end. At the end of the coil the two light beams are summed up;
due to the phase shift difference between the two light beams the intensity of the light will
change depending on the angular velocity (Woodman, 2007).

MEMS gyroscopes are still under continue development. They are built up from silicon
micro-machining sensors and they are cheap to manufacture. MEMS gyroscopes make use
of the so called Coriolis Effect that states that in a frame of reference a mass m rotating
at an angular velocity ω with a velocity υ suffers from a force given by (Woodman, 2007):
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F = −2m(ω × υ) (2.3)

The Coriolis Effect can be measured using vibrating element geometries. Even though
MEMS sensors cannot achieve the same quality as the optical ones they have several
advantages such as: small size, low weight, low power consumption and cold start up
time, cheap to produce. Therefore, it is common to use MEMS gyroscopes in GPS/INS
architectures(Woodman, 2007).

2.2.4 Error Characteristics

When using sensors such as gyroscopes, inherent errors arise in the measurements. These
errors affect then the output signal, which in the case of the gyroscope is the measured
orientation. Due to the characteristics of the IMU used in this thesis, this section will
analyze the errors especially in MEMS gyroscopes.

Constant Bias This bias is the offset of the output from the true value, in other words
the average output from the gyroscope when not suffering any kind of rotation. This
constant bias ε will have an effect on the integrated orientation, causing an angular error
given by:

θ(t) = ε · t (2.4)

The solution for this error is to take a long term average of the output on steady state
(without rotation). Then this average is subtracted from the gyro’s output to compensate
for the error.

Angle Random Walk The output of the gyroscope will also be affected by a white noise
sequence due to thermo-mechanical noise which fluctuates faster than the sampling rate
of the sensor. This white noise sequence is simply a sequence of zero-mean uncorrelated
random variables. Each variable is identically distributed and has a finite variance of σ2.
When this sequence is integrated the noise gives arise to a zero-mean random walk error
with a standard deviation that goes proportionally with time, given by:

σθ(t) = σ ·
√
δt · t (2.5)

It is typical to find the angle random walk specifications with units degrees/
√
Hz

(Woodman, 2007).

Bias Stability Bias stability or flicker noise is another important factor that will have
a negative effect on the sensors’ measurements. The bias of the gyroscope will be affected
by flicker noise caused mainly by the electronics in the sensor. These fluctuations are
typically modeled as random walk. A bias stability measurement describes how the bias
will change over a determined period of time with certain conditions. The measurement
is specified as a 1σ value with units degrees/hour. When integrating this flicker error,
assuming a random walk model, the integrated output will be affected by a second order
random walk in the orientation angle. It is important to mention that in reality flicker
fluctuations do not behave as random walk. However this model works fine for short periods
of time(Woodman, 2007).

, Earth and Space Sciences, Master’s Thesis 2010:08 11



Temperature effects Temperature also plays a significant role in the sensor errors.
Temperature changes induced by environmental change or self sensor heating will cause a
movement in the bias. This error will grow linearly with time just as with the constant
bias. However, most of the IMUs contain internal temperature sensors that can be used to
compensate for the induced bias effects due to temperature(Woodman, 2007).

Calibration errors The calibration errors include aspects such as scale factors, align-
ments and linearities of the gyros. These kinds of errors can be only observed when the
gyro is turning, thus, causing additional drift in the integrated signal. It is possible to mea-
sure and compensate the calibration errors. There are some IMUs that include internal
corrections for the calibration errors(Woodman, 2007).

2.2.5 Accelerometers

An accelerometer is a device that measures the physical acceleration experienced by an ob-
ject relative to freefall. Accelerometers can be classified as either mechanical or solid state
devices. A new type of accelerometers, micro-machined silicon accelerometers (MEMS)
have been recently developed pursuing better quality measurements as well as small sized
devices (Woodman, 2007).

A mechanical accelerometer basically consists on a mass suspended on springs. The
displacement of the mass is measured whenever there is force acting on it. The result is
signal proportional to the force F acting on the suspended mass in certain axis. In order
to calculate the acceleration Newton’s second law is applied:

F = ma (2.6)

The solid state accelerometers can be subdivided into several groups like surface acous-
tic wave, vibratory, silicon, quartz devices, etc. Solid-state accelerometers are small and
reliable(Woodman, 2007).

Recently, MEMS accelerometers have been in development. They rely in the same
principles as the mechanic and solid state accelerometers. However, MEMS accelerome-
ters are small, light and they have low power consumption as well as low cold start up
times. Although they are not as accurate as the mechanical and solid state accelerome-
ters, their performance is improving with time and they are perfectly suited for GPS/INS
implementations.

2.2.6 Error Characteristics

Accelerometers have inherent errors just as the gyroscopes. These errors affect then the
output signal, which in the case of the accelerometers is the final position. As expected,
the errors are similar to the gyroscope ones. However, the errors in the accelerometers
are double integrated, since normally they are used to calculate the position of the host
object. For explanatory purposes the errors are explained having in mind the final position
calculation.

Constant Bias The bias in this case is the offset of the accelerometer’s output from
the true value, this offset is given in m/s2. This bias will have an effect on the calculated
position given by:

σ(t) = ε · t
2

2
(2.7)
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The same approach as in the gyroscopes in order to compensate for the error can be
implemented. A long term average can be calculated and subtracted from the accelerome-
ters’ output when not suffering any acceleration. However, due to the gravity component
precise orientation of the accelerometer shall be known(Woodman, 2007).

Thermo-mechanical white noise The output from the accelerometer is affected by a
white noise sequence. As shown in the gyroscope error characteristics, when the error is
integrated a random walk error is created. In this case after one integral a velocity random
walk error is produced. When the double integration takes place to calculate the position
the error creates a second order random walk error with zero mean and standard deviation
given by(Woodman, 2007):

σs(t) = σ · t3/2 ·
√
δt

3
(2.8)

Bias stability MEMS accelerometers also suffer from flicker noise. This noise is modeled
as random walk noise as described in the gyroscope sections. When applying this same
model flicker noise produces a second order random walk in velocity proportional to t3/2

and a third order random walk in position proportional to t5/2 (Woodman, 2007).

Temperature effects Temperature changes cause as well errors in the bias of the output
signal. The relationship between the error fluctuations and the temperature changes tends
to be highly nonlinear. The use of temperature sensors in order to compensate for this
error is a typical solution in MEMS accelerometers(Woodman, 2007).

Calibration errors Calibration errors involve errors in scale factors, alignments and lin-
earities. These errors are only visible when the host object is under acceleration(Woodman,
2007).

A brief explanation of the possible errors in MEMS gyroscopes and accelerometers
has been presented. These disadvantages and of course the inertial navigation advantages
along with the positive and negative aspects of GPS give opportunity to their integration
as explained in the next section.

2.3 GPS/INS Integration

After having analyzed GPS as well as INS, one can find that both systems have comple-
mentary characteristics. This section gives an overview of the main GPS/INS integration
schemes and architectures along with their main characteristics.

GPS provides position and velocity estimates with bounded errors. However, the mag-
nitude of each one of these errors is relatively not difficult to quantify. As discussed in
the introduction, the GPS user may experience some difficulties in a low signal environ-
ment where blockage, interference or jamming can be the main problems. This short-term
difficulties can be overcome in different ways.

On the other hand we have INS, where the position and velocity estimates are calculated
at higher rates (commonly more than 100 Hz) than GPS (commonly less than 20 Hz)and
are based on the output of the inertial sensors. These estimates are immune to external
interference. However, the estimates depend highly on the output of the sensors; any error
with the outputs will lead to unbounded errors in the navigation solution and as I have
presented in previous sections inertial sensors have time dependant errors.
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The error characteristics then become complementary. Therefore, different architec-
tures and approaches can be implemented when fusing GPS and INS. One example is to
use GPS position and velocity estimates to calibrate INS sensors. Another option is to use
the high bandwidth attitude, position and velocity INS’ estimates as aid during momentary
GPS weak signal environment due to blockage, interference or jamming. Since there can
be a wide variety of fusion architectures the GPS/INS integration schemes are classified
depending on the level of coupling between the two systems. Then, we can find: GPS/INS
loosely coupled integration, tightly coupled integration and ultra-tightly (or deep) coupled
integration(Gebre-Egziabher, 2007).

2.3.1 Loose GPS/INS Integration

In the loose architecture, the INS and GPS receiver operate as independent navigation
systems. Information from the two systems is then blended using an estimator, normally
a Kalman filter, to form a final navigation solution and in some cases, when the IMU
quality is poor, to estimate the INS errors to correct the gyroscope and accelerometer
measurements. A scheme of this architecture is shown in Figure 2.7(Titterton, 2004).
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Figure 2.7: GPS/INS loosely coupled integration architecture (Titterton, 2004)

The main advantages of this kind of integration are simplicity and redundancy. This
integration can be implemented using any IMU and any GPS receiver and it is common
to provide the GPS solution as well as the integrated solution in order to evaluate the
integrated one in case any problems can be present(Titterton, 2004).

The purpose of the loose integration is to extract from both systems only the necessary
information and blend it together to estimate a new solution. This new solution will
include the high bandwidth information from the INS and the GPS bounded errors(Gebre-
Egziabher, 2007).

2.3.2 Tight GPS/INS Integration

In tight GPS/INS integration level the INS and GPS receiver are reduced to their basic
sensor functions. The GPS receiver provides then the pseudoranges while the INS provides
raw acceleration and orientation outputs. In this approach the Kalman filter becomes the
most important part of the integration filter. INS error estimates are calculated by means
of the GPS pseudoranges and/or pseudorange rates provided by the tracking loop. These
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estimates are used to correct the raw INS sensor data which can be used (it is optional in
this kind of coupling) to tighten the GPS tracking loops. This enhance allows the GPS
receiver to remain in lock with the received signal in high dynamic scenarios. A simplified
block diagram of this level of coupling can be seen in Figure 2.8(Titterton, 2004).
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Figure 2.8: GPS/INS tightly coupled integration architecture (Titterton, 2004)

The tightly coupled approach has better accuracy and robustness compared to loosely
integration at expense of higher complexity with possible hardware or software changes
inside the GPS receiver or the IMU.

2.3.3 Ultra-tight GPS/INS Integration

Ultra-tight integration, also known as deep integration combines GPS signal tracking and
INS/GPS integration into a single integration filter, normally a Kalman filter. Ultra-
tight integration strategies are currently under development; a simplified block diagram is
showed in Figure 2.9.

Tracking the GPS signals together instead of using independent tracking loops, aided
by the use of inertial data from the IMU has different benefits(Titterton, 2004):

• Fewer independent quantities are tracked using the same data, therefore the effective
signal to noise ratio is improved.

• Multi-path resistance is improved

• Reacquisition of the signal after temporary blockage or interruption can be done
faster.

• GPS tracking loops are tightened, reducing the need of a high bandwidth loop filter
for high dynamic scenarios. This is an inherent feature in the ultra tight coupling
level which differs from the tightly coupled one, where the aid to the tracking loops
its optional.

As expected, the complexity is increased in this level of coupling. Computational load
and synchronization requirements are necessary for the configuration in order to maintain
tracking loop lock(Titterton, 2004).
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Although I have presented an overview of the most general coupling levels since they
are currently on development stages, a combination of the different implementations of
the couplings might be found in certain GPS/INS integrations. Figure 2.10 shows a brief
summary of the important implementations depending on the level of coupling.

· Combine GPS output position witn INS position/velocity in a separate Kalman Filter.

· Continue propagating estimated solution when GPS signals are lost.
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Figure 2.10: GPS/INS implementations depending on the coupling level(Grewal, 2007)

2.4 Kalman Filter

A Kalman filter is an optimal estimator. It infers parameters of interest based on indirect,
inaccurate and uncertain observations. The Kalman filter is recursive so that new mea-
surements can be processed as they arrive. It is optimal given the fact that if all noise
is Gaussian the Kalman filter minimizes the mean square error of the estimated parame-
ters. The main advantages and reasons of why of this filter is extensively used nowadays
are(Kleeman, 1996):

• It gives good results in practice due to optimality and structure.
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• It is convenient for real time applications.

• Is is easy to formulate and implement given some basic understanding.

In order to get deeper into the subject we need to explain the state definition. The
state of a deterministic dynamic system is the smallest vector that summarizes the past
of the system in full(Kleeman, 1996). Having information about this state will allow us,
theoretically, to predict the future dynamics and outputs of the deterministic system in
the absence of noise.

Assume that the random process to be estimated can be modeled as(Brown and Hwang,
1997):

xk+1 = Φkxk + wk (2.9)

Where xk is the process state vector at time tk, Φk is the transition matrix that relates
xk to xk+1 and wk is assumed to be a white sequence with known covariance structure.

The measurement of the process can be linearly related as(Brown and Hwang, 1997):

zk = Hkxk + vk (2.10)

Where zk is the measurement vector at time tk, Hk is a matrix giving the noiseless
ideal relationship between the measurement and the state vector at time tk and vk is the
measurement error assumed to be a white sequence with known covariance having zero
crosscorrelation with wk.

The covariance matrices for the vectors wk and vk are(Brown and Hwang, 1997):

E[wkw
T
i ] =


Qk, i = k

0, i 6= k
(2.11)

E[vkv
T
i ] =


Rk, i = k

0, i 6= k
(2.12)

E[wkv
T
i ] =

{
0, for all k and i (2.13)

The next step is to assume that we have an initial estimate of the process before the time
tk, called an a priori estimate denoted by x̂−

k . This shall be assumed to be the best estimate
before starting to involve the measurement at time tk. At the same time we assume to
know the error covariance matrix P−

k associated with x̂−
k depicted in equation 2.14(Brown

and Hwang, 1997).

P−
k = E[e−

k e−T
k ] = E[(xk − x̂−

k )(xk − x̂−
k )T ] (2.14)

The next step is to calculate an updated final estimate x̂k for the time point tk. This
is performed using the assumed a priori estimate and the measurement zk. This updated
estimate is calculated weighing the a priori estimate and the noisy measurement according
to(Brown and Hwang, 1997):

x̂k = x̂−
k + Kk(zk −Hkx̂

−
k ) (2.15)

Where x̂k is the updated estimate and Kk is the blending factor. The blending factor is
known as the kalman gain since its value minimizes the mean square error when calculated
with the following equation(Brown and Hwang, 1997):
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Kk = P−
k HT

k (HkP
−
k HT

k + Rk)
−1 (2.16)

The difference (zk −Hkx̂
−
k ) in equation 2.15 is called the measurement residual. This

residual shows the discrepancy between the predicted measurement Hkx̂
−
k and the actual

measurement zk. Then the covariance matrix Pk associated with the optimal state needs
to be calculated as(Brown and Hwang, 1997):

Pk = (I−KkHk)P
−
k (2.17)

The next step in the procedure is to compute the a priori estimate for xk+1 for the time
point tk+1(Brown and Hwang, 1997):

x−
k+1 = Φkx̂k (2.18)

And its associated error covariance matrix:

P−
k+1 = ΦkPkΦ

T
k + Qk (2.19)

At this point the loop is started again (the Kalman gain is computed again with equa-
tion 2.16) since we now have the necessary quantities at tk+1 and the measurement zk+1

can be incorporated in order to make a new optimal estimate of the state. This so called
Kalman Filter Loop is depicted in Figure 2.11. This algorithm can be broken down into
two important procedures: the time update or prediction, comprising block I and the
measurement update or correction, comprising the blocks II, III, IV in Figure 2.11, respec-
tively(Welch, 2006).
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Update estimate with measurement

Enter prior estimate 

and its error covariance

Enter measurement

Output:

Updated estimates

Project Ahead:

 

I

IV

III

II

Figure 2.11: Kalman filter loop (Brown and Hwang, 1997)

2.5 Frequency Stability and Signal Noise Analysis

In a later section a signal noise analysis is performed to find the main type of noise perturb-
ing the desired signal. Specifically, partial frequency stability including a noise analysis
is performed to a GPS oscillator making it important to give an overview on the theory
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behind frequency stability and noise analyses. This section describes then the basic theory
behind frequency stability and noise analyses and the main tool, the Allan deviation, used
to find the perturbing type noise.

The frequency stability analysis consists in characterizing the phase and the frequency
fluctuations of a specific frequency source in a quantitative and standardized manner.
This approach takes into account the nominal values, the fluctuations of these values, their
dependence on time and environmental conditions(Riley, 2008).

The stability analysis may give information about both the stochastic (noise) and de-
terministic properties of the source device. It is assumed that the stochastic characteristics
of the under test frequency source are constant. However, the analysis may show this last
statement is not true and important decisions shall be made then concerning the partition
of data in order to have meaningful results(Riley, 2008).

As mentioned above there may exist non-random fluctuations (deterministic proper-
ties) and random fluctuations (stochastic properties) which may cause the departure from
”true” frequency in the source device. Non-random fluctuations, also called systematic, are
the primary cause of the frequency deviation. The most important systematic fluctuations
are the frequency offset and the frequency drift. On the other hand, we find the random
fluctuations. These deviations are usually characterized statistically. These random fluc-
tuations may be modeled with power law spectral densities where the noise analysis comes
into play. In order to have meaningful results regarding the noise analysis, it is a good
common practice to remove the deterministic factors such as the frequency drift, offset,
temperature sensitivity, etc.(Riley, 2008).

2.5.1 Frequency offset

The estimation of the frequency offset of either phase or frequency data is often necessary
when dealing with frequency stability analyses. Frequency offset can be calculated using
frequency data. The offset then can be computed simply as the mean of the frequency
values(Riley, 2008).

2.5.2 Frequency drift

Once the frequency offset has been removed it is advisable to characterize the frequency
drift before analyzing the stochastic noise of the source. Frequency drift refers to the
change in frequency due to all external and internal effects. Generally, a fitting trend of
the frequency record to a mathematical model is used to compute this systematic drift.
This model can be chosen based on some physical basis, a priori information about the
types of noise affecting the frequency source or just simply a convenient equation. For this
thesis work, a least squares method linear fit is used to deal with the systematic drift(Riley,
2008).

In order to have meaningful results regarding the noise analysis, it is a good common
practice to remove the deterministic factors such as the frequency drift, offset, temperature
sensitivity, etc.(Riley, 2008).

2.5.3 Power Law Noise

An ideal frequency source is expected to have a constant value in the time domain. When
analyzing the source in the frequency domain it is expected to find a single spectral line.
The instability of most frequency sources can be modeled by a combination of power-law
noises that have a spectral density of their frequency fluctuations in the form Sy(f) ∝ fα,
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where f is the Fourier in Hertz and α is the power law exponent(Riley, 2008). Table 2.3
shows the types of noise and their corresponding value of the power law exponent while
Figure 2.12 shows an example of the spectra of the most common types of noise (Riley,
2008).

Noise Type Alpha α (Power-law exponent)
White Phase Modulation 2
Flicker Phase Modulation 1

White Frequency Modulation 0
Flicker Frequency Modulation -1

Random Walk Frequency Modulation -2

Table 2.3: Noise Types and their corresponding power-law exponent (Riley, 2008)

Figure 2.12: Spectra of the four most common types of noise(Riley, 2008)

2.5.4 Sigma-tau plots

The usual way to express the time domain stability of any frequency source is by presenting
a sigma-tau plot that shows the measure of frequency stability versus the averaging time.
This plot depicts the dependence of stability on the averaging time, the stability value and
the type of noise. Depending on the kind of noise, specific slope values µ will result in the
plot. As expected, µ and α are related. Figure 2.13 shows the different common types of
noise and their different slopes in a log σ versus log τ plot(Riley, 2008).

One can notice from Figure 2.13 that white phase modulation (PM) and flicker phase
modulation noise have the same slope. In order to distinguish between these two noise
types, a modified sigma plot can be used.
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Figure 2.13: Sigma tau plot(Riley, 2008)

2.5.5 Allan Deviation

Characterizing the fluctuations of a frequency source relies in the use of statistical measures.
These are 2nd-moment measures of scatter, similar to the standard variance that is used
to quantify variations around certain nominal value. Typically, the variations around the
mean are calculated as follows(Riley, 2008):

s2 =
1

N − 1

N∑
i=1

(yi − ȳ)2 (2.20)

The final result is often given as the square root, the so called standard deviation.
A problem arises when employing this kind of statistical measurement since it does not
converge to a single value for the non-white frequency modulation noises as the number of
measurements is increased. Therefore, this statistical tool is not adequate to characterize
a frequency source.

In order to counter attack this issue, the Allan variance was developed. The Allan
deviation is named after its creator David W. Allan. This deviation uses 2nd differences of
frequency to calculate variations and it is convergent to most of the common clock noises.
There are several versions of the Allan variance that provide better statistical confidence,
and can even distinguish easier the different types of noise. The original Allan variance
also called two-sample variance is defined as(Riley, 2008):

σ2
y(τ) =

1

2(M − 1)

M−1∑
i=1

[yi+1 − yi]2 (2.21)

Where yi is the ith of M fractional frequency values averaged over the measurement
sampling interval τ .

In terms of phase data, the Allan variance may be calculated as(Riley, 2008):

σ2
y(τ) =

1

2(N − 1)τ 2

N−2∑
i=1

[xi+2 − 2xi+1 + xi]
2 (2.22)
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Where xi is the ith of the N = M + 1 phase values spaced by the measurement interval
τ . The result is expressed as the square root, σy(τ), the Allan deviation (ADEV).

Another important version of the ADEV is the overlapping Allan deviation. This
version makes maximum use of the data set by forming all overlapping samples at each
averaging time τ .

Figure 2.14 depicts the comparison between the non-overlapping sampling and its coun-
terpart in order to give a better description about the difference.

Figure 2.14: Non-overlapping and overlapping sampling comparison(Riley, 2008)

The Overlapping Allan deviation for frequency data is then defined as(Riley, 2008):

σ2
y(τ) =

1

2m2(M − 2m+ 1)

M−2m+1∑
j=1

j+m−1∑
i=j

[yi+m − yi]2 (2.23)

Where M is the set of frequency measurements for the averaging time τ = mτ0, where
m is the averaging factor and τ0 is the basic measurement interval. For phase data the
overlapping Allan deviation is defined as(Riley, 2008):

σ2
y(τ) =

1

2(N − 2m)τ 2

N−2m∑
i=1

[xi+2m − 2xi+m+ xi]
2 (2.24)

Where N = M + 1. The use of overlapping samples involves a trade off. It improves
the confidence of the outcome stability measurement but it needs greater computational
time. Typically, the overlapping Allan deviation is the first choice when analyzing the
frequency stability and noise analysis of any frequency source when not enough information
is available(Riley, 2008).

3 Methodology

3.1 Open Loop Approach

On the ultra-tight GPS/INS integration scheme section different important characteristics
regarding this architecture were presented. Tracking the GPS signals together aided by
the use of inertial data from the IMU is the main key in the architecture. Ultra-tight GP-
S/INS integration surely requires an increased level of complexity because of the coupling
needed. The designer should have certain expertise with the hardware and software of
the GPS receiver and specific knowledge on the IMU and GPS synchronization schemes
since hardware and software implementations are imperative when applying ultra-tight
coupling schemes. The open loop approach presented in this thesis work has the objective
of implementing the ultra-tight strategies without going in depth into the hardware and
software changes. The received signal from the GPS satellites will go through a Doppler
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correction in order to remove the unwanted dynamics. This Doppler correction will induce
two important ultra-tight coupling inherent benefits(Titterton, 2004):

• Reduce the need of a high bandwidth loop filter in the tracking loop. A lower
bandwidth reduces the noise, improving the effective signal to noise ratio.

• Re-acquisition of the signal after temporary blockage or interruption can be done
faster.

The implementation of the open loop approach will keep the frequency of the local
oscillator as close as possible to the frequency of the received phase to minimize the phase
error in the PLL. This approach is depicted in Figure 3.1:

Doppler 

Model
Oscillator

Residual 

Errors

MixerGPS Signal

(Dynamic stress)
Loop Filter

Figure 3.1: Conventional and ultra-tight loop bandwidth

The Doppler correction will allow the receiver to process an almost ”dynamic free”
signal. The residual dynamics on the GPS signals to be tracked by the carrier tracking
loops will mainly depend on the local oscillator and as will be shown later in the errors
caused by the IMU measurements. How are these benefits achieved? How are these benefits
possible? These questions shall be answered in the following sections.

3.2 Bandwidth and Dynamic Analysis

An analysis on the tracking loop architecture has been done in section 2.1.6. As discussed
earlier, the noise bandwidth of the loop filter is one of the most important parameters in
the tracking loop design.

First, we have the code tracking loop. The dynamics have less effect on the pseudoran-
dom code than on the carrier since the code Doppler is 1540 times less than on the carrier,
therefore, no optimization is needed in this type of tracking loops.

Secondly, and most important we have the carrier tracking loops, where the bandwidth
optimization is essential. In low dynamic scenarios the carrier bandwidth requirement
tends to be typically of about 5 to 12 Hz. On the other hand, on high dynamic scenarios a
bandwidth greater than 18 Hz might be needed. The importance of the noise bandwidth in
the loop filter relies in an essential tradeoff. Having a higher bandwidth allows the tracking
of GPS signals under high dynamic scenarios. However, higher bandwidth also involves
less signal-to-noise ratio, since more thermal noise is introduced into the system(Babu and
Wang, 2005).

This problem can be solved as also explained in more detail in the GPS/INS Integration
section with the use of an IMU. With the receiver dynamics computed from the IMU data,
Doppler information can be extracted in order to remove the dynamic stress on the GPS
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signal, therefore, aiding the GPS tracking loops. With the receiver dynamics subtracted
from the GPS signal the only thing remaining to track will be the oscillator dynamics which
can be achieved with less bandwidth. However, the IMU errors involved in the Doppler
model will play an essential role in the dynamics extraction. Figure 3.2 depicts the issue
discussed in the last paragraph. It shows the comparison of the loop bandwidth needed
between the conventional and ultra-tight receivers.

Oscillator Dynamics

GPS Dynamics

Oscillator Dynamics

Residual Inertial 

Sensor Dynamics

10 to 15 Hz

1 to 2 Hz

Carrier Tracking 

Loop Bandwidth

1 to 5 Hz

1 to 2 Hz

Conventional 

Receiver 

Bandwidth

Ultra-tight

Receiver

Bandwidth

Figure 3.2: Conventional and ultra-tight loop bandwidth

In order to track a GPS signal a threshold needs to be set according to the statistical
properties of the signal and the thermal noise. The 2 most important factors to consider
then for setting the threshold are the expected dynamics and the loop bandwidth.

The performance of a tracking loop can be determined by measuring the phase error.
This phase error includes the thermal noise as well as the dynamic stress. The 3-sigma
phase errors that a carrier tracking loop can tolerate is given by(Kaplan, 2006):

3σPLL = 3σt + θe < 45◦ (3.1)

Where σt is the 1-sigma phase error due to thermal noise, θe is the dynamic stress error
and 45◦ is the threshold below which the signal is assumed to be lost.

The thermal noise error can then be calculated as(Kaplan, 2006):

σt =
360

2π

√
Bn

c/n0

(1 +
1

2Tc/n0

) (3.2)

And the dynamic stress is given by(Kaplan, 2006):

θe = 0.2809
~a

B2
n

(deg) (3.3)

Where:
Bn is the loop bandwidth in Hz
c/n0 is the carrier to noise ratio
T is the pre-detection integration time
~a is the line-of-sight acceleration between the satellite and the GPS receiver in m/s2

Figure 3.2 shows both the thermal noise and dynamic stress as a function of the band-
width assuming a typical 1ms pre-detection time, a carrier to noise ratio of 27.5 dB-Hz
and 0.5g dynamics(Babu and Wang, 2005).
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It is important also to observe that as the bandwidth increases the thermal noise takes
more importance in the total error calculation due to the fact that the thermal noise is
increased as the loop bandwidth is increased. Figure 3.3 shows the influence of dynamics on
the required noise bandwidth to mantain a certain threshold. As explained before, higher
dynamics require higher loop bandwidth. One can notice the influence of the dynamics in
the tracking loop performance. Thus, making it imperative to remove them.
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Figure 3.3: Dynamic stress and thermal error

3.3 Doppler Analysis

From the previous section we can conclude that the receiver dynamics need to be removed.
How does this Doppler effect affects the GPS carrier frequency? How does the IMU derived
information come into play? This section will make an analysis on the doppler effect.

The Doppler effect, named after the Austrian physicist Christian Doppler, by definition
is the change in frequency of a wave for an observer moving relative to the source of the
wave. The Doppler itself is a clear quantitative sign of the relative dynamics experienced
by the GPS radio frequency carrier.

In order to begin with the analysis let’s start with the carrier dynamics, assuming the
pseudorandom code is already tracked and we can discard it for simplicity purposes. The
signal at the carrier tracking loop is given by(Babu and Wang, 2005):

y(t) = A sin(2π(frel−vel + fclk)t+ φ) (3.4)

Where:
A is the amplitude of the GPS signal
frel−vel is the doppler frequency caused by the receiver dynamics
fclk is the doppler shift due to the receiver’s clock
φ is the carrier phase at the phase detector
To track the signal from equation 3.4, the NCO at the traking loop generates two signals

we have already discussed in section 2.1.6: the in-phase(I) and quadrature(Q) signals. The
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signals are shown in Figure 2.1. In a conventional receiver, the phase discriminator is in
charge of generating the necessary corrections for the NCO. However, in the new open loop
approach, the extracted IMU doppler data takes a more important role in the correction
management besides the phase discriminator correction. Mathematically speaking, when
calculating the receiver dynamics from the IMU we generate two new signals given by(Babu
and Wang, 2005):

yI(t) = sin(2πf̂IMU t+ θ) (3.5)

yQ(t) = sin(2πf̂IMU t+ θ + 90◦) (3.6)

It is important to mention that f̂IMU is not the true doppler since it is perturbed by
the residual biases in the inertial sensors. Therefore:

f̂IMU = fIMU + fbias (3.7)

The true doppler frequency is then equal to the receiver dynamics frel−vel and can be
calculated as(Babu and Wang, 2005):

fIMU = f tx(1− υrel~a

c
) = frel−vel (3.8)

Where:
f̂IMU is the Doppler frequency generated from the IMU data
fIMU is the true Doppler frequency
fbias is the residual bias from the IMU inertial sensors
f tx is the transmitted GPS frequency
υrel is the relative velocity between the satellite and the IMU
~a is the line-of-sight vector
c is the velocity of light
The Doppler correction then takes place when the signal from equation 3.4 is multiplied

by the in-phase 3.5 and quadrature 3.6 signals, respectively; since we want to remove the
doppler frequency effects with the IMU dynamics. The resulting signal is then defined as:

yyI(t) = cos(2π(fGPS − f̂IMU)t) (3.9)

yyQ(t) = cos(2π(fGPS − f̂IMU)t+ 90◦) (3.10)

Where in equations 3.9 and 3.10 fGPS is defined as:

fGPS = fclk + frel−vel (3.11)

fclk is the receiver clock Doppler shift due to the oscillator dynamics and frel−vel is the
relative velocity between the satellite and the receiver. Notice that in equations 3.9 and 3.10
only the low frequency components generated by the mixing process are considered since
the loop filter removes the high frequency components.

After substituting equations 3.7 and 3.11 into equations 3.9 and 3.10 we finally obtain
the corrected Doppler I and Q signals:

yyI(t) = cos(2π(fclk − fbias)t) (3.12)

yyQ(t) = cos(2π(fclk − fbias)t+ 90◦) (3.13)
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Finally both signals are integrated over the integration period T and we end up with(Babu
and Wang, 2005):

E[I] =
A

2fresidual
cos(fresidual(k + 1)T )− cos(fresidualkT ) (3.14)

E[Q] =
A

2fresidual
sin(fresidual(k + 1)T )− sin(fresidualkT ) (3.15)

Where:

fresidual = fclk − fbias (3.16)

And E is the expectation operator.
We can conclude then from equation 3.16 that the effective Doppler to track after

the correction fresidual is comparatively less than the Doppler at the first received signal
depicted in equation 3.4. Having reduced the doppler effect we can then expect that less
bandwidth on the loop filter will be needed if aiding is implemented. The proof presented
in the above equations is only possible considering the biases in the inertial sensors are
small enough, meaning high quality inertial sensors are used and the clock in the GPS is
stable. Having low accuracy inertial sensors or unstable clocks will result in a inefficiency
and the implemented ultra-tight strategies then lose their advantage.

Assuming accurate inertial sensors and stable clocks are used in the implementation,
the next step is to create a Doppler model in order to analyze in depth the different roles
played by the satellite, receiver and clock dynamics.

3.4 Doppler Model

The Doppler model presented in this thesis work consists of several major aspects: the
satellite, the receiver, the clock dynamics as well as signal propagation effects due to
atmospheric conditions. A different approach is given to all of them, since they play an
important part in the Doppler calculation. Equation 3.8 in the previous section can be
further developed as:

fIMU = f tx(1− (Vrx − Vsat)~a
c

) = frel−vel (3.17)

Where Vsat is the satellite’s velocity and Vrx is the GPS receiver velocity. From equa-
tion 3.17 we can observe the importance in calculating Vsat and Vrx accurately, since they
describe the satellite and receiver dynamics. The third component, the clock dynamics is
included in the fresidual, where it is important to show that its nominal value is almost
negligible and even some modeling approach can be pursued.

3.4.1 Satellite Dynamics

One of the essential components as explained above is the calculation of Vsat. This veloc-
ity can be calculated in any Earth reference frame, such as Earth-Centered-Earth-Fixed
(ECEF). In order to compute Vsat two important concepts shall be introduced.

First, the broadcast ephemeris inside the navigation message discussed in section 2.1.2
comes into play once again. In the broadcast ephemeris important Keplerian parameters
with correction terms are sent to the GPS receiver in order to calculate the broadcast
orbits. These parameters are shown in Table 3.1.

Second, the Interface Control Document (ICD-GPS-200c). This document was expe-
dited by the U.S. Coast Guard Navigation Center in agreeement with several companies
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Parameter Definition
t0e Reference epoch of ephemeris√
a square root of semi-major axis

e Eccentricity
i0 Inclination angle (at time t0e)
Ω0 Longitude of ascending node (at weekly epoch)
ω Argument of perigee(at time t0e)
M0 Mean anomaly(at time t0e)

i̇ Rate of change of inclination angle

Ω̇ Rate of change of longitude of ascending node
∆n Mean motion correction
Cuc Amplitude of cosine correction to argument of latitude
Cus Amplitude of sine correction to argument of latitude
Crc Amplitude of cosine correction to orbital radius
Crs Amplitude of sine correction to orbital radius
Cic Amplitude of cosine correction to inclination angle
Cis Amplitude of sine correction to inclination angle

Table 3.1: GPS ephemeris parameters

developing GPS in 1983. From that time it has been continously updated. The ICD-GPS-
200c defines the requirements related to the user interface between the space segment and
the user segment in GPS. The ICD-GPS-200c contains among other important features an
algorithm to calculate the ECEF satellite position from the broadcast ephemeris. However,
no algorithm is provided in order to calculate the satellite velocity, thus, several options
might be implemented in order to calculate Vsat(USCGNV, 1993).

Ephemeris

(Calculate Broadcast 

Orbits)

ECEF Satellite

Position

ECEF Satellite 

Velocity

ICD-GPS-200c

Table 20-IV

Rotation Matrix Method(Remondi 

2004)

Extended Rotation Matrix Method(Wen 

Zhang 2004)

First Order Central Difference of 

Taylors Expansion
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Figure 3.4: Block diagram for the calculation of the satellite’s ECEF velocity

In summary (and depicted in Figure 3.4), from the broadcast ephemeris parameters the
broadcast orbits are computed. The next step is to calculate the ECEF satellite position
applying the algorithm from ICD-GPS-200c, the derivation of this algorithm is beyond the
scope on this thesis work, the interested reader can check reference(USCGNV, 1993) for
more information. Once the position is calculated, one can proceed to implement one of
the following algorithms to obtain the satellite’s ECEF velocity:
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• Rotation Matrix Method

• Extended Rotation Matrix Method

• First Order Central Difference of Taylors Expansion

Rotation Matrix Method This method relies in the derivation of a set of equations to
calculate the velocity and acceleration using the Keplerian elements and correction terms
included in the broadcast ephemeris. How to derive the equations are beyond the scope
of this thesis work, however, the algorithm is presented in (Remondi, 2004) with further
explanation on the Keplerian elements for the interested reader. The final equations to
calculate the velocity are given by:

ẋk = −xpΩ̇k sin Ωk−yp(Ω̇k cos Ωk cos ik− i̇k sin Ωk sin ik)+ẋp cos Ωk− ẏp sin Ωk cos ik (3.18)

ẏk = xpΩ̇k cos Ωk− yp(Ω̇k sin Ωk cos ik + i̇k cos Ωk sin ik) + ẋp sin Ωk + ẏp cos Ωk cos ik (3.19)

żk = ypi̇k cos ik + ẏp sin ik (3.20)

Where:
ẋk, ẏk and żk are the x-ECEF, y-ECEF and z-ECEF velocities, respectively
xp and yp are the in-plane x and y positions, respectively
ẋp and ẏp are the in-plane x and y velocities, respectively
Ωk is the corrected longitude of node
ik is the corrected inclination

Extended Rotation Matrix Method The extended rotation matrix method is similar
to the rotation matrix method. The difference relies in the calculation of the rate of change
of the true anomaly ν̇k. The unextended version presents an equation for the rate of change
of the true anomaly based on Kepler’s second law (the radius vector sweeps out equal areas
in equal time on an orbit). However, this will yield an error when the time from ephemeris
epoch tk is not equal to zero. The larger the value of tk, the larger the satellite ECEF
velocity error.

The extended version then introduces a new equation based on the derivative of the
mean anomaly Mk and the derivative of the eccentric anomaly Ek, suppressing then the
error. The true anomaly is then given by(Zhang, 2009):

ν̇k = a2
√

1− e2
1− e cosEk

(3.21)

While in the rotation matrix method is given by(Remondi, 2004):

ν̇k = a2
n
√

1− e2
r2k

(3.22)

Where:
ν̇k is the rate of change of the true anomaly
Ek is the eccentric anomaly
e is the eccentricity
a is the semi-major axis
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n is the corrected mean motion

rk is the corrected radius

The derivation of the equations as well as a further explanation on the Keplerian pa-
rameters are beyond the scope of this thesis work, however the interested reader can con-
sult(Zhang, 2009) for more information. The velocity equations for the extended version
are the same than the ones for the rotation matrix method, having in mind that the true
anomaly is computed in a different way.

First Order Central Difference of Taylors Expansion This method comes as an
option due to the complexity and computational load that may arise from the previous
two methods. The straight forward method of differentiating the ECEF satellite positions
to obtain the ECEF velocity may lead to a large error, since the broadcast ephemeris
have an accuracy of approximately ± 1 to 5 meters. Thus, the resultant velocity will be
very noisy because of the differentiation process. However, another velocity algorithm that
can be implemented relies in the use of the first-order central difference of a Taylor series
approximation(Zhang, 2006):

~̇rECEF (t) =
~̇rECEF (t+ ∆t)− ~̇rECEF (t−∆t)

2∆t
(3.23)

Where:

~rECEF is the satellite’s position in the ECEF system

~̇rECEF is the satellite’s velocity in the ECEF system

t is the time of the calculation epoch

∆t is the time interval

Which algorithm to implement depends on the error tolerance and computer load avail-
ability; however, as will be shown in the results, these 3 algorithms have similar errors.
The errors from the three methods are analyzed in the results section where the Doppler
frequency due to the satellite motion will be calculated and an error from the calculation
will arise due to the error in the velocity calculation. This error will then be analyzed in
an error budget.

3.4.2 Receiver Dynamics

The next component to compute is Vrx. In a conventional GPS receiver this component
is one of the common measurements found inside the tracking loop. However, the receiver
does not have enough bandwidth to aid the PLL properly. Therefore, in this model the
Vrx component is going to be calculated with the use of a high quality IMU.

For this component we have available data from an IMT40 IMEGO IMU. The IMU was
mounted on top of an industrial robot which performed programmed movements according
to a reference position file. The acceleration data will go through a simple strapdown
algorithm resulting in the desired velocity. As an attempt to have better velocity estimates,
the data will be processed using a Kalman filter in order to merge known data (such as
when the robot in motion stops for a few seconds) with the velocity measurements.

Finally, the velocity estimates will be used to calculate the Doppler frequency due to the
receiver dynamics. This Doppler frequency is then compared with ideal values calculated
from the programming file in order to find the errors in the Doppler calculation and add
them to the error budget. It is important to mention that this calculated Doppler frequency
will be perturbed by the explained errors in sections 2.2.4 and 2.2.6. Therefore, they will
have a large influence in the Doppler calculation.
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3.4.3 Clock Dynamics

In the bandwidth and dynamic analysis as well as in the Doppler analysis we concluded
that the clock dynamics should be small enough to be tracked without problems by the PLL
in the GPS receiver. For this thesis work, available data from a free running oscillator of a
JAVAD receiver will be analyzed using the frequency stability and noise analysis strategies
presented in section 2.5. This analysis will then give an insight on the previous conclusions
explained in the Doppler analysis.

On the other hand, a smaller error induced by the clocks on-board the satellites need
to be considered. A literature study on this effect has been performed.

3.4.4 Atmospheric effects

Signal propagation problems will arise from the properties of the ionosphere and the tropo-
sphere as already discussed in section 2.1.4. This signal propagation issues are added to the
error budget. A literature study on these components and their influence was performed.

4 Results

4.1 Satellite Dynamics

In section 3.4.1 I have presented three different methods in order to deal with the satellite
dynamics, in other words, to calculate the ECEF satellite velocity. A literature study has
been carried out to analyze the three methods to realize their potential errors when dealing
with the Doppler calculation.

The three methods were compared with the velocities calculated by the National Geode-
tic Service (NGS) using the SP3 precise ephemeris, these velocities can be downloaded from
the NGS website as explained in reference (Marshall, 2002).

Velocity components from NGS SP3 precise positions were downloaded specifically for
PRN07 on August 20th, 2002 from 22:10:01 to 22:19:10. This information will then work
as the reference data to compare the rotation matrix method, the extended rotation matrix
method and the first order central difference of a Taylor series(Zhang, 2009). For further
information on the implementation of the three methods, the interested author can read
(Remondi, 2004),(Zhang, 2009) and (Zhang, 2006). Table 4.1 summarizes the studied
results:

Method Velocity Accuracy Doppler Accuracy
Rotation Matrix Method ±1dm/s ±.52515Hz

Extended Rotation Matrix Method ±1mm/s ±.0052515Hz
Taylors Expansion Method ±1mm/s ±.0052515Hz

Table 4.1: Methods accuracy comparison

In can be inferred from Table 4.1 that the extended rotation matrix is more accurate
than the non-extended version due to the fact that the later does not correct the semi-major
axis a which changes over the time epochs tk.

The most interesting aspect is that the first-order central difference of Taylors ex-
pansion’s results are close to the NGS SP3 ephemeris by better than ±1mm/s. These
interesting results are associated with the fact that the orbit error positions are not Gaus-
sian white; systematic bias and correlated errors of the satellite ECEF positions due to
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errors in the broadcast ephemeris are mitigated through the differentiation process (Zhang,
2006).

We can conclude then that the optimal step-by-step implementation for the satellite
dynamics for real time applications should be:

1. Calculate the ECEF position implementing the ICD-GPS-200c algorithm.

2. Calculate the satellite ECEF velocity implementing the first-order central difference
of Taylors expansion since it requires les computational load and has practical and
simplicity advantages over the other two methods when talking about real time ap-
plications.

It is important to mention that there will exist an error of ±.0052515Hz that shall be
taken into account in the Doppler model error residuals.

4.2 Receiver Dynamics

For this section, data available from an IMEGO IMT40 IMU was analyzed. This data
was obtained after mounting the IMU on a robot at the Onsala Space Observatory. The
robot was programmed to perform specific movements while GPS data and IMU data were
recorded. Fourteen runs using the same specific movement’s program file are available.
The data was processed and analyzed using the Matlab c©software environment. The data
included sensor measurements up to 50 seconds of programmed movement. The program-
ming file for the robot consists on east, north and vertical coordinates as well as a time
interval to determine the amount of time the robot should hold in each coordinate. This
interval time was .1 seconds.

Ideal Robot Velocity Applying simple physics to the available programming file coor-
dinates and times, a true ideal velocity was calculated in order to use it as a reference.

IMU Calculated Velocity The available acceleration measurements from the IMT40
IMEGO’s IMU were used to calculate the velocity on the east, north and vertical axes.
An integration scheme, based on the strapdown algorithm was implemented in order to
compute this velocity.

Kalman Output Velocity A Kalman filter was implemented in this case in order to
merge known robot motion information along with the acceleration measurements obtained
from the IMU. The known information consists on the .1 seconds where the robot should
stay in a determined coordinate, where we can assume that the velocity for exactly that time
interval is equal to zero. The measurements consist in the calculated velocity, explained in
the prior paragraph.

Figures 4.1, 4.2 and 4.3 show the IMU calculated velocity compared with the ideal robot
velocity for the east, north and vertical components for one of the runs. One can observe
that the IMU calculated velocity shows the ongoing errors from the inertial sensors as they
drift away with time in the different axes.

Figures 4.4, 4.5 and 4.6 show the Kalman output after merging the known information
where the robot velocity is equal to zero and the data from the IMU strapdown algorithm.

The next step is to calculate the rms Doppler errors for both the IMU calculated velocity
and the Kalman output. Figures 4.7 and 4.8 show the rms Doppler errors, respectively.

32 , Earth and Space Sciences, Master’s Thesis 2010:08



Figure 4.1: Velocity calculations in the east component

Figure 4.2: Velocity calculations in the north component
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Figure 4.3: Velocity calculations in the vertical component

Figure 4.4: Kalman velocity output for the east component
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Figure 4.5: Kalman velocity output for the north component

Figure 4.6: Kalman velocity output for the vertical component
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Figure 4.7: RMS Doppler error caused by the receiver dynamics

Figure 4.8: RMS Doppler error caused by the receiver dynamics for the Kalman velocity
output
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As mentioned earlier, we can observe from Figure 4.7 the impact of the inertial sensors
since they have time dependant errors. However, the implementation of a navigation
algorithm, in this case a simple Kalman filter merging known information and sensor
measurements, shows to be a wise approach since it reduces the errors significantly.

It is important to mention that the IMU data available consists of only 50 seconds of
information. A good idea for the future would be to collect data from the IMU for longer
periods of time as well as to perform the experiment using faster vehicles to analyze the
velocity as well as the long term time influence.

For the error budget the errors from Figure 4.7 are the ones taken into account since
the Kalman filter method requires apriori knowledge about the velocity, which in real time
applications is not possible to obtain.

4.3 Receiver clock

In this section data was obtained from a Time Interval Counter (TIC). The measurements
in nanoseconds were taken every second between the GPS receiver’s 1 pulse per second
(PPS) output and 1 PPS created from the Swedish national time scale UTC(SP). The
UTC SP is a realisation of the Coordinated Universal Time (UTC) maintained using atomic
clocks, cesium clocks and hydrogen masers, therefore, making it an optimal time reference.
The obtained measurements were then processed and analyzed using the Matlab c©software
environment.

The time interval counter (TIC) measurement method is shown in Figure 4.9. It divides
the two sources being compared down to a lower frequency (typically 1 pulse per second)
and measures their time difference with a high resolution time interval counter. In this case
the reference source being the UTC (SP) and the source under test the GPS 1PPS output.
The recorded information consists of 23 hours of measurements with 1 second sampling.
The measured time difference, the phase data, was used then to obtain frequency data by
means of a simple derivation, this is shown in Figure 4.10.
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Figure 4.9: Time Interval Counter block diagram

The analysis of the frequency stability of the oscillator starts with the classification of
two important factors involved in the stability as explained in section 2.5: the non-random
fluctuations and the random fluctuations.

In order to determine which type of fluctuation is affecting the phase difference, a signal
noise analysis was performed. An Allan deviation algorithm was implemented as explained
in section 2.5.5. This algorithm was implemented on the phase data. The results are shown
on Figure 4.11.
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Figure 4.10: Phase and Frequency measurements from the TIC

Figure 4.11: Phase and Frequency measurements from the TIC
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Observing Figure 4.11 and comparing it with the sigma tau plot derived from the
power-law noise one can infer that the main type of fluctuation affecting the measurements
is white frequency modulation noise (White FM) due to the slope of the allan deviation
results. Therefore, the next step is to analyze the derived data fron the phase difference in
order to measure the standard deviation of the white noise and add it to the error budget.
The standard deviation can be quantified then as:

σWFnoise = 1.63545× 10−9 (4.1)

Having in mind the frequency of L1, 1575.42 MHz, one can compute the relative fre-
quency error that must be also added to the error budget:

σWF−L1 = 2.58 Hz (4.2)

4.4 Satellite Clock

A literature study as well as discussion with time and frequency experts at SP Technical
Institute of Sweden shows that the relative error from the on-board satellite clocks can
be quantified up to 1 × 10−11. Considering this relative error and the GPS signal carrier
frequency L1 of 1575.42 MHz one can compute the error that shall be added to the error
budget:

σSAT−L1 = ±0.0157542 Hz (4.3)

4.5 Atmospheric Effects

The signal propagation problems due to the properties of the ionosphere and the tropo-
sphere were studied and discussed.

When dealing with the troposhpere, the water vapour dominates the trophosperic prop-
agation variability on shorter temporal scales. Numbers for this variability are presented
in for example (Jarlemark et al., 1998). A rough calculation gives an expected Doppler
shift on the order of ≈ 10−4 Hz on time scales around 1 minute.

On the other hand, dealing with the ionosphere: relatively rapid changes of the signal
phase when propagating through the ionosphere is referred to as scintillations. A phase
change of 1 rad could be considered as the consequence of a strong scintillation (Fu et al.,
1999). On time scales around 1 minute this effect can be experienced as a Doppler shift
on the order of 10−2 to 10−3 Hz. This can be believed to be the dominating unpredictable
contribution from the ionosphere. The slowly varying daily phenomena is largely described
by the Klobuchar model included in the broadcast message.

Considering then the worst case errors, the atmospheric errors that shall be added to
the error budget are given by:

σIONOSPHERE =≈ 10−2 Hz (4.4)

σTROPOSPHERE =≈ 10−4 Hz (4.5)

These errors must be added to the error budget.
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4.6 Error Budget

So far, all the errors aroused from the satellite and receiver dynamics, clocks and at-
mospheric effects have been analyzed and quantified. This section will then present a
summarized table of all the errors in order to make up an error budget.

It is important to mention that these errors are the inherent and unmodeled errors due
to the implementation of the proposed open loop approach and Doppler algorithm.

Table 4.2 shows the summarized error budget.

Error Budget(Hz)
Error Source Reason/Cause Magnitude(Hz)

Satellite Dynamics Taylors Expansion Method ±0.0052515
Satellite clock Rubidium/cesium clocks ≈ ±0.0157542

Receiver Dynamics IMU time dependant errors
East Component: ±0.59235

North Component: ±3.60957
at 51 seconds Vertical Component: ±0.94354

Receiver Clock White FM Noise ±2.58

Atmospheric Errors
Ionosphere ≈ ±10−2

Troposphere ≈ ±10−4

Table 4.2: Error Budget

Several remarks must be introduced regarding Table 4.2. One important concern re-
garding the error budget has to do with the fact that the satellite and receiver dynamic
errors are quantified in different coordinate systems. While the satellite dynamic errors
are computed in the ECEF coordinate system, the receiver errors are presented in the
ENV coordinate system. It is important to make the remark that even though the worst
case scenario includes all the errors in the relative direction, mapping depending on the
direction of the host vehicle will possibly reduce the unpredicted errors.

The next section will present a simple scenario in order to analyze the benefits of this
approach.

4.7 Scenario

This section intends to show a high dynamic stress scenario in order to recall the benefits
from the open loop approach. The scenario consists on a vehicle entering a tunnel at
a velocity of 100 km/hr. After sudden breaking, the velocity at the end of the tunnel
decreases down to 28 km/hr. Another important point is that at the entrance of the
tunnel the open loop approach is ‘switched on’.

To demonstrate the benefits of this method, an error budget is computed exactly at
the end of the tunnel to compare the typical approach and the approach proposed in this
thesis work.

The scenario is depicted in Figure 4.12.

This simple scenario takes into account the worst case situation. Therefore, the largest
errors are summed up into the error budget without the use of any mapping. In a real
situation the mapping depending on the direction of the vehicle will play an important role
since the errors could be reduced.

Figure 4.13 shows the comparison between the typical and the open loop approaches.
Analyzing this last Figure, one can notice that both approaches deal almost with the same
errors causing a Doppler shift in the received signal. The satellite velocity calculation error
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Figure 4.12: Scenario

was included in both approaches; this is due to the fact that even in a typical approach
the necessary information to make this calculation is already present.

Typical Approach IMU Corrected

Error Source Reason/Cause Doppler residuals (Hz) Doppler residuals (Hz)

Taylors Expansion Method 0.0053 0.0053

Satellite's clock 0.0158 0.0158

Receiver Dynamics
Worst case IMU time 

dependant errors at 50 seconds
100 3.6096

Oscillator Dynamics White FM Noise 2.58 2.58

Troposphere ~0.0001 ~0.0001

Ionosphere ~0.001 ~0.001

TOTAL 102.6111 6.2206

Atmosphere

Satellite Dynamics

Figure 4.13: Error budget

The difference in velocity of 72 km/hr at the entrance and at the end of the tunnel
will inherently cause a Doppler shift of 100 Hz. This can be seen in Figure 4.13. However
with the open loop approach this Doppler shift is reduced considerably down to around
6 Hz. Another perspective to show the improvement is by analyzing the block diagrams
depicting both approaches, shown in Figure 4.14 and 4.15.
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Figure 4.14: Block diagram for a typical approach

Figures 4.14 and 4.15 show the block diagram of the initial stage in the tracking loop.
The typical approach consists of the oscillator, while the open loop approach includes the
Doppler model that will drive the oscillators’ frequency to match the frequency from the
received signal. This last perspective shows how the next stages of the GPS receiver will
deal specifically with an almost ”dynamic free” signal. This improvement will reduce the
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Figure 4.15: Block diagram for an open loop approach

need of a high bandwidth in the loop filter to track the signal; less bandwidth induces
improved signal to noise ratio.

The Doppler correction will also allow the receiver to track the signals faster. This
improvement merely allows performing a faster re-acquisition of the signal due to temporary
blockage or weak signal environment conditions.

5 Discussion and Conclusion

5.1 Discussion

This thesis work has presented an open approach tracking approach using ultra-tight GP-
S/IMU strategies. A methodology has been proposed to deal with the satellite, receiver
and oscillator dynamics. From the methodology, an error budget was calculated given spe-
cific acceleration and oscillator measurements. A scenario was presented in order to show
the importance of the dynamics removal and its relationship with the loop bandwidth of
the PLL and the signal to noise ratio of the system. However, several important points
need to be discussed.

The available accelerometer measurements obtained from IMEGO IMT40 have several
issues that must be taken into account. The measurements were performed without any
specialized alignment measuring and little information about the gyroscopes and direction
correction algorithms. Furthermore, IMEGO’s INS was mounted on an industrial me-
chanical arm robot where inherent vibrations and stabilization issues may be involved and
possibly becoming an hypothesis for the error difference in the north component compared
to the east and north ones.

The presented scenario does not involve any possible errors regarding the behavior of
the inertial sensors when dealing with high dynamics. It is expected that the sensitivity
of the sensors will vary depending on the dynamics applied to them. The latter issue is
suggested as a study to see how the sensors react to different acceleration scenarios.

The theory proposed in the open loop approach shows to be a benefitial solution for
the improvement in the signal to noise ratio by reducing significantly the bandwidth in the
PLL and thus in the system in general making it possible to implement in low. However,
due to the previously discussed issues the next research step shall consider focusing efforts
to test the system performance as a whole, involving GPS data and INS data in a higher
dynamics scenario such as an automobile. Further work shall involve reducing the error
budget. An analysis on the error budget components shall be made in order to decide
which number can be further reduced to improve the approach. This can involve the use
of high quality oscillators, inertial sensors, the use of more complex signal processing to
improve the navigation solution.

Finally, new GNSS systems can be taken into account. The satellite dynamics will differ
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from system to system. However, different data and signals can be used to take advantage
of their properties and eventually improve the satellites dynamic estimation.

5.2 Conclusion

The proposed methodology and Doppler model provides a solution for the weak signal
environments where higher signal noise to ratio is required. The proposed Doppler model
provides an algorithm to account for the satellite dynamics with an accuracy of ±.0005 Hz
for the Doppler error. A literature study was performed to quantify the Doppler errors due
to the satellite clock as well as the atmospheric effects. It is shown that the errors from the
IMU are dominant in the error budget. The errors introduced by the receiver oscillator are
also shown to be significant with up to 2.58 Hz for L1 GPS signal. For a scenario where a
vehicle enters a tunnel at 100 km/h and 50 seconds later exits the tunnel with a speed of
28 km/h it is shown that the dynamics of the signal can be reduced from 100 Hz to 6 Hz
after implementing the open loop approach.

The implementation of the Doppler model shows to be less complex than actual closed
loop navigation architectures and keeps the same main benefits intact. This thesis work
provides a base for future indoor research navigation since a lot of factors have to be still
accounted.
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