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Non-heating Floquet systems
Analysis of energy absorption in (1+1)D CFTs with a square wave drive, using a
sine-k-square deformation
MICHAEL HÖGBERG
Department of Physics
Chalmers University of Technology

Abstract
In the last decade there has been immense progress in experimentally realizing pe-
riodically driven, so-called Floquet systems, that exhibit topological features. How-
ever, there is an expectation that most Floquet systems heat up with time, absorbing
energy from the drive, and thus evolve towards a featureless state in which all local
correlations are fully random. In this thesis it is shown that it is theoretically pos-
sible to have a Floquet system which do not heat up, giving that any existing local
correlations could be infinitely long lived. In other words, this shows that interesting
physical phenomenon, such as a non-trivial topological phase, could in principal be
present in a Floquet system for infinitely long times. The Floquet model which ex-
hibits this non-heating phase is that of a square-wave drive where the Hamiltonian
of the system jumps between an arbitrarily chosen CFT and a sine-square deforma-
tion of the same CFT. This model was first proposed in 2018 by Wen and Wu in
Ref. [1]. We present in this thesis a generalization of the Floquet system proposed
by Wen and Wu – we still use the same square wave drive but now with what we
call a sine-k-square deformation, hence a deformation of higher harmonics. With
this generalization we also find the interesting property of a non-heating phase for
certain values of the driving parameters. Furthermore, we find that the value of k in
the sine-k-squared deformation that we propose has some rather important implica-
tions for which driving parameter values we can have in a non-heating phase: The
region of the driving parameter values which gives the non-heating phase shrinks
with growing k.

Keywords: CFT, Floquet theory, Floquet heating problem, sine-square deforma-
tion, sine-k-square deformation.
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1
Introduction

We review and clarify the analysis of a newly proposed Floquet system described
with conformal field theory (CFT), discussed by Fan et al. in Ref. [2], building on
previous work by Wen and Wu in [1, 3]. The system is defined by a square-wave drive
between an arbitrary CFT and a sine-square deformation of the same CFT, allowing
for a detailed study of the time evolution of the energy density. Furthermore, we
generalize the work done by Fan et al. by using a more general deformation which
we call a sine-k-square deformation. Before we start with all technicalities we here
give a motivation and a brief review of the status of the field of Floquet systems,
continuing with an introduction to elementary Floquet theory, and then finishing
the introduction with an outline of the thesis.

1.1 Motivation
Periodically driven systems (Floquet systems), e.g. a solid exposed to periodic laser
pulses, are interesting for a number of reasons, not least the fact that they may show
non-trivial topological phases. Moreover, these phases are in non-equilibrium, since
the system is exposed to a driving field. The study of topological phases, mostly then
on systems in equilibrium, has gotten much attention in recent years as evident by
the 2016 Nobel prize to Thouless, Kosterlitz and Haldane for their groundbreaking
theoretical discoveries in topological phases and phase transitions. Floquet systems
which exhibit non-trivial topological phases also exhibit an ”on demand” property:
By changing the frequency of the driving field we can get the system to change
its topological phase. Furthermore, systems with topological phases are seen as
prominent candidates for new technologies exploiting quantum physics for future
applications. One of the hopes for these systems is that they can serve as compo-
nents in quantum computers, since it has been shown that systems with non-trivial
topological phases can exhibit robust an localized quantum states. Since Floquet
systems can exhibit both topological phases and have an ”on demand” property we
can understand their potential for future technologies [4].

One unfortunate drawback with Floquet systems is that they are generally believed
to ”heat up”. The basic argument is that the system absorbs energy from the
field that exhibits the periodic drive, thus the local entropy increases implying that
the system will tend towards a featureless state at large times in which any local
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1. Introduction

correlations will be fully random (as in an ”infinite temperature” state) [5, 6]. Several
solutions have been proposed, and some experiments have been successful in creating
Floquet systems with non-trivial topological phases which don’t heat, at least not
at intermediate time scales [7–11]. However, the analytical examination of systems
to understand when heating or non-heating occur is a hard problem, and a very new
area of research, in particular when looking at the quantum engineering of Floquet
systems as components in new technologies.

During the last two years there have been some developments in how we can ana-
lytically understand when a Floquet system may heats or not. A system relevant to
this thesis, discussed in two recently published papers, Refs. [1, 2], has been shown
to absorb or not absorb energy depending on with which frequency the system is
driven with. The theoretical framework used was based on two-dimensional CFT,
with the analysis using a newly developed theory about the so called sine-squared
deformation, studied in [1–3, 12–28]. This deformation is interesting in its own right,
especially with its connection to numerical calculations when seeking bulk properties
in the thermodynamical limit. It has been theoretically shown for several systems
that using the sine-squared deformation with open boundary conditions and the
more conventional periodic boundary conditions are in very good agreement thus
giving the sine-square deformation to be prominent for numerical calculations [12].
But here we will, instead of further investigations of the sine-square deformation’s
reliability to be a good choice when making numerical calculations, take advantage
of the theoretical frame work develop about the sine-square deformation.

In this thesis we will make a careful analysis of the Floquet system proposed in Refs.
[1, 2] to analytically describe the energy absorption (or non-absorption) properties,
and their dependence on the driving frequency. Furthermore, we will present an
analysis of a generalization of this system where we can also find the same intriguing
phase as in the system proposed in Refs. [1, 2] – where the driven system does not
absorb energy. We hope this work can contribute to future findings of Floquet
systems which not only exhibit non-trivial topological phases, but are also built
not to absorb energy by the drive. This would hold promise for future long-lived
topological ”on demand” quantum states.

1.2 Floquet theory
Most of the theory needed in this work is that of CFT, however to not lose track of
the background of the modeling of the system we here present some basic Floquet
theory. Since this will be a very brief introduction to a vast and important field,
the interested reader could benefit from reading one of two excellent review articles
which have been the author’s own introduction to the subject. First, we have one
by Bukov et al., Ref. [29], which gives a very nice overview of the theoretical and
technical aspects of working with quantum Floquet systems. The second article by
Rudner and Lindner, Ref. [4], gives a neat review of the experimental developments
from the first quantum Floquet system in 2015 to the latest experiment in 2019.

2



1. Introduction

Floquet theory is named after the French mathematician Gaston Floquet, 1847 -
1920, and deals with periodically linear differential equations. One of the most
famous classical physics phenomenon described by Floquet theory is the Kapitza
pendulum. For a rigid pendulum we have two equilibrium points – a stable one
right below the suspension point and one unstable right above the suspension point.
By vertically vibrating the suspension point with high enough frequency one finds
that the equilibrium point above the suspension point also becomes stable. This
kind of features, allowing unstable equilibrium points to become stable and finding
new equilibrium points in the driven system, is what makes Floquet physics so
interesting. This picture of how we can induce new stable states in a system by
applying a drive is also applicable for quantum Floquet systems. We will now review
the most important aspects of Floquet theory in a quantum mechanical setting.
The characteristics of a Floquet system is that it is described by a periodic Hamil-
tonian, H:

H(t) = H(t+ T ), (1.1)
where T is the period. Given the Schrödinger equation

i∂t |ψ(t)〉 = H(t) |ψ(t)〉 , (1.2)
with ~ = 1, its formal solution implies the time evolution operator, U(t):

U(t) = TOOe−i
∫ t

0 H(t′)dt′ . (1.3)
Here TOO is the time-ordering operator. We note that it is the time dependence
in the Hamiltonian that make this expression especially hard to handle. That is, to
find all eigenstates or at all prove that there exists a complete set of eigenstates to
this unitary time-evolution operator, which is what we need in order to successfully
describe time evolution of the system, or equivalently, explicitly solve the time-
dependent Schrödinger equation. From that the Hamiltonian H(t) is periodic and
piecewice continuous, and the Schrödinger equation, eq. (1.2), is a linear first-order
differential equation, we have that the system fulfils the requirements in Floquet
theory. The theory states that we have a complete set of eigenstates to the unitary
time-evolution operator, eq. (1.3), [30]. These eigenstates can be written to show
the time-periodic structure of the eigenstates:

|ψ(t)〉 = e−iεt |φ(t)〉 , |φ(t)〉 = |φ(t+ T )〉 . (1.4)
Here ε is called quasi energy and plays an analogous role to energy but with the
important difference that it is only defined mod 2π/T , where T is the period of the
drive. We have that ε is real and that e−iεt being the eigenvalue to the time-evolution
operator which manifests its similarities with energy in a equilibrium system.
In this work we will not need to be explicit about the eigenstates to the unitary
time-evolution operator. Instead we will work with a model where we actually can
write the time-evolution operator on closed form since the Hamiltonian we work
with admits easy integration and hence gives the usually quite difficult Floquet
theory work for free. However, for other Floquet systems where one cannot find the
unitary time-evolution operator on closed form but only as a formal expression as
in eq. (1.3), one frequently rely on results from Floquet theory to approximate the
Hamiltonian so as to make it amenable to analysis.
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1. Introduction

1.3 Outline
We will start the next chapter by introducing CFT, a vast subject for which we
we will focus our attention on the stress-energy tensor and its relation to the so
called Virasoro algebra in two-dimensional theories. Another important aspect of
the conformal symmetry in this thesis is that of the special class of conformal trans-
formations that goes under the name of Möbius transformations. In particular, we
shall derive in detail certain properties following from successive applications by the
same Möbius transformation. Continuing with chapter 3 we make a careful review
of the work by Fan et al. in [2] and expand and deepen the analysis to make it
more transparent. That is, we will discuss in detail how a setup with a square-wave
drive can exhibit both a heating and a non-heating phase governed by the driving
parameters. Here the square-wave drive is such that the Hamiltonian which controls
the system jumps between an arbitrary CFT and its sine-square deformation. In
chapter 4 we continue with a generalization of the work done by Fan et al. in Ref.
[2] which we discussed in chapter 3. The generalization applies to the deformation
in Ref. [2], from a sine-square to a sine-k-square deformation, hence a deformation
of higher harmonics. One may see this as a step towards understanding what would
happen for an arbitrary deformation that admits a Fourier expansion. We will again
find that we have both a heating and non-heating phase depending on the driving
parameters, but the interesting parameter values that give the non-heating phase
now depends on the k used in the sine-k-squared deformation.
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2
Conformal field theory

In this chapter will we give a short introduction to the vast subject of Conformal
Field Theory (CFT). We will assume some background knowledge of Quantum Field
Theory (QFT), with CFT being a special type of QFT where one takes advantage
of the presence of conformal symmetry. Said differently, a CFT is a QFT that is
invariant under local scale transformations which preserves angles. The focus will be
towards two-dimensional theories where CFT is exceptionally powerful. For readers
for which this is their first acquaintance with CFT and would like a more thorough
text the standard reference in the subject (often referred to as the ”Yellow Book”)
is the one written by Fransesco et al. [31]. Much of the material in this chapter is
borrowed from the Yellow Book.

We start this chapter by defining a conformal transformation. By analysing this
definition we identify a conformal algebra, something we will first do for dimension
d ≥ 3. We follow up with a discussion of what happens for fields during conformal
transformations, where we have already assumed that the fields form irreducible
representations of the Lorentz group. In other words, we here work within the
framework of QFT.

After these two more introductory sections, sections 2.1 and 2.2, we turn to the more
exciting subject of what happens for conformal transformations in two dimensions.
We here make a connection to holomorphic functions which indicates that the con-
formal algebra in two dimensions is infinite-dimensional. This is the very reason for
the powerfulness of conformal theories in two dimensions. We conclude section 2.3
by giving the transformation rule for a so-called primary operator, which we use as
a pedagogical example to connect conformal transformations of operators to specific
coordinate changes.

We continue in section 2.4 with a discussion about the stress-energy tensor, especially
how it transforms under conformal coordinate changes. Here we introduce another
way to express how to generate conformal transformations of fields, in this way
uncovering some more structure of the theory. We investigate this structure in the
next section, 2.5, where we find the Virasoro algebra that generates 2d conformal
transformations. We can then connect how a transformation of an operator relates
to a coordinate change in a neat way.

This theory chapter is concluded by a section about Möbius theory, section 2.6.
Möbius transformations form an important class of conformal transformations. After
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2. Conformal field theory

a brief reminder of some basic mathematical facts, we then derive an expression for
successive applications of a Möbius transformation. As we shall see in chapter 3,
this is a key result, to be exploited in the application of CFT to Floquet theory.

2.1 Introduction to conformal transformations
In this first section of the theory chapter we will begin by introducing the general
definition of a conformal coordinate transformation. From this definition we will
then find the group structure of all conformal coordinate transformations, finding
the conformal algebra by studying infinitesimal transformations.

A conformal coordinate transformation x 7→ x′ is defined by that the metric is only
locally scaled

g′µν(x′) = Λ(x)gµν(x), (2.1)
where Λ(x) is a scalar function, gµν the metric in the ”old” coordinates x and
g′µν the metric in the ”new” coordinates x′. We can write this defining equation,
eq. (2.1), on infinitesimal form and in this way attain some insights about conformal
transformations which will lead us to find the conformal algebraic structure. By
the general rule for coordinate transformations of the metric tensor, an infinitesimal
transformation xµ → x′µ = xµ + εµ(x) to first order in ε takes the form

gµν → g′µν = ∂xα

∂x′µ
∂xβ

∂x′ν
gαβ

= (δαµ − ∂µεα)(δβν − ∂νεβ)gαβ
= gµν − (∂µεν + ∂νεµ).

(2.2)

If we then require that this should be a conformal transformation we have to combine
eqs. (2.1) and (2.2), thus obtaining

gµν(x)− (∂µεν(x) + ∂νεµ(x)) = gµν(x)− f(x)gµν(x), (2.3)

where Λ(x) = 1 − f(x) and where Λ is expanded in a neighborhood around x,
defining f as its first-order expansion. From eq. (2.3) follows the first important
equation in deriving the conformal algebra,

∂µεν + ∂νεµ = f(x)gµν . (2.4)

Taking the trace on both sides of eq. (2.4) gives

f = 2
d
∂µε

µ, (2.5)

where d is the space-time dimension. On the other hand, if we would have taken
the derivative ∂ρ on eq. (2.4) with some permutations on the indices we obtain

∂ρ∂µεν + ∂ρ∂νεµ = ηµν∂ρf

∂µ∂ρεν + ∂µ∂νερ = ηρν∂µf

∂ν∂µερ + ∂ν∂ρεµ = ηµρ∂νf

⇒ 2∂µ∂νερ = ηµρ∂νf + ηνρ∂µf − ηµν∂ρf,

(2.6)
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2. Conformal field theory

where we have added the two last lines and subtracted the first. We have here
assumed that the metric is constant, for simplicity that gµν = ηµν = diag(1, 1, ..., 1)
when using a Euclidean metric. Contracting eq. (2.6) with ηµν gives

2∂2ερ = (2− d)∂ρf. (2.7)

If we rename the indices, ρ → µ, in eq. (2.7) and then apply ∂ν to the resulting
expression, we have

2∂2∂νεµ = (2− d)∂µ∂νf. (2.8)
Going back to eq. (2.4) and applying ∂2, one obtains

2∂2∂νεµ = ηµν∂
2f. (2.9)

Combining eq. (2.8) and eq. (2.9) we can immediately conclude

(2− d)∂ν∂µf = ηµν∂
2f. (2.10)

A final contraction with ηµν on eq. (2.10) yields

(d− 1)∂2f(x) = 0. (2.11)

From eqs. (2.4) - (2.7), (2.10) and (2.11) we can derive the explicit form of conformal
transformations. First a note about the dimensions d = 1 and d = 2 which we can see
are special, as they take away restrictions on f from the equations. First, d = 1 gives
that these equations imply no restriction on f , that is, any continuous f works as
an infinitesimal conformal transformation. This is however not too surprising since
the notion of angle doesn’t exist in one dimension. Thus, the higher-dimensional
requirement that f must preserve angles is not applicable here. In section 2.3 we will
see that conformal transformations in two dimensions do have restrictions, but fewer
than in d > 2, implying that CFT becomes particularly powerful in two dimensions.

For now, let us briefly discuss how conformal transformations look like and how they
act, with focus on d ≥ 3 so as to develop some intuition about the formalism.

For d ≥ 2 we have that eq. (2.11) implies that ∂2f = 0. Inserting this in eq. (2.10)
gives ∂µ∂νf = 0, for d ≥ 3, that is, f can only be linear in the coordinate x:

f(x) = A+Bµx
µ, (2.12)

where A and Bµ are constants. If we use this form of f in eq. (2.7) then we have
that ∂µ∂νερ is constant since one more applied derivative gives that the right-hand
side is zero (since a second derivative of f is zero). From that ∂µ∂νερ is constant
follows that εµ is second order in x,

εµ = aµ + bµνx
ν + cµνρx

νxρ, cµνρ = cµρν , (2.13)

where aµ, bµν and cµνρ are infinitesimal constants. We can investigate these three
coefficients one by one since all equations giving restrictions on ε, eqs. (2.4) - (2.6),
are valid for all x, i.e. we can choose x such that the other two terms vanish.

7



2. Conformal field theory

First let us consider εµ = aµ. We then have no restrictions, since in all equations
there is a derivative of ε and f is equal to a derivative of ε as well; see eq. (2.5). It
follows that εµ = aµ constitutes a translation,

xµ → x′
µ = xµ + aµ. (2.14)

Then if we look at εµ = bµνx
ν and substitute this into eq. (2.4), using the expression

for f from eq. (2.5), we get

bµν + bνµ = 2
d
bρρηµν . (2.15)

On the right hand side we have an expression proportional to the trace of b giving
that

bµν = αηµν +mµν , α = bρρ mµν = −mνµ, (2.16)
where α corresponds to scaling and m to rotations. Thus, we have the transforma-
tions

x′
µ = xµ + εµ = xµ + αxµ, (2.17)

and
x′
µ = xµ + εµ = xµ +mµνx

ν , (2.18)
for εµ = αηµνx

ν and εµ = mµνx
ν respectively.

Lastly we have εµ = cµνρx
νxρ which we can substitute into eq. (2.6), again with f

as in eq. (2.5), giving

2∂ν∂ρcµνρxνxρ = 2
d
ηρµc

λ
νρ∂ν∂λx

νxρ + 2
d
ηνµc

λ
νρ∂ρ∂λx

νxρ − 2
d
ηνρc

λ
νρ∂µ∂λx

νxρ

= 2
d
ηρµc

λ
νλ + 2

d
ηνµc

λ
λρ −

2
d
ηνρc

λ
λµ

⇒ cµνρ = ηµρbν + ηµνbρ − ηνρbµ, bµ = 1
d
cλλµ,

(2.19)

where the only relation used is ∂µxν = δνµ together with some flipping of symmetric
indices for cosmetic reasons. Thus we have the infinitesimal transformation

x′
µ = xµ + εµ = xµ + 2(x · b)xµ − bµx2, (2.20)

which is called special conformal transformation (SCT).

For completeness we will finish this introduction to conformal coordinate transfor-
mations by writing out the conformal algebra for the conformal generators in d ≥ 3,
generators which as we shortly will see can be found in eqs. (2.14), (2.17), (2.18)
and (2.20). We remember the definition of a generator – as usually given in the con-
text of Noether’s theorem – as the difference between the fields after an infinitesimal
transformation. This gives the general expression for the generators Ta as

iTaΦ(x) = δxµ

δωa
∂µΦ(x)− δF

δωa
, (2.21)

8



2. Conformal field theory

with F describing how the fields transform (for now we set F(Φ) = Φ) and where
ωa are some infinitesimal parameters. When working with conformal symmetries, as
we do, we have 1

2(d+ 2)(d+ 1) infinitesimal parameters and we have above already
named them to sort into four groups to: aµ, α,mµν and cµνρ. From eqs. (2.14), (2.17),
(2.18) and (2.20) we have the equations for δx for all conformal transformations and
by identifying ωa to the specified names for the infinitesimal parameters, aµ, α, mµν

and cµνρ, in these equations we can use eq. (2.21) to find the generators and then
by exponentiation their finite transformations [31]:

(translation) Pµ = −i∂µ, x′µ = xµ + aµ, (2.22)
(dilation) D = −ixµ∂µ, x′µ = αxµ, (2.23)
(rigid rotation) Lµν = i(xµ∂ν − xν∂µ), x′µ = Mµ

νx
ν , (2.24)

(SCT) Kµ = −i(2xµxν∂ν − x2∂µ), x′µ = xµ − bνx2

1− 2b · x+ b2x2 . (2.25)

By computing the commutators between the generators in eqs. (2.22) - (2.25),
thinking of them as acting on a coordinate, we finally obtain the conformal Lie
algebra in d ≥ 3:

[D,Pµ] = iPµ,

[D,Kµ] = −iKµ,

[Kµ, Pµ] = 2i(ηµνD − Lµν),
[Kρ, Lµν ] = i(ηρµKν − ηρνKµ),
[Pρ, Lµν ] = i(ηρµPν − ηρνPµ),

[Lµν , Lρσ] = i(ηνρLµσ + ηµσLνρ − ηµρLνσ − ηνσLµρ),
[D,Lµν ] = [Kµ, Kν ] = [Pµ, Pν ] = 0.

(2.26)

2.2 Conformal transformations of fields
In this section we will investigate how to conformally transform a field. We start
by reminding ourselves about the general transformation for a field Φ(x), at an
algebraic level where we can make an infinitesimal transformation as

x 7→ x′ = (1− iωaTa)x,
Φ(x) 7→ Φ′(x′) = (1− iωaπ(Ta))Φ(x),

(2.27)

where Ta are the generators of the transformation and π(Ta) are the matrices acting
on the fields, obeying [π(Ta), π(Tb)] = π([Ta, Tb]), and where ωa are infinitesimal
parameters.

We now want to understand how to write π(Ta) for the different generators given
in eqs. (2.22) - (2.25). This is a question of finding the irreducible representations
for the conformal algebra, eq. (2.26). However, we will assume that we start with
a QFT, that is, we have irreducible representations of the Lorentz group, which

9



2. Conformal field theory

is a subalgebra to the conformal algebra, as seen from the fact that the Lµν only
transform to other Lorentz transformations under the Lie-bracket in eq. (2.26).

We start with the dilation transformation π(D). We shall work with irreducible
representations of the Lorentz algebra, that is we assume that the fields take their
values at the origin, and then by translation we deduce their action on the full group,

π(Ta)Φ(x) = eix
µPµπ0(Ta)e−ix

µPµΦ(x). (2.28)

In eq. (2.26) we can see that [D,Lµν ] = 0 and from Schur’s first lemma with the
assumption of that we work with an irreducible representation of the Lorentz algebra,
we conclude that

π0(D) ∝ I. (2.29)

From π0(D) ∝ I follows that all commutators with π0(D) must be zero, especially
this affects the SCT generators,

[π0(D), π0(Kµ)] = −iπ0(Kµ) = 0. (2.30)

From this relation we conclude that the special conformal transformation does not
affect the fields when working with an irreducible representation of the Lorentz
group: when translating the zero matrix by eq. (2.28) we still get the zero ma-
trix. Then the finite transformation obtained from exponentiation implies that the
transformation rule is implemented by the identity matrix.

Using that π0(D) is proportional to the identity matrix, eq. (2.29), together with
the translation of the field, eq. (2.28), the CBH formula allows us to find the repre-
sentation of the dilation generator

π(D)Φ(x) = eix
µPµπ0(D)e−ixµPµΦ(x)

= (π0(D) + [π0(D),−ixµπ(Pµ)])Φ(x)
= (π0(D) + xµPµ)Φ(x)
= (π0(D)− ixµ∂µ)Φ(x),

(2.31)

where, in the third line, we have used that the CBH formula terminates when we
obtain an expression that commutes with the exponent, such as the exponent itself.
We can now rewrite π0(D) as it is usually given, with only one real parameter, ∆,

π0(D) = −i∆. (2.32)

Here the identity matrix on the right-hand side is implicit.

The general procedure to go from infinitesimal transformations generated by the Ta
(algebraic level) to finite transformations, call them g (group level), is by using the
exponential map

g = exp{ξaTa}, (2.33)
with an implicit sum for a = 1, ...., dim(g), where g is the Lie-algebra, Ta the gen-
erators of the algebra and ξa some parameters [32]. It may be worth pointing out
that eq. (2.33) is locally true for any finite-dimensional Lie algebra, such as ours.

10



2. Conformal field theory

In principal we are now ready to write down any finite conformal transforma-
tion, by using: (i) The exponential map given in eq. (2.33), (ii) the representa-
tion of the Poincaré algebra familiar from QFT, (iii) the action of dilation given in
eq. (2.31), and (iv) observing the non-action of special conformal transformations
seen in eq. (2.30). We will however only write the result for a spinless field whose
2-dimensional counterpart is the only transformation of a special field that we will
have use for – and that more in a pedagogical sense. Letting φ(x) be a scalar field,
we thus obtain for a finite conformal transformation:

φ(x) 7→ φ′(x′) =
∣∣∣∣∣∂x′∂x

∣∣∣∣∣
−∆/d

φ(x),
∣∣∣∣∣∂x′∂x

∣∣∣∣∣ = Λ(x)d/2, (2.34)

where Λ is the scalar function defining the conformal transformation in eq. (2.1), d
the space-time, and ∆ is defined via eq. (2.32) [31].

With this we can now look at what restrictions this impose on a classical (quan-
tum) theory from demanding the action (all correlation functions) to be invariant
under a conformal transformation. However, in this work we are more concerned
about how we can use this knowledge in order to find how the stress-energy tensor
transforms under conformal transformations in a conformal theory. We shall take
on this problem in section 2.4 but before that will we need to say something about
two-dimensional CFT’s. These are the CFT’s that we will work with and where
we can also say the most about the transformation properties of the stress-energy
tensor.

2.3 Two-dimensional CFT
In this project on a CFT approach to Floquet theory we are only considering two-
dimensional theories where, as we have already mentioned, CFT is at its most pow-
erful. That two dimensions is exceptional transpires from section 2.1 where eq. (2.7)
indicates fewer restrictions on the infinitesimal transformation εµ. In fact, εµ can
be given by a power series in two dimensions, thus implying an infinite parameter
space instead of the 1

2(d+ 1)(d+ 2) dimensional parameter space seen by the trans-
formation relations given by eqs. (2.14), (2.17), (2.18) and (2.20). The power series
for εµ comes from the connection between conformal coordinate transformations and
analytic complex functions. We show this connection between conformal transforma-
tions and analytic functions by analysing the conformal coordinate transformations
given in eq. (2.1) for flat, Euclidean, space with metric gµν = δµν = diag{1, 1}. That
we use a Euclidean metric is not a restriction for quantum field theories which are
played out in Minkowski space: we can always use Wick rotations, that is, using
imaginary time instead of real time, taking us back to Euclidean metric.

We start with a general coordinate transformation, say (ω0, ω1) 7→ (z0, z1), for the
metric:

g′µν(z) = ∂zµ

∂ωα
∂zν

∂ωβ
gαβ(ω), (2.35)

Using the proportionality condition that we have for conformal transformations,
eq. (2.1), and writing out the three equations from eq. (2.35), which is a 2 ×
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2. Conformal field theory

2 matrix equation but since the metric is symmetric we only have three inde-
pendent equations. That is, by explicitly writing out all equations implied by
∂zµ

∂ωα
∂zν

∂ωβ
δαβ(ω) = Λ(ω)δµν , we find the 00- and 11-component to be equal and the

01- (10)-component to be zero. We thus have(
∂z0

∂ω0

)2

+
(
∂z0

∂ω1

)2

=
(
∂z1

∂ω0

)2

+
(
∂z1

∂ω1

)2

, (2.36)

and
∂z0

∂ω0
∂z1

∂ω0 + ∂z0

∂ω1
∂z1

∂ω1 = 0. (2.37)

This is equivalent to

∂z1

∂ω0 = ∂z0

∂ω1 and ∂z0

∂ω0 = − ∂z
1

∂ω1 , (2.38)

or
∂z1

∂ω0 = − ∂z
0

∂ω1 and ∂z0

∂ω0 = ∂z1

∂ω1 . (2.39)

We recognize the set of equations in eq. (2.38) as the Cauchy-Riemann equations
which we know from complex analysis. From ordinary complex analysis we remem-
ber that complex functions who fulfill the Cauchy-Riemann equations, with it’s real
and imaginary part as the two functions, z0 and z1 in eq. (2.38), are complex differ-
entiable. Such functions are called holomorphic functions. Furthermore, we know
that complex functions that are differentiable once are also infinitely differentiable.
Thus holomorphic functions are analytic, that is, we can write all of them as power
series – a very powerful tool. The other equation, eq. (2.39), is analogous, but re-
ferred to as anti-holomorphic since if a function f(z) is holomorphic then its complex
conjugate, f̄(z̄), fulfills eq. (2.39) [33].

To be able to exploit complex analysis as a tool in CFT, we make a coordinate
change to complex coordinates:

ω = ω0 + iω1, ω = ω0 − iω1. (2.40)

As it is written, ω and ω depend on each other, but by making an analytic contin-
uation to C2, with four instead of two independent variables, ω and ω become two
independent complex variables. At the end of a calculation we then go back to the
physical plane where the bar really means complex conjugation, ω̄ = ω∗. In order to
trust the results as unique even though we may have a choice when doing the ana-
lytic continuation we can rely on the complex analysis theorem often refereed to as
the identity theorem. This theorem states that if two functions, f and g defined on
C, are equal on an open subset, U , then they are equal on the whole complex-plane
[33].

Now when we have established how to make conformal coordinate transformations in
two dimensions, simply using holomorphic and antiholomorphic functions (functions
satisfying eqs. (2.38) and (2.39) respectively), we would like to find the generators
of these transformations, as we did for the transformations in eqs. (2.22) - (2.25),

12



2. Conformal field theory

defining the smaller set of conformal transformations valid in any dimension. From
the conclusion that a conformal coordinate change is given by complex analytic
functions we can understand the generic form of an infinitesimal transformation,
ε, ε̄. Note that in two dimensions the space-time index is not needed since the
distinction is made by whether or not we have a bar. Furthermore, we will only
discuss ε since everything is analogous for ε̄. In dimensions d ≥ 3, we had that εµ
must be of second order, eq. (2.13), which followed from certain constraints that are
not at play for d = 2. A complex analytic function has the well-known property
that it is locally given by a power series, implying that an infinitesimal conformal
transformation in d = 2 takes the form

ε(z) =
∞∑
−∞

εnz
n+1, (2.41)

where εn are infinitesimal constants and where we have chosen n+1 in the exponent
for later convenience.

We can now use eq. (2.21) to get the generators in the same way as we did for the
translation, dilation, rotation and SCT in eqs. (2.22) - (2.25). Now however we have
an infinite number of generators

ln = −zn+1∂z, l̄n = −z̄n+1∂z̄, (2.42)

where the subscript on the differential operator indicates with respect to which
coordinate we make the differentiation, ∂z = ∂

∂z
[31].

By a straightforward computation, using eq. (2.42), we find the following commu-
tator relations

[ln, lm] = (n−m)ln+m,

[l̄n, l̄m] = (n−m)l̄n+m,

[ln, l̄m] = 0.
(2.43)

That is, we have the conformal algebra to be the direct product of two isomorphic
algebras. For reference, sometimes eq. (2.43) is called the Witt algebra. In order to
obtain a finite conformal transformation we use exponentiation as given in eq. (2.33).
For the conformal map ω → z, ω̄ → z̄ we have

ω → z(ω) = e
∑∞
−∞ ξnlnω, ω̄ → z̄(ω̄) = e

∑∞
−∞ ξ̄n l̄nω̄, (2.44)

where ξn, ξ̄n are complex constants.

We conclude this section by writing out the transformation rule for a primary op-
erator, i.e. an operator defined by satisfying this very rule. First we need to define
the holomorphic conformal dimension h and its antiholomorphic counterpart h̄ as

h = 1
2(∆ + s), h̄ = 1

2(∆− s), (2.45)
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2. Conformal field theory

where ∆ is the scaling dimension of the considered field and s is its spin. Then,
under a conformal map z → ω(z), z̄ → ω̄, a primary operator transforms as

φ′(ω, ω̄) =
(
∂ω

∂z

)h (
∂ω̄

∂z̄

)h̄
φ(z, z̄). (2.46)

Note that this is a generalization of the transformation rule, eq. (2.34), for a spinless
field.

This is actually all we need to understand about how operators transform in a
two-dimensional CFT, since the transformation rule in eq. (2.46) is valid for an ar-
bitrary conformal transformation and any operator can be derived from the primary
operators in the theory [31].

2.4 Stress-energy tensor
The stress-energy tensor is one of the most useful objects in field theory, especially
since, as in this project, analysing the energy distribution in a system is often of in-
terest. The starting point in identifying a precise and unambiguous definition for the
stress-energy tensor is the Noether current associated with Lorentz transformations.
In this section we will focus on the general characteristics of the stress-energy tensor,
especially those associated with conformal coordinate changes. We will also extract
some key concepts for the stress-energy tensor, following the first six chapters in the
main source for this theory section, the ”Yellow Book” [31].

Noether’s theorem for a Lorentz-invariant theory with Lagrangian density L implies
for the stress-energy tensor T :

T µν = −ηµνL+ ∂L
∂∂µΦ∂

νΦ, (2.47)

with
∂µT

µν = 0. (2.48)

Here Φ is the collection of fields included in the theory and the second equation
is the conservation law [31]. Integrating both sides in the conservation law over
the spatial coordinates yields the conserved charge, in this case the four-momentum
whose time component P 0(t) is exactly the energy, giving

P 0(t) =
∫

dd−1~x T 00(t, ~x) =
∫

dd−1~x

(
∂L(t, ~x)
∂Φ̇(t, ~x)

Φ̇(t, ~x)− L(t, ~x)
)
. (2.49)

We here identify the last integrand in eq. (2.49) as the Hamiltonian density, as it is
the Legendre transformation from L toH. Moreover, we know that

∫
dd−1~xH(t, ~x) =

H(t) = P 0(t), both symbols for the energy in the system.

The stress-energy tensor as defined might not be symmetric but we can always add
a tensor, Bρµν , which is antisymmetric in its first two indices such that the new
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2. Conformal field theory

stress-energy tensor becomes symmetric, T µνnew = T µν + ∂ρB
ρµν , without changing

the equation of motion [31]. So throughout this thesis we will work under the
assumption of a symmetric stress-energy tensor, just denoted T µν .

In classical theories conformal invariance implies that the stress-energy tensor is
traceless. This follows from making a scale transformation and demanding that the
action is invariant. In quantum theories however this must not be true, but for
two-dimensional theories it can again be shown that conformal invariance implies a
traceless stress-energy tensor. Now this is true within an expectation value; in fact
it is true in any correlation function except if another field takes its value in the
same space-time point as the trace of the stress-energy tensor [31],

〈T µµ(x)Φ(y)〉 = 0, x 6= y. (2.50)

One of the key concepts in this thesis is that of how an operator, especially the stress-
energy tensor, transforms under conformal transformations. We will here derive just
this relation. We will from now on work in two dimensions with Euclidean metric,
that is, with imaginary time.

In two dimensions we can write a conformal transformation of a field in a more
convenient way by means of the stress-energy tensor (instead of using an infinite
number of generators which we would have to find similarly to how we found the
generators for dilation and SCTs in section 2.2). This rewritten form is called the
conformal Ward identity, with ”Ward identity” being the name of how we can express
the effect that continuous symmetries have on correlation functions. The conformal
Ward identity is then a combination of the three Ward identities associated with
translation, rotation and scale invariance, since from section 2.2 we know that a
special conformal transformation doesn’t affect the transformation of an operator.
Written out explicitly,

δε,ε̄〈X〉 = − 1
2πi

∮
C

dz ε(z)〈T (z)X〉+ 1
2πi

∮
C

dz̄ ε̄(z̄)〈T̄ (z̄)X〉, (2.51)

where X is a product of fields, C is a path containing all arguments (ωi, ω̄i) of the
fields appearing in X, and ε is the infinitesimal conformal coordinate transformation
[31].

From eq. (2.51) we can make an infinitesimal conformal transformation, z → ω =
z + ε, of the stress-energy tensor, omitting the expectation value symbols but re-
membering that the resulting expression is true only within a correlation function,

δεT (ω) = 1
2πi

∮
C

dz ε(z)T (z)T (w). (2.52)

This can be evaluated by using the Operator Product Expansion (OPE), a represen-
tation of the product between two operators in which the divergence of the product
of two operators approaching the same point is made explicit. An OPE is written
as a sum where each term in the sum is constituted of two parts that are multi-
plied together; one operator part, that is well behaved as the two points come close,
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and a c-number part, that possibly diverges. The OPE for the stress-energy tensor
multiplied with itself is given by

T (z)T (ω) ∼ c/2
(z − ω)4 + T (ω)

(z − ω)2 + ∂T (ω)
(z − ω) , (2.53)

where c is the central charge and ∂T (ω) = ∂T (ω)
∂ω

[31]. We here use the symbol ∼, as
in any OPE expression, to indicate that the equality is modulo expressions regular
(non-singular) when z → ω, of which there exists an infinite number [31].

We can now use the OPE eq. (2.53) in the conformal transformation of T in eq. (2.52)
to get

δεT (ω) = − 1
12c∂

3
ωε(ω)− 2T (ω)∂ε(ω)− ε(ω)∂ωT (ω), (2.54)

where we simply have used residue calculus to calculate the integral. Note that it
is only the 1/(z − ω)n parts which contributes to the integral in each term. By
”exponentiating” this action of infinitesimal conformal transformation, eq. (2.54),
on T we get the expression for a finite conformal transformation associated with the
finite transformation, z → ω,

T ′(ω) =
(
∂ω

∂z

)−2 (
T (z)− c

12{ω, z}Sc
)
. (2.55)

We have here introduced the Schwarzian derivative {ω, z}Sc,

{ω, z}Sc = d3ω/dz3

dω/dz −
3
2

(
d2ω/dz2

dω/dz

)2

. (2.56)

That eq. (2.54) implies eq. (2.55) is far from obvious. However, one finds that
the finite form, eq. (2.55), coincides with the infinitesimal form, eq. (2.54), when
expanding the finite form to first order in ε assuming the infinitesimal transformation
z → ω = z + ε [31].

2.5 Virasoro generators
In the section above, section 2.4, we discussed how correlation functions change
under conformal transformations in CFTs. The general transformation rule, at in-
finitesimal level, is given by the conformal Ward identity in eq. (2.51). We can
however find more structure from this expression, specifically an algebra named the
Virasoro algebra related to the transformation. To begin with, we saw in eq. (2.13)
that εµ, the functions which parameterize a conformal transformation (here con-
sidered in any dimension d ≥ 3) are at most second order polynomials. (We will
here, as we discussed in section 2.3, indicate the two space-time directions with ε
and ε̄ and thus we have dropped the space-time index µ.) But now when we work
in a two-dimensional space-time we know from eq. (2.41) that ε, and we note that
everything is analogous for ε̄, can be given by an unrestricted power series, of the
form

ε(z) =
∞∑
−∞

εnz
n+1, (2.57)
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where εn are infinitesimal constants and we choose n + 1 in the exponent for z for
later convenience.

Any individual term in the sum in eq. (2.57) implies a conformal transformation and
we would then want to look at each of them individually. Furthermore, in eq. (2.51)
where the correlation function is transformed by two individual terms, one for the
holomorphic part and one for the antiholomorphic part, we can look at each of
them separately. Introducing two operators to build the conformal Ward identity,
eq. (2.51), we write

Ln = 1
2πi

∮
dz zn+1T (z), (2.58)

L̄n = 1
2πi

∮
dz̄ z̄n+1T̄ (z̄). (2.59)

Then the conformal Ward identity, eq. (2.51), can be written as

δε,ε̄X =
∞∑
−∞

(
−εnLnX + ε̄nL̄nX

)
. (2.60)

The operators Ln and L̄n are called Virasoro generators and form the Virasoro
algebra.

To find this algebra we simply compute the commutators [Ln, Lm], written on inte-
gral form as

[Ln, Lm] = 1
(2πi)2

∮
0

dω ωm+1
∮
ω

dz zn+1T (z)T (ω), (2.61)

where the subscripts on the integral signs indicate that we integrate over circles
centered around the origin and ω respectively. That this integral form, eq. (2.61),
corresponds to the commutator can be seen from the expression∮

ω
dz a(z)b(ω) =

∮
C1

dz a(z)b(ω)−
∮

C2
dz b(ω)a(z) = [A, b(ω)], (2.62)

where A =
∮

dz a(z) and where we have two arbitrary holomorphic fields a and b
and two circles, C1 and C2, centred around the origin. To verify this expression,
eq. (2.62), we use complex analysis to deform C1 and C2 to a circle around ω as
shown in fig. 2.1. We know that we can only have a divergence at ω when thinking
of the product inside the integrals as OPEs. Furthermore, we can connect the two
circles by two infinitesimally close lines, thus canceling each other.

Now, in the Virasoro commutator we can think of Lm as the integral over ωm+1T (ω)
and simply take out the integral and ωm+1 from the commutator since ω is not an
operator:

[Ln, Lm] = 1
2πi

∮
0

dω ωm+1[Ln, T (ω)]. (2.63)

By inspection of the general expression for a commutator, eq. (2.62), and the rewrit-
ten form of the Virasoro commutator, eq. (2.63), one easily verifies the integral form
of the Virasoro commutator in eq. (2.61).
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Figure 2.1: Integration paths, eq. (2.62).

When we now have motivated the integral form of the Virasoro commutator, eq. (2.61),
we can use the OPE of the stress-energy tensor in eq. (2.53) to evaluate the integrals
over C1 and C2. We get

[Ln, Lm] = 1
(2πi)2

∮
0

dω ωm+1
∮
ω

dz zn+1
(

c/2
(z − ω)4 + T (ω)

(z − ω)2

+ ∂T (ω)
(z − ω) + reg.

)

= 1
2πi

∮
0

dω ωm+1
(
c

12(n+ 1)n(n− 1)ωn−2

+ 2(n+ 1)ωnT (ω) + ωn+1∂T (ω)
)

= c

12(n+ 1)n(n− 1)δm+n,0 + (2(n+ 1)Lm+n

− 1
2πi

∮
0

dω (n+m+ 2))ωn+m+1T (ω)
)

= c

12n(n2 − 1)δm+n,0 + (n−m)Ln+m.

(2.64)

First, when evaluating the z-integral we use residue calculus, the only thing being
relevant is 1/(z − ω)n since the regular terms integrate to zero by not having any
poles. Evaluating the first term in the ω-integral follows by residue calculus as well,
the second term is an identification of the Virasoro generator, eq. (2.58), and on
the third term we used integration by parts. In the last line we only identified the
Virasoro generator, eq. (2.58), and did some cleaning in the coefficients. The same
calculation is carried out for [L̄n, L̄m] and since we have the OPE T (z)T̄ (ω̄) ∼ 0, we
finally obtain the Virasoro algebra:

[Ln, Lm] = (n−m)Ln+m + c

12n(n2 − 1)δn+m, (2.65)

[Ln, L̄m] = 0, (2.66)

[L̄n, L̄m] = (n−m)L̄n+m + c

12n(n2 − 1)δn+m. (2.67)

From these expressions, eqs. (2.65) - (2.67), we see that the Virasoro algebra con-
stitutes a direct sum of two isomorphic algebras.

We will now connect the conformal transformation of operators with the coordinate
transformation. We have that Virasoro generators generate infinitesimal conformal
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transformations and by exponentiation we obtain finite transformations, as seen
in eq. (2.33). Furthermore, a finite transformation of an operator is given by a
similarity transformation (in the language of representation theory), and hence we
have to sandwich the operator in between the exponential and its conjugate,

e
∑∞
−∞−(ξnLn+ξ̄nL̄n)φ(z, z̄)e

∑∞
−∞(ξnLn+ξ̄nL̄n) =

(
∂ω

∂z

)h (
∂ω̄

∂z̄

)h̄
φ(z, z̄). (2.68)

This equality comes from assuming φ to be a primary operator and then using the
knowledge of how such an operator transforms, eq. (2.46). The question is now how
to identify the conformal coordinate change which corresponds to the conformal
transformation of the field. We know that the transformation of the field is a rep-
resentation so what we need is nothing else but the corresponding transformation
of the coordinates; as long as the representation is faithful we have a one-to-one
correspondence and no ambiguities. That is, the corresponding coordinate change
ω → z, ω̄ → z̄ in eq. (2.68) is simply given by eq. (2.44), here written out again:

ω → z(ω) = e
∑∞
−∞ ξnlnω, ω̄ → z̄(ω̄) = e

∑∞
−∞ ξ̄n l̄nω̄. (2.69)

It is here important to note that ξn, ξ̄n are the same as in eq. (2.68).

2.6 Möbius theory
Successive applications of the same Möbius transformation will be of great impor-
tance in chapters 3 and 4, where we apply CFT to Floquet theory. In this section
we will investigate just this. More precisely, we will derive the transformation that
corresponds to applying a Möbius transformation n times. The derivation is self-
contained, based on ref. [34], with some additional facts about Möbius transfor-
mations that can be found in any standard book on complex analysis, for instance
[33].

First, a Möbius transformation, T , is of the form

T (z) = az + b

cz + d
, ad− bc 6= 0, (2.70)

that is a bijective map from C onto itself. Secondly, all Möbius transformations form
a group, implying that successively applied Möbius transformations is a Möbius
transformation. The group property further implies that all Möbius transforma-
tions have an inverse which is a Möbius transformation, that there exist an identity
transformation T (z) = z, and that associativity is also fulfilled [33].

The inverse of a Möbius transformation can be written on a generic form which we
can find from solving

T (T−1(z)) = aT−1(z) + b

cT−1(z) + d
= z, (2.71)

thus obtaining
T−1 = dz − b

−cz + a
. (2.72)
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One more important feature of Möbius transformations is that of fixed points. We
denote a fixed point by γ, defined by

T (γ) = aγ + b

cγ + d
= γ. (2.73)

This equation for fixed points, eq. (2.73), is a second-order equation so we can
either have two distinct fixed points or one with double multiplicity. The explicit
expression for the fixed points is trivial to obtain from eq. (2.73), and one finds

γ1,2 =
a− d∓

√
(a− d)2 + 4bc
2c . (2.74)

We are now ready for the derivation of the expression, T n, which corresponds to
applying one and the same Möbius transformation, T , n times

T n(z) = T (T (...T (z)...)). (2.75)

First we note that T n is also a Möbius transformation, which follows by the second
fact that we stated about all Möbius transformations form a group. The derivation of
T n will use the knowledge and simple structure of the Möbius transformation which
has 0 and ∞ as its fixed points. We will introduce another Möbius transformation
S, which sends T ’s fixed points to 0 and ∞, that together with its inverse and T
will have 0 and ∞ as fixed points. S is given by

S = z − γ1

z − γ2
. (2.76)

By the definition in eq. (2.70), S is a Möbius transformation if γ2− γ1 6= 0. We can
see that it is important that we have a Möbius transformation, T , with two distinct
fixed points; the other case with only one fixed point will be discussed later. The
inverse to S found from the general expression in eq. (2.72): has the expression

S−1 = −γ2z + γ1

−z + 1 . (2.77)

Let us now write down where some important points are mapped:

S−1(0) = −γ20 + γ1

−0 + 1 = γ1, S−1(∞) = −γ2∞+ γ1

−∞+ 1 = γ2, (2.78)

T (γ1) = γ1, T (γ2) = γ2, (2.79)

S(γ1) = γ1 − γ1

γ1 − γ2
= 0, S(γ2) = γ2 − γ1

γ2 − γ2
=∞. (2.80)

In S−1(∞) and S(γ2) we of course really mean that we take the limit, z → ∞ and
z → γ2 respectively, but since these are rather trivial limits we can justify writing
them in this faster notation. (We will have some similar cases later on.) Given the
mappings T , S and S−1, we can define a Möbius transformation U as

U = S ◦ T ◦ S−1. (2.81)
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2. Conformal field theory

From eqs. (2.78) - (2.80) we see that U(0) = S(T (S−1(0))) = 0 and U(∞) =
S(T (S−1(∞))) =∞. It follows that U is a particular simple Möbius transformation,
being in fact only a multiplication with a complex number

U(z) = ηz, η ∈ C. (2.82)

We prove this form of U , eq. (2.82), by inserting the fixed points in the generic
Möbius expression for U :

U(0) = a0 + b

c0 + d
= b

d
= 0 ⇒ b = 0, (2.83)

U(∞) = a∞+ b

c∞+ d
= a

c
=∞ ⇒ c = 0, (2.84)

⇒ U(z) = az

d
= ηz. (2.85)

Now it is possible to write down an expression for successive transformations by a
general Möbius transformation, T n(z) = T (T (...T (z)...). From eq. (2.81) we can
write T = S−1 ◦ U ◦ S which then becomes a neat expression for T n:

T n = (S−1 ◦ U ◦ S)n = S−1 ◦ U ◦ S ◦ S−1... ◦ U ◦ ...S ◦ S−1 ◦ U ◦ S
= S−1 ◦ Un ◦ S.

(2.86)

We can rewrite, eq. (2.86), as S ◦ T n = Un ◦ S, which is called normal form. Then
using how S and U is defined in eqs. (2.76) and (2.85) we get the expression for
n successively applied Möbius transformations, T n, when it has two distinct fixed
points,

T n(z)− γ1

T n(z)− γ2
= ηn

z − γ1

z − γ2
. (2.87)

Not all Möbius transformations have two distinct fixed points, but instead one with
double multiplicity for which the above expression is not valid. The latter point is
easy to see from the derivation where the definition of S in eq. (2.76) would not
be a Möbius transformation in that case. So let us now assume that our Möbius
transformation T has only one fixed point, that is instead of eq. (2.74) we have

γ = a− d
2c and (a− d)2 + 4bc = 0. (2.88)

We can now define a new S such that T ’s fixed point is sent to ∞,

S(z) = 1
z − γ

. (2.89)

By comparison with eq. (2.70) one immediately verifies that S is a Möbius trans-
formation. The inverse to S is in accordance with the general inverse formula,
eq. (2.72), is given by

S−1(z) = −γz − 1
−z

. (2.90)
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2. Conformal field theory

We can now define U exactly as before by U = S ◦ T ◦ S−1 which has ∞ as fixed
point:

S−1(∞) = −γ∞− 1
−∞

= γ, (2.91)

T (γ) = γ, (2.92)

S(γ) = 1
γ − γ

=∞, (2.93)

⇒ U(∞) = S(T (S−1(∞))) = S(T (γ)) = S(γ) =∞. (2.94)

We now have the task of finding an explicit expression for a Möbius transformation
with only one fixed point at∞. We know that U can have only one fixed point since
T has only one and is sandwiched between a Möbius transformation and its inverse.
We can now find the expression for U by using the two equations given by the fixed
point, eq. (2.88):

U(∞) = a∞+ b

c∞+ d
= a

c
=∞ ⇒ c = 0, (2.95)

(a− d)2 + 4bc = (a− d)2 = 0 ⇒ a = d, (2.96)

⇒ U(z) = az + b

a
= z + b/a = z + β. (2.97)

In the same way as before we can now do repeated transformations of the Möbius
transformation T , just as in eq. (2.86), but with a different S and U . We thus
get the normal form for a Möbius transformation T with a single fixed point, from
S ◦ T n = Un ◦ S, with the expression

1
T n(z)− γ = 1

z − γ
+ nβ. (2.98)
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3
Sine-square deformation

This chapter contains a thorough review of the recent work by Fan et al. in Ref.
[2], building on some previous work by Wen and Wu in Ref. [1, 3]. In addition, we
will fill out some missing steps in the analysis by Fan et al. In the next chapter we
then build on this when investigating a generalization.

The work by Fan et al. aims at understanding how the energy distribution in a
one-dimensional system behaves when subject to a square wave driving. The two
settings for which the chosen system experiences a periodic drive is an arbitrary
CFT and a sine-squared deformation of the same CFT.

The sine-squared deformation of a Hamiltonian has received considerable interest
in the last decade. The reason is the special behavior of its ground state, which,
imposing periodic boundary conditions, is the same as for the non-deformed Hamil-
tonian. This property can be used when performing numerical calculations of lattice
models. This however is not why Fan et al. use a sine-square deformation. Rather,
from these earlier works insights and techniques can be drawn which are useful for
understanding the present problem of a periodic drive. A key insight is that the
description of a sine-squared deformation of a CFT makes it possible to relate time
evolution to a Möbius transformation and thus enabling an analytically calculable
problem. Here we will follow Katsura [12] when discussing general sine-squared CFT
deformations, building on the seminal article by Gendair et al. [13].

Before we start with the rather technical discussion, it may be good to have an
overview to fall back on. We will start with describing the system and emphasize
the two main features of its description within the CFT formalism. First, the time
evolution of the system is governed by two different Hamiltonians which are turned
on and off repeatedly (”square wave drive”). Secondly, to exploit the full machinery
of CFT and study the Möbius transformation we need to map the problem onto the
complex plane. However, before we can utilize the form of the Hamiltonians in the
complex plane we need to overcome a branch cut problem coming from the finite
size of the system. Then can we find the explicit Möbius transformation, referred to
above, by more or less straightforward calculations. Lastly, we can then calculate
the energy of the system by calculating the expectation value of the stress-energy
tensor. We finish the chapter with an analysis of how to relate the energy density
to the Möbius transformation which emulates the time evolution, here taken to be
stroboscopic (i.e. monitored at periodic time intervals).
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3. Sine-square deformation

T
1

T
0

H
1

H
0

Time

Figure 3.1: The driving scheme for the system. Quantum quenches are performed
from an arbitrary CFT, described byH0, to the sine-squared deformation of the same
CFT, described by H1, and then back to H0 and so on. There are two independent
driving parameters, T0 and T1, describing for how long the system is in the non-
deformed and the deformed CFT respectively, with one period T = T0 + T1.

3.1 Our setup
We start with an arbitrary conformal field theory (CFT) in (1+1)D, one space plus
one time dimension, with finite spatial size, L. We describe this theory with a
Hamiltonian H0 given by

H0 =
∫ L

0
dxTtt(x), (3.1)

with Ttt the time-time component of the corresponding stress-energy tensor. By
a quantum quench we then set the system to be governed by the Hamiltonian H1
which is a deformation of H0 given by

H1 = 2
∫ L

0
dx sin2

(
πx

L

)
Ttt(x). (3.2)

The system is then driven, made to go back and forth between these two Hamilto-
nian’s as seen schematically in fig. 3.1. Thus, the full time-dependent Hamiltonian
governing the time evolution is defined by

H(t) =

H1, 0 < t mod T < T1

H0, T1 < t mod T < T1 + T0
. (3.3)

It follows that one period T of the drive is given by T = T1 + T0. The expressions
for the Hamiltonians in eqs. (3.1) and (3.2) are given in Minkowski space. It is
important to keep this in mind, as we later will perform transformations to Euclidean
and Euclidean light-cone coordinates.

Before the driving starts, at time t = 0, we prepare the system in the ground state
to H0, call it |GH0〉. We denote it with G instead of the usual 0 to distinguish this
state from the vacuum. The reason why we need this distinction is that excitations
in the driven system is not built up by creation operators acting on this ground
state, |GH0〉, as they would be if we had no drive, i.e. with only H0 (or H1) as
governing Hamiltonian.
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3. Sine-square deformation

The last ingredient for specifying the system are the boundary conditions. We will
choose open boundary conditions. This is known to be a conformal boundary con-
dition, i.e. going without saying that the conditions do not change under conformal
transformations. Furthermore it is defined by that we have no energy flow over
the edges, defined by (0, t) and (L, t), and that the stress-energy tensor is set to a
constant at the boundaries [31]. In an equation this is written as

Ttx(0) = Ttx(L) = 0. (3.4)

In order to formally implement the boundary conditions it is preferable to write
the stress-energy tensor in two parts, one for holomorphic fields and one for anti-
holomorphic fields; for further discussion of holomorphic and anti-holomorphic fields
see section 2.3. We will now make use of the usual trick of analytic continuation
to go from two real and independent coordinates, (x, t), to the larger space of two
complex and independent coordinates, (ω, ω̄). In this C2 space we use the tools
of CFT and then remember that the physics is played out on the two-dimensional
surface where the two coordinates are each others complex conjugate, that is ω̄ = ω∗.
Let us do this analysis carefully for the stress-energy tensor.

The quantum field theories that we have started with, both being CFTs in a Hamil-
tonian formulation, are expressed in Minkowski space with coordinates (t, x) and
metric ηµν = diag(−1, 1). Since the CFTs are 2D it is preferable to use complex coor-
dinates, where all conformal coordinate changes are given by analytic functions. The
first step is to go to imaginary time, τ = it, so that we have coordinates (τ, x) and the
geometry becomes Euclidean by the standard coordinate change η′αβ = ∂xµ

∂x′α
∂xν

∂x′β
ηµν ,

i.e. the new metric becomes diag(1, 1). In the second step we are going to light-cone
coordinates, which in Minkowski geometry is given by the usual t = ±x but now in
Euclidean space implying that τ = ±ix. We can then make the coordinate change
to

ω = τ + ix and ω = τ − ix. (3.5)

For now ω and ω̄ are dependent, with τ and x being independent variables. However,
by an analytic continuation ω and ω̄ will bee taken as two independent complex
variables. This is a standard trick in CFT, to be discussed further in section 2.3.
With these coordinate changes and recalling that the stress-energy tensor is a tensor
with transformation rule,

T ′αβ(x′) = ∂xµ

∂x′α
∂xν

∂x′β
Tµν(x), (3.6)

we can write down how the components of the stress-energy tensor are related in
the different coordinate systems. The first transformation is (t, x) 7→ (τ = it, x) and
the second is (τ, x) 7→ (ω = τ + ix, ω̄ = τ − ix), where we need the inverse map to
perform the transformation in eq. (3.6). We should remark that the last equality
is an equality only as long as ω̄ = ω∗, that is the before analytic continuation. We
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3. Sine-square deformation

thus obtain
[
Ttt Ttx
Ttx Txx

]
︸ ︷︷ ︸

Minkowski

=


Tττ︷ ︸︸ ︷
−Ttt

Tτx︷ ︸︸ ︷
−iTtx

−iTtx︸ ︷︷ ︸
Tτx

Txx︸︷︷︸
Txx


︸ ︷︷ ︸

Euclidian

= 1
4


4Tωω︷ ︸︸ ︷

−Ttt − 2Ttx − Txx
4Tωω︷ ︸︸ ︷

−Ttt + Txx
−Ttt + Txx︸ ︷︷ ︸

4Tωω

−Ttt + 2Ttx − Txx︸ ︷︷ ︸
4Tωω


︸ ︷︷ ︸

Euclidian light-cone

. (3.7)

Note that the stress-energy tensor is symmetric, which is why no distinction is done
between Ttx and Txt. Furthermore, since we work with a CFT theory we also know
that the tensor is traceless, gµνTµν = 0, with the metric gµν defined in the different
geometries.
So now to the most important part and that is how to write the time-time component
of the stress energy tensor in complex coordinates. We already know that Tω̄ω =
Tωω̄ = 0 given that gµνTµν = −Ttt + Txx = 0, implying that

Tωω + Tω̄ω̄ = 1
4(−Ttt − 2Ttx − Txx − Ttt + 2Ttx − Txx + 2 (−Ttt + Txx)︸ ︷︷ ︸

Tµµ=0

)

= −Ttt.
(3.8)

Now we will investigate the arguments of the components of the stress-energy tensor
in the different coordinate systems, which we so far have been hiding. First, we could
play with the assumption of T as just a two-tensor (we really know that we have
time invariance for the stress-energy tensor) then we would write eq. (3.8) as

Ttt(x, t) = −(Tωω(ω, ω̄) + Tω̄ω̄(ω, ω̄)). (3.9)
But from the equations of motion, eq. (2.48), it follows that Tωω and Tω̄ω̄ are holomor-
phic and anti-holomorphic respectively, i.e. we have Tωω = Tωω(ω) and Tω̄ω̄ = Tω̄ω̄(ω̄)
[35]. Furthermore, as said the stress-energy tensor is time invariant and we have
time dependence in ω and ω̄, seen by ω = τ + ix and ω̄ = τ − ix where τ = it. Using
these two facts we then know that eq. (3.9) really is:

Ttt(x) = −(Tωω(ix) + Tω̄ω̄(−ix)). (3.10)

Before we can write the Hamiltonians in eqs. (3.1) and (3.2) in complex variables
we must see what happens with the sine-squared function in eq. (3.2) under these
coordinate changes. This is easiest done by writing the sine function in terms of
exponentials:

2 sin2
(
πx

L

)
= 2

(
ei
πx
L − e−iπxL

2i

)2

= 1− 1
2
(
e
i2πx
L + e

−i2πx
L

)
. (3.11)

We can easily combine this with the stress energy components in eq. (3.10) giving

2 sin2(πx
L

)Ttt(x) = Tωω(ix)− 1
2
(
e

2πix
L + e−

2πix
L

)
Tωω(ix)

+ Tω̄ω̄(−ix)− 1
2
(
e

2πix
L + e−

2πix
L

)
Tω̄ω̄(−ix)

= Tωω(ω)− 1
2
(
e

2πω
L + e−

2πω
L

)
Tωω(ω)

+ Tω̄ω̄(ω̄)− 1
2
(
e

2πω̄
L + e−

2πω̄
L

)
Tω̄ω̄(ω̄),

(3.12)
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3. Sine-square deformation

where we by abuse of notation have made the definition ω = ix and ω̄ = −ix. We
could have used any other character but we use ω and ω̄ to remember that we work in
the coordinate system given by the same variable name. We can now easily perform
one standard CFT technique on eq. (3.12) which is that of analytic continuation, for
further discussion see section 2.3. That is, now we make ω and ω̄ two independent
complex variables, up to now they have been each other complex conjugates.

We will from now on only do conformal transformations which by definition only
scales the metric so there will be no more mixing of entries in the stress-energy
tensor. To lighten up the notation we make the definitions

Tωω(ω) := − 1
2πT (ω) and Tω̄ω̄(ω̄) := − 1

2π T̄ (ω̄). (3.13)

We should note that the minus sign and factor of 2π differ in the literature, and
we have here used the same convention as in the standard text by Di Francesco et
al. [31]. For future convenience we should note that using the notation where we
do not write out indices on the stress-energy tensor T only is conventional when we
work with coordinate systems described by two complex directions. Thus when we
go back to describe the energy density in Minkowski space we again will use the
convention of writing out the indices.

We can now write down the Hamiltonians H0 and H1 in the complex strip geometry,
we have dω = i dx and dω̄ = −i dx from before the analytic continuation when we
had ω = τ + ix and ω̄ = τ − ix. By abuse of notation we will write out starting and
endpoints of the integration instead of defining a curve in the complex plane, since
we know that it practically is a one dimensional integral (T only being position
dependent). From the definitions of the Hamiltonians H0 and H1 in eqs. (3.1)
and (3.2) respectively and using eq. (3.12) for H1 and remembering the definition
in eq. (3.13) we obtain

H0 =
∫ L

0

dω
2πiT (ω)−

∫ −L
0

dω̄
2πiT (ω), (3.14)

and
H1 = H0 −

1
2 (H+ +H−) , (3.15)

with
H± =

∫ L

0

dx
2πie

± 2π
L
ω T (ω)−

∫ −L
0

dω̄
2πie

∓ 2π
L
ω̄ T̄ (ω̄). (3.16)

The last ingredient to understand the setup is how to time-evolve the system. For
this, we solve the time-dependent Schrödinger equation

H(t) |ψ(t)〉 = i∂t |ψ(t)〉 , H(t) =

H1 0 < t mod T < T1

H0 T1 < t mod T < T0 + T1
. (3.17)

Since the Hamiltonian is time dependent we need to be careful when writing down
a solution, and use time ordering operator, TOO:

|ψ(t)〉 = TOOe−i
∫ t

0 H(t′)dt′ |ψ(0)〉 , (3.18)
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3. Sine-square deformation

where |ψ(0)〉 = |GH0〉, since this is the state that we prepared the system in. The
unitary time-evolution operator can be written in a much simpler way if we only
consider stroboscopic time evolution. Let us first consider only one period. Writing
out the first terms in the formal expansion of the exponential and then using the
time-ordering operator, we obtain

TOOe−i
∫ T

0 H(t′)dt′ = TOOe−iH1T1−iH0T0

= TOO
(

1 + (−iH1T1 − iH0T0) + 1
2!(−iH1T1 − iH0T0)2 + ...

)
= 1 +−iH1T1 − iH0T0

+ 1
2!(−i)

2
(
(H1T1)2 + 2T0T1H0H1 + (H0T0)2

)
+ ...

=
(

1− iH0T0 + (−i)2

2! (H0T0)2 + ...

)

×
(

1− iH1T1 + (−i)2

2! (H1T1)2 + ...

)
= e−iH0T0e−iH1T1 .

(3.19)

Here we have used that TOO(H0H1 + H1H0) = 2H0H1 since when time ordering
the product we know that H1 is the Hamiltonian in the interval 0 < t < T1 and H0
in the interval T1 < t < T1 + T0, which is also the reason for the order of the two
exponentials. If we would do this for several periods, the same procedure gives

TOO exp
{
−i
∫ nT

0
H(t′) dt′

}
= e−iH0T0e−iH1T1e−iH0T0e−iH1T1 ...e−iH0T0e−iH1T1

=
(
e−iH0T0e−iH1T1

)n
.

(3.20)

When we work with the complex coordinate, ω, we have made a Wick rotation to
imaginary time τ = it. In this coordinate the stroboscopic time evolution operator
after nT is (

e−H0τ0e−H1τ1
)n
, (3.21)

where we have the imaginary time intervals τ0 = iT0 and τ1 = iT1, and n is the
number of periods, and T = iT . Furthermore the Hamiltonians H0 and H1 are
given by eqs. (3.14) and (3.15) respectively in the strip geometry, denoted with
(ω, ω̄) coordinates.

3.2 Stroboscopic time evolution as a Möbius trans-
formation

The task in this section is for us to understand how we can calculate the stroboscopic
time evolution of the expectation value for any operator O(ω, ω) after n periods of
the drive, that is,

〈ψ(nT )|O(ω, ω̄)|ψ(nT )〉=〈GH0|
(
eH1τ1eH0τ0

)n
O(ω, ω̄)

(
e−H0τ1e−H0τ1

)n
|GH0〉 ,(3.22)
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where ψ(nT ) is the time-evolved ground state |GH0〉 after n periods of T = τ1 + τ0
imaginary time. We will carry out this analysis in Heisenberg picture as indicated
by sandwiching the operator by the time evolution operator instead of having the
time dependence in the state. The derivation in this section will show that the
time evolution of an operator can be described as a conformal transformation, more
precisely a Möbius transformation.

We will show this in essentially three steps. First how the Hamiltonians H0 and
H1 for the chosen CFT and its deformation, eqs. (3.14) and (3.15), are written in
the complex plane geometry, with coordinate z, instead of the strip geometry, with
coordinate ω. Second, we will show how the stroboscopic time evolution can be
represented by a contour integration in the complex plane within an arbitrary close
neighborhood to the operator. Third and last we will show how the Hamiltoni-
ans are nothing else than Virasoro generators, which are generators of conformal
transformations. Given this we will also be able to identify the explicit Möbius
transformation.

3.2.1 The Hamiltonians in complex plane coordinates
The starting point here is the Hamiltonians given by eq. (3.14) and eq. (3.15) for the
chosen (arbitrary) CFT and its deformation respectively, given in the strip geometry
where we already have imaginary time, that is, complex coordinates ω and ω̄. Now
we want to do the transformation to the whole complex plane,

ω 7→ z = e
2π
L
ω, ω 7→ z = e

2π
L
ω. (3.23)

This is illustrated in fig. 3.2 where we note that equal time points are represented
by horizontal lines in the strip geometry and by circles in the complex plane. We
should here remember that T = τ0 + τ1 defines the period of the drive.

The transformation of the Hamiltonians exploits standard techniques, including a
Jacobian and a change of integration path, that is, the integration along a horizontal
line in the strip geometry becomes an integration around a circle in the complex
plane. In addition, we must judiciously carry out the transformation of the stress-
energy tensor. The transformation ω 7→ z in eq. (3.23) is a conformal transformation
as follows from the fact that it is analytical. This is obvious since the exponent
function has a Taylor series expansion in a neighborhood of each point where it
is defined, in fact the neighborhood may be taken to be the whole complex plane.
All analytic functions are holomorphic, and since we have no ω dependence in the
transformation z → ω it is conformal. We can then use our knowledge of how the
stress-energy tensor transforms under conformal transformations (cf. our discussion
in section 2.4)

T (ω) = (z′)2
T (z) + c

12{z, ω}Sc

= (z′)2
T (z) + c

12

z′′′
z′
− 3

2

(
z′′

z′

)2


=
(2π
L

)2
z2T (z)− 1

2

(2π
L

)2 c

12 ,

(3.24)
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ω=τ+ix
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Re z
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z=e
2π/L ω
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Figure 3.2: Schematic plot of how to go from the strip geometry to the complex-
plane with a branch cut, using the mapping ω 7→ z = e

2π
L
ω. The branch cut originates

from the two boundaries at x = 0 and x = L being mapped onto the real positive
axis. We start the driving at time τ = 0 by switching on H1 at the red bottom
solid line (innermost red circle) until τ = τ1 at the dotted blue line (innermost blue
dotted circle) where the Hamiltonian H(t) is switched to H0. H(t) is then switched
back to H1 after a time τ0 with this process being repeated periodically.

with z′ = ∂z
∂ω
. Here the Schwarzian derivative, {z, ω}Sc = z′′′

z′
− 3

2

(
z′′

z′

)2
reduces to(

2π
L

)2
using that z′ = 2π

L
z. The anti-holomorphic part gives the analogous expression

T (ω) =
(2π
L

)2
z2T (z)− 1

2

(2π
L

)2 c

12 . (3.25)

Now when we know what happens to the stress-energy tensor we need only two
small standard ingredients, the Jacobian and change in integration path, to be
able to perform the coordinate transformation of the integral formulations of the
Hamiltonians, H0 and H1 given in eqs. (3.14) and (3.15) respectively. First, we
write down the Jacobian, seen directly from eq. (3.23):

dω = L

2π
1
z

dz , dω̄ = L

2π
1
z̄

dz̄ . (3.26)

Moreover, we can also easily read of the path for z and z from the two lines from
0 to L and 0 to −L in the strip geometry, thus obtaining two circles, Cz and Cz,
with different radii, when taking z and z̄ to be independent. However, on the
physical plane where z̄ = z∗, the radii are the same, but still with Cz oriented
counterclockwise while Cz̄ runs clockwise; cf. fig. 3.3.
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Im z

Re z

C
z

Im z

Re z

C
z

Figure 3.3: Integration paths in the complex plane after the change of coordinate
system from the strip geometry to the complex-plane. Note that the integration
direction is opposite for z and z. The two radii are the same when considering the
physical plane where z̄ = z∗ but may otherwise be different.

Now we are ready to write down H0 in the complex plane,

H0 =
∫
C	
z

dz
2πi

L

2π
1
z

(2π
L

)2 (
z2T (z)− 1

2
c

12

)
− (z → z)

= 2π
L

∫
C	
z

dz
2πizT (z)− (z → z)− 2π

L

c

12 .
(3.27)

To obtain the second line in eq. (3.27) we performed the contour integral over 1/z and
1/z by going back to do the integration over x instead, in this way avoiding the prob-
lem with the branch cut in the complex plane. Then we have dz=2πi

L
exp

{
2π
L

(τ+ix)
}
dx

and dz = −2πi
L

exp
{

2π
L

(τ − ix)
}

dx as implied by eqs. (3.5) and (3.26). It follows
that ∫

C	
z

dz
2πi

1
z

=
∫ L

0

dx
L

= 1, (3.28)

and ∫
C�
z

dz
2πi

1
z

= −
∫ L

0

dx
L

= −1. (3.29)

The last thing we need for a full description of both Hamiltonians in the complex
plane are expressions for H± (cf. eq. (3.15)). In fact we essentially know everything
since e± 2π

L
ω = z±1 (and e∓ 2π

L
ω = z∓1) and the rest of the analysis is the same as for

H0. Thus,

H± =
∫ L

0

dω
2π e

± 2π
L
ω T (ω)− (ω → ω̄)

= 2π
L

∫
C	
z

dz
2πi

(
z1±1T (z)− z1±1 1

2
c

12

)
− (z → z)

= 2π
L

∫
C	
z

dz
2πiz

1±1T (z)− (z → z).

(3.30)
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3. Sine-square deformation

In the last line we perform the integrals over z0 (z̄0) and z2 (z2) all of which give
zero contribution. Again we have to deal with the branch cut. We again do this by
going back to the x-integral via eqs. (3.5) and (3.26),∫

C	
z

dz
2πi = e

2π
L
τ

L

∫ L

0
dx e 2π

L
ix = 0, (3.31)

∫
C	
z

dz
2πi

1
z2 = e−

2π
L
τ

L

∫ L

0
dx e− 2π

L
ix = 0. (3.32)

The only difference doing this for the z2 integral is that we pick up an overall minus
sign from the Jacobian, as in the calculation for H0 in eq. (3.29), thus making the
corresponding integrals vanish. With this, we can now write down H1, using the
formula in eq. (3.15),

H1 = H0 −
1
2 (H+ +H−)

= 2π
L

∫
C	
z

dz
2πi

1
2
(
−1 + 2z − z2

)
T (z)− (z → z)− 2π

L

c

12 .
(3.33)

3.2.2 Time evolution as a contour integral in a neighbor-
hood of the field

In this section we shall explain why – within the region of stroboscopic time evolution
of an operator – it does not matter that we have a branch cut in the complex plane.
This will be done by expanding the time-evolved expression using the Campbell-
Baker-Hausdorff formula and showing that each commutator effectively acts as a
contour integral in a neighborhood of the operator.

We have the stroboscopic time evolution of an operator(
eH1τ1eH0τ0

)n
O(z, z)

(
e−H0τ0e−H1τ1

)n
, (3.34)

which we expand by using the Campbell-Baker-Hausdorff formula

eABe−A = B + [A,B] + 1
2! [A, [A,B]] + 1

3! [A, [A, [A,B]]] + ..., (3.35)

where A and B are two arbitrary operators. We can apply this identity twice, with
the time evolution operator acting on an operator, O, as follows (here writing out
the expression explicitly for one period),

eH1τ1eH0τ0O(z, z)e−H0τ0e−H1τ1

= eH1τ1

(
O + τ0[H0,O] + τ 2

0
2! [H0, [H0,O]] + ...

)
e−H1τ1

= O + τ1[H1,O] + τ 2
1

2! [H1, [H1,O]] + ...

+ τ0[H0,O] + τ1τ0[H1, [H0,O]] + ...

+ τ 2
0

2! [H0, [H0,O]] + ...

+ ....

(3.36)
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3. Sine-square deformation

What we should take with us from eq. (3.36) is that all commutator terms con-
tain a commutator between a position-dependent operator, O(z, z), and a position
independent operator, H0 or H1. Then, for higher-order terms, this commutator,
which itself is a position-dependent operator, is commuted with H0 or H1, and so
on. From this we can understand that we need only to show that [H0,O] and [H1,O]
are independent of the branch cut: all higher-order terms then follow by the same
logic since we then have a new operator say O′(z, z̄) = [H0,O(z, z̄)] (or [H1,O(z, z̄)]
depending on which commutator we have). It is obvious that this is true for any
number of periods since the only thing that happens is that we have more mixtures
between H0 and H1 in the higher-order commutators.

Let us focus on the easiest case, [H0,O]. To prepare for the analysis, we first rewrite
H0 as

H0 =
∫
C	
z

dz
2πzT (z)−

∫
C�
z̄

dz̄
2π z̄T̄ (z̄) =

∫
C	
z

dz
2πzT (z) +

∫
C	
z̄

dz̄
2π z̄T̄ (z̄)

!=
∫
C	
z

dz
2πz

(
T (z) + T (z)

)
.

(3.37)

The second equality simply embodies a change of sign when changing integration
direction, �→	. What we should notice is the last equality, embellished with an
exclamation mark because this equality is true only if we consider the physical two-
dimensional surface, z = z∗, in the four dimensional space (z, z) ∈ C2. When z = z∗

we instantly know that the two integration paths are the same: circles with the same
radii r = |z| = |z∗|. We can also see the exclamation mark as a reminder that it is
unconventional to have an expression like T (z) and in fact not even true outside of
this context: On the physical plane we would have T (z∗), a remark only to stress
the crucial fact that we are here dealing with an integration path. The rewriting
of H0 as in eq. (3.37) (and, analogously, of H1) will be necessary at a later stage
when we need to add integrals with integrands of the form (T + T ); we have done
it already so as to make the calculations easier to follow notation-wise.

We can now go ahead with the analysis of the commutator [H0,O], with O an
arbitrary operator. First, as usual they are equal-time commutators, which means
we are at the same distance from the origin in the complex plane. In order to evaluate
this commutator we will instead of having an integration which intersects the point
where the operator is defined, O(z, z), have circles with radii infinitesimally displaced
from (z, z̄), as seen in fig. 3.4a. The operator is at a distance r = |z| = |z∗| = |z| since
we are working with the physical plane z = z∗. Hence, the circles corresponding
to the two shifted integration paths are infinitesimally close, with radii r± = r ± ε.
From time ordering, which now is radial ordering, the path outside of r have the
order TO (with T the stress-energy tensor), and vice versa for the smaller circle.
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3. Sine-square deformation

We thus obtain

[H0,O(z, z)] =
[∫

C	
r

dz′
2π z

′
(
T (z′) + T (z′)

)
,O
]

=
∫
C	
r+

dz′
2π z

′
(
T (z′)+T (z′)

)
O−

∫
C	
r−

dz′
2π z

′O
(
T (z′)+T (z′)

)
=
∫
C	
r+

dz′
2π z

′
(
T (z′)+T (z′)

)
O+

∫
C�
r−

dz
2πz

′O
(
T (z′)+T (z′)

)
.

(3.38)

The last equality can be visualised as in fig. 3.4a where it is also evident that the
integration paths are not closed. This is why in fig. 3.4b we have added horizontal
lines just above and below the real axis to get a closed integration path.

Before we write down the expression that confirms that we can add the two ”hor-
izontal” path integrals we need to introduce the radial ordering operator, that is
time ordering which is radial in the complex plane coordinates. Let z and z′ be
two different points in the complex plane. Then the radial ordering operator, R, is
defined by

RO1(z)O2(w) =

O1(z)O2(w) if |z| > |w|
O2(w)O1(z) if |z| < |w|

. (3.39)

We will now show that we can add the two horizontal lines as done in fig. 3.4b to
no cost, since the integrals along these two lines cancel each other. We write

∫ r++iδ

r−+iδ

dz′
2π z

′R
(
T (z′) + T (z′)

)
O +

∫ r−−iδ

r+−iδ

dz′
2π z

′RO
(
T (z′) + T (z′)

)
=
∫ r++iδ

r−+iδ

dz′
2π z

′RT (z′)O +
∫ r−−iδ

r+−iδ

dz′
2π z

′RO T (z′)︸ ︷︷ ︸
=0

+
∫ r++iδ

r−+iδ

dz′
2π z

′RT (z′)O +
∫ r−−iδ

r+−iδ

dz′
2π z

′RO T (z′)︸ ︷︷ ︸
=0

.

(3.40)

In the second and third lines we have taken one ”T” and one ”T” term from each
integral in the first line and paired them together. These pairs of integrals cancel each
other, since from the open boundary condition in the strip geometry T (z) = T (z)
just above and below the real axis. Thus, the integrands are identical but with the
integrations carried out in opposite directions.

Now there is only one more thing to do before we can conclude that [H0,O] is
unaffected by the branch cut and that is to perform a standard complex-analysis
deformation of the integration curve, which is allowed as long as the integral is
closed and we don’t move past any poles (cf. fig. 3.4c). One remark that we would
like to do is that the integrands may have the energy-tensor and the operator O in
different orders, but implicitly there are always a radial operator that fixes the order
also when the integration path is not a circle centered at the origin.
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Figure 3.4: Sequence of figures which shows the steps in the argument that the
commutators [H0,O] and [H1,O] are nothing but contour integrals of H0 and H1
integrands around the operator O. Figure (a) depicts how the commutator is cal-
culated, where we formally let ε → 0. In figure (b) we have added two integrals
along the horizontal lines above and below the branch cut who cancel each other.
In the last figure (c) we used that the absence of poles inside the enclosed area of
the integration path allows us to deform the path. Thus we arrive at an integral in
the neighborhood of the operator O.

3.2.3 Hamiltonians as Virasoro generators
In this section we will use the fact that the time evolution is independent of the
branch cut, which is what will let us rewrite the Hamiltonians in terms of generators
of the Virasoro algebra. Then can we use all the knowledge and theory of the
Virasoro algebra to write down a closed expression for the conformal transformation
that emulate the time evolution.

What we gained from the previous discussion of how the stroboscopic time evolution
is unaffected by the branch cut may technically seem rather small but the implica-
tions are quite powerful. As follows from the previous discussion, the Hamiltonians
restricted to be part of the time evolution of an operator, O(z, z̄), may be written
as

H0 = 2π
L

∮
z

dz′
2πiz

′T (z′) + (z′ → z′)− cπ

6L, (3.41)

H1 = 2π
L

∮
z

dz′
2πi

1
2(−1

2 + z′ − z′2

2 )T (z′) + (z′ → z′)− cπ

6L. (3.42)

The important difference from eqs. (3.27) and (3.33) is that we now have a closed
integration path around the point z (z) for the holomorphic (anti-holomorphic) part.
This is what makes it possible to use the theory in section 2.4 where eqs. (2.58)
and (3.42) shows how the generators of the Virasoro algebra are connected to the
stress-energy tensor. Combining eqs. (2.58), (3.41) and (3.42), we can write the
Hamiltonians as:

H0 = 2π
L

(
L0 + L̄0

)
, (3.43)

H1 = 2π
L

(
L0 −

1
2 (L−1 + L1) + L̄0 −

1
2
(
L̄−1 + L̄1

))
. (3.44)
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It follows that stroboscopic time evolution is the same as acting with exponentiated
Virasoro generators, with the CBH commutator expansion (eq. (3.36)) as a basis
when making the action of the generators explicit. Since we now know that the
stroboscopic time evolution of a field is a conformal transformation of the field, we
know that what we seek is a conformal coordinate change, z → z1 (with z1 the
new coordinate after one time period). For example, if we time-evolve a primary
operator one period we get

eτ1H1eτ0H0O(z, z)e−τ0H0e−τ1H1 =
(
∂z1

∂z

)h (
∂z

∂z

)h
O(z1, z1). (3.45)

For any other operator such as the quasi-primary stress-energy tensor we would get
a similar but slightly more messy expression. On the left hand side of eq. (3.45)
is the expression for a conformal transformation on the operator, i.e. the Virasoro
generators Ln and L̄n which acts on the complex Hilbert space where the operators
live. However, eq. (3.45) also shows how this transformation on the Hilbert space
relate to a conformal coordinate transformation z → z1, z̄ → z̄1, i.e. a transfor-
mation generated by Witt generators ln and l̄n which acts on the coordinate space
described by C. The relation between the Virasoro generators on the left-hand side
in eq. (3.45), hidden in the Hamiltonians H0 and H1, and the Witt generators giv-
ing the coordinate change on the right-hand side is simple: We have Ln → ln and
L̄n → l̄n, discussed further in section 2.5. This allows for a simple representation of
the Witt generators,

ln = −zn+1∂z. (3.46)

In particular, l0 acts as dilation,

e−al0z =
( ∞∑
n=0

(az∂z)n
n!

)
z = eaz, (3.47)

which is seen directly if one writes out the first terms in the sum and letting the
derivatives act and then factorizes out z and identifies the Taylor expansion of ea.
This is what we will use, together with a trick of going to a coordinate system in
which H1 is described entirely in terms of l0.

The coordinate transformation associated with one period of the drive is given by

e−
2πτ0
L

l0e−
2πτ1
L (l0− 1

2 (l−1+l1))z. (3.48)

We will now apply the trick to write z as a function of another coordinate χ in which
the Hamiltonian H1 is described only by the L0 Virasoro generator and possibly
constant terms. Taking off from the holomorphic part of eq. (3.42) and imposing a
conformal transformation z → ξ, whose explicit expression is to be found, we obtain

H1 = 2π
L

∮ dχ
2πi

(
∂χ

∂z

)−1 (
−1

2 +z− z
2

2

)(∂χ
∂z

)2

T (χ)+ c

12{χ, z}Sc

− cπ6L. (3.49)
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The two terms without the stress-energy tensor T will have no effect on the trans-
formation since they are c-numbers. (Formally, we can see this from the CBH-
expansion, eq. (3.36), that these terms commute with O, thus giving zero contribu-
tion.) The equation that results from eq. (3.49), with H1 a dilation, is immediately
identified as

χ =
(
∂χ

∂z

)−1 (
−1

2 + z − z2

2

)
︸ ︷︷ ︸

− 1
2 (z−1)2

(
∂χ

∂z

)2

. (3.50)

Equation (3.50) is easily rewritten as an integral equation,∫ dχ
χ

= −2
∫ dz

(z − 1)2 , (3.51)

giving
1
2 lnχ = 1

z − 1 + constant. (3.52)

Let us now verify that eq. (3.52) defines a conformal transformation. Rewriting it
as

z 7→ χ(z) = e
2
z−1 +constant, (3.53)

we see that it is holomorphic (and by that also conformal; cf. our discussion after
eq. (3.23)) on the punctured complex plane with z = 1 removed (corresponding to
Euclidean time τ = 0), where eq. (3.53) has a Taylor expansion. Thus, except at
the origin (corresponding to z = 1) we have H1 explicitly in χ-coordinates as

H1 = 2π
L

∮ dχ
2πiχT (χ) + (χ→ χ)− cπ

6L. (3.54)

The important thing to note is that we indeed have H1 expressed as an L0 operator,
seen by the equation for Virasoro generators given in eq. (2.58), plus a c-number.

We are now ready to find the full coordinate transformation z 7→ z1, implemented
by Witt generators lz0 (representing H0) and lχ0 (representing H1), where the super-
index z and χ indicate on which coordinate system they act as dilations. That is, the
time evolution eτ1H1eτ0H0Oe−τ0H0e−τ1H1 of the operator O corresponds to the trans-
formation of O under the conformal coordinate transformation e−

2πτ0
L

lz0e−
2πτ1
L

lχ0 z. For
clarity, let us perform the transformation in painstaking detail, accounting for each
single step:

e−
2πτ0
L

lz0e−
2πτ1
L

lχ0 z
(3.52)= e−

2πτ0
L

lz0e−
2πτ1
L

lχ0

(
1+ 1

1
2 lnχ

)
=e−

2πτ0
L

lz0

1+ 1
1
2 ln e−

2πτ1
L

lχ0χ


(3.47)= e−

2πτ0
L

lz0

(
1+ 1

πτ1
L

+ 1
2 lnχ

)
(3.52)= e−

2πτ0
L

lz0

(
1+ 1

πτ1
L

+ 1
z−1

)

=e−
2πτ0
L

lz0


(
1+ πτ1

L

)
z− πτ1

L

πτ1
L
z+

(
1− πτ1

L

)
=

(
1+ πτ1

L

)
e−

2πτ0
L

lz0z− πτ1
L

πτ1
L
e−

2πτ0
L

lz0z+
(
1− πτ1

L

)
(3.47)=

(
1 + πτ1

L

)
e

2πτ0
L z − πτ1

L

πτ1
L
e

2πτ0
L z +

(
1− πτ1

L

) =
(1 + πτ1

L
)e

πτ0
L − πτ1

L
e−

πτ0
L

πτ1
L
e
πτ0
L z + (1− πτ1

L
)e−

πτ0
L

.

(3.55)
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The last expression in eq. (3.55) manifest the Möbius form of the transformation
(cf. the definition given in eq. (2.70)) as it must, since any transformation generated
by {l−1, l0, l1} on the complex plane is a Möbius transformation. We also know that
all Möbius transformations form a group, SL(2,C), and from this information we
know that by acting many times with the above transformation, corresponding to a
stroboscopic time evolution over several periods the resulting transformation is also
a new Möbius transformation but with other coefficients.

In the process of finding the Möbius transformation for many periods we will need
to ”hide” some of the information in the coefficients in order to make it less messy.
If we define f and its coefficients a, b, c and d by

z1 = f(z) = az + b

cz + d
=

(1 + πτ1
L

)e
πτ0
L − πτ1

L
e−

πτ0
L

πτ1
L
e
πτ0
L z + (1− πτ1

L
)e−

πτ0
L

, (3.56)

and write the coordinates after several periods as

zn = fn(z) = f(f(...f(z)...)) = Az +B

Cz +D
, (3.57)

then the task is to find the coefficients A, B, C and D in terms of a, b, c, d and n,
with n the number of periods. We know from the general Möbius theory, section 2.6,
that any Möbius transformation T (z) with two distinct fixed points, repeated n times
T (T (...T (z))) = T n(z), can be written as

T n(z)− γ1

T n(z)− γ2
= η

z − γ1

z − γ2
, (3.58)

where γ1,2 are the fixed points and η ∈ C a scaling and rotation. In the case of only
one fixed point we instead have the equation

1
T n(z)− γ = 1

z − γ
+ nβ, (3.59)

where γ is the fixed point, with multiplicity two, and β is a complex number. The
two expressions eqs. (3.58) and (3.59) are derived above in section 2.6.

Now it is easy to get equations for zn, simply by replacing T (z) with zn in eq. (3.59)
and eq. (3.58) for one (two) fixed point(s) respectively:

1
zn − γ

= 1
z − γ

+ nβ, (3.60)

zn − γ1

zn − γ2
= ηn

z − γ1

z − γ2
. (3.61)

We can see that both these expressions, eqs. (3.60) and (3.61), are first order in zn
and thus will give an expression for zn which can be written on the usual Möbius
form since it is built out of a number of successive Möbius transformations. From
some tedious but straightforward algebra we can write a formula for zn from only
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algebraic manipulations of eqs. (3.60) and (3.61) to get closed expressions for zn, for
one fixed point

zn = (1 + nβγ)z − nβγ2

nβz + (1− nβγ) = Az +B

Cz +D
, (3.62)

and for two fixed points

zn = (γ1 − ηnγ2)z − (1− ηn)γ1γ2

(1− ηn)z − (γ2 − ηnγ1) = Az +B

Cz +D
. (3.63)

To obtain A, B, C and D in terms of the coefficients a, b, c and d for a single period
we need the relation between a Möbius transformation and its fixed points, γ1,2 (two
fixed points), γ (one fixed point), and the scaling and rotation η. We get the fixed
points by solving

f(γ) = aγ + b

cγ + d
= γ, (3.64)

which is a second-order equation with either one or two distinct solutions. In the
case of two distinct fixed points we need to use eq. (3.58) and we find η by solving

f(z)− γ1

f(z)− γ2
= η

z − γ1

z − γ2
. (3.65)

Similarly, if we have only one fixed point we need to find β, that is, solving

1
f(z)− γ = 1

z − γ
+ β. (3.66)

Solving these three equations, eqs. (3.64) - (3.66), yields

γ1,2 =
a− d∓

√
(a− d)2 + 4bc
2c , (3.67)

η = cγ2 + d

cγ1 + d
, (3.68)

γ = a− d
2c , (3.69)

β = a+ d

2c , (3.70)

where a, b, c and d are given by eq. (3.56). As for the expressions for η and β we can
use ad− bc = 1 and the expressions for the fixed points to rewrite them, if desired
(where, in the case of only one fixed point, we can also use (a− d)2 + 4bc = 0).1

1β differ from the work by Fan et al. in Ref. [2] where they write β = c. However this does not
effect any qualitatively statements, only a minor change in the energy density plot, see fig. 3.5.
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3.3 Energy distribution
Calculating the energy in the system amounts to calculating the expectation value
of the time-time component of the stress-energy tensor. After some rather technical
calculations in section 3.2, necessary to obtain a closed form for the Möbius trans-
formation which corresponds to stroboscopic time evolution over several periods, we
can now take on this task.
The expectation value to be calculated is given by
〈ψ(nT )|Ttt(x) |ψ(nT )〉 = 〈GH0| eiH1T1eiH0T0Ttt(x)e−iH0T0e−iH1T1 |GH0〉 . (3.71)

We will start from this expression of the energy density written in Minkowski space.
This expression of the energy density, eq. (3.71), will be transformed in subsec-
tion 3.3.2 by the transformations discussed in sections 3.1 and 3.2 all the way to the
final Möbius transformation, which emulates the stroboscopic time evolution.
The section is divided into three subsections. In the first we will calculate the ex-
pectation value of the stress-energy tensor in the complex-plane coordinates. We
will need the result of this calculation in the second subsection where we give the
expression for the energy density at stroboscopic snapshots and plot it against the
real space position. Finally, in the third subsection we discuss how we can under-
stand the energy behaviour in terms of the Möbius transformation that governs the
stroboscopic time evolution.

3.3.1 Expectation value for stress-energy tensor
The starting point here is the expectation value of the stress-energy tensor in com-
plex coordinates after n periods, as before having prepared the system in the ground
state of H0:

〈GH0 |T (zn) |GH0〉 . (3.72)
In section 3.1 we carried out a transformation from ω (strip geometry) to z (complex
plane), and then, in section 3.2, we followed up on this by a Möbius transformation
from z to zn, associated with the stroboscopic time evolution. In the next subsection
we shall study how these transformations play out for the expectation value in
eq. (3.71). But for now, and to prepare for this we need to go to the upper half
plane in order to take advantage of known results from CFT. We thus make the
transformation

zn → ξ = √zn. (3.73)
This is a conformal transformation, as can be seen from
√
z =

√
|z|eiarg(z)

= (x2 + y2)1/4
(

cos 1
2 arctan y

x
+ i sin 1

2 arctan y
x

)
= u(x, y) + iv(x, y),

(3.74)

where u(x, y) and v(x, y) fulfill the Cauchy-Riemann equations. Using that zn → ξ
is conformal, the expectation value, eq. (3.72), in the ξ-coordinate takes the form

〈GH0 |T (zn) |GH0〉 = 〈GH0|
(
∂ξ

∂zn

)2

T (ξ) + c

12{ξ, zn}Sc |GH0〉 . (3.75)
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3. Sine-square deformation

Let us first investigate 〈GH0|T (ξ) |GH0〉 (the multiplicative factor of ∂ξ
∂zn

is easy
to calculate but unimportant). First we should note that this expectation value
is ”horizontally” translation invariant due to no boundary, that is no boundary
condition, along the real axis. This means that the expectation value can only
depend on the distance from the real axis. Explicitly, if we let ξ = a+ ib and using
c as a horizontal translation, setting c = −a, a, b and c ∈ R:

〈GH0|T (a+ ib) |GH0〉 = 〈GH0 |T (a+ c+ ib) |GH0〉 ,
⇒ 〈GH0|T (a+ ib) |GH0〉 = 〈GH0 |T (ib) |GH0〉 .

(3.76)

We also know how T (ξ) behaves under a scale transformations (a special case of a
Möbius transformation with zero Schwarzian derivative {λz, z} = 0). It follows that

T (λξ) = 1
λ2T (ξ), λ ∈ C, (3.77)

with λξ in the upper half plane. In particular, we can choose λ = 1 − ia/b with
λib = a + ib and use the ”horizontal” translation invariance in eq. (3.76) together
with the scaling property in eq. (3.77) to obtain

〈GH0|T (ib) |GH0〉
(3.76)= 〈GH0|T (a+ ib) |GH0〉 = 〈GH0|T (iλb) |GH0〉
(3.77)= 1

λ2 〈GH0|T (ib) |GH0〉 ,
(3.78)

which is true only if 〈GH0 |T (ib) |GH0〉 = 0. Since this is true for any b, that is any
point along the imaginary axis, and we have translation invariance horizontally, we
get 〈GH0|T (ξ) |GH0〉 = 0 for all ξ in the upper half plane.

We have now shown that the expectation value, 〈GH0|T (zn) |GH0〉, only depends on
the Schwarzian derivative of the transformation zn 7→ ξ =

√
(zn) to the upper half

plane. Written out, the Schwarzian derivative in this case is given by

{ξ, zn}Sc = ξ′′′

ξ′
− 3

2

(
ξ′′

ξ′

)2

= 3
8

1
z2
n

.

(3.79)

3.3.2 Energy in the system
Now are we ready to calculate the energy in the system after n-periods of time, nT =
n(T1 + T0). We started in our setup with some CFT described by the Hamiltonian
H0, eq. (3.1), obtained from the time-time component Ttt of the stress-energy tensor
which describes the energy density of the system. We have Ttt = 1

2π (T (ω) + T̄ (ω̄)),
where we only discuss T (ω) since everything is analogous for T̄ (ω̄). When going
from ω (the strip geometry) to z (the whole complex plane geometry) we picked up
a constant term which we just throw away since as usual we are only interested in
energy differences. We thus write for the expectation value after n periods:

〈ψ(nT )|T (ω) |ψ(nT )〉 =
(
∂z

∂ω

)2

〈ψ(nT )|T (z) |ψ(nT )〉+
�
��

�
��(

L

2π

)2 c

12 . (3.80)
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3. Sine-square deformation

Using that a stroboscopic time evolution can be represented by a Möbius transfor-
mation, we can go to Heisenberg picture and write(

∂z

∂ω

)2

〈ψ(nT )|T (z) |ψ(nT )〉 =
(
∂z

∂ω

)2 (
∂zn
∂z

)2

〈GH0|T (zn) |GH0〉 . (3.81)

Here |GH0〉 is the initial state. Note that there is no contribution from the Schwarzian
derivative when doing a Möbius transformation.

The expectation value of 〈GH0|T (zn) |GH0〉 was calculated in the previous subsection
by going to the upper half plane by the transformation zn 7→ ξ = √zn. Here we
noticed that the expectation value in the ξ coordinate vanished, leaving us only with
the Schwarzian derivative {ξ, zn}Sc. This gives us(

∂z

∂ω

)2 (
∂zn
∂z

)2

〈GH0|T (zn) |GH0〉 =
(
∂z

∂ω

)2 (
∂zn
∂z

)2
c

12{ξ, zn}Sc. (3.82)

By using eqs. (3.23), (3.57) and (3.79) together with the expression for zn in terms
of z given in eq. (3.57) finally gives us the explicit formula for the energy density

〈ψ(nT )|Ttt(x) |ψ(nT )〉 = 1
2π

(2π
L
z
)2 ((AD −BC)

(Cz +D)2

)2
c

32
(Cz +D)2

(Az +B)2 + (z → z̄)

= πc

16L2
z2(AD −BC)2

(Cz +D)2(Az +B)2 + (z → z̄).

(3.83)

Here A, B, C and D are the coefficients in the Möbius transformation z 7→ zn given
in eq. (3.62) (eq. (3.63)) for one (two) fixed point(s).2 The number of fixed points
is dependent on the two driving parameters T1 and T0 who are also hidden in the
coefficients A, B, C and D together with the number of periods n, a relation that
we shall study in subsection 3.3.3.

The last step we need to do before we can analyse and plot the energy as a function
of the position in the one-dimensional system is to go back to the physical plane,
restricting the coordinates to satisfy z̄ = z∗ and then going back to Minkowski space,
letting τ0,1 7→ iT0,1. That is in, all coefficients A, B, C and D we will simply change
τ0,1 to iT0,1 implying that the coordinates will be given by

z = e
2πi
L

((T0+T1)+x), z̄ = e
2πi
L

((T0+T1)−x). (3.84)

Computing the expression for the energy density, eq. (3.83), putting in z (z̄) from
above eq. (3.84) and iT0,1 instead of τ0,1, we need to choose different expressions
for the coefficients in the Möbius transformation depending on whether we have
one fixed point or two. As a result, we obtain the three different plots shown in
fig. 3.5. The non-heating phase and the heating phase corresponding to when we

2Note a difference of the multiplicative factor 1
2π compared to the corresponding expression in

the work by Fan et al. [2], originating from our choice of convention in going from Tωω to T (ω).
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π 2 π
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(b) Critical
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(c) Heating

Figure 3.5: The different colors are the energy distribution in the system after
1, 2, 3 and 4 periods, T = T1 + T0. The length of the system was chosen to be
L = 2π and the central charge c = 1. (a) For the non-heating phase we have used
T0 = 0.5L and T1 = 0.1L. We here notice a spatially oscillating behavior for the
energy. (b) For the critical phase we have chosen T0 = 0.9L and T1 ≈ 0.06 but the
exact value used is given by solving eq. (3.96) with the given value for T0. We note a
slow (polynomial) growth with peaks that move toward x for increasing n such that
z(x) (z̄(x)) corresponds to γ (γ∗).3 (c) The heating phase here comes from using
T0 = 0.9L and T1 = 0.1L. We can see a more rapidly growing, exponential growth,
with peaks at x for which z(x) (z̄(x)) corresponds to the stable fixed point, γ2 (γ∗2).

have two fixed points in the Möbius transformation which emulates time evolution
and the critical phase when the same has only one fixed point. Furthermore, both
the heating and critical phase are seen to gain energy in the system with time, that
is, absorbing energy in corresponds to the general belief of Floquet systems where
the drive is giving the system energy as discussed in section 1.1 but interestingly in
the non-heating phase we have no absorption of energy. The characteristics of the
plots depend only on the driving parameters T0 and T1. In the subsection 3.3.3 we
will discuss how the Möbius transformation relates to the energy plots in fig. 3.5 and
we will see explicitly how to mathematically discriminate between the three phases.

3.3.3 Möbius transformation related to the energy spec-
trum

In this subsection we will analyse the energy distribution given in eq. (3.83) to un-
derstand how the Möbius transformation related to the stroboscopic time evolution
can describe the three different phases seen in fig. 3.5. First we will write down the
energy density once more, but now in terms of zn and z only, and focus on the part
containing zn since that is the only time-dependent part. Evaluating {ξ, zn} = 3

8
c
z2
n

in eq. (3.82) we obtain

〈ψ(nT )|Ttt(x) |ψ(nT )〉 = 1
2π

c

32

(
∂z

∂ω

)(
∂zn
∂z

)2 1
z2
n

+ (z → z̄), (3.85)

3The only difference compared to the corresponding figure in Fan et al. [2] is that the peaks
start to grow at different places before they move towards γ.
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3. Sine-square deformation

where again we will only investigate the holomorphic term since the anti-holomorphic
term follows in the same way. That is, we will investigate how zn and ∂zn

∂z
depend

on n, or more precisely how or if their absolute values grow with n.

First we will show that |zn| = 1, implying that all contributions to the different
energy absorption phases are given by the ∂zn

∂z
on the right hand side of eq. (3.85).

First recall that

zn(z) = fn(z) = f(f(...f(z)...)), f(z) = az + b

cz + d
. (3.86)

That is, if we can show that |f(z)| = 1 then it follows that |zn| = 1 since |fn(z)| =
|f(z)|n. The coefficients in the f(z) function are given in eq. (3.56), and reading off,
performing the analytic continuation which changes τ0,1 to iT0,1, we obtain

f(z) =
(1 + iπT1

L
)ei

πT0
L z − iπT1

L
e−i

πT0
L

iπT1
L
ei
πT0
L z + (1− iπT1

L
)e−i

πT0
L

= az + b

b∗z + a∗
, (3.87)

where the second equality is a simple but crucial result. Now we will make a straight-
forward calculation of the absolute value of this expression:

|f(z)|2 =
∣∣∣∣∣ az + b

b∗z + a∗

∣∣∣∣∣
2

= |a|
2|z|2 + |b|2 + ab∗z + a∗bz∗

|b|2|z|2 + |a|2 + ab∗z + a∗bz∗

= |a|
2 + |b|2 + ab∗z + a∗bz∗

|a|2 + |b|2 + ab∗z + a∗bz∗
= 1.

(3.88)

Note that in order to get to the last row we have used that |z| = 1, as seen from
z = exp

{
i2π
L

(T0 + T1 + x)
}
, again after analytic continuation.

Next we will investigate the derivative ∂zn
∂z

of the Möbius transformation which
governs the different energy absorption behaviours seen in fig. 3.5, as we discussed
in section 1.1 the general belief is that the drive makes the system absorb energy
while as we could see in the figure we have two phases where this is true but we
could also, interestingly, drive the system in such a way that it does not absorb any
energy but just oschilate. But we already know that zn as a function of z has two
different expressions, depending on whether there are one or two fixed points, which
in turn depends on the values of the driving parameters T0 and T1. Let us first
assume two fixed points. Using eq. (3.63) we then have

∂zn
∂z

= ∂

∂z

Az +B

Cz +D

= (γ1 − γ2)2ηn

((z − γ2) + (γ1 − z)ηn)2 =

ηn, z = γ1

η−n, z = γ2
.

(3.89)

From this expression we can see that if |η| < 1 (|η| > 1) then the expression in
eq. (3.89) grows exponentially, ∼ ηn, when x is such that z(x) is near γ2 (γ1).
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3. Sine-square deformation

Differently, for x such that z(x) is near γ1 (γ2), the expression decreases. The
discrimination of the driving parameter space, T0 and T1, that gives the two cases
seen in eq. (3.89) is visualized in fig. 3.6b.

This leads us to investigate how the parameter η depends on the driving parameters,
T0 and T1. We know that after analytic continuation we have d = a∗ and c = b∗,
that is a+ d = 2 Re{a}, a− d = 2i Im{a} and bc = |b|2. Hence

η = cγ2 + d

cγ1 + d

=
a−d

2 +
√

(a− d)2 + 4bc/2 + d

a−d
2 −

√
(a− d)2 + 4bc/2 + d

=
Re{a}+

√
|b|2 − Im{a}2

Re{a} −
√
|b|2 − Im{a}2

.

(3.90)

Equation (3.90) reveals that there are three different cases for η depending on |b|2−
Im{a}2 being positive, zero or negative. In the positive case we can directly see that
η is a real function with |η| > 1 if Re{a} is positive and |η| < 1 if Re{a} is negative.
In either case we have an exponential growth as discussed after eq. (3.89). Noticing
that

Re{a} = cos πT0

L
− πT1

L
sin πT0

L
, (3.91)

we see that there are two different cases for the four quadrants that the arguments of
the cosine and sine functions sweep through. In the first two Re{a} will bee negative
in the heating phase, while in quadrant three and four Re{a} will bee positive in the
heating phase, as given in fig. 3.6b. This can be seen from the following relations,
coming from eq. (3.91):

cos πT0

L
> 0 and sin πT0

L
> 0 and T1/L >

cosπT0/L

π sin πT0/L
, Re{a} < 0, (3.92)

cos πT0

L
< 0 and sin πT0

L
> 0, Re{a} < 0, (3.93)

cos πT0

L
< 0 and sin πT0

L
< 0 and T1/L >

cosπT0/L

π sin πT0/L
, Re{a} > 0, (3.94)

cos πT0

L
> 0 and sin πT0

L
< 0, Re{a} > 0. (3.95)

When |b|2 − Im{a}2 is negative then η is complex but with absolute value = 1.
That is, we have no general growth with n in eq. (3.89) but a complex number that
changes with n, thus an oscillating behaviour.

When |b|2 − Im{a}2 = 0 then η = 1, and we have

− Im{a}2 + |b|2 = (a− d)2 + 4bc = 0 ⇒ γ1 = γ2, (3.96)

that is, we have only one fixed point and need to use the other form of the Möbius
transformation, eq. (3.62), to describe the time evolution. We now also understand
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that by just looking at η we can infer which type of phase is produced by the driving.
For η real and different from unity we get exponential growth, while for η complex
(giving |η| = 1) we have an oscillating behaviour. The case η = 1 corresponds to
the critical case. Note that eq. (3.96) for the driving parameters defines the border
between the heating and non-heating phase.

By analysing the derivative, ∂zn
∂z

, for the Möbius transformation with one fixed point,
given in eq. (3.62), we can understand where the peaks move and by which rate they
grow. Differentiating eq. (3.62), we have that

∂zn
∂z

= AD −BC
(Cz +D)2 = 1

n2β2(z − (γ − 1
nβ

))2 , (3.97)

revealing a peak around x for z(x) = γ − 1/nβ, making the peak move towards γ.
The previous statement relies on the two facts that z(x) and γ are bound to the
unit circle after analytic continuation. Which gives that γ − 1/nβ moves towards
the unit circle where we find z(x). These two statements, that |z(x)| = |γ| = 1 after
analytic continuation, are seen from

z = ei
2π
L

(T0+T1+x), (3.98)

and
|γ| =

∣∣∣∣∣a− d2c

∣∣∣∣∣ (3.96)= |
√
−4bc|
|2c| = 2|b|

2|b| = 1. (3.99)

In the last step we use that c = b∗ which we saw in eq. (3.87) after analytic contin-
uation. Furthermore, we can make the qualitative statement that the peak grows
with a polynomial rate. This statement is seen from that in the denominator of
eq. (3.97) we have z − (γ − 1/nβ) where γ − 1/nβ goes towards γ, that is, the unit
circle where z is confined in a polynomial rate in n.

Now when we know where the different energy absorption properties seen in fig. 3.5
are coming from we will investigate for which parameter values we get the different
phases. Recall that by inspection of eq. (3.96) we could discriminate between the
three phases. Now by simply rewriting that equation in terms of the driving pa-
rameters T0 and T1 we can visualize the parameter space for the different phases.
The result is presented in fig. 3.6a, with T0 and T1 scaled by L, the length of the
one-dimensional system. Furthermore, in eq. (3.89) we could see that depending on
whether or not the absolute value of η is bigger than one we would have peaks at x
such that z(x) = γ1 (z(x)∗ = γ∗1) or z(x) = γ2 (z(x)∗ = γ∗2). We found in eq. (3.90)
that the sign of Re{a} determines if |η| is bigger or smaller than unity, where here
the sign of Re{a} is given in eqs. (3.92) - (3.95) and visualized in fig. 3.6b.
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0 1 2 3
T0/L0

1

2

T1/L

(a)
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Figure 3.6: In panel (a) we can we see the parameter values corresponding to
the three different phases of energy absorption (cf. fig. 3.5). The heating phases
are marked by light red color, while blue color indicate non-heating phases. The
border between the two, marked by dark red, corresponds to the critical phase.
Panel (b) shows which sign Re{a} has in the various heating phases. This gives us
knowledge about how the peaks in the corresponding heating phases are related to
γ2 (Re{a} < 0) or γ1 (Re{a} > 0).
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4
Sine-k-square deformation

In this chapter we will generalize the sine-squared deformation of the CFT studied in
the previous chapter to higher harmonics. To be precis, as before we will start with
an arbitrary CFT described by H0 and use the same square wave driving protocol
as before, seen in fig. 3.1. However, now we will use a different deformation, call it
Hk. In formulas:

H0 =
∫ L

0
dx Ttt(x), (4.1)

Hk = 2
∫ L

0
dx sin2

(
kπx

L

)
Ttt(x), (4.2)

H(t) =

Hk, 0 < t mod T < Tk

H0, Tk < t mod T < Tk + T0
. (4.3)

Note that k = 1 gives the same deformation as before so here we will focus on
k = 2, 3, .... We will follow the same scheme as above in chapter 3, when we had
H1 as deformation, and see that many results follow by the same calculation. Thus
we provide the necessary arguments without the need to reproduce all calculations.
However, whenever before we used Möbius theory we will need to be more careful: As
we shall see, the stroboscopic time evolution can still be evaluated as a conformal
transformation, but not a Möbius transformation. This means that we loose the
group properties that we took advantage of in chapter 3 when emulating the time
evolution of several periods as a Möbius transformation.

4.1 Stroboscopic time evolution as a conformal
transformation

In this section we will explain how to describe stroboscopic time evolution by a
conformal transformation generated by Virasoro generators. We will find similar
expressions for the HamiltoniansH0 andHk as those given forH0 andH1 in eq. (3.43)
and 3.44 respectively. We follow the same scheme as in chapter 3 and shall argue
that we can use most results from sections 3.1 and 3.2 and deduce the effect from
replacing H1 by Hk.

49



4. Sine-k-square deformation

We start with a discussion how to get from the model in Minkowski space to Eu-
clidean space, and with analytic continuation to the two-dimensional complex Eu-
clidean space, C2. Both the metric and the stress-energy tensor will follow the exact
same transformation rules as before, since they are unaffected by which particular
deformation we use. That is, we still have

Ttt = −(Tωω + Tω̄ω̄), (4.4)

as in eq. (3.8). It follows that H0 is exactly the same as in chapter 3 (remembering
the definition Tωω := − 1

2πT (ω)):

H0 =
∫ L

0

dω
2πiT (ω)−

∫ −L
0

dω̄
2πiT̄ (ω̄). (4.5)

Turning to Hk, we have

2 sin2
(
kπx

L

)
= 1− 1

2
(
ei

2πkx
L + e−i

2πkx
L

)
, (4.6)

where the only difference to the corresponding expression for H1 in eq. (3.11) is that
k = 1 is replaced by an arbitrary positive integer, k = 1, 2, .... All arguments after
eq. (3.11) on how to perform the analytic continuation are still valid for arbitrary
k. We have Hk as

Hk = H0 −
1
2(H+k +H−k), (4.7)

where
H±k =

∫ L

0

dω
2πie

± 2πk
L
ωT (ω)−

∫ L

0

dω̄
2πie

∓ 2πk
L
ω̄T̄ (ω̄). (4.8)

The unitary operator describing the stroboscopic time evolution that we found in
chapter 3 could be written as a compact time-ordered expression, eq. (3.19), inde-
pendent of the form of the two Hamiltonians. We thus conclude that the n-period
time-evolution operator is the same as that in eq. (3.21) but now with Hk replacing
H1. Thus we write for the time-evolution operator:

(e−H0τ0e−Hkτk)n. (4.9)

Here τ0 and τk are the imaginary time intervals for which the system is governed by
H0 and Hk respectively.

Next we perform a transformation from the strip geometry, with ω coordinate, to
the complex plane with a branch cut, with z coordinate. The conformal map is the
same as before, given by eq. (3.23), rewritten here for clarity:

ω 7→ z = e
2π
L
ω, ω 7→ z = e

2π
L
ω. (4.10)

Here recall fig. 3.2, illustrating how this map takes horizontal equal-time lines in the
strip geometry to circles in the complex plane.

The discussion about how the stress-energy tensor transforms is of course unaffected
by the choice of the Hamiltonians, and therefore still given by eq. (3.24). The
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Jacobian and change in path is of course also unaffected of the deformation, and
thus still given by eq. (3.26) with the discussion of integral paths that follows. The
only difference appears when writing down Hk, or more precisely the new H±k parts,
in complex plane coordinate z where we pick up another polynomial in front of the
stress-energy tensor. In accordance with the expression for the Jacobian, eq. (3.26),
and with e± 2πk

L
ω = z±k, we have that

H±k = 2π
L

∫
C	
z

dz
2πi

(
z1±kT (z)− z1±k 1

2
c

12

)
− (z → z)

= 2π
L

∫
C	
z

dz
2πiz

1±kT (z)− (z → z).
(4.11)

In the second line we have used
∫
C	
z

dz
2πiz

1±x = e
2π
L
τ

L

∫ L

0
dx e−

2π(2±k)
L

ix =

0, k 6= 2
e

2π
L
τ , k = 2

. (4.12)

We should remark that we have here thrown away the constant term that appears
when k = 2. We justify this by looking at how the exponentiated Hamiltonian acts
on an operator via the CBH-formula, as seen in eq. (3.36), where we note that any
c-number part of the Hamiltonian will commute with the operator and thus give no
contribution to the action.

We write the Hamiltonians H0 and Hk in the complex plane in analogy to eqs. (3.27)
and (3.33), with the only difference that z1±k with arbitrary k replaces 1 and z2

(corresponding to the case with k = 1):

H0 = 2π
L

∫
C	
z

dz
2πizT (z)− (z → z)− 2π

L

c

12 , (4.13)

Hk = H0 −
1
2 (H+k +H−k)

= 2π
L

∫
C	
z

dz
2πi

1
2
(
−z1−k + 2z − z1+k

)
T (z)− (z → z)− 2π

L

c

12 .
(4.14)

The last step before we can go on to the more technical part of finding an explicit
conformal transformation that emulates the time evolution for our new system is to
write the Hamiltonians in terms of Virasoro generators. That is, we need to show
that the time evolution of an operator is a contour integral in a neighborhood of that
operator, in analogy to what we did in subsection 3.2.2. We start by noticing that all
arguments in that section (up to the paragraph after eq. (3.36) where we find that
we only need to investigate the two commutators [H0,O(z, z̄)] and [H1,O(z, z̄)]) are
independent of the choice of H0 and H1. It follows that we only need to investigate
[Hk,O]. The only difference from H1 in subsection 3.2.2 is that Hk comes with
powers of z of degree 1 ± k in front of the stress-energy tensor, implying that this
time we have the possibility of a pole. But this pole is located at the origin which is
outside the integration path and we will never be close since we start at time t = 0
which corresponds to |z| = 1 while the origin corresponds to time t = −∞. That
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4. Sine-k-square deformation

is, the whole argument in subsection 3.2.2 holds without modifications. We write
the Hamiltonians H0 and Hk by identifying the corresponding Virasoro generators,
given by eq. (2.58), in the expressions for the Hamiltonians in eqs. (4.13) and (4.14).
In this way we obtain:

H0 = 2π
L

(
L0 + L̄0

)
− cπ

6L, (4.15)

Hk = 2π
L

(
L0 −

1
2 (L−k + Lk) + L̄0 −

1
2
(
L̄−k + L̄k

))
− cπ

6L. (4.16)

4.2 Stroboscopic time evolution as a generalized
Möbius transformation

From the previous section we now know that the stroboscopic time evolution of
an operator is a conformal transformation also in the more general case of a sine-
k deformation. Guided by our approach for the simpler sine-squared deformation
in subsection 3.2.3, we therefore set off to search for the appropriate conformal
coordinate change. We again exemplify how a conformal transformation, such as one
period of time evolution, of an operator can be described by a conformal coordinate
change

eτkHkeτ0H0O(z, z̄)e−τ0H0e−τkHk =
(
∂z1

∂z

)h (
∂z̄1

∂z̄

)h̄
O(z1, z̄1). (4.17)

As before the coordinate transformation is given by the corresponding Witt gener-
ators to the Virasoro generators who transform the operator on the Hilbert space,
hidden in the expressions for H0 and Hk in the left hand side of eq. (4.17). That
is, we seek the coordinate transformation z 7→ z1, or more generally after n time
periods, the coordinate transformation z 7→ zn, given by

z 7→ zn =
(
e−

2π
L
τ0l0e−

2π
L
τk(l0− 1

2 (l−k+lk))
)n
z, lm = −zm+1∂z. (4.18)

We will now make a coordinate change as in eq. (3.49) to rewrite Hk to act as
a dilation, that is, being described solely by L0. In other words, we apply the
coordinate change z 7→ χ = χ(z), that we impose to be conformal, in the integral
representation of Hk,

Hk = 2π
L

∮ dχ
2πi

(
∂χ

∂z

)−1(
−z

1−k

2 +z− z
1+k

2

)(∂χ
∂z

)2

T (χ)+ c

12{χ, z}Sc

−cπ6L. (4.19)

To get Hk to act as a dilation we need the coordinate change z 7→ χ to give Hk =
2π
L

∮ dχ
2πiχT (χ) + c-number. Comparing this with eq. (4.19) (where the Schwarzian

{χ, z} and cπ/6L are included in the c-number) we get the following differential
equation

χ = dχ
dz

(
−z

1−k

2 + z − z1+k

2

)
. (4.20)
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Using the algebraic relation(
−z

1−k

2 + z − z1+k

2

)
= −1

2
(zk − 1)2

zk−1 , (4.21)

we can rewrite eq. (4.20) as the integral equation∫ dχ
χ

= −2
∫

dz zk−1

(zk − 1)2 . (4.22)

Calculating the integrals gives

lnχ = 2
k

1
zk − 1 + constant, (4.23)

which is the conformal coordinate change we seek in order to rewrite Hk as a pure
dilation. That eq. (4.23) is a conformal coordinate change follows by the arguments
of the corresponding coordinate change given by eq. (3.52). That is,

χ = e
2
k

1
zk−1

+constant
, (4.24)

is holomorphic on the punctured complex plane with z = 1 removed (and by that
also conformal; cf. our discussion after eq. (3.23)). Now we haveHk in χ-coordinates,

Hk = 2π
L

∮ dχ
2πiχT (χ) + c-number, (4.25)

by this verifying that we indeed have Hk acting as a dilation. (That is, we can iden-
tify eq. (4.25) as the L0 Virasoro generator by using the relation between Virasoro
generators and the stress-energy tensor given in eq. (2.58).)

We are now ready to derive the explicit formula for the coordinate change corre-
sponding to one period of the Floquet drive. Evaluating eq. (4.18) for n = 1, we
follow the same scheme as before in eq. (3.55) but now with a generalized relation
between z and χ giving:

e−
2πτ0
L

lz0e−
2πτk
L

lχ0 z
(4.23)= e−

2πτ0
L

lz0e−
2πτk
L

lχ0

(
1

k
2 lnχ

+ 1
)1/k

=e−
2πτ0
L

lz0

(
1

k
2

2πτk
L

+ k
2 lnχ

+1
)1/k

(4.23)= e−
2πτ0
L

lz0

(
1

k
2

2πτk
L

+ 1
zk−1

+1
)1/k

=


(
1 + πkτk

L

)
e
πkτ0
L zk − πkτk

L
e−

πkτ0
L

πkτk
L
e
πkτ0
L zk +

(
1− πkτk

L

)
e−

πkτ0
L


1/k

=
(
azk + b

czk + d

)1/k

.

(4.26)

The last equality is there to define the coefficients a, b, c and d which are very similar
to the corresponding coefficients when k = 1, cf. eq. (3.56); the only difference is a
k in front of the time interval parameters τ0 and τk. This transformation of z,

z 7→ z1 = f(z) =
(
azk + b

czk + d

)1/k

, (4.27)
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clearly is not a Möbius transformation; compare with the definition given in eq. (2.70).
By an abuse of language we shall still call this a generalized Möbius transformation
since it has certain features which resembles a true Möbius transformation. Fur-
thermore, even before we had the explicit formula in eq. (4.27), we started from
an expression that is an exponentiation of {l−k, l0, lk}, eq. (4.18). This is a sub-
algebra of the Witt algebra and with k = 1 the special case which generates true
Möbius transformation. This also makes an argument for calling eq. (4.27) a gener-
alized Möbius transformation. In fact, we shall see that we can use some features of
Möbius theory to understand how to iterate this transformation so that we obtain
a closed expression for fn with f given by eq. (4.27).

We seek an expression for the transformation corresponding to n periods of driving,
that is, we seek

z 7→ zn = fn(z), (4.28)

where f is given by eq. (4.27). We start by defining a Möbius transformation T ,

T (z) = az + b

cz + d
, (4.29)

where a, b, c and d are the same as for f , given in eq. (4.26). Then we can write f
in terms of this Möbius transformation T as

f(z) =
(
T (zk)

)1/k
. (4.30)

Furthermore, n applications of f gives

fn(z) = f(f(...f(f(z))...) = f(f(...f(
(
T (zk)

)1/k
)...), (4.31)

where

f
((
T (zk)

)1/k
)

=
T( ((T (zk)

)1/k)k )1/k

=
(
T
(
T (zk)

))1/k
. (4.32)

Note that the exponent of T , 1/k, is canceled by that f takes the k:th power of its
argument, a pattern that repeats itself for the higher orders of f . We obtain

fn(z) =
(
T n(zk)

)1/k
, (4.33)

where the important thing to note is that T is a true Möbius transformation, thus
we know how to write down an expression for the n repetitions of the transfor-
mation, T n. That is, for T n we can now reuse the analysis from subsection 3.2.3,
eqs. (3.58) and (3.59) and the derivation that follows, to find explicit expressions for
the coefficients. We thus have the coordinate transformation

z 7→ zn(z) = fn(z) =
(
Azk +B

Czk +D

)1/k

, (4.34)
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with A, B, C and D, we will now omit to write out the n dependence in favor for
the appearance of equations to come, given by eqs. (3.62) and (3.63) for one (two)
fixed point(s) respectively, given here again:[

A B
C D

]
=
[
1 + nβγ −nβγ2

nβ 1− nβγ

]
, (4.35)

and [
A B
C D

]
=
[
γ1 − ηnγ2 −(1− ηn)γ1γ2

1− ηn −(γ2 − ηnγ1)

]
. (4.36)

The coefficients γ, γ1,2, η and β are given by eqs. (3.67) - (3.70), which we also
reproduce here:

γ(1,2) = a− d
2c

±
√

(a− d)2 + 4bc
2c

 , η = cγ2 + d

cγ1 + d
, β = a+ d

2c , (4.37)

where now a, b, c and d, we omit to write out the k dependence in favor for the
appearance of future equations, are given by eq. (4.26), that is[

a b
c d

]
=
(1 + πkτk

L
)e

πkτ0
L −πkτk

L
e−

πkτ0
L

πkτk
L
e
πkτ0
L (1− πkτk

L
)e−

πkτ0
L

 . (4.38)

Now when we have made explicit the transformation z 7→ zn in eqs. (4.34) - (4.38)
we are ready to derive an expression for the energy density, following the same recipe
as in subsection 3.3.2.

4.3 Energy density
In this section we will derive the explicit formula for the energy density after n
periods. Recalling the analysis in section 3.3, one realizes that the only thinkable
change when replacing the Möbius transformation by another conformal transfor-
mation (such that the ”generalized” Möbius transformation in eq. (4.34)) is in the
argument why a Schwarzian derivative is not to be added when considering the
transformation related to time evolution, z 7→ zn. Needless to say, one must also
carefully modify calculational details considering the fact that zn(z) is a different
function now. The procedure of finding the expectation value is the same as before
as none of the arguments rely on the specific form of the deformation.

To substantiate this, let us consider the relevant expectation value

〈ψ(nT )| |T (ω) |ψ(nT )〉 , (4.39)

defined in the strip geometry with ω as coordinate. Let us then carry out the
following successive transformations: (i) a mapping to the full complex plane with
z as coordinate, (ii) a time evolution emulated by the map z → zn, and, finally
(iii) a transformation to the upper half plane zn 7→ ξ(zn) = √zn. (Where the third
and final map to the upper half plane is motivated by that we can use standard
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CFT techniques for the calculation of the expectation value for the stress-energy
tensor there.) All transformations are conformal so we know that the stress-energy
tensor transforms according to eq. (2.55). We also have that Ttt = 1

2π (T (ω + T̄ ω̄)
and it is therefore sufficient to calculate the expectation value of T (ω) (T̄ (ω̄) follows
analogously). Putting it all together:

〈ψ(nT )|T (ω) |ψ(nT )〉 =
(
∂z

∂ω

)2

〈ψ(nT |T (z) |ψ(nT )〉+
�
��

�
��(

L

2π

)2 c

12

=
(
∂z

∂ω

)2 (
∂zn
∂z

)2

〈GH0|T (zn) |GH0〉

+
(
∂z

∂ω

)2
c

12{zn, z}Sc

=
(
∂z

∂ω

)2 (
∂zn
∂z

)2 (
∂ξ

∂zn

)2

���
���

���
�:0

〈GH0 |T (ξ) |GH0〉

+
(
∂z

∂ω

)2 (
∂zn
∂z

)2

{ξ, zn}Sc
c

12 +
(
∂z

∂ω

)2

{zn, z}Sc
c

12 .

(4.40)

All arguments, but one, for each equality are the same as the ones given in subsec-
tion 3.3.2. The new argument is for the second equality where we now need to keep
the Schwarzian derivative, {zn, z}, since the map z → zn is not a Möbius transfor-
mation (which is the only transformation giving a vanishing Schwarzian derivative
[31]). By comparing eq. (4.40) with its analog, eq. (3.82), we see that the first
nonzero part is the same except that zn(z) is a different function and we also have
added a new term, {zn, z}, to the expression.

Before we can write down the expression that explicitly gives the energy density
after n periods we need to calculate all the different derivatives in eq. (4.40). First
the two that we have already done: the derivative ∂z

∂ω
and the Schwarzian derivative

{ξ, zn}. Equation (4.10) tells us that

∂z

∂ω
= 2π

L
z. (4.41)

Furthermore, the transformation to the upper half plane zn → ξ given by eq. (3.73),
also calculated in eq. (3.79), gives

{ξ, zn} = 3
8

1
z2
n

. (4.42)

The new ingredient is the new expression of zn(z) given in eq. (4.34). We need to
take the three first derivatives of this expression in order to calculate the Schwarzian
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derivative, {zn, z}. In the process we get ∂zn
∂z

as well. The first derivative:

∂zn
∂z

= 1
∂z

(
Azk +B

Czk +D

)1/k

= 1
k

(
Azk +B

Czk +D

)1/k−1 (
Akzk−1

Czk +D
− (Azk +B)Ckzk−1

(Czk +D)2

)

=
(
Azk +B

Czk +D

)1/k−1 (AD −BC)zk−1

(Czk +D)2
Azk +B

Azk +B

= (AD −BC)zk−1

(Czk +D)(Azk +B)zn ≡ (AD −BC)h(z)zn ≡ κh(z)zn.

(4.43)

We have here defined the function h(z) and constant κ for convenience. We can
then carry out the second and third derivative of zn(z) in terms of h:

∂2zn
∂z2 = κh(z)z′n(z) + κh′(z)zn =

(
κ2h2(z) + κh′(z)

)
zn, (4.44)

∂3zn
∂z3 =

(
κ3h3(z) + 3κ2h(z)h′(z) + κh′′(z)

)
zn. (4.45)

We must now calculate the first two derivatives of h, that is

h′(z) =
(

(k − 1)zk−2

(Azk +B)(Czk +D) −
kAzk−1zk−1

(Azk +B)2(Czk +D)

− kCzk−1zk−1

(Azk +B)(Czk +D)2

)

= z2k−2

(Azk +B)2(Czk +D)2

(
(k − 1)z−k(Azk +B)(Czk +D)

− kA(Czk +D)− kC(Azk +B)
)

= h2(z)
(
(k − 1)BDz−k − (AD +BC)− (k + 1)ACzk

)
≡ h2(z)g(z),

(4.46)

where we have defined a new function g(z) for convenience. We can then express
the second derivative of h(z) in terms of h and g,

h′′(z) = 2h(z)h′(z)g(z) + h2(z)g′(z) = 2h3(z)g2(z) + h2(z)g′(z). (4.47)

Finally, we need the first derivative of g:

g′(z) = −k(k − 1)BD 1
zk+1 − (k + 1)kACzk−1. (4.48)

We are now ready to write down an expression for the Schwarzian derivative. Re-
membering that we have explicit expressions for the functions h, g, and g′ as well
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as for the constant κ, we can write the Schwarzian derivative on the compact form

{zn, z}Sc = z′′′n
z′n
− 3

2

(
z′′n
z′n

)2

= κ2h2(z) + 3κh′(z) + h′′(z)
h(z) −

3
2

(
κh(z) + h′(z)

h(z)

)2

= −1
2κ

2h2(z) + h′′(z)
h(z) −

3
2
h′(z)2

h2(z)

= −1
2κ

2h2(z) + 2h3(z)g2(z) + h2(z)g′(z)
h(z) − 3

2
(h2(z)g(z))2

h2

= −1
2κ

2h2(z) + 1
2h

2(z)g2(z) + h(z)g′(z).

(4.49)

This explicit expression for {zn, z}Sc must be zero for k = 1 since that corresponds to
when the transformation z → zn is a Möbius transformation (which we remember is
the only conformal transformation for which the Schwarzian derivative vanish [31]).
To show that {zn, z}Sc = 0 for k = 1 will be rather cumbersome but the philosophy
is nothing else but expanding h, g and g′, given in eqs. (4.43), (4.46) and (4.48)
respectively, in the expression for {zn, z}, given by eq. (4.49), and then order terms
in powers of z. We obtain:

{zn, z}Sc
1

h2(z) =− 1
2κ

2 + 1
2g

2(z) + g′(z)
h(z)

=
(1

2(k − 1)2 − k(k − 1)
)

(BD)2z−2k

+ (−(k − 1)− k(k − 1))BD(AD +BC)z−k

−1
2(AD −BC)2 + 1

2(AD +BC)2

−
(
(k − 1)(k + 1) + k(k + 1) + k(k − 1)

)
ABCD

+ ((k + 1)− k(k + 1))AC(BC + AD)zk

+
(1

2(k + 1)2 − k(k + 1)
)

(AC)2z2k

=− (k2 − 1)
(

1
2(BD)2z−2k +BD(AD +BC)z−k + 3ABCD

+ AC(AD +BC)zk + 1
2(AC)2z2k

)
.

(4.50)

We can now explicitly see that the Schwarzian expression {zn, z} vanishes only
when k = 1. As we have already mentioned, this is how it must be, because only
when k = 1 are z 7→ zn a Möbius transformation, the only type of conformal
transformation with zero Schwarzian derivative [31].

Now we are ready to write down the expression for the energy density after n periods.
First we remember that Ttt = 1

2π (T (ω) + T̄ (ω̄)). We also need the expectation
value for T (ω) given by eq. (4.40) in which we have ∂z

∂ω
, ∂zn

∂z
and {ξ, zn} given by
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Figure 4.1: We have chosen to illustrate the generalized system with k = 3. The
different colors are the energy distribution in the system after 1, 2, 3 and 4 periods,
T = T1 + T0. The length of the system was chosen to be L = 2π and the central
charge c = 1. We have here consequently chosen the driving parameters T0 and Tk
such that the value of η is approximately the same as in the corresponding phases
plotted in fig. 3.5 for better comparison. (a) Non-heating phase given by T0 = 0.166L
and Tk = 0.033L. (b) Critical phase given by T0 = 0.3L and Tk ≈ 0.016L (where a
more exact value can be obtained by solving eq. (4.59) with the given value for T0).
(c) Heating phase given by T0 = 0.3L and Tk = 0.033L.

eqs. (4.41), (4.43) and (4.42) respectively. Putting it all together, we obtain the
energy density after n periods,

〈ψ(nT )|Ttt(x) |ψ(nT )〉 = πc

16L2
z2k(AD −BC)2

(Azk +B)2(Czk +D)2

+
(
∂z

∂ω

)2

{zn, z}Sc
c

12 + (z → z̄).
(4.51)

Note that by setting k = 1, which makes the Schwarzian derivative vanish identically,
gives precisely the same expression as before the generalization, eq. (3.83). This
serves as a check of our generalized approach. The last thing we need to do before
plotting this expression is to write the expression for the energy density after the
analytic continuation τ0,k 7→ iT0,k. We here use that the coordinates transform as

z(τ) 7→ z(T ) = e
2π
L
i(T0+Tk)+ix, z̄(τ) 7→ z̄(T ) = e

2π
L
i(T0+Tk)−ix. (4.52)

Then plotting the energy density, eq. (4.51), we observe the same characteristics
as before, with a non-heating phase, a heating phase and a critical phase, compare
fig. 4.1 to the corresponding figure for k = 1, fig. 3.5.

4.4 Energy distribution related to the generalized
Möbius transformation

In this section we will try to understand the three phases in terms of the generalized
Möbius transformation, eq. (4.34), and identify the parameter spaces of the driving
parameters T0 and Tk that correspond to the different phases.
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We start with the expression for the energy density in terms of z and zn only,
focusing on the parts containing zn as zn is the only time-dependent variable. We
have

〈ψ(nT )|Ttt(x) |ψ(nT )〉 = c

32

(
∂z

∂ω

)2 (
∂zn
∂z

)2 1
z2
n

+ c

12
∂z

∂ω
{zn, z}. (4.53)

We thus have three expressions in need of investigation, zn, ∂zn
∂z

and {zn, z}. To
understand the discrimination between the phases we need to investigate the ab-
solute values of these expressions since they play important roles in the growth or
non-growth of the energy density.

Before we investigate these three terms, zn, ∂zn
∂z

and {zn, z}, we should remind
ourselves about that the generalized Möbius transformation, z → zn, has two fun-
damental different descriptions and which to be used is determined by the driving
parameters T0 and Tk. This is seen from the fact that the generalised Möbius trans-
formation in eq. (4.33) is built up by a true Möbius transformation, eq. (4.29), which
gives the coefficients after several periods A, B, C and D; how they build up the
generalized Möbius transformation is seen in eq. (4.34). From our discussion in sec-
tion 2.6 we could see that the expression after several successive applications of a
true Möbius transformation is dependent of whether or not we have one or two fixed
points. Furthermore, in subsection 3.3.3 we could conclude that the heating phase
as well as the non-heating phase relates to the Möbius transformation with two fixed
points while the critical phase relates to the Möbius transformation with one fixed
point. Moreover, we could also understand how the number of fixed points relates
to the driving parameters T0 and T1. We will see that the number of fixed points
relates to the different phases in the same way now. In passing, in the analysis to
follow we shall freely interchange between talking about the number of fixed points
and which phase we are focusing on.

First, we note that |zn| = 1 and thus not contributing to the discrimination of the
phases. The argument is simple, similar to that in the corresponding discussion in
subsection 3.3.3. We can see this from

zn = fn(z) =
(
T n(zk)

)1/k
, (4.54)

and given |T (zk)| = 1, we verify that |zn| = |T (zk)|n/k = 1, using that T is a Möbius
transformation with coefficients a, b, c and d given by eq. (4.26). After analytic
continuation, the relations d = a∗ and c = b∗ yield

∣∣∣T (zk)
∣∣∣2 =

∣∣∣∣∣ azk + b

b∗zk + a∗

∣∣∣∣∣
2

= |a|
2|zk|2 + |b|2 + ab∗zk + a∗bzk

∗

|b|2|zk|2 + |a|2 + ab∗zk + a∗bzk∗
= 1, (4.55)

where, to obtain the last equality, we need |zk| = |z|k = 1. This follows immediately
after analytic continuation since then z = exp

{
2π
L
i(T0 + Tk + x)

}
.

Second, we calculate ∂zn
∂z

. Using eq. (4.43) we get∣∣∣∣∣∂zn∂z
∣∣∣∣∣ =

∣∣∣∣∣ (AD −BC)zk−1

(Czk +D)(Azk +B)zn
∣∣∣∣∣ =

∣∣∣∣∣ (AD −BC)
(Czk +D)(Azk +B)

∣∣∣∣∣ , (4.56)
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4. Sine-k-square deformation

where we used that |zn| = 1 from eqs. (4.54) and (4.55), where we also noted that
|z| = 1 which we have used also here. Assume that we have chosen driving param-
eters such that the Möbius transformation T , eq. (4.29) (that builds up the gener-
alized Möbius transformation, eq. (4.31), and which emulates the time-evolution)
has two fixed points. Then the parameters A, B, C and D are given by eq. (4.36).
After a few algebraic manipulations we obtain:

(AD −BC)
(Czk +D)(Azk +B) = (γ1 − γ2)2ηn

γ2(γ1 − zk)2η2n + γ1(zk − γ2)2 + (γ1 + γ2)(γ1 − zk)(zk − γ2)

=

ηn/γ1, zk = γ1

η−n/γ2, zk = γ2
.

(4.57)

We can here see a clear resemblance with the corresponding expression, eq. (3.89), in
the previous chapter. Analogous to the discussion after eq. (3.89), we have exponen-
tial growth, ∼ ηn, for |η| < 1 (|η| > 1) at x such that z(x)k = γ2 (z(x)k = γ1). Note
the exponent k of z in eq. (4.57), different from its analog, eq. (3.89), in chapter 3
where we have k = 1. It follows that we have 2k peaks in this generalized case (one
k from the ”z-part” and another k from the ”z̄-part”). To discriminate between the
cases for having peaks at x such that zk(x) = γ1 or zk(x) = γ2 we need to analyse
η just as we did in eq. (3.90). Since we don’t use the explicit expressions for the
coefficients a, b, c and d, so the same results holds here. That is, we discriminate by
the sign of Re{a} such that: Re{a} < 0 and Re{a} > 0 gives peaks at zk(x) = γ1
and zk(x) = γ2 respectively. The explicit expression for Re{a} is given by,

Re{a} = cos kπT0

L
− kπTk

L
sin kπT0

L
. (4.58)

Again we get that in the two first quadrants that the cosine and sine functions sweep
through gives Re{a} < 0 and quadrant three and four gives Re{a} > 0.

Furthermore, the analysis to discriminate the phases in chapter 3 focused on η, in
particular whether or not it is real or complex, where in the complex case we have
that |η| = 1 giving η = 1 to be critical. From eq. (4.37) we noted that η in terms
of the Möbius parameters a, b, c and d is the same as in the previous chapter. The
analysis then has only one difference which is how k appears in a, b, c and d. We
thus have

|b|2 − Im{a}2 =
(
kπTk
L

)2

−
(

sin kπT0

L
+ kπTk

L
cos kπT0

L

)2

= 0, (4.59)

defining the line for the critical phase that discriminates between the heating phase
(|b|2 − Im{a}2 > 0) and non-heating phase (|b|2 − Im{a}2 < 0), as discussed after
the expression for η in eq. (3.90).

Now to the new component in the expression for the energy density, eq. (4.51),
(not present when k = 1): the Schwarzian derivative {zn, z}. As we shall see, it
does not make any major difference to the behavior of the energy density. First,
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4. Sine-k-square deformation

note that the only n-dependence in the expression for {zn, z}, given in eq. (4.50),
is in the coefficients A, B, C and D. From this observation we can directly tell
that the parameter space of T0 and Tk will be partitioned in the same way as before,
depending on whether η is complex, real or exactly equal to unity. It follows that the
parameter space will be divided according to eq. (4.59). Furthermore, in eq. (4.50)
we have given the expression for {zn, z}/h2 in the fourth power of the coefficients
A, B, C and D, with no assumptions on z. That is, we have

{zn, z}/h2 ∝ η4. (4.60)

However, from the definition of h given in eq. (4.43) and the expressions for the
coefficients A, B, C and D in eq. (4.36) we get

h2 =
(

zk−1

γ2(γ1−zk)2η2n+γ1(zk−γ2)2+(γ1+γ2)(γ1−zk)(zk−γ2)

)2

∝


1, zk = γ1

η−4n, zk = γ2

η−4n, zk 6= γ1 and |η| > 1
.

(4.61)

From these two equations, eqs. (4.60) and (4.61), one concludes that for |η| < 1 we
have no growth with n for {zn, z}. It follows from that in eq. (4.60) we see a decreas-
ing behavior for all z(x) and from eq. (4.61) we only have growth for zk = γ2 but at
the same rate as for the falloff, implying that the multiplication (which corresponds
to {zn, z}) of the two gives at most a constant behaviour with time (growing n).
The other case with |η| > 1 gives peaks around x such as z(x)k = γ1. It follows from
that we in eq. (4.61) can see a decreasing behavior, ∼ η−4n, for all z(x) except for
zk(x) = γ1 where we instead have a constant behavior with growing n. Furthermore,
from eq. (4.60) we have exponential growth, ∼ η4n, for all z(x). It follows that the
multiplication of the two expressions eqs. (4.60) and (4.61), which is {zn, z}, then is
constant for all z(x) but zk(x) = γ1 where we have only growth. We conclude that
for |η| < 1 the Schwarzian derivative {zn, z} gives no contribution to the energy
density and for |η| > 1 it gives the same kind of contribution as that coming from
∂zn
∂z

implying that the peaks only get bigger. Thus, no qualitative difference from
from what we would have obtained if we had neglected the Schwarzian derivative.

The last step to complete our understanding of how the generalized Möbius trans-
formation, fn given by eq. (4.27), relates to the energy density, eq. (4.53), is to
investigate how both ∂zn

∂z
and {zn, z} behaves when |b|2− Im{a}2 = 0, that is at the

critical phase given by values of the parameters T0 and Tk that fulfill eq. (4.59). In
this case the Möbius transformation, eq. (4.29), building up the generalized Möbius
transformation, eq. (4.33), has only one fixed point. Let us first consider the deriva-
tive ∂zn

∂z
, where we again can use |z| = |zn| = 1 as we did in the corresponding

expression where we had two fixed points, eq. (4.56). We can now calculate the
absolute value of ∂zn

∂z
using the expressions for the coefficients A, B, C and D in

eq. (4.35), describing the true Möbius transformation with one fixed point that
builds up the generalized Möbius transformation. We obtain∣∣∣∣∣∂zn∂z

∣∣∣∣∣ =
∣∣∣∣∣ AD −BC
(Czk+D)(Azk+B)

∣∣∣∣∣ =
∣∣∣∣∣ 1/(n2β2)
(zk−(γ−1/nβ)) ((γ+1/nβ)zk−γ2)

∣∣∣∣∣ , (4.62)
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where we have only carried out some trivial algebra, and also used that AD−BC =
1. We can see that we get peaks that move towards x such that zk = γ, where
the denominator goes towards zero, but everywhere else we have a decreasing factor
of 1/n2. The growth can only be polynomial in n since the factors γ − 1/nβ and
γ + 1/nβ approach γ polynomially.

Let us now continue our discussion of the critical phase by an analysis of the contri-
bution from the Schwarzian derivative, {zn, z}. Since it is a rather messy expression
to analyse we again simply notice from eq. (4.50) that we have

{zn, z}/h2 ∝ η4n, (4.63)

(cf. the analogy to eq. (4.60)). Moreover, we have just discussed ∂zn
∂z

which now, for
one fixed point with AD−BC = 1, is exactly equal to h(z). That is, from eq. (4.62)
and the discussion which followed we have for h that

h2 ∝ 1/η4n, zk(x) 6≈ γ, (4.64)

with peaks growing at polynomial rate in n for zk(x) at a point near γ. In other
words, the Schwarzian derivative {zn, z} gives essentially the same contribution as
∂zn
∂z

to the energy density but is also responsible for the irregularities between the
peaks in fig. 4.1b.

We conclude this subsection by presenting the parameter spaces, in the T0, Tk-plane,
that correspond to the heating and non-heating phases, together with the border
which defines the critical phase. Figure 4.2a is obtained from eq. (4.59) which defines
the border between real and complex η. In fig. 4.2b we have added the borders for
the quadrants that determine the sign of Re{a} in the heating phase: quadrant
one and two giving Re{a < 0} and quadrant three and four giving Re{a} > 0,
as discussed after eq. (4.58). That discussion also revealed the similarities with the
corresponding discussion in the previous chapter after eq. (3.90), giving that we know
that for Re{a} < 0 we have peaks around zk = γ2 and z̄k = γ∗2 , while for Re{a} > 0
we have peaks around zk = γ1 and z̄k = γ∗1 . We should note that we have a factor of
k in the arguments of the sine and cosine functions in eqs. (4.58) and (4.59) which
in their corresponding expressions in eqs. (3.91) and (3.96) respectively are a simple
1, thus not explicit. This is the reason for why we have a more rapid repetition of
the parameter interval along the T0/L axis with larger k, as seen in fig. 4.2a with
k = 3 (having three times as many repetitions of the parameter interval compared
to fig. 3.6a with k = 1). Furthermore, the k dependence in eq. (4.59) also gives that
the non-heating parameter space is suppressed towards the axes.
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Figure 4.2: In panel (a) we can read off the parameter values corresponding to
the three different phases of energy absorption (cf. fig. 4.1). The heating phases
are marked by light red color, while blue color indicates non-heating phases. The
border between the two, marked by dark red, corresponds to the critical phase.
Panel (b) shows which sign Re{a} has in the various heating phases; we indicate
this by labeling each region by the quadrant which the cosine and sine functions
go through, as given in eq. (4.58). We know that the sign of Re{a} is negative
in quadrant one and two, and positive in quadrant three and four. This gives us
knowledge about how the peaks in the corresponding heating phases are related: to
γ2 (Re{a} < 0) or to γ1 (Re{a} > 0).
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5
Conclusion

This thesis has served as a review of the work on Floquet CFT by Fan et al. in Ref.
[2], trying to make their analysis more transparent by adding details and additional
arguments. Also, we have proposed a generalization of their work, by this revealing
several interesting features of this class of Floquet systems which can be described
by CFT. We have tried to present the technicalities in calculations and arguments
in great detail so as no previous knowledge of CFT should be needed. The main
conclusion from the work by Fan et al. [2] – that it is in principal possible for an
interacting Floquet system not to heat up – is found to be still valid within our
generalization. This holds promise for the use of specially designed Floquet systems
as components in future quantum technologies.

The model that we have discussed is a square-wave drive where the Hamiltonian
jumps back and forth between an arbitrary CFT and a deformation of the same
CFT. Following Fan et al. [2], we first studied a sine-square deformation in chap-
ter 3, which we then generalized to a sine-k-square deformation in chapter 4. By
analysing the stress-energy tensor we could calculate and plot the energy density
at stroboscopic snapshots given by eqs. (3.83) and (4.51) and visualized in figs. 3.5
and 4.1 for the sine-square deformation and for the sine-k-squared deformation (with
k = 3) respectively. What we found in these plots were that in both cases we have
three phases: One phase which does not absorb energy and two phases which absorbs
energy. In the case were no energy is absorb this is manifested by that at strobo-
scopic snapshots the energy distribution has oscillating feature along the system’s
spatial direction. In the other two phases when energy is absorbed it is manifested
by that energy peaks grow for each monitored period, in one of the phases the peaks
grow polynomially while in the other there is exponential growth. Moreover, the
number of peaks is two times k.

We have also investigated the parameter space of the driving parameters to see for
which values we get the different phases; the results are shown in figs. 3.6 and 4.2 for
the sine-square and sine-k-square deformation respectively. The parameter values
which give the critical phase and hence also divide the spaces that corresponds to
the non-heating phase and heating-phase are given by eq. (4.59). This equation is
written for the more general case of a sine-k-squared deformation; by setting k = 1
we reproduce the sine-squared case studied by Fan et al. [2]. From this equation
we can see that the connected area for the values giving the non-heating phase
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5. Conclusion

shrinks with growing k as well as getting more repetitive. That is, we need a higher
frequency of the drive to still get a non-heating phase for larger k.

To investigate and generalize this field further would require a deformation, call it
f(x), with an arbitrary Fourier series instead of the sine-k-square deformation. To
find such a generalization would be an important step. Using conformal transfor-
mations to represent stroboscopic time evolution should still be possible, since the
discussion in subsection 3.2.2 for arriving at that conclusion had little or nothing to
do with the specifics about the deformation used. However, all terms in the Fourier
expansion will have its owns Virasoro generators and with higher harmonics in the
expansion we will have Virasoro generators L±k with larger k. To find out how
this affects the energy density will be the hard part. We can with confidence say
that finding the one-period time evolution is doable with the same trick as here in
both chapters 3 and 4, that is, performing a coordinate change so as to be able to
describe the deformed Hamiltonian’s action as a dilation, see eqs. (3.53) and (4.24).
In other words, we only need the coordinate change χ = exp

{∫ dz
zf̃(z)

}
where f̃(z) is

the deformation, f(x), after an analytic continuation and coordinate change to the
full complex plane. But to then get an expression for several time periods might
be more difficult, we have been able to exploit Möbius theory which a priori is not
evident that one can use when using an arbitrary Fourier expansion as deformation
function. What we exploited in Möbius theory in order to get an expression for sev-
eral applications of the same transformation is the fixed point structure and perhaps
one could use this also for a more general deformation. However, this is a rather
more difficult problem than in the Möbius case.

We have seen that Floquet systems really have the potential to not only show topo-
logical phases but also, on a theoretical level, being possible to engineer so that they
do not heat up. To arrive at the goal of combining these two properties, and exploit
them in future quantum technologies we need to push forward to gain knowledge
under which general circumstances we can obtain Floquet systems which do not heat
up. With all the activity in the area of topological matter as well as with Floquet
systems maybe, optimistically, we will soon be able to realize this goal.
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