
Feature selection in an industrial data
set
Development of a genetic algorithm for selecting categorical
features

Master’s thesis in Complex Adaptive Systems

Philip Andreasson

Department of Physics
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2019

Master’s thesis 2019

Feature selection in an industrial data set

Development of a genetic algorithm for selecting categorical features

PHILIP ANDREASSON

Department of Physics
Chalmers University of Technology

Gothenburg, Sweden 2019

Feature selection in an industrial data set
Development of a genetic algorithm for selecting categorical features
PHILIP ANDREASSON

© PHILIP ANDREASSON, 2019.

Supervisor: Jimmy Stormig, Sigma IT
Examiner: Mats Granath, Department of Physics

Master’s Thesis 2019
Department of Physics
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: A visualization of the feature selection problem, where a subset of the original
full set of features is selected.

Typeset in LATEX
Gothenburg, Sweden 2019

iv

Feature selection in an industrial data set
Development of a genetic algorithm for selecting categorical features
PHILIP ANDREASSON
Department of Physics
Chalmers University of Technology

Abstract
Feature selection is a technique for reducing the dimensionality of data sets which
can provide benefits in terms of computational time, performance and interpretabil-
ity. This thesis presents the development of a genetic algorithm for feature selection
in an industrial data set on investigations, where a large proportion of the features
are categorical. The genetic algorithm is designed to always select one-hot encoded
categorical features as a group. The quality of a proposed feature selection subset
was assessed using Naive Bayes classifiers, decision trees, artificial neural networks,
support vector machines and logistic regression classifiers. The classification perfor-
mance of the subsets obtained from the genetic algorithm were further compared to
stepwise forward selection, Relief, LASSO and random forests. The results showed
that the dimensionality of the data set could be reduced drastically while main-
taining a good classification accuracy. Most significant results were obtained for
the Naive Bayes classifier, where the genetic algorithm and stepwise forward selec-
tion managed to produce subsets with prediction performances that significantly
exceeded both the full data set and the subsets from the other feature selection al-
gorithms. For the other classifiers, the differences were smaller. Given the extensive
time required to run the genetic algorithm and stepwise forward selection, the other
feature selection algorithms are a better choice for these classifiers.

Keywords: feature selection, genetic algorithms, categorical features

v

Acknowledgements
I would like to thank Jimmy Stormig for valuable discussions throughout this project
and also my examiner Mats Granath for taking on this project. Also, I would like
to thank Niclas Gustafsson and Alexander Ask for their time investment in setting
this project up. Finally, a big thank you to Ellen for your valuable support.

Philip Andreasson, Gothenburg, December 2019

vii

Contents

List of Figures xi

List of Tables xv

Abbreviations xvii

1 Introduction 1
1.1 Aim . 2
1.2 Limitations . 2

2 Feature selection algorithms 3
2.1 Wrapper methods . 3

2.1.1 Sequential forward selection 3
2.1.2 Common criticism against stepwise selection methods 4
2.1.3 Genetic algorithms . 4

2.1.3.1 Initialization and encoding schemes 5
2.1.3.2 The fitness function 5
2.1.3.3 Selection . 5
2.1.3.4 Crossover . 5
2.1.3.5 Elitism and mutations 6

2.2 Filter methods . 6
2.2.1 Measures of correlation . 7

2.2.1.1 Pearson Correlation Coefficient 7
2.2.1.2 Uncertainty coefficient 7
2.2.1.3 Correlation ratio . 8

2.2.2 Relief algorithms . 8
2.3 Embedded methods . 9

2.3.1 LASSO . 9
2.3.2 Random forests . 10

3 Classification Algorithms 13
3.1 Artificial neural networks . 13
3.2 Support vector machines . 13
3.3 Naive Bayes classifiers . 14
3.4 Decision trees . 15
3.5 Logistic regression classifiers . 16

ix

Contents

4 Method 17
4.1 Data preprocessing . 17

4.1.1 Class imbalance . 20
4.1.2 Ethical considerations . 20

4.2 Designing the genetic algorithm . 20
4.3 Experimental procedure . 21

5 Results 23
5.1 Sequential forward selection results 23
5.2 Genetic algorithm results . 23
5.3 Relief results . 25
5.4 Embedded results . 28
5.5 Evaluation of subset prediction performance 28
5.6 Second group of objects . 32

6 Discussion 35
6.1 Differences in subset selections . 35
6.2 Differences in prediction performance 36
6.3 Computational time . 37
6.4 Differences between inspection groups 37
6.5 The importance of individual features 38
6.6 Future work . 39

7 Conclusions 41

Bibliography 43

A More details on the gates group I

x

List of Figures

2.1 In the crossover procedure, a splitting point (red dashed line) is se-
lected at random and two new chromosomes are formed by combining
the different parts after the split. 6

2.2 Relief selects an observation at random (black circle) and computes
the element wise distance to the closest observation in the same class
(green circle) and the closest observation in the other class (red square). 9

2.3 In the LASSO, the β coefficients obtained from an OLS estimation
are shrunk to fit a constraint on the sizes of the coefficients. In the
case shown, β1 is shrunk to 0 and interpreted as excluded from the
subset selection. 10

3.1 A simple ANN with two hidden layers of neurons. Each edge between
neurons has an associated weight and each neuron has a bias, which
are parameters that are fitted to training data. The prediction result
is read from the output layer values. 14

3.2 A support vector machine uses support vectors defined by the obser-
vations that are closest to the decision boundary to create supporting
hyperplanes (dashed lines). These hyperplanes are used to find an
optimal hyperplane (thick line) to separate different classes. 14

3.3 A decision tree after one split. An optimal splitting point t1 was
found in feature x1. The partitioning of the feature space after the
split contains one region which is pure since its Gini index is 0. 16

4.1 Correlation matrix for a partition of features in the data. Some fea-
tures are fully correlated to each other and should therefore be removed. 18

4.2 Example of the decoding procedure of a chromosome. The corre-
sponding list of encoded column indices for each active gene in the
chromosome is collected to yield a list of column indices to include in
the computation of the fitness value. 21

5.1 The test score obtained from feature subsets created by the SFS algo-
rithm for the elevator data. The Naive Bayes classifier has a range of
3-10 features where it performs well, but when the number of features
approach the full data set, the performance is significantly reduced.
The other classifiers perform increase their test scores until 3 fea-
tures are included in the set, after which the performance is roughly
constant. 24

xi

List of Figures

5.2 The evolution of the best chromosome (thick green) and of the aver-
age of all chromosomes (thick blue) as a function of the number of
generations averaged over 100 runs of the GA, where a Naive Bayes
classifier is used. The faded green and blue lines illustrate the results
of each individual run. The variance between runs is large for both
the average chromosome and the best chromosome. 24

5.3 The proportion of occurrence in the best chromosome for each feature
in the data set obtained by the GA with a Naive Bayes classifier for
the elevator data. 25

5.4 The proportion of occurrence in the best chromosome for each feature
in the data set obtained by the GA with a decision tree classifier for
the elevator data. 26

5.5 The proportion of occurrence in the best chromosome for each feature
in the data set obtained by the GA with a logistic regression classifier
for the elevator data. 26

5.6 The proportion of occurrence in the best chromosome for each feature
in the data set obtained by the GA with a multilayer perceptron
neural network classifier for the elevator data. 27

5.7 The proportion of occurrence in the best chromosome for each feature
in the data set obtained by the GA with an SVM classifier for the
elevator data. 27

5.8 Feature importances obtained by the Relief algorithm for the elevator
data. 28

5.9 Feature importances obtained by the Group LASSO algorithm for the
elevator data. 29

5.10 Feature importances obtained by the random forest algorithm for the
elevator data. 29

5.11 The evolution of test accuracy as features from the GA are included
in descending relative importance order for the elevator data. Naive
Bayes (purple) obtains significantly higher scores for 6-10 features.
The decision tree (green) is approximately constant, with just a small
difference between including one feature and all features. The other
classifiers show a significant increase at 3 features. 30

5.12 The evolution of test accuracy as a function of the number of fea-
tures included by the SFS for the gates data. All classifiers achieve
good performance using only the most importance feature. The Naive
Bayes classifier (purple) performance is reduced when the number of
features approach the full data set, with a cutting point at 12 features. 32

5.13 The evolution of test accuracy as a function of the number of fea-
tures included by the GA for the gates data. All classifiers achieve
good performance using only the most importance feature. The Naive
Bayes classifier (purple) performance is reduced when the number of
features approach the full data set, with a cutting point at 13 features. 34

A.1 The proportion of occurrence in the best chromosome for each feature
for the gates group obtained by the GA with a Naive Bayes classifier. I

xii

List of Figures

A.2 The proportion of occurrence in the best chromosome for each feature
for the gates group obtained by the GA with a decision tree classifier. II

A.3 The proportion of occurrence in the best chromosome for each feature
for the gates group obtained by the GA with a logistic regression
classifier. II

A.4 The proportion of occurrence in the best chromosome for each feature
for the gates group obtained by the GA with a multilayer perceptron
neural network classifier. III

A.5 The proportion of occurrence in the best chromosome for each feature
for the gates group obtained by the GA with an SVM classifier. . . . III

A.6 Feature importances for the gates group obtained by the Relief algo-
rithm. IV

A.7 Feature importances for the gates group obtained by the Group LASSO. IV
A.8 Feature importances for the gates group obtained by the random forest. V

xiii

List of Figures

xiv

List of Tables

4.1 The features in the data set after preprocessing. 19
4.2 Hyperparameters used for the GA. 21

5.1 Test score for the reduced data sets compared to the full data set for
the elevator data. 31

5.2 Test score for the reduced data sets compared to the full data set for
the gates data. 33

6.1 Importance summarization for the features selected by the Relief al-
gorithm. 39

xv

List of Tables

xvi

Abbreviations

SFS Sequential forward selection
GA Genetic algorithms
LASSO Least Absolute Shrinkage and Selection Operator
RF Random forest
SVM Support vector machine
ANN Artificial neural network
MLP Multilayer perceptron
DT Decision tree
NB Naive Bayes classifier
LogReg Logistic regression classifier

xvii

Nomenclature

xviii

1
Introduction

During the last few decades, the amount of collected data from enterprises has in-
creased drastically, both in terms of the number of observations that are collected
and the number of variables that are treated. In 2011, the total size of copied and
created data was of order 1021 bytes, with a prospect of doubling in size every sec-
ond year [1]. The amount of sources that generate data are also increasing, with
Internet of things and cloud computing becoming more prevalent [2]. These large
volumes of data can be useful in a variety of fields, including commerce [3], con-
nected cities [4] and medicine [5]. However, there are challenges that need to be
addressed in order to gain knowledge from such huge data sets. The most obvious
one is computational time, which can be immense for a data set with a large number
of features, to the point where it is impossible for machine learning algorithms to
work with the data [6]. One must also be aware of the curse of dimensionality, which
is an umbrella term for bad effects that occurs in high-dimensional space due to the
exponential increase in volume, which makes data sparse and difficult to handle for
machine learning algorithms [7]. Finally, it is also challenging to interpret how the
features and the output are related in a high-dimensional data set.

One way of tackling the challenges with big data is to try to reduce the dimension-
ality. Dimension reduction techniques can be divided into two categories: feature
extraction and feature selection [6]. Feature extraction involves projecting the data
onto a lower-dimensional space, creating new features [6]. Two of the most com-
mon methods to this end are principal component analysis (PCA) and non-negative
matrix factorization (NMF) [8]. Feature selection, on the other hand, preserves
the original features and aims to identify redundant and irrelevant features for the
output values in the data set. Both techniques are of importance in terms of com-
putational time and for enhancing the performance of machine learning algorithms,
but feature selection also makes it possible to gain insight on how the output values
relate to the original features [9–11].

For a data set that consists of p features, there are 2p − 1 possible feature subsets
(the subset where no feature is chosen is excluded). Except for very small data sets,
an exhaustive search over all possible subsets is unfeasible, creating the need for
sophisticated algorithms. Feature selection algorithms are traditionally divided into
three different categories: wrapper, filter and embedded methods. Wrapper meth-
ods are methods that directly take into account the performance of a classification
algorithm in the feature selection procedure, while filter and embedded methods
use more general information about the data set. An interesting approach in the

1

1. Introduction

wrapper setting is to use genetic algorithms, which is a paradigm of algorithms that
starts with a random set of suggested solutions and evolve better solutions, in terms
of increased classification accuracy, in a fashion that is inspired by natural selection.

In this thesis, an industrial data set on inspections will be used. The data set consists
of a set of features that contain general information about the inspection object and
each label describes the result of the inspection. It is of interest to investigate to
what degree it is possible to predict the result of an inspection given the general
features and if the prediction performance can be enhanced using feature selection.
A vast majority of the features in this data set are categorical, providing a need
for a feature selection algorithm suitable for this setting. Inspired by the formalism
of genetic algorithms, the possibility of developing a feature selection algorithm
suitable for categorical data will be explored.

1.1 Aim
The aim of this thesis is to investigate how a genetic algorithm can be constructed to
handle categorical feature selection. The algorithm will be applied on an industrial
data set consisting of a mixture of numerical and categorical features, where the
vast majority is categorical. The new algorithm will be compared to frequently used
wrapper, filter and embedded techniques in the context of the given data set through
a classification study.

1.2 Limitations
One of the goals of this thesis is to provide an interpretable model in terms of
the original features. Thus, the focus will be entirely on feature selection as a
dimensionality reduction technique. Feature extraction methods like PCA and NMF
will not be covered.

2

2
Feature selection algorithms

This chapter gives an introduction to the main types of wrapper, filter and embedded
feature selection algorithms. Focus will be on commonly used algorithms from each
of these categories and especially on genetic algorithms, which is a wrapper method
that provides a clean framework for feature selection.

2.1 Wrapper methods
A wrapper method uses the performance of a classifier as its metric for evaluating
candidate subsets of features. This means that the selected features will be tuned
for this classifier, which makes the selection less general but can enhance predic-
tion performance for that specific classifier [12–14]. Wrapper methods are generally
computationally expensive since they require a classifier to be invoked each time the
metric is calculated, but their prediction performance is believed to exceed that of
filter and embedded methods [14].

Stepwise selection methods are the most common type of algorithms in the wrapper
setting [13]. While these algorithms are easy to understand and easy to use, they
violate some of the basic properties of statistics and have thus been criticized. A
brief description of one basic stepwise algorithm and the criticism against these
methods are described below. Thereafter follows the theory of genetic algorithms,
which is a potentially more suitable framework for feature selection in the wrapper
setting.

2.1.1 Sequential forward selection
Perhaps the most simple stepwise feature selection method is sequential forward
selection (SFS), which was introduced by Whitney in 1971 [15]. This method starts
with an empty set of selected features and proceeds by adding relevant features to
this set, one by one. In SFS, the feature to be added is decided by the classification
score of a classifier. The feature that provides the largest increase in accuracy is
chosen and added to the set of selected features [16].

This is more rigorously described as follows. Assume that a data set Y consists of
p features Y = {y1, y2, ..., yp}. Initially, the set of selected features is empty, which
is denoted as X0. The output of the algorithm will be a set Xd, containing the d
most relevant features according to the metric, where d is specified prior to running

3

2. Feature selection algorithms

the algorithm. Denote the value of this selection metric for an individual feature yi
as J(yi). In SFS, features are selected according to

yselect = arg max
i

J(Xk + yi),where yi ∈ Y −Xk, (2.1)

i.e., the feature in set of unselected features that increases the value of the criterion
the most is selected. After a feature yselect has been selected, it is added to the set
of k selected features Xk, yielding a new set

Xk+1 = Xk + yselect. (2.2)

This procedure continues until a total of d features have been selected and the set
Xd is returned by the algorithm. More advanced versions of the basic SFS algorithm
have been developed. One of the most frequently used is sequential forward float
selection (SFFS) which was introduced by Pudil et al. in 1994 [17]. This algorithm
allows added features to be removed, if that creates a better solution [16].

2.1.2 Common criticism against stepwise selection methods
Several issues with stepwise feature selection methods have been raised by multiple
authors [18–21]. The main issue concerns multiple hypothesis testing [20], which is
a common issue in statistics. Most statistical tests are designed to be used for one
comparison only. Traditionally, one specifies a p value, which defines the probability
of observing a result that is more extreme than what was observed in the test. If the
p value is low, it is likely that the test shows statistical significance. Now, consider an
example of multiple testing where 50 tests are to be conducted simultaneously and
where the p value of statistical significance is specified to be 0.05. The probability
of observing at least one significant test is calculated as

P (at least one significant) = 1− P (no significant) = 1− (1− 0.05)50 ≈ 0.92. (2.3)

In other words, there is a high probability to observe a significant result for at least
one test, regardless of whether there is a significant feature in the set or not. As the
number of tests approach infinity, this probability approaches 1. In stepwise feature
selection, we conduct one test for each feature that has not yet been included in the
selection and draw conclusions based on the improvement in test score. This multiple
testing procedure can lead to erroneous inferences about a feature’s significance.

2.1.3 Genetic algorithms
Genetic algorithms (GAs) have been around since the 1960’s, when they were first
introduced by John Holland. Lately, they have gained attention due to the new
possibilities that have arisen due to increased computational power, which have
increased their applicability in many areas, including feature selection [22–24]. This
section gives a brief description of how the different components of a GA work and
how they should be modified to fit the feature selection problem. The coverage is
restricted to the components and methods that are used for feature selection in this
thesis.

4

2. Feature selection algorithms

2.1.3.1 Initialization and encoding schemes

In GAs, the term generation is frequently used to describe the current set of candi-
date solutions. The first generation is usually constructed randomly. The informa-
tion in a solution is encoded in a string of bits called a chromosome and each bit
is referred to as a gene. Various ways of encoding information have been proposed,
and two common types are binary encoding and real-value encoding. For the feature
selection problem, it is natural to use binary encoding, since we can interpret a 1 as
a feature being present in the selected subset and a 0 as the feature being excluded.
This is advantageous, since binary encoded chromosomes are more simple to work
with. [25]

2.1.3.2 The fitness function

In order to assess the quality of the feature subset represented in a chromosome,
a fitness value is computed which makes it possible to compare different proposed
subsets. [25] There are several ways of specify the function that computes the fitness
value. For feature selection, it is of most interest to assess the classification accuracy
that is achieved by a subset of features. To this end, the fitness value is computed
by training a classifier and taking the test score of the classifier as the fitness value.

2.1.3.3 Selection

Selection is the step where the chromosomes that should form the next generation
are chosen. Several methods for doing this exist, and the one that will be used in
this thesis is tournament selection. In this method, two chromosomes are chosen at
random and eventually one of them will be selected. With a specified probability p,
the chromosome with the highest fitness value is selected, else the other chromosome
is selected. To mimic behavior in nature, it is appropriate to choose p > 0.5 since
this gives better solutions a larger impact on future generations. However, it is
important to sometimes select the worse chromosome, in order to explore the feature
space further and not get stuck in local optima. [25]

2.1.3.4 Crossover

Crossover is a powerful operation that combines parts of two selected chromosomes
to construct two new chromosomes for the next generation. A splitting point is
selected at random at which both chromosomes will be split. The first new chromo-
some is formed from the first part of chromosome 1 and the last part of chromosome
2. The second new chromosome is formed by the last part of chromosome 1 and
the first part of chromosome 2. A graphical example of the crossover procedure is
illustrated in Figure 2.1

5

2. Feature selection algorithms

1 0 0 1 1 0

0 1 0 1 0 1

1 0

1 1

1 0 0 1 0 1 1 1

0 1 0 1 1 0 1 0

Figure 2.1: In the crossover procedure, a splitting point (red dashed line) is selected
at random and two new chromosomes are formed by combining the different parts
after the split.

It has been noted that this operator can be too powerful, and narrow down the
search space to a local optimum. Thus, it is usual practice to only do crossover with
a specified probability. In the remaining cases, the selected chromosomes are copied
as they are to the new generation. [25]

2.1.3.5 Elitism and mutations

In order to not lose the best solution that has been found, one can use elitism.
Elitism means that the best chromosome is directly copied to the next generation,
unmodified. It is also possible to create more than one copy of the best individual
and copy them to the next generation. [25]

It has been found that the performance of a GA can be enhanced by introducing
mutations to the chromosomes. This is especially simple when binary encoded
chromosomes are used. If a gene is mutated, its value changes from 0 to 1 or
vice versa. Mutation expands the solutions’ coverage in search space and plays
an important role in avoiding to get stuck in sub-optimal areas. However, this is
an element of randomness and should only occur with a relatively low probability,
usually p <= 0.05. [25]

2.2 Filter methods

Filter techniques for feature selection cover both basic methods such as dropping
correlated features but also more sophisticated algorithms that use general patterns
in the data. No assumptions are made regarding any classification algorithm that
may be used after the feature selection has been conducted.

The following sections cover different ways of measuring correlation between fea-
tures. Depending on whether the features for which the correlation is calculated are
both numerical, both categorical or one of each, different measures must be used.
Thereafter, a more complex but common filter algorithm known as Relief, which has
had great impact on the development of filter techniques, is presented.

6

2. Feature selection algorithms

2.2.1 Measures of correlation
The correlation between two numerical features can be calculated by the Pearson
correlation coefficient, which is an intuitive and commonly used measure. If the two
features are categorical, the uncertainty coefficient can be used. For the case where
one feature is numerical and one is categorical, the correlation ratio is an appropriate
choice. The data set that is studied in this thesis contains both numerical and
categorical data and therefore, all three measures are employed. They are described
in the following sections.

2.2.1.1 Pearson Correlation Coefficient

If the population distribution is known, the Pearson Correlation Coefficient (PCC)
is defined mathematically for two random variables X and Y as

ρX,Y = Cov(X, Y)
σXσY

, (2.4)

where Cov(X, Y) is the covariance between X and Y , and σX and σY are the stan-
dard deviations for X and Y respectively [26]. In practice, the population parame-
ters are not known and have to be estimated from a sample. The approximation of
the PCC, rx,y for random samples x = (x1, x2, ..., xn) and y = (y1, y2, ..., yn) can be
computed as

rx,y =
∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
. (2.5)

Intuitively explained, the PCC computes the ratio between how much X and Y
vary with each other, and how much each of the two variables varies themself. If
the absolute value of the PCC is close to 1, the variables are strongly correlated. If
the PCC is close to zero, they are uncorrelated.

2.2.1.2 Uncertainty coefficient

The uncertainty coefficient, also known as Theil’s U, is a correlation measure for
categorical features based on information theory and the concept of entropy [27].
Entropy is a measure of uncertainty for a random variable and is defined as

H(f) = −
n∑
i=1

P (fi) log2(P (fi)), (2.6)

for a sample f = (f1, f2, ..., fn) of a feature in the data. One also defines conditional
entropy between two features f and g as

H(f |g) = −
n∑
i=1

m∑
j=1

P (fi, gj) log(P (fi|gj)). (2.7)

These concepts are used to form the uncertainty coefficient as

U(f) = H(f)−H(f |g)
H(f) . (2.8)

7

2. Feature selection algorithms

The numerator in this expression is the mutual information and explains how much
information about f that is gained by knowledge of feature g. Since the mutual
information is divided by the entropy for feature f , the uncertainty coefficient mea-
sure the proportion of information in f that can be predicted using knowledge of
feature g.

2.2.1.3 Correlation ratio

In order to measure correlations in a data set that consists of both categorical and
numerical values, the correlation ratio measure has been developed. Assume that f
is a numerical feature and g is a categorical feature. The mean f̄x of f when the
categorical feature g has the category x is defined as

f̄x =
∑
i fxi
nx

, (2.9)

where fxi is the numerical value of feature f at observation i and nx is the number
of observations with category x [28]. This is used to define the mean of the entire
feature f as

f̄ =
∑
x nxf̄x∑
x nx

. (2.10)

We use these quantities to define the squared correlation ratio between a categorical
and a numerical feature η2 as

η2 =
∑
x nx(f̄x − f̄)2∑
x

∑
i(fxi − f̄)2

. (2.11)

2.2.2 Relief algorithms
The original Relief algorithm was introduced by Kira and Rendell in 1992 [29] and
was formulated for the binary classification problem, where only two classes of ob-
jects exist. A refined algorithm called ReliefF was developed by Kononenko et al. in
1997 [30] to cover more general classification problems. The core of Relief algorithms
is the computation of distances to the closest element that is in a different class
(near-miss) and the closest element within the same class (near-hit). Kononenko et
al. used the L1 distance between elements, in contrary to the L2 distance that was
used by Kira and Rendell. Each feature i is assigned a weight Wi, which is updated
according to

Wi ←− Wi − dist(Ok, near-hit)i + dist(Ok, near-miss)i, (2.12)

where Ok is an observation chosen at random and dist(·, ·) computes the element
wise L1 distance between two observations if the feature is numerical. If the feature
is categorical, dist(·, ·) returns the value 1 if the feature has the same category in
the two observations and 0 otherwise. The weights are initialized as zero. Expressed
in words, this means that a feature gains a large weight update if the distance to
the closest element with the same label is short, and the distance to the closest
element with a different label is large. If a weight is large, the corresponding feature

8

2. Feature selection algorithms

is considered to be important. The updates are calculated based on m observations,
chosen at random. The procedure is illustrated in Figure 2.2.

Figure 2.2: Relief selects an observation at random (black circle) and computes
the element wise distance to the closest observation in the same class (green circle)
and the closest observation in the other class (red square).

2.3 Embedded methods
Methods that implicitly select features in the process of another task are called em-
bedded methods. Embedded methods typically include decision trees and penalized
regression methods. This section will treat one special case of penalized regression
methods, the LASSO. A common method for feature selection via decision trees is
to use a random forest, which is a larger collection of uncorrelated decision trees.
The following sections introduce the LASSO and random forests.

2.3.1 LASSO
Least Absolute Shrinkage and Selection Operator (LASSO) is a type of embedded
method for feature selection, popularized by Tibshirani in 1996 [31]. The LASSO
tackles the optimization problem

β̂ = arg min
β
‖y −Xβ‖2

2 + λ ‖β‖1 . (2.13)

The first term computes the ordinary least square (OLS) estimation of the linear
regression coefficients. The second term is the LASSO penalty, which constrains the
size of the coefficients β via a L1 penalty. The parameter λ controls the severity
of the constraint and is usually selected via cross-validation. A range of possible
λ values are specified and for each λ, the LASSO coefficients β̂ are calculated and
a validation data set is classified. In cross-validation, the validation data is chosen
at random and the procedure is repeated several times for the same λ, selecting
a new validation set each time. The λ that minimizes the cross-validation error is
selected. The difference between the LASSO and the OLS in a 2-dimensional setting
is illustrated in Figure 2.3. The figure shows how the OLS coefficients are shrunk
to fit the LASSO constraint, causing one of the coefficients to become 0.

9

2. Feature selection algorithms

The feature selection point of view of the LASSO can be accessed by the values
of the β̂ coefficients. Larger values of a coefficient means that the corresponding
feature is important. One can specify a threshold for which variables that should
be considered selected by the LASSO. In the example in Figure 2.3, the feature
corresponding to β1 is excluded from the relevant feature subset since its value is
shrunk to 0.

OLS

LASSO

β2

β1

Figure 2.3: In the LASSO, the β coefficients obtained from an OLS estimation are
shrunk to fit a constraint on the sizes of the coefficients. In the case shown, β1 is
shrunk to 0 and interpreted as excluded from the subset selection.

The LASSO must use one-hot encoded data, which means that a categorical feature
f will be represented by nf − 1 indicator columns, where nf is the number of cate-
gories in the feature f . The category that is present in an observation is represented
by the value 1 and the other columns have the value 0. This creates a risk that only
some of the categories of a categorical feature will be selected. Several variants of the
original LASSO algorithm have been proposed, including the Group LASSO, which
was developed by Yuan and Lin in 2006 to resolve this issue [32]. In Group LASSO,
a number of groups are specified prior to running the algorithm, where each group is
considered together during the feature selection procedure. Each group corresponds
to the categories of a categorical feature. The numerical features are treated as a
group with a single member.

2.3.2 Random forests
A random forest is another type of embedded feature selection method that consists
of a collection of uncorrelated decision trees [33]. Decision trees are described below
in Section 3.4. They can be summarized as a sequence of variable splits that creates
different branches which results in a classification at a leaf node, which is a point
where the branching ends. The idea behind random forests is to make many trees
classify the same data and take the majority vote as the final classification result.

10

2. Feature selection algorithms

In order for this to be useful, it is necessary that the trees are uncorrelated. The
feature selection is achieved during the construction of the random forest.

Suppose that the data set consists of n samples. The random forest algorithm will
construct a collection of N decision trees based on N bootstrap samples with re-
placement of size n from the original sample. Assuming that the data set consists
of p features, the next step is to select a random set of m < p features that are can-
didates for splitting. Using only a subset of the features as candidates for splitting
helps to make the collection uncorrelated. Among the m features, the best splitting
feature is decided and the tree is split at that location. The construction continues
in this fashion with a new set of m features until the tree’s stopping criterion is
reached. A common choice of stopping criterion is the maximum depth of the tree,
which helps avoid creating too complex trees that are prone to overfitting. Several
trees are grown analogously to create the random forest.

A common measure of feature importance is the decrease in node impurity [33].
Node impurity is calculated using the Gini index, as

K∑
k=1

p̂k(1− p̂k), (2.14)

where K is the number of classes and p̂k is the proportion of class k at a specified
node. If there is only one class present at a node, the Gini index obtains the value
0, which means that the node is pure. If a split at a feature leads to a large decrease
in node impurity, this feature is important for partitioning the feature space into
different class labels. The Gini index above is defined for a single decision tree. In
a random forest, the decrease in node impurity for each feature is averaged over all
trees in the forest.

11

2. Feature selection algorithms

12

3
Classification Algorithms

Feature selection efficiency is dependent on the classification algorithm used. As de-
scribed above, wrapper methods directly utilize classification algorithms for choosing
the best subset of features, yielding a selection that is tuned for a specific classifi-
cation algorithm. Depending on the properties of the classifier, different selections
may be obtained. In this thesis, five commonly used classification algorithms will
be considered: artificial neural networks, support vector machines, the Naive Bayes
classifier, decision trees and logistic regression. These are used for selecting features
in the wrapper algorithms, as well as for evaluating the performance of the final
subset selections for all feature selection algorithms. These classifiers are described
briefly in the following sections.

3.1 Artificial neural networks

An artificial neural network (ANN) is a computation method, based on a network
of simple computational nodes, called artificial neurons, that are connected through
weighted edges [34]. The neurons are usually depicted in different layers, as illus-
trated in Figure 3.1. A basic type of an ANN is the multilayer perceptron (MLP),
which consists of layers of neurons where all neurons in one layer are connected to
every neuron in the following layer. The first layer is the input layer that reads the
input signals and passes them on to the next neuron layer. Although the input layer
does not consist of neurons, they are usually illustrated in the same way as neurons
are. Each connection in the network has an associated weight and each neuron has
a bias, which are parameters that are tuned during the training. The final layer is
the output layer, from which interpretations of the network’s prediction are made.

3.2 Support vector machines

A support vector machine (SVM) aims to optimize a hyperplane that separates dif-
ferent classes in the feature space [35]. Support vectors utilize the data points that
are closest to the decision boundary that separates two classes, which are the points
that have impact on the hyperplane’s orientation. An SVM finds the optimal hy-
perplane in the sense that the distance between the tips of the support vectors from
each class is maximized. This is illustrated for the binary classification problem in
Figure 3.2.

13

3. Classification Algorithms

Input Output

Figure 3.1: A simple ANN with two hidden layers of neurons. Each edge between
neurons has an associated weight and each neuron has a bias, which are parameters
that are fitted to training data. The prediction result is read from the output layer
values.

Figure 3.2: A support vector machine uses support vectors defined by the obser-
vations that are closest to the decision boundary to create supporting hyperplanes
(dashed lines). These hyperplanes are used to find an optimal hyperplane (thick
line) to separate different classes.

3.3 Naive Bayes classifiers
The Naive Bayes (NB) classifier is based on Bayes theorem,

P (y|X) = P (X|y)P (y)
P (X) , (3.1)

where X = (x1, x2, ..., xn) is the feature vector and y is the label [36]. One strong
assumption that the Naive Bayes classifier makes is full independence between fea-
tures. It is from this “naive” assumption that the classifier got its name. If this
assumption is made, the conditional probability P (X|y) can be written as

P (X|y) = P (x1, x2, ..., xn|y) = P (x1|y)P (x2|y)...P (xn|y). (3.2)

14

3. Classification Algorithms

The denominator in Bayes theorem can be ignored when predicting the class label,
as it does not depend on y. The predicted class label by the Naive-Bayes classifier
is the label that maximizes the numerator in Equation 3.1, which is formulated as

y = arg max
y

P (y)
n∏
i=1

P (xi|y). (3.3)

If the features are categorical, it is straightforward to calculate the probabilities by
simply counting the number of occurrences as

P (xi|y) = #(xi, y)
#y . (3.4)

If the features are real-valued, an assumption on the feature distribution must be
made. It is common to assume normal distribution, which means that the probabil-
ities are computed as

P (xi|y) = 1√
2πσ2

y

exp (−(xi − µy)2

2σ2
y

). (3.5)

3.4 Decision trees

A decision tree is a simple classifier that provides an intuitive perspective of how
the classification is made. In the construction of a decision tree, a set of optimal
splits in the data is decided. The optimal split is found by first finding the best
splitting point for each feature in the data set. Several classification criteria exist
for determining the best splitting point for a feature. A simple and common criterion
to use is the Gini index, defined as

K∑
k=1

p̂mk(1− p̂mk), (3.6)

where p̂mk is the proportion of observations of class k in the candidate splitting
point in node m [33]. The candidate that results in the greatest decrease in the Gini
index value is chosen as splitting point. The difference is calculated as the difference
between the current node’s Gini index and all children nodes’ Gini indices. An
example for the case of two features in a binary classification problem is illustrated
in Figure 3.3. Each node in the tree corresponds to a region in feature space. As
is seen in the figure, one split has been made which created two new regions. The
leftmost region in the figure corresponds to a node with Gini index 0, since there
is only one class present in that region. The construction continues with new splits
until a stopping criterion is reached. A common stopping criterion is a specified
maximum depth of the tree, which helps to avoid overfitting.

15

3. Classification Algorithms

x1

x2

t1

x1 <= t1

0 0.219

0.497
True False

Figure 3.3: A decision tree after one split. An optimal splitting point t1 was found
in feature x1. The partitioning of the feature space after the split contains one region
which is pure since its Gini index is 0.

3.5 Logistic regression classifiers
In logistic regression, a logistic function (commonly called a sigmoid function) is
employed, which transforms the variable values to be in the the range [0,1] [33], via
the function

f(x) = 1
1 + exp (−x) . (3.7)

In the basic formulation of logistic regression, binary classification is assumed. De-
note the probability of an observation belonging to class 1 as p = P (Y = 1|X). The
logistic regression formula for p is obtained by feeding the standard linear regression
equation

y = β̂0 + β̂1x1 + ...+ β̂nxn, (3.8)

into the sigmoid function, yielding

p = P (Y = 1|X) = 1
1 + exp (−(β̂0 + β̂1x1 + ...+ β̂nxn))

. (3.9)

The logistic regression parameter vector ~̂β = (β̂0, β̂1, ..., β̂n) is fitted to training data
using Maximum-Likelihood Estimation (MLE) [33].

16

4
Method

The raw data set that is collected from a database consists of 107 000 observations
and 25 features, where 21 of these features can be viewed as categorical. In order
to be able to work with the data and to get useful results, it is necessary with
preprocessing of the data, which is one of the most important steps in the work
procedure. It includes handling missing values, transforming features into more
convenient forms, handling small categories of categorical features and combat issues
with text features that have been entered manually. The steps taken to this end are
described below. Thereafter, the design of the GA and the experimental procedure
is explained. The experiments include running the wrapper, filter and embedded
methods described in the theory section.

4.1 Data preprocessing
Correlations were mentioned as a filter technique in the theory section and due to
its generality, it is often included in the preprocessing of the data. Figure 4.1 shows
a partition of features that are fully correlated. The correlation values have been
calculated using Pearson’s correlation criteria, the uncertainty coefficient and the
correlation ration, described in Section 2.2.1. Full correlation means that no ad-
ditional information about the data is gained by including more than one of the
correlated features. Instead, the additional features are sources of undesirable noise
that could provide difficulties for the machine learning algorithms to classify the
data. They are also contributing to an increased execution time of the programs.
The first step is to remove all features that are close to fully correlated to another
feature. Features that are not shown in the figure have lower correlation rates and
are not affected by the preprocessing at this step.

In some cases, it can be beneficial to transform a feature into a different form. An
example of this can be found in one of the features that specify the identification
number of the care firm that handles the object. It is known that many objects do
not have any care firm and these entries are represented by empty values. Since
this is a decision that the company has made, these empty values should not be
considered to be missing values where the data is unknown. However, there is a
need to handle the empty values in order to use those observations in the feature se-
lection algorithm. This is achieved by transforming this feature to a boolean feature
that specifies whether or not an object has a care firm. By doing this, information
about the care firm identification number is lost, but it allows the usage of a larger

17

4. Method

Figure 4.1: Correlation matrix for a partition of features in the data. Some features
are fully correlated to each other and should therefore be removed.

proportion of the data, which is more important in this case.

Two features contain date-time information which must be transformed in order to
be usable. This is achieved by transforming them into numerical features, where
the number of days that differ between the entry and a reference date is calculated.
The choice of reference date is arbitrary and is in this case chosen as the date of
data retrieval from the database. All numerical features are thereafter scaled using
the scikit-learn StandardScaler function in Python [37], which sets the mean of
that feature to 0 and the standard deviation to 1. Standardizing numerical features
is essential for achieving good performance, since classifiers otherwise struggle with
comparing features that have different units, which is the case in general.

A majority of the features in the data set is of categorical nature, and some fea-
tures can obtain a large number of different values. For instance, one of features in
the data set is categorical with roughly 9000 different possible categories. Simply
using one-hot encoding on this feature would give 9000 columns, where the number
of available observation for each individual category would be too small to make
inferences. A proposed way to handle this is to bundle up the categories in an ap-
propriate way, to create larger categories. However, it is not always possible to find
a suitable way to bundle up categories due to the characteristics of the features. In
those cases, a threshold for the number of occurrences that a category needs to have
is specified. Observations that contain a category that falls below this threshold are
removed.

One feature consists of manually entered text strings, which specifies the name of
the manufacturer of the inspection object. There is a lack of convention on how

18

4. Method

these values are entered, giving rise to many different categories that represent the
same manufacturer. A simple text processing algorithm can be employed to par-
tially resolve this issue. The algorithm removes white space, certain keywords that
are chosen from manual inspection of the data, case-sensitivity and special charac-
ters that are not numbers or letters. This greatly reduces the number of categories,
but there might still be misspelled words that are not captured from this algorithm.
These are however few and for simplicity, these observations are removed.

The data consists of many different groups of inspection objects and it is a rea-
sonable hypothesis that there are differences in which features that are important
between these groups. Therefore, the data set is split into groups that contain only
one object group and each group is treated separately. For simplicity, only the two
largest groups of objects will be treated further in this thesis. The largest group
contains information from elevator inspections and the second largest group contains
information about gate inspections.

After the preprocessing, the data set consists of the columns described in Table
4.1. The categories column shows the number of categories in the elevator and the
gates group respectively. Note that feature 1, 8 and 9 are constants, since they are
categorical variables with only one category after the preprocessing. These could be
removed at this stage, as an additional preprocessing step. However, by including
them, it is possible to test whether the feature selection algorithms manage to remove
them.

Number Feature name Type Categories
1 EmployeeCompanyId Categorical 1/1
2 EmployeeSectionId Categorical 7/6
3 InspectionObjectMonth Categorical 12/12
4 InspectionObjectSiteId Categorical 18/11
5 InspectionObjectStatus Categorical 2/2
6 InspectionObjectIsCompanyObject Categorical 2/2
7 InspectionObjectTypeId Categorical 7/2
8 InspectionObjectGroupId Categorical 1/1
9 InspectionObjectCategoryId Categorical 1/1
10 InspectionObjectLocationCity Categorical 15/10
11 Manufacturer Categorical 5/5
12 Year of manufacturing Numerical -
13 ServiceDefintionId Categorical 3/2
14 ServiceDefintionServiceInterval Categorical 2/2
15 ServiceDefinitionIsRecurring Categorical 2/2
16 ActivityResultTimeSpent Numerical -
17 HasInspectionObjectCareFirm Categorical 2/2
18 DaysSinceEmployeeStartDate Numerical -
19 DaysSinceActivityResultCompleted Numerical -

Table 4.1: The features in the data set after preprocessing.

19

4. Method

4.1.1 Class imbalance
In addition to preprocessing of the features, it is also necessary to consider the labels
in the data set. Four different labels exist: approved, approved with remarks, not
approved and not completed. Roughly 81% of the inspections in the raw data set
results in approval, 14% in approved with remarks, 2.6% not approved and 2.4% not
completed. This means that the data sets suffers from severe class imbalance. If a
classifier would be trained on this data, cases that result in approval would dominate
the training and it would be difficult for classifiers to capture the characteristics of
the smaller classes due to their low prevalence, yielding poor performance. It is
therefore necessary to handle this imbalance in order to create a classifier that does
not only classify entries as approved. The most simple solution is to undersample the
most frequent classes by removing a proportion of observations that yield approved
and approved with remarks. This could however remove important observations
from the data, especially in this case where the imbalance is so severe that it would
require a majority of the observations to be discarded. Another possibility is to use
weighted training, where entries from the smaller classes have more impact on the
training. While this works in theory, problems still arise when the data is randomly
split into training, validation and test sets. Each set may only contain a few entries
of the smaller classes, which creates numerical problems.

In order to achieve as good results as possible for the data set at hand, the clas-
sification problem will be transformed into a binary classification problem, where
everything that is not approval is bundled together in the same class. This is based
on the hypothesis that objects which are not fully approved show similar character-
istics. The approved class is then slightly undersampled, to create a data set where
60% of the labels are approvals and 40% are the other possibilities.

4.1.2 Ethical considerations
The raw data set contains information about individual employees in terms of their
start date and an identification number. In order to not present results that could
lead to consequences for these individuals, the information about their identification
number is dropped from the analysis entirely. Information about their start date
gives an idea of the experience of the employee, which could impact the results and
provide useful information. It is thus possible to consider the experience of the
employee as a feature without being able to directly identify individuals.

4.2 Designing the genetic algorithm
As was stated in Section 2.1.3.1, binary encoding is a suitable choice for GAs in
the feature selection problem. In order to handle categorical data, the decoding
procedure for the chromosomes uses a map data structure that takes the feature
index as key and returns the corresponding columns in the one-hot encoded version
of the data set, to make sure that all categories of a categorical feature are selected.
This is an approach similar to what is used in the Group Lasso, where groups are

20

4. Method

pre-specified and always selected together. The decoding procedure is illustrated in
Figure 4.2. When the fitness value of a chromosome is to be computed, all genes
that carry the value 1 are used as keys in the map. A classifier is then trained
and tested and the test score is used as fitness value. This is the only part of the
algorithm that uses one-hot encoded data. The other components of the GA are
implemented as described in Section 2.1.3 and the hyperparameters, presented in
Table 4.2, are chosen based on recommendations in the literature [25].

Parameter Value
Population size 50

Tournament selection probability 0.9
Tournament size 2

Mutation probability 0.05
Number of elitism copies 1
Number of generations 200

Number of runs 100

Table 4.2: Hyperparameters used for the GA.

1 0 0 1 1 0

{
0
1
2
3
4
5

{0,1,2,3}
{4,5,6}
{7}
{8,9,10,11,12}
{13}
{14,15,16}

{0,1,2,3,8,9,10,11,12,13}

Decoded chromosome

Figure 4.2: Example of the decoding procedure of a chromosome. The correspond-
ing list of encoded column indices for each active gene in the chromosome is collected
to yield a list of column indices to include in the computation of the fitness value.

4.3 Experimental procedure
This section describes how each of the feature selection algorithms described above
is used to select features in the data set.

The SFS algorithm is executed with each of the five classifiers over the full range
of features, making it possible to study how the test score evolves as more features
are included. Since the classifiers require one-hot encoded data, a modification of
the original SFS algorithm is necessary in order to handle categorical features. The
same technique that is used for the GA is employed, where all one-hot encoded
columns belonging to a categorical feature are tested for inclusion together.

21

4. Method

The initialization of the chromosomes in the GA typically introduces a bias towards
certain areas of the feature space. This can have a significant impact on the sub-
sequent generations. To reduce this effect, the algorithm is executed 100 times and
the selected feature subset from each execution is recorded. By counting the num-
ber of times that each feature is selected in the best chromosome at the end of the
execution, the importance of each feature can be estimated. It is plausible to believe
that a feature that is present in 90% of the cases is more important than a feature
that is present in 70% of the cases, although both may be considered important for
describing the model. To construct the feature subset, features are added sequen-
tially in descending importance order and the corresponding classifier is trained and
tested to estimate how much the dimensionality of the data set can be reduced.

The experimental procedure investigates the binary classification problem, which
means that the original Relief algorithm may be used. It is however used with the
L1 distance measure, as was described in Section 2.2.2. Relief is able to handle cat-
egorical features without the need of numerical encoding. In this case, the distances
for the weight updates obtain value 0 if the categories are the same, and 1 otherwise.
The number of weight updates m is chosen to be 1000.

LASSO requires numerical encoding of categorical features, which is achieved by one-
hot encoding. In order to select all categories of a categorical feature, the Group
LASSO algorithm is used. Although all categories are selected as a group during
training, Group LASSO will return an importance value for each category which
can differ slightly between categories. The common score for the categorical feature
is calculated as the average score of the categories.

Random forests are able to handle categorical features without numerical encod-
ing. The number of trees in the forest is specified to be 150, which is the standard
choice in the scikit-learn implementation [37]. Further, a maximum of 20 splits is
allowed for each tree and 10-fold cross validation is used to avoid overfitting the trees.

The features in the best subset obtained from each feature selection algorithm is
extracted from the full data set and the classifiers are trained and tested using this
data. The test scores are compared to the score obtained from the full data set from
each classifier.

22

5
Results

This chapter presents the results obtained by the different feature selection algo-
rithms on the two partitions of the data. First, the largest group of objects, eleva-
tors, will be presented. Thereafter follows a more brief presentation of the results
for the second largest group of objects, gates. All features in this section are referred
to by their index, which are explained above in Table 4.1.

5.1 Sequential forward selection results
Figure 5.1 shows the test score obtained against the number of features included
in the data set for the SFS algorithm. The Naive Bayes classifier has a range of
roughly optimal test scores for 3-10 features included, whereas the other classifiers
have a roughly constant score from 3 features all the way to the full data set. The
performance of the Naive Bayes classifier deteriorates when the number of features
approach the full data set.

5.2 Genetic algorithm results
Figure 5.2 illustrates the evolution of solutions found by the GA using a Naive Bayes
classifier. The thick green line shows the test score obtained by the best chromo-
some found at each generation and the thick blue line shows the average test score
of all chromosomes at each generation. The plots are obtained by averaging over
100 individual runs of the algorithm. The faded lines show the test scores from each
individual run. The variances of both the average and the best solution between
individual runs are large, which illustrates the need of running the GA multiple
times in order for the results to be reliable.

Rerunning the GA several times makes it possible to get an idea of the relative
importances of the features by counting how frequently they occur in the best chro-
mosome, which provides the information needed to select the best features. Figure
5.3 illustrates the proportion of occurrence for each feature in the data set using
a Naive Bayes classifier to compute the fitness values. The feature enumeration is
explained in Table 4.1. It is noted that the numerical features 12, 16, 18 and 19 are
all important. The features 1, 8 and 9 are constants, as shown in Table 4.1, and are
all given quite large importance, which is undesirable as they do not provide any
qualitative information to aid the classification procedure.

23

5. Results

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Number of features

0.55

0.60

0.65

0.70

Te
st

 sc
or

e
SFS

LogReg
SVM
DT
ANN
NB

Figure 5.1: The test score obtained from feature subsets created by the SFS
algorithm for the elevator data. The Naive Bayes classifier has a range of 3-10
features where it performs well, but when the number of features approach the full
data set, the performance is significantly reduced. The other classifiers perform
increase their test scores until 3 features are included in the set, after which the
performance is roughly constant.

0 25 50 75 100 125 150 175 200
Generation

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 a
cc

ur
ac

y

Naive Bayes generations

Average selection
Best selection

Figure 5.2: The evolution of the best chromosome (thick green) and of the average
of all chromosomes (thick blue) as a function of the number of generations averaged
over 100 runs of the GA, where a Naive Bayes classifier is used. The faded green
and blue lines illustrate the results of each individual run. The variance between
runs is large for both the average chromosome and the best chromosome.

24

5. Results

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Feature

0.0

0.2

0.4

0.6

0.8

Pr
op

or
tio

n
of

 o
cc

ur
re

nc
e

Naive Bayes occurrences

Figure 5.3: The proportion of occurrence in the best chromosome for each feature
in the data set obtained by the GA with a Naive Bayes classifier for the elevator
data.

The same experimental procedure is used with the other four classifiers. Figures 5.4,
5.5, 5.6 and 5.7 show the results obtained with a decision tree classifier, a logistic
regression classifier, an ANN classifier and an SVM classifier respectively. Compared
to the Naive Bayes results, there is more ambiguity in which features that are im-
portant for these classifiers. However, for the decision tree classifier in Figure 5.4, it
is clear that features 12 and 19 are not of importance and in Figure 5.6, feature 11
is less important for the ANN. It is notable that the excluded features differ, which
illustrates the tuning towards the classifier that is a general property for wrapper
methods. As was the case for the Naive Bayes classifier, the constant features 1, 8
and 9 are given large relative importance for the four other classifiers.

5.3 Relief results
The weights obtained from the Relief algorithm provide a measure of relative im-
portance and is presented in Figure 5.8. Note that this measure is different from
the one that was used for the GAs and it is therefore not possible to compare the
values on the y axis. The weights are normalized to give the most important feature
the value 1.0. Contrary to the GA, the Relief algorithm manages to filter out the
constant features 1, 8 and 9. The Relief algorithm gives large importance to the
numerical features 12, 16, 18 and 19, and also primarily the categorical features 7
and 11. Overall, the distinction between relevant and irrelevant features is more
evident for the Relief algorithm than in the GA, since many weights are 0 in this
case.

25

5. Results

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Feature

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pr
op

or
tio

n
of

 o
cc

ur
re

nc
e

Decision tree occurrences

Figure 5.4: The proportion of occurrence in the best chromosome for each feature
in the data set obtained by the GA with a decision tree classifier for the elevator
data.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Feature

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pr
op

or
tio

n
of

 o
cc

ur
re

nc
e

Logistic regression occurrences

Figure 5.5: The proportion of occurrence in the best chromosome for each feature
in the data set obtained by the GA with a logistic regression classifier for the elevator
data.

26

5. Results

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Feature

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
of

 o
cc

ur
re

nc
e

Artificial neural network occurrences

Figure 5.6: The proportion of occurrence in the best chromosome for each feature
in the data set obtained by the GA with a multilayer perceptron neural network
classifier for the elevator data.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Feature

0.0

0.2

0.4

0.6

0.8

Pr
op

or
tio

n
of

 o
cc

ur
re

nc
e

Support vector machine occurrences

Figure 5.7: The proportion of occurrence in the best chromosome for each feature
in the data set obtained by the GA with an SVM classifier for the elevator data.

27

5. Results

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Feature

0.0

0.2

0.4

0.6

0.8

1.0
No

rm
al

ize
d

we
ig

ht
Relief importance

Figure 5.8: Feature importances obtained by the Relief algorithm for the elevator
data.

5.4 Embedded results
Figure 5.9 illustrates the Group LASSO coefficients obtained. The values for the
categorical features are calculated as the average of each category value, as was
described in the Method section. The results are similar to the Relief algorithm in
the sense that the numerical features are all of importance. However, the LASSO
also includes some additional features that was not selected by Relief. Similar to
Relief, the Group LASSO manages to filter out the constant features 1, 8 and 9.
The results from the LASSO are also similar to the results obtained by the random
forest, which are shown in Figure 5.10. The LASSO and the random forest consider
the same subset of features to be important, but there are some differences in the
relative importances of these features.

5.5 Evaluation of subset prediction performance
As seen by the bar charts for the GAs, it is not obvious which features to include in
the subset selection by simply inspecting the charts. To make the subset selection
less subjective, features are included one by one based on the relative importance
in descending order. Whenever a feature is added, the corresponding classifier is
trained and a test score is computed. The results from doing this with the GA
rankings are shown in Figure 5.11. It is noted that the Naive Bayes classifier ob-
tains a significantly better result with 6-10 features than when the full data set is
used. For the other classifiers, the test scores increase to a roughly constant level
already at three features, which opens up for a significant reduction in the number

28

5. Results

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Feature

0.0

0.2

0.4

0.6

0.8

1.0

Be
ta

 c
oe

ffi
cie

nt
LASSO importance

Figure 5.9: Feature importances obtained by the Group LASSO algorithm for the
elevator data.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Feature

0.0

0.2

0.4

0.6

0.8

1.0

Im
po

rta
nc

e

Random forest importance

Figure 5.10: Feature importances obtained by the random forest algorithm for the
elevator data.

29

5. Results

of features needed.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Number of features

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 sc
or

e

LogReg
SVM
DT
ANN
NB

Figure 5.11: The evolution of test accuracy as features from the GA are included
in descending relative importance order for the elevator data. Naive Bayes (purple)
obtains significantly higher scores for 6-10 features. The decision tree (green) is
approximately constant, with just a small difference between including one feature
and all features. The other classifiers show a significant increase at 3 features.

Table 5.1 shows the classification score for the elevator data by using the best subset
selection from each algorithm and the full data. The selections were obtained from
Figure 5.1 for the SFS, Figure 5.11 for the GAs and by inspection of the bar charts
for the other algorithms. The subsets have been tested with each of the five clas-
sifiers presented in Chapter 3. Each numerical value in the table shows the mean
value over 10 runs together with a 95% confidence interval. In each row in the table,
the same split into training and test sets is used to calculate both the reduced score
and the full score. However, a new split is generated at a new row. Due to different
splits in training and test data, the scores show a slight variation, as indicated in
the full data column.

The subset selections obtained by the GAs and SFS appear to outperform classifiers
trained on the full data set, however it is only statistically significant for the Naive
Bayes classifier. The LASSO and random forest subsets for the Naive Bayes classi-
fier also show a statistically significant improvement compared to the full data set.
Notably, the subset obtained from the Relief algorithm for the Naive Bayes classifier
performs significantly worse than the full data set. For the other classifiers, the
results differ with some performing better and some performing worse than the full
data set. However, none of these differences are statistically significant.

30

5. Results

Algorithm Classifier Reduced data score Full data score
GA NB 0.650± 0.0240 0.524± 0.0253
GA DT 0.699± 0.0186 0.688± 0.0229
GA ANN 0.681± 0.0152 0.678± 0.0168
GA SVM 0.718± 0.0156 0.705± 0.0141
GA LogReg 0.693± 0.0153 0.688± 0.0157
SFS NB 0.594± 0.0163 0.513± 0.0143
SFS DT 0.699± 0.0126 0.690± 0.0128
SFS ANN 0.687± 0.0178 0.678± 0.0202
SFS SVM 0.698± 0.0231 0.686± 0.0249
SFS LogReg 0.694± 0.0131 0.685± 0.0129
Relief NB 0.456± 0.0239 0.516± 0.0323
Relief DT 0.667± 0.0145 0.673± 0.0169
Relief ANN 0.679± 0.0123 0.665± 0.0132
Relief SVM 0.684± 0.0157 0.702± 0.0119
Relief LogReg 0.702± 0.0155 0.704± 0.0131
LASSO NB 0.559± 0.0336 0.504± 0.0187
LASSO DT 0.686± 0.0179 0.685± 0.0213
LASSO ANN 0.682± 0.0193 0.679± 0.0161
LASSO SVM 0.698± 0.0204 0.698± 0.0205
LASSO LogReg 0.698± 0.0155 0.693± 0.0200
RF NB 0.562± 0.0304 0.505± 0.0199
RF DT 0.693± 0.0243 0.693± 0.0254
RF ANN 0.671± 0.0174 0.677± 0.0121
RF SVM 0.709± 0.0159 0.697± 0.0167
RF LogReg 0.700± 0.0184 0.689± 0.0166

Table 5.1: Test score for the reduced data sets compared to the full data set for
the elevator data.

31

5. Results

5.6 Second group of objects
The algorithms were run on a partition of the data set that contains inspection data
on gates, which is the second largest group in the data after preprocessing. The test
score plotted against the number of features for the SFS is shown in Figure 5.12
and for the GA in Figure 5.13. More detailed results about each feature selection
algorithm are found in Appendix A. It is obvious from the plots that the classification
accuracy is much higher for this group of objects compared to the previous. It is also
remarkable that the classification performance for all classifiers is almost maximal
when the most important feature is used solely. Similar to the largest group, the
Naive Bayes classifier deteriorates when too many features are included and the
worsening is more severe for this partition of the data. However, the range of
features that performs well is larger for this partition of the data compared to the
elevator group.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Number of features

0.5

0.6

0.7

0.8

0.9

Te
st

 sc
or

e

SFS

LogReg
SVM
DT
ANN
NB

Figure 5.12: The evolution of test accuracy as a function of the number of features
included by the SFS for the gates data. All classifiers achieve good performance using
only the most importance feature. The Naive Bayes classifier (purple) performance
is reduced when the number of features approach the full data set, with a cutting
point at 12 features.

The subsets were trained and tested in an analogous fashion to the first group
and these results are presented in Table 5.2. Similar to what was observed in the
first group, the GA and SFS selections for the Naive Bayes classifier significantly
improves the test score compared to the full data set. This is not achieved by
the other algorithms. For the other classifiers, the differences are smaller. The
confidence intervals for the Naive Bayes classifiers trained on the full data set are
wide, which indicates that there is a large dependence on how the data is split into
training and test sets.

32

5. Results

Algorithm Classifier Reduced data score Full data score
GA NB 0.889± 0.0103 0.397± 0.0597
GA DT 0.903± 0.0106 0.896± 0.00701
GA ANN 0.899± 0.0192 0.893± 0.0193
GA SVM 0.893± 0.0152 0.891± 0.0162
GA LogReg 0.901± 0.0139 0.901± 0.0144
SFS NB 0.882± 0.0163 0.349± 0.0872
SFS DT 0.898± 0.0146 0.882± 0.0134
SFS ANN 0.896± 0.0187 0.891± 0.0170
SFS SVM 0.888± 0.0158 0.883± 0.0107
SFS LogReg 0.893± 0.0151 0.893± 0.0151
Relief NB 0.328± 0.0537 0.423± 0.105
Relief DT 0.881± 0.0184 0.879± 0.0161
Relief ANN 0.891± 0.0137 0.899± 0.0176
Relief SVM 0.888± 0.0132 0.886± 0.0133
Relief LogReg 0.893± 0.0184 0.892± 0.0171
LASSO NB 0.390± 0.0659 0.486± 0.0508
LASSO DT 0.872± 0.0118 0.874± 0.0149
LASSO ANN 0.898± 0.00944 0.900± 0.00789
LASSO SVM 0.880± 0.00754 0.879± 0.00761
LASSO LogReg 0.901± 0.0124 0.901± 0.0126
RF NB 0.447± 0.139 0.398± 0.0879
RF DT 0.876± 0.0173 0.874± 0.0179
RF ANN 0.899± 0.0112 0.898± 0.0127
RF SVM 0.883± 0.0119 0.879± 0.0125
RF LogReg 0.889± 0.0123 0.889± 0.0112

Table 5.2: Test score for the reduced data sets compared to the full data set for
the gates data.

33

5. Results

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Number of features

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 sc
or

e

LogReg
SVM
DT
ANN
NB

Figure 5.13: The evolution of test accuracy as a function of the number of features
included by the GA for the gates data. All classifiers achieve good performance using
only the most importance feature. The Naive Bayes classifier (purple) performance
is reduced when the number of features approach the full data set, with a cutting
point at 13 features.

34

6
Discussion

The following sections will analyze the differences in the results from the feature
selection algorithms and in which situations each algorithm is preferred.

6.1 Differences in subset selections
As was argued in Section 2.2, filter methods only use general information about
the data, such as correlations and distances, and are not impacted by any classifi-
cation algorithm. A comparison between the subset selections obtained by Relief,
LASSO and the random forest in Figures 5.8, 5.9 and 5.10 respectively reveals that
the selection obtained by the Relief algorithm is a subset of the selections obtained
by the other algorithms. This shows that the random forest and the LASSO algo-
rithms capture the same general information about the data, but may also include
additional features. It was further observed that the LASSO and the random forest
included the same features in their subsets, however with different relative impor-
tances between the features. The GA selections, on the other hand, are different
from the other selections in that they sometimes ignore features that are relevant
in general. An example is found in the GA with decision tree as shown Figure 5.4
where feature 12 and 19 were excluded, but they are included in the Relief selection.

The differences in the results observed between different feature selection algorithms
argue that one should not draw conclusions about important features from just one
algorithm. Which selection that is most suitable depends on the goal of the feature
selection. In terms of general interpretability, the Relief algorithm is likely to pro-
vide the best information since this algorithm does not make use of any classifier.
Also, the embedded methods showed similar results when applied to the data set
used in this thesis and are also likely to provide useful general information about
the data. If the goal is to enhance the prediction performance of a classifier, GAs
are a suitable choice as seen from the test data prediction results in Tables 5.1 and
5.2. The feature subsets that were constructed by the GA are however not likely to
provide general information about the most important features, due to the fact that
features found by the Relief are missing for some of the GA results. However, for
classifiers that make explicit assumptions on the data, such as independence between
features which is assumed by the Naive Bayes, the selection can be interpreted as
the subset that best fulfills this criterion, which is a general statement about the
data.

35

6. Discussion

A drawback with the GAs used in the thesis is that they tend to include constant
features, which was observed with all classifiers. This result is in contrast to the
results obtained by Relief, LASSO and random forest who all manage to remove
these features. The reason for GAs’ tendency to include these features in the subset
selection might be due to the fact that they do not provide any bad information
since they are free from noise. The fitness function of the GA that was used does
not provide any penalty regarding overly complex models, which is done in for exam-
ple the LASSO. Thus, the GA selection solely relies on how the classifier test score
is impacted by the features, and this score is not reduced by noise-free, constant
features. One could remove features with low variance manually, as a preprocessing
step, but as was observed, several feature selection algorithms manage to filter out
such features and it is desirable to incorporate as much of the selection as possible
in one algorithm. Possible improvements to the GA are discussed below in Section
6.6.

6.2 Differences in prediction performance
The classification performance on test data for the different subset selections in
Tables 5.1 and 5.2 shows that the subset selections obtained by the GAs and SFS
appear to outperform the full data set. The results are most significant for the
Naive Bayes classifier. A comparison of the results from the different feature se-
lection algorithms where the Naive Bayes classifier is used shows that the GA and
SFS selections performs better than the subsets obtained from Relief, LASSO and
the random forest, which verifies the hypothesis that wrapper methods lead to an
enhanced prediction performance. The large differences for this classifier are likely
due to the crude assumption about independence between features. The features in
the full data set and in the subsets obtained by the other feature selection algorithms
are likely to violate this assumption more than the GA and SFS subsets and thus
obtain a lower prediction score. Since the Naive Bayes classifier makes the strongest
assumptions about the data among the tested classifiers, the advantages of a tuned
selection is greatest for this classifier.

Although the Naive Bayes classifier usually performs worse than other classifiers, it
is still of importance in certain areas of applications. One such area is text classifica-
tion which usually deals with a large number of features [38–41]. In this application,
it is advantageous with a fast classifier that scales well with increasing number of
features, which is offered by the Naive Bayes classifier. As the results in this the-
sis indicate, the feature subset selections obtained using a wrapper method such as
a GA are necessary in order to reduce the violation of the independence assumption.

Finally, it is noted from the wide confidence intervals in Table 5.1 and especially
in Table 5.2 that the results for the Naive Bayes classifier fluctuates more, when
different splits into training and test data sets are used. Since this classifier deals
explicitly with probabilities, even small changes in prevalences of a class in a set can
have significant impact on the results. The reason why the second group has larger

36

6. Discussion

confidence intervals is likely due to that it contains fewer observations, which makes
differences in class prevalence more significant. In order to narrow the intervals,
more data points would be required which would make the prevalences more robust.

6.3 Computational time
The computational time required for the wrapper methods is much larger than for
the filter and embedded methods due to the frequent invocations of the classifier.
SFS requires p(p + 1)/2 classifiers to be trained, where p is the number of features
in the data set. The GAs will train N · ng · nr classifiers, where N is the popu-
lation size, ng is the number of generations and nr is the number of runs. These
hyperparameters for the GA are likely to be increased slightly if a larger data set
is used, however they should not differ too much. Assuming that these parameters
always take the values in Table 4.2, the GA will require more classifiers than SFS up
until roughly 1400 features, so for most data sets, the GA is more computationally
expensive.

The choice of classifier greatly impacts the time, with neural networks, logistic re-
gression, decision trees and support vector machines requiring significantly more
time than Naive Bayes classifiers. For large data sets, this can make the wrapper
approach unfeasible, at least with the best performing classifiers. As was argued
above, it is important to not discard worse performing classifiers such as the Naive
Bayes, since they might be more feasible in applications with extremely large data
sets. For the most time consuming classifiers, the prediction results do not differ
much between the different feature selection algorithms. Since the filter and em-
bedded methods are more computationally efficient, they are likely to be a better
choice in these situations.

6.4 Differences between inspection groups
The two largest groups of inspections were investigated in the results section. As
shown by the GA results in Figure 5.11 and Figure 5.13, the classification accuracy
is much higher for the gates group. A remarkable note for the gates group is that
one achieves almost the same classification accuracy with just one feature as the
maximal accuracy. For the elevator group, there is a significant increase when three
features are included. This means that the dimensionality of both groups of data
can be reduced greatly and still achieve reasonable classification accuracies.

For the Naive Bayes classifier, there is a range of local optima at 6-10 features for the
elevator group as found by the GA. In the gates group, the Naive Bayes performs
at a roughly constant level with 1-13 features included, after which the performance
is significantly reduced. There are two probable reasons for the difference in range.
First, the statistical dependence relationship between the features can be different
for this partition of the data, which means that a larger subset of features might

37

6. Discussion

fulfill the independence assumption. Second, it is possible that the Naive Bayes
classifier is less sensitive to violations of the assumptions for data that is easier to
classify. It is, however, more important to find a subset of features in the well per-
forming region for the gates group, since the decrease in performance is more severe.
While this is easier to do for the second group since the range is greater, it is still
not achieved by the subsets obtained from the Relief, LASSO and random forest
algorithms, as indicated by the test scores in Table 5.2. Even for data sets that
are simpler to classify, a wrapper method is required to capture a suitable feature
subset to be used with the Naive Bayes classifier.

6.5 The importance of individual features
Some features appear in many selections, but the reason for a feature to be consid-
ered important varies. In this section, the features included by the Relief algorithm
for the elevator data are discussed since they are believed to be of general impor-
tance for describing the data. They are summarized in Table 6.1.

One feature whose importance at first glance seems surprising is feature 19 (Days-
SinceActivityCompleted), which would mean that the date of the inspection is im-
portant for describing the result. The importance is, however, an artefact of the
way that the company works. By inspecting the raw data, one can note that it is
not uncommon for multiple objects at the same site to achieve the same result. By
convenience, an employee will inspect several objects at a site at the same date. For
this reason, many objects may obtain the same label at the same date, which shows
as importance in this feature. There is, of course, nothing fundamental with the
inspection date that can impact the results. If the employee would inspect a single
object at each site everyday and instead move between different sites, it is likely
that this feature would not be considered important anymore, since the artificial
pattern would no longer exist. Features 7 (InspectionObjectTypeId), 11 (Manufac-
turer) and 18 (DaysSinceEmployeeStartDate) are also related to specific sites and
thus important for the same reason as described above. Most object at a site are
of the same type, and often have the same manufacturer. For geographical reasons,
an employee will visit a subset of all sites in the country. A natural question to ask
is why feature 4 (InspectionObjectSiteId) is low ranked in the importance graphs,
given that all of the above features are important because of this feature. The site
ID feature is one of the categorical features with the largest number of categories
and was such affected by heavy preprocessing steps that had to be taken in order
for these features to be viable to work with. These steps removed much information
and thus probably reduced the importance of that feature. This illustrates one of
the difficulties with categorical feature selection.

On the contrary, the importances of feature 12 (YearOfManufacture) and feature
16 (ActivityResultTimeSpent) are explained by more fundamental reasons. The age
of an object is important because older objects are more likely to be disapproved
compared to newer objects and the time required for the inspection gives information

38

6. Discussion

about the result. The most obvious example for the latter is objects that have
inspection time 0 reported, which are probable to obtain the result “Not completed”.
These features are fundamentally important in the sense that their importance can
not be removed by randomizing another feature, as is the case with the site ID
feature for the artefact features.

Index Name Type
7 InspectionObjectTypeId Artefact
11 Manufacturer Artefact
12 Year of manufacture Fundamental
16 ActivityResultTimeSpent Fundamental
18 DaysSinceEmployeeStartDate Artefact
19 DaysSinceActivityResultCompleted Artefact

Table 6.1: Importance summarization for the features selected by the Relief algo-
rithm.

6.6 Future work
The GA developed in this thesis uses a quite simple measure for evaluating the fit-
ness values, as it only takes into account the test scores obtained by the proposed
selection. As was observed, the subset selections typically include constant features.
It would be of interest to incorporate a penalty for overly complex models in the
fitness function of the GA, in order to combat the selection of constant features.
The objective of this function would be to give a higher score to a selection that
includes all relevant features but excludes constants, compared to one that includes
all relevant features and the constants. In the GA in this thesis, these two cases
would result in the same fitness value.

Although the computational time required for GAs is large, the formulation opens up
for effective parallelization which could make them more scalable. A programming
model known as MapReduce [42], which aims at facilitating the treatment of large
data sets through parallelization, has been studied in the context of GAs [43–45].
Since computational speed is one of the main concerns with these types of algorithms,
it would be beneficial to further study ways of making the implementation more
efficient to increase their applicability to larger data sets.

39

6. Discussion

40

7
Conclusions

GAs provide an elegant way of selecting features in the wrapper setting, even when
the features are of categorical nature, since all treatment except for the computation
of the fitness values are done with the chromosomes. It was demonstrated that it is
possible to define a meaningful importance measure, to gain knowledge about how
important each feature is for the GA for describing patterns in the data, which is
not possible to achieve in stepwise selection methods.

GAs provide the advantages of wrapper methods in that the feature selection is
tuned to a classifier, which generally leads to better performance than the feature
selection obtained by filter and embedded methods. It was shown that the bene-
fits of a tuned subset selection are greatest when a Naive Bayes classifier is used,
where the filter and embedded methods produced worse performing feature subsets
compared to the GA and the stepwise forward selection algorithm. For other clas-
sifiers, the differences were smaller. It was further found that one can reduce the
dimensionality of the data significantly while still maintaining good results. For the
elevator group, the data showed potential to be reduced down to 3 features, while
the gates group showed good results with only the most important feature included
in the data set.

However, it is a costly procedure to run GAs, as it is required to train a large
number of classifiers. The time required is strongly dependent on what classifier is
used. For the best performing classifiers, the time required is large which makes them
unfeasible for larger data sets. More simple classifiers such as the Naive Bayes are
still viable for larger data sets, and as was observed, can benefit greatly from feature
selection via a GA. Since the differences between the feature selection algorithms
were small for the other classifiers, it is advisable to choose a faster algorithm such
as Relief, LASSO or random forest for those cases, if the data set is large.

41

7. Conclusions

42

Bibliography

[1] M. Chen, S. Mao and Y. Liu, “Big Data: A Survey”, Mobile Networks and
Applications, vol. 19, no. 2, pp. 171-209, April, 2014.

[2] X. Jin et al., “Significance and Challenges of Big Data Research”, Big Data
Research, vol. 2, no. 2, pp. 59-64, February, 2015.

[3] P. Chen and C-Y Zhang, “Data-intensive applications, challenges, techniques
and technologies: A survey on Big Data”, Information Sciences, vol. 275, pp.
314-347, August, 2014.

[4] E. Al Nuaimi et al., “Applications of big data to smart cities”, Journal of
Internet Services and Applications, vol. 6, no. 25, August, 2015.

[5] H. M. Krumholz, “Big Data And New Knowledge In Medicine: The Thinking,
Training, And Tools Needed For A Learning Health System”, Health Affairs,
vol. 33, no. 7, pp. 1163-1170, July, 2014.

[6] J. Yan et al., “Effective and Efficient Dimensionality Reduction for Large-Scale
and Streaming Data Preprocessing”, IEEE Transactions on Knowledge and
Data Engineering, vol. 18, no. 3, pp. 320-333, March, 2006.

[7] M. Verleysen and D. François, “The Curse of Dimensionality in Data Mining
and Time Series Prediction”, Lecture Notes in Computer Science, vol. 3512, pp.
758-770, March, 2005.

[8] L. Zhao, G. Zhuang and X. Xu, “Facial Expression Recognition Based on PCA
and NMF”, In Proc. Proceedings of the 7th World Congress on Intelligent
Control and Automation, 2007.

[9] M. Dash and H. Liu, “Feature Selection for Classification”, Intelligent Data
Analysis, vol. 1, no. 1-4, pp. 131-156, March, 1997.

[10] G. Chandrashekar and F. Sahin, “A survey on feature selection methods”, Com-
puters and Electrical Engineering, vol. 40, no. 1, pp. 16-28, January, 2014.

[11] Y. Saeys et al., “A review of feature selection techniques in bioinformatics”,
Bioinformatics, vol. 23, no. 19, pp. 2507–2517, October, 2007.

[12] A. Blum and P. Langley, “Selection of relevant features and examples in machine
learning”, Artificial Intelligence, vol 97, no. 1-2, pp. 245-271, December, 1997.

[13] S. Das, “Filters, Wrappers and a Boosting-Based Hybrid for Feature Selection”,
In Proc. Proceedings of the Eighteenth International Conference on Machine
Learning, 2001, pp. 74-81.

[14] Z. Zhu, Y.-S. Ong and M. Dash, “Wrapper–Filter Feature Selection Algorithm
Using a Memetic Framework”, IEEE Transactions on Systems, Man, and Cy-
bernetics, Part B (Cybernetics), vol. 37, no. 1, pp. 70-76, January, 2007.

43

Bibliography

[15] A. W. Whitney, “A direct method of nonparametric measurement selection”,
IEEE Transactions on Computers, vol. 20, no. 9, pp. 1100-1103, September,
1971.

[16] J. Reunanen, “Overfitting in making comparisons between variable selection
methods”, The Journal of Machine Learning Research, vol. 3, pp. 1371-1382,
March, 2003.

[17] P. Pudil, J. Novovičová and J. Kittler, “Floating search methods in feature se-
lection”, Pattern Recognition Letters, vol. 15, no. 11, pp. 1119-1125, November,
1994.

[18] E.W. Steyerberg, M.J.C. Eijkemans and J.Dik F. Habbema, “Stepwise Selection
in Small Data Sets: A Simulation Study of Bias in Logistic Regression Analysis”,
Journal of Clinical Epidemiology, vol. 52, no. 10, pp. 935-942, October, 1999.

[19] M. Whittingham et al., “Why do we still use stepwise modelling in ecology
and behaviour?”, Journal of Animal Ecology, vol. 75, no. 5, pp. 1182-1189,
September, 2006.

[20] S. Derksen and H. J. Keselman, “Backward, forward and stepwise automated
subset algorithms: Frequency of obtaining authentic and noise variables”,
British Journal of Mathematical and Statistical Psychology, vol. 42, pp. 265-
282, November, 1992.

[21] R. Mundry and C.L. Nunn, “Stepwise model fitting and statistical inference:
turning noise into signal pollution”, The American Naturalist, vol. 173, no. 1,
pp. 119-123, January, 2009.

[22] J. Yang and V. Honavar, “Feature Subset Selection Using A Genetic Algo-
rithm”, Feature extraction, construction and selection, vol. 13, no.2, pp. 44-49,
April 1998.

[23] W. Siedlecki and J. Sklansky, “A note on genetic algorithms for large-scale fea-
ture selection”, Pattern Recognition Letters, vol. 10, no.5, pp. 335-347, Novem-
ber, 1989.

[24] H. Uguz, “A two-stage feature selection method for text categorization by us-
ing information gain, principal component analysis and genetic algorithm”,
Knowledge-Based Systems, vol. 24, no. 7, pp. 1024-1032, October, 2011.

[25] M. Wahde, “Biologically Inspired Optimization Methods”, Gothenburg, Swe-
den: WIT Press, 2008.

[26] J. Benesty et al., Noise Reduction in Speech Processing, Berlin, Germany:
Springer-Verlag Berlin Heidelberg, 2009.

[27] H. Theil, “On the Estimation of Relationships Involving Qualitative Variables”,
American Journal of Sociology, vol. 76, no. 1, pp. 103-154, July, 1970.

[28] E. Plischke, “An adaptive correlation ratio method using the cumulative sum
of the reordered output”, Reliability Engineering & System Safety, vol. 107, pp.
149-156, November, 2012.

[29] K. Kira and L. A. Rendell, “A Practical Approach to Feature Selection”, In
Proc. Proceeding ML92 Proceedings of the ninth international workshop on
Machine learning, 1992, pp. 249-256.

[30] I. Kononenko et al., “Overcoming the Myopia of Inductive Learning Algorithms
with RELIEFF”, Applied Intelligence, vol. 7, no. 1, pp. 39-55, January, 1997.

44

Bibliography

[31] R. Tibshirani, “Regression Shrinkage and Selection via the Lasso”, Journal of
the Royal Statistical Society, vol. 58, no. 1, pp. 267-288, 1996.

[32] M. Yuan and Y. Lin, “Model selection and estimation in regression with grouped
variables”, Journal of the Royal Statistical Society Series B (Statistical Method-
ology), vol. 68, no. 1, pp. 49-67, Febraury, 2006.

[33] T. Hastie, R. Tibshirani and J. Friedman, The Elements of Statistical Learning:
Data Mining, Inference, and Prediction, Stanford, California, 2008.

[34] I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, MIT Press: 2016.
[35] C. Cortes and V. Vapnik, “Support-Vector Networks”, Machine Learning, vol.

20, no.3, pp. 273-297, September, 1995.
[36] I. Rish, “An Empirical Study of the Naïve Bayes Classifier”, In Proc. IJCAI

2001 workshop on empirical methods in artificial intelligence, 2001, pp. 41-46.
[37] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python”, Journal of

Machine Learning Research, vol. 12, pp. 2825-2830, November, 2011.
[38] G. Feng et al., “Feature subset selection using naive Bayes for text classifi-

cation”, Pattern Recognition Letters, vol. 65, no. 1, pp. 109-115, November,
2015.

[39] D. M. Diab and K. M. El Hindi, “Using differential evolution for fine tuning
naïve Bayesian classifiers and its application for text classification”, Applied
Soft Computing, vol. 54, pp.183-199, May, 2017.

[40] L. Jiang et al., “Deep feature weighting for naive Bayes and its application to
text classification”, Engineering Applications of Artificial Intelligence, vol. 52,
pp. 26-39, June, 2016.

[41] S. Xu, “Bayesian Naïve Bayes classifiers to text classification”, Journal of In-
formation Science, vol. 44, no. 1, pp. 48-59, February, 2018.

[42] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on Large
Clusters”, In Proc. Sixth Symposium on Operating System Design and Imple-
mentation, 2004, pp. 137-150.

[43] A. Verma et al., “Scaling Genetic Algorithms Using MapReduce”, In Proc. 2009
Ninth International Conference on Intelligent Systems Design and Applications,
2009, pp. 13-18.

[44] E-S. M. El-Alfy and M. A. Alshammari, “Towards scalable rough set based
attribute subset selection for intrusion detection using parallel genetic algorithm
in MapReduce”, Simulation Modelling Practice and Theory, vol. 64, pp. 18-29,
May, 2016.

[45] F. Ferrucci et al., “A parallel genetic algorithms framework based on Hadoop
MapReduce”, In Proc. Proceedings of the 30th Annual ACM Symposium on
Applied Computing, 2015, pp. 1664-1667.

45

Bibliography

46

A
More details on the gates group

Bar charts of the importances for the gates group are presented in Figures A.4-A.8.
It is notable that the Naive Bayes classifier in Figure A.1 includes more features for
the gates group compared to the elevator group, which hints that there is a larger
set of independent features for this partition of the data. It is also notable that
the features that are of general importance and obtained by the Relief algorithm
overlap the features in the elevator group, as illustrated in Figure A.6. The subset
selections obtained from the Group LASSO and the random forest contain the same
features for this group, which was also the case in the elevator group.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Feature

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
of

 o
cc

ur
re

nc
e

Naive Bayes occurrences

Figure A.1: The proportion of occurrence in the best chromosome for each feature
for the gates group obtained by the GA with a Naive Bayes classifier.

I

A. More details on the gates group

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Feature

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
of

 o
cc

ur
re

nc
e

Decision tree occurrences

Figure A.2: The proportion of occurrence in the best chromosome for each feature
for the gates group obtained by the GA with a decision tree classifier.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Feature

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pr
op

or
tio

n
of

 o
cc

ur
re

nc
e

Logistic regression occurrences

Figure A.3: The proportion of occurrence in the best chromosome for each feature
for the gates group obtained by the GA with a logistic regression classifier.

II

A. More details on the gates group

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Feature

0.0

0.2

0.4

0.6

0.8

Pr
op

or
tio

n
of

 o
cc

ur
re

nc
e

Artificial neural network occurrences

Figure A.4: The proportion of occurrence in the best chromosome for each feature
for the gates group obtained by the GA with a multilayer perceptron neural network
classifier.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Feature

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
of

 o
cc

ur
re

nc
e

Support vector machine occurrences

Figure A.5: The proportion of occurrence in the best chromosome for each feature
for the gates group obtained by the GA with an SVM classifier.

III

A. More details on the gates group

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Feature

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
we

ig
ht

Relief importance

Figure A.6: Feature importances for the gates group obtained by the Relief algo-
rithm.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Feature

0.0

0.2

0.4

0.6

0.8

1.0

Im
po

rta
nc

e

LASSO importance

Figure A.7: Feature importances for the gates group obtained by the Group
LASSO.

IV

A. More details on the gates group

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Feature

0.0

0.2

0.4

0.6

0.8

1.0

Im
po

rta
nc

e

Random forest importance

Figure A.8: Feature importances for the gates group obtained by the random
forest.

V

	List of Figures
	List of Tables
	Abbreviations
	Introduction
	Aim
	Limitations

	Feature selection algorithms
	Wrapper methods
	Sequential forward selection
	Common criticism against stepwise selection methods
	Genetic algorithms
	Initialization and encoding schemes
	The fitness function
	Selection
	Crossover
	Elitism and mutations

	Filter methods
	Measures of correlation
	Pearson Correlation Coefficient
	Uncertainty coefficient
	Correlation ratio

	Relief algorithms

	Embedded methods
	LASSO
	Random forests

	Classification Algorithms
	Artificial neural networks
	Support vector machines
	Naive Bayes classifiers
	Decision trees
	Logistic regression classifiers

	Method
	Data preprocessing
	Class imbalance
	Ethical considerations

	Designing the genetic algorithm
	Experimental procedure

	Results
	Sequential forward selection results
	Genetic algorithm results
	Relief results
	Embedded results
	Evaluation of subset prediction performance
	Second group of objects

	Discussion
	Differences in subset selections
	Differences in prediction performance
	Computational time
	Differences between inspection groups
	The importance of individual features
	Future work

	Conclusions
	Bibliography
	More details on the gates group

