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Abstract
Data that are consequently stored within data lakes are extremely valuable to iden-
tify future abnormalities or behaviors for developing products constantly. The data
analysis can be done using supervised machine learning to perform predictions of
user defined behaviors in time series. The goal of this thesis is to explore real engine
data and use applied machine learning as a proof of concept for advanced analytics.
The engines may vary in size, area of application, and operation. A general form
of an engine operational cycle for a given area of application is referred to as an
engine drive cycle. We have proposed three approaches to explore the potential of
the engine data. These approaches utilize an Artifical Neural Network (ANN) as
a classifier. The dataset is based on a sequentially windowed feature extraction of
statistical, temporal, and spectral features. The first approach, called detection,
shows the separability of the features between the engine size and applications with
98% accuracy. The second approach, called semantic segmentation, proved that by
adopting a similar ANN architecture as used for the detection approach, we can
provide an automated way to semantically classify manual annotated data. With
an imbalanced dataset, the ANN obtained 98% accuracy of the classifications. The
third approach, called generation of engine drive cycles, utilizes the ANN as a fitness
function for a genetic algorithm, which illustrated the lack of robustness of the ANN.
Only 90% accuracy was achieved because the number of feature representations was
lower due to using only one input signal to the ANN. A realistic drive cycle could not
be generated, which was concluded to be due to the lack of feature representations
in the ANN and few constructional constraints in the genetic algorithm during the
generation process.

Keywords: Machine Learning, Artificial Neural Networks, Engine Drive Cycle, Ge-
netic Algorithm, Semantic Segmentation, Feature Engineering, Time series, Com-
bustion Engines, Volvo Penta

v





Acknowledgements
During this extensive work, we have been provided great support from personnel
at Volvo Penta. Mostly we would like to express our greatest thanks to Martin
Nilsson and Andreas Nyman, providing more than sufficient aid making this thesis
a possibility. A special thanks to Martin Nilsson, our provided supervisor at Volvo
Penta, who brought with him his ambitious support and knowledge throughout this
thesis. Together with Martin, important discussions were held regarding the dif-
ferent implementations and methods. Also, with his great knowledge in computer
programming, machine learning and cloud computing, Martin was able to provide
this thesis with his greatest support.

Again, we would like to thank Andreas Nyman, being the coordinator of this master
thesis. He is the manager at the field test department at Volvo Penta and is respon-
sible for the collected and structured data. Andreas provided this thesis with all the
necessary aid needed for us as students to realize this project in the greatest way
possible. He has shown great interest for this project and continuously supported us
to ensure that we have all the necessary tools, and contacts, to be able to provide
Volvo Penta with a high-quality project.

We would also like to show our greatest thanks towards our advisor, Maryam Lash-
gari, PhD student at the department of Electrical Engineering. She has provided
us with great and ambitious support, giving us feedback regarding the project and
mainly the thesis report, and have been available during the semester giving her
support for the thesis. Maryam has made sure that the report maintains high qual-
ity in terms of both structure and formalities.

Lastly, we would like to give our thanks to our examiner Erik Agrell, Full Professor
at the department of Electrical Engineering. During the initial time and during a
half time presentation of the thesis, Erik has shown his interest in our work and
provided us with valuable feedback. Thanks to his engagement, Erik’s feedback has
both increased the overall quality and presentation of the thesis.

Mattias Johansson, Karl-Fredrik Zingaropoli, Gothenburg, June 2021

vii





Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Aim of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Limitations and Challenges . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Theoretical Background 5
2.1 Time Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Data Preparation . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Feature Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Neural Networks for Classification . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Linear Transformation . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 Rectified Linear Unit Activation Function . . . . . . . . . . . 12
2.3.3 Sigmoid Activation Function . . . . . . . . . . . . . . . . . . . 13
2.3.4 Binary Cross Entropy Loss . . . . . . . . . . . . . . . . . . . . 14
2.3.5 Stochastic Gradient Descent . . . . . . . . . . . . . . . . . . . 14
2.3.6 Backpropagation . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.7 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.7.1 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.7.2 Balanced Accuracy . . . . . . . . . . . . . . . . . . . 16
2.3.7.3 Confusion Matrix . . . . . . . . . . . . . . . . . . . . 17

2.4 Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Methods & Implementation 21
3.1 Data Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Preprocessing & Analysis . . . . . . . . . . . . . . . . . . . . . 21
3.1.2 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Proposed Approaches Using Machine Learning . . . . . . . . . . . . . 24
3.2.1 Drive Cycle Detection . . . . . . . . . . . . . . . . . . . . . . 24
3.2.2 Semantic Segmentation of Engine States . . . . . . . . . . . . 27
3.2.3 Drive Cycle Generation . . . . . . . . . . . . . . . . . . . . . . 28

ix



Contents

4 Results & Discussion 31
4.1 Drive Cycle Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.1 ANN Performance . . . . . . . . . . . . . . . . . . . . . . . . 31
4.1.2 Ranking & Evaluation of Detected Cycles . . . . . . . . . . . 36
4.1.3 Discussion on Drive Cycle Detection . . . . . . . . . . . . . . 38

4.2 Semantic Segmentation of Engine States . . . . . . . . . . . . . . . . 41
4.2.1 ANN Performance . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.2 Semantic Segmentation Validation . . . . . . . . . . . . . . . . 45
4.2.3 Discussion on Semantic Segmentation of Engine States . . . . 47

4.3 Drive Cycle Generation . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3.1 ANN Performance . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3.2 Genetic Algorithm Performance and Generation of Engine

Drive Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.3 Discussion on Drive Cycle Generation . . . . . . . . . . . . . . 56

5 Conclusion 59

6 Future Work 61

Bibliography

A Appendix 1: Validation set I

x



List of Figures

2.1 Illustration of an MLP with input layer, two hidden layers of various
dimensions and one output layer. . . . . . . . . . . . . . . . . . . . . 10

2.2 Visualization of the network function. Note that this network con-
sists of only one hidden layer, which is only one neuron, and one
subsequently applied activation function. The network may also have
several hidden layers with activation functions subsequently applied
after each neuron. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Visualization of the ReLU activation function. . . . . . . . . . . . . . 12
2.4 Visualization of the sigmoid activation function. . . . . . . . . . . . . 13
2.5 Confusion matrix illustration. . . . . . . . . . . . . . . . . . . . . . . 17

3.1 The Workflow to obtain the detection, semantic segmentation and
generation of engine drive cycles. . . . . . . . . . . . . . . . . . . . . 21

3.2 Engine signals selection workflow. . . . . . . . . . . . . . . . . . . . . 22
3.3 Feature extraction from the selected signals to a dataset. . . . . . . . 24
3.4 Example of drive cycle detection process. . . . . . . . . . . . . . . . 25
3.5 Illustration of the ANN structure for engine drive cycle detection. . . 26
3.6 Genetic algorithm workflow to obtain a generated 1 hour drive cycle. 28

4.1 Visualization of the data distribution for each class. Each data point
represents a set of features that have been extracted from segments
of 1 hour from the signals. . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 ANN performance for the drive cycle detection training and testing. 32
4.3 Confusion matrix of predictions for the test set. . . . . . . . . . . . . 33
4.4 Feature importance for the class D11 T. . . . . . . . . . . . . . . . . 33
4.5 Feature importance for the class D13 T. . . . . . . . . . . . . . . . . 34
4.6 Feature importance for the class D13 M. . . . . . . . . . . . . . . . . 35
4.7 Feature importance for the class D13 K. . . . . . . . . . . . . . . . . 35
4.8 Top 5 scoring engine drive cycles for D11 T. . . . . . . . . . . . . . . 36
4.9 Top 5 scoring engine drive cycles for D13 T. . . . . . . . . . . . . . . 36
4.10 Top 5 scoring engine drive cycles for D13 M. . . . . . . . . . . . . . . 37
4.11 Top 5 scoring engine drive cycles for D13 K. . . . . . . . . . . . . . . 37
4.12 Scatter plot and the data distribution of the class D13 M together

with the data points with best and worst scores. The features with
the largest significance score is presented. . . . . . . . . . . . . . . . . 38

xi



List of Figures

4.13 Visualization of the class distribution for the data included in the
dataset. Each data point represents a set of features that has been
extracted from segments of 5 minutes from the signals. . . . . . . . . 41

4.14 ANN performance for the semantic segmentation training and testing. 42
4.15 Confusion matrix of predictions for the test set. . . . . . . . . . . . . 42
4.16 Feature importance for class: Running . . . . . . . . . . . . . . . . . 43
4.17 Feature importance for class: Working . . . . . . . . . . . . . . . . . 44
4.18 Feature importance for class: Idle . . . . . . . . . . . . . . . . . . . . 44
4.19 Semantic segmentation of the validation month with three values of

the segmentation length ts. . . . . . . . . . . . . . . . . . . . . . . . . 45
4.20 The data distribution scatter plot for each class. Two features from

each class with the largest significance score is presented. . . . . . . . 46
4.21 Visualization of the data distribution for each class. Each data point

represents a set of features that has been extracted from segments of
1 hour from the signals. . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.22 ANN performance for the generation training and testing. . . . . . . 50
4.23 Confusion matrix of predictions for the test set. . . . . . . . . . . . . 50
4.24 Feature importance for class: D11 T . . . . . . . . . . . . . . . . . . 51
4.25 Feature importance for class: D13 T . . . . . . . . . . . . . . . . . . 52
4.26 Feature importance for class: D13 M . . . . . . . . . . . . . . . . . . 52
4.27 Feature importance for class: D13 K . . . . . . . . . . . . . . . . . . 53
4.28 Score convergence for the genetic algorithm. . . . . . . . . . . . . . . 54
4.29 Engine speed generation provided by the genetic algorithm. . . . . . . 55
4.30 Scatter plot and data distribution . . . . . . . . . . . . . . . . . . . . 56

A.1 Overview of the validation set covering a single month, 2020-10, for
the class D11 T. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I

A.2 Overview of the validation set covering a single month, 2020-10, for
the class D13 T. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I

A.3 Overview of the validation set covering a single month, 2020-10, for
the class D13 M. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II

A.4 Overview of the validation set covering a single month, 2020-08, for
the class D13 K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II

xii



List of Tables

2.1 The selected features to be extracted from the window s [3]. . . . . . 8

3.1 The engines and their respective application. The train/test months
are extracted to create the train/test dataset for the ANN. The third
month is used for validation where the network is tested for its clas-
sification capabilities. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 One-hot encoding of the four classes for detection. . . . . . . . . . . . 25
3.3 The detailed ANN structure for engine drive cycle detection. . . . . . 26
3.4 One-hot encoding of three classes for the semantic segmentation of

engine states. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5 The data for the semantic segmentation of D13 M. The train/test

month is manually annotated while the validation month is not re-
lated to the annotation and ANN training process. . . . . . . . . . . 27

3.6 The detailed ANN structure for semantic segmentation. . . . . . . . . 28
3.7 The detailed ANN structure for time series generation. . . . . . . . . 29

4.1 Hyperparameters for the ANN – Detection method. . . . . . . . . . . 32
4.2 Hyperparameters for the ANN – Semantic Segmentation. . . . . . . . 41
4.3 Hyperparameters for the ANN – Drive cycle generation. . . . . . . . . 49

xiii



List of Tables

xiv



1
Introduction

Data collection and handling of data have been some of the most important assets
for organisations all over the globe for a long time. The reason that data contains
such high value is due to the endless possibilities that are brought together with Big
Data, Machine Learning (ML), Artificial Neural Networks (ANN), and other topics
within Artificial Intelligence (AI). In a combustion engine perspective, there are ways
to collect essential data through sensors, which can help to define or characterize
an engine’s behavior or operation cycle. Most likely, in an organisation that has
this type of data and develops these kinds of products, it is important to use the
data wisely and try to come up with suitable ways to best take advantage of its
great potential. Not only can the data describe how the engine is running, in the
form of Time Series called Engine Drive Cycles, but it can also be used within
fields such as Predictive Maintenance, where a neural network can help to detect
anomalies by studying a continuous drive cycle. This thesis will study the potential
of the structured data obtained by Volvo Penta and how a neural network can detect
and identify an engine drive cycle.

1.1 Background
Recent research within ML has received attention not only from the academia, but
also from a vast variety of organisations that want to evaluate their own data, which
has been collected throughout the years with the intention of increasing statistical
knowledge. Volvo Penta, a global supplier of diesel engines and power solutions for
industrial and marine applications, is one of these companies that wants to evaluate
their acquired data. More specifically, Volvo Penta wants to be able to identify
engine drive cycles by using ML and hopefully being able to construct their own
drive cycle for a specific application which would hold an accurate representation.

The term “drive cycle” refers to the generally repeated (or cyclic) behavior of an
engine. Due to random and uncontrollable events during the usage of an engine, it
never (or rarely) behaves in the exact same way, and no single cycle is ever exactly
repeated. However, the general behavior can still be represented as repetitions of a
pattern that is a close approximation of the actual behavior. An example of this is
that a mine hauler will start at the top of the mine at a low load, then drive down
the mine, stand still as it is loaded with mined materials, run at a high load as it
transports the materials up from the mine, and finally stand still as it is unloaded.
The machine will then repeat this process throughout the day, every working day.

1



1. Introduction

Slight deviations as to the exact weight of the materials transported and the exact
length of the trip can exist, but the general behavior (or cycle) will still be the same.
It is this repeated pattern that is a “drive cycle”, and it can have a varying length
depending on the application and what kind of behavior one wants to study. These
drive cycles are used for analytical purposes and helps understand the operational
behavior and characteristics of an engine. These behaviors can, e.g., describe either
fuel consumption or degree of emissions to name a few, but there is a lot more that
an engine drive cycle can describe. However, at the end, it all comes down to the
application where the engine is installed since different applications have various
purposes, hence different engine behavior and characteristics. There are multiple
ways to represent a drive cycle, the above example being a very inexact way. For
the purpose of the analysis of an engine behavior, a more exact representation is of-
ten needed. Such a representation can be created from time series of engine signals.
Any set of signals could theoretically represent a drive cycle, but some signals are
more representative (in general) than others. Among the most representative and
useful signals are the Engine Speed, Engine Torque and Selective Catalytic Reduc-
tion (SCR) Temperature.

Volvo Penta faces numerous challenges when it comes to predicting faultiness in
their engine product line. One of the challenges is to be able to identify an engine
drive cycle for an application and determine if the cycle describes the general case
for a type of application. Identifying a general engine drive cycle is important since
it can help to predict faulty behavior which deviates from the regular drive cycle.
These deviations could possibly answer questions such as: “Is the engine oversized
for a specific application? Is there a risk of an engine breakdown due to critical
failures?”. Being able to answer these types of questions will allow Volvo Penta to
be ahead of the competition and being able to provide key information to their cus-
tomers, thus, increasing Volvo Penta’s own product value and quality of customer
service. Most importantly, with this information, Volvo Penta can truthfully fit an
engine of the right size for the customer and provide the right conditions to minimize
potential risks of engine failures.

Through the years, Volvo Penta’s field test and data management unit has col-
lected and structured engine data from applications used by the end user, so called
field tests, where the collected data consists of the signals such as engine torque and
NOx emissions, among others. These signals are vital, and mostly used to be able
to define an engine drive cycle. Thanks to these field tests, the data will bring Volvo
Penta important knowledge about their engine product line and allow Volvo Penta
to explore the potential and opportunity that comes with this type of structured
data.

1.2 Aim of the Thesis
The aim of this thesis is to thoroughly analyze the data obtained and structured
by Volvo Penta from their engine product line, and implement ML by constructing
an ANN to detect and identify engine drive cycles from different types of industrial

2



1. Introduction

applications. After the ML model detected and identified a cycle, it should be
possible to extract a time span of an engine drive cycle which represents the general
operational behavior of that specific application. In addition to the engine drive
cycle detection and identification, semantic segmentation is also performed to label
engine states. These types of engine states are: Working, Idle, and Running, which
describes the current operation of the engine in an application. The thesis will also
conduct a brief study by generating a synthetic drive cycle using a so called Genetic
Algorithm and evaluate if this type of generated cycle is sufficient to represent general
engine behavior. With this information about a drive cycle, discussions can be
made about its potential, e.g., within predictive maintenance, or to see if an engine
installed in an application is correctly fitted for the type of work conducted by a
specific application.

1.3 Problem Description
This thesis implements ML on real engine data for the purpose of identifying engine
drive cycles for different applications. An engine drive cycle can be represented by
signals such as engine speed, SCR temperature, and engine torque, which will be
used for analysis throughout this thesis. The problem formulation is stated as fol-
lows:

“How can the data be used for classification purposes? Based on data features,
how can a neural network identify separate classes? How can the neural network
be utilized throughout different scenarios, e.g., detection, segmentation, and gener-
ation?”

In detail the thesis will cover:
1. Feature extraction for separate engines to describe their characteristics
2. ML models, taking the extracted features as input, in order to perform:

• Extraction of top five engine drive cycles representing a general operation
for an application

• Semantic segmentation of engine states
• Generation of a synthetic engine drive cycle using the genetic algorithm

[1]

1.4 Limitations and Challenges
The scope of this thesis is to use an ANN to identify different types of engine drive
cycles considering different applications and engine sizes. With this knowledge and
by using the acquired structured data, a representative engine drive cycle should be
extracted for an application’s general operating routine.

While the aim of the thesis is to identify different engine drive cycles, the thesis
is limited to evaluate four of Volvo Penta’s test engines instead of all existing en-
gines due to time limitations. For training the ANN, a period of two months is used

3



1. Introduction

while a separate third month is used for validation of drive cycle detection. The
thesis is meant to be a proof of concept to show the potential of the data that Volvo
Penta is in possession of, hence it is decided that it is sufficient to only study a few
test engines instead of all of them. Another limitation is the number of signals that
are used throughout the thesis which are engine speed, SCR temperature and engine
torque. After detecting a cycle, the top five best cycles (considered by the neural
network) will be extracted and one hour operation of each one will be shown.

When applying semantic segmentation on engine drive cycles, the thesis is limited to
evaluate three engine states: Working, Idle, and Running, for one single engine size
and application. The three states are easy to distinguish within a drive cycle and
the limited amount of states is to make the study simpler which will not affect the
general result of this work. The feature input will only be provided by two signals:
Engine speed and engine torque. The SCR temperature was excluded, allowing the
labelling process to be more convenient. The actual labeling is conducted over a
limited time of five minutes, covering 3000 samples, both saving time and reducing
manual labor.

Regarding generation of a synthetic engine drive cycle using genetic algorithm, the
scope of the thesis is limited to study only the genetic algorithm approach and will
not evaluate other possible methods for generation of synthetic cycles. The thesis
will provide possibilities of future work and other useful areas for engine drive cycle
detection, segmentation and generation.

1.5 Outline of the Thesis
The report is divided into six chapters with introduction being Chapter 1. Further,
Chapter 2 contains theoretical background regarding the tools and theoretical con-
cept used throughout the thesis.

Chapter 3 presents the proposed methods and flowcharts used to answer defined
research questions. The presented methods explain how the theoretical concept was
applied in each case, along with the process of obtaining the results.

In Chapter 4, the results from applied machine learning and the related discus-
sion are presented. The discussion is presented after each method implementation.

Chapter 5 presents conclusions, which is based on the results and discussions carried
out in the previous chapter.

Finally, future work is presented in Chapter 6 that gives suggestions on how to
proceed with the thesis work further and additional improvements that were not
covered in this thesis.

4



2
Theoretical Background

This chapter regarding theoretical background provides insight for all the tools used
throughout the thesis. The chapter covers thoroughly; Time Series, Data Prepara-
tion, Feature Analysis, Classification Algorithms, Neural Networks and its properties,
and lastly the fundamentals of Genetic Algorithm.

2.1 Time Series

A time series is a set T containing samples g = (g1, g2, ..., gN) together with corre-
sponding time samples tN = (0, ∆t, 2∆t, ..., (N − 1)∆t). Here N is the number
of samples used in T , and ∆t [s] is the time between the samples, also known as
sampling time. This leads to the definition of sampling frequency defined as 1

∆t
[Hz]. Further, a time series is a set of discrete samples where the magnitude of the
samples is represented by a unit, e.g., engine torque [Nm], engine speed [RPM], or
temperature [◦C]. As time series are sequential, methods have been developed for
analysis of time series to help understand patterns and characteristics of the data.
As an example, seasonal trends are patterns that could exist within yearly mea-
surements (e.g., temperature in a city) opposed to characteristics that can simply
be described by a statistical mean or median for a segment of an arbitrary time series.

The above explanation is for univariate time series which are single measurements
sampled from a physical system. Multivariate time series are two or more mea-
surements sampled from the same system simultaneously and can be simultaneous
measurements of, e.g., engine speed, and SCR temperature through time. Multivari-
ate time series may not be sampled at the same frequency and can differ depending
on the configuration of the sensor module. In this thesis, an engine drive cycle is
a time series measured by engine signals, as previously stated in 1.1, which can be
both univariate or multivariate.

2.1.1 Data Preparation
Annotating datasets is an important part when working with classification algo-
rithms. When using annotated data as a training set for the ANN, it is called
Supervised Learning, opposed to Unsupervised Learning that has no indication of
classes [2]. This thesis only presents a supervised learning approach for the classifi-
cation problem.
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2. Theoretical Background

Manual data annotation is a method to create self-defined classes, that data an-
notators define themselves, with the purpose of training an ANN. The class repre-
sentations are based on the features from the training dataset. The quality of the
annotations are highly dependent on the expertise of the data annotators, defining
and labeling the data, as they must be able to have a clear understanding of how
to interpret the data. The interpretation of the data is related to its corresponding
features, and understanding that these can be related to the annotations is vital
for data annotators. If the annotations are executed perfectly, this will increase the
separability between the classes, thus, increasing the accuracy of the ANN during
its classification process.

Time series segmentation is a method to divide a time series into segments of sam-
ples. The data annotators must select each segment, defined as the windowed signal
s with length ts, of the time series and assign this segment to a class. The work is
complete when the whole length of a time series T , which consists of N samples, is
subsequently divided into a number of Nd equally spaced, contiguous segments of
length ts, with a class correspondence. These equally spaced segments are referred
to as the data points. The total amount of data points in the annotated dataset will
therefore be equal to

Nd = N

ts
. (2.1)

The data points are now represented as a segment of samples, but will be further
prepared to be used as an input to a classification algorithm. Features from the
segments, s, from the time series can be extracted, this is called a feature extraction.
The main purpose is to create a dataset that the ANN is compatible with. The
feature extraction creates a new vector, for every segments, which consists of Nf

features. This feature vector is defined as x = (x1, x2, . . . , xNf
). The class that

corresponds to the feature vector is encoded as a one-hot vector defined as

y = (y1, y2, . . . , yNc), where yj =
{

1 if x ∈ Cj

0 if x /∈ Cj
, j = 1, 2, . . . , Nc (2.2)

where C = (C1,C2, . . . ,CNc) is a set that consists of Nc number of classes. Further,
the data points are defined as X = (x1,x2, . . . ,xNd

) with the class points Y =
(y1,y2, . . . ,yNd

). The dataset that is created by this process is defined as D =
(X,Y ) and will be used as an input for the classification algorithm. The features
that will be extracted from the segments are presented in the next section.
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2. Theoretical Background

2.1.2 Features
This section covers every feature used, defining and describing them in detail. A
segment, s, of samples from T has various features within the statistical, temporal
and spectral domain that are able to represent the characteristics of the samples.
The features have to be separable with the trivial explanation that two segments of
two time series may represent two different classes. In order to distinguish, e.g., class
1 from class 2, the features have to be separable. The features may have similar
values for some samples, thus creating the need for a larger amount of features that
have the attribute of being separable.

The statistical domain consists of statistical properties, for a set of samples, that
have the purpose of estimating a population or describing a sample set. Statistical
features contain simple calculations such as the mean or median of the amplitudes
of a time series.

The temporal domain is described as ratios or relative events between events through
the samples and has no information about the ordering of the sequence. Basically
these are features that have an intuitive physical interpretation, just as the statisti-
cal domain, such as zero crossing rate or autocorrelation.

The spectral domain is accessed by transforming a time series to the frequency
domain using the Fourier Transform in order to extract features in the frequency
domain. The features included in this domain are, e.g., the maximum frequency
and fundamental frequency. Table 2.1 presents a set of features that has been ex-
tracted from the domains, where s is the windowed signal. The windowed signal
has a predefined length, ts, that is a segment of a time series. The windowed signal
is sequentially extracted from a time series T and subsequently used as input to
perform feature extraction.

7
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Table 2.1: The selected features to be extracted from the window s [3].

Autocorrelation x1 :
∑ts−l
n=1 snsn+l, where sn is the complex conjugate of sn, and

l is a lag set to l = 1.

Max x2 : max(s)

Maximum
Frequency

x3 : Computes the Fast Fourier Transform and returns the
frequency of 95 % of the cumulative sum from the magnitude.

Mean x4 : µs = mean(s)

Mean Absolute
Deviation x5 : 1

ts

∑ts
n=1 |sn − µs|

Mean Absolute
Differences

x6 : µ|∆s| = mean(|∆s|), where ∆s is the discrete difference
along the vector s defined as: ∆s = sn+1 − sn for
n = 1, . . . , ts − 1.

Mean Differences x7 : µ∆s = mean(∆s)

Min x8 : min(s)

Slope x9 : Fits a linear equation to s to fit a regression line
slin(n) = m̄n+ b̄, returns the coefficient m̄. b̄ is the y-intercept.

Peak to Peak
Distance x10 : |max(s)−min(s)|

Standard
Deviation x11 : Std(s) =

√
V ar(s)

Variance x12 : V ar(s) = mean(|s− µs|2)

Table 2.1 defines the feature extraction of one signal where each row corresponds
to one feature. Each row of the individual features corresponds to each element in
x = (x1, x2, . . . , x12), as an example. Note that if the feature extraction is done
on a multivariate time series, i.e., multiple signals sampled at the same time, the
same feature extraction is performed for each signal and concatenated in to x =
(x1, x2, . . . , xNf

).

2.2 Feature Analysis
When selecting features, it is important to choose the ones that are more significant
for a time series, since those features will help the classification algorithm (section
2.1.1) to more easily determine the correct class that the features describe. The
selected features in this thesis are based on a large number of features from a library
known as Time Series Feature Extraction Library (TSFEL) [3]. There are different
ways to evaluate feature importance for classification algorithms, a common method
is to iteratively take a random subset of features as input to the network and sub-
sequently log the metric score. The subset that yields the best metric score will be

8
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the one that is more important, thus, potentially reducing the dimensionality of the
input by removing less significant features. This is called the wrapper method and
is known for being computationally expensive [4].

Throughout this thesis, an alternative feature importance evaluation method is used
called Integrated Gradients, proposed in [5] in 2017, and is specifically designed for
ANN’s. The integrated gradients are accumulating the gradients that are calculated
between a feature input x ∈ RNf and a baseline x′ ∈ RNf as a path integral

IntegratedGradsi(x) = (xi − x′i)
∫ 1

α=0

∂F (x′ + α (x− x′))
∂xi

dα. (2.3)

The baseline, x′, is a vector of zeros while x is the extracted input features and
∂F (x)
∂xi

is the gradient of the model’s prediction function given each feature xi. The
parameter α is an interpolation constant, with respect to the feature xi from the
baseline x′i up to 1, as the features are normalized. To compute the analytical
function, it is needed to approximate equation (2.3) as a discrete expression. This
leads to the expression

IntegratedGradsapproxi (x) = (xi − x′i)
m∑
k=1

1
m

∂F
(
x′ + k

m
(x− x′)

)
∂xi

, (2.4)

where k is a scaling term and m is the number of steps in the Riemann approxi-
mation. The purpose of analyzing the path integral is to help to understand how
significant the features are at the classification stage. However, even though some
features are a good addition to the network and provide better classification accu-
racy for one class, the features can also be less significant or even affect the network
negatively in general. The interpretation for this attribution method applied on
each input is that a higher numerical value would increase the score of that class,
while a lower numerical value would decrease the score of that class. This numerical
value is henceforth referred to as significance score. Further, the baseline input x′
may be an important parameter in the interpretability of the integrated gradient
which is highlighted in [6].
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2. Theoretical Background

2.3 Neural Networks for Classification
Classification of a time series is a strategy to classify one or more well defined
classes based on features. To classify something is to assign, in this case segments of
time series, to a class which we interchangeably refer to as “mapping”. This thesis
utilizes a feature based time series extraction to annotate the classes. The annota-
tions are based on manual annotations and are defined by the user as classes. The
classes are arbitrary, but aims to map a set of features x to the classes y defined
as F (x) : RNf → RNc . Here F (x) is a function that represents the classification
algorithm. The performance of the classification algorithms will vary depending on
the complexity, linearity or non-linearity of the relationship between features and
the class. An ANN has been proven to be a classifier that models the non-linearity
of a relationship in a simple and straightforward manner [7] and will therefore be
used as the classifier algorithm in this thesis.

Recently, when talking about different ML concepts, neural networks has been in
the center of attention. The concept of neural networks dates back to 1943 where
McCulloch and Pitts introduced the first computational model of a neuron [8]. A
single neuron does not define a neural network but it is the collection of multiple
neurons that defines the network. This is what Rosenblatt introduced in 1953, a
method of linking multiple neurons together in multiple layers. This was to be called
Multilayer Perceptron (MLP). A simple MLP network is illustrated in Figure 2.1.

Figure 2.1: Illustration of an MLP with input layer, two hidden layers of various
dimensions and one output layer.

The MLP has three categories of layers and consists of the input layer, hidden layer,
and lastly the output layer. The input layer accepts x ∈ RNf , and consists of a set
of neurons and represents the features. The output layer dimension corresponds to
the classes ŷ ∈ RNc , where ŷ is the predicted output from the neural network. The
number of hidden layers can be chosen arbitrarily and these define how “deep” a
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neural network is. The hidden layers consists of multiple sets of neurons where each
neuron is sequentially connected between the layers. The neurons within the hidden
layers apply a transformation of the values from the previous layer and subsequently
apply an activation function f(·) : R → R, in order to help the network to learn
complex patterns of the mapping.

In practice, the MLP is widely used for classification and regression problems when
building a network with more neurons and more hidden layers. More specifically,
this is called a Deep Neural Network (DNN) and utilizes deep learning for training
a network for a specific application. Stating in terminology terms: An MLP is a
subset of DNN, as DNN can have loops in its layers whereas MLP is a finite acyclic
graph, i.e., a feed forward neural network. The term ANN that has been used so
far is a general form of a neural network that covers a wide set of neural network
structures. Throughout the rest of this thesis, the neural network will be referred
to as the ANN and has the same structure as an MLP. The output of the ANN is
defined as

ŷ = F (x,θ), (2.5)

where ŷ is a vector of the predicted outputs of the ANN, x are the input features
and θ contains the weights (W ) and biases (b) for the neurons. F (x,θ) is the ANN
in which all the layers and activation functions are stored and the whole network,
with one hidden layer, is defined as

ŷ = F (x,θ) = f(z(x,θ)) = f(W · x+ b). (2.6)

An illustration of a simple ANN with only one hidden layer is presented in 2.2.

Figure 2.2: Visualization of the network function. Note that this network consists
of only one hidden layer, which is only one neuron, and one subsequently applied
activation function. The network may also have several hidden layers with activation
functions subsequently applied after each neuron.

To create a score distribution between the classes in the output layer, another ac-
tivation function is applied after each neuron in the output layer. The scalar with
the largest value of the vector ŷ at this point, which is selected as argmax(ŷ),
belongs to one of the classes in C. The coming sections will cover: linear trans-
formation, activation functions and loss function, followed by metrics for evaluating
the performance of the ANN.
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2.3.1 Linear Transformation
The neurons for a single layer that makes up the neural network are stored in a so
called linear transformation which is defined as a single layer feed forward network.
The layer applies a linear transformation to the incoming features as

z = W · x+ b, (2.7)

whereW is a set of weights of the adjacent edges between all the neurons in the layer,
b is a set of all the biases for each neuron, and x is the input features. The ANN
input is a layer that consists of Nf number of neurons, the hidden layers consists of
an arbitrary amount of neurons and layers and the output layer consists of a linear
transformation that outputs Nc number of classes. The number of hidden layers
are highly dependent on the separability of the data points. If the data points were
completely linearly separable, the usage of several hidden layers is not motivated [9].
A set of linear transformations is also referred to as Fully Connected Layers (FCL).

2.3.2 Rectified Linear Unit Activation Function
The Rectified Linear Unit (ReLU) activation function is a piecewise linear function
that thresholds values at 0 when z < 0, but stays positively linear when z ≥ 0. Note
that fReLU is an activation function that operates independently on each element of
z. The mathematical expression of the ReLU function is expressed as

fReLU(z) =
{
z, if z ≥ 0
0, otherwise , (2.8)

and Figure 2.3 visualizes the function.

Figure 2.3: Visualization of the ReLU activation function.
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The activation function in a neural network defines the complexity on the mapping of
the features to classes. If the majority of activation functions in the neural network
are linear activation functions, then the network will struggle to learn non-linear
mappings. The ReLU as a function is nonlinear, due to the threshold, but piecewise
linear as initially stated.

The main advantage with a ReLU activation function is that it is computation-
ally inexpensive as opposed to non piecewise linear activation functions since the
calculations are only limited to logical operators and not exponentials or divisions
[10]. As the function rectifies values below zero, the vanishing gradient problem
is eliminated. The vanishing gradient problem occurs when using gradient based
optimization algorithms and backpropagation in an ANN. As the weights during
training are updated with respect to the partial gradient of the loss function for
previous nodes, the gradient may be small in some cases, therefore rendering the
training to be negligible for that epoch [11].

2.3.3 Sigmoid Activation Function
For multi-label classification, the output layer applies a nonlinear activation function
fSigmoid(z) : R ⇒ R which creates a distribution of scores for each output. The
sigmoid activation function, fSigmoid(z), is responsible for transforming the sum of
the last layer into a score distribution between the defined classes. This function
suppresses the output of the function to values between 0 and 1, the mathematical
expression is shown as

fSigmoid(z) = 1
1 + exp(−z) , (2.9)

and Figure 2.4 visualizes the function.

Figure 2.4: Visualization of the sigmoid activation function.
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2.3.4 Binary Cross Entropy Loss
The Binary Cross Entropy (BCE) is a loss function and is normally used for binary
classification [12]. The BCE, together with the sigmoid layer which is at the end
of the ANN, calculate the error of reconstruction for the encoded predicted value.
Mathematically, the loss function can be expressed as

` (ŷ,y) = − 1
Nc

Nc∑
i=1

yi · log ŷi + (1− yi) · log (1− ŷi) , (2.10)

where ŷi is the i-th predicted value and yi is the true value of the i-th label. The
value of yi is either 0 or 1, while ŷi ∈ [0, 1] which corresponds to the output of the
sigmoid activation function. By using the BCE there is a degree of freedom for
adding several categorical classes to the model. The BCE will act as an average
of the Categorical Cross Entropy (CCE) loss result when there is a discrete class
distribution. Further, the loss function ` (ŷ,y) presents the loss given by the training
dataset. The total loss term for the network can be expressed as

L(θ, T ) =
∑

(x,y)∈T
` (ŷ,y) =

∑
(x,y)∈T

` (F (x,θ) ,y) , (2.11)

where ŷ = F (x,θ) is the predicted output of the neural network. By using the
training data, T ⊂ D, the aim is to find the variables θ that minimize the loss
function. The objective function is expressed as

min
θ
L(θ, T ). (2.12)

2.3.5 Stochastic Gradient Descent
The loss function measures how accurate the networks predictions are, the next step
is to use an optimization algorithm with the intention to minimize the loss. There
is no guarantee to find a function for global minimization, therefore, the solution is
to rely on local optimization.

The Stochastic Gradient Descent (SGD) optimization algorithm aims to differen-
tiate the loss function and moves towards the negative gradient where the value
increases more rapidly. As the algorithm is stochastic with respect to the training
set, the algorithm may encounter fluctuations during the training. To counter this,
a version of a weighted moving average is introduced as momentum to help the SGD
algorithm be directed towards the optimum value efficiently [13]. The pseudocode
for the SGD algorithm with momentum is presented in Algorithm 1.
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Algorithm 1: Stochastic Gradient Descent with Momentum [12]
Require: Training Set: T ; Learning Rate µ; Normal Distribution Std: σ;

Momentum Term Weight: ρ
Ensure : Model Parameter θ

1 Initialize parameter with Normal distribution θ ∼ N (0, σ2)
2 Initialize Momentum term ∆v = 0
3 Initialize convergence tag = False
4 while tag == False do
5 Shuffle the training set T
6 for each data instance (x,y) ∈ T do
7 Compute gradient ∇θL (θ, (x,y)) on the training instance (x,y)
8 Update term ∆v = ρ ·∆v + (1− ρ) · ∇θL(θ, (x,y))
9 Update variable θ = θ − µ∆v

10 end
11 if convergence condition holds then
12 tag = True
13 end
14 end
15 Return model variable θ

To ensure a stable local optimum, the value for the learning rate, µ, must be tweaked.
By setting high values for the learning rate, it will influence the optimization in an
uncontrolled pattern with a risk of missing the local optima. However, by setting
low values for the learning rate, it will make computations slower and brings the
risk of converging towards the local optima prematurely. The momentum term
weight, ρ, is chosen to dampen the oscillations for the optima to be reachable. If
the momentum term weight is set too low, the functionality of the momentum will
be neglected, while if the momentum is set too high, it forces the stochasticity of
the SGD optimization to diminish.

2.3.6 Backpropagation
Within ML, algorithms such as backpropagation are used for calculating the gradients
of a loss function in a neural network. The algorithm computes the gradient of the
defined loss function (as seen in Algorithm 1, line 7), which is the BCE, with respect
to the weights within the network. The purpose is to update the weights such that
the total loss is minimized. The gradient is computed for each layer starting from
the last layer and working itself backwards through the neural network [14] [9].

2.3.7 Metrics
The performance of an ML algorithm depends on how well the algorithm predicts
the target label (classification) or value (regression). This thesis is dealing with
predictions, i.e., classifications, of the target classes. The metrics for evaluating
the performance have a large impact on the interpretability on how well the algo-
rithm behaves, thus also help discovering the weakness of predicting a certain class
or value. This weakness is referred to as the mispredictions of the classes, often
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a result due to lack of data representations for the classes. With a given dataset,
the predictions may be good for some of the classes, and bad for others. This may
depend on the complexity of the feature mapping for the latter case together with
the low amount of data points that the network is trained with. The case where a
class have a lower amount of data points than the other classes is referred to as an
imbalanced dataset.

Below, relevant metrics are presented to evaluate a multi-class classification ANN.
The metrics presents the performance of the classifications by comparing the pre-
dicted classes, ŷ, with the true classes, y. The ANN iterates over the dataset D
and outputs the values for a prediction dataset defined as

Ŷ = (argmax(ŷ1), argmax(ŷ2), . . . , argmax(ŷNd
)). (2.13)

The dataset to compare the predicted classes with, known as the true classes, is
defined as

Y true = (argmax(y1), argmax(y2), . . . , argmax(yNd
)). (2.14)

The metrics that are used in this thesis to evaluate the performance of the ANN are
the following: Accuracy, Balanced Accuracy and Confusion Matrix.

2.3.7.1 Accuracy

Inherently, when discussing classification performance, the accuracy of a prediction
is the most fundamental and intuitive metric for a balanced dataset [15]. However,
for an imbalanced dataset where a class with a minimal amount of data points might
be fully mispredicted by the network, while other classes containing the majority
of data points will more likely be correctly predicted. This result will present an
accuracy that is not a fair representation of the class with minimal amount data
points. Hence, when using the accuracy metric it is preferred to have a balanced
dataset. The accuracy is defined as

accuracy(Y true, Ŷ ) = 1
Nd

Nd∑
u=1

1
(
Ŷu = Y true

u

)
, (2.15)

where Ŷu is the u-th predicted value and Y true
u is the true value of the u-th label.

Further, 1
(
Ŷu = Y true

u

)
is an indicator function that is defined as

1(Y true
u , Ŷu) =

{
1 if Ŷu = Y true

u

0 if Ŷu 6= Y true
u

. (2.16)

2.3.7.2 Balanced Accuracy

The balanced accuracy is a metric that takes class imbalance into account, and
therefore, gives a realistic performance metric for imbalanced datasets [16].
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The balanced accuracy is defined as

balanced-accuracy (Y true, Ŷ , q) = 1∑
q̂

Nd∑
u=1

1
(
Ŷu = Y true

u

)
q̂u, (2.17)

where q̂ is the sample weight. The terms “sample” is not to be confused with the
samples inside a time series or a segment. The initial sample weight, q, is calculated
to assign weights to the predictions in each class. The calculations are based on how
large proportion of each class consists within the dataset, and the predictions that
corresponds to that class in the dataset are weighted accordingly. For every u value,
the sample weight, q̂u, is adjusted to

q̂u = qu∑Nd
r=1 1 (Y true

r = Y true
u ) qr

. (2.18)

2.3.7.3 Confusion Matrix

To visualize the performance of a ML classification algorithm there is a table layout
that presents the performance in a pedagogical way. The table layout is called a
confusion matrix and contains the predicted class distribution. The rows in the
matrix correspond to the predicted class while the columns correspond to the actual
class. An illustration of the example classes {Class 0, Class 1, Class 2} can be
observed in Figure 2.5.

Figure 2.5: Confusion matrix illustration.

In Figure 2.5 the diagonal corresponds to the correct class predictions. The interpre-
tation of observing, e.g., the first row, second column, is that class 0 was predicted
incorrectly as class 1 and done so four times. An ideal confusion matrix would be
a full diagonal matrix.
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2.4 Genetic Algorithm
When performing time series generation throughout this thesis, a successor to Evo-
lutionary Algorithms called Genetic Algorithm will be used. The main purpose of a
genetic algorithm is to solve problems where deterministic algorithms or other tra-
ditional algorithms are too costly [17]. In other words, when faced with a complex
problem, which in this case is to generate an accurate time series representing an
engine drive cycle, a genetic algorithm can optimize a solution and make the com-
putations in a relatively fast time. The algorithm is inspired by the mechanism of
natural selection, that is a biological process in which stronger individuals are likely
to be winners and will proceed to evolve with upcoming generations [1].

When initiating the genetic algorithm, a population that consists of G uniform
distributed random vectors is generated, called individuals. Each individual lies
within a minimum and maximum value, and has a predetermined length of ts. Each
iteration of the algorithm is called a generation which leads to calling this the initial
generation. During each generation, an evaluation of a fitness function (defined by
an objective function in the optimization problem) is done, comparing the new indi-
viduals with their predecessors and saving the individuals with best achieved fitness
score. For the iteration process, a threshold or fitness condition is set to be fulfilled,
and the algorithm will iterate until sufficient score is reached or if a generation limit
is set. Then a solution, or generation in this case, is obtained. During the itera-
tion process, the genetic algorithm performs a so called parent selection from the
current population. That is, a stochastic selection of the best suited parents within
the current population. Then a crossover operation is done between each parent to
form the new generation of population with a certain probability of performing a
mutation to these crossovers. Lastly, the algorithm calculates the fitness function
once again to check if the set fitness condition is fulfilled. If the fitness score is
not updated in E number of iterations, the algorithm will stop. Finally the genetic
algorithm will give a solution that the iteration has achieved consisting of a vector,
i.e., an individual, of length ts, which equals to a drive cycle. Algorithm 2 presents
a pseudocode on obtaining a vector that achieves the highest fitness score based on
the optimization problem.
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Algorithm 2: Genetic algorithm pseudocode
Input : G, [min,max], ts, number of iterations, E
Output: Vector with highest fitness score

1 Start
2 Initialization of a random population of size G of individuals ∈ [min,max] with

size ts
3 Define fitness function
4 Compute fitness score for individuals in the population
5 iteration = 0
6 while iteration 6= number of iterations do
7 Selection of parents from current population
8 Crossover operation for new population (with certain probability)
9 Mutation of new population (with certain probability)

10 Compute fitness score for new individuals
11 iteration = iteration + 1
12 if Maximum fitness score is not improved in E iterations then
13 break
14 end
15 end
16 Return individual with highest fitness score
17 Stop
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3
Methods & Implementation

This chapter presents an explanation of the methodology to obtain the detection,
semantic segmentation and generation of engine drive cycles. Figure 3.1 presents an
overview of the workflow scheme through the thesis.

Figure 3.1: The Workflow to obtain the detection, semantic segmentation and
generation of engine drive cycles.

The following sections will explain each block in Figure 3.1 in more details, starting
from Section 3.1 which will cover preprocessing and feature extraction. Section 3.2
presents the method of constructing a machine learning algorithm for classification
in order to perform detection, semantic segmentation and generation of engine drive
cycles.

3.1 Data Preparation
Data is the most important resource, and even though the data is structured from
the beginning, there is still a need to divide the data preparation process into two
stages: Preprocessing & Analysis, and Feature Extraction as explained in the follow-
ing subsections.

3.1.1 Preprocessing & Analysis
The data is the main source of information which will be used throughout the thesis
and within the ANN. The data is raw sensor readings, and model based calculations,
from industrial engines, which exists in a Microsoft Azure data lake and consists of
.mat and .delta formats. The .mat formatted files have been used in this thesis for
convenience.

The selected engines are presented in Table 3.1 together with the months of data

21



3. Methods & Implementation

that was available within data lakes and used in the ANN, depending on the applied
method. The months were chosen in a sequential order where the goal was to acquire
a balanced dataset with equal amount of data points for each class. Another rea-
son that months are sequentially chosen is to minimize, e.g., extreme temperature
fluctuations. The assumption in this thesis is that no extreme temperatures will be
present within the validation month in relation to the train and test months. The
Class Name notation will be used for each class further on.

Table 3.1: The engines and their respective application. The train/test months
are extracted to create the train/test dataset for the ANN. The third month is used
for validation where the network is tested for its classification capabilities.

Class Name Engine Size Pseudonym Application Train/Test Set Validation Set

D11 T D11 T Logstacker 2020-08
2020-09 2020-10

D13 T D13 T Logstacker 2020-08
2020-09 2020-10

D13 M D13 M Stone Crusher 2020-08
2020-09 2020-10

D13 K D13 K Reach Stacker 2020-06
2020-07 2020-08

After discussions with people from the field test department and the data collection
unit at Volvo Penta, there has been a selection of relevant signals that in the clearest
and most commonly used way represent an engine drive cycle. The selected signals
are Engine Speed, SCR Temperature, and Engine Torque. These are illustrated in
the thesis as in Figure 3.2.

Figure 3.2: Engine signals selection workflow.

The data needs to be prepared for analytical reasons, and the purpose of the prepa-
ration is due to existing inconsistencies between different sensor readings. The sam-
pling frequency for the sensors differs in the data collection phase, which is deter-
mined by the the Engine Management System (EMS) CAN-bus. E.g., the engine
speed and engine torque are sampled with 10 [Hz] while the SCR temperature is
sampled with 40 [Hz]. The EMS is accessed through a field test logging device
called ULTRA. The solution for this difference in sampling rate is to resample the
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SCR temperature data to 10 [Hz].

The preprocessing and analysis part of the project consists of time series anal-
ysis which was based on understanding characteristics of the signals in order to
distinguish patterns between the features. Initially, the process of understanding
the signals began with observing daily and hourly time horizons. As the signals
are logged sequentially, the initial work started with concatenating all the mea-
surements of a month into a sequential time series for each signal. Having data
with a time resolution less than one hour, may lead to inaccuracies within the train-
ing or validation data. However, this aspect is not investigated further in this thesis.

The analysis of the data was based on features included in the statistical, tem-
poral and spectral domain within the TSFEL package that consisted of more than
300 features. The majority of the features were deemed redundant and eventually 12
features were selected for extraction. These 12 features, see Table 2.1, were chosen
based on current knowledge of the features.

3.1.2 Feature Extraction
The data analysis defined the relevant features which are inputs to the ML al-
gorithm. The definition of how relevant the features are in an ANN is based on a
feature importance metric, which is evaluated with a technique called integrated gra-
dients. The feature importance metric has a value, called significance score, which
shows how much the input features activate the nodes in the ANN in the process of
classifying the engines.

The features are not excluded to be a single feature for the ML model, but con-
sists of the 12 features, presented in Table 2.1, that are representative of the time
series. As the time series varies for each engine and the feature distribution is dif-
ferent depending on the drive cycle, the integrated gradients is a tool to intuitively
analyze the ANN after the training. Therefore, as the features are relatively few,
from a computational point of view, the need to reduce the amount of features before
training is not interesting. Figure 3.3 presents a workflow of obtaining the features
that represents a drive cycle and creating a dataset.

The feature extraction is built as a vector for the corresponding label (class) and
the dataset is created in a sliding window manner where the features are consec-
utively extracted for a whole month and appended to a dataframe. The data was
arranged such that every feature vector has a class correspondence, and ultimately,
the dataset was shuffled randomly and divided into a train and a test set of 75 %
and 25 %, respectively. Before using the feature vector as an input to the ANN,
the vector is min-max normalized to values between 0-1 to suppress features that
have large numerical values in relation to other features. The purpose of the nor-
malization is a practical necessity to reduce the convergence time during the SGD
optimization [18].
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Figure 3.3: Feature extraction from the selected signals to a dataset.

3.2 Proposed Approaches Using Machine Learn-
ing

Machine learning is the concept of training a model with historical data where the
intention of the ML model is to map a set of features to a class. The data that
has been presented in Table 3.1 as the train/test set, will define the ML mapping
behavior and is the most important aspect when training a ML model.

To be able to classify engine drive cycles, algorithms are needed to model historical
data to be able to make predictions. The model must avoid to be biased towards
a certain historical data type. However, it must be accurate enough to be able to
separate one class from another. The proposal will be to implement an ANN with
multilayer perceptron. The structure of the ANN is determined by an iterative test-
ing process to be able to obtain high accuracy of the predicted labels.

This section presents three methods that utilize the ANN for different purposes.
Section 3.2.1 presents a method of detecting drive cycles, Section 3.2.2 presents a
way of annotating and semantically classifying segments of the data. Lastly, Section
3.2.3 presents a brief application of the ANN as a fitness function in the genetic
algorithm for drive cycle generation.

3.2.1 Drive Cycle Detection
The method of detecting engine drive cycles is the fundamental way of evaluating
if the features extracted from the signals are separable or not. As the data initially
does not have detailed non-deterministic annotations, the choice of labels is based
on the class names.

The labels correspond to the classes and are chosen as the class names in Table
3.1: D11 T, D13 T, D13 M, D13 K. Figure 3.4 presents the classification process
and how to utilize the ANN.
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Figure 3.4: Example of drive cycle detection process.

The ANN was designed in a way that it has the ability to give the score of the
predicted class as an output. A higher predicted score for a certain class implies
that the features that have been extracted from an arbitrary time series, and used
as input to the ANN, correspond to that class. The last output layer of the ANN
is a sigmoid function which enables the score to correspond to the class that has
similar features as the training data. The encoding of the engines in terms of the ML
network is presented in Table 3.2, where the one-hot encoding represents a binary
value of 0 or 1.

Table 3.2: One-hot encoding of the four classes for detection.

Class Encoding
D11 T [1 0 0 0]
D13 T [0 1 0 0]
D13 M [0 0 1 0]
D13 K [0 0 0 1]

The ANN structure is illustrated in Figure 3.5 and a detailed specification is pre-
sented in Table 3.3. The network structure was obtained by an iterative testing
process with the intention to minimize the loss and maximize the accuracy.
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Input Layer ∈ ℝ³⁶ Hidden Layer ∈ ℝ³² Hidden Layer ∈ ℝ¹⁶ Output Layer ∈ ℝ⁴

Figure 3.5: Illustration of the ANN structure for engine drive cycle detection.

Table 3.3: The detailed ANN structure for engine drive cycle detection.

Layer (type) Input Shape Output Shape
FCL [36,1] [32,1]
ReLU [32,1] [32,1]
FCL [32,1] [16,1]
ReLU [16,1] [16,1]
FCL [16,1] [4,1]
Sigmoid [4,1] [4,1]

The ANN is trained with a subset of historical data and tested on a different subset
of this data which is an important choice in the data selection process. The method
uses two months of sequential data as training and testing to ensure that the net-
work model has the ability to distinguish the different engines. Since the last layer
of the ANN is a FCL with a sigmoid activation function, the output of the ANN
corresponds to a score. In this structure, the ANN is applied to a third month of
data, and lastly extracts five one-hour drive cycles that the network considers to be
the highest scoring cycles. These drive cycles are interpreted as the most accurately
represented general engine drive cycles according to the ANN. This is done for each
engine.

The choice of the historical data is a vital parameter that defines how the ANN
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will evaluate the validation set. We did not focus on how the engine behaves in
these two training and testing months in this method. The goal of the drive cycle
detection is to screen either one or several months of data and propose a set of
typical drive cycles for an engine application.

3.2.2 Semantic Segmentation of Engine States
Semantic segmentation of engine states is a method of classifying parts (segments)
of the data, for univariate or multivariate time series. The semantic segmentation
can be useful when classifying predefined characteristics based on historical data.
For this purpose, two signals were selected for the study: engine speed and engine
torque. The SCR temperature is neglected in this case because the annotation pro-
cess did not include this signal for labelling the segments, and therefore, it was not
included as an input feature.

The states that have been defined as the new class representations are shown as
a one-hot encoding in Table 3.4. The semantic segmentation method is focused on
the D13 M data because the states for the engine speed data are easy to annotate.
Table 3.5 presents the data used for semantic segmentation.

Table 3.4: One-hot encoding of three classes for the semantic segmentation of
engine states.

Class Name Encoding
Running [1 0 0]
Working [0 1 0]
Idle [0 0 1]

Table 3.5: The data for the semantic segmentation of D13 M. The train/test month
is manually annotated while the validation month is not related to the annotation
and ANN training process.

Name Engine Size Pseudonym Application Train/Test Set Validation Set
D13 M D13 M Stone Crusher 2020-10 2020-07

A similar ANN to the one that is defined in Section 3.2.1 is used with the same
purpose for semantic segmentation, but adapted to the correct amount of inputs
and outputs as these are modified. The new ANN structure is presented in Table
3.6. Note that the reason for changing the structure of the ANN is the absence of
the SCR temperature signal, and thus, reduced number of input features from 36
to 24. In addition to the reduced number of inputs, the outputs are reduced from 4
classes to 3 to correspond to the class names.
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Table 3.6: The detailed ANN structure for semantic segmentation.

Layer (type) Input Shape Output Shape
FCL [24,1] [32,1]
ReLU [32,1] [32,1]
FCL [32,1] [16,1]
ReLU [16,1] [16,1]
FCL [16,1] [3,1]
Sigmoid [3,1] [3,1]

The annotated segments in the time series are shortened to a span of 3000 samples,
which corresponds to 5 minutes, as the dynamics of the states fluctuates between
running, working and idle more frequently than the detection method. The time
span may even be shortened depending on the performance of the classification,
but the time resources to manually annotate the data was limited. The signals
from which the features have been extracted are limited to the engine speed and
engine torque for the simplicity of annotating and analyzing the segmentation. In
the validation phase of the segmentation process, there is a degree of freedom for
decreasing the segmentation length, i.e. ts, when classifying each segment. Three
values of ts are presented in Subsection 4.2.2.

3.2.3 Drive Cycle Generation
In this thesis, Volvo Penta has requested to be able to generate a time series rep-
resenting an accurate engine drive cycle. There are multiple ways for time series
generation, but this thesis will cover an implementation which originates from evo-
lutionary algorithms.

Genetic Algorithm is used in this thesis to optimize and generate a time se-
ries that most accurately, based on the ANN, can describe an engine drive cycle.
This type of algorithm generates a population of randomized vectors which will be
altered through each iteration of the process. Mainly, each so called generation of
vectors is altered, combined or mutated to achieve a better fitness score. The fit-
ness score is obtained as a score output from the ANN for the specified class. The
generation with the highest fitness score provides the best possible solution, in this
case a vector, from the population, which represents an engine drive cycle. Figure
3.6 illustrates the genetic algorithm and its procedure. Table 3.7 presents the new
ANN structure.

Figure 3.6: Genetic algorithm workflow to obtain a generated 1 hour drive cycle.
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Table 3.7: The detailed ANN structure for time series generation.

Layer (type) Input Shape Output Shape
FCL [12,1] [32,1]
ReLU [32,1] [32,1]
FCL [32,1] [16,1]
ReLU [16,1] [16,1]
FCL [16,1] [4,1]
Sigmoid [4,1] [4,1]
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4
Results & Discussion

This chapter is divided into three main sections. These sections are: Drive Cycle
Detection, Semantic Segmentation of Engine States, and Drive Cycle Generation.
Each section will present the data distribution and ANN performance followed by
the predicted output and feature importance for the classes. Ultimately, the result
and evaluation of each method is presented, followed by discussion regarding the
results.

4.1 Drive Cycle Detection
The dataset distribution of data points for each class is presented in Figure 4.1 where
it is clear that D11 T and D13 T have a similar amount of data points, opposed to
D13 M and D13 K which have significantly fewer data points. Hence, the dataset
is unbalanced.

Figure 4.1: Visualization of the data distribution for each class. Each data point
represents a set of features that have been extracted from segments of 1 hour from
the signals.

4.1.1 ANN Performance
The structure of the ANN can be seen in Table 3.3 from Chapter 3 in which we
discussed the methods. In Table 4.1, the hyperparameters are listed which are the
result of the ANN performance. These are tuned in an iterative process in order to
maximize the accuracy and minimize the loss for both training and test datasets.
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Table 4.1: Hyperparameters for the ANN – Detection method.

Hyperparameters

Number of Epochs 50

µ - Learning Rate 0.1

ρ - Momentum 0.4

Figure 4.2 shows the resulting performance achieved from the ANN. The three plots
illustrate the Mean Epoch Loss, Accuracy, and Balanced Accuracy, respectively. The
results show that all three scores in Figure 4.2 behaves similarly. Although, during
the first 20 epochs, the score fluctuates before stabilizing at each metric’s optimum.

(a) Mean Epoch Loss (b) Accuracy

(c) Balanced Accuracy

Figure 4.2: ANN performance for the drive cycle detection training and testing.

The confusion matrix in Figure 4.3 shows the correct classifications on the diagonal,
while the cases in the upper and lower triangular segments are the falsely classified
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ones. These results are based on the test set that is fed into the ANN. As an example
for the lower left corner in Figure 4.3, the ANN predicts the class as D11 T while
the correct class is D13 K.

Figure 4.3: Confusion matrix of predictions for the test set.

The Figures 4.4-4.7 cover feature importance for each class, respectively, and in each
figure, individual signals are presented. It shows how each feature affects the ANN
decision making for each class. Figure 4.4 illustrates feature importance for the class
D11 T, where the ANN decision making is highly dependent on both engine speed
and SCR temperature, while the engine torque signal affects the decision negatively.

Figure 4.4: Feature importance for the class D11 T.
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Feature importance for D13 T is shown in Figure 4.5 which presents almost an
opposite result, compared to D11 T. Both engine speed and SCR temperature show
mostly a negative impact on the ANN decision making, although it is relatively mild
for the SCR temperature signal. Instead, these results show that feature importance
depends heavily on the engine torque signal.

Figure 4.5: Feature importance for the class D13 T.

Results for the D13 M, seen in Figure 4.6, have an overall lower feature importance
score compared to previous classes. The figure also shows that the engine speed
signal has the most weighed features for the ANN to be able to make a correct
classification. While engine torque also shows significant importance, the score is
relatively low compared to the engine speed.
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Figure 4.6: Feature importance for the class D13 M.

Lastly, D13 K relies on its features based on engine speed as seen in Figure 4.7.
There are also some features that are important regarding the engine torque signal,
e.g., max frequency and mean absolute difference. Although, both max and peak-to-
peak distance negatively affect the ANN decision making.

Figure 4.7: Feature importance for the class D13 K.
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4.1.2 Ranking & Evaluation of Detected Cycles
To analyze the best type of general engine drive cycle in this thesis, five one-hour
cycles with top score, determined by the ANN, are extracted. The top scoring engine
drive cycles for D11 T can be seen in Figure 4.8.

Figure 4.8: Top 5 scoring engine drive cycles for D11 T.

In Figure 4.8, each row describes one signal, and from top to bottom the signals
are: Engine speed, SCR temperature, and Engine torque. Each column provides a
one-hour drive cycle with each column title describing the index of the hour in the
validation month, which can be seen in the Figures A.1-A.4 provided in appendix.
The score is also provided for each column, and note that in all provided results the
score is 1 which is the highest score that can be achieved by the ANN. In Figure
4.9, the top scoring cycles for D13 T are shown.

Figure 4.9: Top 5 scoring engine drive cycles for D13 T.

Note that D11 T and D13 T have somewhat different engine drive cycles, though
with similar scores, scored by the ANN. Below in Figure 4.10, a completely different
type of engine drive cycle and application is shown for the D13 M. Recall that
compared with D13 T, which is a logstacker, D13 M is a stone crusher, hence it has
a different type of engine drive cycle.
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Figure 4.10: Top 5 scoring engine drive cycles for D13 M.

Lastly, Figure 4.11 is the D13 K which is a reach stacker, again with a completely
different type of engine drive cycle.

Figure 4.11: Top 5 scoring engine drive cycles for D13 K.

Figure 4.12 shows, as an example, a pair plot of the features for class D13 M and
how its most important features are scattered and distributed. The diagonal plots
presents the distribution of the features in the form of histograms, while the upper
and lower triangular presents the features plotted against each other. The most im-
portant features are selected based on the highest feature importance score given by
the Figures 4.4-4.7. Additionally, the best and the worst scores of the classification
of the validation set are presented in green and red respectively.
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Figure 4.12: Scatter plot and the data distribution of the class D13 M together
with the data points with best and worst scores. The features with the largest
significance score is presented.

4.1.3 Discussion on Drive Cycle Detection
The dataset presented in Figure 4.1 shows that the data corresponding to each class
is not equally distributed among all classes. The goal when selecting the months
of the corresponding classes was to create a dataset where each class has a similar
amount of data. Obtaining a balanced dataset was not possible due to the fact that
the industrial machines had different distributions of uptime every month. The focus
was rather to be consistent with the months that were extracted to avoid potential
seasonal interference when using the SCR temperature. Therefore, we want to use
months that are relatively close to each other. No studies about whether or not the
season would interfere with the classification has been done since this is considered
to be a part of future work for this thesis.

The parameters presented in Table 4.1 were tuned in order to minimize the loss
and maximize the accuracy of the ANN based on the test dataset. Figures 4.2a-4.2c
all present similar characteristics, such as fluctuations between 0-20 epochs and ac-
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curacy convergence around 0.98, which indicates that the balanced accuracy metric
is not needed. The fluctuations are results of a high value for the learning rate,
µ. The mean epoch loss in Figure 4.2a converges towards 0 for the train and test
dataset with small deviance between each other, which is preferred. The confusion
matrix in Figure 4.3 presents the classifications, and what can be observed is that
there are two misclassifications as D13 K was falsely predicted as D11 T, and D13 T
was falsely predicted as D13 K. We cannot conclude whether the similarity of these
two drive cycles are the factor for these misclassifications. However, a hypothesis
for this specific case is that the data points are too scarce for the ANN to learn the
distinctions. The results from the ANN performance are nevertheless promising as
it concludes that the extracted features are separable enough between the classes to
be able to distinguish different engine drive cycles by using a rather simple neural
network.

Figures 4.4-4.7 present the feature importance by using the integrated gradients
method based on the ANN. The high average significance score is noticeable for
both the engine speed and the SCR temperature when classifying D13 T, in com-
parison to engine torque. This indicates that the features for engine speed and SCR
temperature are good additions to the ANN when classifying D13 T. However, by
looking at engine torque, which has negative significance scores, we see that it af-
fects the ANN negatively and rather complicates the classification process. When
we classify D13 T, the significance scores are high for the feature contributions of the
engine torque. D13 M and D13 K share a somewhat similar feature importance dis-
tribution, but differ in absolute value of the significance score. D13 M has generally
lower significance scores compared to the other classes, which might be explained
by the score distributions depending on how certain the ANN is. The ANN creates
a mapping which divides the classes by their clusters, which is illustrated in Figure
4.12. The data points that have the largest score output will not necessarily be
the data points that are closest to the clusters, but rather inside the mapping done
by the ANN. Further research regarding the score distribution among the classes is
required to understand the mapping process.

The results from the ranking and evaluation of detected cycles Figures 4.8-4.11
present the top five highest scoring one-hour cycles considered by the ANN. These
results may be a way for Volvo Penta to extract the top scoring cycles which then
can be analyzed by experts to evaluate if any of the cycles are any good or repre-
sentable for an application. Note that every score output from the ANN is highly
dependent on how the cycle is represented in the training process. Therefore, a
suggestion would be to briefly analyze the training data and remove obvious out-
liers. As an example of engine drive cycles that are representable, D11 T seen in
Figure 4.8, shows that the cycles in index 73 and 25 both have cycles that look
more realistic compared to the remaining three (index 82, 78 and 86). The later
three hours of different drive cycles show a not so realistic scenario. Also, observing
the full validation month presented in Figure A.1 the cycles are repeated for these
three hours with a small displacement. This conclusion is derived by looking at
the complete engine drive cycle month, shown in the Figures A.1-A.4, which show
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that these scenarios are not so likely to occur during general operations for that
application. This indicates that the training data included data points that do not
represent a general engine drive cycle, which is expected since the training data was
not screened. Therefore, we conclude that depending on what the ANN wants to
detect, a selection of the training data that represents a typical engine drive cycle
must be properly defined during the phase of the training dataset creation.

Lastly in Figure 4.12, a pair plot is shown as an example to compare a class, in
this case D13 M, towards the features that the ANN classifies as both the best and
worst scores. The best scores have the largest score output from the ANN, opposed
to the worst scores which have the lowest score output from the ANN. We can ob-
serve that the data points with the best scores tends to be closer to the majority of
the data points for the class D13 M, while the worst scores are further away. In this
particular case, we can conclude that the ANN has been trained on features that
corresponds to where the majority of the data points are located. The worst scoring
data points is a result of the lack of feature representations in the training dataset.
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4.2 Semantic Segmentation of Engine States
The dataset distribution of data points for each class is presented in Figure 4.13.
This dataset is imbalanced where the Working class has the majority of data points
while Running and Idle have significantly fewer.

Figure 4.13: Visualization of the class distribution for the data included in the
dataset. Each data point represents a set of features that has been extracted from
segments of 5 minutes from the signals.

4.2.1 ANN Performance
The structure of the ANN can be seen in Table 3.6 from Chapter 3 in which we
discuss the method. In Table 4.2, the hyperparameters are listed which is the result
of the ANN’s performance during training. These are tuned in an iterative process
in order to maximize the balanced accuracy and minimize the loss for both the
training and test dataset.

Table 4.2: Hyperparameters for the ANN – Semantic Segmentation.

Hyperparameters

Number of Epochs 100

µ - Learning Rate 0.01

ρ - Momentum 0.4

The mean epoch loss, accuracy and the balanced accuracy are presented in Figure
4.14. The most relevant metrics to observe, as the dataset is imbalanced, are the
mean epoch loss, and the balanced accuracy. The mean epoch loss converges for
both the train and the test set with minor differences. The balanced accuracy for
the train and test maintain a close relationship through the epochs. Figure 4.14b in
comparison to Figure 4.14c shows a higher accuracy around epoch 10-30 due to the
imbalance of the dataset.
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(a) Mean Epoch Loss (b) Accuracy

(c) Balanced Accuracy

Figure 4.14: ANN performance for the semantic segmentation training and testing.

The result of the classifications can be observed in Figure 4.15, where two instances
of the class Working was mispredicted as Running.

Figure 4.15: Confusion matrix of predictions for the test set.

The following figures present the average feature importance during the prediction
stage of the ANN, for each feature. The feature importance is evaluated using
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the test set, and with higher significance score, the features will contribute more
to the classification of the evaluated class. Observing Figure 4.16, the features S1
Autocorrelation and S1 Mean have the largest significance score on the classification
of class Running. Figure 4.17 on the other hand shows that the features S3 Mean and
S3 Autocorrelation have the largest significance score on the classification of class
Working. Lastly, observing Figure 4.18, the features S3 Max Frequency, S3 Slope
and S3 Mean Difference have the largest significance score on the classification of
class Idle.

Figure 4.16: Feature importance for class: Running
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Figure 4.17: Feature importance for class: Working

Figure 4.18: Feature importance for class: Idle
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4.2.2 Semantic Segmentation Validation
The Figures 4.19a, 4.19b and 4.19c present the contiguous application of the ANN
with different segmentation lengths, i.e., ts of 300, 3000 and 5000 samples corre-
sponding to 0.5, 5 and 8.33 minutes. The plots have two axes that present the
engine speed (left y-axis) and engine torque (right y-axis). A zoomed in part of the
validation month of 90000 samples, which corresponds to 150 minutes, is presented
to be able gain a clear view of the segmentation. The segments of the engine speed
that are red, blue and black correspond to the classes running, working, and idle,
respectively.

(a) The segments are 300 samples each, which corresponds to 0.5 minutes.

(b) The segments are 3000 samples each, which corresponds to 5 minutes. These
segments has the same segmentation length as the train/test set.

(c) The segments are 5000 samples each, which corresponds to 8.33 minutes

Figure 4.19: Semantic segmentation of the validation month with three values of
the segmentation length ts.
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From the feature importances presented in Subsection 4.2.1, two features have been
chosen based on the largest significance score of each of the classes and can be
observed in Figure 4.20. The scatter plots show the clustering of the features against
each single feature, while the histogram presents the distribution of the individual
features.

Figure 4.20: The data distribution scatter plot for each class. Two features from
each class with the largest significance score is presented.

46



4. Results & Discussion

4.2.3 Discussion on Semantic Segmentation of Engine States
The dataset presented in Figure 4.13 shows that the data corresponding to each
class is not equally distributed among the classes and has a large class imbalance.
The reason for this is that the annotated month did not have an equal distribution
of engine states for each class. This results in a skewed, or imbalanced, dataset that
may affect the classification negatively on those states that has the lowest amount of
data representation. The reason is that the ANN does not have the ability to learn
as many feature representations for the class with the lowest count of data points.

When comparing the results presented in Figure 4.14b and 4.14c, there is a no-
ticeable deviation around epochs 6-25 that shows a larger accuracy, but a lower
balanced accuracy. The explanation is related to the imbalanced dataset, as this
skewness of training is reported by the balanced accuracy, opposed to the standard
accuracy. The limited amount of datapoints for the class idle is also an indication
for this result. This motivates imbalanced datasets to include imbalanced accuracy
metrics to be able to correctly evaluate an ANN. Ultimately, presented by the con-
fusion matrix in Figure 4.15, there are a low percentage of misclassifications of the
test set where only two labels were misclassified. This concludes that the ANN is
able to separate the classes successfully based on the test dataset.

The Figures 4.16-4.18 show that a large amount of the 12 features for each sig-
nal have a significance score close to 0 which implies that these features would be
safe to remove from the feature extraction, while retaining the high metric reports.
These results only imply the feature importance, and need to be investigated further
to be able to draw a definite conclusion regarding the removal of features.

The Figure 4.19 presents the semantic segmentation of a zoomed in part of the
validation month. The validation month is unrelated to the train and test set and
its purpose is to present how the ANN classifies each segment. The segmentation
lengths are chosen as three different time spans to show that the method is not
excluded to a single segmentation length. As the annotations were labeled with seg-
mentation lengths of ts = 3000, the best representation is to also validate with this
segmentation length. Meanwhile, lowering ts to 300 samples, there is a noticeable
difference at the classification between running and working from around 1160000
samples and forward. The difference is that shorter segments where the state is
running are being classified correctly by the ANN as running, compared to larger
segmentation lengths where these shorter segments of running states are neglected.
The Idle segments at around 1130000 samples were not classified correctly for the
larger values of ts. The explanation for this lies within the historical data and how
the data is annotated, as the training set did not include enough Idle data points
to represent the Idle states at that segmentation length. More data representations
of the mispredicted class is also important when fitting a model to a neural network.

Figure 4.20 presents a set of pair plots along with the distribution for six features.
Two features with the highest significance score for each class is chosen with the
intention to illustrate the clustering of the classes. Generally, there are feature com-
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binations that create clusters of the classes, such as the S3 Mean in combination
with S1 Max Frequency. This concludes the importance of annotating segments of
the data that are easily separable by the ANN in the training process. When anno-
tating the segments, a necessity to create an accurate ANN that models the features
to the classes, is to more accurately annotate the segments. By more accurately
annotate the segments, we refer to the importance of understanding the dynamics
of an engine and its application and annotate the segments accordingly.

This semantic segmentation method has shown that engine states can successfully
be semantically classified based on the test class D13 M. The segment length was
proved to have a large degree of freedom when segmenting the states correctly. This
proves that depending on the engine state and how the dynamics behave, a shorter
segment helps the classification. Further research regarding how the complexity of
the engine states affects the classification must be conducted in order to validate
the robustness of the ANN.

48



4. Results & Discussion

4.3 Drive Cycle Generation
The dataset distribution of data points for each class is presented in Figure 4.21,
which is the same dataset as the engine drive cycle detection. The difference between
the methods is that only the engine speed features are extracted and used as an input
to the ANN for the generation.

Figure 4.21: Visualization of the data distribution for each class. Each data point
represents a set of features that has been extracted from segments of 1 hour from
the signals.

4.3.1 ANN Performance
The structure of the ANN can be seen in Table 3.7. In Table 4.3 the hyperparameters
are listed which is the result based on the ANN’s performance during training. These
are tuned in an iterative process in order to maximize the accuracy and minimize
the loss for both the training and test dataset. The learning rate, µ, is lower than
the previous methods.

Table 4.3: Hyperparameters for the ANN – Drive cycle generation.

Hyperparameters

Number of Epochs 100

µ - Learning Rate 0.005

ρ - Momentum 0.4

The mean epoch loss, accuracy, and balanced accuracy are presented in Figure
4.22. The mean epoch loss converges for both the train and the test sets with
minor differences. The accuracy and balanced accuracy maintain a close relationship
throughout all epochs. The general accuracy is lower than the previous methods,
where the ANN utilized more features in the form of more signals, and ends up at
around 0.9 accuracy.
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(a) Mean Epoch Loss (b) Accuracy

(c) Balanced Accuracy

Figure 4.22: ANN performance for the generation training and testing.

The result of the classifications can be observed in Figure 4.23, where the ANN is
generally bad at separating class D11 T and D13 T. Note that these two classes
have different engine sizes but have the same type of application, i.e, logstacker.

Figure 4.23: Confusion matrix of predictions for the test set.

The feature importance is presented in Figure 4.24-4.27 where the engine speed
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features can be observed, as the generations goal is to generate an engine speed drive
cycle of one hour. Three features with the highest significance score for class D11 T
can be observed in Figure 4.24 as S1 Max, S1 Pk-Pk Distance and S1 Autocorrelation.
For the class D13 T presented in Figure 4.24, the best are represented as S1 Max,
S1 Mean Absolute Deviation, and S1 Standard Deviation. D13 K in Figure 4.26
has three remarkably higher scores compared to the other features significance score
which are S1 Autocorrelation, S1 Max frequency and S1 Slope. Lastly, the class D13
K feature importance is presented in Figure 4.27 where the three features with the
highest scores are the S1 Max, S1 Max frequency and S1 Pk-Pk Distance.

Figure 4.24: Feature importance for class: D11 T
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Figure 4.25: Feature importance for class: D13 T

Figure 4.26: Feature importance for class: D13 M
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Figure 4.27: Feature importance for class: D13 K
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4.3.2 Genetic Algorithm Performance and Generation of
Engine Drive Cycles

This section presents the result of the generation of the engine speed drive cycle for
each class. Figure 4.28 presents the genetic algorithm score convergence for each
class. Note that this is the fitness score which is the ANN score output for each
class. In all generations, the genetic algorithm manages to converge at around 0.99
or more. Note that a different number of iterations are needed for each class.

(a) D11 T (b) D13 T

(c) D13 M (d) D13 K

Figure 4.28: Score convergence for the genetic algorithm.

Figure 4.29 presents the final result of the generated engine speed drive cycles. Note
that the cycles are generated with main constraint of a minimum and a maximum
value of the generated sequence. The features corresponding to the generations are
presented in Figure 4.30, for four different classes, where the three most important
features are shown in a pair plot. The most important features are selected from the
feature importance presented in the Figures 4.24-4.27 with the highest significance
score corresponding to each class.
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(a) D11 T (b) D13 T

(c) D13 M (d) D13 K

Figure 4.29: Engine speed generation provided by the genetic algorithm.

55



4. Results & Discussion

(a) D11 T (b) D13 T

(c) D13 M (d) D13 K

Figure 4.30: Scatter plot and data distribution

4.3.3 Discussion on Drive Cycle Generation
The dataset presented in Figure 4.21 shows that the data corresponding to each class
is not equally distributed among all classes and follows the same discussion made
for Figure 4.1, as the methods share the same dataset. The exception is that for
this method, only the engine speed features are extracted as the genetic algorithm
is bounded to generate only one signal. The consequence of this choice is that the
ANN receives fewer features as input, thus making it harder for the ANN to model
the mapping. Figure 4.22 proves this statement as the performance of the ANN
presents a lower general accuracy convergence to around 0.9, which equals to 90%
correct classifications. Figure 4.23 shows the confusion matrix, which indicates a
larger misclassification on D13 T as the model thinks that the cycle is a D11 T. The
confusion matrix generally shows, compared to previous ANN evaluations, that the
ANN has a harder time to distinguish the classes. This concludes that more signals
included in the feature extraction as input to the ANN will increase the general per-
formance of the classifications based on the structure of this ANN. Further study if
a more complex ANN structure could model the mapping even better needs to be
conducted.
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The score convergences in Figure 4.28 presents the genetic algorithm fitness score
for each iteration in the algorithm. Note that the fitness score is the score output
from the ANN. In Figure 4.28, a high score convergence can be observed, at different
points in the iterations. The iterations vary due to the early stopping mechanism
that breaks the loop when a higher score has not been found in 50 iterations. This
is used as the genetic algorithm is time consuming, and the result of the scores are
satisfying enough for evaluation purposes.

The generated engine speed drive cycles are presented in Figure 4.29. What can
be observed is a one-hour cycle for each class, evaluated with the fitness score,
which has been manually constrained by a minimum and maximum value for the
amplitudes for each class. This constraint was necessary since the genetic algorithm
did not converge in a reasonable time period, and therefore, an iterative tuning
process of finding the minimum and maximum value was conducted. The values
that were selected to maximize the fitness score of the algorithm did not reflect the
real minimum and maximum of each drive cycle. However, there is an exception for
D13 M observed in Figure 4.29c compared to the extracted drive cycle in Figure
4.10. The explanation for this is most likely to be a combination of the lower gen-
eral accuracy of the ANN performance, together with the combination of features
presented by the feature importance. The features that most typically represent
the characteristics of the engine speed drive cycle is either: not sufficient enough in
terms of feature importance of the ANN, or not included in the feature extraction
process. This concludes that further studies regarding what characterizes the engine
speed drive cycle in terms of feature representations must be conducted. The fitness
function, which is the ANN with no constraints, will most likely be able to perform
better if constraints are introduced. From a robustness point of view it is interesting
to see that an unrealistic time series has the ability to set a relatively high score
output from the ANN, which implies that the ANN is not robust enough.

By observing the scatter plot in Figure 4.30, the features tend to be near, or at
least in the vicinity of its corresponding cluster. An exception is seen in Figure
4.30d for class D13 K, where the generated features do not appear to be close to
the corresponding cluster. No conclusions can be drawn from this deviance as it is
hard to visually observe the mapping of the ANN.
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5
Conclusion

The main goal of the study, stated by the problem formulations in Section 1.3, was
to determine how the engine data can be used for classification purposes. As con-
cluded in the discussions in Section 4.1.3 and based on the results in Chapter 4, the
structured data acquired by Volvo Penta is shown to be useful when it comes to
classification because the results present enough separability between engine drive
cycle features.

The experiments confirmed that by using an ANN, it is possible to identify and
detect engine drive cycles for different engine sizes and applications. In addition,
our study shows that using more signals as input to the network can provide a
higher general accuracy of the predictions. The annotated training data defines the
mapping of the ANN features to classes and with the correct competence of anno-
tating training data, our study proved that an ANN can successfully be utilized for
semantic segmentation of engine states.

Utilizing the ANN as a fitness function for the genetic algorithm has been proved
to provide an understanding of the robustness of the mapping behavior for a given
ANN. Although, the generation of engine drive cycles approach cannot generate a
cycle which fulfills the characteristics of a realistic engine drive cycle. As the ANN is
utilized for different methods seen in Sections 4.1-4.3, with small modification on the
ANN, it would be able to perform detection, semantic segmentation and generation
of engine drive cycles.

The findings will be of interest to Volvo Penta as a proof-of-concept study, which
lays the foundation for further research in advanced analytics towards applied ma-
chine learning. Although this study focuses on practical implementations of machine
learning, the findings may have a bearing on the understanding of the engines and
the corresponding application that they are installed in. In this study, four engines
were used for classification, and it would be of interest to further study the robust-
ness of the ANN by introducing more engines. Intuitively the performance of the
ANN would suffer when introducing more engines since the feature input might be
less separable.
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6
Future Work

The results from drive cycle detection, Section 4.1, show that the network performs
well and extracts the top five engine drive cycles that the network considers to be
well represented. However, from analysis and discussion of the results there was
a clear flaw where, e.g., D11 T ’s top picks had several cycles not representing the
general case for that application. Future work to achieve more satisfying results
would be to clear "bad data" as well as possible. In other words, we should make
sure that the data used for training the network is "good data" which can represent
the general behavior of an application. Hence, a more comprehensive study of the
data and removing unnecessary data points could potentially lead to better and
more accurate engine drive cycle detections.

Interesting to see in future work for semantic segmentation would be to increase
the number of labeled data, and see if this provides better accuracy. Also as dis-
cussed in 4.2.3, with smaller segments where data is labeled, better accuracy on
the actual labeling can be achieved. A more complex set of data points with more
classes and less intuitive differences in the states is needed for a future study to con-
clude the robustness of this method. Therefore, a valid study would be to annotate
a known application and its states that have complex dynamical behavior. This
would be interesting from an analytical point of view as it enables the approach to
find behaviors in the time series that are hard to distinguish for a person.

Concluded in the discussions regarding drive cycle generation, Section 4.3.3, a syn-
thetic engine drive cycle is generated with the help of the genetic algorithm. How-
ever, the result did not match with how Volvo Penta usually perceive these engine
drive cycles. Therefore, future work would be to tweak parameters within the ge-
netic algorithm to allow it to restrict what kind of cycles the algorithm can generate.
An example of this could be to increase the interval of when the algorithm generates
a data point allowing more spacing in between data points and hopefully achieving
more realistic cycles. Adding constraints to the fitness function is also a way to
constrain the generated cycles to behave more realistically.

The main focus of this thesis has been to see if the structured data collected by
Volvo Penta can be used to solve some of their challenges. So far, detection, seman-
tic segmentation and cycle generation have been possible using the data with an
ANN. Future work on this project would be to see how the ANN works on a larger
scale, since throughout this thesis the amount of used data is just a portion of the
data that Volvo Penta has acquired. The question to answer here should be: Is the
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ANN good enough to handle big data or does it need re-evaluation to obtain better
stability and accuracy?

Further, another interesting area that would provide Volvo Penta with great com-
petitive advantage for their own product line is to be able to perform advanced
analytics on their engine data. As an example, predictive maintenance is an impor-
tant topic when it comes to products, such as engines, which has components that
might tear or wear over time. Being able to predict if a potential engine breakdown
is imminent can save service hours, but most importantly, it can reduce service costs
and provide better reliability for Volvo Penta’s products. By using the solution pro-
vided in this thesis, and the fact that an ANN can detect an engine drive cycle,
it would be interesting to implement predictive maintenance to study these engine
cycles. An example is to alert when the measured data is deviating from general
operational behavior for a specific application.
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A
Appendix 1: Validation set

The Figures A.1-A.4 included in this appendix presents the validation set which is
mentioned in Section 3.1.1. The figures presents three signals: Engine speed, SCR
temperature and Engine torque, along with the sequential ANN score distribution.

Figure A.1: Overview of the validation set covering a single month, 2020-10, for
the class D11 T.

Figure A.2: Overview of the validation set covering a single month, 2020-10, for
the class D13 T.
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Figure A.3: Overview of the validation set covering a single month, 2020-10, for
the class D13 M.

Figure A.4: Overview of the validation set covering a single month, 2020-08, for
the class D13 K.
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