
Applying Machine Learning to Identify
Maintenance Level for Software Releases

Master’s thesis in Software Engineering

CHRISTOFFER STUART

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2019





Master’s thesis 2019

Applying Machine Learning to Identify
Maintenance Level for Software Releases LATEX

Christoffer Stuart

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2019



Applying Machine Learning to Identify Maintenance Level for Software Releases
Christoffer Stuart

© Christoffer Stuart, 2019.

Supervisor: Miroslaw Staron, Department of Computer Science and Engineering
Examiner: Regina Hebig, Department of Computer Science and Engineering

Master’s Thesis 2019
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2019

Applying Machine Learning to Identify Maintenance Level for Software Releases
Christoffer Stuart
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

iv



Abstract
Maintenance is the single largest cost in software development. Therefore it is im-
portant to understand what causes maintenance, and if it can be predicted. Many
studies have shown that certain ways of measuring the complexity of developed
programs can create decent prediction models to determine the likelihood of main-
tenance due to failures in the software. Most have been prior to release and often
requires specific, object-oriented, metrics of the software to set up the models. These
metrics are not always available in the software development companies. This study
determines that cumulative software failure levels after release can be determined
using available data at a software development company and machine learning al-
gorithms.

Keywords: Machine learning, supervised learning, unsupervised learning, defect pre-
diction, cumulative failure prediction,

v



Acknowledgements
First of all, a big thanks to Miroslaw Staron for supervising and helping me through
this process. The support and feedback has been appreciated, and without it this
thesis would not have been possible. Thanks to Regina Hebig for being my examiner.
Also, thanks to the telecom company that allowed me to do this project with them.
Other people who have helped make this thesis a reality and to whom I am grateful:
Frans Frejdestedt, Lars Ling, Wilhelm Meding, Anton Hemlin, Stellan Bondesson,
and Kristin Wallenholm. Apologies for any I may have forgotten.

Last of all, but always first, thanks Elisabet and Christian Stuart.

Christoffer Stuart, Gothenburg, October 2019

vi





viii



Contents

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Theoretical Background 5
2.1 Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . 6
2.1.1.1 The Neuron . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.1.2 Multilayer Perceptron . . . . . . . . . . . . . . . . . 7
2.1.1.3 CNN . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.1.4 LSTM . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2 LASSO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.3 Random Forest . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.4 SVC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.5 Challenges in Machine Learning . . . . . . . . . . . . . . . . . 12

2.2 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 k-means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 DBSCAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3 Challenges in clustering . . . . . . . . . . . . . . . . . . . . . 14

2.3 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1 Scalers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Related Work 17
3.1 Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Choosing Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Defect prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3.1 Defect Inflow Prediction . . . . . . . . . . . . . . . . . . . . . 19
3.3.2 Software Defect Prediction . . . . . . . . . . . . . . . . . . . . 19

3.4 Software Feature Clustering . . . . . . . . . . . . . . . . . . . . . . . 20

4 Research Design 21
4.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 22

ix



Contents

4.2.1 The Design Cycle . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.2 Data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.3 Iteration 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2.4 Iteration 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2.5 Iteration 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Results 27
5.1 Iteration 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.1.3 Adressing Research Question . . . . . . . . . . . . . . . . . . . 29

5.2 Iteration 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2.2 Results and Addressing Research Questions . . . . . . . . . . 33

5.3 Iteration 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3.2 Results and Addressing Research Questions . . . . . . . . . . 35

6 Discussion 39
6.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.2 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.2.1 Ground truth . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

7 Conclusions 41

x



1
Introduction

1.1 Background

60 percent of software costs stem from maintenance [18]. Therefore resource allo-
cation for maintenance is an important question for any software company as too
much allocation is costly, while insufficient allocation may result in poor customer
satisfaction.

Maintenance is done for one of two reasons. It is either done to enhance existing
products or to remove defects from the products. When it is done to remove defects
from products there is an obvious correlation between the amount of maintenance
needed and how fault-prone the product is. So, understanding how much mainte-
nance is required at a certain point requires understanding how many failures are
likely to occur in a product.

One common method of predicting maintenance levels is by using the opinions of
experts within the organisation [43]. If experts are available this is the fastest and
easiest way. However, this has two problems, first, the nature of the process: it is
uncertain, possibly biased, and difficult to oversee. Secondly, the process itself is
vulnerable, since the availability of one specific individual tasked with making the
predictions may vary. For these reasons data driven approaches are more appealing.
Data driven refers to basing decisions on data and empirical evidence rather than
human judgements which are not clearly based on collected data. There is a vari-
ety of different options to make these data driven predictions, each with different
strengths and weaknesses. One instance of data driven analysis is machine learning.
This has gained increased usage in the industry overall and interest has increased
to apply it to predicting maintenance levels as well [32]. For these models to be
useful they need to achieve results matching or exceeding that of the experts while
not subject to the above-mentioned drawbacks of using experts only.

A feature in a software program is a unit of functionality [3]. In the industry,
developing software is often centred around developing features, and one team works
on one or more features which are rarely cross-developed across more than one team.
The errors in a program is often unevenly spread out across all parts, or features,

1



1. Introduction

of the software [21]. Instead some features tend to be more likely to result in failure
than others. The question is then if these software features can be identified before
they start causing failures. If so, this enables increased scrutiny of these features
before they are sent to customers. Also, it would be possible to spread out those
features that are likely to fail across multiple releases so as to avoid sudden spikes in
maintenance. Both of these approaches can thereby increase customer satisfaction
and decrease maintenance costs.

1.2 Problem Statement

When developing large-scale software defects are inevitable [56]. Having a system
to handle defects when they become failures is therefore important for any actor
developing software. Poorly handled failures can result in high costs and loss of cus-
tomer credibility. Whereas good failure handling in general, and proactive handling
specifically, may decrease costs and increase credibility amongst customers. This
can mean both finding and fixing faults, defined as some sort of error in the code
that when triggered causes a failure of the programme, before they reach the cus-
tomer. And to curtail the consequences of failures causing problems for customers.
A software feature that is more likely to cause failures is also considered to be more
fault prone.

The question is: How can consequences of software failures be reduced? For this
two approaches are considered. First: to estimate how high the failure rate is likely
to be within a release. And second: by increasing granularity to understand which
of the developed software features in a future release are more fault prone.

Estimating the failure rate of a release aids organisational preparations for mainte-
nance work. This means that the organisation can allocate resources to maintenance
ahead of time if estimates show that a failure increase is imminent. Thereby the
organisation will be able to remove defects quicker and lessen the impact of the
failures for their customers.

Understanding how fault prone a certain software feature is enables an organisation
to spread those features deemed likely to contain more faults over multiple releases
so as to avoid sudden spikes in inflow of failures requiring maintenance. This could
make maintenance allocation more predictable and efficient. Also, this can increase
customer satisfaction as the company’s products are perceived as less fault-prone;
and an increased ability to deal with maintenance promptly. Such an approach
requires a system that can predict short-term future failures, and group developed
software features into categories ranked on their tendency to cause errors. Such a
system should be objective, easy to understand, and correct (to the extent that is
possible and feasible). This because it needs to be easy to compare results across
the organisation, easy to implement, and useful, respectively.

2



1. Introduction

1.3 Aim
There are two aims to this thesis. One has to do with failure-prediction, the other
with defect-understanding.

The goal of the failure-prediction is to apply and compare five machine learning
models that predict the number of reported failures in a release to find the best
model. The models will be evaluated on accuracy in defect prediction. For the
company this will help improve their process for determining current and future
maintenance levels by making the process more transparent and consistent. Some
of these models are white-box, their internal process can be understood, which can
be used to understand what data they consider more important. This is considered
beneficial since it can further help the company understand the underlying factors
but not necessary.

The goal of the defect-understanding is to see how features can be grouped together
using clustering algorithms. The intention is to then investigate if these groups vary
in how much they contribute to defects. The end goal is to understand if there
are certain characteristics shared among features that makes them more likely to
cause failures. By doing this the company can improve their release strategy, by, for
instance, spreading fault-prone features out over multiple releases. Thereby avoiding
sudden spikes in maintenance levels. Further, this can support them in proactive
decisions such as increased scrutiny of certain features prior to release.

1.4 Limitations
In this thesis the work done in a software development unit at a large telecom
company is studied. They develop globally used software with high-demands on
uptime. Only one product is considered. The data from this product comes from
the reported failures, in the form of trouble reports, either generated from customers
or internal testing. No distinction is made between the two. These trouble reports
include data regarding when the failure was reported, how important the failure was
to the system functionality, if it needed to be fixed, if and when it was fixed, and
what release it was found in. Note, that this is not necessarily the same as what
release the fault was introduced.

The data also includes information about the features developed. Both meta-data
such as development time, and data of the commits to the repository containing the
program. The central repository of the software program is called the main branch,
this is cloned, or branched of, when a new release is created that the company’s
customer can then start to use after this branch-of has been tested and deemed
ready for release. The commits are the uploads of the development teams to the
branch. The commit structure is inconsistent. So some teams commit once per
feature and other multiple times. This could mean that some data is missing from
certain features if these have been uploaded with incomplete information.

3



1. Introduction

4



2
Theoretical Background

Machine learning can be very broadly defined as "computational methods using
experience to improve performance or to make accurate predictions." [37]. Where
experience is the past information, usually in the form of data, that is available. All
the considered solutions to the problem under investigation use different instances
of machine learning. The two types used are Supervised Learning, and Clustering,
which are explained below. Further, both types have different algorithms with differ-
ent strengths and weaknesses, those algorithms which were considered as solutions
are also expanded on in their respective sections. Finally scalers, which are used
to format the data so that its usable for the algorithms are explained as well as
metrics, used to rate and compare the results of the algorithms

2.1 Supervised Learning
In general, machine learning predicts some output based on input. Specifically for
supervised learning, some of the input is labelled, meaning that it has a predefined
output [23] [45]. Calling the input x, and the connected output y, we can then model
the connection between the input and output as some function f , such that y = f(x).
A supervise learning algorithm then, is a function f̂(x, θ) that approximates f :

f̂(x, θ) ∼ f(x)

Where θ is some parameter(s) in the algorithm. During the training phase, which
is specific to supervised learning, θ can be updated based on the accuracy of the
approximating function. This updating is done to try and improve the models per-
formance and is based on an update policy, and the error between proposed output
ŷ, calculated by the algorithm, and the true output y. When the training phase is
concluded the objective of the algorithm is then to make predictions without this
feedback on its performance as it is now possible to use the algorithm on unlabelled
data, meaning that the for an input x it is not necessarily the case that a connected
output y is known.

The error, e, for one output-input pair which can be used as a performance measure
for one update is:

5



2. Theoretical Background

e = ||ŷ − y|| (2.1)

Where || · || signifies a norm, normally `1 or `2 [17].

There are two types of supervised learning problems considered in this work, clas-
sifier and regressor problems. A classifier is a type of problem aiming to predict
nominal data, which belongs to certain group without internal order such as blue
or grey. Or ordinal data, which is grouped data with some sort of order, such as
small, medium, large. A classifier algorithm then is concerned with classification of
some data set into classes [46].

A regression problem is that of finding a function which conveys the relationship
between two or more variables. This can for instance be done when given a set
of related points of x and y. To estimate a function between the two sets is a
regression problem. The estimated function is sometimes, referred to as the fitted
line Regressors are algorithm which solve these problems of estimating functions
[46].

2.1.1 Artificial Neural Networks
Real-life neural networks, like the brain, can be imitated by an artificial ones. An
Artificial Neural Network, ANN, is a type of supervised learning algorithms

2.1.1.1 The Neuron

The first step in creating an ANN is to set up the basic unit, the neuron [34], the
artificial neuron can at a time step t take N inputs and calculates one response
which it then fires as its output.

Figure 2.1: Example of neuron i in a larger network at timestep t, calculating an
output y(t) based on inputs nj, weights wij, and threshold µi

In figure 2.1 can be seen one neuron that either acts on its own or can be part of
a larger network of neurons. Actually, the single neuron can be used as a simple
supervised learning algorithm. It takes some set of inputs, n, of a predetermined
size N × 1 which it puts into a function f̂(x,wij, µi) and generates an output, ŷ.
What the function does is, sum up the inputs weighted by the set of weights wij,
subtracts the threshold µi and finally applies some function to it. The final function

6



2. Theoretical Background

applied is called the activation function and can vary but one common option is the
Rectified Linear Unit, ReLU [16]:

f̂(z) = ReLU(z) = max(0, z) (2.2)

other common options are the Heaviside- or sigmoid-function (equation 2.3), linear,
and tanh [35].

f̂(z) = S(x) = 1
1 + e−x

= ex

ex + 1 (2.3)

As with any other supervised learning algorithm the network, or neuron in the
simple case, can be improved through feedback on its performance. In a single
neuron there are two sets of parameters which can be updated, the weights and the
threshold function. In general the goal is to get as close to the labelled output as
possible, thereby minimising the error as expressed in equation 2.1. Another way to
express this is to minimise a cost function J(θ), based on the error by finding the
optimum θ∗. Formally expressed as:

θ∗ = argmin
θ
J(θ) = argmin

θ

1
m

m∑
i=1
||f(θ;xi)− yi|| (2.4)

For some set of the training data of size m [19]. Finding this optimum is often done
using gradient decent, which requires computation of the gradient:

∇θJ(θ) = 1
m

m∑
i=1
∇θ|| (f (θ;xi)− yi) || (2.5)

The parameters can then be updated:

θnew = θold − η∇θJ(θ) (2.6)

Where the small parameter η > 0, is called the training rate.

2.1.1.2 Multilayer Perceptron

For a simple classifier- or regressor-problem a single neuron could be sufficient. But
the true power of the ANN is unleashed when combining these into large networks,
called a Multilayer Perceptron, MLP, where the neurons, or perceptrons, are the
basic units which are organised in layers. A layer feeds the next from input until
the final output is generated. An example of this is shown in figure 2.2 where the
MLP is fully connected, meaning that all the perceptrons in one layer connect to all
perceptrons in the next layer, sending their calculated output via the connection.
Note, in this feed-forward network, no perceptron sends its output to a perceptron in
the same layer or the layer behind it. The example MLP takes five inputs, denoted
by the black dots, then 3 perceptrons calculate their respective output and send
that on to the final layer, consisting of two perceptrons who do similar calculations,
thereby generating the final output in the form of a 2 × 1 vector.

7



2. Theoretical Background

Figure 2.2: A Multilayer Perceptron taking fives inputs and generating a 2 × 1
output vector

Call the input x, the generated output from the second layer z = f 2(θ;x), and
the final input y = f 3(θ; z), where f i is a set of functions containing each neurons
specific function and parameters in layer i. The feed-forward nature of the network
means that the output is dependent on all the steps between as in equation 2.7:

y = f 3(θ;f2(θ;x)) (2.7)

In order to train the MLP in a similar sense to the training as described in the
previous section we need to obtain the gradient for update for all the layer, despite
only knowing the actual error for the final layer. The process of obtaining the
corresponding correction for the other layers is called back-propagation. This is
achieved using the chain rule:

dx

dz
= dx

dy

dy

dz
(2.8)

Applying it into the function describing the network gives:

∇θ2J(θ) = 1
m

m∑
i=1
∇θ|| (f 3 (θ3;xi)− yi) ||f ′3 (θ3;xi)f ′2 (θ2;xi) (2.9)

When calculating the parameters for the hidden layer.

A certain subset of Neural Networks are able to feed some of the information back
to itself in subsequent time steps. Meaning that as they calculate the output at a
time step t this information can also be sent to the network as part of the input
for a future time step t + k, k > 0. These types of networks are called recurrent,
due to the data recurring in subsequent time-steps. This makes them excellent for,

8



2. Theoretical Background

amongst other, time series calculations as they also "remember" parts of previous
input.

One issue when training neural networks is the vanishing gradient-problem. This
occurs because the gradient calculated in the earlier layers tend to become smaller
and smaller, thereby the update to the parameters becomes smaller, or may even
stop. Recurrent Neural Networks are especially susceptible to this due to their
adding of the previous data [5].

2.1.1.3 CNN

This type of Network is especially popular in image recognition [26]. And also has
proven success on time series [8]. They are popular due to their usefulness on grid-
type input, like that of an image. A CNN can detect specific data features, the
presence of which are then summarised in another layer. The name comes from the
convolution layer in which the convolutional operator is applied:

(f ∗ g)(t) =
∫ ∞
−∞

f(τ)g(t− τ)dτ (2.10)

this has the effect of sliding the input function f over the function g which acts as
a filter. This effect is imitated in a CNN as the input is "slid" through a filter in the
form of the convolutional layer giving a similar effect.

(a) Example of the convolutional
operator

(b) The convolutional operator as
applied to a matrix with a 3 × 3
convolutional filter [12]

In figure 2.3a is an example of how the convolutional operator lets f be convoluted
by g. It takes the form of g being slid over f and the resulting convoluted function
is the area covered by both the function at a time t. Figure 2.3b, show how this is
imitated by processing a source matrix by sliding the convolutional filter over the
matrix, thereby creating the destination matrix.

9



2. Theoretical Background

2.1.1.4 LSTM

An LSTM, stands for Long Short-Term Memory (network), has the general structure
of a neural networks in terms of the basic building block arranged in layers that feed
the information from input to output. But the basic block is not that of a neuron as
previously described. Instead the basic block is called a cell and contains an input
gate, output gate, and forget gate [24]. This enables the cell to remember previous
input. Making them very good in different time-series applications. The LSTM:s
then are a variant of the Recurrent neural networks. But one of their benefits is
that they get around the vanishing gradient problem.

Figure 2.4: Displaying the inner workings of an LSTM-block, image taken from
the Deep Learning Textbook by Goodfellow, et al. [19]

The different gates takes the states of the previous layer aswell as previous neuron
states. This allows them to accumulate information regarding previous states. The
input gate helps to regulate the current input, given to the LSTM-block, the forget
gate regulates the internal feedback-loop of previous outputs (self-loop) and the out-
put gate the final output. Usual functions for the gates is the sigmoid function.

2.1.2 LASSO

Stands for Least Absolute Shrinkage and Selection Operator. It attempts to fit
the input data to the output data through estimation of a linear function who’s
coefficients it can update [46] [22]. If some input data is deemed irrelevant the
coefficients are allowed to be zero. This function is achieved by minimising function
2.11 [62]:

10



2. Theoretical Background

N∑
i=1

yi −∑
j

xijβj

2

+ λ
p∑
j=1
|βj| (2.11)

Where y is the output, x the input β the weights subject to regularisation. The
parameter γ is related to the shrinkage, a smaller γ implies less shrinkage of the less
important variables.

2.1.3 Random Forest
Is part of a set of learning algorithms called ensemble learning, that combine the
results of multiple algorithms to improve the performance by reducing the gener-
alisation error [30]. RandomForests utilises a group of Decision Trees that differ
by random changes introduced in the creation of the trees. Decision trees easy to
interpret as they form a flow chart-esque algorithm for predicting or classifying the
input patterns, makes data feature ranking easy and has shown some results with
ordinal data [27], which is considered in the thesis. However, they are not very ro-
bust to data changes, finding the optimal tree is an NP-complete problem, meaning
that there exists no algorithm for finding the exact solutions instead these have to
be found with heuristics [9]. Also, they are prone to overfitting [30], see descrip-
tion in section 2.1.5. The last issue is somewhat mitigated by using the ensemble
model.

Figure 2.5: Example of what the logic flow could be in a decision tree on a classifier
problem. Note that the full flow is not finalized

2.1.4 SVC
Support Vector Classifier works by constructing a multi-dimensional plane, hyper-
plane, that separates entries into different categories [37]. This is a very simple
approach to any categorisation problem. SVC:s offer two main benefits. The first
is that it selects the hyperplane with the largest margin separating the clusters.
The second is that it allows for selection of slack variables, for which the constraint

11



2. Theoretical Background

penalty if certain data points are not on the "right" side of the hyperplane is lessened.
Mainly, SVC:s are meant for binary problems, and require extending two work on
multi-class problems [25]. These extensions are less anchored in theory and based
on testing .

2.1.5 Challenges in Machine Learning
Noise in the data may obfuscate the underlying function. And when an algorithm
starts to take the noise into account when calculating this causes overfitting [46].
Accounting for noise may increase the accuracy of the algorithm on the training set,
while overall accuracy is actually deteriorating. The algorithm will then start to
deviate from the underlying function. This can be discovered by separating a part
of the data into a testing set, the accuracy of which is not used as feedback for the
algorithm to improve. If the algorithm is improving on the training data but not
on the test data this may be because it has started to account for the noise, it is
overfitting.

Another issue is the amount of data required to solve problems using machine learn-
ing. While the amount of data required to train networks with multiple layers has
decreased in recent years. A vast amount of data is still required to train algorithms
for good performance [13]. Experiments in the field of medical research has created
the "1-in-10", rule of thumb for regression problems. Which states that 10 events
are needed for every 1 parameter that is to be explained. However, some research
has shown that it may not be enough, depending on the specifics of the data used
[11].

2.2 Clustering
Distinctly different from Supervised Learning, Clustering requires no output data.
Instead it takes the input and by methods of comparison decides if what data points
are similar to eachother [46]. Both types here are similar to classifiers mentioned in
the section on supervised learning in that they group the supplied data into nominal
groups. Of course the difference being that there is no labels available.

2.2.1 k-means
Is perhaps the most commonly used clustering algorithm. The scheme is as follows:
The number of clusters sought, k, is selected by the user. Then, in the data set k
points are selected randomly. These form the centroids of their respective clusters.
Every point is then checked for the distance to each of the centroids. Point are
assigned as members to the cluster with the closest centroid. With all points assigned
to a cluster new centroids are obtained by calculating the average position of all
points in the respective clusters. With new centroids the process is then repeated.
The repetition then goes on until a convergence-criteria is met. Common choices
for convergence-criteria is cluster difference between recent iterations or number of
iterations [46].

12



2. Theoretical Background

Figure 2.6: Plot of the elbow-method. Clear elbow at 2 clusters

One of the problems with k-means is due to the number of clusters being set in the
beginning the algorithm will find that number of clusters, no matter what the actual
number of clusters are. If the data is easy to visualise it may be easy to determine
the number of clusters, thus mitigating the problem. But for high-dimensional(>3
dimensions) problems it is not easy to visualise and some other method is necessary.
Often the elbow method [6] is used, this method is to run the algorithm for different
numbers of clusters, usually starting from 1 cluster and increasing by a step of 1 for
each run.

For every run the inertia is calculated by equation 2.12.

N∑
i=0

min
µj∈C

(
‖xi − µj‖2

)
(2.12)

Where xi ∈ X, X is the set of datapoints of size N to be clustered, C is the partion
of the set into k clusters, each cluster with a centriod of µj, j ∈ [1, 2, ..., k]. This
gives a measure of how close all points are to their respective centroid. The higher
the number of clusters the less this measure will be. This measure is then plotted
for each of the runs with the number of clusters on the other axis. This measure
will always decrease for an increasing number of clusters. But, it decreases more
rapidly for lower values and at some point, the elbow-point, this decrease becomes
less rapid for each increasing cluster. This elbow point is considered the best number
of clusters as the separation is considered good but not excessive as it would be by
increasing the number of clusters further. Example is shown in figure 2.6

2.2.2 DBSCAN
Stands for Density-based spatial clustering of applications with noise. Though a long
name this well describes what the algorithm does. It can take two parameters, one
distance measure, ε, and one number, m, signifying the number of points required
for a group of points to be considered a cluster [46]. The distance ε is the largest
distance two points can have to each other and be considered part of the the same

13



2. Theoretical Background

group. If one of these points are within ε-distance of a third point this third point is
also considered part of the group even if not all points are within ε-distance of each
other. This enables the algorithm to find densities of more concentrated points and
to find the appropriate number of clusters on its own. Further it can deem points
not belonging to a clusters to be noise.

Figure 2.7: Figure showing how DBSCAN determines what points belong to a
cluster, the circles denote the ε-distance

In Figure 2.7 the labelling in the DBSCAN algorithm is visualized. Note that points
C and B are outside of eachothers ε-distance, yet are in the same group due to the
connection to the points in-between. N is considered noise due to not being member
of a group large enough to be considered a cluster.

The drawback of the DBSCAN-algorithm is that its parameters still need to be set
and is therefore liable to create erroneous results if the parameters are incorrectly
set.

2.2.3 Challenges in clustering
One major issue when clustering specifically but that can also create problems in
other types of machine learning is the curse of dimensionality [46]. This occurs
because as dimensions increase but the number of data points remain the same the
dataset grows more sparse. With more space between the datapoints they become
harder to cluster together. However, more dimensions means more information is
contained in the dataset. Thus, keeping the number of dimensions low is necessary
to avoid the curse of dimensionality. But, to retain information some balance is
needed.

2.3 Performance Metrics
To rate the performance of the models different metrics are used. Note that these are
also used by some of the supervised learning algorithms during the training phase.
In such instances they are referred to as evaluation metrics. All metrics used are
listed below

14



2. Theoretical Background

f1
f1 is used for classifiers. It calculates the precision, the number of instances of
one category over the predictions of instances of that category. And the recall, the
correctly labelled instances of one category over the total number of instances of
that category [33].

MAE
Mean-average error is calculated by[46]:

MAE =
∑N
i=1 |yi − ŷi|

N
(2.13)

MSE
Mean-squared error is calculated by[46]:

∑N
i=1 (yi − (ŷi))2

N
(2.14)

The important difference between them is that MSE is much more susceptible to
instances of larger distance. Meaning that as a metric its score will be significantly
worse if the dataset contains a few datapoints which are of by a lot more than the
others. Unlike MAE which is less affected by these large errors. But also thereby
better at displaying the average error across the dataset, after which it is named
[1].

R2

Is a measure specific to regression problems, essentially it calculates how well the
fitted line explaind the points. With a larger score signifying that it does a better
job of predicting the points correctly. Of course this also depends on the nature of
the points. With a points that are less scattered being easier to explain as some
underlying function.

Silhouette score
This metric is specific to clustering problems that lack a ground truth. The score is
obtained by creating a silhouette of each cluster based on the tightness of its internal
points and separation from other clusters. The overall clustering is then rated on
how well the points align to their specific cluster and lowered if overlap with other
clusters exist [44].

si = bi − ai
max(bi, ai)

(2.15)

Equation 2.15 describes how the silhouette score is calculated for one point si, where
ai is the mean distance to all points in the same cluster as si and bi is the mean
distance to the nearest cluster to si that si is not assigned to [48].

15



2. Theoretical Background

The silhouette score can takes values between [-1,1] where -1 indicates that there is
a large overlap and 1 indicates that at the point si there is no overlap.

2.3.1 Scalers
Scalers are used to restrict the data into certain ranges. This can be useful for
ANN:s with activation functions that can only act within certain ranges.

MinMax
The MinMax scaler [49] scales the input to within the range 0 to 1. The formula to
scale x ∈ x to the scaled value x′ is done by:

x′ = x−min(x)
max(x)−min(x)

This preserves the internal distance between the datapoints, so is the least invasive.
However, if the dataset contains distant outliers the main portion of the dataset is
squeezed into a small part of the range[41].

Robust
Different to the MinMax this scaler has no actual upper or lower bounds. The
operation is performed as follows:

x′ = x−median(x)
Q3(x)−Q1(x)

, where Qi is the i:th quartile of the range of the set x. The benefit of this scaler
is that it is unaffected by outlier. Allowing the main portion of the dataset to be
more spread out.

Quantile Transformer
This is also a robust transformation, meaning that the central values are spread out
and the distance to the outliers reduced [50]. It can transform the values to both
a normal distribution and a uniform distribution. There are some drawbacks using
this, such that it does not restrict the data to within a certain range, and that it may
transform the data in ways that distorts the information. Quantile transformation
can be done to a uniform or normal target range [4].

16



3
Related Work

Defect prediction in industrial software projects is a heavily researched field, with
many different methods available [43]. This is based around predicting the general
inflow in a project or what parts are more likely to generate defects. The 80-20
rule regarding software defects says that 80% of software defects occur in 20% of
the software’s features [21]. Knowing that is only useful if you know what those
software features are. Therefore, another related field is software feature clustering,
results there have mostly been used in different re-use projects [57] [52].

3.1 Measure

A systematic review of fault prediction metrics by Radjenovic, et al. [40] shows that
the choice of prediction metric that is used in fault prediction is important. There
are three main types of metrics used:

• Object oriented metrics

• Non-object oriented metrics

• Process metrics

The first two prediction metrics measure the developed program itself, and are more
based in traditional types of measurments: length, size, complexity and cohesion
[59]. While the latter measures the process by which the program was developed.
Object oriented metrics relate to object oriented programming and the structure
within the programs built. Possible measures are for example: number of public
measures, of inheritances, couplings, or methods per class [54].

Non-object oriented relate to metrics like size in terms of lines of code or complex-
ity. Complexity measured for example by the MacCabe complexity measure, which
measures independent paths through program [31].

Process measures relate to different change metrics, such as revisions, bugfixes, age,
and others. These change metrics have been determined to give good results in fault

17



3. Related Work

predictions [38].

The review [40] determined that object-oriented metrics tended to give the best
performance and often correlated with non-object oriented metrics, and is backed
up by others [55]. Although object oriented metrics capture more than non-object
oriented ones such as size or complexity metrics there is a correlation between them.
This is natural as larger structures, of any kind, tend to grow more complex, lines
of active code naturally add to the complexity [59]. However, though complexity
measures are intended to capture more of the nature of a program it has been
proven to, at least in some cases be worse than simple methods such as lines of code
[36].

3.2 Choosing Metrics
The importance of choosing a suitable metric was shown in a study where a signifi-
cant correlation was found between inheritance metrics and the number of faults in
certain parts of the software [10]. The study found that the classes that were in an
inheritance structure were roughly three-times more defect-prone than those that
were not. Further, classes that were lower in the inheritance structure tended to
have higher likelihood of defects. Using this metric, and other object-oriented met-
rics such as: measuring events, and states, per class helped them construct useful
prediction models.

Others have used the object oriented approach to show that they can be used to
predict failure-proneness very early in a project [28]. The drawback is that it is
limited to object-oriented programming. But due to the fact that object oriented
metrics do correlate with size and complexity measures it seems likely that these
are also useful.

Since size and complexity are correlated. It is maybe not surprising that lines of code
(LOC) has been successfully used as a fault predictor [64]. This has been shown to
improve when process measures where added also [39]. Raising the possibility that
a combination may be the strongest option if both non-object oriented and process
metrics are available.

3.3 Defect prediction
This thesis is concerned with cumulative failure-prediction, predicting the full amount
of reported failures in a software release. And to investigate if certain types of soft-
ware features are more fault-prone. Correlating roughly to these aims in the field of
defect prediction are defect inflow prediction[58], and software defect prediction [43],
respectively. The first is concerned with an overall level of defect inflow whereas the
second is on a certain product with varying degree of granularity.

A study in forecasting defect backlog showed that achieving results that are usable

18



3. Related Work

in an industry setting need to be easy to understand. The study showed that
understanding the overall expected trend of the defect backlog, and that course
reliability is most wanted from the stakeholder. Thereby more esoteric and complex
models may be less useful as the resulting information becomes more complex, and
maybe more accurate but less easy to use [60].

3.3.1 Defect Inflow Prediction
This has been pursued using primarily methods of multivariate linear regression [58],
proved to have an accuracy of within 72% for a prediction of 3 weeks by drawing
from characteristics of the work packages in development. Another study done by
Fenton and Neil [15] create two very simple regressive approach based on either
lines of code or complexity. But then conclude by recommending Bayesian Belief
Nets for failure predictions. The regression analysis has been further developed in
predictions in test settings, also including data regarding the program, size and some
complexity as well as testing rigour [61].

Another study used Bayesian inference to predict the defect inflow in an ongoing
project [42]. They achieved better results using this approach than many other
approaches, such as multivariate linear regression, expert opinions, analogy based
estimation, the only drawback is that the distribution needs to be estimated, which
can be troublesome depending on the data. The study achieved an error of 10-20%,
a good benchmark to aim for.

3.3.2 Software Defect Prediction
Is the prediction of the likelihood of defects within certain parts of the software. The
granularity of these predictions depend on the methods used [43]. Common choices
when using the machine learning approach is, amongst other, tree-based approaches,
such as random forest, neural networks and support vector machines [29]. It was
shown that the accuracy was quite good for the first two, but due to their complexity
in parameter-tuning and training makes the pay-off uncertain.

One study was on release failure predictions in Eclipse post-release using object-
oriented metrics and calculated using univariate binary regression and univariate
multiple regression. This was done to both predict number of failures and to predict
the different severities of those failures [53]. The study also showed that predictions
become increasingly difficult after release. This may be due to decreased develop-
ment and that the failures are more rare, largely due to having been put through
a testing phase prior to release. Another shows that Neural Networks performed
well in predicting failure prone parts of a program once a suitable metric had been
chosen [28].

Finally a systematic review of machine learning techniques showed that they tend
to outperform linear regression models. The review showed that the most successful
models tended to be Random Forests [32]. Likely this is due to the algorithms
robustness to noise and its tuning capabilities, as shown by Guo et al. [20]. Their

19



3. Related Work

study primarily used MacCabe metrics but recommended testing other metrics as
well.

3.4 Software Feature Clustering
Clustering in the software engineering domain has been used to cluster software
features [52]. The findings reveal that it is more difficult when no labels are available.
Further, automated clustering is often less effective than experts. Though this last
one is hardly surprising. Shah, et al. [52] show that the level on which the clustering
is done can vary the performance strongly

Usually software clustering is used when historical failures data exists, that can be
used as ground-truth. But software clustering has also been attempted in predicting
faults without access to underlying data [7] [47]. It proved to be possible using k-
means, aided by a method to determine the clusters centers before initialising the
k-means algorithm. Though the results where satisfying it should be noted that
it is very difficult to measure the results in an unbiased manner as there was no
underlying truth.

20



4
Research Design

4.1 Research Questions

The purpose of the thesis is to investigate the possibility to combine software clus-
tering with fault-prediction. This created three main research questions, as outlined
below, with related subquestions. These questions also roughly relate to the work
structure into 3 iterations which are further explained later in this section.

RQ 1: How to predict the number of failures in a release using Machine Learn-
ing?

The algorithms that will be tested are determined beforehand to limit the number
of tested algorithms. This research question is the central theme of the thesis and
reoccurs in the last iteration but using more input data as that is gained during the
work.

RQ 2: How can clusters of software features be created using machine learning to
aid in failure prediction?

When the initial prediction algorithms have been understood the aim is to increase
the dataset used by using aggregated data about the developed features to hopefully
increase performance, described inRQ 3. This question is judged on silhouette score
as well as distribution of clusters were clustering that would result in very sparse
input come iteration three was considered bad because it may mean that it is not
being accounted for at all, especially in the regression problems.

RQ 2.1: What data regarding the software features is best used for clustering?

This questions occurs due to the general problem of the curse of dimensionality. In
general more data and variables mean more information but due to the curse this
data needs to be trimmed and a balance kept. The evaluation is based on the same
parameters as research question 2, silhouette score and distribution.

RQ 3: Are certain clusters more likely to contribute to faults in the software, and
if so can they be used to increase performance of the prediction models?

21



4. Research Design

This question combines the work done to answer the previous questions. By com-
bining the prediction models of question 1 and the clustering of question 2 this
question should also answer what factors in a certain software feature may cause it
to be troublesome. Within the company this is now mostly done by intuition and
guesswork regarding factors such as size and development time of a feature. Leading
to the final sub-question

RQ 3.1: What data features are most important as predictors for the number of
failures in a release?

By combining these questions the aim of the thesis should be achieved: to predict the
occurrences of failure within the software and to determine what types of software
features are more likely to cause these failures.

4.2 Research Methodology
The work-flow was divided into three iterations. Each iteration was concerned with
one of the research questions, and their respective sub-questions, listed above. Ques-
tion 1, using basic data, and question 2 could be resolved independently so this
division of the work into iterations was useful and could be done without overlap.
However, since research question 3 drew heavily on the insights gained in previous
iterations and created new demands on the previous iterations. Mainly the second
iteration was liable to changes in the third as that was the opportunity to test the
second iteration results.

4.2.1 The Design Cycle
The process of each iteration follows the design cycle, proposed by Wieringa, R.J.
[63] and described in Figure 4.1. The design cycle is an abbreviated version of the
engineering cycle as Wieringa does not consider treatment implementation as part
of the design process. Problem investigation outlines the process of understanding
stakeholder interests as well as the nature of the problem. This prepares for treat-
ment design, which refers to understanding the specific requirements, which ones
of those helps to achieve the goal. This also includes mapping out what current
treatments to the problems exist and create new treatments. The final step of the
process is to attempt to validate if the treatments are applicable to the problem
and context and can produce the sought effects. Usually the process requires some
amount of repeating which is why it is shown as a circle. But in general it starts
with Problem Investigation as described.

4.2.2 Data set
The entire data set was made up of information from 10 years back. Of this, the last
four years were used, because the company switched release strategy at that time.
Previously, they used to release new software features bi-annually, this was changed
to monthly releases in mid-2015. It was clear that this caused a strong difference in

22



4. Research Design

Figure 4.1: The Design Cycle

the cumulative failures in the releases before and after the switch and that it may
end up confusing the models. The amount of failures per week was on average less
than half after the switch to monthly. So, it is similar to training the models on two
entirely different data sets with different underlying structure. A few others also
had to be excluded due to lack of commit data. Thus, the subset of releases used
was 40.

The data set used was made up of four subsets:

• Trouble reports

• Software feature data

• Commit data

• Miscellaneous information

Miscellaneous information was data such as lists of dates for releases and other
information that could help connect the other data sets. For instance, this helped
map commits that made up a software feature to a release by checking the date of
the final commit and comparing to the next available release.

Trouble reports contained information about the detected failures, these could be
detected either through internal testing or externally, by a customer. Every trouble
report contained information regarding: when the failure occurred, in what release,
and how severe it was. It also contained other information, but what has been
mentioned is what was used. The number of generated trouble reports connected
to the releases investigated was above 5,500, of varying severity. The majority of
the failures were discovered prior to the actual release of the features by internal
testing.

Software feature data contained high level information about the features, what
date it was finished, how long development took. While all features had ID:s to
separate them, these ID:s were not the same as the ID:s used to label the features

23



4. Research Design

in the commit data subset, see below. The total number of software features in all
investigated releases numbered just above 2,000.

Commit data contained information about every commit made to the main branch.
What software feature it was part of, when it was done, what specific code changes
were made, such as number of lines added, removed, or changed, and where in the
system, those changes were made. Depending on the development teams’ ways of
working one commit could include multiple changes to multiple parts of the system,
subsystems or be limited to one specific part. All commits were grouped together
with other commits of the same ID. Most (>85%) of software features added or
removed less than 1,000 lines of code. 19 subsystems were commonly occurring
across the software features. Those subsystems that occurred less than 13 times
each across the entire data set were grouped into one individual group, called Rare
Occurrences.

One major issue was that there was no clear connection from individual commits or
software features to an eventual failure report. But, commits could be aggregated
into the individual software feature that they made up. What release a software
features is part of was determined by the date that it was finished, and what the
next available release was. A release is created a month before it is made available
by taking a copy of the main branch. This copy is subjected to tests and fixes (as
determined by the tests) for a month and then made available to customers. The
method for attributing a features to a release was done by checking last upload date
in that feature, verifying the next possible release, if that release (Release n )was
less than a month away the feature would be attributed to the release planned after
(Release n+ 1).

The aim is to predict quality in terms of number of failures per release. So, it was
decided in iteration 3 that the best way would be by counting the number of failures
as attributed per release. This kept the time series nature of the data set, since
the releases are ordered in time, Release n made available one month before Release
n + 1. With the added benefit that when the actual failure was reported could be
discounted. So, to the extent that it was possible (see section 5.1.3), a failure was
attributed to the correct release by the algorithms.

4.2.3 Iteration 1

The aim of iteration 1 was to use basic data to tentatively answer research question
1. This was meant to help understand the problem, what data was available and
what approach was likely to give good results. Here 4 of the 5 supervised learning
algorithms were decided, with one allowed to be decided later for iteration 3. Specif-
ically the basic data excluded more detailed data regarding the software features.
In this iteration release as the time unit had not yet been decided upon so different
time units where attempted.

24



4. Research Design

4.2.4 Iteration 2
This iteration is aimed at answering questions 2 and 2.1. This included feature
extraction and selection. More detailed questions that were part of iteration 2
included:

How to represent the software features?
When a feature is finished it is merged into the main program. This means that
lines of code are added, changed or removed in different files in the repository of
the program. Two main ways where considered. The first on a systems level, and
the second on a subsystems level. For both of these the number of changes was
calculated in two different ways, by the number of files changed or the numbers of
lines of code. Making four different representations in total. Performance was then
compared using the silhouette score.

What scalers to use?
The scalers that where used are listed in section 2.3.1. These were chosen to represent
different options and varying degrees of invasiveness to the original datastructure.
The scaling can affect the outcome of a clustering algorithm as the scalers affect
the distance between the points and the clustering algorithms use this distance to
perform their algorithm. Once again the silhouette score was used to determine the
performance of the scalers.

Which algorithm to use
The DBSCAN and k-means algorithms were used. Since k-means is in such wide use
omission would require strong reasoning based on the type of problem. DBSCAN
was chosen due to the assumed noise in the data since it should be able to handle
this well.

4.2.5 Iteration 3
The final iteration aimed to answer research questions 3 and 3.1. The goal is to
improve the models set up in iteration 1 by expanding the data input, and to un-
derstand if there exists types of software features that are more likely to correlate
with, and/or, cause the reported number of failures.

To improve the understanding of what clusters have greater effect on the inflow of
faults trials are run with some of the clusters removed if this affects model per-
formance. It may be that if clusters can be removed without affecting the models
performance those clusters are less likely to cause failures.

For iteration 3 one of the main concerns was that using releases as time unit strongly
limits the number of datapoints avaliable. To get around this noise was added to
some of the models in an attempt to augment the data. Also, to increase performance
in the ANN:s grid search was used to tune parameters, such as dropout, and neurons
in the layers.

25



4. Research Design

26



5
Results

5.1 Iteration 1
The first iteration was aimed at answering RQ 1. This was done using aggregated
data relating to the recently released software features. Mean development time for
the features that made up the release, the number of released features within the
release and previous inflow of reported failures. The lag was chosen to t − 4, this
was decided through testing where larger lag was tested. But the algorithms which
can rank their input consistently put input from further back in time below the top
10.

5.1.1 Setup
The algorithms, and their parameters are presented below:

LSTM

Tables 5.1 and 5.2 shows the set up of the two LSTM networks. The parameter
value signifies the number of neurons in all cases expect the dropout. Dropout
signifies a layer which removes a parameter value sized portion of the inputs from
the previous by setting them to zero. It chooses which at random. This helps to

LSTM-categorical
Layer type Parameter value Activation function
LSTM 100 tanh
LSTM 500 tanh
Dropout .7 -
LSTM 700 tanh
LSTM 100 tanh
Fully connected 70 Linear
tanh 1 softmax

Table 5.1: Setup of categorical LSTM-network

27



5. Results

LSTM-regressive
Layer type Parameter value Activation function
LSTM 100 tanh
LSTM 100 tanh
Dropout .5 -
LSTM 50 tanh
Fully connected 50 RelU
Fully connected 70 Linear
tanh 1 softmax

Table 5.2: Setup of regressive LSTM-network

prevent overtraining.

The regressive network used MSE as internal evaluation metric, and a mini-batch size
of 30 to train the network. The network was run for 2000 epochs, but interestingly
showed no indication of overtraining. However, improvement stopped after 600
epochs.

The categorical network used categorical crossentropy as evaluation metric and mini-
batch size of 50. It was initially run for a similar number of epochs but due to over-
training the subsequent tests were halted after 75 thereby decreasing overtraining.
The results for categorical are calculated after 75 training epochs.

LASSO
The parameter in LASSO is γ, which was set to γ = 1 which gives the algorithm a
propensity to set less important featuers to zero.

Random Forest
Random forest created 10 trees from which it combined the results to create its
output. No max depth was set, the number of possible nodes in one walk through
the tree, instead the tree was determined to be large enough either because all leaves
are pure or the smallest number of samples for split is reached, the smallest number
was two. Purity calculations was done with gini impurity for the classifier and MSE
for regressor.

SVC
The Support Vector Classifier was setup using the default parameters of sci-kit learn
[51]

All used the inflow of failure data but transformed to classes between 1 to 6 relating
to how big the difference was from the previous months inflow. Clarified in Table
5.3

Preprocessing for the regressive algorithms was also done. The data, both input and
labelled output, was transformed using a MinMax-scaler rescaling the values to the

28



5. Results

Category Difference in inflow, x
6 x > 30
5 15 < x ≥ 30
4 5 < x ≥ 15
3 −5 < x ≥ 5
2 −15 < x ≥ −5
1 x < −15

Table 5.3: The classification of failure inflow depending on the difference in inflow
between the current and previous month

range [0, 1].

5.1.2 Results
Score Random Forest LASSO SVC LSTM

Categorical Regressive Categorical Regressive
MAE Full set 0.29 0.04 0.06 0.57 2.11 0.03

Test set 1.36 0.09 0.06 1.8 0.96 0.11
R2 Full set 0.66 0.91 0.87 0.32 -0.93 0.92

Test set -0.41 0.35 0.72 0 -0.56 -0.13
MSE Full set 0.98 <0.01 0.01 1.90 7.09 <.01

Test set 4.63 0.01 0.01 6.06 1.78 .02
f1 Full set 0.88 - - 0.79 0.57 -

Test set 0.42 - - 0.15 0.22 -

Table 5.4: Performance from iteration 1

Table 5.4, shows the performance of the described models when applied to the iter-
ation 1 dataset. Note that the for the categorical LSTM model the f1 score was 0.57
for the entire set. Meaning that it after weighting of the precision across the different
labels the model mislabelled data almost as much as it labelled correctly. This is
worse than the other categorical algorithms. Best in the categorical algorithms was
the random forest algorithm, performing better on the full set and almost twice as
well on the test set than the second-best. However, the performance on the test set
in absolute terms was below 0.5, meaning more mislabels than correct labels.

Interestingly, the Regressive LSTM was, unlike its categorical counterpart, on par
with the other algorithms of the same type. . This was true both for MAE and
MSE, and according to the R2 score explains almost all the variance of the output.
The best performing algorithm was random forest on the full test set and LASSO
on the test set.

5.1.3 Adressing Research Question
RQ 1: Which machine learning algorithm is best suited to predict the number of
failures in a release?

29



5. Results

The best performing algorithm across the test set was the LASSO. For any model
it is expected that the error is somewhat increased from the training to the test
set. Using the LASSO model this was very small, so it seems to have estimated
the underlying data relations very well. Random Forest and LSTM did better on
the full dataset using both MAE and MSE metrics, but increased significantly when
just measuring the error on the test sets. The categorical models performed poorly,
f1-score < 0.5, on the test set.

Figure 5.1: Matrix displaying covariance between TR inflow (SubmittedOn), num-
ber of released software features, and average development time of all features in a
release. From time step t to t-4

It is possible that the poor results for the categorical models is that there is a strong
auto-correlation for the overall trend of the inflow of trouble reports. Meaning that
the inflow, while varying from month to month, in general is more likely to decrease
if it has decreased previously, and vice versa if it has been increasing. Then the
transformation of the inflow to categorical data removes some of this correlation.
The strong correlation of the TR inflow with itself is shown in Figure 5.1 (see row
SubmittedOn, columns SubmittedOn1−4). This is further proven by Tables 5.5 and
5.6 that show the relative importance of the different data features for the Random

30



5. Results

Random Forest Classifier
Feature (at time) Importance

1 Mean development time (t-2) 0.13
2 Mean development time (t-3) 0.12
3 Mean development time (t-1) 0.10
4 Number of releases(t) 0.08
5 Mean development time (t-4) 0.08

Table 5.5: Random Forest Classifier: Top 5 data features

Random Forest Regressor
Feature (at time) Importance

1 TR inflow(t-4) 0.36
2 TR inflow(t-1) 0.33
3 TR inflow(t-2) 0.10
4 Mean development time (t-1) 0.05
5 TR inflow(t-3) 0.05

Table 5.6: Random Forest Regressor: Top 5 data features

Forest Classifier and -Regressor, respectively. Based on the results the decision was
made to drop the categorical LSTM model. The other classifiers were kept however.
This was because they were less reliant on the TR data and therefore could be
used to understand the relevance of the additional data in iteration 3. Further the
decision to include a CNN model in the third iteration was made. Partially due to
the faster training, and because they have been there are indications that they are
more robust when transferring to other problems[2]. Which may hold relevance to
the company when, for instance, applying the network to another product in the
company.

Because trouble reports are tagged with the release in which they were discovered
the decision was made to use the releases themselves as basis for the time series. One
release may be in use for a long time before a customer decides to use a newer one
this means that all the total number of failures discovered in a release may span a
time period over a year, as show in Figure 5.2. An investigation into this behaviour
shows that the average behaviour is that 63% of total failures are discovered prior
to release. During the first four months after release 58% of the failures which are
discovered while the release is in use are discovered. So the lag-time is very long.
Undoubtedly, this means that customers update their software often will attribute
the failures in a release to a later one. But using releases should minimise this
compared to using weeks or months.

31



5. Results

Figure 5.2: Graph showing cumulative inflow of trouble reports in percentage of
total accumulated failures over time for a release made available in June of year X.
First dashed vertical line is release date, the second dashed vertical line marks 4
months later

5.2 Iteration 2

5.2.1 Setup
Iteration 2 looked at data from the software features that made up each release.
This data contained information regarding how many lines of code had been added,
changed or removed in the systems as part of the creation of a new software feature.
Also available was what systems or subsystems each code change took place in.
What release the feature was part of was determined by looking at the what date
the final change was made in the specific software feature. Thus clustering was done
on the software features, as measured by the change done in the system attributed
to the feature, the metrics are explained below.

There were two different versions of the clustering done in iteration 2. The two
versions were different ways to represent the changes in the systems, attributed
to the software features, to the clustering algorithms. The first was on a systems
level. Each change that was made to a system was counted either by counting the
number of files in that system that were affected or the number of lines of code. The
second version was on a subsystems level were a similar calculation took place. Both
versions were then pre-processed using the maxmin-, robust-, quantile uniform-, and
quantile normal-scalers after which the clustering algorithms were applied.

Iteration 2 used k-means and DBCSAN as clustering algorithms. The number of
clusters for k-means was chosen based on an assumption of the least number of
categories needed for the third iteration, this assumption was 10 clusters. Also the

32



5. Results

elbow method was used to determine the least number of clusters. This showed that
2 clusters would yield the best results to number of cluster ratio. Since both were
considered minimum the higher number was used.

DBSCANs parameters where chosen by grid-search in the range ε = [0.1, 1.5], and
m = [5, 20]. The best options were then selected by balancing the silhouette score
with smaller number of clusters, < 30 so as to avoid feeding to much data to iteration
3.

The clusters were highly varying in size. This would have caused the time series
formatted input data for iteration 3 to become very sparse. While there are more
robust methods to use for regression problems with sparse data [14] it was deemed
likely that this could be problematic for the models and may be unrepresentative
for the reality of the situation. This was because while some software features may
certainly be outliers it seemed unlikely that the main part of all features developed
were not different. So for that reason the clustering methods performance was
measured on silhouette score and cluster distribution.

5.2.2 Results and Addressing Research Questions
System
Number of files Number of lines of code

K-means Silhouette Score Largest cluster Silhouette Score Largest cluster
MinMax 0.929 98,2% 0.985 99,3
Robust v1 0.424 66,9% 0.854 96,1
Robust v2 0.399 60,1% 0.906 96,6
Quantile Uniform 0.537 22,8% 0.481 25,3
Quantile Normal 0.522 22,6% 0.486 25,3
DBSCAN Clusters Clusters
MinMax 0.993 2 0.995 2
Robust v1 0.741 25 -0.205 2
Robust v2 0.741 25 -0.205 2
Quantile Uniform 0.771 28 0.677 28
Quantile Normal 0.776 28 0.724 29

Table 5.7: Results from clustering software features on system level

RQ 2: How can clusters of software features be created using machine learning to
aid in failure prediction?

K-means and DBSCAN were tried and compared on the same datasets. First the
software features were represented on a systems levels. One feature could affect more
than one system and two different measures for the extent to which they affected all
system was used. . The results on a systems level are in table 5.7 and results from
subsystem level in 5.8.

The findings seemed to imply that there is quite a lot of noise in the dataset,

33



5. Results

Subsystem
Number of files Number of lines of code

K-means Silhouette Score Largest cluster Silhouette Score Clusters
MinMax 0.89 97,0% 0.95 10
Robust v1 0.13 79,2% 0.87 10
Robust v2 0.62 88,6% 0.87 10
Quantile Uniform 0.27 34,7% 0.26 10
Quantile Normal 0.25 43,3% 0.25 10
DBSCAN Clusters
MinMax 0.98 2 0.99 2
Robust v1 0.47 47 -0.55 16
Robust v2 0.47 47 -0.55 16
Quantile Uniform 0.48 2 0.49 2
Quantile Normal 0.36 20 0.34 20

Table 5.8: Results from clustering software features on subsystem level

which can make fault-proneness estimations more difficult [65]. DBSCAN has the
ability to detect noise and outliers and that made up between 5-15% of the data on
systems level depending on the pre-processor. For this reason it was decided that
the clusters computed by the DBSCAN algorithm may be more appropriate than
the ones generated by k-means.

RQ 2.1: What data regarding the software features is best used for clustering?

Due to the clustering performance being judged on the dual criteria of silhouette
score and cluster distribution it was decided that the feature data detailing numbers
of files changed on a systems levels was the best for clustering on.

5.3 Iteration 3

5.3.1 Setup

The data used in iteration 3 was an amalgamation of the data used in iteration 1
and that created in iteration 2. For the neural networks the layout was determined
through a grid search, the result of which are shown in Tables 5.9 and 5.10, for
the LSTM and CNN, respectively. The other algorithms had the same setups as
in iteration 1. The data generated in iteration 2 was used and the output was in-
creased to also consider how important a failure was considered. Ranging from 1,
extremely important, 2, less important but still important enough to stop distribu-
tion of whatever feature caused it. 3 and 4 where important enough to fix whereas
5 was considered almost insignificant.

34



5. Results

LSTM
Layer type Parameter value Activation function
Gaussian Noise 0.05 -
LSTM 200 tanh
Dropout .3 -
LSTM 150 tanh
LSTM 200 tanh
Fully-connected 70 Linear
Fully-connected 6 Sigmoid

Table 5.9: Settings of the LSTM-network used

CNN
Layer type Parameter value Activation function
Gaussian Noise 0.05 -
Conv1D 64, 2 tanh
RelU .3 -
Dropout .3 -
MaxPooling1D 200 tanh
Fully connected 70 Linear
tanh 6 Sigmoid

Table 5.10: Settings of the CNN-network used

5.3.2 Results and Addressing Research Questions

RQ 3: Are certain clusters more likely to contribute to failures in the software, and
if so can they be used to increase performance of the prediction models?

Feature rank 1 2 3 4 5 6 7 8

Correlation
Data Feature -1 -1 4 4 0 3 9 2
time step -1 -2 -1 -1 -1 -1 -2 -1
Importance -0,69 -0,65 -0,59 -0,56 -0,55 -0,52 -0,52 -0,51

LASSO
Data Feature 20 7 Med Long 20 17 22 13
time step -2 0 -2 -1 0 -2 0 -1
Importance 0,25 0,24 0,22 0,21 0,18 0,13 0,13 0,12

Random Forest
Data Feature 4 0 -1 12 4 12 -1 2
time step -1 -1 -1 -1 0 -2 -2 -1
Importance 0,13 0.11 0.11 0,07 0,07 0,06 0,06 0,05

Table 5.11: Data feature relevance for inflow of failures

35



5. Results

Feature rank 1 2 3 4 5 6 7 8

Correlation
Data Feature -1 -1 9 4 3 3 4 9
time step -1 -2 -2 -2 -1 -2 -1 -1
Importance -0,60 -0,55 -0,48 -0,45 -0,43 -0,41 -0,40 -0,39

LASSO
Data Feature Long Med 26 20 12 7 17 15
time step 0 -2 0 0 -1 0 -2 -2
Importance 1,4 1,0 0,81 0,79 0,74 0,58 0,48 0,45

Random Forest
Data Feature -1 -1 9 12 Med Med Short 26
time step -2 -1 -2 -1 -1 0 -1 0
Importance 0,18 0,099 0.083 0,072 0,057 0,041 0,037 0,036

Table 5.12: Data feature relevance for importance class 2

Feature rank 1 2 3 4 5 6 7 8

Correlation
Data Feature -1 -1 4 4 0 0 3 9
time step -2 -1 -1 -2 -1 -2 -1 -2
Importance -0,62 -0,61 -0,58 -0,56 -0,53 -0,52 -0,51 -0,51

LASSO
Data Feature 12 Long 17 20 26 14 24 Med
time step 0 -1 -1 -2 -2 -2 -2 0
Importance 0,63 0,62 0,53 0,47 0,15 0,14 0,14 0,14

Random Forest
Feature number 4 -1 12 0 0 5 0 17
time step -1 -1 -1 -1 0 -2 -2 -1
Importance 0,23 0.070 0.069 0,063 0,059 0,050 0,031 0,028

Table 5.13: Data feature relevance for importance class 4

Figures 5.11, 5.12, and 5.13 show what data features the algorithms use to predict
the inflow of failures, and the inflow of failures of importance class 2 and 4, re-
spectively. To answer the first part of research question 3, if certain clusters are
more likely to contribute to failures in the software? The tables show the most
important data features for total trouble report inflow and inflow of trouble reports
of importance class 2 and 4. Some clusters of software features: -1 (noise), 0, and
4 are shared between Random Forest and correlation, but noticeably, for impor-
tance class 2 neither 0 nor 4 seems significant to Random Forest. LASSO though,
utilizes other data features for its calculations. Noisey data has a randomness com-
ponent too it, and often modelled by a normal distribution. In the case of DBSCAN
though, the noisey data is separated from the other datapoints because they do not
clearly belong to a cluster. So something separates them, it is not unlikely that
software features that are significantly different from other previous developed soft-
ware features should be more complex. The other clusters that reoccur across both
Random Forest and Correlation may have some inherent properties making them
more failure-prone.

36



5. Results

Score Random Forest Lasso SVC LSTM CNN
Categorical Regressive

MAE Full set 0.21 0.06 0.04 0.18 0.05 0.05
Test set 1.0 0.11 0.22 0.809 0.11 0.16

R2 Full set 0.76 0.86 0.68 0.82 0.86 0.80
Test set -0.01 0.31 -1.17 0.0 -4.46 -2.91

MSE Full set 0.39 0.01 0.018 0.27 0.01 0.01
Test set 1.89 0.02 0.091 1.33 0.03 0.04

f1 Full set 0.86 - - 0.86 - -
Test set 0.18 - - 0.17 - -

Table 5.14: Performance iteration 3

The second part of research question 3, if knowledge of certain clusters that are more
likely to cause failures can improve the models? To answer that Table 5.14 shows
that no noticeable improvement occurred between the models in iteration 1 and 3.
The LSTM network improves slightly and thus just becomes the best algorithm on
the full set and equals random forest on the test set. But more importantly some
actually got worse, noticeably the f1-score of the categorical Random Forest model
was similar for the full set but on the test set had deteriorated significantly, from
0.42 to 0.18. Also, for the regressive problems LASSO performed worse than in
iteration 1.

Regarding the first part of the research question, the three different ways to calculate
feature relevance only coincide slightly. So while certain clusters do seem to be more
likely to cause failures they do not seem to aid the models.

37



5. Results

Figure 5.3: Top graph shows of accumulated failures per release (actual numbers
removed due to company privacy concerns), bottom graph shows total software
features delivered, and software features of type -1 and 26 per release included in
the study.

Figure 5.3 shows the number of failures per release in the top graph. Due to company
privacy concerns the y-axis has no scale. But it is still evident that the number of
trouble reports per release has a downward trend, while developed software features
has an opposing trend. So the correlation is negative, thus it is difficult to infer
using a linear model what software features mostly contribute to increase in failures.
Instead using such a model it would seem that more software features should mean
less trouble reports. Noise is by DBSCAN labelled as cluster -1, this has a high
negative correlation and is used in Random Forest as one of the more important data
features. So it can be made to use predictions but the appearance of noisy software
features in a release may not be interpreted as increased likelihood of failures.

38



6
Discussion

As is evident in the results there is a clear auto-correlation regarding the number of
failures produced in the software. Meaning that while some releases result in more
failures than others the overall trend is clearly decreasing.

One major issue for the models is that this auto-correlation makes it unlikely that
the models will be able to detect sudden spikes due to their reliance on the histor-
ical development of features. What is interesting is that this could imply a strong
causation of company policies and ways of working. But in order to clarify if that is
indeed the case a wholly different study would also be necessary to map out what
changes has taken place within the company.

Another issue for the predictions and especially to attempt to use the information
gained from the algorithms which are able to rank their input is that the overall
trend of feature releases is that they are increasing while the number of failures
decrease. This means that the algorithms may conclude that more features mean
less failures. This of course is not necessarily true. It could be, say that the features
are decreasing in size giving the development teams better opportunities to scrutinise
what they are producing but is not necessarily the case. And indeed, the fact that
the company is expanding would instead suggest that their increase in features just
has to do with more capabilities.

6.1 Data

One big issue remained after the data set had been trimmed for non-suitable data.
This was that even using the miscellaneous data the different sets were only con-
nected by implicit factors. Data was not available that made the connection between
a feature, or release, and a trouble report regarding a failure explicit. This makes
the solution somewhat unreliable as it is difficult to fully calculate the portion of
the data that may be mislabeled. Such as a feature that was delayed for one reason
or another. This added with the problem of lagging failures as presented in section
5.1.3 creates an uncertainty of how exact the data is. However, discussions with
experts in the company place this as a rather small portion of the total set (< 10%)
and is not expected to change the overall nature of the data.

39



6. Discussion

In iteration 2 some of the subsystems that were changed while creating new soft-
ware features were re-labelled from their original name to rare occurrences. This
grouped affected subsystems into one to avoid the curse of dimensionality. This
hinders diagnosing specific subsystem under that label as particularly fault prone
compared to others under the same label. But if that had not been done it is
likely that it would have decreased the overall performance of the algorithms, due
to the curse of dimensionality. So, this was done to allow for, and improve, general
conclusions.

6.2 Metrics
From the related works could be concluded that object oriented metrics tend to be
better. However this type of data was not available but for future work it may be
necessary to improve the data gathering and feature engineering by accessing and
extracting other data. This could include both object oriented, process and other
complexity measures.

6.2.1 Ground truth
The two parts of the thesis differ significantly in their ability to be measured for
their accuracy of their results. The prediction algorithms are possible to test on
data with ground-truth, meaning old data. It turns out that they seem reliable
and could therefore be interesting to use. In fact, even for the latest releases where
they predict significantly higher number of failures than what has been reported this
seems likely to be true. This is due to the fact the cumulative inflow continues, for
most releases, for over two years.

For the clustering algorithm no ground truth exists. It could be calculated using
different metrics but not without significant man hours put into categorising the
different developed features in novel ways that could be meaningful to the clus-
tering algorithms. This means that it is impossible to objectively determine their
performance. And therefore no conclusion can be made if the results are accurate
or not.

40



7
Conclusions

The thesis investigated cumulative failure prediction capabilities of certain machine
learning algorithms. It also aimed to understand how software features can be
clustered using available data. This clustering was used to see if certain clusters
were more fault-prone. Further, the clustering was used to extended the cumulative
failure prediction. These three steps formed the three iterations, initial cumulative
failure prediction, clustering, and extended cumulative failure prediction. Of further
interest in the cumulative failure prediction was what data features most contributed
to the result. To solve this some of the used algorithms were white-box, allowing
insight into how the data was weighted to calculate the results.

For the cumulative failure prediction five different supervised machine learning al-
gorithms were used. The problem was set up in two different ways: as a classifier
problem, where the number of failure was compared to previous number of failures
and then classified according to size of increase or decrease. And as a regression
problem, where the aim was to predict the inflow as is, although scaled to suit the
algorithms. Although the regressors and classifiers were applied to different data
sets and so should not be compared directly the regressors were accurate with re-
gards to both the full set and test set (error < 10%). The classifiers, specifically
random forest which had the best performance of the classifiers, performed decently
on the full set (f1-score of 88%) but classified less than half of the test set data
correctly.

For iteration 1 the best performing algorithms were random forest and LASSO, on
the full set and test set respectively. In iteration 3 LASSO performance on the test
set deteriorated and in fact the best performance was by the LSTM-network, which
underwent grid search to tune its parameters.

Clustering of the software features, which was done in iteration 2, is not possible
to rate with regards to some absolute metric, due to the lack of a ground truth.
It was clear that the data contained an amount of noise, so DBSCAN was deemed
the better choice due to its ability to handle noise and put outliers in a category
of its own. To achieve both good clustering results, rated using silhouette score, a
reasonable distribution of number, and size of the clusters data regarding numbers
of files changed on a systems level was used.

41



7. Conclusions

In iteration 3 the additional data created by iteration 2 was applied to the original
problem in iteration 1 and extended to also investigate if certain clusters of software
features were more likely to contribute to the likelihood of failures. Random forest,
and correlation between number of features in specific cluster and the cumulative
failure per release gave some similarities. But no clusters they indicated were the
same as the clusters indicated by LASSO. These results were further obfuscated
by the fact that the overall trend of failures is an decreasing number of failures
per release, while the overall number of features is increasing. Further, the total
number of failures attributed to one release is not determined until a year after that
release has been made available to all customers. So, all features can be attributed
as part of a cluster. And some of those clusters possibly contribute to increased
likelihood of failures. But what those clusters are depend on the algorithm. The
overall trends indicate that it is not only the complexity of a certain feature that
determines likelihood of failure but also other organisational decisions that affect
the work performed. As is indicated by the fact that despite more features being
created they result in an overall net-decrease of failures.

42



Bibliography

[1] Charu C. Aggarwal, Alexander Hinneburg, and Daniel A. Keim. “On the Sur-
prising Behavior of Distance Metrics in High Dimensional Space”. In: Database
Theory — ICDT 2001. Ed. by Jan Van den Bussche and Victor Vianu. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2001, pp. 420–434. isbn: 978-3-540-
44503-6.

[2] Jonas Alexandersson and Elias Sonnsjö Lönegren. “Neural Networks for mod-
elling of a virtual sensor in an engine”. MA thesis. Chalemrs University of
Technology, 2019.

[3] Sven Apel and Christian Kästner. “An Overview of Feature-Oriented Soft-
wareDevelopment”. In: Jorunal of Object Technology 8.5 (July 2009), pp. 49–
84.

[4] Timothy Beasley, Stephen Erickson, and David Allison. “Rank-Based Inverse
Normal Transformations are Increasingly Used, But are They Merited?” In:
Behavior Genetics 39 (Sept. 2009), pp. 580–595. doi: 10.1007/s10519-009-
9281-0.

[5] Y. Bengio, P. Simard, and P. Frasconi. “Learning long-term dependencies with
gradient descent is difficult”. In: IEEE Transactions on Neural Networks 5.2
(Mar. 1994), pp. 157–166. issn: 1045-9227. doi: 10.1109/72.279181.

[6] Purnima Bholowalia and Arvind Kumar. “EBK-Means: A Clustering Tech-
nique based on Elbow Method and K-Means in WSN”. In: International Jour-
nal of Computer Applications 105.9 (Nov. 2014), pp. 17–24.

[7] Partha Bishnu and Vandana Bhattacharjee. “Software Fault Prediction Using
Quad Tree-Based K-Means Clustering Algorithm”. In: Knowledge and Data
Engineering, IEEE Transactions on 24 (June 2012), pp. 1146–1150. doi: 10.
1109/TKDE.2011.163.

[8] Anastasia Borovykh, Sander Bohte, and Cornelis W Oosterlee. “Conditional
time series forecasting with convolutional neural networks”. In: arXiv preprint
arXiv:1703.04691 (2017).

[9] Encyclopedia Britannica. NP-complete problem. 2019. url: https://www.
britannica.com/science/NP-complete-problem (visited on 09/29/2019).

[10] Michelle Cartwright and Martin Shepperd. “An empirical investigation of an
object-oriented software system”. In: IEEE Transactions on software engineer-
ing 26.8 (2000), pp. 786–796.

[11] Delphine S. Courvoisier et al. “Performance of logistic regression modeling:
beyond the number of events per variable, the role of data structure”. In:

43

https://doi.org/10.1007/s10519-009-9281-0
https://doi.org/10.1007/s10519-009-9281-0
https://doi.org/10.1109/72.279181
https://doi.org/10.1109/TKDE.2011.163
https://doi.org/10.1109/TKDE.2011.163
https://www.britannica.com/science/NP-complete-problem
https://www.britannica.com/science/NP-complete-problem


Bibliography

Journal of Clinical Epidemiology 64.9 (2011), pp. 993–1000. issn: 0895-4356.
doi: https://doi.org/10.1016/j.jclinepi.2010.11.012. url: http:
//www.sciencedirect.com/science/article/pii/S0895435610004245.

[12] Arden Dertat. Applied Deep Learning - Part 4: Convolutional Neural Net-
works. 2017. url: https : / / towardsdatascience . com / applied - deep -
learning-part-4-convolutional-neural-networks-584bc134c1e2 (vis-
ited on 09/29/2019).

[13] Sander Dielman. Classifying plankton with deep neural nets. 2015. url: http:
//benanne.github.io/2015/03/17/plankton.htm (visited on 08/25/2019).

[14] Subhajit Dutta and Marc G. Genton. “Depth-weighted robust multivariate
regression with application to sparse data”. In: Canadian Journal of Statis-
tics 45.2 (2017), pp. 164–184. doi: 10 . 1002 / cjs . 11315. eprint: https :
//onlinelibrary.wiley.com/doi/pdf/10.1002/cjs.11315. url: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/cjs.11315.

[15] Norman E. Fenton and Martin Neil. “A Critique of Software Defect Prediction
Models”. In: IEEE Trans. Software Eng. 25 (1999), pp. 675–689.

[16] Martha Dais Ferreira et al. “Designing architectures of convolutional neural
networks to solve practical problems”. In: Expert Systems with Applications
94 (2018), pp. 205–217. issn: 0957-4174. url: https://doi.org/10.1016/
j.eswa.2017.10.052..

[17] Aurélien Géron. Hands-On Machine Learning with Scikit-Learn and Tensor-
Flow. Concepts, Tools, and Techniques to Build Intelligent Systems. 1st. O’Reilly
Media, Incorporated, 2017. isbn: 9781491962299.

[18] Robert L. Glass. “Frequently Forgotten Fundamental Facts about Software
Engineering”. In: IEEE Software 18.3 (May 2001), pp. 111–112. issn: 1937-
4194. doi: 10.1109/MS.2001.922739.

[19] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http:
//www.deeplearningbook.org. MIT Press, 2016.

[20] Lan Guo et al. “Robust prediction of fault-proneness by random forests”. In:
15th international symposium on software reliability engineering. IEEE. 2004,
pp. 417–428.

[21] Brian Hambling. 1.6.5 The Pesticide Paradox. 2010. url: https : / / app .
knovel . com / hotlink / khtml / id : kt00C454B2 / software - testing - an -
istqb/pesticide-paradox.

[22] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of sta-
tistical learning : data mining, inference, and prediction. Springer series in
statistics. Springer, 2009. isbn: 978-0-387-84857-0. url: http://proxy.lib.
chalmers.se/login?url=http://search.ebscohost.com/login.aspx?
direct=true&db=cat06296a&AN=clc.b2480748&site=eds-live&scope=
site.

[23] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of
Statistical Learning: Data Mining, Inference, and Prediction. New York, NY:
Springer New York, 2009. isbn: 978-0-387-84858-7. doi: 10.1007/978- 0-
387-84858-7_2. url: https://doi.org/10.1007/978-0-387-84858-7_2.

44

https://doi.org/https://doi.org/10.1016/j.jclinepi.2010.11.012
http://www.sciencedirect.com/science/article/pii/S0895435610004245
http://www.sciencedirect.com/science/article/pii/S0895435610004245
https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2
https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2
http://benanne.github.io/2015/03/17/plankton.htm
http://benanne.github.io/2015/03/17/plankton.htm
https://doi.org/10.1002/cjs.11315
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cjs.11315
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cjs.11315
https://onlinelibrary.wiley.com/doi/abs/10.1002/cjs.11315
https://onlinelibrary.wiley.com/doi/abs/10.1002/cjs.11315
https://doi.org/10.1016/j.eswa.2017.10.052.
https://doi.org/10.1016/j.eswa.2017.10.052.
https://doi.org/10.1109/MS.2001.922739
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://app.knovel.com/hotlink/khtml/id:kt00C454B2/software-testing-an-istqb/pesticide-paradox
https://app.knovel.com/hotlink/khtml/id:kt00C454B2/software-testing-an-istqb/pesticide-paradox
https://app.knovel.com/hotlink/khtml/id:kt00C454B2/software-testing-an-istqb/pesticide-paradox
http://proxy.lib.chalmers.se/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=cat06296a&AN=clc.b2480748&site=eds-live&scope=site
http://proxy.lib.chalmers.se/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=cat06296a&AN=clc.b2480748&site=eds-live&scope=site
http://proxy.lib.chalmers.se/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=cat06296a&AN=clc.b2480748&site=eds-live&scope=site
http://proxy.lib.chalmers.se/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=cat06296a&AN=clc.b2480748&site=eds-live&scope=site
https://doi.org/10.1007/978-0-387-84858-7_2
https://doi.org/10.1007/978-0-387-84858-7_2
https://doi.org/10.1007/978-0-387-84858-7_2


Bibliography

[24] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-term Memory”. In:
Neural computation 9 (Dec. 1997), pp. 1735–80. doi: 10.1162/neco.1997.9.
8.1735.

[25] M M Manjurul Islam et al. “Reliable bearing fault diagnosis using Bayesian
inference-based multi-class support vector machines”. In: The Journal of the
Acoustical Society of America 141 (Feb. 2017), EL89. doi: 10 . 1121 / 1 .
4976038.

[26] Artem Khurshudov. Suddenly, a leopard print sofa appears. 2015. url: http:
//rocknrollnerd.github.io/ml/2015/05/27/leopard-sofa.html (visited
on 08/24/2019).

[27] Stefan Kramer et al. “Prediction of Ordinal Classes Using Regression Trees”.
In: Fundam. Inform. 47 (2000), pp. 1–13.

[28] Lov Kumar, Sanjay Misra, and Santanu Ku. Rath. “An empirical analysis
of the effectiveness of software metrics and fault prediction model for identi-
fying faulty classes”. In: Computer Standards Interfaces 53 (2017), pp. 1–
32. issn: 0920-5489. doi: https : / / doi . org / 10 . 1016 / j . csi . 2017 .
02.003. url: http://www.sciencedirect.com/science/article/pii/
S0920548916300885.

[29] Libo Li, Stefan Lessmann, and Bart Baesens. “Evaluating Software Defect Pre-
diction Performance: An Updated Benchmarking Study”. In: SSRN Electronic
Journal (Jan. 2019). doi: 10.2139/ssrn.3312070.

[30] Gilles Louppe. “Understanding Random Forests: From Theory to Practice”.
In: arXiv e-prints, arXiv:1407.7502 (July 2014), arXiv:1407.7502. arXiv: 1407.
7502 [stat.ML].

[31] T.J. MacCabe et al. Structured testing. Tutorial Texts Series. IEEE Com-
puter Society Press, 1983. url: https://books.google.se/books?id=
vtNWAAAAMAAJ.

[32] Ruchika Malhotra. “A systematic review of machine learning techniques for
software fault prediction”. In: Applied Soft Computing 27 (2015), pp. 504–
518. issn: 1568-4946. doi: https : / / doi . org / 10 . 1016 / j . asoc . 2014 .
11.023. url: http://www.sciencedirect.com/science/article/pii/
S1568494614005857.

[33] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Intro-
duction to Information Retrieval. New York, NY, USA: Cambridge University
Press, 2008. isbn: 0521865719, 9780521865715.

[34] Warren S. McCulloch and Walter Pitts. “A logical calculus of the ideas im-
manent in nervous activity”. In: The bulletin of mathematical biophysics 5.4
(Dec. 1943), pp. 115–133. issn: 1522-9602. doi: 10.1007/BF02478259. url:
https://doi.org/10.1007/BF02478259.

[35] B. Mehlig. “Artificial Neural Networks”. In: CoRR abs/1901.05639 (2019).
arXiv: 1901.05639. url: http://arxiv.org/abs/1901.05639.

[36] Tim Menzies et al. “Metrics that matter”. In: 27th Annual NASA Goddard-
/IEEE Software Engineering Workshop, 2002. Proceedings. IEEE. 2002, pp. 51–
57.

[37] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of
Machine Learning. The MIT Press, 2012. isbn: 026201825X, 9780262018258.

45

https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1121/1.4976038
https://doi.org/10.1121/1.4976038
http://rocknrollnerd.github.io/ml/2015/05/27/leopard-sofa.html
http://rocknrollnerd.github.io/ml/2015/05/27/leopard-sofa.html
https://doi.org/https://doi.org/10.1016/j.csi.2017.02.003
https://doi.org/https://doi.org/10.1016/j.csi.2017.02.003
http://www.sciencedirect.com/science/article/pii/S0920548916300885
http://www.sciencedirect.com/science/article/pii/S0920548916300885
https://doi.org/10.2139/ssrn.3312070
https://arxiv.org/abs/1407.7502
https://arxiv.org/abs/1407.7502
https://books.google.se/books?id=vtNWAAAAMAAJ
https://books.google.se/books?id=vtNWAAAAMAAJ
https://doi.org/https://doi.org/10.1016/j.asoc.2014.11.023
https://doi.org/https://doi.org/10.1016/j.asoc.2014.11.023
http://www.sciencedirect.com/science/article/pii/S1568494614005857
http://www.sciencedirect.com/science/article/pii/S1568494614005857
https://doi.org/10.1007/BF02478259
https://doi.org/10.1007/BF02478259
https://arxiv.org/abs/1901.05639
http://arxiv.org/abs/1901.05639


Bibliography

[38] Raimund Moser, Witold Pedrycz, and Giancarlo Succi. “A comparative anal-
ysis of the efficiency of change metrics and static code attributes for defect
prediction”. In: Proceedings of the 30th international conference on Software
engineering. ACM. 2008, pp. 181–190.

[39] T. J. Ostrand, E. J. Weyuker, and R. M. Bell. “Predicting the location and
number of faults in large software systems”. In: IEEE Transactions on Software
Engineering 31.4 (Apr. 2005), pp. 340–355. doi: 10.1109/TSE.2005.49.

[40] Danijel Radjenović et al. “Software fault prediction metrics: A systematic liter-
ature review”. In: Information and Software Technology 55.8 (2013), pp. 1397–
1418. issn: 0950-5849. doi: https://doi.org/10.1016/j.infsof.2013.
02.009. url: http://www.sciencedirect.com/science/article/pii/
S0950584913000426.

[41] R.V. Raghav, G. Lemaitre, and T. Unterthiner. Compare the effect of differ-
ent scalers on data with outliers. 2019. url: https://scikit-learn.org/
stable/auto_examples/preprocessing/plot_all_scaling.html (visited
on 08/14/2019).

[42] Rakesh Rana et al. “Analyzing defect inflow distribution and applying Bayesian
inference method for software defect prediction in large software projects”.
In: Journal of Systems and Software 117 (2016), pp. 229–244. issn: 0164-
1212. doi: https://doi.org/10.1016/j.jss.2016.02.015. url: http:
//www.sciencedirect.com/science/article/pii/S0164121216000480.

[43] Rakesh Rana et al. “Defect Prediction over Software Life Cycle in Automotive
Domain State of the Art and Road Map for Future”. In: Aug. 2014. doi:
10.5220/0005099203770382.

[44] Peter J. Rousseeuw. “Silhouettes: A graphical aid to the interpretation and
validation of cluster analysis”. In: Journal of Computational and Applied Math-
ematics 20 (1987), pp. 53–65. issn: 0377-0427. doi: https://doi.org/10.
1016/0377- 0427(87)90125- 7. url: http://www.sciencedirect.com/
science/article/pii/0377042787901257.

[45] Stuart Russell and Peter Norvig. Artificial Intelligence: Pearson New Inter-
national Edition. New York, NY: Pearson Education M.U.A., 2013. isbn:
9781292037172.

[46] Claude Sammut and Geoffrey I. Webb. Encyclopedia of Machine Learning and
Data Mining. 2nd. Springer Publishing Company, Incorporated, 2017. isbn:
9781489976857.

[47] Rakhi Sasidharan and Padmamala Sriram. “Hyper-Quadtree-Based K-Means
Algorithm for Software Fault Prediction”. In: Computational Intelligence, Cy-
ber Security and Computational Models. Ed. by G. Sai Sundara Krishnan et al.
New Delhi: Springer India, 2014, pp. 107–118. isbn: 978-81-322-1680-3.

[48] SciKit-Learn. sklearn.metrics.silhouettescore. 2019. url: https://scikit-
learn.org/stable/modules/generated/sklearn.metrics.silhouette_
score.html (visited on 09/29/2019).

[49] SciKit-learn. MinMax Scaler. 2019. url: https : / / scikit - learn . org /
stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
(visited on 08/14/2019).

46

https://doi.org/10.1109/TSE.2005.49
https://doi.org/https://doi.org/10.1016/j.infsof.2013.02.009
https://doi.org/https://doi.org/10.1016/j.infsof.2013.02.009
http://www.sciencedirect.com/science/article/pii/S0950584913000426
http://www.sciencedirect.com/science/article/pii/S0950584913000426
https://scikit-learn.org/stable/auto_examples/preprocessing/plot_all_scaling.html
https://scikit-learn.org/stable/auto_examples/preprocessing/plot_all_scaling.html
https://doi.org/https://doi.org/10.1016/j.jss.2016.02.015
http://www.sciencedirect.com/science/article/pii/S0164121216000480
http://www.sciencedirect.com/science/article/pii/S0164121216000480
https://doi.org/10.5220/0005099203770382
https://doi.org/https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/https://doi.org/10.1016/0377-0427(87)90125-7
http://www.sciencedirect.com/science/article/pii/0377042787901257
http://www.sciencedirect.com/science/article/pii/0377042787901257
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html


Bibliography

[50] SciKit-learn. Quantile Transformer. 2019. url: https://scikit-learn.org/
stable/modules/generated/sklearn.preprocessing.QuantileTransformer.
html (visited on 08/15/2019).

[51] SciKit-learn. sklearn.svm.SVC. 2019. url: https://scikit- learn.org/
stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC
(visited on 09/15/2019).

[52] Zubair Shah et al. “Software Clustering Using Automated Feature Subset Se-
lection”. In: vol. 8347. Dec. 2013. doi: 10.1007/978-3-642-53917-6_5.

[53] Raed Shatnawi and Wei Li. “The effectiveness of software metrics in identify-
ing error-prone classes in post-release software evolution process”. In: Journal
of Systems and Software 81.11 (2008), pp. 1868–1882. issn: 0164-1212. doi:
https://doi.org/10.1016/j.jss.2007.12.794. url: http://www.
sciencedirect.com/science/article/pii/S0164121208000095.

[54] Ajmer Singh, Rajesh Bhatia, and Anita Singhrova. “Taxonomy of machine
learning algorithms in software fault prediction using object oriented met-
rics”. In: Procedia Computer Science 132 (2018). International Conference on
Computational Intelligence and Data Science, pp. 993–1001. issn: 1877-0509.
doi: https://doi.org/10.1016/j.procs.2018.05.115. url: http:
//www.sciencedirect.com/science/article/pii/S1877050918308470.

[55] Ajmer Singh, Rajesh Bhatia, and Anita Singhrova. “Taxonomy of machine
learning algorithms in software fault prediction using object oriented met-
rics”. In: Procedia Computer Science 132 (2018). International Conference on
Computational Intelligence and Data Science, pp. 993–1001. issn: 1877-0509.
doi: https://doi.org/10.1016/j.procs.2018.05.115. url: http:
//www.sciencedirect.com/science/article/pii/S1877050918308470.

[56] Software Quality Assurance - From theory to implemenatation. Pearsson, Ed-
inburgh Gate, England, 2004.

[57] Chintakindi Srinivas and Chakunta Rao. “A Feature Vector Based Approach
for Software Component Clustering and Reuse Using K-means”. In: Sept. 2015,
pp. 1–5. doi: 10.1145/2832987.2833080.

[58] Miroslaw Staron and Wilhelm Meding. “Predicting weekly defect inflow in
large software projects based on project planning and test status”. In: Infor-
mation and Software Technology 50.7 (2008), pp. 782–796. issn: 0950-5849.
doi: https://doi.org/10.1016/j.infsof.2007.10.001. url: http:
//www.sciencedirect.com/science/article/pii/S0950584907001085.

[59] Miroslaw Staron and Wilhelm Meding. Software Development Measurement
Programs : Development, Management and Evolution. Springer, 2018. isbn:
9783319918358. url: http://search.ebscohost.com/login.aspx?direct=
true&AuthType=sso&db=edsebk&AN=1850351&site=eds-live&scope=site&
custid=s3911979&authtype=sso&group=main&profile=eds.

[60] Miroslaw Staron, Wilhelm Meding, and Bo Söderqvist. “A method for forecast-
ing defect backlog in large streamline software development projects and its
industrial evaluation”. In: Information and Software Technology 52.10 (2010),
pp. 1069–1079. issn: 0950-5849. doi: https://doi.org/10.1016/j.infsof.
2010.05.005. url: http://www.sciencedirect.com/science/article/
pii/S0950584910000832.

47

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.QuantileTransformer.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.QuantileTransformer.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.QuantileTransformer.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC
https://doi.org/10.1007/978-3-642-53917-6_5
https://doi.org/https://doi.org/10.1016/j.jss.2007.12.794
http://www.sciencedirect.com/science/article/pii/S0164121208000095
http://www.sciencedirect.com/science/article/pii/S0164121208000095
https://doi.org/https://doi.org/10.1016/j.procs.2018.05.115
http://www.sciencedirect.com/science/article/pii/S1877050918308470
http://www.sciencedirect.com/science/article/pii/S1877050918308470
https://doi.org/https://doi.org/10.1016/j.procs.2018.05.115
http://www.sciencedirect.com/science/article/pii/S1877050918308470
http://www.sciencedirect.com/science/article/pii/S1877050918308470
https://doi.org/10.1145/2832987.2833080
https://doi.org/https://doi.org/10.1016/j.infsof.2007.10.001
http://www.sciencedirect.com/science/article/pii/S0950584907001085
http://www.sciencedirect.com/science/article/pii/S0950584907001085
http://search.ebscohost.com/login.aspx?direct=true&AuthType=sso&db=edsebk&AN=1850351&site=eds-live&scope=site&custid=s3911979&authtype=sso&group=main&profile=eds
http://search.ebscohost.com/login.aspx?direct=true&AuthType=sso&db=edsebk&AN=1850351&site=eds-live&scope=site&custid=s3911979&authtype=sso&group=main&profile=eds
http://search.ebscohost.com/login.aspx?direct=true&AuthType=sso&db=edsebk&AN=1850351&site=eds-live&scope=site&custid=s3911979&authtype=sso&group=main&profile=eds
https://doi.org/https://doi.org/10.1016/j.infsof.2010.05.005
https://doi.org/https://doi.org/10.1016/j.infsof.2010.05.005
http://www.sciencedirect.com/science/article/pii/S0950584910000832
http://www.sciencedirect.com/science/article/pii/S0950584910000832


Bibliography

[61] Dhiauddin Suffian and Suhaimi Ibrahim. “A Prediction Model for System
Testing Defects using Regression Analysis”. In: International Journal of Soft
Computing and Software Engineering 2 (Jan. 2014). doi: 10.7321/jscse.
v2.n7.6.

[62] Robert Tibshirani. “Regression shrinkage and selection via the lasso: a ret-
rospective.” In: Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 73.3 (2011), pp. 273–282. issn: 13697412. url: http://proxy.
lib.chalmers.se/login?url=http://search.ebscohost.com.proxy.
lib.chalmers.se/login.aspx?direct=true&db=buh&AN=60109526&site=
ehost-live&scope=site.

[63] Roelf J. Wieringa. Design science methodology for information systems and
software engineering. Undefined. 10.1007/978-3-662-43839-8. Springer, 2014.
isbn: 978-3-662-43838-1. doi: 10.1007/978-3-662-43839-8.

[64] H. Zhang. “An investigation of the relationships between lines of code and
defects”. In: 2009 IEEE International Conference on Software Maintenance.
Sept. 2009, pp. 274–283. doi: 10.1109/ICSM.2009.5306304.

[65] Shi Zhong, Taghi Khoshgoftaar, and Naeem Seliya. “Analyzing Software Mea-
surement Data with Clustering Techniques”. In: Intelligent Systems, IEEE 19
(Apr. 2004), pp. 20–27. doi: 10.1109/MIS.2004.1274907.

48

https://doi.org/10.7321/jscse.v2.n7.6
https://doi.org/10.7321/jscse.v2.n7.6
http://proxy.lib.chalmers.se/login?url=http://search.ebscohost.com.proxy.lib.chalmers.se/login.aspx?direct=true&db=buh&AN=60109526&site=ehost-live&scope=site
http://proxy.lib.chalmers.se/login?url=http://search.ebscohost.com.proxy.lib.chalmers.se/login.aspx?direct=true&db=buh&AN=60109526&site=ehost-live&scope=site
http://proxy.lib.chalmers.se/login?url=http://search.ebscohost.com.proxy.lib.chalmers.se/login.aspx?direct=true&db=buh&AN=60109526&site=ehost-live&scope=site
http://proxy.lib.chalmers.se/login?url=http://search.ebscohost.com.proxy.lib.chalmers.se/login.aspx?direct=true&db=buh&AN=60109526&site=ehost-live&scope=site
https://doi.org/10.1007/978-3-662-43839-8
https://doi.org/10.1109/ICSM.2009.5306304
https://doi.org/10.1109/MIS.2004.1274907

	Introduction
	Background
	Problem Statement
	Aim
	Limitations

	Theoretical Background
	Supervised Learning
	Artificial Neural Networks
	The Neuron
	Multilayer Perceptron
	CNN
	LSTM

	LASSO
	Random Forest
	SVC
	Challenges in Machine Learning

	Clustering
	k-means
	DBSCAN
	Challenges in clustering

	Performance Metrics
	Scalers


	Related Work
	Measure
	Choosing Metrics
	Defect prediction
	Defect Inflow Prediction
	Software Defect Prediction

	Software Feature Clustering

	Research Design
	Research Questions
	Research Methodology
	The Design Cycle
	Data set
	Iteration 1
	Iteration 2
	Iteration 3


	Results
	Iteration 1
	Setup
	Results
	Adressing Research Question

	Iteration 2
	Setup
	Results and Addressing Research Questions

	Iteration 3
	Setup
	Results and Addressing Research Questions


	Discussion
	Data
	Metrics
	Ground truth


	Conclusions

