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Abstract

Memory compression is a promising technique for computer systems to increase cache
and memory capacity, leading to a decrease of the number of required lower-level ac-
cesses without adding significant cost or energy consumption to a system. This thesis
answers some of the questions arising when implementing a Huffman algorithm as com-
pression algorithm on main memory content, such as compression factor compared to
other compression algorithms and feasibility for compression in a system.

This thesis contains a compression analysis of two scale-out benchmarks from CloudSuite.
The two benchmarks, Data analytics and Graph analytics, were set up running on virtual
machines. While the benchmarks were running, the virtual machines had their memory
extracted at multiple occasions. By using the virtual-to-physical address translation for
the benchmarks’ processes, in combination with the extracted memory sample, it was
possible to create images of the memory used by the benchmarks’ processes. These
images were analysed with several different compression algorithms including Huffman,
B∆I, and FPC.

The Huffman algorithm uses a value frequency table (VFT) which contains values and
their frequency. The VFT is used to create the encoding for the Huffman tree where
values with high frequency are given a short code word. A larger VFT will give a better
compression factor but reduce speed, increase area and energy consumption. This thesis
shows that the size of the VFT can be kept small and that the gains in compression
factor of having a large VFT significantly decreased with VFT sizes over 1024 entries.
The results in the compression analysis show that the memory compression factor for
the two CloudSuite benchmarks is around 2.7X for a VFT with 1024 entries.

In a traditional computer system blocks and pages are fixed in size. A computer system
using memory compression must allow for blocks and pages to vary in size, however, it
would be infeasible to allow for all different block and page sizes. The thesis shows the
impact on the Huffman compression factor when only particular compression factors or
compressed sizes are allowed. Four additional block addressing bits result in a compres-
sion loss of between 4%-7%. A similar analysis for pages show that adding four or six
additional addressing bits result in compression losses of between 6%-9% and 1%-2%,
respectively.

Following the compression analysis, a few compression schemes were implemented and
evaluated in hardware. One of these schemes, the Huffman coding scheme, was also
implemented as part of a proof-of-concept. The proof-of-concept was implemented on
a ZedBoard, an evaluation board that incorporates both a dual ARM core as well as
programmable logic. The ordinary datapath between the cores and the memory was
rerouted to pass through the programmable logic of the ZedBoard. In this programmable
logic, the Huffman compressing and decompressing logic was implemented.
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1

Introduction

Memories play a significant role in modern computers. They contribute to a large per-
centage of both the total cost as well as the energy consumption of a computer system.
Today, memories stand for roughly 10%-20% of the cost of a computer system, ranging
all the way from smart phones to data centers. In addition, they contribute largely
to the energy consumption of computers totalling up to 1% of the world’s total energy
usage [1, 2].

Caches and main memories are key resources in computer systems. The memory hier-
archy created by these memories is instrumental for increasing performance by reducing
the access time when fetching data and instructions in a computer system. Memories
with high hit rate will increase a system’s performance while, at the same time, decrease
its energy consumption. A miss at one tier in the memory hierarchy results in an access
to a lower tier which usually has much longer access time, and it is therefore essential
to keep these costly accesses to a minimum. Over the years, several techniques and
polices have been developed to increase memory hit rates and new technologies are still
emerging.

One of the more promising categories of improvement in memory systems is data com-
pression. Data compression techniques aim to lessen the space needed to store data
by utilizing the available memory space more effectively. The penalty paid when using
data compression schemes is an increased memory access time and the trade-off between
high compression rates versus a short access time has, in the past, lead to small actual
performance gains. To have a feasible data compression scheme one has to manage com-
pressed data with a very short added access time. A task that is challenging at best and
is probably the reason why data compression has not been used historically.

A recent innovation within the field of data compression addresses the problem with
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1.1. EUROSERVER CHAPTER 1. INTRODUCTION

the added additional access time. This innovation includes the use of new specialised
hardware in combination with new software. Through the use of this new hardware, it is
possible to run Huffman coding, a previously known, aggressive, statistical compression
scheme to generate a data compression of up to 4X while suffering almost no performance
penalties [2].

A new version of Huffman coding has also been suggested, where a few bits of length
information is added to every compressed word. This encoding allows for even faster
decompression at the expense of lower compression factors.

1.1 Euroserver

Data centers are crucial to the modern day information era and one of the driving forces
is cloud applications. The demand for processing power and data storage is continuously
growing and to meet this growing demand, data centers need to improve performance
and reduce their energy consumption [3].

The Euroserver project aims to increase the energy and software efficiency as well as re-
duce the cost of data centers through several recent innovations including, 64-bit ARM
cores, 3D heterogeneous silicon-on-silicon integration, FD SOI process technology, and
new software techniques for efficient resource management. The Euroserver project is
a European collaboration between Commissariat à l’énergie atomique et aux énergies
alternatives (France), STMicroelectronics (France), ARM Ltd (United Kingdom), EU-
ROTECH SPA (Italy), Technische Universitaet Dresden (Germany), Barcelona Super-
computing Center (Spain), Foundation for Research & Technology - Hellas (Greece),
Onapp Ltd (Gibraltar), and Chalmers Tekniska Högskola AB (Sweden) [1].

Memory compression is included in Chalmers contribution to the Euroserver project
with the goal of being implemented in future generations of the Euroserver.

1.2 Aim of the project

The implementation of a memory compression scheme in today’s computers is a chal-
lenging task. In this thesis we aim to tackle this task and have divided the thesis project
into two parts: evaluate the Huffman compression with respect to scale-out workloads
as well as to implement a prototype of a computer system employing data compression.
The compression results will give an indication on how the Huffman compression behaves
compared to the other algorithms and what memory compression factors one can expect
for scale-out workloads.

The system implementation phase aims to implement compression algorithms between
the LLC and the main memory on a Zynq processing system [4] which includes among
other things, an FPGA, two ARM A9 cores, and a memory hierarchy with caches and

2



1.3. LIMITATIONS CHAPTER 1. INTRODUCTION

main memory. In addition, the system will be evaluated with respect to performance,
area, and power consumption. The main goal in this phase is to implement a proof-of-
concept for the Huffman compression algorithm but this phase also includes implemen-
tation of other compression algorithms.

1.3 Limitations

This thesis focuses on compression of data in main memory for scale-out systems running
applications commonly found in data centers. To better understand the behaviour in
computing systems of all sizes, more research is needed.

Virtual machines used were limited to four cores and a memory size of 5 GB due to
resource limitations. To accurately represent a scale-out system one would prefer to
virtualise a system implementing more cores and a much larger main memory as en-
countered in real-world data centers.

This thesis limits its analysis to a comparison between four different compression algo-
rithms, Huffman, base delta immediate (B∆I), frequent pattern compression (FPC), and
DupDict. These four compression schemes have already been implemented in a C++ ap-
plication which we have used throughout this project. The five compression algorithms
were chosen since they represent a large set of compression schemes available.

Hardware implementations of a Huffman compressor and decompressor have been given.
Although, some optimizations have been made.

1.4 Contribution

Previous work has touched upon the topic of implementing compression in the memory
hierarchy of computer systems. Examples of these papers include [5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15] although they do not have the same focus or in depth analysis of Huffman
compression as this thesis does. This thesis is, to the knowledge of the authors, the only
work in the area that focuses on compression for scale-out systems although [8] includes
some evaluations for scale-out benchmarks.

Papers [7, 8, 12, 13, 14] all suggest using simple or fast compression techniques that
generate lower compression values than what more advanced algorithms can. Papers
[7, 14] center around the compression possible when exploiting the high amount of zeroes
found in the memory hierarchy of computers. Papers [8, 12, 13] centers around the usage
of B∆I or FPC compression, two schemes that are evaluated further in this paper. This
thesis wants to examine the possibility of using Huffman compression.

Papers [9, 10, 11] use more advanced techniques with the potential of higher compression,
but they all include software implementations at the OS level. This thesis wants to

3



1.5. THESIS OUTLINE CHAPTER 1. INTRODUCTION

implement a fairly advanced algorithm, the Huffman algorithm, in hardware to gain
both high compression and high speed.

This thesis stands out as one of the few contributions that not only evaluates hardware
compression, but also creates a functional hardware prototype for feasibility testing.
Although, complete systems that implement memory compression in hardware have
been developed both at the University of Michigan [6] and by IBM [15] prior to this
work.

The hardware developed at the University of Michigan [6] is an embedded processor, the
Phoenix Processor, that implements compression with the focus of reduced energy con-
sumption and memory usage. The compression algorithm used by the Phoenix Processor
is Huffman coding. Compared to the design we are evaluating the Phoenix Processor’s
Huffman tree is static and will experience lower compression rates than by using a dy-
namic Huffman tree based on the memory traffic.

The most complete work in this area of memory compression is probably made by IBM
and ServerWorks which have created a commercially available single chip memory con-
troller called Pinnacle [15] which is compatible with several Intel processors. This com-
pression scheme is called Memory Expansion Technology (MXT) and claims to give
compression factors between two and six. The MXT implements the Ziv-Lempel com-
pression algorithm to compress and decompress data sent between main memory and
the cache hierarchy.

1.5 Thesis outline

Chapter 2 contains related theory that a reader may find helpful to fully understand
the content in the report. The chapter starts with a description of scale-out systems in
section 2.1. Following this, a description of CloudSuite and some of its benchmarks in
section 2.2. In 2.3, the reader will find theory related to setting up and running virtual
machines. Section 2.4 expands on the theory of this thesis by explaining the different
compression schemes used throughout this thesis. Section 2.5 describes the hardware
used in this project and section 2.6 describes the design flow of taking a hardware
description all the way to finished hardware.

In Chapter 3 we present the compression analysis. Section 3.1 contains the set up and the
results from the dataset analysis. The set up and results from the CloudSuite benchmark
analysis are presented in 3.2 with 3.2.1 and 3.2.2 containing information from the Data
analytics and Graph analytics benchmarks. Section 3.2.3 contains a VFT size analysis
and section 3.2.4 a VFT sensitivity analysis. A block and page alignment analysis can
be seen in 3.2.5 and in 3.2.6 we present an evaluation of the length overhead.

Chapter 4 starts with presenting descriptions of hardware implementations for the B∆I
and FPC compression algorithms in sections 4.1 and 4.2. Section 4.3 contains a descrip-
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1.5. THESIS OUTLINE CHAPTER 1. INTRODUCTION

tion of a proof-of-concept system that is implemented on an evaluation and development
board. The section includes hardware descriptions, software created as well as necessary
changes to the datapath between the processors and memory of the board. Section 4.4
contains an evaluation of the different implementations in terms of speed, required area
and power consumption.

A discussion is presented in Chapter 5. In this chapter, decisions made during the thesis
is explained such as why conclusions was not drawn from some results. This chapter
also includes discussion on the compression behaviour seen in the compression analysis
results as well as the implications of this behaviour.

Chapter 6 contains our conclusions of the knowledge gathered during the course of this
project. Here we present conclusions drawn from the results of the project, including
assessment of Huffman compression compared to other compression schemes such as B∆I
and FPC. In 6.1 we make some suggestions on how to continue development of the proof-
of-concept hardware is presented, including both optimizations of existing hardware as
well as suggestions on new functionality.

5



2

Theory

This chapter provides the theoretical background that is necessary to understand the
compression analysis and implementation of the prototype system. First, scale-out sys-
tems are explained. This is followed by information related to the benchmarks’ virtual
machine set up. Later on, the evaluated compression schemes are explained and lastly,
theory related to the implementation of the prototype is presented.

2.1 Scale-out

In today’s data centers, scale-out applications such as cloud computing have emerged
as the dominating type of application to deliver scalable online services to hundreds of
millions of users [16]. Corporations such as Amazon, Google, Facebook, and many more
all have invested in their own data center infrastructure to deliver their cloud computing
services [17, 18].

Scale-out workloads are workloads that operate on large datasets split across a large num-
ber of machines. The workloads typically serve large numbers of completely independent
requests that do not share any state and have application software designed specifically
for the cloud infrastructure. Inter-machine connectivity is only used for high-level task
management and coordination [16].

Scale-out systems and their applications have workloads that are different to workloads
of traditional systems. Below is a list with some of the differences between traditional
and scale-out systems.

• Scale-out systems execute a much lower rate of floating point operations [19].

6



2.2. CLOUDSUITE CHAPTER 2. THEORY

• The L1 instruction cache misses are much more frequent in scale-out applications
due to their large instruction sets [16, 19].

• Applications on scale-out systems exhibit a low amount of memory-level and in-
struction parallelism [16].

• The memory bandwidth is not strained in scale-out applications [16].

• The rate of memory instructions versus computational instructions is much higher
in scale-out systems [19].

• There is a much higher runtime overhead from the memory management unit
(MMU) and a higher amount of page walks for scale-out workloads [17].

• Prefetchers have proven to be unproductive for scale-out workloads [16].

• Ferdman et. al. conclude that most execution time in scale-out systems is dom-
inated by stalls and that stalls in a scale-out system arise due to long-latency
memory accesses. Traditional benchmarks such as SPECint and PARSEC do not
account for these long-latency memory accesses and thus are not suitable to sim-
ulate scale-out systems [16].

Because of the differences in workload from more traditional computing systems, scale-
out systems must also be evaluated differently [16]. As such, a benchmarking suite must
be chosen with care to emulate, test, and simulate scale-out systems accurately.

2.2 CloudSuite

Several traditional benchmark suites exist today and are easily available from the web.
These include, amongst other, the HPCC, PARSEC, and SPECCPU benchmarks. While
they are good when serving their purpose, they do not emulate the workload in scale-out
systems in a manner that is accurate enough for research in the field of data centers.

To stimulate the research in the field of data centers, CloudSuite was introduced [17, 20].
CloudSuite is a benchmark suite for emerging scale-out applications that represents an
application set that is found in the vast majority of today’s data centers [21].

The CloudSuite benchmark includes eight different benchmarks that simulate the work-
load of the most popular types of applications found in scale-out systems. The eight
benchmarks are data analytics, data caching, data serving, graph analytics, media
streaming, software testing, web search, and web serving. An overview the different
benchmark cases of CloudSuite can be found in Figure 2.1.

Data analytics - Uses Hadoop and Mahoop to, with the help of machine learning, extract
useful information from vast amounts of human generated data. In this case, Wikipedia
pages.

7



2.2. CLOUDSUITE CHAPTER 2. THEORY

Figure 2.1: Overview of the different set ups for the CloudSuite benchmarking suite [22]

Data caching - With the help of Memcached software, Twitter data is cached into memory
from the disk. Twitter users are then emulated to generate realistic memory and disk
accesses.

Data serving - NoSQL systems split hundreds of TB of data onto data clusters. Cas-
sandra, an open source NoSQL is used and receives stimulus for read and write requests
from the Yahoo! Cloud Serving Benchmark.

Graph analytics - Runs TunkRank on the GraphLab framework to analyse graphs that
are distributed across several nodes. Graphs could include social network graphs over
users or web graphs.

Media streaming - An Apple Darwin Streaming Server is set up with a dataset that
consists of pre-encoded videos. A user is then emulated that downloads the video through
the Faban traffic generator.

Software testing - A cloud service offering software testing through Cloud9 to a user is
set up. Then a cloud master allocates computing resources among several nodes.

Web search - The Nutch/Lucend is used to set up a web search server that sends requests
to independent index serving nodes. Then Faban traffic generator is set up to generate
search request to the Nutch/Lucent search server.

Web serving - The Faban traffic generator is used to send traffic in form of requests to

8



2.2. CLOUDSUITE CHAPTER 2. THEORY

an Nginx web server running PHP. The web server accesses a database server running
MySQL for accessing images.

2.2.1 Data analytics

In recent years massive increase in human-generated data, often referred to as big data,
on the web has made it necessary for automated analytical processing to classify and filter
this data [22]. The analytical process can be used to predict user behaviour, opinions,
and preferences with an example being to give user recommendations, which the user is
likely to appreciate, such as book and movie recommendations. The analytic process can
also be used for security reasons with an example being spyware detection on web sites.
The analytic process often uses machine learning which has grown to be an important
solution for data centers to analyse big data.

CloudSuite’s Data Analytics (DA) benchmark is running Apache’s machine learning
library Mahout which is designed to run data analytics on big data. Mahout runs with
Hadoop which is an open-source implementation of the MapReduce paradigm [22]. The
DA benchmark uses a text-based dataset of Wikipedia articles. When the benchmark
is running, the master node sends Wikipedia documents for classification to the slave
nodes. The slave nodes classify the documents using a, previously created, model and
send the results back to the master node. The model used by the slave nodes is created
from a set of Wikipedia training articles.

2.2.2 Graph analytics

Internet based social network sites such as Facebook, Twitter, and Google Plus have
created a high demand on large scale graph analyses. The information obtained from
these analyses can be used to provide different services for the user, including friend
suggestions and providing the user with relevant news feeds [23].

The Graph Analytics benchmark uses GraphLab to analyse an input graph. GraphLab
is a high performance, distributed computation framework that has been developed
for machine learning and other data-mining tasks. GraphLab can be configured for
processing in two modes, either it uses a single-machine setup or it performs distributed
processing. In distributed processing, the graph is distributed across several nodes that
communicate for adjacent vertices. The processing is overseen by a master node that
collects the results. In a single-machine setup, all computations are made in a single
node [23].

Cloudsuite’s Graph Analytics benchmark implements the TunkRank algorithm to run
on the GraphLab framework. The TunkRank algorithm’s input is a graph containing
directed edges describing relationships between users in a social network. The algo-
rithm recursively calculates each user’s influence on the network based on different user
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properties such as number of relations [24].

2.3 Virtualization

Virtualization is the act of creating a virtual representation of something. This some-
thing could be, but is not limited to, hardware resources, OS, and network devices. In
virtualization of a computer system, a new layer of software is added. This software is
called the hypervisor or virtual machine monitor (VMM) and its main task is to sep-
arate access to the hardware resources in a host system so that the resources may be
shared between several OSs. The set of virtual platform resources and interfaces that
are presented by the VMM to an OS is an environment that is called a virtual machine
(VM) [25, 26].

A VM is an efficient and isolated duplicate of a real machine. To ensure this, the VMM
classically must follow three characteristics. First, it must provide an environment that
is essentially identical to the original machine. A piece of software should not recognize
that it is not executed directly on a host system. Secondly, programs must run with
only a minor decrease in speed. This means that a majority of instructions must be
executed directly on the host processor. This excludes many emulators that operate
mainly in software from being called VMs. Finally, the VMM must be in total control
of the hardware resources [25, 26].

There exist many reasons why virtualization of a system may be an appealing option
for users. Firstly, OSs and software may be tested on different hardware architectures
without the need of the actual hardware. Secondly, since programs within a VM cannot
reach outside of its environment, it provides a layer of safety between the program and
the host system. Thirdly, a VM can easily be stopped and its state can be examined
while stopped. Lastly, VMs can be migrated from one host system to another, sometimes
even during execution.

On today’s market, there exist several VM environments including Hyper-V, kernel-based
virtual machine (KVM), QEMU, Virtual Box, Virtual PC, and many more.

2.3.1 QEMU and KVM

Quick EMUlator (QEMU) is a hosted VM manager that performs fast machine emula-
tion and emulates a set of different CPUs on a range of different hosts, including the Intel
x86 architecture. QEMU can run a full system emulation where a system is fully simu-
lated, including a running OS. To translate the target instructions into host compatible
instructions, QEMU uses dynamic translation during runtime. Moreover, in contrary to
many other emulators with dynamic translation, QEMU is easily portable to other host
machines [27].
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Kernel-Based Virtual Machine (KVM) is a virtualization infrastructure for the Intel x86
architecture on Linux that uses virtualization extensions to create a VMM capability
to Linux. When used with KVM and virtualizing the same architecture that can be
found in the host, QEMU can instead of doing a system emulation, create a VM that
operates at near-native speeds for the intel x86, server/embedded PowerPC, and S390
guest architectures. This is accomplished by accelerated execution by running guest
code directly on the system’s hardware. When KVM is not available, or if the guest
architecture simulated is different from the host hardware, QEMU falls back on software
emulation.

2.4 Compression algorithms

The goal of data compression is to store data in less space than the original represen-
tation. There are several ways to achieve this. For instance, by analysing data and
searching for certain patterns or relationships within the data, one can represent data
using less space than originally required [28]. Decompression is the opposite of compres-
sion and is the act of reversing a compression so that the data may be used again.

Data compressing can either be lossless or lossy. In a lossy approach, it is allowed for
some information to be lost in the compression and decompression phases to gain a
higher compression rate or faster computing times [28]. However, when loss of data is
not acceptable, a lossless compression is required.

Data compression and decompression are not free actions, they will impose some sort
of overhead to the user. There is often a trade-off between compression rate and speed,
since both compression and decompression demand time and hardware resources [12,
28].

2.4.1 Huffman algorithm

The Huffman algorithm is an encoding technique developed by D. A. Huffman which
compresses data into a minimal form where values get an encoding depending on the
value’s frequency. Frequent values get a shorter encoding and infrequent values get a
longer encoding. For a given dataset, the algorithm creates a table of the encountered
values and their frequency. From this VFT, the Huffman algorithm generates individ-
ually defined bit codes for the different values. These bit codes are of variable length
depending on the value’s frequency [29].

To guarantee that decompression will be possible, no encoding is allowed to be encoded
so that it is a prefix to any other encoding. Also, its prefixes may not be used as
an encoding for any other values [29]. The Huffman algorithm creates a binary tree
structure from the bottom up, using the frequencies to decide which nodes to combine
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into a parent. Once the tree is built, binary encodings are assigned to the different nodes
from the top down.

The following example shows how the Huffman algorithm can be used to compress a
simple dataset. The dataset has been evaluated and four values were found in the
dataset. We call these four values: A, B, C, and D. The dataset’s VFT can be seen in
Table 2.1.

Table 2.1: VFT of example dataset

Value Frequency

A 0.40

B 0.35

C 0.20

D 0.05

From the VFT, the binary tree seen in Figure 2.2 is created. The steps included in the
creation of the tree structure are listed below.

Figure 2.2: Creating a binary tree from the bottom-up. The two nodes with lowest
frequencies are combined into a single parent node

1. The two nodes with the lowest frequencies, C and D, are combined to create a new
node, E. The frequency of node E is the sum of node C and D. Node C and D are
no longer considered when building the rest of the tree.

2. Step one is repeated with the nodes with the lowest frequency, B an E, and the
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new node F is created. The B and E nodes are no longer considered.

3. Step one is once more repeated with the nodes A and F, and node G is created.
All nodes are now included in a binary tree and the tree is completed.

Once the tree is complete, encodings are assigned to the nodes, starting at the top of the
tree. Whenever a step is taken to the left, a zero is added to the prefix and whenever
a step is taken to the right, a one is added to the prefix. This process is depicted in
Figure 2.3 and a dictionary is generated shown in Table 2.2. As can be seen in Figure 2.3,
no encoding is the prefix of another encoding.

Figure 2.3: Encodings are assigned from the top-down. Every step to a left child represents
a zero and every step to a right child represents a one

Table 2.2: New Huffman encodings given to the encountered Values

Value Encoding

A 0

B 10

C 110

D 111

The example dataset contains four values. Encoding these four values requires a mini-
mum of two bits per value with a traditional encoding. The Huffman encoding created
for the example dataset has an encoding that varies from one to three bits per value. The
average per value encoding length for the traditional encoding is two bits whereas the
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avarage per value encoding for the Huffman encoding is 0.4 ·1+0.35 ·2+(0.20+0.05) ·3 =
1.85 bits per value.

2.4.2 ZCA

The Zero-Content Augmented (ZCA) scheme, as suggested by Dusser et al. [14], relies
on the following observation made by several people including Dusser et al., Ekman and
Stenström, and Alameldeen and Wood: Applications often have a large proportion of
their memory containing null and zero data and that this data often have a high spatial
locality [7, 13, 14]. Ekman and Stenström for example showed that for some benchmarks,
null data or zero blocks make up for up to 75% of the data stored in main memory.

In a memory implementing ZCA, the normal memory is augmented with an adjunct,
zero-content memory that only is made up from address tags and validity bits. In this
memory, the null blocks or zero blocks are represented using their address tag and N
validity bits. These N validity bits can be used to represent several adjacent blocks of
zero content and thus exploit the high spatial locality often experienced [14].

When a processor issues a read instruction to a ZCA memory, both the traditional
memory as well as the new zero-content memory are searched in parallel and the result
is brought to the processor. Upon a hit in the zero content memory, no calculations are
needed to convert the fetched data into its original value of zero. Thus, no extra latency
is incurred on the processor during accesses to the memory as long as the zero-content
memory is kept to a responsible size [14].

A positive side-effect of this no-extra latency property of the ZCA is that it can be
applied to all levels of the memory hierarchy if needed. Thus, a zero-content memory
can be added in parallel to the L1 cache, L2 cache, L3 cache, and to the main memory,
increasing the hit rate of all levels in the memory hierarchy. But it could also only be
added to a single level in the hierarchy, such as in the main memory if the designer
wishes to limit the number of disc accesses [14].

Since the traditional part of a ZCA memory still remains all the functionality as im-
plemented without the ZCA implementations, it is possible to implement control logic
that turns off the zero-content memory when the number of accesses to the zero-content
memory reaches below a set threshold. This could be used to reduce a system’s energy
consumption [14].

2.4.3 B∆I

Pekhimenko et al. have developed a compression technique called Base Delta Immediate
(B∆I) that relies on the key observation that the value difference between words in a
cache line is usually relatively small [12]. Therefore, one could represent the values within
a cache line with the help of a base value and let the different words be represented by a
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delta value that is the difference between the original word’s value and the selected base
value. In cases where the dynamic range between the different words of a cache line are
small, one could therefore represent the differences, or deltas, with small values. This
means that the combined size of the base values and the deltas could be smaller than
the original representation.

Pekhimenko et al. have shown that B∆I compression not only compresses cache lines
where dynamic differences are small [12], but also many well-known data patterns that
are usually found in data systems such as repeated zeros, repeated patterns, and narrow
values. This gives B∆I an advantage compared to schemes that only aim to compress
some of these well-known data patterns.

To optimize compressibility of this scheme, not only one, but two bases are used for this
compression scheme. The first base is selected as the first word in the cache line that is
to be compressed and the second base is an implicit base of value zero. This means that
B∆I could be used on more data structures such as arrays of structs that contain one
big value and one small [12].

To maximize the chance of a successful compression of a cache line, several different word
lengths as well as the delta values are tested simultaneously. A cache line can either be
treated as eight 8-byte words, sixteen 4-byte words or 32 2-byte words. All these versions
are tested and finally, the version that requires least amount of space is selected. This
can be done in parallel to ensure no performance loss.

One huge benefit with B∆I compared to many other compression schemes is that de-
compression of a cache line, which lies on the critical path when fetching data from
memory, can be made in parallel. Pekhimenko et al. have shown that compression rates
of roughly 1.53 can be expected across different platforms and applications [12].

2.4.4 FPC

Frequent pattern compression (FPC) is a significance-based compression scheme sug-
gested by Almeldeen and Wood that is based on the observation that large portions of
stored data do not need all its bits in a word [13]. For instance, an integer value of 150
only needs 8 bits to be represented but is often represented as a 32-bit value. Almeldeen
and Wood suggest that a cache line should be compressed by dividing it into 32-bit
words. For each word, a series of tests are made to check if the word can be fitted into
any of the following cases:

• If the data consist of some 4-bit sign extended data, then the last four bits are
stored.

• If the original data consist of a one byte sign extended value, then the last byte is
stored.
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• If the original data consist of a sign extended of a half-word, then just the half-word
is stored.

• If the original data consist of a half-word that is padded with zeros, then the last
half-word is stored.

• If the original data consist of two half-words that both consists of a sign extended
byte, then the last bytes of those two half-words are stored.

• If the word consists of four repeating bytes, then just one of these bytes is stored.

• In the special case that one or more consecutive zeros are detected, then a value
that indicates the number of consecutive zeros is stored.

• If the original data may not fit into any of these categories, then the data must be
stored uncompressed.

The word is compressed as described above and the word gets a prefix added. These
prefixes should according to Almeldeen and Wood be stored in the cache tags for easy
access when decompressing the data [13].

2.4.5 DupDict

The DupDict compression scheme is a scheme proposed by Angelos Arelakis at Chalmers
University of Technology that is similar to an earlier scheme proposed by Chen et al. [30].
The key observation made is that words found within memory is often replicated several
times and often replicated within a close proximity to the original value. To exploit this
fact, DupDict stores a set of indexes instead of the original values.

DupDict performs compression on data in a memory on a block-by-block granularity.
Each time a value is replicated within a block, the replicated instance is replaced by an
index pointing to the first occurrence of the value within the block. This compression is
performed by storing data in three separate fields. The first field is a table where every
value that occurs at least once within a data block is stored. The second field is a mask
with a single bit for every value within a memory block. This bit indicates whether the
value that it maps to is the first occurrence of a value or a replicated occurrence. The
last field is a set of indexes that shows the table index found in the first field of the
original value that the replicated data was representing.

A description of a hardware implementation of DupDict can be found in a thesis pre-
sented by Giannopoulos [31].
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2.5 Development platform

To test and evaluate a hardware design, as well as to be able to do a thorough proof-of-
concept development, the design should be implemented on actual hardware. A develop-
ment hardware containing programmable logic is preferably chosen when the hardware
description is likely to change several times. Several solutions for development hardware
with programmable logic exist on the market today as of-the-shelf hardware. These
include, but are not limited to, The Atlys Circuit Board, the MicroBlaze Development
Kit board, and the ZedBoard.

2.5.1 ZedBoard

The ZedBoard is an evaluation and development board based on the Xilinx Zynq-7000
All Programmable System on a Chip (SoC). As can be seen in Figure 2.4, the ZedBoard
contains a mixture of on-board peripherals, including a 512 MB DDR3 memory, as well
as the Zynq XC7Z020 SoC including a processing system (PS) as well as programmable
logic that are tightly coupled to each other [32].

Zynq processing system

The PS of the ZedBoard is centered around a dual ARM Cortex-A9 MPCore seen in the
top right corner of Figure 2.5. The CPUs can each execute two instructions per cycle
and are allowed to perform Out-of-Order execution. Each of the two processors have
4-way set-associative, separate, 32-kB L1 instruction and data caches. The cache line
lengths for both L1 caches are 32 bytes or eight words of four bytes each. The L2 cache
is 512 kB of shareable 8-way set-associative cache with 32-byte line size used by the PS
as last-level cache (LLC) [4].

The processing system uses 32-bit addressing to access data in memory or to access
other parts of the processing system as depicted in Table 2.3. By examining this table,
it is possible to see from the CPUs point of view, which addresses correspond to which
physical location on the processing system. Two address ranges dominate the majority
of addresses reachable through 32-bit addressing. The first of these ranges are the
addresses that map to system memory, ranging from hexadecimal values of 0000 0000 to
3FFF FFFF. The second range are addresses that map data to the programmable logic
through two 32-bit general purpose AXI interconnections, ranging from hexadecimal
values of 4000 0000 to BFFF FFFF.

Programmable logic

A Z-7020 FPGA is included on the ZedBoard as the programmable logic. This is where
user created hardware may be implemented for testing and development. The PL is
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Figure 2.4: Block Diagram of the ZedBoard [32]

accessible from the PS through a series of ports such as general purpose AXI master
ports. The characteristics of the FPGA can be found in Table 2.4 [4].
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Figure 2.5: Zynq PS block diagram [4]

2.5.2 AMBA AXI4 interface protocol

The AMBA is a set of open standard, on-chip interconnect specification protocols for
connection and management of functional blocks on a SoC. The AMBA specification
includes several interfaces, including AHB, AXI, and APB.

The AXI4 specification was released by ARM in 2010 and is targeted at high performance
systems with short clock cycles. It is implemented as a bidirectional communications
protocol that use a master-slave configuration with a two-way handshaking mechanism
to send information [33].

As can be seen in Figure 2.6 and Figure 2.7, the AXI4 specification divides communi-
cation into five independent transaction channels. These five channels all use a two-way
handshaking mechanism to ensure successful transactions. The address and control chan-
nel contains information that specifies the destination of following data as well as the
nature of the following data transfer. The data channels are used to send data that will
be used by the receiver. An answer channel is used only when writing from the master
and is used to acknowledge a successful (or unsuccessful) data transfer.
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Table 2.3: Address Map

Address Range From CPUs and ACP Notes

0000 0000 to 0003 FFFF OCM Address not filtered by SCU and OCM is mapped low

0000 0000 to 0003 FFFF DDR Address filtered by SCU and OCM is mapped low

0000 0000 to 0003 FFFF DDR Address filtered by SCU and OCM is not mapped low

0000 0000 to 0003 FFFF Address not filtered by SCU and OCM is not mapped low

0004 0000 to 0007 FFFF DDR Address filtered by SCU

0004 0000 to 0007 FFFF Address not filtered by SCU

0008 0000 to 000F FFFF DDR Address filtered by SCU

0008 0000 to 000F FFFF Address not filtered by SCU

0010 0000 to 3FFF FFFF DDR Accessible to all interconnect masters

4000 0000 to 7FFF FFFF PL General Purpose Port #0 to the PL M AXI GP0

8000 0000 to BFFF FFFF PL General Purpose Port #1 to the PL M AXI GP1

E000 0000 to E02F FFFF IOP I/O Peripheral register

E100 0000 to E5FF FFFF SMC SMC Memories

F800 0000 to F800 0BFF SLCR SLRC registers

F800 1000 to F880 FFFF PS PS System registers

F890 0000 to F8F0 2FFF CPU CPU Private registers

FC00 0000 to FDFF FFFF Quad-SPI Quad-SPI linear address for linear mode

FFFC 0000 to FFFF FFFF OCM OCM is mapped high

FFFC 0000 to FFFF FFFF OCM is not mapped high

Table 2.4: FPGA Characteristics

Xilinx 7 Series Programmable Logic Equivalent Artix-7 FPGA

I/O Pin Count 484

Available IOBs 200

Programmable Logic Cells (Approximate ASIC Gates) 85K Logic Cells (1.3M)

Look-Up Tables (LUTs) 53,200

Flip-Flops 106,400

Extensible Block RAM (# 36 Kb Blocks) 560 kB (140)

Programmable DSP Slices (18x25 MACCs) 220

Peak DSP Performance (Symmetric FIR) 276 GMACs

Figure 2.6 and Figure 2.7 also show required timing behaviour of the AXI protocol. The
address and control channel is used first to set up a data transfer. Once both master
and slave have agreed on a set of characteristics for the following data transfer, data is
sent in the desired direction. If the data transfer was a write action from the master,
then the slave also ends with a write answer once all data have been transfered.
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Figure 2.6: Channels and timing used to read data from slave to master [33]

Figure 2.7: Channels and timing used to write data from master to slave [33]

2.6 Design flow

To turn a desired circuit description from an abstract description such as hardware
description language (HDL) code into a physical circuit is not a simple task. It is a
process that involves several steps which eventually produce the aspired end product.
The design flow for FPGA devices and ASIC devices is similar but differs slightly on
some points. These differences will be pointed out in the following text [34].

The starting point of the design flow is usually a HDL code description of the desired
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circuit. This description is usually made in VHDL or Verilog, although higher-level
descriptions are becoming increasingly common. At this point, the designer is responsible
to make sure that the design only uses constructs that are possible to implement on a
physical circuit. If it is possible to implement the HDL code onto a physical circuit,
then we call the source code register transfer level code (RTL-code) and say that it is
synthesizable. An example of a construction that is unsynthesizable is a circuit that is
clocked on both the rising edge and the falling edge of a signal. Such a construction
would have to be removed by the designer before proceeding to next step [34].

Next, the RTL-code is synthesized. This means that the RTL-code is mapped onto a
description of the actual hardware gates that will be used for the design. To do this
mapping, a synthesis tool must also have information about what hardware the tool has
at its disposal. For FPGA designing, this would mean information about which FPGA
the design should be implemented on. For design of an ASIC, this would include a
library of available gates that the synthesis tool may use. Design constraints are also
required and typically include information such as expected operating frequencies and
pin mapping [34].

During synthesis, a synthesis tool usually starts by performing architecture-independent
optimizations before the actual technology mapping happens. These optimizations in-
clude techniques such as propagating constant values through the design, operations
sharing hardware and redundancy removal. When technology mapping then starts, the
tool focuses on performing architecture-specific optimizations such as using on-chip mul-
tipliers or creating adders with dedicated carry-chains. Once synthesis is completed, a
gate netlist is created as output that describes the needed hardware [34].

Once the gate netlist has been produced, it will need to be placed and routed. In the place
and route phase, location for each element in the mapped netlist will be determined. This
will be followed by placement-driven optimizations. Once gates are placed, wires and
signals are routed throughout the system. On an FPGA, the routing is more restricted
than on an ASIC as only prefabricated routing resources may be used while the ASIC
may create routing however it desires [34].

When place and route is completed, so is the design flow when designing ASICs. An
ASIC design is now ready to be implemented as a physical circuit. An FPGA however,
will need one more step before a hardware design can be implemented [34].

The final step in the design flow of an FPGA device is to generate a bit-stream and pro-
gram a suitable target device with it. To generate the bit-stream, the placed and routed
design from the previous step is used as an input. The FPGA is then programmed with
the generated bit-stream, creating the desired hardware design on the FPGA [34].
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Compression analysis

This chapter contains a detailed data compression analysis of several different datasets
as well as two benchmarks from CloudSuite. The algorithms used in the compression
analysis are Huffman, Huffman+LO, B∆I, FPC, and DupDict. Huffman+LO is Huffman
compression with length overhead (LO). The LO is four bits added in front of every value
to indicate the length of the following code word. The four bits allow for code lengths
from one to sixteen bits and are intended to be used by the underlying hardware so that
the values can easily be separated and decompressed in parallel.

During the compression analysis, parsed binary representation of datasets and bench-
mark memory samples were split into 4096 byte pages which were analysed one at a time
with the compression algorithms.

Huffman compression relies on a value frequency table (VFT) to create the encoding for
a tree structure where values closer to the root have higher expected frequency. In a
computer system employing Huffman compression one has to sample the memory traffic
over some time to create the VFT. When analysing the datasets and the memory sam-
ples from the benchmarks it was not possible to use this methodology. The methodology
used in the compression analysis was to generate the VFT from the whole binary rep-
resentation of the dataset or the benchmark memory sample. This will create the best
possible VFT and this methodology will be referred to as an optimal VFT. The VFT
sizes used in the compression analysis were 128, 1024, and 8192 for the datasets and 128,
1024, and 4096 for the benchmarks’ memory samples.

The metric used to display the compressibility of the different compression algorithms
is compression factor (CF). Equation 3.1 shows how the CF is calculated. In this thesis
the CF for Huffman and Huffman+LO are always calculated for non-null 64 byte blocks
and the Huffman CF displayed in tables and figures is the Huffman CF when an op-
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timal VFT has been used. The Huffman CF is often used as a reference to show the
impact on CF of different restrictions required in a hardware implementation of Huffman
compression.

CF =
Uncompressed size

Compressed size
(3.1)

3.1 Datasets

The dataset analysis evaluated two types of datasets: text-based and number-based.
The text-based datasets were parsed with UTF-8 encoding, converted to binary repre-
sentation, and stored as a file. The number-based dataset was read as consecutive values
with four-byte granularity, converted to binary representation, and stored as a file. The
datasets containing several files were concatenated into a single binary file.

The dataset analysis comprises two Twitter datasets, one Google Plus dataset, one
Memetracker dataset, and two Wikipedia datasets. Both Twitter datasets are text-
based with the first dataset containing over two million tweets from the Grammy awards
2013 and the second over eight million tweets from Superbowl 2014 [35, 36].

The first Wikipedia dataset (Wikipedia NB) originally contained over 30 000 files in-
cluding binary files such as images. When the Wikipedia NB dataset was parsed, binary
files were excluded and the remaining files were parsed as text-based files. The second
Wikipedia dataset (Wikipedia L) is based on a 50 GB XML file containing Wikipedia
articles [37]. The Wikipedia L dataset contains the first 10 GB of data from the XML
file and was parsed as text-based. The Wikipedia L dataset was limited to 10 GB due
to time and resource limitations.

The Google Plus dataset consists of circles, profiles, and ego networks from the Google
Plus social network. The dataset contains numbers and was parsed as a number-based
dataset.

Memetracker tracks frequent quotes and phrases from news websites and blogs and the
text-based Memetracker dataset contains a large number of meme-messages. The datset
entries contain information such as text, URL of the author, and a time stamp.

3.1.1 Dataset analysis results

In the dataset analysis, three different VFT sizes were used for the Huffman compression:
128, 1k, and 8k entries. Table 3.1 shows the CF for the different compression algorithms.
The number-based Google Plus dataset has higher CF for all algorithms compared to the
text-based datasets. The B∆I, FPC, and DupDict compression factors are consistently
low for all datasets. The datasets do not contain any null-blocks due to the parsing.
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Table 3.1: Compression results for the datasets

Huffman Huffman+LO

Data Set 128 1K 8K 128 1K 8K
B∆I FPC Null Blocks DupDict

Google Plus 2.076 2.172 2.232 1.378 1.407 1.497 1.095 1.258 0.00% 1.260

Memetracker 1.136 1.317 1.641 1.043 1.149 1.367 1.001 1.000 0.00% 1.009

Twitter Grammy 1.296 1.466 1.790 1.143 1.248 1.465 1.000 1.000 0.00% 1.052

Twitter Superbowl 1.422 1.598 1.891 1.257 1.344 1.532 1.000 1.000 0.00% 1.146

Wikipedia NB 1.231 1.515 2.057 1.109 1.284 1.637 1.000 1.005 0.00% 1.023

Wikipedia L 1.085 1.241 1.564 1.019 1.098 1.312 1.000 1.002 0.00% 1.015

3.2 Cloudsuite benchmarks

The DA and Graph Analytics (GA) benchmarks were set up to run on VMs. The
benchmark VMs were set up with the QEMU hypervisor and utilised KVM which made
it possible for the VMs to maintain near-native performance. The computer running
the benchmark VMs, the host, had some of its resources allocated to the benchmark
VMs. Table 3.2 shows the configuration and resources allocation for the host and the
benchmark VMs.

Table 3.2: System details for host and benchmark VMs

Host GA DA master/slave

Linux OS version Mint 17 Cinnamon 64-bit Mint 17.1 Rebecca 64-bit Ubuntu 14.04 LTS 64-bit

Linux kernel 3.13.0-24-generic 3.13.0-37-generic 3.13.0-39-generic

Processor Intel Core i7-4790 CPU @ 3.60GHz x 4 Intel Core Processor (Haswell) Intel Core Processor (Haswell)

Threads 8 (two threads per core) 4 4

Memory 8 GB 5 GB 2 GB / 5 GB

In order to test the compressibility of the memory used by the benchmarks we extracted
the benchmarks’ memory and analysed its content. Figure 3.1 shows the set up for the
DA benchmark. The benchmark was set up using two VMs: a master and a slave. For
the DA benchmark we analysed only the slave VM’s memory. The reason for this is that
the slave VM was running the memory intensive operations and thus is more interesting
in the scope of this thesis.

The DA benchmark is running several Java virtual machines, called nodes, within the
benchmark. The number of nodes depends on the Hadoop framework configuration but
there is always at least a DataNode and a TaskTracker node running in a slave machine.
Together with the DataNode and TaskTracker there is a number of Map and Reduce
nodes running, called child nodes, which perform the actual work.

The compressibility analysis of the benchmarks’ memory content consists of two phases:
memory extraction and memory analysis. The memory extraction phase was carried out
while the benchmark was running and the memory analysis was carried out afterwards.
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The two phases are illustrated with dashed-boxes in Figure 3.1. In the memory extraction
phase the VM’s memory was extracted to a file with the help of the VM managing tool
Virsh. At the same time as the VM’s memory was extracted, the virtual-to-physical
address translation was also stored.

Figure 3.1: Compression analysis overview

Figure 3.2 shows the setup for the virtual-to-physical address translation performed by
the Virt-to-physical address application. The initial step of the application was to fetch
the process IDs (PIDs) of the Hadoop nodes running at that instance. The PID, for a
running Hadoop process, was used to get the virtual address range and the page type
from the /proc/PID/maps file. While analysing the maps file, pages were classified into
three categories: dynamic pages (including heap), library pages, and stack pages. A
process’ virtual address range is at least the same size as the physical address space,
but the virtual address space is usually substantially larger. This means that only a
small portion of the virtual address range is stored in the physical memory at any given
time.

In order to get the physical pages used by a process one needs to render the virtual-to-
physical address translation. This was possible using the /proc/PID/pagemap file. If
a virtual page exists in the physical memory its page frame number (PFN) was stored
into a file.
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Figure 3.2: Virtual-to-physical address translation application

In the second phase of the compressibility analysis, the memory analysis phase, binary
images were created corresponding to the memory used by the Hadoop processes running
when the VM’s memory was sampled. Each process had three images created, one for
each page type, by concatenating pages from the memory sample. Figure 3.3 shows an
example of how images were created for dynamic pages, library pages, and stack pages.
The input to the Analyze memory application is a range of PFN for each page type.
The dynamic page ranges from 100-102 and 106-109. These seven pages are selected in
the application’s second input file, the 5 GB memory sample. The selected pages were
concatenated into an image. This methodology also applies to library and stack pages
and the application output is three images per process.

Figure 3.3: Memory extraction example

In this section the DA benchmark is used to describe the methodology used to extract
and analyse the memory used by the two benchmarks. The DA benchmark is used
because its set up is more complicated than the set up for the GA benchmark. The
DA benchmark set up use two VMs with multiple processes running in the slave VM
whereas the GA benchmark use only one VM with a single process, the TunkRank
process. Even though the set up of the two benchmarks differ, the methodology of the
memory extraction and analysis remains the same.

While analysing the memory samples taken from the VMs we discovered that one giga-
byte of memory was left mostly unused. Figure 3.4 shows how the memory has changed
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over five hours of running the GA benchmark. Each page in a five-gigabyte memory
sample is represented with a bar in the figure. Black bars are pages that have changed
value over the five hours of running the benchmark, red bars are null pages that have
not changed, and white bars are non-null pages that have not changed value. As the
figure depicts, the pages between the third and fourth gigabyte in the memory sample
are almost entirely null-pages that have not changed over the five hours of running the
benchmark. We found that the source of this observation is related to the x86-64 archi-
tecture. The x86-64 architecture has a one-gigabyte region, located at the high-end of
the physical address space, dedicated to I/O [38].

Figure 3.4: Memory changes over a five hours of running the GA benchmark

3.2.1 Data analytics

The DA benchmark was set up using two VMs: one master and one slave. The master
VM running the NameNode and the JobTracker nodes and the slave VM running the
DataNode, TaskTracker, Map, and Reduce nodes. The slave VM was set up to run two
Map nodes and one Reduce node. The benchmark was running with a large Wikipedia
XML file, around 50 GB, as input and was running for about 90 minutes before finishing.
The benchmark was set to restart, with the same input file, when the benchmark finished
running.

While the benchmark was running, four 5 GB memory samples of the slave VM’s memory
were taken. In Table 3.3 the sample time as well as sample names are shown. The sample
names are used throughout the report in tables and graphs.

Table 3.3: DA memory sample details.

Sample number Sample name Sampled at time

1 DA z0 1 minute

2 DA z1 1 hour

3 DA z2 6 hour

4 DA z3 24 hour
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Memory analysis

When the first sample was taken, DA z0, the slave VM was running two Map tasks and
no Reduce tasks. Along with the two Map tasks, Child1 and Child2, the slave VM was
running the TaskTracker and the DataNode tasks. Table 3.4 shows the tasks running and
their memory usage when the memory dump was taken. The two Map tasks consume
a combined value of 95.94% of the total memory used by the benchmark, whereas the
memory consumed by the TaskTracker and DataNode is much less, 2.46% and 1.6%,
respectively. The table also shows that 98.85% of the pages in the memory sample are
dynamic pages.

When the DA z0 sample was taken there was no Reduce task running. However, when
the DA z1 and DA z2 memory samples were taken, two Map tasks and one Reduce tasks
were running. The memory usage of the Reduce task was much less than the Map tasks,
less than 2% of the total memory usage. Detailed memory information for the DA z1
and DA z2 memory samples can be seen Appendix B.

The observations that the Map tasks consume at least 90% of the total memory and
that more than 95% of the pages are dynamic pages are also true for the DA z1, DA z2,
and DA z3 memory samples.

Table 3.4: DA z0 node memory details.

Node Page type Pages % of total pages Physical memory
size (MB)

Swap size (MB)

TaskTracker DYNAMIC 25881 2.28% 15.18 27.33

LIBRARIES 1513 0.13% 3.81 1.61

STACK 559 0.05% 1.80 0.12

DataNode DYNAMIC 16377 1.44% 82.54 23.47

LIBRARIES 1322 0.12% 4.29 1.83

STACK 469 0.04% 1.48 0.81

Child (Map) DYNAMIC 531120 46.77% 1643.86 531.61

LIBRARIES 3147 0.28% 8.64 4.25

STACK 1405 0.12% 5.33 0.42

Child (Map) DYNAMIC 549246 48.36% 2047.70 202.01

LIBRARIES 3147 0.28% 8.53 4.36

STACK 1477 0.13% 5.51 0.54

Table 3.5 shows the sum of the nodes’ dynamic, library, and stack pages for each memory
sample. A large percent of the library pages are shared between the tasks and very few
of the dynamic and stack pages are shared. The table also shows that for the DA z0,
DA z1, and DA z2 memory dumps, around 50% of the dynamic pages are null pages.
For the fourth sample, DA z3, proportion of null pages was less, 21.54%.
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Table 3.5: DA memory details

Sample Page type Pages w/o
duplicates

% Duplicates % of total
pages

Physical mem-
ory size (MB)

Swap size
(MB)

% null
pages

DA z0 DYNAMIC 1114718 0.70% 99.30% 3787.92 777.97 45.43%

LIBRARIES 3927 56.98% 0.35% 10.54 5.54 0.51%

STACK 3900 0.26% 0.35% 14.09 1.88 2.82%

DA z1 DYNAMIC 1049458 0.00% 99.25% 3582.83 715.75 56.41%

LIBRARIES 3974 64.12% 0.38% 8.31 7.96 5.12%

STACK 3953 0.00% 0.37% 8.72 7.47 4.13%

DA z2 DYNAMIC 1001449 0.01% 95.80% 3415.80 686.13 56.47%

LIBRARIES 3678 58.96% 0.35% 7.58 7.48 2.54%

STACK 40247 0.00% 3.85% 135.93 28.92 80.14%

DA z3 DYNAMIC 852570 0.27% 97.59% 2797.38 694.74 21.53%

LIBRARIES 1888 55.48% 0.22% 4.70 3.03 31.62%

STACK 19159 0.01% 2.19% 30.03 48.45 61.98%

Compression analysis

The VFT coverage improves when increasing the size of the VFT as shown in Table 3.6.
The VFT coverage for VFT sizes from 128 to 32k for the four memory dumps can be seen
in Appendix A. Appendix A also shows the frequency of the 25 most frequent values in
the VFT. The by far most frequent value in the memory sample is zero. The percent of
zero values ranges from 16.81% to 32.79% of the total number of values in the memory
sample with null pages excluded.

Table 3.6: VFT coverage (including null blocks)

Sample 128 entries 1k entries 4k entries

DA z0 83.39% 86.65% 87.99%

DA z1 88.33% 90.06% 90.71%

DA z2 88.25% 90.91% 91.67%

DA z3 77.65% 82.37% 83.69%

Table 3.7 shows the compression results for the different compression algorithms. Huff-
man compression gives the best compression results and will still give better results than
the other compression algorithms when the LO is considered. Table 3.8 shows the loss
in compression when Huffman with the LO is considered. The loss in compression is
between 21% and 26% and a slight increase in compression loss can be detected with a
larger VFT size.

Figure 3.5 and Figure 3.6 illustrate the CF for the different compression algorithms.
The first graph shows the Huffman CF and the second graph shows the Huffman+LO
CF.
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Table 3.7: DA compression results

Huffman Huffman+LO

Application 128 1K 4K 128 1K 4K
B∆I FPC Null Blocks DupDict

DA z0 2.388 2.597 2.675 1.878 1.995 2.025 1.457 1.763 3.53% 1.663

DA z1 2.522 2.680 2.719 1.960 2.044 2.062 1.414 1.760 8.46% 1.665

DA z2 2.500 2.765 2.819 1.938 2.082 2.107 1.243 1.743 3.58% 1.538

DA z3 2.535 2.783 2.854 1.952 2.092 2.126 1.469 1.801 1.81% 1.696

Table 3.8: Loss in compression for Huffman+LO with respect to Huffman.

Sample 128 entries 1k entries 4k entries

DA z0 21.36% 23.18% 24.30%

DA z1 22.28% 23.73% 24.16%

DA z2 22.48% 24.70% 25.26%

DA z3 23.00% 24.83% 25.51%
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Figure 3.5: DA compression results.

3.2.2 Graph analytics

The GA benchmark was running a single VM set up with the GraphLab framework
software. On top of this framework, the TunkRank software algorithm was built.

The GA benchmark is very memory intensive and requires a large memory to run input
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Figure 3.6: DA compression results - Huffman compression with LO

data with moderate size. Since the VM running the benchmark had limited resources,
the VM’s swap space was set to 20 GB. The GA benchmark was set up to analyse two
different input graphs. The first graph was a 4.3 GB file containing a subset of a Twitter
relationship graph between Twitter users. The second graph was a 9 GB file based on
relationships between Google Plus users.

The Twitter input graph took more than 24 hours for the GA benchmark to analyse
while the Google Plus graph finished within two hours. Four memory samples were taken
while running the Twitter graph, and three memory samples were taken while running
the Google Plus graph. Table 3.9 and Table 3.10 show the memory sample details.

Table 3.9: GA Twitter dataset details

Sample number Sample name Sampled at time Benchmark phase

1 GA z0 1 minute Read phase

2 GA z1 1 hour Analyse phase

3 GA z2 6 hour Analyse phase

4 GA z3 24 hour Analyse phase

Twitter graph

Cloudsuite’s GA benchmark comes with a 26 GB Twitter graph containing ordered
numerical data. These numerical data represents the edges of a graph showing the
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Table 3.10: GA Google Plus dataset details

Sample number Sample name Sampled at time Benchmark phase

1 GA g 0 30 minutes Read Graph

2 GA g 100 60 minutes Analyse Graph

3 GA g 130 90 minutes Analyse Graph

relationships between a large portion of active Twitter users in 2009 [39]. The graph
consists of two columns of user IDs. The two columns indicate that the user ID in the
first column follows the user ID in the second column. Because of privacy reasons, the
real user IDs have been hidden and instead, aliases are used starting from user ID 1 and
going upwards.

The TunkRank algorithm was designed with this graph in mind. Moreover, when using
the full 26 GB twitter file, the Tunkrank algorithm requires roughly 50 GB of memory
and takes several days to execute on the set up benchmark VM. Because of the size of
the input file’s relation with the memory usage, a 4.3 GB subset of the original graph
was created by extracting every sixth row in the graph input file.

Google Plus graph

A 1.3 GB graph containing user relationships between Google Plus users was also anal-
ysed. This graph did not come with the GA benchmark and had three problems that had
to be addressed for TunkRank to be able to analyse the graph. Firstly, the edges had to
be ordered in numerical order, otherwise the TunkRank would not execute. Secondly,
the graph included descriptions of the same edges several times. Lastly, the user IDs
were represented using 21-digit numbers which cause problems with TunkRank due to
their sheer size.

To solve these problems, the graph had to be reconfigured. The file had its rows sorted
in numerical order, duplicated rows were removed, and aliases were given to all user IDs
in the file. Starting from the lowest user ID which was given the value of one and then
assigning successive numbers to the rest of the user IDs. Parsing the graph accordingly
decreased its size to 173 MB. This caused TunkRank finishing its execution in mere
seconds.

To increase file size and thus execution time, the data in the parsed file was duplicated
with a fixed offset value given to all duplicated user IDs with the result being several
independent copies of the original graph. By creating 40 duplicated graphs in the file,
it was possible to create a 9 GB file describing Google Plus users.

These changes lessen the relevance of the input data. The input, while big, have a
low complexity. Also, the file consists of several small, independent graphs and it was
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shown by Cha et al. that more than 90 percent of nodes in a social network are con-
nected [39].

Memory analysis

While running the GA benchmark we saw that the benchmark has two phases. In the
first phase, the benchmark reads the input graph from memory. During this phase, the
first memory sample was taken for both input graphs. When studying Table 3.11 and
Table 3.12, we see that the first samples of the Twitter graph (GA z0) and the Google
Plus graph (GA g 0) have a high amount of memory usage and that they are almost
exclusively dynamic pages.

Table 3.11: Graph Analytics, Twitter

Sample Page type Pages % of total
pages

Physical mem-
ory size (MB)

Swap size
(MB)

% null
pages

GA z0 DYNAMIC 1162415 99.99% 3886.40 874.73 9.57%

LIBRARIES 97 0.01% 0.34 0.05 0.00%

STACK 8 0.00% 0.03 0.00 0.00%

GA z1 DYNAMIC 1070592 99.98% 3596.68 788.46 0.07%

LIBRARIES 218 0.02% 0.71 0.18 0.00%

STACK 26 0.00% 0.07 0.04 0.00%

GA z2 DYNAMIC 1082868 99.98% 3676.31 759.12 0.06%

LIBRARIES 200 0.02% 0.65 0.17 0.00%

STACK 16 0.00% 0.03 0.04 0.00%

GA z3 DYNAMIC 1089731 99.98% 3693.75 769.79 0.01%

LIBRARIES 194 0.02% 0.55 0.24 0.00%

STACK 16 0.00% 0.03 0.04 0.00%

During the benchmark’s second phase, the graph analyse phase, the TunkRank algorithm
starts to analyse the input graph. All the remaining memory samples were taken during
this phase. The memory statistics are consistent for the remaining memory samples with
the exception on the number of null pages that decrease in the case where the Twitter
graph was used.

From Table 3.11 and Table 3.12 we see several patterns that hold true for all memory
samples. The memory content is almost exclusively dynamic pages. Null pages are
almost non-existent where the exception is the first memory sample when using the
Twitter graph as input.
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Table 3.12: Graph Analytics, Google plus

Sample Page type Pages % of total
pages

Physical mem-
ory size (MB)

Swap size
(MB)

% null
pages

GA g 0 DYNAMIC 1152984 99.99% 3816.25 906.38 0.07%

LIBRARIES 54 0.00% 0.19 0.03 0.00%

STACK 4 0.00% 0.02 0.00 0.00%

GA g 100 DYNAMIC 1087365 99.98% 3639.64 814.21 0.06%

LIBRARIES 195 0.02% 0.58 0.22 0.00%

STACK 21 0.00% 0.07 0.02 0.00%

GA g 130 DYNAMIC 1157351 99.98% 3884.27 856.24 0.05%

LIBRARIES 181 0.02% 0.52 0.22 0.00%

STACK 16 0.00% 0.05 0.02 0.00%

Compression analysis

Table 3.13 and Table 3.14 summarize the VFT coverage for the Twitter and Google
Plus graphs. The coverage for all VFT sizes from 128 to 32k can be seen in Appendix
A. The first memory dump taken for both the Twitter and Google Plus graph, in the
benchmark’s graph reading phase, has much lower VFT coverage than the later sam-
ples from the benchmark’s graph analyse phase. When comparing the VFT coverage
between the Twitter graph and the Google Plus graph, one sees that the VFT coverage
is substantially higher for the Twitter graph. Appendix A also shows the 25 values with
the highest frequency in the VFTs. When examining the VFTs for the memory dumps
with very high VFT coverage, one can see that they contain a few values with very high
frequency. The memory dumps GA z0, GA z1, and GA z2 contain 45.72%, 43.61%, and
44.98% zero values, respectively.

Table 3.13: GA Twitter dataset VFT coverage (including null blocks)

Sample 128 entries 1k entries 4k entries

GA z0 31.34% 35.66% 37.87%

GA z1 70.16% 71.85% 72.60%

GA z2 67.27% 69.42% 70.56%

GA z3 65.88% 68.05% 69.19%

Table 3.15 shows the compression results for the Twitter graph. Most noticeable is the
leap in compression seen when going from the graph reading phase to the graph analysing
phase. Figure 3.7 depicts the compression results for Huffman and Figure 3.8 depicts
the compression results for Huffman+LO.

Table 3.16 shows the loss in compression for Huffman+LO with respect to Huffman.
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Table 3.14: GA Google Plus dataset VFT coverage (including null blocks).

Sample 128 entries 1k entries 4k entries

GA g 0 0.28% 1.01% 2.76%

GA g 100 10.87% 11.76% 13.64%

GA g 130 7.16% 8.05% 10.03%

Table 3.15: Compression results for GA with the Twitter dataset.

Huffman Huffman+LO

Application 128 1K 4K 128 1K 4K
B∆I FPC Null Blocks DupDict

GA z0 1.255 1.299 1.315 1.136 1.168 1.179 1.886 1.013 0.15% 1.893

GA z1 2.725 2.789 2.805 2.155 2.189 2.198 1.546 1.666 0.80% 2.012

GA z2 2.552 2.625 2.641 2.062 2.102 2.109 1.320 1.635 0.11% 1.942

GA z3 2.480 2.547 2.567 2.016 2.052 2.062 1.301 1.925 0.07% 1.925

The loss in compression for GA z1 -GA z3 range from 18.71% to 21.64% and the same
pattern applies as for DA, the loss in compression is slightly increased with a larger VFT
size.
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Figure 3.7: GA compression results
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Figure 3.8: GA compression results with LO.

Table 3.16: Loss in compression for Huffman+LO with respect to Huffman

Sample 128 entries 1k entries 4k entries

GA z0 9.48% 10.08% 10.34%

GA z1 20.92% 21.51% 21.64%

GA z2 19.20% 19.92% 20.14%

GA z3 18.71% 19.43% 19.67%

Table 3.17 shows the compression results for the Google Plus graph. The compres-
sion values are substantially lower than the compression values for the Twitter graph.
Interesting to note is the high compression value for the B∆I algorithm.

Table 3.17: Compression results for GA with the Google plus dataset

Huffman Huffman+LO

Application 128 1K 4K 128 1K 4K
B∆I FPC Null Blocks DupDict

GA g 0 1.000 1.001 1.011 1.000 1.001 1.000 5.353 1.000 0.02% 2.015

GA g 100 1.123 1.125 1.127 1.051 1.052 1.052 1.194 1.013 0.06% 1.038

GA g 130 1.095 1.095 1.098 1.045 1.045 1.045 1.244 1.012 0.11% 1.034
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3.2.3 VFT size improvement analysis

The VFT contains the most frequent values and their encoding. A larger VFT can fit
more values and will always give a better CF than a smaller VFT. However, if the CF
improvement is very small when comparing two VFT sizes one might want to use the
smaller VFT since it will be faster, consume less energy, and use less area.

Table 3.18 shows a summary of the improvement in CF for the DA and GA benchmarks
when comparing three different VFT sizes, namely 128, 1k, and 4k entries. The DA
sample in the table shows the geometric mean (GM) of the DA z0 - DA z3 samples.
The same goes for the GA and GA with GA z0 excluded.

Table 3.18: GM of improved CF with increased VFT size.

Sample
VFT SIZE 128 ->1k

CF improvement

VFT SIZE 128 ->4k

CF improvement

VFT SIZE 1k ->4k

CF improvement

DA 8.68% 11.08% 2.16%

GA 2.82% 3.62% 0.76%

GA (GA z0 excluded) 2.63% 3.30% 0.65%

3.2.4 VFT sensitivity analysis

So far we have only discussed Huffman CFs when optimal VFTs have been used. The
VFTs have been generated from the entire binary image which results in the best possible
encoding. In a hardware implementation this will not be possible, instead one has to
sample the memory traffic over some time and then generate the VFT depending on the
frequency of the values seen in the sampling window.

In our benchmark set up it is not possible to access the memory traffic and we can not
generate VFTs in the same way that they would be generated in a hardware implemen-
tation. However, if we use a small portion of the binary image to represent the sampling
window we can get an idea of how this would impact the Huffman CF. Four different
sampling lengths of consecutive values have been analysed: 100k, 1M, 10M, and 100M
values. The values have been taken with 250M values offset into the binary image. Using
values with four-byte granularity, the sampling windows correspond to 0.38 MB, 3.81
MB, 38.15 MB, and 381.47 MB of data with an offset of 1 GB.

Table 3.19 shows the CF as well as the loss in CF with respect to the Huffman CF
for the DA benchmark with the four different sampling window lengths. The VFT was
generated from the DA z0’s binary image and was used when calculating the CF for all
samples. With a 100M values sampling window the loss in CF is between 1.67% and
8.27%.
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Table 3.19: DA VFT sensitivity analysis - sampled at DA z0.

CF w. sampled VFT CF loss wrt. Huffman CF
Sample

Huffman

CF 100E3 1M 10M 100M 100k 1M 10M 100M

DA z0 2.388 1.973 2.060 2.291 2.348 17.37% 13.74% 4.04% 1.67%

DA z1 2.522 2.065 2.108 2.378 2.420 18.12% 16.41% 5.71% 4.04%

DA z2 2.500 1.907 2.001 2.236 2.293 23.72% 19.96% 10.54% 8.27%

DA z3 2.535 2.116 2.214 2.447 2.485 16.55% 12.65% 3.48% 1.96%

Table 3.20 shows the CF results for GA when GA z0 was used to create the VFT.
The low CF results for GA z0 will affect the other samples’ CF. The CF loss for the
GA z1-GA z3 ranges from 32.81% to 38.75%.

Table 3.20: GA VFT sensitivity analysis - sampled at GA z0.

CF w. sampled VFT CF loss wrt. Huffman CF
Sample

Huffman

CF 100k 1M 10M 100M 100k 1M 10M 100M

GA z0 1.255 1.212 1.223 1.210 1.227 3.39% 2.55% 3.54% 2.22%

GA z1 2.725 1.693 1.572 1.646 1.669 37.88% 42.31% 39.59% 38.75%

GA z2 2.552 1.648 1.538 1.605 1.629 35.42% 39.73% 37.11% 36.17%

GA z3 2.480 1.686 1.568 1.634 1.666 32.00% 36.77% 34.10% 32.81%

Table 3.21 shows the results when the GA z1 sample was used to generate the VFT.
The loss in CF for the GA z1-GA z3 ranges from 0.51% to 1.31% which is significantly
lower compared to when the GA z0 sample was used to generate the VFT.

Table 3.21: GA VFT sensitivity analysis - sampled at GA z1.

CF w. sampled VFT CF loss wrt. Huffman CF
Sample

Huffman

CF 100k 1M 10M 100M 100k 1M 10M 100M

GA z1 2.725 2.209 2.491 2.721 2.711 18.93% 8.60% 0.15% 0.51%

GA z2 2.552 2.100 2.336 2.545 2.536 17.71% 8.46% 0.27% 0.63%

GA z3 2.480 2.099 2.343 2.452 2.447 15.34% 5.51% 1.11% 1.31%

3.2.5 Alignment analysis

In a traditional computer system blocks and pages have fixed sizes of 64 and 4096 bytes,
respectively. In a computer system utilising compression, blocks and pages must be
allowed to vary in size. In this section we present an analysis evaluating the impact on
the Huffman CF by adding additional block and page addressing.
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Block alignment analysis

In the computer system we are evaluating, each block consists of sixteen values with
four-byte granularity and with successful compression the block size will be less than
64-byte. In order for a system to utilise the compression, the system needs to be able
to address blocks smaller than 64-byte. In this section we evaluate two different block
alignment schemes: CF alignment and size alignment.

The CF alignment scheme uses a block’s CF as alignment. Each block can have a CF
of between one and eight where an uncompressed block has a CF of one. The block
size ranges for the eight different CFs in the CF alignment can be seen in Table 3.22.
Equation 3.2-3.4 show how the maximum block size, minimum block size, the maximum
slack are calculated for a CF. The highest CF, a CF of eight, has to cover all remaining
block sizes and thus is given the minimum range of one.

Table 3.22: Block ranges and slack for CF alignment.

CF block rangeBlock

CF
Block size / CF

Max Min
Max slack

1 64 64 33 31

2 32 32 22 10

3 21.33 21 17 4

4 16 16 13 3

5 12.80 12 11 1

6 10.67 10 10 0

7 9.14 9 9 0

8 8 8 1 7

blkrange maxi =

⌊
Block size

i

⌋
(3.2)

blkrange mini =

⌈
Block size

i + 1

⌉
(3.3)

max slacki = blkrange maxi − blkrange mini (3.4)

The size alignment scheme uses the block’s size as alignment and uses sixteen evenly
spread block sizes from 4 to 64 bytes as can be seen in Table 3.23.

Table 3.24 shows the Huffman CF and the CF loss with respect to Huffman CF for
both block alignment schemes. The block size alignment scheme outperforms the CF
alignment scheme and one can also see that the loss in CF for the size alignment scheme
is quite consistent for the three different VFT sizes.
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Table 3.23: Block ranges and slack for size alignment.

CF block rangeBlock

size Max Min
Max slack

4 4 1 3

8 8 5 3

12 12 9 3

16 16 13 3

20 20 17 3

24 24 21 3

28 28 25 3

32 32 29 3

36 36 33 3

40 40 37 3

44 44 41 3

48 48 45 3

52 52 49 3

56 56 53 3

60 60 57 3

64 64 61 3

Table 3.24: GM of block alignment results

Sample
VFT

size

Huffman

CF

CF w.

CF

alignment

CF w.

Size

alignment

CF loss wrt

Huffman CF w.

CF alignment

CF loss wrt

Huffman CF w.

Size alignment

DA 128 2.486 1.995 2.372 19.66% 4.57%

GA 128 2.157 1.889 2.047 11.38% 4.32%

GA (GA z0 excluded) 128 2.584 2.333 2.421 9.69% 6.23%

DA 1k 2.705 2.199 2.565 18.72% 5.15%

GA 1k 2.218 1.941 2.101 11.93% 4.57%

GA (GA z0 excluded) 1k 2.652 2.380 2.479 10.24% 6.47%

DA 4k 2.766 2.246 2.615 18.80% 5.43%

GA 4k 2.236 1.949 2.115 12.20% 4.74%

GA (GA z0 excluded) 4k 2.669 2.392 2.494 10.39% 6.52%

Figure 3.9 and Figure 3.10 shows the block distribution for the CF and size alignment
schemes with a 128 entry VFT. The block distribution is more evenly spread for the
DA than for the GA and GA with GA z0 excluded for both the alignment schemes.
Around 85% of the blocks are covered with four of the sixteen block sizes for GA with
size alignment and GA z0 excluded. Appendix C contains additional block alignment
information.
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Figure 3.9: Distribution of blocks with a CF of 1-8 (uncompressed blocks have a CF of 1)
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Figure 3.10: Distribution of blocks with a size of 4, 8, .. , 64 byte (uncompressed blocks
have a size of 64 bytes)

Page alignment

The reason for a more detailed page alignment is required is similar to that of the block
alignment. Pages in a traditional computer system have a fixed size of 4096-bytes. In a
computer system utilising compression, compressed pages will have a size smaller than
4096-bytes.

The page alignment analysis in this section is similar to the size alignment scheme for
the block alignment. The difference being that instead of only evaluating four added
addressing bits we evaluate a range from one to six added addressing bits.

Table 3.25 shows the CF results and the loss in CF with respect to optimal Huffman
compression for one, two, four, and six added page addressing bits. With six added bits,
the loss in CF for the DA benchmark is 1.83% - 2.07% and for the GA benchmark with
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GA z0 excluded the loss is 1.4% - 1.5%.

Table 3.25: GM of page alignment results

Sample
VFT

size

Huffman

CF

CF w. added page

addressing bits

CF loss wrt Huffman CF w.

added page addressing bits

1 2 4 6 1 2 4 6

DA 128 2.486 1.648 1.862 2.313 2.440 33.64% 25.05% 6.95% 1.83%

GA 128 2.157 1.374 1.755 2.010 2.131 33.72% 15.48% 6.26% 1.11%

GA (GA z0 excluded) 128 2.584 1.515 1.995 2.376 2.547 41.31% 22.77% 8.04% 1.40%

DA 1k 2.705 1.769 1.977 2.503 2.651 34.59% 26.91% 7.47% 2.01%

GA 1k 2.218 1.389 1.787 2.062 2.190 34.85% 16.77% 6.53% 1.21%

GA (GA z0 excluded) 1k 2.652 1.526 2.031 2.431 2.613 42.43% 23.41% 8.32% 1.46%

DA 4k 2.766 1.784 1.994 2.547 2.709 35.47% 27.89% 7.88% 2.07%

GA 4k 2.236 1.387 1.795 2.074 2.207 35.76% 17.60% 6.80% 1.26%

GA (GA z0 excluded) 4k 2.696 1.527 2.044 2.444 2.629 42.76% 23.43% 8.43% 1.49%

Figure 3.11 and Figure 3.12 shows the page distribution for the DA benchmark with
four and six added page addressing bits (VFT size of 128 entries). When six added bits
are used around half of the available page sizes have less than 1% of the total number
of pages.

Page size (B)

256 512 768 1024 1280 1536 1792 2048 2304 2560 2816 3072 3328 3584 3840 4096

(%
) 

o
f 

to
ta

l 
p
a

g
e
s

0

5

10

15

20

25

30
DA VFT size: 128 - 4 extra page addressing bits

Figure 3.11: Page distribution for DA - 4 added addressing bits.

Figure 3.13 and Figure 3.14 show the page distribution for the GA benchmark with four
and six added page addressing bits (VFT size of 128 entries). The page distribution is
very different from the page distribution for the DA benchmark. There are only three
different page sizes with more than 5% of the total pages with six added addressing
bits. When removing the GA z0 sample, Figure 3.15 and Figure 3.16, the peak at
the 2944-byte page size disappears. Appendix C contains additional page alignment
information.
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Figure 3.12: Page distribution for DA - 6 added addressing bits.
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Figure 3.13: Page distribution for DA - 4 added addressing bits.
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Figure 3.14: Page distribution for GA - 6 added addressing bits.

Combined block and page alignment

In this section we evaluate the impact of combining the block alignment, the page align-
ment, and the LO. Four and six added addressing bits have been evaluated for the page
alignment scheme and the blocks are aligned with the size alignment scheme since it
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Figure 3.15: Page distribution for GA - 4 added addressing bits - DA z0 excluded.
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Figure 3.16: Page distribution for DA - 6 added addressing bits - GA z0 excluded.

produced a better result than the CF alignment scheme. Table 3.26 shows the results
when combining block alignment and page alignment. The loss in CF with respect to
optimal Huffman CF ranges from 5.87% to 7.83% for the DA and GA benchmarks.

Table 3.26: GM of CF with block and page alignment.

Sample VFT size Huffman CF

CF w. block

size alignment

& 4 added page

addressing bits

CF w. block

size alignment

& 6 added page

addressing bits

loss in CF wrt

Huffman CF

w. block size alignment

& 4 added page

addressing bits

loss in CF wrt

Huffman CF

w. block size alignment

& 6 added page

addressing bits

DA 128 2.486 2.222 2.333 10.61% 6.13%

GA 128 2.157 1.959 2.025 8.22% 5.31%

GA (GA z0 excluded) 128 2.584 2.299 2.390 11.00% 7.47%

DA 1k 2.705 2.380 2.518 11.99% 6.92%

GA 1k 2.218 2.009 2.077 8.55% 5.62%

GA (GA z0 excluded) 1k 2.652 2.354 2.446 11.23% 7.73%

DA 4k 2.766 2.431 2.567 12.11% 7.17%

GA 4k 2.236 2.021 2.090 8.86% 5.92%

GA (GA z0 excluded) 4k 2.669 2.367 2.460 11.31% 7.81%

Table 3.27 shows the result when page alignment, block alignment, and the LO are
combined.
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Table 3.27: GM of CF with LO, block and page alignment.

Sample VFT size Huffman CF
Huffman CF

w. LO

CF w. block

size alignment

& 4 added page

addressing bits

CF w. block

size alignment

& 6 added page

addressing bits

loss in CF wrt

Huffman CF

w. block size alignment

& 4 added page

addressing bits

loss in CF wrt

Huffman CF

w. block size alignment

& 6 added page

addressing bits

DA 128 2.486 1.932 1.770 1.840 28.76% 25.97%

GA 128 2.157 1.786 1.654 1.698 21.91% 19.97%

GA (GA z0 excluded) 128 2.584 2.077 1.893 1.953 26.70% 24.36%

DA 1k 2.705 2.053 1.857 1.939 31.33% 28.29%

GA 1k 2.218 1.822 1.685 1.730 22.76% 20.81%

GA (GA z0 excluded) 1k 2.652 2.114 1.924 1.984 27.42% 25.15%

DA 4k 2.766 2.080 1.886 1.967 31.78% 28.87%

GA 4k 2.236 1.832 1.691 1.737 23.21% 21.21%

GA (GA z0 excluded) 4k 2.669 2.122 1.931 1.991 27.63% 25.37%

3.2.6 Alternative LO

The LO is a fixed number of bits appended in front of every value which allows for faster,
parallel, decompression. These added bits indicate the code length of the following code
word. Up to this point we have considered a four-bit LO which allows for code lengths
ranging from one to sixteen bits.

In this section we evaluate the impact of altering the LO from four bits down to a single
bit. Reducing the LO length will impact the number of values that can be stored in the
VFT. In this analysis LO bits bits correspond to 2LO bits unique code lengths instead of
code lengths ranging from 1 to 2LO bits. This could easily be implemented using a LUT
and is due to the fact that depending on the VFT encoding some code lengths might be
omited.

The results from the LO analysis can be seen in Table 3.28. The four-bits LO column is
the same as the previously reported Huffman+LO values for a VFT size of 128. Values
in the table with green background indicate an increase in CF with respect to a four-bit
LO. A three-bit LO will yield better CF for all the samples even though the VFT may
contain as few as only fourteen values. The GA z1 - GA z3 samples’ CF for a three-bit
LO is better than for a VFT size of 4k with four-bit LO even though the number of
VFT entries is only between fourteen and eighteen for the three-bit LO and 4096 for the
four-bit LO.

Another interesting detail is that with an one-bit LO we cover two code words: the
most common value’s code word and the code word for uncompressed values. The most
common value in all of the samples is zero as can be seen in Appendix A. The CF with
a two-bit LO is still high, between 1.480 and 1.812 and shows that it is often the case
that a single value represents a very large portion of the total compression.
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Table 3.28: CF for alternative LO lengths.

CF Values in the VFT
Sample

Huffman

CF 4 bits LO 3 bits LO 2 bits LO 1 bits LO 4 bits CL 3 bits CL 2 bits CL 1 bits CL

DA z0 2.388 1.878 1.967 1.690 1.577 128 109 10 2

DA z1 2.522 1.960 2.029 1.630 1.614 128 66 5 2

DA z2 2.500 1.938 1.973 1.492 1.480 128 73 4 2

DA z3 2.535 1.952 1.985 1.643 1.648 128 53 4 2

GA z0 1.255 1.136 1.163 1.166 1.183 128 128 4 2

GA z1 2.725 2.155 2.238 2.215 1.812 128 14 7 2

GA z2 2.552 2.062 2.123 2.113 1.759 128 18 8 2

GA z3 2.480 2.016 2.083 2.007 1.807 128 18 6 2
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4

System implementation

This chapter starts with detailed descriptions on how several different compression
schemes have been implemented as well as an evaluation of these implementations. The
algorithms implemented are Huffman, B∆I and FPC. The Huffman compression algo-
rithm was used on a proof-of-concept implementation that has been implemented on a
small running system. The system has had software programmed on it that utilises the
compression hardware to test the concept of memory compression. At the end of the
chapter, an evaluation of the different hardware implementations has been made.

The evaluation was performed by firstly dividing the different schemes into their com-
pression and decompression logic. The evaluation was performed by synthesizing the
different designs onto a 28 nm library targeting a cycle time as low as possible. The
synthesized netlists were then evaluated for their different characteristics.

4.1 B∆I

Our VHDL implementation of the B∆I scheme is similar to the B∆I scheme suggested
by Pekhimenko et al. from an overall perspective, however, some minor details have
been changed and some optimizations have been made [12].

Figure 4.1 shows an overview of our modified version of the B∆I compression algorithm.
An input cache line is sent to all compression modules in parallel and the compression
modules output compressed data and a valid bit to a selector. The valid bit signals
whether the compression was successful or not. The selector chooses data from the
compression module which generated valid data with the highest compression. The
selector outputs the compressed data with a prefix indicating which module was used to
compress the data.
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Figure 4.1: Compressor of the modified B∆I compression implementation

One of the differences between our implementation of B∆I the original scheme is that
in our implementation, no module have been implemented to handle the special case
of a cache line full of zeros. The reason for this is that the zero values will already
have been compressed by other compression algorithm that will be inserted previous to
the B∆I algorithm in future prototype systems. Since we now only have eight different
encodings (one encoding for each of the seven compression modules and one encoding
for uncompressed data), we are also able to use prefixes of three bits instead of four as
used by Pekhimenko et al. [12].

Another more significant difference lies in the implementation of the compression and
decompression modules. One difference lies in how an appropriate base is chosen. Pekhi-
menko et al. does this by adopting the first word in a cache line as the base [12]. However,
in our implementation, the base is described as the first word in a cache line that cannot
be represented using a delta and zero as base. This allows for a larger set of input data
to be compressed by this algorithm. As can be seen in Figure 4.2, the respective deltas
are calculated in the same manner as in the original description. At the end, a shifter is
inserted. This shifter is not implemented in the original implementation and is used to
remove previously unused information in the compressed cache line.
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Figure 4.2: Detailed view of a B∆I single compression component
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Figure 4.3 shows an example of how data is output from a Base4-1 compression module
is organised. In this compression module, an input cache line of a size of 512 bits is
divided into 16 sections of 4 bytes. A base of 4 bytes is used with 16 deltas that are 1
byte wide to represent the original sections. In total, the output data consists of 3 bits
of encoding to indicate that base4-1 compression is used. 16 bits indicate for each of the
16 deltas whether they use zero or the second base value as base. A 4-byte second base
value then follows and lastly, 16 deltas represented with 1-byte values are included.

Figure 4.3: Output from the Base4-1 compression component

After a cache line has been compressed, the data have been compressed in one of two
patterns. In the first case, all words in the line can be represented using a delta value
from the zero base. In this case, we can shift the bits out that would be used to
represent the second base value. This makes it possible to save as much as 64 bits for
some compression modules. In the second case, the second base is chosen from one of
the words in the cache line. This means that there will always be a delta with value
zero and we also know the position of this delta as the first occurrence of a word that
cannot be described with a delta and a base of zero. Therefore, it is possible to shift
this delta out when compressing the data and later just shift in the base value at that
position when decompressing the data. The shifter will hence lead to a saving of up to
32 bits, depending on which compression module that is used, when compressing.

4.2 FPC

Our VHDL implementation of the FPC compression algorithm is very similar to the
original description made by Alameldeen and Wood. There is one difference though.
For this project, we have chosen not to store the prefixes in the tag-field of the cache
for simplicity reasons. This decision causes side effects on the compression and decom-
pression algorithms. The first side effect is that since we do not have bits dedicated to
prefixes, we can sometimes use fewer bits to describe the prefixes. This is because the
number of prefixes is not a constant value due to the zero run prefix. When fewer bits
are used to describe the prefixes, it is possible to shift the data bits towards the prefixes
and therefore in total, use fewer bits to describe the prefixes plus data than if a memory
tag solution is used for the prefixes.

A shifted data start can cause problems when decompressing a cache line. Since we no
longer know for certain where the prefixes end and where the data starts, we can no
longer decompress the data without using very complex and time consuming algorithms.
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To tackle this problem, prefixes have to be stored directly in front of the compressed
data that they point to.

A memory containing compressed data, compressed with our modified FPC algorithm,
will have the following patter:

prefix1 + data1 + prefix2 + data2 + prefix3 + data3 + ... + prefix16 + data16

4.3 Proof-of-concept

During this thesis, a first prototype of a data compressing memory system was devel-
oped as a proof-of-concept. The original idea of implementing a Huffman algorithm to
compress and decompress data between the LLC and main memory was enforced by
the compression analysis made earlier in this thesis. This is because the Huffman al-
gorithm generated the best compression numbers. The prototype was developed and
implemented on the ZedBoard where the Processing System was programmed with a
small, bare-metal software that first writes and then reads a few values to and from
the main memory. A top-down approach will be used in this section to describe the
implemented prototype.

As can be seen in the simplified block diagram of the SoC in Figure 4.4, the datapath be-
tween the LLC and the main memory needs to be altered as suggested by the EuroServer
Team at FORTH institute in Greece [40]. The standard datapath is shown using dashed,
turquoise arrows. This path goes directly to the main memory from the LLC. However,
for data to be altered by compression/decompression hardware, data needs to be guided
through the programmable logic of the SoC. For data to go through the programmable
logic, the data will have to be routed via a central interconnect and a 32-bit AXI interface
before entering the programmable logic. To send data from the programmable logic to
the processing system’s main memory, the data needs to be routed through a 32-bit AXI
interface via programmable memory interconnect logic before reaching main memory.
This whole new path from processing system to programmable logic is represented by
solid, red arrows.
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Figure 4.4: Prototype block diagram
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Figure 4.5 shows a detailed version of the custom logic. The AXI bus is divided into two
independent components, one write component and one read component. This enables
full duplex communication between the processing system and main memory, enabling
parallel reads and writes.

Figure 4.5: Independent read and write components for full duplex communication

4.3.1 Write component

The in-depth view of the write component in Figure 4.6 shows how the write signals are
divided into its three independent channels, the address channel, the data channel, and
the answer channel. The address channel and the answer channel are less complex than
the data channel.

To send data to the programmable area, the processing system must write to an address
that is not mapped onto the main memory. The address channel of the write component
has two jobs, to change the address to one that is mapped onto the main memory
and to indicate that a cache line with ten words of data is being sent instead of eight.
This is because a cache line of eight words that is sent from the processing system to
the main memory may increase in size to ten words if the compressor logic is fed with
uncompressible data.

The job of the answer channel is to signal whether a write action was performed suc-
cessfully or not. The write component will always receive write actions successfully so
it is hard-wired to always signal a successful answer to the processing system. Likewise,
on the other side of the component, the address channel is always ready to receive an
answer from the memory.

The data channel is the most advanced channel as it involves seven stages of travel for
data before compression is completed. The only component of the data channel that does
not handle the data directly is the initaliser component. This initaliser component has a
static LUT that describes a constant, pre-generated Huffman-tree structure that is read
to the compressing component immediately after a system reset. Future prototypes will
not use such an initializing component as they will not use a static table. Instead they
will write a Huffman-tree structure to the compressor that will be created in software
using sampling from the actual content in main memory.
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Data that is written through the data channel will first encounter the AXI slave logic.
This logic ensures that the write component is compatible with the AXI interface com-
munication from the processing system. The AXI slave also checks the status of the two
FIFOs in the write component and halts input data if necessary to avoid overflowing of
data.

Next, data is sent to a Speed Adapting FIFO. The job of the Speed Adapting FIFO is to
ensure that data accepted from the AXI Slave logic will be presented to the Compressor
component for at least four cycles. This is a requirement from the Compressor. Also,
it acts a buffer to the processing system so that it may write an entire line to the write
component and does not need to wait for the slower compressor during single write
requests.

The Compressor component was created by Dimitris Giannopoulos and is the compo-
nent that performs the actual compression. To perform the compression, the compressor
component has implemented a Huffman compressing algorithm. This component exe-
cutes Huffman by comparing input data with data in a LUT that was initalised by the
initaliser. If a match is found, then the compressor outputs a compressed code word
with padding of zeroes instead of the original data. If the input data is not found in
the internal LUT, then the original data is output without any modification. This com-
ponent can only accept data at an input rate of one word every fourth cycle and is the
bottleneck of writing data to main memory [31].

When compressed data have been replaced by its shorter Huffman encoding, the Prefix
Adder is the next component in line. The Prefix Adder lets encoded data pass through
without altering it. However, data that is uncompressed by the Compressor component
is given a unique prefix that will indicate to future decompressor hardware that the next
word is uncompressed data.

At this point, Huffman encoding of input data is complete. However, the Huffman coded
data may contain padding with zero-bits. The Output Shifter component is responsible
to ensure that encodings are packed together as closely as possible by removing all bits
that are used as padding. The data is now compressed and packed as closely as possible
and will be sent to a FIFO in 32-bit chunks.

The FIFO is a simple buffer placed in the end to store data until a signal is raised from
the AXI Master logic that the main memory is ready to accept new data. The AXI
Master logic not only outputs the compressed data when appropriate, but it also ensures
that the write component is compliant with the AXI communication specification used
by the processing system.

55



4.3. PROOF-OF-CONCEPT CHAPTER 4. SYSTEM IMPLEMENTATION

Figure 4.6: Block diagram of write component

4.3.2 Read component

The read component block diagram in Figure 4.7 shows how the input signals, just as for
the write component, are divided into their independent channels. The read component
uses two of these channels, an address channel and a data channel. The data channel is
the more complex of the two channels although they are both equally important.

From the processor’s point of view, read requests have to be made to addresses that are
mapped to the programmable logic rather than mapped to main memory. If this was not
done, then the processor would read from memory directly without going through the
programmable logic. The first job of the address channel in the read component is there-
fore to remap the requested address once a read request has reached the programmable
logic to a new address that is mapped onto main memory. Secondly, the address channel
must change the number of requested words that are sent from the processing system.
From the processing system’s point of view, a cache line is made up from eight words and
therefore a request of eight words is sent when the processing system wants to receive
a cache line from memory. However, when compressing data a cache line may grow to
a size of ten words, therefore the read request must be changed to ten words before the
request is sent to main memory.

The process of uncompressing data through the read components involves four stages
that the data must pass through. An initaliser component is inserted that does not
handle data directly, instead, it initialises the decompressor component with Huffman
coding information needed to decompress data. This information lies inside the initaliser
component as a constant, pre-generated LUT. This initaliser was created as a standalone
component to make it easier for future implementations to initialise the decompressor
logic using data derived from sampling main memory content.

Data read from memory will firstly pass through the AXI Master logic. This logic
is included to create an interface on the read component that is able to successfully
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communicate with main memory. Once the AXI Master has accepted a cache line of
data the AXI Master halts inputs to the read component until the decompressor signals
that it has successfully decoded a cache line and sent it to the FIFO stage.

The decompressor component is the most important of the read component’s hardware.
The decompressor used here was created by Li Kang and is described in great detail
in his thesis [41]. The decompressor is organised into three stages. The first stage is a
simple FIFO where input data is stored to avoid starvation to following decompressor
logic. The second stage is a code detection stage where the length of the next compressed
word in line is detected. The third and last stage of the decompressor is a value retriever
stage. In this stage, the next compressed word in line is used to retrieve its uncompressed
counterpart from a LUT. The decompression component is pipelined and requires a total
of five cycles to output the first uncompressed word once compressed data has been
inputted. This means that a cache line of eight words can be decompressed in as few as
twelve cycles if the decompressor does not suffer from starvation. Ten words are read
to the decompressor whether the compressed size of a cache line is smaller than that or
not. This means that once a compressed line has been decompressed, some values may
remain inside the decompressor that belong to other cache lines. Before a new cache line
can start decompression, the decompressor must flush out the unwanted data, a process
that requires two cycles.

Data that has been successfully decompressed is then sent to the FIFO component.
This component acts as a buffer and stores decompressed values until the processing
system is ready to accept data. Lastly, data is sent to the AXI Slave logic, which
communicates with the processing system. The AXI Slave interface makes sure that
the read component is compatible with the AXI communication protocol used by the
processing system.

Figure 4.7: Block diagram of the read component
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4.3.3 Software

The software consists of two programs created to be run on the proof-of-concept. These
programs were given the task to initalise the ZedBoard and to test the data compression.
The job of initializing the board was given to a first stage bootloader (FSBL) program
created using a template provided by Vivado SDK release 2014.4 [42].

The FSBL performs a wide array of operations, some of them include initializing the
system clock, flushing caches so that they are ready to be used, doing small tests of the
hardware such as reading and writing tests to the main memory, and enabling voltage
level shifters between the processing system and programmable logic so that the pro-
grammable logic may be used. The FSBL is also responsible for loading any OS that is
to be run on the processing system. This early prototype used no OS, although future
prototypes will.

The second program that is run once the FSBL is completed is a test program that tests
the writing and reading of cache lines through compression logic. This program includes
the following steps for completion:

1. Tell the processing system that address ranges covering AXI communication to the
programmable logic should be cached. This step is necessary so that entire cache
lines are sent between the LLC and main memory in a single AXI transfer. If the
cache is not set up, then an AXI transfer will be set up for the transfer of every
individual word, a process that would generate unnecessary overhead.

2. Enter an empty for-loop and stay there until compression initalisers are finished.
Since the LUT of the compression and decompression components are initalised
from the initaliser components, we have to halt execution until those initalisers are
finished.

3. Write zeroes to the memory addresses that will be used in the test program. This
step is made so that when examining memory content, it will be easier to dis-
tinguish saved, valid, compressed data from the original random data that fill a
memory on startup.

4. Perform eight stores of values that are compressible to a cache line whose address
makes sure that the line is sent to programmable logic once the line is evicted from
the cache.

5. Tell the system to flush the cache line with newly stored values. This will send
the compressible data to memory via compression logic in the programmable logic
area.

6. Read the flushed addresses and compare if the read values are equal to the values
that were stored in step 4. This read request reads data from memory via the
decompression logic implemented on the FPGA.

7. Perform steps 4-6 once again using eight other values to compress.
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8. Print the number of errors detected to the terminal, then exit the program.

Once both programs are completed, the memory content is examined manually to see if
data stored in main memory actually is stored in its compressed form.

4.4 Evaluation

One of the goals of the implementational part is to create a fully working proof-of-concept
using data compression between the LLC and main memory. To test if this has been
reached successfully, the ZedBoard was implemented with the custom logic developed for
this thesis and the testing C-programs were programmed to an ARM CPU as described
in chapters above. The test program was ran on the ZedBoard several times testing
different combinations of compressible and uncompressible numbers sending a variable
amount of cache lines to the memory for different runs.

Figure 4.8 shows one example where two cache lines where sent to memory and com-
pressed from 32 bytes each to 6 bytes and 12 bytes. The Xs in the figure represents saved
memory space. Once the program was completed, the memory was manually inspected
to validate that compressed data was stored in memory. To further validate that the
CPUs fetched data from memory and not from the cache which could give unnoticeable
errors and to manually validate a correct compression and decompression, logic analyzers
was inserted before and after the compression logic. From the inspections noted above
and from the correct executions of the test runs, it was agreed that the proof-of-concept
implementation was fully working.
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Figure 4.8: Test run of compressible vectors

Once the proof-of-concept had been completed and verified, the focus shifted to evaluate
the design and compare it to the B∆I and FPC compression schemes in terms of timing,
area, and power consumption. For the evaluational part, the compression logic and the
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decompression logic were evaluated individually for each scheme.

To enable fair comparisons between the fully implemented Huffman compression that
has surrounding logic to be able to run on the ZedBoard (such as AXI connections) with
the B∆I and FPC compression schemes, two versions of the Huffman compression were
evaluated. The smaller version was tested using only the compression and decompression
logic, these are the numbers that should be used to compare with B∆I and FPC. The
larger version is including all surrounding logic such as AXI Master/Slave logic and
FIFOs. The bigger components are labelled write component and read component.

The Synopsys Design Compiler version 2011.09-SP3 was used when synthesizing the
components. They were synthesized and evaluated targeting a 28 nm library that emu-
lates a circuit run with 1.1 V at -40◦C. This case of high voltage and low temperature
is unrealistic and gives us very good timing properties. The nominal case with 1.0 V
at 25◦C or the worst case with 0.9 V at 125◦C would have given a more realistic eval-
uation of timing properties. The performance-optimistic case of high voltage and low
temperature was used because it was the library in the predecessor project [41].

The components included in a Huffman based compression or decompression were eval-
uated using a VFT table with 1024 entries (creating equally sized LUTs in the compo-
nents) and the other components were set to be evaluated when using a 16-word cache
line size. The VFT and encoding tables used in the Huffman schemes was synthesized
using logic cells. In future prototypes, these tables will be implemented using SRAM
which will lead to lower area demands and lower power usage. Therefore, area and
power usage by the VFT tables will be presented independently as well. All components
were evaluated using as strict timing requirements as possible. The produced netlist was
evaluated for timing and area and the results can be seen in Table 4.1.

In the columns ”Cycles required to handle a cache line” as well as ”Total time required”,
there is a parenthesised, variable number for some components. This is because the
number of needed cycles varies with the input data. For instance, the write component
may vary significantly between different input sets. This is due to the fact that output
data is output only when compressed data of at least 32 bits have been derived. If several
highly compressible words are input to the write channel component, then it will take
many cycles before 32 bits of compressed data is filled up.

The area and power demands of the read channel as well as the write channel include
the area and power needed to use the initaliser components. The initaliser components
contain large tables of constants that will not be included in future systems and should be
ignored. Therefore, their numbers have been presented individually as well in Table 4.1
and Table 4.2.

Several points are worth mentioning in Table 4.1. The B∆I and FPC components are
all asynchronously implemented, thereby the value of zero for number of required cy-
cles. This must be considered when comparing minimum cycle time between different
components. For instance, the B∆I compressor uses a cycle time that is more than 200
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Table 4.1: Timing and area comparison between different compression schemes

Component Cycles required to
handle a cache line

Cycle
time (ns)

Total time required
(ns)

Area (micrometer2)

FPC compressor 0 55.000 55.000 45036.5082

FPC decompressor 0 1.510 1.510 22029.8784

B∆I compressor 0 0.583 0.583 47821.1907

B∆I decompressor 0 0.355 0.355 38869.9971

Huffman compressor -1 + 4 per word in a
line

0.155
(-0.155 to 0.930) + 0.620

per word in a line
138863.6166

Compressor table 138177.8502

Huffman decompressor (4 to 6) + 1 per word
in a line

0.370
(1.480 to 2.220) + 0.370

per word in a line
135537.7649

Decompressor table 130416.8754

Write component (5 to 12) + 4 per word
in a line

0.360
(1.800 to 4.320) + 1.440

per word in a line
143031.9089

Write initaliser 426.7680

Read component (8 to 10) + 1 per word
in a line

0.375
(3.000 to 3.750) + 0.375

per word in a line
148238.4773

Read initaliser 2413.4016

ps longer than the Huffman decompressor but executes overall faster since it uses fewer
clock cycles. Also worth noticing is the long cycle time of the FPC compressor. When
examining the worst path, it is concluded that this long delay is an effect of the sequen-
tial nature of the FPC scheme and the fact that every stage must be able to perform
several shifts of uncertain size. It should also be noted how there is an increase in size
when moving into Huffman-based logic, this is almost in its entirety due to the LUTs
used by those components and is expected to decrease with a SRAM implementation
of the LUTs in future prototypes. It should be pointed out again that the timing re-
sults are from a library synthesized in the ideal case of 1.1 V and -40◦C which gives
underestimated delays compared to a nominal or worst case scenario.

The cycle times for the write component and the read component are only the required
time to transfer information on their data channels, meaning that time needed to transfer
address and control data as well as information on the answer channel is not included.
This is because it would mean that setup time for memory on reads and similar overheads
that are impossible for the compression/decompression logic to affect would be included.
This overhead is also highly variable since components in AXI protocol communications
may pause communication for as long as they wish. For the write component, these
overheads were usually kept small at around 2-3 cycles in total. For read action however,
an average of 10-15 extra cycles were inserted due to overheads such as memory set up
time.

Components in Table 4.1 are affected differently by different kinds of scaling. When
increasing cache line size, the FPC component will suffer from longer cycle time due to
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its sequential nature. The B∆I will not suffer much from longer execution time due to its
parallel nature, but will use a larger area and consume more power. The Huffman based
components will not increase in area or power consumption, but will use up more cycles
to process an entire cache line. Lastly, the Huffman based components’ area demands
depends to a very large extent on their LUTs, this area demand will naturally vary with
the number of entries in their LUTs, meaning that large VFT tables require a relatively
high amount of area.

Once the different components had been evaluated for timing and area, the designs were
synthesized with the Cadence Encounter RTL compiler for power evaluations. The de-
signs were synthesized using a 65nm low-power library. The produced netlists were then
evaluated for average switching behaviour by stimulating it with over 1000 test vectors
using the simulation engine NC Sim. The test vectors used to stimulate the components
where taken as a sample from test vectors used by Li Kang who had extracted those vec-
tors from a test bench simulation [41]. From this stimulus, the Encounter RTL Compiler
is able to create a SAIF-file with information regarding average gate switching activity.
The produced SAIF-file in combination with the netlist is finally used to perform accu-
rate power estimations of the circuit. The information from the power evaluations can
be found in Table 4.2.

The Huffman-based components differ from the B∆I and FPC components in that be-
fore compression or decompression is performed, the internal LUTs must be initalised.
The numbers presented in Table 4.2 do not include power evaluations for the initializa-
tional phase. This is because initializations will be active for a much smaller time than
operation in compression/decompression mode.

To enable a fair power comparison between the different components, all components
were synthesized with a timing requirement of 250 MHz. The exception is the FPC
compressor, which requires a much slower speed than the other components, leading to
a timing requirement of 10 MHz.

In Table 4.2, it can clearly be seen that Huffman compression consumes more energy
than the other compression schemes. This is almost in its entirety due to the tables
used by Huffman and this number is expected to drop in future prototypes when these
tables will be implemented in SRAM rather than logic cells. When scaling, the different
components scale differently with cache line length. The Huffman based components are
sequential and will as such not demand a higher power to compress/decompress data
as only more time is required to perform this action on a longer cache line. Parallel
components such as the B∆I will experience a higher power demand though since their
compression and decompression will require more circuits configured in parallel.
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Table 4.2: Power comparison between different compression schemes

Component Static Power (nW) Dynamic Power (nW) Total Power (nW)

FPC compressor 31386.614 3855152.884 3886539.498

FPC decompressor 5470.725 32532724.906 32538195.630

B∆I compressor 10174.935 48027626.610 48037801.545

B∆I decompressor 5868.509 29455867.910 29461736.419

Huffman compressor 27689.830 104756000.543 104783690.373

Compressor table 27490.893 93039478.883 93066969.778

Huffman decompressor 28392.924 118673244.507 118701637.431

Decompressor table 27611.963 103763655.199 103791267.162

Write component 28838.013 106389380.602 106418218.615

Write initaliser 90.108 272869.421 272959.529

Read component 30611.493 145903854.787 145934466.280

Read initaliser 634.259 516567.854 517202.112
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Discussion

Table 3.1 shows that the CF for the text-based datasets is quite low. Text-based, UTF-8
encoded datasets have common letters encoded with one byte and uncommon letters
encoded with a string of bytes. Most symbols in English text are likely to be in the
English alphabet (we simplify and do not consider symbols such as escape characters,
punctuation etc.). When we are generating the VFT we consider 32-bit values which
correspond to four characters from the English alphabet. This gives us a total of 264 =
456976 different combinations of four letters (again we simplify and do not consider
that some letters have higher expected frequency). A VFT of size 128 or 1024 can only
capture a small fraction of these combinations and the low VFT coverage is likely to
result in a low CF.

The four memory samples taken from the DA benchmark have a large amount of null
pages, between 21.53% and 56.41% as can be seen in Table 3.5. The evaluated compres-
sion algorithms are likely to give a very high CF for these pages which would skew the
total CF for the memory sample. In this thesis we have reported the CF for the non-null
pages since null-pages are often referred to as unused memory.

The GA benchmark ran with two different datasets: a Twitter dataset and a Google Plus
dataset. The Google Plus dataset had to be transformed into a format accepted by the
GA benchmark. This transformation affected the dataset which lost several attributes
that characterise big graphs. Therefore, no conclusions were drawn from the analysis of
the Google Plus graph as we deemed its results very unreliable. However, we chose to
present our results so that interested readers can draw their own conclusions.

In the block alignment analysis we saw that the size alignment scheme gave a lower loss
in CF than the CF alignment scheme. The CF alignment scheme has eight sub-blocks
whereas the size alignment scheme has sixteen. Since the size alignment has twice as
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many sub-blocks it is hard to evaluate which is the best alignment scheme. The loss
in CF for the CF alignment scheme would be reduced with more sub-blocks added for
compression factors between one and two. Table 3.22 shows the block ranges and the
slack for the CF alignment scheme. The slack for a CF of one is 31 bytes. This means
that a block compressed to a size of 33 bytes will have the same size in the memory as
uncompressed blocks.

In the block and page alignment analysis we saw that the distribution of pages and
blocks was rather uneven between the different sub-block and sub-page sizes. It might
be possible to select some of these sub-blocks and sub-page sizes and without losing
too much of the CF. However, one would have to reduce the number of sub-blocks or
sub-pages to half in order to remove one of the added addressing bits.

Even though an extensive compression analysis has been performed, and a proof-of-
concept has been developed, it is still hard to accurately predict the gains from perform-
ing memory compression. The architecture of computing systems has developed over
the years, making modern day systems highly complex machines. This means that to
achieve accurate readings on the CF of a system implementing memory compression,
one might have to fully implement such a system.
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Conclusion

The analysis made in this thesis confirms that memory compression is an interesting
technique for systems benefiting from larger memories or from reduced power consump-
tion. In this thesis we have evaluated large-scale out systems that are running memory
intensive applications requiring large memories. Battery-powered devices would also
benefit from the possibility of using smaller memories with comparable performance as
this will reduce the power consumption.

CloudSuite’s Data Analytics and Graph Analytics scale-out benchmarks have been eval-
uated and we have shown that the memory used by these benchmarks can be compressed
by a factor of about 2.7 using Huffman compression. The Huffman compression factor
was calculated for non-null blocks and we have also shown that the Huffman algorithm
yields better result than other compression algorithms including B∆I and FPC.

Huffman compression makes use of a value frequency table (VFT) which consists of
values and their expected frequency. A larger VFT will increase compression but will
have implication on hardware in terms of speed, energy consumption, and area. We
have seen that VFT sizes over 1024 entries give very small improvements in compression.
The Data Analytics and Graph Analytics benchmarks’ Huffman compression factors are
increased by on average 2.23% and 0.8%, respectively, when increasing the VFT size
from 1024 to 4096 entries.

We have also shown that it is possible to maintain good Huffman compressibility even
though the Huffman VFT has been generated from a small portion of data. The com-
pressibility for the Graph Analytics and Data Analytics benchmarks does not seem to
deteriorate over time, although, it is very important when the VFT is generated and
changes in memory-intensive applications may affect the Huffman compressibility since
the content in the VFT may no longer be relevant.
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Traditional computer systems have memory blocks and pages that are fixed in size. In
a computer system employing compression, blocks and pages must be allowed to have
varying sizes. We have shown two different block alignment schemes and seen that the
loss in compression when adding four additional block addressing bits is between 4% and
7%. We have also shown in a similar page alignment analysis that the loss in compression
due to additional page alignment is roughly 6%-9% and 1%-2%, respectively, for four
and six added page addressing bits.

The successful creation of a proof-of-concept hardware makes us conclude that it is
feasible to create a system that implements memory compression. However, there are
still problems that need to be solved before a fully implemented memory compression
scheme can be used. To solve these questions and to improve upon existing solutions,
more research in the area is required. A research that we feel is validated with the
compression results presented in this project and with the successful creation of a proof-
of-concept.

6.1 Future work

The hardware created in this project can be used as a base for future prototypes of
memory compressing systems. Although it works as a basic proof-of-concept for mem-
ory compression, there are still many questions that need to be answered and problems
to be solved. Problems that need to be solved for a fully working prototype include both
hardware and software development. Static tables are used to initialize the compression
and decompression units. To optimize compressibility, a VFT should be created dynam-
ically from sampling the memory traffic. The VFT should then be used to create the
Huffman tree which can be used by the compressor and decompressor.

At the moment, a compressed line is saved at the same starting point in memory as an
uncompressed line would be. If a 32-byte cache line that normally is stored in byte ad-
dresses 0-31 has a compressed size of 8 bytes, stored in addresses 0-7, then the next cache
line should start at address 8. However, in the developed hardware, the second cache line
is still stored at starting address 32. An address translation needs to be created in the
future to pack compressed lines closely together in memory. The hardware implemented
in the proof-of-concept assumes that all values sent from a cache line are valid. Future
prototypes should set invalid values to zero as this maximizes compressibility. Also, by
adding the additional LO bits in the compression stage it is possible to perform faster
decompression. This is not used by the proof-of-concept and should be implemented in
the future.
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6.1.1 Compressor improvements

There are currently two known opportunities for improvement on the Huffman compres-
sion hardware. The first improvement targets the bottleneck of the entire compression
logic, the fact that the compression logic requires a steady input for four cycles limits
compression speed. The Huffman compression stage of the compression hardware should
be made pipelined to enable compression of one word per cycle. The second improve-
ment is to include the AXI interface logic into the FIFOs located at input and output
of the compression component.

6.1.2 Decompressor improvements

The decompressor logic for the hardware implemented Huffman algorithm has two known
possibilities to improvement. Firstly, the requirement to flush the decompressor after
a read cache line severely affects performance when reading several consecutive lines of
data. An easy solution to this problem would be to implement two decompressor units
and issue every other read to the units. The output could also be alternated between
the two decompressor units, making the two units transparent to surrounding logic. The
second improvement is to include the AXI interface logic into the FIFOs located at input
and output of the compression component.
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[5] M. Kjelsù, M. Gooch, and S. Jones, “Performance evaluation of computer archi-
tectures with main memory data compression,” in Journal of Systems Architecture,
vol. 45, pp. 571–590, Elsevier Science B.V., Feb 1999.

[6] M. Seok, S. Hanson, Y.-S. Lin, Z. Foo, D. Kim, Y. Lee, N. Liu, D. Sylvester, and
D. Blaauw, “The Phoenix Processor: A 30pW Platform for Sensor Applications,”
in Symposium on VLSI Circuits Digest of Technical Papers, (Honolulu, HI, USA),
pp. 188 – 189, IEEE, Jun 2008.

[7] M. Ekman and P. Stenström, “A robust main-memory compression scheme,” in
ISCA ’05: Proceedings of the 32nd annual international symposium on Computer
Architecture, p. 74–85, IEEE Computer Society, Jun 2005.

70

http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf


BIBLIOGRAPHY BIBLIOGRAPHY

[8] G. Pekhimenko, V. Seshadri, Y. Kim, H. Xin, O. Mutlu, P. B. Gibbons, M. A.
Kozuch, and T. C. Mowry, “Linearly Compressed Pages: A Low-Complexity, Low-
Latency Main Memory Compression Framework,” in Proceedings of the 46th Annual
IEEE/ACM International Symposium on Microarchitecture, (New York, NY, USA),
pp. 172–184, ACM, Dec 2013.

[9] L. Yang, H. Lekatsas, and R. P. Dick, “High-Performance Operating System Con-
trolled Memory Compression,” in Design Automation Conference, vol. 43, (San
Francisco, CA, USA), pp. 701–704, Jul 2006.

[10] I. C. Tuduce and T. Gross, “Adaptive Main Memory Compression,” in USENIX
Annual Technical Conference, pp. 237–250, 2005.

[11] H. Franke, B. Abali, L. M. Herger, D. E. Poff, R. A. S. Jr., and T. B. Smith,
“METHOD FOR OPERATING SYSTEM SUPPORT FOR MEMORY COMPRES-
SION,” in United States Patent no. 6,681,305 (IBM, ed.), Jan 2004.

[12] G. Pekhimenko, V. Seshadri, O. Mutlu, P. B. Gibbons, M. A. Kozuch, and T. C.
Mowry, “Base-Delta-Immediate Compression: A Practical Data Compression Mech-
anism for On-Chip Caches,” in Proceedings of the 21st international conference on
Parallel architectures and compilation techniques, pp. 377–388, ACM, Sep 2012.

[13] A. R. Alameldeen and D. A. Wood, “Frequent Pattern Compression: A Significance-
Based Compression Scheme for L2 Caches,” tech. rep., Computer Sciences Depart-
ment, University of Wisconsin-Madison, Apr 2004.

[14] J. Dusser, T. Piquet, and A. Seznec, “Zero-Content Augmented Caches,” in ICS
’09 Proceedings of the 23rd international conference on Supercomputing, pp. 46–55,
ACM, Jun 2009.

[15] R. B. Tremaine, P. A. Franaszek, J. T. Robinson, C. O. Schulz, T. B. Smith, M. E.
Wazlowski, and P. M. Bland, “IBM Memory Expansion Technology (MXT),” in
IBM Journal of Research and Development (IBM, ed.), vol. 45, (Riverton, NJ,
USA), pp. 271–285, Mar 2001.

[16] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevdjic, C. Kay-
nak, A. D. Popescu, A. Ailamaki, and B. Falsafi, “Clearing the Clouds - A Study of
Emerging Scale-out Workloads on Modern Hardware,” in ASPLOS XVII Proceed-
ings of the seventeenth international conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pp. 37–48, ACM, ACM New York,
NY, USA, Mar 2012.

[17] V. Karakostas, O. S. Unsal, M. Nemirovsky, A. Cristal, and M. Swift, “Perfor-
mance Analysis Of The Memory Management Unit Under Scale-Out Workloads,”
in International Symposium on Workload Characterization, IEEE, Oct 2014.

71



BIBLIOGRAPHY BIBLIOGRAPHY

[18] P. Lotfi-Kamran, B. Grot, M. Ferdman, S. Volos, O. Kocberber, J. Picorel,
A. Adileh, D. Jevdjic, S. Idgunji, E. Ozer, and B. Falsafi, “Scale-Out Processors,” in
Proceedings of the 39th Annual International Symposium on Computer Architecture,
pp. 500–511, ISCA, IEEE Computer Society Washington, DC, USA, Jun 2012.

[19] L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, W. Gao, Z. Jia, Y. Shi,
S. Zhang, C. Zheng, G. Lu, K. Zhan, X. Li, and B. Qiu, “BigDataBench: a Big
Data Benchmark Suite from Internet Services,” in High Performance Computer
Architecture, IEEE 20th International Symposium on, pp. 488–499, HPCA, IEEE
Orlando, FL, USA, Feb 2014.

[20] EPFL PARSA, “CloudSuite.” http://parsa.epfl.ch/cloudsuite/cloudsuite.

html, November 2014.

[21] T. Jiang, Q. Zhang, R. Hou, L. Chai, S. A. McKee, Z. Jia, and N. Sun, “Understand-
ing the Behavior of In-Memory Computing Workloads,” in International Symposium
on Workload Characterization (IISWC), IEEE, 2014.

[22] O. Kocberber, “Rigorous and Practical Server Design Evaluation.” http:

//parsa.epfl.ch/cloudsuite/docs/CloudSuite2.0-on-Flexus-ispass14.pdf,
March 2014.

[23] EPFL PARSA, “CloudSuite Overview.” http://parsa.epfl.ch/cloudsuite/

overview.html, November 2014.

[24] D. Tunkelang,“A Twitter Analogue to PageRank.”http://thenoisychannel.com/
2009/01/13/a-twitter-analog-to-pagerank.html, January 2015.

[25] G. J. Popek and R. P. Goldberg, “Formal requirements for virtualizable third gen-
eration architectures,”Communications of the ACM, vol. 17, pp. 412–421, Jul 1974.

[26] R. Uhlig, G. Neiger, D. Rodgers, A. L. Santoni, F. C. Martins, A. V. Anderson, S. M.
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A.1. DATA ANALYTICS, DA Z0 APPENDIX A. APPENDIX A

A.1 Data analytics, DA z0

Table A.1: Data analytics, DA z0, summary

Application Details VFT Size Table Sample Values

Application Data analytics ( 1min) VFT Size % of Total Values in VFT Num Pages 924785

Data Set Wikipedia 128 83.39% Null Pages 420126 45.43%

Size (GB) 3.79 256 84.70% Non-Null Pages 504659 54.57%

512 85.81% Null Blocks 28029567

1K 86.65% Page Size (Byte) 4096

2K 87.35% VFT Entry Size 4

4K 87.99%

8K 88.62%

16K 89.16%

32K 89.62%

Table A.2: Data analytics - DA z0, VFT content

VFT Content Table

Rank Value
Frequency

Endian
Frequency

Frequency % of
total Values

Frequency of % Total Values
Without Null PagesBig Little

1 0 0 641848832 67.78% 22.35%

2 1 16777216 28496104 3.01% 5.51%

3 3879999628 2350400743 6335488 0.67% 1.23%

4 3879993535 3204465895 6324879 0.67% 1.22%

5 5 83886080 6274432 0.66% 1.21%

6 2 33554432 6003253 0.63% 1.16%

7 7 117440512 5961139 0.63% 1.15%

8 9 150994944 3913307 0.41% 0.76%

9 3 50331648 3776611 0.40% 0.73%

10 11 184549376 3092392 0.33% 0.60%

11 121 2030043136 2567001 0.27% 0.50%

12 256 65536 2504535 0.26% 0.48%

13 4 67108864 2456227 0.26% 0.48%

14 6 100663296 2322151 0.25% 0.45%

15 4294967295 4294967295 2309078 0.24% 0.45%

16 16777216 1 2089089 0.22% 0.40%

17 16843009 16843009 2073376 0.22% 0.40%

18 65536 256 1936888 0.21% 0.37%

19 8 134217728 1890893 0.20% 0.37%

20 15 251658240 1582912 0.17% 0.31%

21 16 268435456 1512435 0.16% 0.29%

22 257 16842752 1505488 0.16% 0.29%

23 16777472 65537 1494217 0.16% 0.29%

24 3879993890 570574055 1482830 0.16% 0.29%

25 16777217 16777217 1473329 0.16% 0.29%
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A.2 Data analytics, DA z1

Table A.3: Data analytics, DA z1, summary

Application Details VFT Size Table Sample Values

Application Data analytics ( 1h) VFT Size % of Total Values in VFT Num Pages 874715

Data Set Wikipedia 128 88.33% Null Pages 493464 56.41%

Size (GB) 3.58 256 89.01% Non-Null Pages 381251 43.59%

512 89.62% Null Blocks 33645497

1K 90.06% Page Size (Byte) 4096

2K 90.40% VFT Entry Size 4

4K 90.71%

8K 91.04%

16K 91.38%

32K 91.73%

Table A.4: Data analytics DA z1, VFT content

VFT Content Table

Rank Value
Frequency

Endian
Frequency

Frequency % of
total Values

Frequency of % Total Values
Without Null PagesBig Little

1 0 0 683719485 76.33% 19.92%

2 1 16777216 19319314 2.16% 4.95%

3 9 150994944 5281244 0.59% 1.35%

4 5 83886080 4711529 0.53% 1.21%

5 2 33554432 3929824 0.44% 1.01%

6 3 50331648 3589940 0.40% 0.92%

7 7 117440512 3323895 0.37% 0.85%

8 11 184549376 3300766 0.37% 0.85%

9 17 285212672 2642362 0.30% 0.68%

10 3879993535 3204465895 2539253 0.28% 0.65%

11 3879999628 2350400743 2493344 0.28% 0.64%

12 4294967295 4294967295 2345796 0.26% 0.60%

13 16843009 16843009 1994145 0.22% 0.51%

14 3879993890 570574055 1937288 0.22% 0.50%

15 3879993748 2483111143 1929114 0.22% 0.49%

16 3879993677 1291928807 1823722 0.20% 0.47%

17 256 65536 1789507 0.20% 0.46%

18 15 251658240 1735932 0.19% 0.44%

19 4 67108864 1677082 0.19% 0.43%

20 13 218103808 1398552 0.16% 0.36%

21 16777216 1 1286374 0.14% 0.33%

22 31 520093696 1228435 0.14% 0.31%

23 6 100663296 1220589 0.14% 0.31%

24 8 134217728 1142513 0.13% 0.29%

25 65536 256 1112936 0.12% 0.29%
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A.3 Data analytics, DA z2

Table A.5: Data analytics, DA z2, summary

Application Details VFT Size Table Sample Values

Application Data analytics ( 6h) VFT Size % of Total Values in VFT Num Pages 833936

Data Set Wikipedia 128 88.25% Null Pages 470928 56.47%

Size (GB) 3.42 256 89.40% Non-Null Pages 363008 43.53%

512 90.26% Null Blocks 30970691

1K 90.91% Page Size (Byte) 4096

2K 91.33% VFT Entry Size 4

4K 91.67%

8K 92.00%

16K 92.31%

32K 92.62%

Table A.6: Data analytics, DA z2, VFT content

VFT Content Table

Rank Value
Frequency

Endian
Frequency

Frequency % of
total Values

Frequency of % Total Values
Without Null PagesBig Little

1 0 0 625799897 73.28% 16.81%

2 1 16777216 15641070 1.83% 4.21%

3 5 83886080 8372327 0.98% 2.25%

4 3879993535 3204465895 5289407 0.62% 1.42%

5 9 150994944 5181475 0.61% 1.39%

6 4 67108864 5012378 0.59% 1.35%

7 3 50331648 4112225 0.48% 1.11%

8 3879999628 2350400743 3867541 0.45% 1.04%

9 7 117440512 3535982 0.41% 0.95%

10 6 100663296 3455874 0.41% 0.93%

11 4294967295 4294967295 3363252 0.39% 0.90%

12 8 134217728 3080539 0.36% 0.83%

13 11 184549376 3026768 0.35% 0.81%

14 2 33554432 2845848 0.33% 0.77%

15 256 65536 2479646 0.29% 0.67%

16 3879993748 2483111143 2404020 0.28% 0.65%

17 16843009 16843009 1677476 0.20% 0.45%

18 121 2030043136 1525146 0.18% 0.41%

19 3879993890 570574055 1521214 0.18% 0.41%

20 15 251658240 1481391 0.17% 0.40%

21 3879993677 1291928807 1457928 0.17% 0.39%

22 17 285212672 1442109 0.17% 0.39%

23 1071644672 57407 1344753 0.16% 0.36%

24 1070176665 2576992575 1344727 0.16% 0.36%

25 2576980378 2593757593 1344510 0.16% 0.36%
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A.4 Data analytics, DA z3

Table A.7: Data analytics, DA z3, summary

Application Details VFT Size Table Sample Values

Application Data analytics ( 24h) VFT Size % of Total Values in VFT Num Pages 682955

Data Set Wikipedia 128 77.65% Null Pages 147043 21.53%

Size (GB) 2.80 256 79.60% Non-Null Pages 535912 78.47%

512 81.32% Null Blocks 10031581

1K 82.37% Page Size (Byte) 4096

2K 83.03% VFT Entry Size 4

4K 83.69%

8K 84.38%

16K 85.00%

32K 85.52%

Table A.8: Data analytics, DA z3, VFT content

VFT Content Table

Rank Value
Frequency

Endian
Frequency

Frequency % of
total Values

Frequency of % Total Values
Without Null PagesBig Little

1 0 0 379855750 54.32% 32.79%

2 1 16777216 36514330 5.22% 6.65%

3 5 83886080 9061993 1.30% 1.65%

4 2 33554432 7255949 1.04% 1.32%

5 3879993535 3204465895 7087794 1.01% 1.29%

6 3879999628 2350400743 7058551 1.01% 1.29%

7 7 117440512 5696732 0.82% 1.04%

8 9 150994944 5113240 0.73% 0.93%

9 3 50331648 4315928 0.62% 0.79%

10 4 67108864 3023922 0.43% 0.55%

11 256 65536 2727923 0.39% 0.50%

12 16777216 1 2462390 0.35% 0.45%

13 11 184549376 2444911 0.35% 0.45%

14 4294967295 4294967295 2413348 0.35% 0.44%

15 65536 256 2335588 0.33% 0.43%

16 6 100663296 2326264 0.33% 0.42%

17 16843009 16843009 2178648 0.31% 0.40%

18 16 268435456 2152227 0.31% 0.39%

19 8 134217728 1963128 0.28% 0.36%

20 3880474706 1381518311 1864058 0.27% 0.34%

21 17 285212672 1794985 0.26% 0.33%

22 257 16842752 1737745 0.25% 0.32%

23 16777472 65537 1702123 0.24% 0.31%

24 16777217 16777217 1700302 0.24% 0.31%

25 65537 16777472 1635051 0.23% 0.30%
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A.5 Graph analytics, GA z0

Table A.9: Graph analytics, GA z0, summary

Application Details VFT Size Table Sample Values

Application Graph analytics ( 1min) VFT Size % of Total Values in VFT Num Pages 948827

Data Set Twitter 128 31.34% Null Pages 90776 9.57%

Size (GB) 3.89 256 32.99% Non-Null Pages 858051 90.43%

512 34.65% Null Blocks 5891343

1K 35.66% Page Size (Byte) 4096

2K 36.66% VFT Entry Size 4

4K 37.87%

8K 39.37%

16K 41.18%

32K 43.42%

Table A.10: Graph analytics, GA z0, VFT content

VFT Content Table

Rank Value
Frequency

Endian
Frequency

Frequency % of
total Values

Frequency of % Total Values
Without Null PagesBig Little

1 8835584 13796864 171263067 17.63% 19.49%

2 0 0 103274819 10.63% 8.06%

3 4294967295 4294967295 3616724 0.37% 0.41%

4 2470119 3887080704 499602 0.05% 0.06%

5 19058681 4191101441 497550 0.05% 0.06%

6 522239 4294379264 344851 0.04% 0.04%

7 428333 763954688 340985 0.04% 0.04%

8 677075 3545500160 340389 0.04% 0.04%

9 19397785 2583439105 332493 0.03% 0.04%

10 18617047 3608288257 332490 0.03% 0.04%

11 334246 2786657536 326627 0.03% 0.04%

12 16190898 2987259648 314318 0.03% 0.04%

13 1591947 2336888832 313295 0.03% 0.04%

14 2256645 91169280 307424 0.03% 0.03%

15 831319 1471089664 307329 0.03% 0.03%

16 1302597 1172312832 304938 0.03% 0.03%

17 13284411 1001703936 298472 0.03% 0.03%

18 16409683 1399126528 285178 0.03% 0.03%

19 13339129 4186557184 281998 0.03% 0.03%

20 18220175 2399409665 276207 0.03% 0.03%

21 9976334 238721024 275213 0.03% 0.03%

22 19554706 2455841281 271768 0.03% 0.03%

23 17461978 3664906753 270464 0.03% 0.03%

24 15846407 130871552 266272 0.03% 0.03%

25 8626708 346194688 254907 0.03% 0.03%
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A.6 Graph analytics, GA z1

Table A.11: Graph analytics, GA z1, summary

Application Details VFT Size Table Sample Values

Application Graph analytics ( 1h) VFT Size % of Total Values in VFT Num Pages 878096

Data Set Twitter 128 70.16% Null Pages 616 0.07%

Size (GB) 3.60 256 70.95% Non-Null Pages 877480 99.93%

512 71.49% Null Blocks 490321

1K 71.85% Page Size (Byte) 4096

2K 72.28% VFT Entry Size 4

4K 72.60%

8K 72.93%

16K 73.29%

32K 73.71%

Table A.12: Graph analytics, GA z1, VFT content

VFT Content Table

Rank Value
Frequency

Endian
Frequency

Frequency % of
total Values

Frequency of % Total Values
Without Null PagesBig Little

1 0 0 411065192 45.72% 45.65%

2 6305648 1882677248 51214082 5.70% 5.70%

3 1065353216 32831 29217439 3.25% 3.25%

4 32512 8323072 25611797 2.85% 2.85%

5 1483198464 13657944 25606886 2.85% 2.85%

6 5023488 10963968 25502977 2.84% 2.84%

7 1 16777216 17849224 1.99% 1.99%

8 2 33554432 9346828 1.04% 1.04%

9 4294967295 4294967295 7026800 0.78% 0.78%

10 3 50331648 5487270 0.61% 0.61%

11 4 67108864 3465020 0.39% 0.39%

12 5 83886080 2240048 0.25% 0.25%

13 6 100663296 1477742 0.16% 0.16%

14 7 117440512 1008810 0.11% 0.11%

15 8 134217728 973153 0.11% 0.11%

16 8835584 13796864 834624 0.09% 0.09%

17 9 150994944 600805 0.07% 0.07%

18 10 167772160 436283 0.05% 0.05%

19 11 184549376 357429 0.04% 0.04%

20 8781824 34304 316430 0.04% 0.04%

21 12 201326592 298426 0.03% 0.03%

22 13 218103808 253804 0.03% 0.03%

23 65536 256 249620 0.03% 0.03%

24 677075 3545500160 238131 0.03% 0.03%

25 2470119 3887080704 229835 0.03% 0.03%
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A.7 Graph analytics, GA z2

Table A.13: Graph analytics, GA z2, summary

Application Details VFT Size Table Sample Values

Application Graph analytics ( 6h) VFT Size % of Total Values in VFT Num Pages 897536

Data Set Twitter 128 67.27% Null Pages 549 0.06%

Size (GB) 3.68 256 68.26% Non-Null Pages 896987 99.94%

512 68.94% Null Blocks 96080

1K 69.42% Page Size (Byte) 4096

2K 69.99% VFT Entry Size 4

4K 70.56%

8K 71.18%

16K 71.87%

32K 72.68%

Table A.14: Graph analytics, GA z2, VFT content

VFT Content Table

Rank Value
Frequency

Endian
Frequency

Frequency % of
total Values

Frequency of % Total Values
Without Null PagesBig Little

1 0 0 400792046 43.61% 43.55%

2 6305648 1882677248 50732303 5.52% 5.52%

3 1065353216 32831 30812272 3.35% 3.35%

4 32512 8323072 25371628 2.76% 2.76%

5 1483198464 13657944 25366091 2.76% 2.76%

6 5023488 10963968 21930307 2.39% 2.39%

7 1 16777216 17377757 1.89% 1.89%

8 2 33554432 8538687 0.93% 0.93%

9 4294967295 4294967295 5766618 0.63% 0.63%

10 3 50331648 5072874 0.55% 0.55%

11 4 67108864 3205950 0.35% 0.35%

12 5 83886080 2079567 0.23% 0.23%

13 6 100663296 1375229 0.15% 0.15%

14 7 117440512 942161 0.10% 0.10%

15 65536 256 898639 0.10% 0.10%

16 256 65536 805370 0.09% 0.09%

17 16777216 1 761343 0.08% 0.08%

18 8 134217728 735192 0.08% 0.08%

19 9 150994944 595950 0.07% 0.06%

20 8835584 13796864 418495 0.05% 0.05%

21 10 167772160 409116 0.05% 0.04%

22 11 184549376 335238 0.04% 0.04%

23 677075 3545500160 310973 0.03% 0.03%

24 2470119 3887080704 306947 0.03% 0.03%

25 12 201326592 279941 0.03% 0.03%
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A.8 Graph analytics, GA z3

Table A.15: Graph analytics,GA z3, summary

Application Details VFT Size Table Sample Values

Application Graph analytics ( 24h) VFT Size % of Total Values in VFT Num Pages 901795

Data Set Twitter 128 65.88% Null Pages 550 0.06%

Size (GB) 3.69 256 66.88% Non-Null Pages 901245 99.94%

512 67.59% Null Blocks 77656

1K 68.05% Page Size (Byte) 4096

2K 68.58% VFT Entry Size 4

4K 69.19%

8K 69.87%

16K 70.62%

32K 71.45%

Table A.16: Graph analytics, GA z3, VFT content

VFT Content Table

Rank Value
Frequency

Endian
Frequency

Frequency % of
total Values

Frequency of % Total Values
Without Null PagesBig Little

1 0 0 415353956 44.98% 44.92%

2 6305648 1882677248 51533817 5.58% 5.58%

3 32512 8323072 25770280 2.79% 2.79%

4 1483198464 13657944 25766779 2.79% 2.79%

5 1 16777216 17923136 1.94% 1.94%

6 1065353216 32831 11278467 1.22% 1.22%

7 2 33554432 8324206 0.90% 0.90%

8 5023488 10963968 8134984 0.88% 0.88%

9 4294967295 4294967295 5865324 0.64% 0.64%

10 3 50331648 4898767 0.53% 0.53%

11 65536 256 3179427 0.34% 0.34%

12 4 67108864 3088534 0.33% 0.33%

13 256 65536 3085368 0.33% 0.33%

14 5 83886080 2000029 0.22% 0.22%

15 16777217 16777217 1616926% 0.18% 0.18%

16 16777216 1 1532130 0.17% 0.17%

17 6 100663296 1326846 0.14% 0.14%

18 7 117440512 912766 0.10% 0.10%

19 8 134217728 756376 0.08% 0.08%

20 9 150994944 583279 0.06% 0.06%

21 8835584 13796864 455821 0.05% 0.05%

22 10 167772160 399972 0.04% 0.04%

23 1065772646 1717995071 382649 0.04% 0.04%

24 11 184549376 328372 0.04% 0.04%

25 677075 3545500160 307752 0.03% 0.03%
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A.9 Graph analytics, GA g 0

Table A.17: Graph analytics, GA g 0, summary

Application Details VFT Size Table Sample Values

Application Graph analytics ( 1min) VFT Size % of Total Values in VFT Num Pages 931701

Data Set Google Plus 128 0.28% Null Pages 641 0.07%

Size (GB) 3.82 256 0.41% Non-Null Pages 931060 99.93%

512 0.63% Null Blocks 55701

1K 1.01% Page Size (Byte) 4096

2K 1.65% VFT Entry Size 4

4K 2.76%

8K 4.60%

16K 7.58%

32K 12.23%

Table A.18: Graph analytics, GA g 0, VFT content

VFT Content Table

Rank Value
Frequency

Endian
Frequency

Frequency % of
total Values

Frequency of % Total Values
Without Null PagesBig Little

1 0 0 1049237 0.11% 0.041%

2 3552044 741553664 21199 0.00% 0.002%

3 3659655 2279028480 19934 0.00% 0.002%

4 2798767 2947820032 19673 0.00% 0.002%

5 3767266 3799726336 19557 0.00% 0.002%

6 3336822 1995059712 18826 0.00% 0.002%

7 3982488 2562997248 18655 0.00% 0.002%

8 3444433 3515757568 18339 0.00% 0.002%

9 3013989 1711090944 18319 0.00% 0.002%

10 3874877 1025522432 18059 0.00% 0.002%

11 2906378 173616128 18058 0.00% 0.002%

12 4090099 4083695104 17608 0.00% 0.002%

13 3229211 457584896 16879 0.00% 0.002%

14 4197710 1309491200 16180 0.00% 0.002%

15 1507435 1795168000 16113 0.00% 0.002%

16 3551266 573584896 15144 0.00% 0.002%

17 3121600 3231788800 15054 0.00% 0.002%

18 2691156 1410345216 15043 0.00% 0.002%

19 3551258 439367168 14811 0.00% 0.002%

20 2905592 4166331392 14548 0.00% 0.002%

21 3443647 3213571072 14513 0.00% 0.002%

22 2797981 2645633536 14401 0.00% 0.002%

23 3766480 3497539840 14212 0.00% 0.001%

24 3443655 3347788800 14185 0.00% 0.001%

25 3658877 2111059712 14034 0.00% 0.001%
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A.10 Graph analytics, GA g 100

Table A.19: Graph analytics, GA g 100, summary

Application Details VFT Size Table Sample Values

Application Graph analytics ( 1h) VFT Size % of Total Values in VFT Num Pages 888583

Data Set Google Plus 128 10.87% Null Pages 538 0.06%

Size (GB) 3.64 256 11.05% Non-Null Pages 888045 99.94%

512 11.33% Null Blocks 69055

1K 11.76% Page Size (Byte) 4096

2K 12.47% VFT Entry Size 4

4K 13.64%

8K 15.54%

16K 18.60%

32K 23.32%

Table A.20: Graph analytics, GA g 100, VFT content

VFT Content Table

Rank Value
Frequency

Endian
Frequency

Frequency % of
total Values

Frequency of % Total Values
Without Null PagesBig Little

1 0 0 65423260 7.19% 7.13%

2 6305648 1882677248 6885719 0.76% 0.76%

3 32512 8323072 3443614 0.38% 0.38%

4 3507781632 8393937 3442882 0.38% 0.38%

5 1 16777216 2240176 0.25% 0.25%

6 1065353216 32831 2072532 0.23% 0.23%

7 4294967295 4294967295 1908442 0.21% 0.21%

8 5023488 10963968 1671419 0.18% 0.18%

9 196608 768 1112752 0.12% 0.12%

10 327680 1280 985030 0.11% 0.11%

11 393216 1536 676650 0.07% 0.07%

12 8835584 13796864 610038 0.07% 0.07%

13 262144 1024 584293 0.06% 0.06%

14 2 33554432 481281 0.05% 0.05%

15 3 50331648 414638 0.05% 0.05%

16 4 67108864 313180 0.03% 0.03%

17 5 83886080 270337 0.03% 0.03%

18 8781824 34304 237530 0.03% 0.03%

19 6 100663296 237052 0.03% 0.03%

20 8 134217728 230120 0.03% 0.03%

21 131072 512 229444 0.03% 0.03%

22 7 117440512 220693 0.02% 0.02%

23 9 150994944 180303 0.02% 0.02%

24 10 167772160 164706 0.02% 0.02%

25 11 184549376 145517 0.02% 0.02%
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A.11 Graph analytics, GA g 130

Table A.21: Graph analytics, GA g 130, summary

Application Details VFT Size Table Sample Values

Application Graph analytics ( 6h) VFT Size % of Total Values in VFT Num Pages 948308

Data Set Google Plus 128 7.16% Null Pages 509 0.05%

Size (GB) 3.88 256 7.34% Non-Null Pages 947799 99.95%

512 7.61% Null Blocks 63970

1K 8.05% Page Size (Byte) 4096

2K 8.79% VFT Entry Size 4

4K 10.03%

8K 12.08%

16K 15.45%

32K 20.73%

Table A.22: Graph analytics, GA g 130, VFT content

VFT Content Table

Rank Value
Frequency

Endian
Frequency

Frequency % of
total Values

Frequency of % Total Values
Without Null PagesBig Little

1 0 0 44796481 4.61% 4.56%

2 6305648 1882677248 6936845 0.71% 0.72%

3 3507781632 8393937 3468510 0.36% 0.36%

4 32512 8323072 3468246 0.36% 0.36%

5 4294967295 4294967295 1227056 0.13% 0.13%

6 196608 768 1126427 0.12% 0.12%

7 327680 1280 998149 0.10% 0.10%

8 1 16777216 752454 0.08% 0.08%

9 393216 1536 694199 0.07% 0.07%

10 262144 1024 559963 0.06% 0.06%

11 2 33554432 328393 0.03% 0.03%

12 3 50331648 282876 0.03% 0.03%

13 4 67108864 213253 0.02% 0.02%

14 8 134217728 184872 0.02% 0.02%

15 5 83886080 184365 0.02% 0.02%

16 131072 512 183915 0.02% 0.02%

17 6 100663296 160216 0.02% 0.02%

18 7 117440512 152982 0.02% 0.02%

19 8835584 13796864 125777 0.01% 0.01%

20 9 150994944 121989 0.01% 0.01%

21 10 167772160 111392 0.01% 0.01%

22 11 184549376 98047 0.01% 0.01%

23 12 201326592 96145 0.01% 0.01%

24 13 218103808 92038 0.01% 0.01%

25 14 234881024 85642 0.01% 0.01%
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A.12 Dataset Google Plus

Table A.23: Dataset Google Plus, summary

Application Details VFT Size Table Sample Values

Application Google Plus Small VFT Size % of Total Values in VFT Num Pages 768564

Files 791 128 79.44% Non-Null Pages 199173 25.91%

Size (GB) 2.9318389893 256 80.47% Null Pages 569391 74.09%

Parsed Size (GB) 3.1 512 81.99% Page Size (Byte) 4096

Compressed Size (GB) 1K 83.51% VFT Entry Size 4

Character Size 1 2K 84.67% Num Values 787009536

4K 86.17% Null Values From Pages 583056384

8K 88.11% Non-Null Values From Pages 203953152

16K 90.48%

32K 93.18%

64K 95.97%

128K 98.30%

Table A.24: Dataset Google Plus, VFT content

VFT Content Table

Rank Value
Frequency

Endian
Frequency Frequency % of total Values

Frequency of % Total Values
Without Null PagesBig Little

1 0 0 600576467 76.31% 8.59%

2 83886080 5 7841794 1.00% 3.84%

3 100663296 6 5670541 0.72% 2.78%

4 1 16777216 443622 0.06% 0.22%

5 65536 256 370761 0.05% 0.18%

6 256 65536 240124 0.03% 0.12%

7 16777216 1 206566 0.03% 0.10%

8 186 3120562176 117355 0.02% 0.06%

9 151 2533359616 116034 0.02% 0.06%

10 241 4043309056 112936 0.01% 0.06%

11 5 83886080 105339 0.01% 0.05%

12 17 285212672 102853 0.01% 0.05%

13 129 2164260864 100697 0.01% 0.05%

14 6 100663296 100319 0.01% 0.05%

15 158 2650800128 98720 0.01% 0.05%

16 26 436207616 98119 0.01% 0.05%

17 128 2147483648 97505 0.01% 0.05%

18 34 570425344 97008 0.01% 0.05%

19 89 1493172224 96900 0.01% 0.05%

20 30 503316480 95971 0.01% 0.05%

21 64 1073741824 93235 0.01% 0.05%

22 50 838860800 92652 0.01% 0.05%

23 61 1023410176 92516 0.01% 0.05%

24 327680 1280 91297 0.01% 0.04%

25 171 2868903936 91160 0.01% 0.04%
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A.13 Dataset Twitter, Grammy

Table A.25: Dataset Twitter, Grammy, summary

Application Details VFT Size Table Sample Values

Application Twitter Grammy VFT Size % of Total Values in VFT Num Pages 92735

Files 1 128 32.24% Null Pages 0 0.00%

Size (GB) 0.3798 256 36.34% Non-Null Pages 92735 100.00%

Parsed Size (GB) 0.3798 512 41.20% Null Blocks 0

Compressed Size (GB) 1K 47.25% Page Size (Byte) 4096

Character Encoding UTF-8 2K 54.33% VFT Entry Size 4

4K 62.03%

8K 70.38%

16K 78.13%

32K 84.47%

Table A.26: Dataset Twitter, Grammy, VFT content

VFT Content Table

Rank Value
Frequency

Endian
Frequency

Frequency % of
total Values

Frequency of % Total Values
Without Null PagesBig Little

1 813445244 2083552304 3874136 4.08% 4.08%

2 2083552304 813445244 3232073 3.40% 3.40%

3 2083532336 808333436 1294354 1.36% 1.36%

4 774929456 813445166 1294038 1.36% 1.36%

5 808333436 2083532336 1293926 1.36% 1.36%

6 813445166 774929456 1290669 1.36% 1.36%

7 858861618 842019123 684335 0.72% 0.72%

8 540225840 808530720 672623 0.71% 0.71%

9 825242159 791818289 652528 0.69% 0.69%

10 791818364 2083533359 651842 0.69% 0.69%

11 825176624 808595249 651580 0.69% 0.69%

12 170949680 813445130 646059 0.68% 0.68%

13 1835884914 1918987629 603454 0.64% 0.64%

14 2037214561 1634561401 599158 0.63% 0.63%

15 807416625 825434160 455630 0.48% 0.48%

16 1835102791 1198678381 438906 0.46% 0.46%

17 825306930 841953585 378796 0.40% 0.40%

18 791753007 791753007 378105 0.40% 0.40%

19 841953585 825306930 378006 0.40% 0.40%

20 808595249 825176624 377942 0.40% 0.40%

21 1937337709 1835891059 334745 0.35% 0.35%

22 1701344288 544499813 325127 0.34% 0.34%

23 1075860562 1381244992 312254 0.33% 0.33%

24 1634879264 541553249 293876 0.31% 0.31%

25 543516788 1952998688 292998 0.31% 0.31%
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A.14 Dataset Wikipedia NB

Table A.27: Dataset Wikipedia NB, summary

Application Details VFT Size Table Sample Values

Application Wikipedia (No bin) VFT Size % of Total Values in VFT Num Pages 112413

Files 29853 128 32.24% Null Pages 0 0.00%

Size (GB) 1.2 256 36.34% Non-Null Pages 112413 100.00%

Parsed Size (GB) 0.4604 512 41.20% Null Blocks 0

Compressed Size (GB) 1K 47.25% Page Size (Byte) 4096

Character Encoding UTF-8 2K 54.33% VFT Entry Size 4

4K 62.03%

8K 70.38%

16K 78.13%

32K 84.47%

Table A.28: Wikipedia NB, VFT content

VFT Content Table

Rank Value
Frequency

Endian
Frequency

Frequency % of
total Values

Frequency of % Total Values
Without Null PagesBig Little

1 538976288 538976288 3844196 3.34% 3.34%

2 538970686 1040850976 1052844 0.92% 0.92%

3 538976266 169877536 911501 0.79% 0.79%

4 1008738336 538976316 907955 0.79% 0.79%

5 757932348 1008807213 618754 0.54% 0.54%

6 1818584109 761554284 525117 0.46% 0.46%

7 1802398815 1600941675 525098 0.46% 0.46%

8 1701063981 757949541 524589 0.46% 0.46%

9 1852596076 1818193006 524589 0.46% 0.46%

10 1043148139 1798122814 524589 0.46% 0.46%

11 1818192997 1701601132 524268 0.46% 0.46%

12 757951342 1852517677 524265 0.46% 0.46%

13 1680682273 556608868 524265 0.46% 0.46%

14 1600939364 1684368479 524248 0.46% 0.46%

15 762015340 1819175725 524156 0.46% 0.46%

16 757152800 540811565 502971 0.44% 0.44%

17 540945709 757939744 418502 0.36% 0.36%

18 1701344288 544499813 374088 0.33% 0.33%

19 543516788 1952998688 342254 0.30% 0.30%

20 1852795252 1953066862 330966 0.29% 0.29%

21 1851879539 1936744814 317566 0.28% 0.28%

22 1634493216 543386721 313718 0.27% 0.27%

23 1936941420 1818325875 313430 0.27% 0.27%

24 1935764579 1668047219 313024 0.27% 0.27%

25 1030976353 1634956093 310502 0.27% 0.27%
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A.15 Dataset Twitter, Superbowl

Table A.29: Dataset Twitter, Superbowl, summary

Application Details VFT Size Table Sample Values

Application Twitter Superbowl VFT Size % of Total Values in VFT Num Pages 339120

Files 28 128 41.35% Null Pages 0 0.00%

Size (GB) 1.5 256 44.71% Non-Null Pages 339120 100.00%

Parsed Size (GB) 1.39 512 48.44% Null Blocks 0

Compressed Size (GB) 1K 53.24% Page Size (Byte) 4096

Character Encoding UTF-8 2K 58.73% VFT Entry Size 4

4K 64.88%

8K 71.67%

16K 78.22%

32K 83.71%

Table A.30: Dataset Twitter, Superbowl, VFT content

VFT Content Table

Rank Value
Frequency

Endian
Frequency

Frequency % of
total Values

Frequency of % Total Values
Without Null PagesBig Little

1 2003791467 1802399607 9882769 2.85% 2.85%

2 1869507438 1852534383 9865807 2.84% 2.84%

3 1853321070 1852798830 9855493 2.84% 2.84%

4 1802392956 2085973611 9853078 2.84% 2.84%

5 1852534357 1433299822 9847696 2.84% 2.84%

6 2087614319 1870098044 7890299 2.27% 2.27%

7 1434218103 2003729493 7854169 2.26% 2.26%

8 1851096174 1853642094 7843054 2.26% 2.26%

9 808333436 2083532336 3923510 1.13% 1.13%

10 774929456 813445166 3922301 1.13% 1.13%

11 2083532336 808333436 3921284 1.13% 1.13%

12 875638834 842019124 2049398 0.60% 0.60%

13 540291376 808530976 2035339 0.59% 0.59%

14 825242159 791818289 2011909 0.58% 0.58%

15 808399408 808595248 2010058 0.58% 0.58%

16 791818364 2083533359 2009195 0.58% 0.58%

17 813445244 2083552304 1964747 0.57% 0.57%

18 813445166 774929456 1964342 0.57% 0.57%

19 1434202158 774929493 1963191 0.57% 0.57%

20 1851096112 813454702 1960026 0.56% 0.56%

21 175011695 1870097930 1960005 0.56% 0.56%

22 807416881 825499696 1521292 0.44% 0.44%

23 1886680168 1752462448 1059601 0.31% 0.31%

24 808595251 858731056 1023015 0.30% 0.30%

25 858795826 841953331 1022381 0.29% 0.29%
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A.16 Dataset Memetracker

Table A.31: Dataset Memetracker, summary

Application Details VFT Size Table Sample Values

Application Memetracker VFT Size % of Total Values in VFT Num Pages 2668988

Files 1 128 18.92% Null Pages 0 0.00%

Size (GB) 10.9 256 24.95% Non-Null Pages 2668988 100.00%

Parsed Size (GB) 10.93 512 31.47% Null Blocks 0

Compressed Size (GB) 1K 38.74% Page Size (Byte) 4096

Character Encoding UTF-8 2K 47.18% VFT Entry Size 4

4K 56.65%

8K 66.73%

16K 76.29%

32K 84.27%

Table A.32: Dataset Memetracker, VFT content

VFT Content Table

Rank Value
Frequency

Endian
Frequency

Frequency % of
total Values

Frequency of % Total Values
Without Null PagesBig Little

1 1886680168 1752462448 24670869 0.90% 0.90%

2 792359028 1953511983 24099682 0.88% 0.88%

3 980448372 1953787962 24087133 0.88% 0.88%

4 791624304 1882861359 24086912 0.88% 0.88%

5 1953785865 157840500 23801180 0.87% 0.87%

6 1952975180 1275684980 19981318 0.73% 0.73%

7 1745439754 172755304 19969067 0.73% 0.73%

8 1836016430 778268525 15698638 0.57% 0.57%

9 795701091 1668246831 14281996 0.52% 0.52%

10 997223777 1634562107 9960493 0.36% 0.36%

11 1886216486 643919216 9717061 0.36% 0.36%

12 1701344288 544499813 8777113 0.32% 0.32%

13 543516788 1952998688 7326726 0.27% 0.27%

14 959459378 842018873 6878787 0.25% 0.25%

15 1735355490 1651273575 6221948 0.23% 0.23%

16 1836345390 778597485 4634756 0.17% 0.17%

17 1819112552 1752460652 4481193 0.16% 0.16%

18 544175136 544501536 4480881 0.16% 0.16%

19 543649385 1768843040 4429198 0.16% 0.16%

20 1852795252 1953066862 4123265 0.15% 0.15%

21 543452769 1634624544 4082539 0.15% 0.15%

22 758722608 808466733 3947579 0.14% 0.14%

23 758394925 758133805 3905531 0.14% 0.14%

24 808270128 809053488 3898331 0.14% 0.14%

25 875572537 959262772 3889653 0.14% 0.14%
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A.17 Dataset Wikipedia L

Table A.33: Dataset Wikipedia L, summary

Application Details VFT Size Table Sample Values

Application Wikipedia large VFT Size % of Total Values in VFT Num Pages 2668988

Files 1 128 13.45% Null Pages 0 0.00%

Size (GB) 50 256 18.36% Non-Null Pages 2668988 100.00%

Parsed Size (GB) 10.00 512 24.72% Null Blocks 0

Compressed Size (GB) 1K 32.71% Page Size (Byte) 4096

Character Encoding UTF-8 2K 42.07% VFT Entry Size 4

4K 52.68%

8K 63.55%

16K 73.64%

32K 82.06%

Table A.34: Dataset Wikipedia L, VFT content

VFT Content Table

Rank Value
Frequency

Endian
Frequency

Frequency % of
total Values

Frequency of % Total Values
Without Null PagesBig Little

1 538976288 538976288 38374973 1.43% 1.43%

2 1701344288 544499813 13955413 0.52% 0.52%

3 543516788 1952998688 12645565 0.47% 0.47%

4 538970686 1040850976 9202570 0.34% 0.34%

5 543584032 544171552 8929654 0.33% 0.33%

6 538976266 169877536 8309314 0.31% 0.31%

7 1008738336 538976316 8254451 0.31% 0.31%

8 1953461617 1903521652 6938344 0.26% 0.26%

9 997486453 1970238523 6860148 0.26% 0.26%

10 1869967654 644969839 6858349 0.26% 0.26%

11 543452769 1634624544 6831935 0.26% 0.26%

12 1852795252 1953066862 6471528 0.24% 0.24%

13 997484326 644314171 6375821 0.24% 0.24%

14 997485606 644641851 6361315 0.24% 0.24%

15 1684955424 543256164 6223995 0.23% 0.23%

16 543649385 1768843040 5175970 0.19% 0.19%

17 544106784 543780384 5115067 0.19% 0.19%

18 544175136 544501536 4320257 0.16% 0.16%

19 1869182049 1635019119 3829554 0.14% 0.14%

20 544108393 1768910368 3518670 0.13% 0.13%

21 1952917094 1713792884 2945814 0.11% 0.11%

22 644244850 1919247910 2943891 0.11% 0.11%

23 1730569829 1701193319 2942318 0.11% 0.11%

24 1701667182 1851878757 2760550 0.10% 0.10%

25 543516756 1416127776 2718996 0.10% 0.10%
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B.1. DATA ANALYTICS, WIKIPEDIA DA Z0 APPENDIX B. APPENDIX B

B.1 Data analytics, Wikipedia DA z0

Table B.1: DA z0 node statistics

Sample Page type Pages % of to-
tal pages

Physical
memory
size (MB)

Swap
size
(MB)

% in
physical
memory

Virt address
space (MB)

TaskTracker

DYNAMIC 25881 2.28% 15.18 27.33 35.70%

LIBRARIES 1513 0.13% 3.81 1.61 70.27% 70086.71

STACK 559 0.05% 1.80 0.12 93.60%

DataNode

DYNAMIC 16377 1.44% 82.54 23.47 77.86%

LIBRARIES 1322 0.12% 4.29 1.83 70.13% 70074.66

STACK 469 0.04% 1.48 0.81 64.76%

Child 1

DYNAMIC 531120 46.77% 1643.86 531.61 75.56%

LIBRARIES 3147 0.28% 8.64 4.25 67.05% 4726.58

STACK 1405 0.12% 5.33 0.42 92.67%

Child 2

DYNAMIC 549246 48.36% 2047.70 202.01 91.02%

LIBRARIES 3147 0.28% 8.53 4.36 66.16% 4726.58

STACK 1477 0.13% 5.51 0.54 91.13%

Table B.2: DA z1 node statistics

Sample Page type Pages % of to-
tal pages

Physical
memory
size (MB)

Swap
size
(MB)

% in
physical
memory

Virt address
space (MB)

TaskTracker

DYNAMIC 42359 3.98% 157.27 16.23 90.64%

LIBRARIES 639 0.06% 1.32 1.29 50.55% 70077.67

STACK 590 0.06% 1.76 0.66 72.88%

DataNode

DYNAMIC 13043 1.23% 40.95 12.47 76.65%

LIBRARIES 1034 0.10% 1.09 3.15 25.63% 70088.72

STACK 336 0.03% 0.75 0.63 54.46%

Child 1

DYNAMIC 14842 1.39% 41.21 19.58 67.79%

LIBRARIES 3108 0.29% 5.93 6.80 46.59% 4986.59

STACK 323 0.03% 0.37 0.95 27.86%

Child 2

DYNAMIC 493043 46.32% 1688.03 331.47 83.59%

LIBRARIES 3147 0.30% 6.03 6.86 46.77% 4726.58

STACK 1266 0.12% 2.56 2.62 49.45%

Child 3

DYNAMIC 486176 45.67% 1655.39 335.99 83.13%

LIBRARIES 3147 0.30% 6.64 6.25 51.48% 4726.58

STACK 1438 0.14% 3.28 2.61 55.63%

93



B.1. DATA ANALYTICS, WIKIPEDIA DA Z0 APPENDIX B. APPENDIX B

Table B.3: DA z2 node statistics

Sample Page type Pages % of to-
tal pages

Physical
memory
size (MB)

Swap
size
(MB)

% in
physical
memory

Virt address
space (MB)

TaskTracker

DYNAMIC 31649 3.01% 102.05 27.59 78.72%

LIBRARIES 771 0.07% 0.96 2.20 30.35% 70079.68

STACK 532 0.05% 1.28 0.90 58.83%

DataNode

DYNAMIC 7113 0.68% 25.55 3.58 87.71%

LIBRARIES 574 0.05% 0.68 1.67 29.09% 70088.72

STACK 339 0.03% 1.03 0.36 74.04%

Child 1

DYNAMIC 16403 1.56% 36.86 30.33 54.86%

LIBRARIES 1324 0.13% 1.55 3.87 28.63% 5114.59

STACK 795 0.08% 0.85 2.40 26.16%

Child 2

DYNAMIC 475724 45.28% 1578.89 369.68 81.03%

LIBRARIES 3147 0.30% 5.59 7.30 43.34% 4726.58

STACK 20885 1.99% 63.15 22.40 73.82%

Child 3

DYNAMIC 470619 44.79% 1672.62 255.03 86.77%

LIBRARIES 3147 0.30% 6.44 6.45 49.95% 4726.58

STACK 17696 1.68% 69.62 2.86 96.06%
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C.1 Block alignment analysis

Table C.1: Block alignment analysis results.

VFT size Huffman CF

CF

w.

CF alignment

CF

w.

Size alignment

CF

loss w.

CF alignment

wrt Huffman CF

CF

loss w.

Size alignment

wrt Huffman CF

DA z0 128 2.388 1.897 2.287 20.56% 4.23%

DA z1 128 2.522 2.064 2.405 18.16% 4.64%

DA z2 128 2.500 2.046 2.380 18.16% 4.80%

DA z3 128 2.535 1.977 2.418 22.01% 4.62%

GA z0 128 1.255 1.024 1.237 18.41% 1.43%

GA z1 128 2.725 2.451 2.527 10.06% 7.27%

GA z2 128 2.552 2.320 2.386 9.09% 6.50%

GA z3 128 2.480 2.233 2.353 9.96% 5.12%

DA z0 1k 2.597 2.113 2.473 18.64% 4.77%

DA z1 1k 2.680 2.189 2.547 18.32% 4.96%

DA z2 1k 2.765 2.261 2.608 18.23% 5.68%

DA z3 1k 2.783 2.234 2.637 19.73% 5.25%

GA z0 1k 1.299 1.054 1.278 18.86% 1.62%

GA z1 1k 2.789 2.497 2.582 10.47% 7.42%

GA z2 1k 2.625 2.372 2.451 9.64% 6.63%

GA z3 1k 2.547 2.276 2.407 10.64% 5.50%

DA z0 4k 2.675 2.149 2.538 19.66% 5.12%

DA z1 4k 2.719 2.215 2.579 18.54% 5.15%

DA z2 4k 2.819 2.302 2.652 18.34% 5.92%

DA z3 4k 2.854 2.321 2.695 18.68% 5.57%

GA z0 4k 1.315 1.055 1.291 19.77% 1.83%

GA z1 4k 2.805 2.512 2.595 10.45% 7.49%

GA z2 4k 2.641 2.380 2.464 9.88% 6.70%

GA z3 4k 2.567 2.288 2.425 10.87% 5.53%
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Table C.2: Block alignment analysis results with Length Overhead.

VFT size Huffman CF
CF

w. LO

CF

w. LO and

CF alignment

CF

w. LO and

Size alignment

CF

loss w. LO and

CF alignment

wrt Huffman CF

CF

loss w. LO and

Size alignment

wrt Huffman CF

DA z0 128 2.388 1.878 1.442 1.817 39.61% 23.91%

DA z1 128 2.522 1.960 1.538 1.890 39.02% 25.06%

DA z2 128 2.500 1.938 1.487 1.867 40.52% 25.32%

DA z3 128 2.535 1.952 1.500 1.883 40.83% 25.72%

GA z0 128 1.255 1.136 1.009 1.122 19.60% 10.60%

GA z1 128 2.725 2.155 1.911 2.031 29.87% 25.47%

GA z2 128 2.552 2.062 1.856 1.955 27.27% 23.39%

GA z3 128 2.480 2.016 1.839 1.934 25.85% 22.02%

DA z0 1k 2.597 1.995 1.544 1.923 40.55% 25.95%

DA z1 1k 2.680 2.044 1.620 1.967 39.55% 26.60%

DA z2 1k 2.765 2.082 1.632 1.993 40.98% 27.92%

DA z3 1k 2.783 2.092 1.601 2.009 42.47% 27.81%

GA z0 1k 1.299 1.168 1.014 1.152 21.94% 11.32%

GA z1 1k 2.789 2.189 1.920 2.061 31.16% 26.10%

GA z2 1k 2.625 2.102 1.872 1.991 28.69% 24.15%

GA z3 1k 2.547 2.052 1.841 1.963 27.72% 22.93%

DA z0 4k 2.675 2.025 1.557 1.947 41.79% 27.21%

DA z1 4k 2.719 2.062 1.625 1.981 40.24% 27.14%

DA z2 4k 2.819 2.107 1.645 2.014 41.65% 28.56%

DA z3 4k 2.854 2.126 1.639 2.039 42.57% 28.56%

GA z0 4k 1.315 1.179 1.011 1.159 23.12% 11.86%

GA z1 4k 2.805 2.198 1.926 2.068 31.34% 26.27%

GA z2 4k 2.641 2.109 1.879 1.997 28.85% 24.38%

GA z3 4k 2.567 2.062 1.850 1.972 27.93% 23.18%
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Table C.3: Slack for block CF alignment.

Arithmetic mean
Block CF DA z0 DA z1 DA z2 DA z3 GA z0 GA z1 GA z2 GA z3 Max slack

DA GA GA (GA z0 excluded)

1 15.740 13.460 14.400 17.510 11.860 3.000 2.240 3.300 31 15.28 5.10 2.85

2 5.400 5.850 5.640 5.720 3.330 4.240 5.040 4.680 10 5.65 4.32 4.65

3 2.070 1.990 2.080 2.080 1.120 1.950 1.910 1.960 4 2.06 1.74 1.94

4 1.150 1.360 1.460 1.200 1.970 2.250 2.200 2.280 3 1.29 2.18 2.24

5 0.670 0.700 0.560 0.680 0.170 0.010 0.000 0.030 1 0.65 0.05 0.01

6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0.00 0.00 0.00

7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0.00 0.00 0.00

8 2.180 1.840 1.740 2.220 0.610 3.000 0.170 3.230 7 2.00 1.75 2.13

Table C.4: Slack for block size alignment.

Arithmetic mean
Block size DA z0 DA z1 DA z2 DA z3 GA z0 GA z1 GA z2 GA z3 Max slack

DA GA GA (GA z0 excluded)

4 0.180 0.280 0.380 0.170 0.000 0.170 0.150 0.000 3 0.25 0.08 0.11

8 1.740 1.480 1.360 1.780 0.610 3.000 0.090 2.960 3 1.59 1.67 2.02

12 1.430 1.540 1.450 1.430 1.860 0.690 1.850 0.120 3 1.46 1.13 0.89

16 1.150 1.360 1.460 1.200 1.970 2.250 2.200 2.280 3 1.29 2.18 2.24

20 1.330 1.410 1.430 1.410 0.130 1.540 1.650 1.700 3 1.40 1.26 1.63

24 1.160 1.230 1.220 1.170 1.900 1.830 1.960 1.910 3 1.20 1.90 1.90

28 1.450 1.500 1.570 1.410 0.410 1.380 1.430 1.430 3 1.48 1.16 1.41

32 1.440 1.670 1.410 1.380 2.270 1.260 1.560 1.440 3 1.48 1.63 1.42

36 1.250 1.270 1.280 1.220 2.760 1.870 2.040 1.670 3 1.26 2.09 1.86

40 0.930 0.980 1.050 0.820 1.640 1.770 1.730 1.460 3 0.95 1.65 1.65

44 0.780 0.660 0.740 0.840 0.990 1.730 1.890 1.100 3 0.76 1.43 1.57

48 0.990 1.210 1.240 1.060 1.080 1.470 1.620 1.340 3 1.13 1.38 1.48

52 0.820 0.690 1.070 1.040 0.020 1.260 1.090 1.090 3 0.91 0.87 1.15

56 1.460 1.390 1.580 1.360 0.950 1.660 1.350 1.560 3 1.45 1.38 1.52

60 1.180 0.790 1.150 1.340 1.000 1.870 1.080 1.440 3 1.12 1.35 1.46

64 0.090 0.100 0.230 0.100 0.010 0.120 0.100 0.090 3 0.13 0.08 0.10
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Figure C.1: Block CF distribution for DA z0 - DA z3.
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Figure C.2: Block CF distribution for GA z0 - GA z3.
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Figure C.3: Block size distribution for DA z0 - DA z3.
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C.2 Page alignment analysis

Table C.5: Page alignments analysis results.

Extra page addressing bits

Sample VFT size Huffman CF 0 1 2 3 4 5 6

DA z0 128 2.388 1.000 1.586 1.827 2.121 2.234 2.306 2.347

DA z1 128 2.522 1.000 1.715 1.895 2.205 2.341 2.430 2.475

DA z2 128 2.500 1.000 1.666 1.834 2.169 2.325 2.411 2.453

DA z3 128 2.535 1.000 1.629 1.893 2.220 2.352 2.442 2.488

GA z0 128 1.255 1.000 1.025 1.194 1.212 1.218 1.246 1.248

GA z1 128 2.725 1.000 1.543 2.085 2.412 2.487 2.622 2.693

GA z2 128 2.552 1.000 1.516 1.976 2.252 2.355 2.459 2.515

GA z3 128 2.480 1.000 1.487 1.928 2.190 2.289 2.388 2.440

DA z0 1k 2.597 1.000 1.740 1.943 2.266 2.417 2.499 2.547

DA z1 1k 2.680 1.000 1.766 1.956 2.317 2.478 2.578 2.627

DA z2 1k 2.765 1.000 1.775 1.983 2.362 2.545 2.651 2.707

DA z3 1k 2.783 1.000 1.794 2.025 2.385 2.575 2.670 2.726

GA z0 1k 1.299 1.000 1.048 1.219 1.248 1.258 1.288 1.290

GA z1 1k 2.789 1.000 1.549 2.115 2.453 2.535 2.677 2.753

GA z2 1k 2.789 1.000 1.549 2.115 2.453 2.535 2.677 2.753

GA z3 1k 2.547 1.000 1.500 1.966 2.242 2.345 2.450 2.506

DA z0 4k 2.675 1.000 1.759 1.962 2.326 2.479 2.571 2.622

DA z1 4k 2.719 1.000 1.776 1.968 2.340 2.513 2.613 2.664

DA z2 4k 2.819 1.000 1.793 2.003 2.401 2.587 2.702 2.759

DA z3 4k 2.854 1.000 1.809 2.044 2.431 2.613 2.734 2.793

GA z0 4k 1.315 1.000 1.040 1.217 1.255 1.268 1.298 1.305

GA z1 4k 2.805 1.000 1.551 2.134 2.469 2.547 2.693 2.769

GA z2 4k 2.641 1.000 1.529 2.026 2.320 2.428 2.540 2.600

GA z3 4k 2.567 1.000 1.501 1.974 2.257 2.360 2.467 2.524
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Table C.6: Page alignments CF loss with respect to Huffman CF.

Extra page addressing bits

Sample VFT size 1 2 3 4 5 6

DA z0 128 33.58% 23.49% 11.18% 6.45% 3.43% 1.72%

DA z1 128 32.00% 24.86% 12.57% 7.18% 3.65% 1.86%

DA z2 128 33.36% 26.64% 13.24% 7.00% 3.56% 1.88%

DA z3 128 35.74% 25.33% 12.43% 7.22% 3.67% 1.85%

GA z0 128 18.33% 4.86% 3.43% 2.95% 0.72% 0.56%

GA z1 128 43.38% 23.49% 11.49% 8.73% 3.78% 1.17%

GA z2 128 40.60% 22.57% 11.76% 7.72% 3.64% 1.45%

GA z3 128 40.04% 22.26% 11.69% 7.70% 3.71% 1.61%

DA z0 1k 33.00% 25.18% 12.75% 6.93% 3.77% 1.93%

DA z1 1k 34.10% 27.01% 13.54% 7.54% 3.81% 1.98%

DA z2 1k 35.80% 28.28% 14.58% 7.96% 4.12% 2.10%

DA z3 1k 35.54% 27.24% 14.30% 7.47% 4.06% 2.05%

GA z0 1k 19.32% 6.16% 3.93% 3.16% 0.85% 0.69%

GA z1 1k 44.46% 24.17% 12.05% 9.11% 4.02% 1.29%

GA z2 1k 44.46% 24.17% 12.05% 9.11% 4.02% 1.29%

GA z3 1k 41.11% 22.81% 11.97% 7.93% 3.81% 1.61%

DA z0 4k 34.24% 26.65% 13.05% 7.33% 3.89% 1.98%

DA z1 4k 34.68% 27.62% 13.94% 7.58% 3.90% 2.02%

DA z2 4k 36.40% 28.95% 14.83% 8.23% 4.15% 2.13%

DA z3 4k 36.62% 28.38% 14.82% 8.44% 4.20% 2.14%

GA z0 4k 20.91% 7.45% 4.56% 3.57% 1.29% 0.76%

GA z1 4k 44.71% 23.92% 11.98% 9.20% 3.99% 1.28%

GA z2 4k 42.11% 23.29% 12.15% 8.07% 3.82% 1.55%

GA z3 4k 41.53% 23.10% 12.08% 8.06% 3.90% 1.68%
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