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Abstract

In this thesis we establish an upper bound for the spherical heat kernel on the N -dimensional
unit sphere SN for N = 1, 2, 3. The strategy is to use the fact that the spherical heat kernel is
completely determined by the ultraspherical heat kernel. By techniques from Fourier analysis,
explicit formulas for the ultraspherical heat kernel with parameter λ = −1/2, 1/2 are deduced.
Also, an integral formula for the kernel with parameter λ = 0 is introduced. By estimating
these formulas for the ultraspherical heat kernels, the estimates of the spherical heat kernel are
obtained.

Furthermore, we prove that the periodized Gauss-Weierstrass kernel is strictly decreasing
on [0, π]. Both an analytic and a probabilistic proof are given. A generalization of this result
is also established for small t, saying that the spherical heat kernel on S2 and S3 is strictly
decreasing as a function of the spherical distance between its two arguments.

Keywords: Periodized Gauss-Weierstrass kernel, spherical heat kernel, Jacobi heat kernel,
ultraspherical heat kernel, Brownian motion on S1.
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1
Introduction

A heat kernel describes the evolution of temperature in a domain where an initial unit of heat
energy is placed at one point at time t = 0, with the boundary conditions satisfied (if there
are any). More precisely, the heat kernel is defined as the fundamental solution to the heat
equation. Since the heat equation essentially is the same as the diffusion equation, the heat
kernel can also be interpreted as the evolution of the probability density function for finding a
diffusing particle, starting a some point at t = 0, in a particular area in the domain.

We will now give a more general but informal definition of the heat kernel. Let L be an
appropriate elliptic operator and Ω be a domain of a manifold M equipped with a measure µ.
For t > 0, let pt : Ω× Ω→ R be smooth and define the function u by

u(x, t) =

∫
Ω
pt(x, y)f(y) dµ(y),

for a µ-integrable function f defined on Ω. Then pt is called a heat kernel if u satisfies the
parabolic differential equation

(∂t − L)u(x, t) = 0, x, y ∈ Ω, t > 0,

with some boundary conditions, and

lim
t→0+

u(x, t) = f(x).

That is, u satisfies the ’heat equation’ and tends to the initial function f as t tends to 0.
Let us consider three examples.

1. When M and Ω are the Euclidean space RN with Lebesgue measure and L is the Laplace
operator, the kernel has the form

pt(x, y) =

(
1

4πt

)N/2
exp

(
−d(x, y)2

4t

)
, (1.1)

where d(x, y) denotes the Eulidean distance between x and y in RN .

2. If M = R, Ω = [−1, 1], dµ = (1 − x2)λ dx (for some parameter λ > −1) and L is the
ultraspherical Laplacian, we obtain the ultraspherical heat kernel, denoted by Gλt .
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1.0 Introduction

3. Let SN denote the unit sphere in RN+1. If both M and Ω are SN with the standard
area measure and L is the Laplace-Beltrami operator, we obtain the spherical heat kernel
denoted by KN

t .

In contrast to (1.1), no general closed formula for KN
t is known. However, there is a well-known

upper bound given by

KN
t (ξ, η) ≤ C(δ)

1

tN/2
exp

(
− d(ξ, η)2

4(1 + δ)t

)
, ∀δ > 0. (1.2)

where C(δ) is a positive constant and d(ξ, η) denotes the spherical distance between ξ and η
(see [2]). Also, KN

t is bounded from below by the same expression with δ = 0.
This upper bound reminds of (1.1) except for δ. It is natural to conjecture that we can set

δ = 0 when the spherical distance between ξ and η is small, since RN is a good approximation
of the sphere in RN+1 locally. An interesting question is what happens when the spherical
distance between ξ and η is large, since then the special geometry of the sphere comes into
play.

It turns out that we can use the ultraspherical heat kernel to approach this problem. The
spherical heat kernel is in fact completely determined by the ultraspherical heat kernel in the
following way

Gλt (cos [d (ξ, η)] , 1) ' KN
t (ξ, η) , λ = N/2− 1. (1.3)

As a result, we obtain estimates of the spherical heat kernel by estimates of the ultrapherical
heat kernel. For example, by the main result of [10] we have the following Gaussian upper
bound of the ultraspherical heat kernel when λ ≥ −1/2

Gλt (cos [d (ξ, η)] , 1) ≤ C
(

1

t (t+ π − θ)

)λ+1/2 1√
t

exp

(
−cd(ξ, η)2

t

)
, θ ∈ [0, π], (1.4)

where C and c are positive constants. If we could show that this formula holds true for c = 1/4,
we obtain an estimate for the spherical heat kernel which is sharper than (1.2). The aim of
this thesis is to provide such estimates for the cases N = 1, 2 and 3.

In addition to the estimates, we shall study the monotonicity properties of the spherical
heat kernel. If an initial unit of heat energy is placed at one point on SN at time t = 0, it is
intuitively easy to accept that the temperature is lower the further away from the starting-point
we get, given any time t > 0. Nevertheless, it turns out to be quite tricky to actually prove it.
This task is the subject of Chapter 4.

Throughout the paper, we adopt the notation X . Y when there exists a constant C
independent of relevant parameters such that X ≤ CY . We write X ' Y if both X . Y and
Y . X. For a set A ⊆ R we denote its compliment by Ac and write x+ A := {x+ y : y ∈ A}
for x ∈ A.
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2
Heat Kernels

In this chapter, we introduce the different kinds of heat kernels that we shall study. We start
with the important Gauss-Weierstrass kernel and its periodization, which will be present in
almost every treatment of the other kernels. Thereafter we introduce the Jacobi heat kernel
of which the ultraspherical heat kernel is a special case. Then we derive explicit formulas for
three of the ultraspherical heat kernels. In the final section we relate the ultraspherical heat
kernel to the spherical heat kernel.

2.1 The Gauss-Weierstrass kernel and its periodization

Consider the classical heat equation on the real line:ut − uxx = 0, x ∈ R, t > 0,

u(x, 0) = g(x), x ∈ R.
(2.1)

If we assume that g ∈ L1, we can use the Fourier transform to show that there exists a solution
of the form

u(x, t) = Wt ∗ g (x) :=

∫
Wt(x− y)g(y) dy, (2.2)

where Wt is the Gauss-Weierstrass kernel, defined by

Wt(x) =
1√
4πt

exp

(
−x

2

4t

)
, x ∈ R, t > 0.

By analysing (2.2), one can show that the condition g ∈ L1 can be relaxed. In fact, we have
the following theorem.

Theorem 2.1. If g is a bounded continuous function on R, then Wt ∗ g(x) is a solution to
(2.1) and Wt ∗ g(x) tends to g uniformly on every compact subset of R as t tends to 0. This is
the unique bounded solution.
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2.1 The Gauss-Weierstrass kernel and its periodization Heat Kernels

See Theorem 8.1 and Theorem 8.8 in [7] for a proof. Let us use this result to find a solution
to (2.1) in the special case when g is 2π-periodic. We have

u(x, t) =
∑
n∈Z

∫ π+2πn

−π+2πn
Wt(x− y)g(y) dy

=
∑
n∈Z

∫ π

−π
Wt(x− z − 2πn)g(z) dz

=

∫ π

−π
ϑt(x− z)g(z) dz, (2.3)

where ϑt is the periodized Gauss-Weierstrass kernel, defined by

ϑt(x) =
∑
n∈Z

Wt(x+ 2πn).

That is,

ϑt(x) =
∑
n∈Z

1√
4πt

exp

(
−(x+ 2πn)2

4t

)
.

In Figure 2.1 a demonstrative graph of ϑt is shown.

Figure 2.1: An illustration of ϑt(x) for −π ≤ x ≤ 2π when t = 0.3.

It follows from the definition that ϑt is 2π-periodic, and we obtain an important observation
if we let g(x) = ϑt0(x) for some t0 > 0. Then, according to (2.3), the solution to (2.1) is given
by
∫ π
−π ϑt(x − z)ϑt0(z) dz. But it is readily seen that ϑt+t0 is also a solution to this problem

and by uniquess they must be the same

ϑt+t0(x) =

∫ π

−π
ϑt(x− z)ϑt0(z) dz. (2.4)

This is known as the semi-group property of the kernel ϑt.
Another approach for finding a solution to (2.1) in the case when g is 2π-periodic is by

using Fourier series. By the standard procedure of separation of variables one gets

u(x, t) =
a0

2
+
∞∑
n=1

e−n
2t(an cosnx+ bn sinnx),

4



2.2 The Gauss-Weierstrass kernel and its periodization Heat Kernels

where an and bn are selected to be the Fourier coefficients of g (provided that they exists). If
we insert the formulas for an and bn we obtain

u(x, t) =
1

π

∫ π

−π

(
1

2
+
∞∑
n=1

e−n
2t cosn(x− z)

)
g(z) dz.

If we compare this with (2.3) we infer that

ϑt(x) =
1

2π
+

1

π

∞∑
n=1

e−n
2t cosnx. (2.5)

This result follows also directly by applying the Poisson summation formula to ϑt (see [4,
(9.38)]). We shall use this relation later when dealing with one of the ultraspherical heat
kernels. We conclude this section with some useful observations.

Observation 2.2.

1. For all n ∈ Z, the function x 7→ ϑt(x+ nπ) is even.

2. ϑt ∈ C∞(R) and

ϑ
(k)
t (x) =

∑
n∈Z

W
(k)
t (x+ 2πn).

3. ϑt(x) + ϑt(π − x) = 2ϑ4t(2x).

Proof.

1. It suffices to show that ϑt(x) and ϑt(x+π) are even since ϑt is 2π-periodic. First we note
that ϑt(x) can be written as

Wt(x) +
∑
n≥1

[Wt(x+ 2πn) +Wt(x− 2πn)] ,

which is a sum of even functions. Similarly,

ϑt(x+ π) =
∑
n≥0

[Wt(x+ π + 2πn) +Wt(x− π − 2πn)] ,

which also is a sum of even functions.

2. By the Weierstrass M-test it follows that the series∑
n∈Z

W
(k)
t (x+ 2πn)

is uniformly convergent on the compact interval [0, π] for any k. Therefore, we can
interchange the differentiations and the summation.

3. If we use (2.5) together with cosn(π − x) = (−1)n cosnx, we get

ϑt(x) + ϑt(π − x) =
1

π
+

1

π

∞∑
n=1

(1 + (−1)n)e−n
2t cosnx,

which implies that the terms corresponding to odd n vanish. That is,

ϑt(x) + ϑt(π − x) =
1

π
+

2

π

∞∑
n=1

e−4n2t cos 2nx,

and this is 2ϑ4t(2x).
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2.2 The ultraspherical heat kernel Heat Kernels

2.2 The ultraspherical heat kernel

We will mainly be interested the ultraspherical heat kernel, which is a special case of the more
general Jacobi heat kernel. Therefore, we start with stating some important properties of the
Jacobi polynomials and the Jacobi heat kernel.

The Jacobi polynomials are defined by

Pα, βn (x) =
(−1)n

2nn!
(1− x)−α(1 + x)−β

dn

dxn

[
(1− x)α(1 + x)β(1− x2)n

]
,

for parameters α, β > −1 and n ≥ 0. They satisfies the Jacobi differential equation

Jα,βPα,βn = n(n+ α+ β + 1)Pα,βn , (2.6)

where Jα,β is the Jacobi operator, given by

Jα,β = −(1− x2)
d2

dx2
− [β − α− (α+ β + 2)x]

d

dx
. (2.7)

This means that the Jacobi polynomials are the eigenfunctions of the Jacobi operator with
eigenvalues n(n+ α+ β + 1).

For some values on the parameters α and β, other well-known polynomials are obtained. If
α = β = 0, the Jacobi polynomials are the Legendre polynomials. For α = β = −1/2, we get
the Chebyshev polynomials. If α = β = λ− 1/2, they reduce to the ultraspherical polynomials
Cλn up to a normalizing factor

P λ−1/2, λ−1/2
n (x) =

Γ(2λ)Γ(λ+ n+ 1/2)

Γ(2λ+ n)Γ(λ+ 1/2)
Cλn(x).

For each α and β, the polynomials {P (α, β)
n } form an orthogonal basis for L2(−1, 1) with

respect to the measure
d%α,β(x) = (1− x)α(1 + x)β dx,

with the normalizing constant

hα, βn :=

∫ 1

−1

[
Pα, βn (x)

]2
d%α,β =

2α+β+1Γ(n+ α+ 1)Γ(n+ β + 1)

(2n+ α+ β + 1)Γ(n+ α+ β + 1)Γ(n+ 1)
. (2.8)

Similarly to the usual series that is obtained by separation of variables when solving the heat
equation, the Jacobi heat kernel is defined by

Gα, βt (x, y) =
∞∑
n=0

e−tn(n+α+β+1)P
α,β
n (x)Pα,βn (y)

hα,βn
, x, y ∈ [−1, 1], t > 0. (2.9)

A difference in this kernel compared with other kernels (e.g. the Hermite and Laguerre kernel)
is that the eigenvalue in the exponential is not linear in n and this difficulty is one reason
why no explicit formula for Gα, βt (x, y) has been found. However, for parameters α, β ≥ −1/2
Gaussian upper and lower bounds have been deduced (see [10]).

We shall now see that the kernel is smooth for t > 0 and x, y ∈ (−1, 1). First we note that

the k:th derivative of Pα, βn can be estimated by repeated use of the formula

d

dx
Pα, βn (x) =

1

2
(n+ α+ β + 1)Pα+1, β+1

n−1 (x),

6



2.2 The ultraspherical heat kernel Heat Kernels

(see [13, (4.21.7)]) combined with the following upper bound for Jacobi polynomials (see [13,
(7.32.2)]),

max
−1≤x≤1

|Pα, βn (x)| . nq, q = max

(
α, β, − 1

2

)
.

This means, the k:th derivative of Pα, βn (x) is bounded by a polynomial of n having a degree
depending only on α, β and k. Next, by applying the asymptotic formula

lim
n→∞

Γ(n+ α)

Γ(n)nα
= 1, α ∈ R,

to (2.8) we infer that 1/hα, βn . n. Thus, by differentiating the terms in the defining series by
any order in x, y or t we see that the series is uniformly convergent on every compact subset of
(0,∞)× [−1, 1] by Weierstrass M-test, and the derivatives can therefore be moved out in front
of the summation.

The smoothness together with (2.6) implies in particular that (∂t + Jα,β)Gα, βt (· , y) = 0 for
all y ∈ [−1, 1]. In view of this we let the function U be defined by

U(x, t) =

∫ 1

−1
Gα,βt (x, y)F (y) d%α,β(y), (2.10)

where F is a %α,β-integrable function. Then (∂t + Jα,β)U = 0 and furthermore, by [9, Proposi-
tion 3.3], we have limt→0 U(x, t) = F (x). That is, U is the solution the Jacobi heat equation:(∂t + Jα,β)U(x, t) = 0, x ∈ [−1, 1], t > 0,

U(x, 0+) = F (x), x ∈ [−1, 1].
(2.11)

When the Jacobi parameters are equal, α = β = λ, the Jacobi heat kernel is called the
ultraspherical heat kernel. Since this will be the case for the rest of this paper, we adopt the
following notation

Gλt := Gλ,λt , Jλ := Jλ,λ, hλn = hλ, λn , %λ := %λ, λ.

Furthermore, we shall use the trigonometric parametrization x = cos θ, which transforms the
operator Jλ into the new operator

J λ = − d2

dθ2
− (2λ+ 1) cos θ

sin θ

d

dθ
, (2.12)

and the measure transforms to

d%λ(cos θ) = 2 sin2λ+1 θ dθ.

For more properties of the Jacobi and ultraspherical polynomials, see chapter 4 in [13].
As mentioned earlier, there is no closed formula for Gλt in general. But for the special cases

λ = −1/2 and 1/2, the kernels can be expressed as ’nice’ non-oscillating series, and when λ = 0
the kernel can be expressed as an integral with a positive non-oscillating integrand. In each of
the next three subsections these cases will studied separately.
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2.2 The ultraspherical heat kernel Heat Kernels

2.2.1 Neumann boundary conditions

We shall now use the classical heat equation on [0, π] with Neumann boundary conditions to
establish that

G
−1/2
t (cos θ, cosϕ) = ϑt(θ − ϕ) + ϑt(θ + ϕ), θ, ϕ ∈ [0, π], t > 0. (2.13)

We start by noting that if λ = −1/2, the differential operator (2.12) turns out to be particularity
simple, J −1/2 = −∂θθ, and the measure %−1/2 becomes simply the Lebesgue measure in θ. If
we set u(θ, t) := U(cos θ, t) and f(ϕ) := F (cosϕ), the problem (2.11) transforms into(∂t − ∂θθ)u(θ, t) = 0, θ ∈ [0, π], t > 0

u(θ, 0) = f(θ), θ ∈ [0, π],

and the solution is thus given by

u(θ, t) =

∫ π

0
G
−1/2
t (cos θ, cosϕ)f(ϕ) dϕ. (2.14)

If follows that u satisfies the Neumann boundary condition uθ(0, t) = uθ(π, t) = 0 since G
−1/2
t

is smooth and

uθ(θ, t) = sin θ

∫ π

0
(∂xG

−1/2
t )(cos θ, cosϕ)f(ϕ) dϕ. (2.15)

Hence u is a solution to the classical heat problem with Neumann boundary conditions:
ut − uθθ = 0, θ ∈ [0, π], t > 0,

u(θ, 0) = f(θ), θ ∈ [0, π],

uθ(0, t) = uθ(π, t) = 0, t > 0.

(2.16)

By using the maximum principle, one can show that the solution to (2.16) is unique. See section
2 in [11].

Next, we use a different approach to find another solution to (2.16). Then we compare the
two solutions obtained and conclude that the two corresponding kernels must be equal.

Let g be the even 2π-periodic extension of f . That is,

g(θ) =

{
f(θ − 2nπ) if θ ∈ [2nπ, 2nπ + π]

f(2nπ − θ) if θ ∈ [2nπ − π, 2nπ],
∀n ∈ Z.

In this way, θ 7→ g(nπ + θ) is an even function for all n ∈ Z. From Section 2.1 we know that
Wt ∗g(x) is a solution to (2.1). Let us define the function u to be the restriction of Wt ∗g(x) on
[0, π]. Then, u will be a solution to (2.16) if also the boundary condition uθ(0, t) = uθ(π, t) = 0
is satisfied. This is indeed the case, because

uθ(0, t) =

∫
W ′t(−φ)g(φ) dφ = 0,

since W ′t is odd and g is even. Similarly,

uθ(π, t) =

∫
W ′t(−φ′)g(π + φ′) dφ′ = 0,

8



2.2 The ultraspherical heat kernel Heat Kernels

since W ′t is odd and θ 7→ g(π + θ) is even. Thus the boundary conditions are satisfied and u is
a solution to (2.16).

To derive the corresponding heat kernel, we write

u(θ, t) =
∑
n∈Z

(∫ 2nπ+π

2nπ
Wt(θ − φ)f(φ− 2nπ) dφ+

∫ 2nπ

2nπ−π
Wt(θ − φ)f(2nπ − φ) dφ

)
=

∑
n∈Z

(∫ π

0
Wt(θ − ϕ− 2nπ)f(ϕ) dϕ+

∫ π

0
Wt(θ + ϕ− 2nπ)f(ϕ) dϕ

)
,

and by the dominated convergence theorem we can interchange the sum and integral to get

u(θ, t) =

∫ π

0

∑
n∈Z

[Wt(θ − ϕ− 2nπ) +Wt(θ + ϕ− 2nπ)] f(ϕ) dϕ

=

∫ π

0
[ϑt(θ − ϕ) + ϑt(θ + ϕ)] f(ϕ) dϕ. (2.17)

So the kernel is given by ϑt(θ−ϕ) + ϑt(θ+ϕ). Since (2.14) and (2.17) both solve the problem
(2.16), the two kernels must be the same and we conclude that (2.13) is true.

2.2.2 Dirichlet boundary conditions

Now we use the same technique as in the previous subsection, but with Neumann replaced by
Dirichlet boundary conditions. The aim is to show that

G
1/2
t (cos θ, cosϕ) = et

ϑt(θ − ϕ)− ϑt(θ + ϕ)

sin θ sinϕ
, θ, ϕ ∈ [0, π], t > 0. (2.18)

When λ = 1/2, the differential operator (2.12) will not be as simple as before. Instead, we get

J 1/2 = − d2

dθ2
− 2 cos θ

sin θ

d

dθ
, (2.19)

and the measure (2.2) is
d%1/2(cos θ) = 4 sin2 θ dθ. (2.20)

Therefore, we consider the new basis functions φn defined by

φn(θ) = 2 sin θP 1/2
n (cos θ), (2.21)

which then form a complete orthogonal basis for L2(0,π) with respect to Lebsegue measure in
θ. Furthermore, according to (2.6) we have

J 1/2P 1/2
n (cos θ) = n(n+ 2)P 1/2

n (cos θ), (2.22)

from which it follows directly that

sin θJ 1/2

[
1

sin θ
φn(θ)

]
= n(n+ 2)φn(θ). (2.23)

If we expand the LHS according to (2.19) we get

sin θ

(
− 1

sin θ
φ′′n(θ)−

[
2

(
1

sin θ

)′
+

2 cos θ

sin2 θ

]
φ′n(θ) +

[
2 cos2 θ

sin3 θ
−
(

1

sin θ

)′′]
φn(θ)

)
, (2.24)

9



2.2 The ultraspherical heat kernel Heat Kernels

which simply reduces to −φ′′n(θ) − φn(θ) when expanding the square brackets. This implies
that (2.23) is equivalent to

− φ′′n(θ) = (n+ 1)2φn(θ). (2.25)

Thus we can use φn to solve the classical heat problem with Dirichlet boundary conditions:
ut − uxx = 0, x ∈ [0,π], t > 0,

u(x,0) = f(x), x ∈ [0,π],

u(0,t) = u(π, t) = 0, t > 0.

(2.26)

This problem has a unique solution by the maximum principle (see [7, Theorem 8.7]). By the
standard procedure of separation of variables, we get the solution

u(θ, t) =

∫ π

0

∞∑
n=0

e−t(n+1)2 φn(θ)φn(ϕ)

‖φn‖2
f(ϕ) dϕ,

where ‖ · ‖ is the norm in L2(0,π). It is readily seen from (2.21) that u satisfies the boundary
conditions

u(0, t) = u(π, t) = 0.

By inspecting the kernel we note from (2.9) that it can be written as

∞∑
n=0

e−t(n+1)2 φn(θ)φn(ϕ)

‖φn‖2
=

∞∑
n=0

e−tn(n+2)P
1/2
n (cos θ)P

1/2
n (sinϕ)

‖P 1/2‖2%
e−t sin θ sinφ

= G
1/2
t (cos θ, cosϕ)e−t sin θ sinφ. (2.27)

In the same manner as in the previous section, we shall find another solution to (2.26) and
thereafter conclude that the corresponding heat kernel must be equal to (2.27) by uniqueness.
This time, we let g be the odd 2π-periodic extension of f . That is,

g(θ) =

{
f(θ − 2nπ) if θ ∈ [2nπ, 2nπ + π]

−f(2nπ − θ) if θ ∈ [2nπ − π, 2nπ].
∀n ∈ Z.

In this way, θ 7→ g(nπ + θ) is an odd function for all n ∈ Z. Let the function u be the
restriction of Wt ∗g on [0, π]. Then u will be a solution to (2.26) if also the boundary condition
u(0, t) = u(π, t) = 0 is satisfied. This is indeed the case, because

u(0, t) =

∫
Wt(−φ)g(φ) dφ = 0,

since Wt is even and g is odd. Similarly,

u(π, t) =

∫
Wt(−φ′)g(π + φ′) dφ′ = 0,

since Wt is even and θ 7→ g(π + θ) is odd. Thus u is a solution to (2.26).
To derive the corresponding heat kernel, we note that

u(θ, t) =

∫
Wt(θ − ϕ)g(ϕ) dϕ

=
∑
n∈Z

(∫ 2nπ+π

2nπ
Wt(θ − ϕ)f(ϕ− 2nπ) dϕ−

∫ 2nπ

2nπ−π
Wt(θ − ϕ)f(2nπ − ϕ) dϕ

)
,

10



2.2 The ultraspherical heat kernel Heat Kernels

which is exactly the same expression obtained in the previous subsection except for a minus
sign instead of a plus sign. By carrying out exactly the same calculations we get the solution

u(θ, t) =

∫ π

0
[ϑt(θ − ϕ)− ϑt(θ + ϕ)] f(ϕ) dϕ.

So the kernel is given by ϑt(θ − ϕ)− ϑt(θ + ϕ) and has to be equal to (2.27),

G
1/2
t (cos θ, cosϕ)e−t sin θ sinφ = ϑt(θ − ϕ)− ϑt(θ + ϕ),

so (2.18) is true as desired.

2.2.3 The Dirichlet-Mehler integral

In the two previous subsections we have found elementary representations of the kernels G
−1/2
t

and G
1/2
t in terms of ϑt. Unfortunately, it is not possible to use the same technique to derive a

similar result for G0
t . However, there exists a double integral representation of G0

t in terms of

G
1/2
t as a result of the more general formula discovered by the authors of [10] (Theorem 3.1),

Gα, βt (cos θ, cosϕ) = Cα, β

∫∫
G
α+β+1/2
t/4

(
u sin

θ

2
sin

ϕ

2
+ v cos

θ

2
cos

ϕ

2
, 1

)
dΠα(u) dΠβ(v),

(2.28)
where Πα is the measure defined on the interval [−1, 1] by

dΠα(u) =
Γ(α+ 1)√
πΓ(α+ 1/2)

(1− u2)α−1/2 du,

and Cα, β =
√
πΓ(α + β + 3/2)/

(
2α+β+1Γ(α+ 1)Γ(β + 1)

)
. The proof relies on Dijksma and

Koornwinder’s product formula for Jacobi polynomials which in turn is a result of sophisticated
mathematics (see [3]).

The remainder of this section is intended to give an alternative proof of (2.28) for the case
we shall be mainly interested in; ϕ = α = β = 0. The key observation is that the Jacobi
polynomials reduces to Legendre polynomials in this setting and the strategy is to insert the
Dirichlet-Mehler’s integral formula for the Legendre polynomials into the oscillatory sum (2.9)
defining G0

t .
The Dirichlet-Mehler integral formula for Legendre polynomials Pn is given by

Pn(cos θ) =
2

π

∫ π

θ

sin(n+ 1
2)φ

√
2 cos θ − 2 cosφ

dφ,

and can be proved by using Cauchy’s integral formula on Rodrigues’ formula for Pn, with a
cleverly selected contour of integration. See [13, (4.8.7)] for proof and details. We shall modify
this formula slightly to make the interval of integration symmetric around π/2, which is crucial
for the later argument. To do this, note that the interval of integration can be extended to
[θ, 2π − θ] since the integrand is “even around φ = π”,

1

π

∫ 2π−θ

θ

sin(n+ 1
2)φ

√
2 cos θ − 2 cosφ

dφ.

Next, the transformation γ = φ/2 yields the desired expression

Pn(cos θ) =
2

π

∫ π−θ/2

θ/2

sin(2n+ 1)γ√
2 cos θ − 2 cos 2γ

dγ. (2.29)

11



2.2 The ultraspherical heat kernel Heat Kernels

We now establish an integral formula for G0
t (cos θ, 1), which later will be the starting point

when estimating the spherical heat kernel on S2.

Theorem 2.3. Let t > 0 and θ ∈ [0, π]. Then

G0
t (cos θ, 1) = et/4

∫ π−θ/2

θ/2

−ϑ′t/4(γ)
√

2 cos θ − 2 cos 2γ
dγ. (2.30)

Proof. Let us simply denote P 0
n by Pn and let ‖ · ‖ be the norm in L2(−1, 1). From (2.9) we

have

G0
t (cos θ, 1) =

∞∑
n=0

e−tn(n+1)Pn(cos θ)Pn(1)

‖Pn‖2
. (2.31)

By induction on Bonnet’s recursion formula

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x), P0(x) = 1, P1(x) = x,

we can prove that Pn(1) = 1 for all n (see [12, 12.2]). From (2.8) it follows that ‖Pn‖2 =
2/(2n + 1) (or see Theorem 6.1 in [4]). If we insert the formula (2.29) into (2.31) and write
n(n+ 1) = 1

4(2n+ 1)2 − 1
4 we get

G0
t (cos θ,1) =

et/4

π

∞∑
n=0

∫ π−θ/2

θ/2
e−

t
4

(2n+1)2(2n+ 1) sin(2n+ 1)γ
1√

2 cos θ − 2 cos 2γ
dγ.

The expression in the square root is symmetric around γ = π/2 and the integral of sinnγ over
the interval [θ/2, π − θ/2] vanishes whenever n is even. Hence we can sum over all n ≥ 0 and
get

et/4

π

∞∑
n=1

∫ π−θ/2

θ/2
e−

t
4
n2
n sinnγ

1√
2 cos θ − 2 cos 2γ

dγ.

By the dominated convergence theorem we move the summation inside the integral,

et/4
∫ π−θ/2

θ/2

[
1

π

∞∑
n=1

e−
t
4
n2
n sinnγ

]
1√

2 cos θ − 2 cos 2γ
dγ.

Then we recognize the expression in square brackets as the derivative of the periodized Gauss-
Weierstrass kernel,

1

π

∞∑
n=1

e−
t
4
n2
n sinnγ = − d

dγ

(
1

2π
+

1

π

∞∑
n=1

e−
t
4
n2

cosnγ

)
= −ϑ′t/4(γ),

by (2.5). This proves the assertion.

We shall now show that (2.30) can be transformed into the general formula (2.28) as a
special case. In view of (2.18) we obtain

G
1/2
t (cos γ, 1) = lim

ϕ→0

2et

sin γ

(
−ϑt(γ + ϕ)− ϑt(γ − ϕ)

2 sinϕ

)
=

2et

sin γ

(
−ϑ′t(γ)

)
. (2.32)

12



2.3 The spherical heat kernel Heat Kernels

Using this together with the trigonometric identity cos(2a)− cos(2b) = 2
(
cos2 a− cos2 b

)
, the

integral formula (2.30) can be written as

G0
t (cos θ, 1) =

1

4

∫ π−θ/2

θ/2
G

1/2
t/4

(
cos γ, 1

) sin γ√
cos2 θ

2 − cos2 γ
dγ.

The transformation

v =
cos γ

cos θ2
, dv = − sin γ

cos θ2
dγ,

yields

G0
t (cos θ, 1) =

1

4

∫ 1

−1
G

1/2
t/4

(
v cos

θ

2
, 1

)
1√

1− v2
dv, (2.33)

which indeed is the special case of (2.28) when ϕ = α = β = 0. We shall use this formula later
when proving that the function θ 7→ G0

t (cos θ, 1) is decreasing on [0, π] for small t.

2.3 The spherical heat kernel

The Laplace operator can be generalized to arbitrary Riemannian manifolds and goes then
usually by the name of Laplace-Beltrami operator. Let f ∈ C2(SN ) and F : RN+1\{0} → R
be defined by F (x) = f(x/|x|). Then the corresponding Laplace-Beltrami operator, denoted
∆N , on the sphere can be defined by ∆Nf := ∆F |SN , that is, the ordinary Laplacian in RN+1

applied to F and restricted to SN (see [1, p. 15]).
The heat equation on the sphere isut −∆Nu = 0, x ∈ SN , t > 0

u(x, 0+) = f(x), x ∈ SN .
(2.34)

Let σN be the standard non-normalized area measure on SN . Then the solution of (2.34) is
given by

u(ξ, t) =

∫
SN

KN
t (ξ, η)f(η) dσN (η),

where KN
t is expressed as an oscillatory series of spherical harmonics.

By properties of the Laplacian, the kernel KN
t depends only on ξ and η through their

spherical distance, which is defined by

d(ξ, η) = arccos〈ξ, η〉.

To see this, recall that the ordinary Laplacian in RN+1 satisfies ∆(f ◦ U) = (∆f) ◦ U for
functions f ∈ C2(RN ) and orthogonal linear transformations U . By the way we defined ∆N ,
it is clear that also ∆N (f ◦ U) = (∆Nf) ◦ U for f ∈ C2(SN ). This implies in particular that
(∂t −∆N )KN

t (Uξ, Uη) = 0 with respect to ξ for all η. Furthermore, since the measure σN is
invariant under orthogonal transformations and u(x, 0+) = f(x), we also have

lim
t→0

∫
SN

KN
t (Uξ, Uη)f(η) dσN (η) = lim

t→0

∫
SN

KN
t (Uξ, η′)f(U−1η′) dσN (η′)

= f(U−1η′)|η′=Uξ = f(ξ).

13



2.3 The spherical heat kernel Heat Kernels

This means that the function (ξ, η) 7→ KN
t (Uξ, Uη) also is a kernel of the problem (2.34), and

therefore we must have
KN
t (ξ, η) = KN

t (Uξ, Uη), (2.35)

by uniqueness. For any points ξ1, η1, ξ2, η2 in SN such that d(ξ1, η1) = d(ξ2, η2), there exists
an orthogonal transformation U such that ξ1 = Uξ2 and η1 = Uη2. By (2.35) we then have
KN
t (ξ1, η1) = KN

t (ξ2, η2), which means that the spherical heat kernel only depends on the
spherical distance between its arguments. For this reason, it is convenient to adopt the following
notation

KN
t (θ) := KN

t (ξ, η), θ = d(ξ, η).

By Theorem 3.3 in [10] we have the following relation between the spherical and ultras-
pherical heat kernel

Gλt (x, y) =

∫
SN−1

KN
t

(
(x, ξ2, . . . , ξN ),

(
y, ζ
√

1− y2
))

dσN−1(ζ), x, y ∈ [−1, 1], t > 0,

where the coordinates ξ2, . . . , ξN can be picked arbitrarily and λ = N/2− 1. By letting y = 1,
we see that the variable of integration vanishes from the integrand and we infer that

Gλt (x, 1) = σN−1

(
SN−1

)
KN
t ((x, ξ2, . . . , ξN ) , (1, 0, . . . , 0)) . (2.36)

The constant σN−1

(
SN−1

)
is the ’area’ of SN−1 and is given by 2πN/2/Γ(N/2) (see [14, p.

193-194]). Let x = cos θ and note that the spherical distance between (x, ξ2, . . . , ξN ) and
(1, 0, . . . , 0) is θ. By the notation introduced earlier, we can write (2.36) as

KN
t (θ) =

Γ(λ+ 1)

2πλ+1
Gλt (cos θ, 1), λ =

N

2
− 1.

In view of the expressions for Gλt (cos θ, 1) with parameter λ = −1/2, 0 and 1/2 we derived
earlier, we have the following theorem.

Theorem 2.4. For t > 0 and θ ∈ [0, π], we have

K1
t (θ) = ϑt(θ),

K2
t (θ) =

et/4

2π

∫ π−θ/2

θ/2

−ϑ′t/4(γ)
√

2 cos θ − 2 cos 2γ
dγ,

K3
t (θ) =

et

2π

(
−ϑ′t(θ)
sin θ

)
.

Proof. This follows from (2.13), (2.30) and (2.32), respectively.

See Figure 4.1 for an illustration of K3
t (θ) for t = 0.4 and 0 ≤ θ ≤ π. The formulas in

Theorem 2.4 will be the starting-point of the estimates of K1
t , K2

t and K3
t .
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3
Preparatory results

In the expressions for K2
t and K3

t in Theorem 2.4, the derivative of ϑt is present. The function ϑ′t
behaves very much like W ′t for small t, which is convenient since W ′t is an elementary function
and easy to handle. But at the right endpoint we have ϑ′t(π) = 0 (by Observation 2.2) in
contrast to W ′t(π) < 0, for all t. This detail will later be important and makes it insufficient
to approximate ϑ′t by just W ′t . It turns out to be useful to introduce the auxiliary function
ht = ϑ′t/W

′
t , and in this way access the behavior of ϑ′t near π in terms of ht and W ′t .

3.1 Properties of the auxiliary function

Definition 3.1. For t > 0 we define ht(x) by

ht(x) =
ϑ′t(x)

W ′t(x)
, 0 < x ≤ π,

and as limx→0+ ht(x) at x = 0.

In Figure 3.1 a typical graph of ht is demonstrated.

Figure 3.1: An illustration of ht(x) for t = 1 and 0 ≤ x ≤ π.

We shall prove that ht is strictly concave and then use this to show that ht is strictly
decreasing. Since ϑ′t(π) = 0 we also have ht(π) = 0, which then implies that ht is non-negative

15
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on [0, π]. From these properties we obtain a useful upper bound for ht, which we will use later
in the estimates of the spherical heat kernels. But first we shall verify that ht can be written
as

ht(x) = 1 +
∑
n≥1

fn,t(x) exp

(
−π

2n2

t

)
(3.1)

where

fn,t(x) := 2 cosh
(πnx

t

)
− 4πn

x
sinh

(πnx
t

)
.

This expression is useful since we then can use fn,t to prove properties of ht. The formula (3.1)
follows from the following calculations

ht(x) =
∑
n∈Z

(
1 +

2πn

x

)
exp

(
−π

2n2 + πnx

t

)
= 1 +

∑
n≥1

[(
1 +

2πn

x

)
exp

(
−πnx

t

)
+

(
1− 2πn

x

)
exp

(πnx
t

)]
exp

(
−π

2n2

t

)

= 1 +
∑
n≥1

[
2 cosh

(πnx
t

)
− 4πn

x
sinh

(πnx
t

)]
exp

(
−π

2n2

t

)
.

Theorem 3.2. ht is strictly concave on [0, π] when t is small.

Proof. In view of (3.1), the idea is to show that the second derivative of fn,t is negative for
n ≥ 1 when t is sufficiently small. Then it follows that ht is strictly concave for small t. We
have

d2fn,t
dx2

(x) =

(
2π2n2

t2
+

8π2n2

x2t

)
cosh

(nπx
t

)
−
(

8πn

x3
+

4π3n3

xt2

)
sinh

(nπx
t

)
.

Let us assume that x ∈ (0, π]. Then by multiplying both sides with t3x3

2nπ , we get

d2fn,t
dx2

(x) < 0⇔
(
nπx3t+ 4nπt2x

)
cosh

(nπx
t

)
−
(
4t3 + 2n2π2x2t

)
sinh

(nπx
t

)
< 0. (3.2)

Let us denote the LHS of the last inequality by Fn,t(x) and observe that Fn,t(0) = 0. Then
(3.2) is true (except at x = 0) if Fn,t is strictly decreasing on (0, π] for all n ≥ 1 when t is
sufficiently small. Indeed, if we take the derivative of Fn,t and use the inequality sinh < cosh,
we obtain

F ′n,t(x) =
(
3nπx2t− 2n3π3x2

)
cosh

(nπx
t

)
+ n2π2x3 sinh

(nπx
t

)
< nπx2 (3t− nπ(2nπ − x)) cosh

(nπx
t

)
< 0, n ≥ 1, x ∈ (0, π], 0 < t <

π2

3
.

Hence F ′n,t is negative and Fn,t is strictly decreasing, implying that (3.2) is true for x ∈ (0, π]
and we are done.

Corollary 3.3. ht is strictly decreasing on [0, π] for small t.
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Proof. We note that ht is the quotient of two odd functions and is therefore even. Thus we
have h′t(0) = 0. This fact, together with Theorem 3.2 proves the assertion.

Theorem 3.4. For sufficiently small t we have the following upper bound

ht(x) ≤ min
(

1,
π

t
(π − x)

)
, x ∈ [0, π].

Figure 3.2: An illustration of Theorem 3.4 for x ∈ [3, π] with t = 0.1. The solid line is ht and the
dashed line is the upper bound.

Proof of Theorem 3.4. Let us first prove that ht(x) ≤ 1 for x ∈ [0, π] and then prove that
ht(x) ≤ π

t (π − x) for x ∈ [0, π].
It was proved in Corollary 3.3 that ht is strictly decreasing. If we can show that ht(0) < 1

for sufficiently small t, the first inequality follows. Indeed, recall from (3.1) that

ht(x) = 1 +
∑
n≥1

fn,t(x) exp

(
−π

2n2

t

)
and note that

fn,t(0) = 2− 4π2n2

t
< 0, n ≥ 1, t < 2π2.

Hence ht(x) ≤ 1 for x ∈ [0, π] for small t.
Now we show that ht(x) ≤ π

t (π− x) for x ∈ [0, π]. From Theorem 3.2 we also know that ht
is strictly concave on [0, π]. The idea is therefore to find an upper bound for the tangent line
of ht at x = π. Looking at the derivative of ht, we get

h′t(π) =
∑
n≥1

f ′n,t(π) exp

(
−π

2n2

t

)

=
∑
n≥1

[(
2πn

t
+

4n

π

)
sinh

(
π2n

t

)
− 4πn2

t
cosh

(
π2n

t

)]
exp

(
−π

2n2

t

)
.

The first term in this series tends to −∞ as t gets small:[(
2π

t
+

4

π

)
sinh

(
π2

t

)
− 4π

t
cosh

(
π2

t

)]
exp

(
−π

2

t

)
= −π

t
+

2

π
−
(

3π

t
+

2

π

)
exp

(
−2π2

t

)
.
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We shall now verify that sum of the remaining terms tends to 0 as t→ 0. By using the triangle
inequality and the fact that sinh < cosh < exp we get∑

n≥2

|f ′n,t(π)| exp

(
−π

2n2

t

)
≤

∑
n≥2

(
2πn

t
+

4n

π
+

4πn2

t

)
exp

(
π2(n− n2)

t

)

.
1

t

∞∑
n=1

n2 exp

(
−π

2n

t

)
,

and this well-known series can be evaluated to

e
−π2
t

(
1 + e

−π2
t

)
t
(

1− e
−π2
t

)3 ,

(see [12, p. 192]) which indeed tends to 0 as t→ 0. The analysis just made shows that we have

h′t(π) = −π
t

+
2

π
+O

(
1

t
exp

(
−π

2

t

))
,

and thus,

h′t(π) ≥ −π
t
,

for sufficiently small t. Hence ht(x) ≤ π
t (π − x) on [0, π] and we are done.

Corollary 3.5. For x ∈ [0, π] and sufficiently small t we have the following bound

ht(x) .
π − x

π − x+ t
.

Proof. By Theorem 3.4 it suffices to show that

Gt(x) := (π + 1)
π − x

π − x+ t
−min

(
1,
π

t
(π − x)

)
≥ 0.

Observe that we have equality at x = π− t/π and x = π. It is easy to verify that Gt is concave
on the two intervals [0, π − t/π] and [π − t/π, π]. By this it follows directly that Gt(x) ≥ 0 on
the latter interval. If we pick t sufficiently small such that Gt(0) > 0 we get that Gt(x) ≥ 0 on
the first interval as well.

It should be noted that the arguments in this sections only apply when t is small, but it is
natural to conjecture that similar results hold for all t.
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4
Monotonicity properties of the

spherical heat kernel

In this chapter, we show that KN
t (θ) is strictly decreasing on [0, π] when N = 1, 2 and 3.

That is, the spherical heat kernel KN
t (ξ, η) is strictly decreasing as a function of the spherical

distance between ξ and η. By the methods used, we shall only consider small t for N = 2, 3.
Also, a probabilistic proof is given for the case when N = 1. In view of Theorem 2.4, this
implies in particular that the kernels are positive.

4.1 Monotonicity of K1
t

The idea is to show that the derivative of ϑt is negative on (0, π) for sufficiently small t and
then use the semi-group property of ϑt to prove that ϑt remains strictly decreasing on [0, π] for
all t. But first we need the following elementary lemma.

Lemma 4.1. Let f and g be 2π-periodic functions which are integrable on [0, 2π]. Then,∫ π

−π
f(x− y)g(y) dy =

∫ π

−π
g(x− y)f(y) dy, x ∈ [0, π].

Proof. By the change of variables, z = x− y, the LHS becomes∫ x+π

x−π
f(z)g(x− z) dz =

∫ π

x−π
f(z)g(x− z) dz +

∫ x+π

π
f(z)g(x− z) dz

=

∫ π

x−π
f(z)g(x− z) dz +

∫ x−π

−π
f(z)g(x− z) dz

=

∫ π

−π
g(x− z)f(z) dz.

Theorem 4.2. ϑt is strictly decreasing on [2πn, 2πn + π] and strictly increasing on [2πn +
π, 2πn+ 2π] for all n ∈ Z, t > 0.

19



4.2 Monotonicity of K3
t Monotonicity properties of the spherical heat kernel

Proof. Since ϑt(x) and ϑt(x+ π) is even and 2π-periodic, it suffices to show that ϑt is strictly
decreasing on [0, π] for all t > 0.

If we use the relation ϑ′t = htW
′
t , and recall that ht is positive and W ′t is negative on (0, π),

we conclude that ϑt is strictly decreasing on [0, π] for small t. Accordingly, let t0 > 0 be
sufficiently small so that ϑt0 is strictly decreasing on [0, π], and let t ∈ (0, t0]. From (2.4) we
know that ϑt satisfies the semi-group property

ϑt0+t(x) =

∫ π

−π
ϑt0(x− z)ϑt(z) dz.

Differentiating both sides and using Lemma 4.1, we obtain

ϑ′t0+t(x) =

∫ π

−π
ϑt(x− z)ϑ′t0(z) dz.

Since ϑ′t0 is odd, we have

ϑ′t0+t(x) =

∫ π

0
[ϑt(x− y)− ϑt(x+ y)]ϑ′t0(y) dy. (4.1)

It turns out that the expression in the square brackets is positive:

ϑt(x− y)− ϑt(x+ y) > 0, x, y ∈ (0, π). (4.2)

To verify this, observe first that

ϑt(x) = ϑt(arccos(cosx)), x ∈ R,

since both ϑt and cos are 2π-periodic and even, and arccos cosx = x when x ∈ [0, π]. With
this observation and the fact that ϑt and arccos are strictly decreasing on [0, π] and [−1, 1]
respectively, we get the following equivalences

ϑt(z − y)− ϑt(z + y) > 0 ⇔ ϑt(arccos(cos(x− y)))− ϑt(arccos(cos(x+ y))) > 0

⇔ arccos(cos(x− y))− arccos(cos(x+ y)) < 0

⇔ cos(x− y)− cos(x+ y) > 0

⇔ 2 sinx sin y > 0.

Thus (4.2) is true.
Hence the RHS of (4.1) is negative for x ∈ (0, π), which implies that ϑt0+t is strictly

decreasing on [0, π]. Since this is true for all t ∈ (0, t0] we infer that ϑt is strictly decreasing
on [0, π] for all t < 2t0. We can now iterate the whole procedure to show that ϑt is strictly
decreasing on [0, π] for t < 2kt0 for any k ∈ N. Hence ϑt is decreasing on [0, π] for all t > 0.

Corollary 4.3. ϑt has a global maximum at z = 2πn and global minimum at 2πn + π for
n ∈ Z.

4.2 Monotonicity of K3
t

Theorem 4.4. K3
t (θ) is strictly decreasing on [0, π] when t is sufficiently small.
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Figure 4.1: An illustration of K3
t (θ) for t = 0.4 and 0 ≤ θ ≤ π.

Proof of Theorem 4.4. Recall from Theorem 2.4 that

K3
t (θ) =

et

2π

(
−ϑ
′
t(θ)

sin θ

)
.

Our strategy is to show that the derivative is negative for θ ∈ (0, π),

d

dθ

(
−ϑ
′
t(θ)

sin θ

)
< 0⇔ −ϑ

′′
t (θ)

sin θ
+
ϑ′t(θ)

sin2 θ
cos θ < 0,

which is equivalent to showing that

ϑ′′t (θ) sin θ − ϑ′t(θ) cos θ > 0 (4.3)

for θ ∈ [0, π]. To prove this, we consider two cases; when θ is small and large, respectively.
Case 1: Assume that θ ∈ [0, π/2]. If we now use the relation ϑ′t = htW

′
t , the inequality

(4.3) becomes

h′t(θ)W
′
t(θ) sin θ + ht(θ)

[
W ′′t (θ) sin θ −W ′t(θ) cos θ

]
> 0.

To get rid of the derivatives of Wt we use the fact that

W ′t(θ) = − θ

2t
Wt(θ),

to get

−h′t(θ)
θ sin θ

2t
Wt(θ) + ht(θ)

[(
θ2

4t2
− 1

2t

)
sin θ +

θ

2t
cos θ

]
Wt(θ) > 0. (4.4)

Since ht is strictly decreasing for small t by Corollary 3.3, the first term is positive on the whole
interval (0, π). For the second term, note first that the expression in square brackets is zero at
θ = 0, and that its derivative is given by

θ2 cos θ

4t2
+ (1− t)θ sin θ

2t2
(4.5)

which clearly is positive for θ ∈ (0, π/2) when t < 1. This implies that the second term is
positive on (0, π/2). Thus, (4.3) is true for θ ∈ (0, π/2) when t is small.

21



4.2 Monotonicity of K3
t Monotonicity properties of the spherical heat kernel

Case 2: Assume that θ ∈ [π/2, π]. Note that the function θ 7→ ϑ′′t (θ) sin θ − ϑ′t(θ) cos θ
is zero at θ = π. If we can show that its derivative is negative on [π/2, π] we are done. The
derivative is given by

d

dθ

[
ϑ′′t (θ) sin θ − ϑ′t(θ) cos θ

]
=
(
ϑ

(3)
t (θ) + ϑ′t(θ)

)
sin θ.

From Theorem 4.2 we know that ϑ′t is negative on [π/2, π]. Thus it remains to prove that ϑ
(3)
t

is negative on [π/2, π] for small t.

Figure 4.2: ϑ
(3)
t for t = 0.2 and 0 ≤ x ≤ π. The critical points will move to the left as t gets

small.

Observe that this holds true for the Gauss-Weierstrass kernel:

W
(3)
t (θ) =

(
3θ

4t2
− θ3

8t3

)
Wt(θ), (4.6)

which indeed is negative when
√

6t < θ. From the defining formula of ϑt we have

ϑ
(3)
t (θ) =

∑
n∈Z

W
(3)
t (θ + 2πn)

=
∑
n≥0

(
W

(3)
t (θ + 2πn) +W

(3)
t (θ − 2π(n+ 1))

)
.

If we can show that all the terms in this series are non-positive when t is small we are done.

Let t be so small that W
(3)
t (θ + 2πn) is negative. Then

W
(3)
t (θ + 2πn) +W

(3)
t (θ − 2π(n+ 1)) ≤ 0 ⇔ −W (3)

t (θ − 2π(n+ 1))

W
(3)
t (θ + 2πn)

≤ 1.

If we use (4.6) and move the exponential term over to the RHS we get

(2πn+ 2π − θ)3 − 6(2πn+ 2π − θ)t
(2πn+ θ)3 − 6(2πn+ θ)t

≤ exp

(
π(2n+ 1)(π − θ)

t

)
, θ ∈ [π/2, π], n ≥ 0.

For every fixed θ ∈ [π/2, π] and t sufficiently small, the LHS is decreasing and the RHS is
increasing as functions of n. This is readily seen to be true for the RHS, but for the LHS we
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need a few lines of argument. Let xn = 2πn + θ and y = 2π − 2θ. Then the LHS can be
rewritten as

1 +
y3 − 6ty

x3
n − 6txn

+ 3y
xn + y

x2
n − 6t

,

and it is clear that the first two terms are nonincreasing as n is increasing provided t is small.
It remains to verify that the same holds for the last term. We have

xn+1 + y

x2
n+1 − 6t

<
xn + y

x2
n − 6t

⇔ 2π + xn + y

(4π2 + 4πxn) + x2
n − 6t

<
xn + y

x2
n − 6t

⇔ 2π(x2
n − 6t) < (4π2 + 4πxn)(xn + y)

⇔ 0 < 2πx2
n + 4π2(xn + y) + 4πxny + 12πt,

which clearly is true since all terms are positive. Hence it suffices to just consider the case
when n = 0,

(2π − θ)3 − 6(2π − θ)t
θ3 − 6θt

≤ exp

(
π(π − θ)

t

)
, θ ∈ [π/2, π].

Note first that we have equality at θ = π. Let ε > 0 be sufficiently small. By differentiating
the LHS with respect to θ, we obtain a continuous function which is bounded on the compact
interval (t, θ) ∈ [0, ε]× [π/2, π] by a positive constant M . This means that the LHS is bounded
above by the function y(θ) := −M(θ − π) + 1 on [π/2, π] when 0 < t < ε. The RHS is convex
function of θ and its derivative tends to −∞ uniformly as t gets small, which implies that it is
bounded from below by y(θ) on [π/2, π] for sufficiently small t. This proves the inequality.

4.3 Monotonicity of K2
t

Theorem 4.5. K2
t (θ) is strictly decreasing on [0, π] for small t.

Proof. From (2.33) we have

K2
t (θ) =

1

8π

∫ 1

−1
G

1/2
t/4

(
v cos

θ

2
, 1

)
1√

1− v2
dv.

Let us set f(v, θ) = arccos
(
v cos θ2

)
for v ∈ [−1, 1] and θ ∈ [0, π] so that cos f(u, θ) = v cos θ2 .

We can then also write G
1/2
t/4

(
v cos θ2 , 1

)
as K3

t/4(f). Note that the partial derivative

f ′θ(v, θ) =
v sin θ

2

2 sin f(v,θ)

is an odd function of v for all θ ∈ [0, π] because f(−v, θ) = π − f(v, θ). By the chain rule, the
derivative of the integrand is

d

dθ

[
K3
t/4(f)

1√
1− v2

]
=

d

df

[
K3
t/4(f)

] f ′θ(v, θ)√
1− v2

.

Since the kernel K3
t/4 is smooth, and f ′θ(v, θ) is bounded and continuous with respect to v

when θ ∈ (0, π), we can differentiate the integral and move the derivative inside the integral by
dominated convergence. That is,

d

dθ

[
K2
t (θ)

]
=

1

8π

∫ 1

−1

d

df

[
K3
t/4(f)

] f ′θ(v, θ)√
1− v2

dv.
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Since f ′θ(v,θ) is odd, this can be written as

1

8π

∫ 1

0

d

df

[
K3
t/4(f)−K3

t/4(π − f)
] f ′θ(v, θ)√

1− v2
dv.

By Theorem 4.4 we know that the function K3
t/4 is strictly decreasing on [0, π] for small t, and

therefore it is clear that the square bracket is a decreasing function on [0, π] with respect to
f , which implies that the derivative is negative. Thus the integral is negative and the claim
follows.

4.4 A probabilistic proof

In this section we establish that ϑt is strictly decreasing on [0, π] by using a probabilistic
argument. Let Θt be a Brownian motion in R starting at 0. Then the projection of Θt on
S1 = R/2πZ describes a freely diffusing particle on S1. Let θ1, θ2 ∈ [0, π] be such that θ2 > θ1.
Let ε > 0 be small and set

I1 =
⋃
n∈Z

[θ1 − ε, θ1 + ε] + 2πn, and I2 =
⋃
n∈Z

[θ2 − ε, θ2 + ε] + 2πn.

The probability of finding Θt in the set I1 can then be interpreted as the probability of finding
the diffusing particle in the interval [θ1 − ε, θ1 + ε] on S1 and similarly for I2. See Figure 4.3.

Figure 4.3: The diffusing particle will start at 0 when t = 0 and we wish to show that at any time
t > 0 there is a strictly higher probability of finding it in I1 than I2.

For the sake of clarity, we break up the argument into a sequence of steps.

1. Relate the probabilities of finding the particle in I1 and I2 to ϑt.

2. Show that the probability of finding the particle in I1 is greater or equal to the probability
of finding it in I2 and use this to prove that ϑt is nonincreasing on [0, π].

3. Show that if the particle has crossed the dashed line in Figure 4.3 before time t, then the
probability of finding it in I1 is the same as that of finding it in I2.
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4. Establish that there is a non-zero probability of finding the particle in I1 without ever
crossing the dashed line and use this to prove that ϑt is strictly decreasing on [0, π].

Step 1. Since Θt is a Brownian motion, it has normal distribution with mean 0 and variance
t. That is, for Borel sets I of R we have

P (Θt ∈ I) =

∫
I
Wt/2(θ) dθ. (4.7)

The probability of finding the particle in I1 will then be

P (Θt ∈ I1) =
∑
n∈Z

∫
[θ1−ε, θ1+ε]+2πn

Wt/2(θ) dθ

=
∑
n∈Z

∫
[θ1−ε, θ1+ε]

Wt/2(θ + 2πn) dθ

=

∫
[θ1−ε, θ1+ε]

ϑt/2(θ) dθ. (4.8)

Similarly for I2,

P (Θt ∈ I2) =

∫
[θ2−ε, θ2+ε]

ϑt/2(θ) dθ. (4.9)

This means that ϑt/2 can be interpreted as the distribution obtained by wrapping the normal
distribution around the unit circle.

Step 2. Let ϕ = (θ2 + θ1)/2 be the midpoint between the intervals I1, I2 and let τ be the
stopping time defined by

τ = inf {t > 0 : Θt ∈ (ϕ− π, ϕ)c} . (4.10)

Then {t ≥ τ} represents the event that the particle has crossed the dashed line in Figure 4.3.
It is proved in [6, Theorem 3.13] that stopping times defined like τ are almost surely finite;
P(τ <∞) = 1.

Next we use τ to write

P (Θt ∈ I1) = P (Θt ∈ I1, t ≥ τ) + P (Θt ∈ I1, t < τ) , (4.11)

and similarly
P (Θt ∈ I2) = P (Θt ∈ I2, t ≥ τ) + P (Θt ∈ I2, t < τ)︸ ︷︷ ︸

=0

. (4.12)

The second term vanishes since Brownian motion is continuous and cannot reach I2 without
first reaching ϕ or π − ϕ. Let us for the moment assume that

P (Θt ∈ I1, t ≥ τ) = P (Θt ∈ I2, t ≥ τ) . (4.13)

Then, subtracting (4.12) from (4.11) implies that

P (Θt ∈ I1)− P (Θt ∈ I2) = P (Θt ∈ I1, t < τ) ≥ 0. (4.14)

In view of (4.8) and (4.9) and the above inequality, we obtain

lim
ε→0

P (Θt ∈ I1)− P (Θt ∈ I2)

2ε
= ϑt/2(θ1)− ϑt/2(θ2) ≥ 0.
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Thus we conclude that ϑt is nonincreasing on [0, π].
Step 3. Now we prove that (4.13) is true. By the law of total probability we have

P (Θt ∈ I1, t ≥ τ) = P (Θt ∈ I1, t ≥ τ, Θτ = ϕ) + P (Θt ∈ I1, t ≥ τ, Θτ = ϕ− π) ,

and

P (Θt ∈ I2, t ≥ τ) = P (Θt ∈ I2, t ≥ τ, Θτ = ϕ) + P (Θt ∈ I2, t ≥ τ, Θτ = ϕ− π) .

Let us show that the terms corresponding to Θτ = ϕ are equal. Showing that the terms
corresponding to Θτ = ϕ− π are equal can be done completely analogously.

Assume that P(t ≥ τ, Θτ = ϕ) > 0 since otherwise we are trivially done. Then it suffices
to show that

P (Θt ∈ I1 | t ≥ τ, Θτ = ϕ) = P (Θt ∈ I2 | t ≥ τ, Θτ = ϕ) .

To prove this we need to recall the strong Markov property for Brownian motion (see for
example [6]).

Theorem 4.6 (Strong Markov Property). Let τ be a almost surely finite stopping time relative
to the filtration {Ft} of the standard Brownian motion {Bt : t ≥ 0}. For s ≥ 0, define the new
process

B∗s = Bs+τ −Bτ
with filtration {F∗s }. Then {B∗s : s ≥ 0} is a standard Brownian motion and F∗s is independent
of Fτ for all s > 0.

This means that the new Brownian motion B∗s is independent of τ and “everything we
know” about Bt up to time τ . We can invoke the strong Markov property by writing {Θt ∈
I1} = {Θt−τ+τ −Θτ ∈ I1 −Θτ} = {Θ∗t−τ ∈ I1 −Θτ} and thus

P (Θt ∈ I1 | t ≥ τ, Θτ = ϕ) = P
(
Θ∗t−τ ∈ I1 −Θτ | t ≥ τ, Θτ = ϕ

)
= P

(
Θ∗t−τ ∈ I1 − ϕ | t ≥ τ

)
.

Let F (x) = P(τ ≤ x | τ ≤ t). Since {Θ∗s : s ≥ 0} is independent of τ , we can marginalize over
τ to obtain

P
(
Θ∗t−τ ∈ I1 − ϕ | t ≥ τ

)
=

∫ t

0
P
(
Θ∗t−x ∈ I1 − ϕ

)
dF (x).

Similarly for I2 we obtain

P (Θt ∈ I2 | t ≥ τ, Θτ = ϕ) =

∫ t

0
P
(
Θ∗t−x ∈ I2 − ϕ

)
dF (x).

By (4.7) we see that for any interval I and s ≥ 0 we have P (Θ∗s ∈ I) = P (Θ∗s ∈ −I) since
Ws/2 is even. But it is easy to verify that I1 − ϕ = −(I2 − ϕ) and then we infer that the two
integrands are equal. Hence (4.13) is true.

Step 4. So far we have proved that ϑt is nonincreasing on [0, π]. To show that it is strictly
decreasing, we need some further arguments.

Let us assume there exists an open interval J in [0, π] on which ϑt is constant and show
that this leads to a contradiction. Since the two intervals I1 and I2 in our setting are arbitrary,
we may assume that they are contained in J . Then, since ϑt is constant on J we immediately
get P (Θt ∈ I1) = P (Θt ∈ I2) by (4.7), and in view of (4.14) this implies that

P (Θt ∈ I1, t < τ) = 0. (4.15)
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We shall now show that this is false. Let σ be the stopping time defined by σ = inf{t > 0 :
Θt ∈ (−θ1, θ1)c}. The idea is to show that given Θσ = θ1, there is a positive probability of the
particle to remain in the interval [θ1 − ε, θ1 + ε] all the time from σ up to t.

It is easy to verify that the probability p := P(σ < t) is positive for any t since {Θt/2 ≥
θ1} ⊆ {t ≥ σ} and P(Θt/2 ≥ θ1) =

∫∞
θ1
Wt/4 dθ > 0. By symmetry the event {σ < t, Θσ = θ1}

has probability p/2 and is therefore also positive. By conditioning on this event we get

P (Θt ∈ I1, t < τ) ≥ P (Θt ∈ I1, t < τ | σ < t, Θσ = θ1) p/2.

By using the strong Markov property we can write {Θt ∈ I1} = {Θt−σ+σ − Θσ ∈ I1 − Θσ} =
{Θ̃∗t−σ ∈ I1−Θσ} where Θ̃∗s := Θs+σ −Θσ, is the new Brownian motion, independent of σ and
{Θt : t ≤ σ}, starting at t = σ. Then the conditional probability can be written as

P
(

Θ̃∗t−σ ∈ I1 −Θσ, t < τ | σ < t, Θσ = θ1

)
= P

(
Θ̃∗t−σ ∈ [−ε, ε], t < τ | σ < t

)
≥ P

(
sup

s∈[0, t−σ]

∣∣Θ̃∗s∣∣ < ε | σ < t

)

≥ P

(
sup
s∈[0, t]

∣∣Θ̃∗s∣∣ < ε

)
.

But this is positive by the following lemma.

Lemma 4.7. Brownian motion Bt has a positive probability of being bounded by any positive

constant on a finite time interval. That is, for every ε, t > 0 we have, P
(

sups∈[0, t] |Bs| < ε
)
>

0.

Proof. Let n be the smallest natural number such that p := P
(

sups∈[0, t/n] |Bs| < ε/2
)
> 0.

Such a n exists since otherwise we have

0 = lim
n→∞

P

(
sup

s∈[0, t/n]
|Bs| < ε/2

)
= P

(
lim
n→∞

sup
s∈[0, t/n]

|Bs| < ε/2

)
= P (B0 < ε/2) = 1,

which is a contradiction. Let m be such that 0 ≤ m ≤ n − 1. By the Markov property of
Brownian motion the event that |Bs − Bmt/n| is less than ε/2 for s ∈ [mt/n, (m + 1)t/n] has
probability p . The event that B(m+1)t/n−Bmt/n has the opposite sign to Bmt/n has probability
1/2, by symmetry. By conditioning on that these two events occur for all m = 0, . . . , n− 1 we
obtain cancellation in such a way that Bs is guaranteed to be bounded by ε for all s ∈ [0, t],

that is P
(

sups∈[0, t] |Bs| < ε
)
≥ (p/2)n > 0.

Hence (4.15) is false as desired and ϑt must be strictly decreasing on [0, π].
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5
Estimates

In this chapter we establish the following upper bound for the spherical heat kernel

KN
t (ξ, η) .

(
1

t+ π − d(ξ, η)

)N−1
2 1

tN/2
exp

(
−d(ξ, η)2

4t

)
, N = 1, 2, 3, (5.1)

for small t. We shall also verify that the estimate is sharp at d(ξ, η) = π, which implies that we
cannot set δ = 0 in the estimate (1.2). Note that the upper bound is completely analogous to
the Euclidean heat kernel (1.1) up to the factor (t+π− d(ξ, η))−(N−1)/2. For fixed ξ0, η0 ∈ SN
which are not antipodal, d(ξ0, η0) < π, we see that the factor remains bounded as t gets small
so that

KN
t (ξ0, η0) ' 1

tN/2
exp

(
−d(ξ0, η0)2

4t

)
.

Note also that the factor reduces to 1 when N = 1, which means that the spherical heat kernel
on S1 essentially is the same as the Euclidean heat kernel on the real line. For N = 2, 3
however, the factor increases with the spherical distance and is maximized when the points are
antipodal; d(ξ, η) = π. Then, the upper bound suddenly depends on t in another way compared
to the Euclidean kernel. Indeed, we have

KN
t (π) '

(
1√
t

)N−1 1

tN/2
exp

(
−π

2

4t

)
. (5.2)

It is shown in [8, p. 23] that (5.2) is valid for all N , and it is therefore natural to conjecture
that (5.1) also is true for N > 3.

5.1 Estimates of K1
t

Definition 5.1. For t > 0, let Ht(x) be defined by

Ht(x) =
ϑt(x)

Wt(x)
, x ∈ [0, π].

Proposition 5.2. Ht is strictly increasing and strictly convex on [0, π].
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5.1 Estimates of K1
t Estimates

Proof. First we note that Ht can we written in the following way

Ht(x) =
∑
n≥0

Wt(x+ 2πn)

Wt(x)
+
∑
n≤−1

Wt(x+ 2πn)

Wt(x)

=
∑
n≥0

Wt(x+ 2πn)

Wt(x)
+
∑
n≥0

Wt(x− 2π(n+ 1))

Wt(x)

=
∑
n≥0

[
exp

(
−π

2n2 + πxn

t

)
+ exp

(
−π

2n2 + (2π2 − xπ)n+ π2 − πx
t

)]
.

The expression in square brackets is a strictly convex function of x, for all t and n. This implies
that Ht is strictly convex. Also, Ht is even since ϑt and Wt are even. Therefore, H ′t(0) = 0 and
together with the convexity, this implies that Ht is strictly increasing.

Proposition 5.3. For all ε > 0 there exists T > 0 such that

Ht(x) ≤ 2 + ε, x ∈ [0, π], t ∈ (0, T ).

Proof. From Proposition 5.2 we have that Ht(x) ≤ Ht(π) since Ht is increasing. Then we note
that

Ht(π) = 2
∑
n≥0

exp

(
−π

2(n2 + n)

t

)

< 2
∑
n≥0

exp

(
−2π2n

t

)
=

2

1− exp
(
−2π2

t

) .
So Ht(π)→ 2 as t→ 0, and the result follows.

Theorem 5.4. For sufficiently small t we have

G
−1/2
t (cos θ, cosϕ) ' 1√

t
exp

(
−(θ − ϕ)2

4t

)
, θ, ϕ ∈ [0, π].

Proof. From (2.13) we have

G
−1/2
t (cos θ, cosϕ) = ϑt(θ − ϕ) + ϑt(θ + ϕ). (5.3)

By Proposition 5.3 we have that ϑt 'Wt for small t. Therefore,

G
−1/2
t (cos θ, cosϕ) ' Wt(θ − ϕ) +Wt (θ + ϕ)

' 1√
t

exp

(
−(θ − ϕ)2

4t

)[
1 + exp

(
−θϕ
t

)]
' 1√

t
exp

(
−(θ − ϕ)2

4t

)
.
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For ϕ = 0 we simply get the following corollary which confirms (5.1) for N = 1.

Corollary 5.5. For small t we have

K1
t (θ) ' 1√

t
exp

(
−θ

2

4t

)
.

5.2 Estimates of K3
t

Theorem 5.6. For small t we have

K3
t (θ) .

1

t3/2(π − θ + t)
exp

(
−θ

2

4t

)
, θ ∈ [0, π],

and the estimate is sharp at θ = π.

Proof. Recall from Theorem 2.4 that

K3
t (θ) =

et

2π

(
−ϑ′t(θ)
sin θ

)
.

If we use the fact that ϑ′t = htW
′
t and Corollary 3.5, which states that

ht(θ) .
π − θ

π − θ + t
,

we obtain,

K3
t (θ) .

1

t3/2(π − θ + t)

(π − θ)θ
sin θ

exp

(
−θ

2

4t

)
' 1

t3/2(π − θ + t)
exp

(
−θ

2

4t

)
,

as desired. To verify that the estimate is sharp at θ = π, we write

K3
t (π) ' lim

θ→π

−ϑ′t(θ)
sin θ

= ϑ′′(π),

and use the fact that ϑ′′t (π) can be written as 2W ′′t (π) plus a sum of terms that that tends to
0 faster than W ′′t (π) as t gets small. Hence

K3
t (π) 'W ′′(π) ' 1

t5/2
exp

(
−π

2

4t

)
,

for small t.

This theorem confirms (5.1) for N = 3.
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5.3 Estimates of K2
t

Lemma 5.7. Let g be a decreasing integrable function on the interval [0, a]. Then∫ a

0
g(x)

1√
x(a− x)

dx ≤ 2√
a

∫ a

0
g(x)

1√
x
dx.

Proof. First we observe that

1√
x(a− x)

=
1√

x+
√
a− x

(
1√
x

+
1√
a− x

)
≤ 1√

a

(
1√
x

+
1√
a− x

)
.

Thus, it remains to show that∫ a

0
g(x)

1√
a− x

dx ≤
∫ a

0
g(x)

1√
x
dx.

For arbitrary real numbers x2 ≥ x1 and y2 ≥ y1 one has

x2y2 + x1y1 ≥ x2y1 + x1y2, (5.4)

since (x2 − x1)(y2 − y1) ≥ 0. In view of this, we notice that g(x) ≥ g(a − x) and 1√
x
≥ 1√

a−x
when x ∈ [0, a/2]. Therefore,∫ a

0
g(x)

1√
a− x

dx =

∫ a/2

0

[
g(x)

1√
a− x

+ g(a− x)
1√
x

]
dx

≤
∫ a/2

0

[
g(x)

1√
x

+ g(a− x)
1√
a− x

]
dx by (5.4)

=

∫ a

0
g(x)

1√
x
dx,

and we are done.

It can be interesting to note that the lemma actually is a direct consequence of the
Hardy–Littlewood rearrangement inequality, see [5, (378)].

Theorem 5.8. For small t we have

K2
t (θ) .

1

t
√
π − θ + t

exp

(
−θ

2

4t

)
, θ ∈ [0, π],

and the estimate is sharp at θ = π.

Proof. By Theorem 2.4 and the trigonometric identity

cos a− cos b = 2 sin

(
b− a

2

)
sin

(
b+ a

2

)
,

we obtain

K2
t (θ) '

∫ π−θ/2

θ/2

−ϑ′t/4(γ)√
sin
(
γ − θ

2

)
sin
(
γ + θ

2

) dγ.
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Use the relation ϑ′t = htW
′
t , and write

−ϑ′t/4(γ) ' γ

t3/2
exp

(
−γ

2

t

)
ht/4(γ)

in the integral, to obtain

1

t3/2

∫ π−θ/2

θ/2
exp

(
−γ

2

t

)
γht/4(γ)√

sin
(
γ − θ

2

)
sin
(
γ + θ

2

) dγ.
Make the transformation ψ = γ − θ

2 and use the estimate

sin (ψ) sin (ψ + θ) ' ψ(π − ψ)(ψ + θ)(π − θ − ψ),

(which is valid since both ψ and ψ + θ are in [0, π]) to obtain

K2
t (θ) ' 1

t3/2
exp

(
−θ

2

4t

)∫ π−θ

0
exp

(
−ψ

2 + ψθ

t

) (
ψ + θ

2

)
ht/4

(
ψ + θ

2

)√
ψ(π − ψ)(ψ + θ)(π − θ − ψ)

dψ. (5.5)

Let us denote the integrand in (5.5) by It(ψ, θ). Then it remains to prove that∫ π−θ

0
It(ψ,θ) dψ .

√
t√

π − θ + t
(5.6)

for all θ ∈ [0, π]. To show this, we consider two cases; when θ is small and large, respectively.
Case 1: Assume that θ ∈ [0, π2 ]. It is convenient to factorize the integrand in the following

way

It(ψ, θ) = exp

(
−ψ

2 + ψθ

t

)[
ψ + θ

2√
ψ(ψ + θ)

][
ht/4(ψ + θ

2)√
(π − ψ)(π − ψ − θ)

]
. (5.7)

Then the two factors in square brackets in (5.7) are bounded on ψ ∈ [π4 , π − θ] and ψ ∈ [0, π4 ],
respectively. That is,

sup

{
ψ + θ

2√
ψ(ψ + θ)

: θ ∈
[
0,
π

2

]
, ψ ∈

[π
4
, π − θ

]}
' 1 (5.8)

and (recall ht/4 ≤ 1 by Lemma 3.4)

sup

{
ht/4(ψ + θ

2)√
(π − ψ)(π − ψ − θ)

: θ ∈
[
0,
π

2

]
, ψ ∈

[
0,
π

4

]}
' 1. (5.9)

But the two factors are unbounded on ψ ∈ [0, π4 ] and ψ ∈ [π4 , π − θ], respectively. And when
this is the case, we shall use the following estimates

ψ + θ
2√

ψ(ψ + θ)
'

√
ψ

ψ + θ
+

√
θ

ψ
. 1 +

√
θ

ψ
, (5.10)
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and

ht/4(ψ + θ
2)√

(π − ψ)(π − ψ − θ)
≤

ht/4(ψ)
√
π − ψ

1√
π − ψ − θ

since ht is decreasing

≤ min

(
1√
π − ψ

,
4π

t

√
π − ψ

)
1√

π − ψ − θ
by Lemma 3.4.

≤
√

4π

t

1√
π − ψ − θ

. (5.11)

The analysis done so far motivates us to break up the integral as follows:∫ π−θ

0
It(ψ,θ) dψ =

∫ π/4

0
It(ψ, θ) dψ +

∫ π−θ

π/4
It(ψ, θ) dψ.

For the first integral we have∫ π/4

0
It(ψ, θ) dψ .

∫ π/4

0
exp

(
−ψ

2 + ψθ

t

)[
1 +

√
θ

ψ

]
dψ by (5.9) and (5.10)

≤
∫ π/4

0
exp

(
−ψ

2

t

)
dψ +

∫ π/4

0

√
θ

ψ
exp

(
−ψθ
t

)
dψ

≤
√
t

(∫ ∞
0

e−x
2
dx+

∫ ∞
0

1
√
y
e−y dy

)
'
√
t.

For the second integral we have∫ π−θ

π/4
It(ψ, θ) dψ .

∫ π−θ

π/4
exp

(
−ψ

2

t

)[√
4π

t

1√
π − ψ − θ

]
dψ by (5.8) and (5.11)

≤ exp

(
− π

2

16t

)√
4π

t

∫ π−θ

π/4

1√
(π − ψ − θ)

dψ

≤ exp

(
− π

2

16t

)
2π

√
3

t
≤
√
t, for small t.

By adding up the two previous results we infer∫ π−θ

0
It(ψ,θ) dψ .

√
t, θ ∈

[
0,
π

2

]
, for small t,

which implies that (5.6) is true for θ ∈
[
0, π2

]
. Thus it remains to prove (5.6) for the second

case, when θ ∈ [π2 , π].
Case 2: Assume that θ ∈ [π2 , π]. In this case, it is convenient to factorize the integrand

It(θ, ψ) in the following way

It(θ,ψ) = exp

(
−ψ

2 + ψθ

t

)
1√

ψ(π − θ − ψ)

[(
ψ + θ

2

)
ht/4

(
ψ + θ

2

)√
(π − ψ)(ψ + θ)

]
.

Then we observe that the expression in square brackets is bounded for θ ∈
[
π
2 , π

]
and the

interval of integration ψ ∈ [0, π − θ],

sup

{(
ψ + θ

2

)
ht/4

(
ψ + θ

2

)√
(π − ψ)(ψ + θ)

: θ ∈
[π

2
, π
]
, ψ ∈ [0, π − θ]

}
' 1.
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From this observation we conclude that∫ π−θ

0
It(θ,ψ) dψ '

∫ π−θ

0
exp

(
−ψθ
t

)
1√

ψ(π − θ − ψ)
dψ. (5.12)

Make the transformation ψ = (π − θ)x and use Lemma (5.7) to get

'
∫ 1

0
exp

(
−θ (π − θ)x

t

)
1√
x
dx.

Make the transformation ω = (π − θ)x/t to obtain

√
t√

π − θ

∫ π−θ
t

0

1√
ω
e−θω dω (5.13)

Since θ ≥ π/2, the integrand is integrable on [0,∞], which implies that the integral is less than
a positive constant. Hence ∫ π−θ

0
It(θ,ψ) dψ .

√
t√

π − θ
. (5.14)

From (5.12) we also obtain∫ π−θ

0
It(θ,ψ) dψ .

∫ π−θ

0

1√
ψ(π − θ − ψ)

dψ ' 1. (5.15)

If we combine (5.14) and (5.15) we infer that∫ π−θ

0
It(θ,ψ) dψ . min

( √
t√

π − θ
, 1

)
=
√
tmin

(
1√
π − θ

,
1√
t

)
.

√
t√

π − θ + t
,

which proves (5.6) for the case when θ ∈
[
π
2 , π

]
and thereby completes the proof of the estimate.

To verify that the estimate is sharp at θ = π, we use (2.33) and (2.32) to obtain

K2
t (π) =

1

8π

∫ 1

−1
G

1/2
t/4 (0, 1)

1√
1− v2

dv ' G1/2
t/4

(
cos

π

2
, 1
)
' −ϑ′t/4(π/2).

If we use the relation ϑ′t/4(π/2) = ht/4(π/2)W ′t/4(π/2) and the fact that ht/4(π/2) ' 1 for small

t (since ht/4 is concave on [0, π] for small t by Theorem 3.2), we conclude

K2
t (π) 'W ′t/4(π/2) ' 1

t3/2
exp

(
−π

2

4t

)
.

This theorem confirms (5.1) for N = 2.
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