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Hot-carrier generation and transfer across nanoparticle-molecule interfaces

JAKUB FOJT
Department of Physics
Chalmers University of Technology

Abstract
Metallic nanoparticles are important materials for emerging sensing and catalysis
technologies. Their special properties stem from the presence of a localized surface
plasmon resonance (LSPR) mode that can couple to visible light. The LSPR causes
the nanoparticle to scatter and absorb more light at frequencies that match the
plasmon energy. The plasmon excitation has a lifetime of a few femtoseconds before it
dephases into electrons and holes with a strongly athermal energy distribution. In this
thesis, time-dependent density functional theory has been employed to study these
phenomena in Ag nanoparticles. In the first part of this thesis, the photoabsorption
spectra were systematically calculated for a series of Ag nanoparticles. The particles
were between N = 13 and 586 atoms in size and included both regular and irregular
shapes. The main findings are that the LSPR peak frequency depends linearly on
N−1/3 for N ≥ 201.

When a plasmon forms in a nanoparticle in the vicinity of a molecule it may
dephase into a transition of an electron from the nanoparticle to the LUMO state
of the molecule, or from the HOMO state of the molecule to an unoccupied state in
the nanoparticle. These processes are termed direct hot-electron transfer and direct
hot-hole transfer, respectively. In the second part of the thesis, a systematic study
was carried out in which a CO molecule was placed at different distances from the
nanoparticle, and the system was excited with a laser pulse. The results indicate
that for this system direct hot-electron transfer happens with a probability of around
1 % and is only weakly dependent on the molecule-nanoparticle separation until it
decays to zero at large distances. Meanwhile, the probability of hot-hole transfer is
between 0.2 and 0.3 % at a distance of 1.8Å and decays monotonically. Contributing
factors to the differences are that the molecular LUMO state is sufficiently close
to the Fermi level for hot-electron transfer to occur, while only hybridized tails of
the HOMO state satisfy the corresponding requirement for hot-hole transfer. The
most important criterion for transfer to occur is an alignment in energy between the
nanoparticle and molecular densities of state.

Keywords: Hot-carriers, localized surface plasmon resonance, time-dependent density
functional theory
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1
Introduction

1.1 Background

Metallic nanoparticles (NPs) are key materials in emerging sensing1,2, catalysis3 and
cancer treatment4 technologies. They are being used to develop biosensors capable
of detecting single antibodies1 and hydrogen sensors for detecting dangerous leaks2.
When they are illuminated by light of solar intensity, NPs have been demonstrated to
act as room-temperature catalysts for commercially important reactions, potentially
leading to more efficient catalysis with fewer unwanted byproducts3. At the present,
catalysis is used to reduce pollutants from vehicles and is the foundation of much
of the chemical industry. From this perspective the development of catalysis is
important.

The optical properties of metallic NPs differ from bulk materials because of
the presence of localized surface plasmons in NPs5. In this context, plasmons are
oscillations of the density of the valence electrons of the metal. The valence electrons
are displaced by an externally applied electric field until enough charge accumulates
at the NP surface to counteract the field. If the field is alternating, the electrons
will oscillate with the field. The phenomenon where the field and electron density
oscillations resonate is called the localized surface plasmon resonance (LSPR). The
scattering and absorption of light is enhanced at the LSPR. For several transition
metals the LSPR occurs at an optical frequency. The effect is visible to the naked
eye, for example in stained glass church windows where yellow colors may come from
embedded silver NPs5.

NPs are especially attractive for applications as they have a high optical
absorption cross section at the LSPR frequency6,7, and the LSPR frequency is
dependent on the particle size, shape, chemical composition, and environment8.
There are thus many parameters that can be tuned to engineer NPs to a specific
problem. For sensing applications one can monitor the LSPR and correlate changes
in peak position, width or intensity to changes in the environment or the particle
itself.2,9

The LSPR opens up further possibilities in catalysis. Processes used in indus-
try today rely on the presence of a catalyst that lowers reaction barriers, which are
overcome by thermal energy10,11. With plasmonic NPs as catalysts, charge carriers
(electrons or holes) formed after the decay of a plasmon may transiently populate or-
bitals of the reactant, driving the catalytic reaction10,11. The literature suggests two
different variants of this process; an indirect transfer process where charge carriers
are formed in the nanoparticle and transferred to the reactant, and a direct process
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1. Introduction

where the plasmon in the nanoparticle directly decays into unoccupied orbitals of
the reactant3,10. It has been proposed that the latter is more efficient and selective10
(i.e. provides more control over byproducts). Currently there are open questions
regarding the ratio between the direct and indirect processes.

Plasmonically driven catalysis has the potential to become commercially viable
if it presents a significant advantage over the industry standard processes, such as high
selectivity or high efficiency at low temperatures. It is believed that the promotion of
the direct transfer process over the indirect could achieve this10. As the two processes
happen on the same time scales they are experimentally difficult to distinguish. This
has motivated computational studies12–14 using time-dependent density functional
theory15,16 (TDDFT).

1.2 Aim
The aim of this thesis is to explore a few aspects of the optical and photocatalytical
properties of Ag NPs from first principles. Computations are performed within the
framework of TDDFT, which is introduced in chapter 2. Technical details of how the
theory is implemented in computations are described in chapter 3, while illustrating
the LSPR in an example system.

The thesis follows two tracks, each related to one of the previous studies by
Kuisma et al. 17 and Kumar et al. 14 . Similar to the study by Kuisma et al. 17 , chapter
4 explores the dependence of the photoabsorption spectrum on the NP size. While
Kuisma et al. have calculated spectra for a few NPs of regular shapes, this thesis
covers NP of regular and irregular shapes in a range of sizes. Following the study
by Kumar et al. 14 , the probabilities of hot-carrier transfer processes across the NP
and CO molecule interface are calculated in chapter 5. While Kumar et al. have
studied the CO at an equilibrium distance from the NP, quantities in this thesis are
calculated as functions of distance.

1.2.1 Previous work
Kuisma et al. 17 have calculated the absorption spectra of the four icosahedral NPs
Ag55, Ag147, Ag309 and Ag561. They found a redshift of the LSPR with increasing
NP size.

Rahm and Erhart 18 have determined thermodynamically stable shapes of NPs
as a function of the number of constituent atoms. They have imposed constraints on
the shapes such that they are similar to some motif, e.g. an icosahedron or truncated
octahedron. Structures generated by Rahm and Erhart make op the sequence of
NPs studied in chapter 4.

Kumar et al. 14 have studied the initial step of photocatalysis of an adsorbate
CO molecule on Ag147 by simulating a process of laser illumination, plasmon forma-
tion and plasmon decay with TDDFT. They show that within 30 fs the plasmon
has decayed, and a small fraction of it has transferred into the CO molecule (which
makes up the direct transfer process). For three different adsorption sites Kumar
et al. calculated the probabilities of the direct transfer to fall between 0.9 % and
2.0 %.

2



1. Introduction

1.2.2 Specific questions
Specific questions answered in this thesis are:

• How do ground state energies and photoabsorption spectra vary as a function
of NP size, for a sequence of truncated octahedron-like NPs?

• What is the distance and adsorption site dependence of the direct electron/hole
transfer processes probabilities for Ag201+CO?

• What predictions in terms of hot-carrier transfer can be made for other systems
and how can the process probabilities be affected?

1.2.3 Limitations
The investigations in this thesis are carried out with an explicit time propagation
scheme in TDDFT. This limits the time spans of processes that can be covered
with a reasonable computational effort to approximately 30 fs. This is the time scale
of plasmon dynamics and hot-carrier generation. However molecular dynamics and
bond breaking happen on longer time scales and are computationally inaccessible
with the present methodology.

The TDDFT data is analyzed within a linear response framework. We assume
that the driving optical fields are sufficiently weak for a linear response. Thus non-
linear effects from very strong light are not covered in this thesis.

3
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2
Theory

This chapter covers the relevant basics of density functional theory (DFT) and time
dependent density functional theory (TDDFT). A more complete description of the
former can be found in the textbook by Martin 19 and of the latter in the compendium
by Ullrich and Yang 16 . For simplicity explicit spin dependence is omitted from the
equations and Hartree atomic units are used. In Hartree atomic units the electron
mass me, elementary charge e, and reduced Planck constant ~ are unity and are
conveniently omitted from the equations.

2.1 The many-body problem
In quantum mechanics all systems are governed by the time-dependent Schrödinger
equation

i
dΨ(t)

dt = ĤΨ(t) (2.1)

where Ψ(t) is the (many-body) wave function that describes the state of the system
and Ĥ the Hamiltonian operator that defines it. If the Hamiltonian is independent
of time one can formulate the time-independent Schrödinger equation

ĤΨn = EnΨn. (2.2)

It is an eigenvalue equation, where the eigenstates Ψn are stationary states of the
time-dependent Schrödinger equation, and the eigenvalues En the corresponding
energies.

The Hamiltonian of any system consisting of electrons and nuclei can be
divided into a kinetic part T̂ and potential part V̂ and written

Ĥ = T̂ + V̂ (2.3)

T̂ = −
∑
i

1
2∇

2
i −

∑
I

1
2MI

∇2
I (2.4)

V̂ = −1
2
∑
i,I

ZI
|ri −RI |

+
∑
i 6=j

1
|ri − rj|

+ 1
2
∑
I 6=J

ZIZJ
|RI −RJ |

. (2.5)

Here, we use the convention that lower case indexes refer to electrons and capital
indexes to atomic nuclei. The kinetic operator is a sum of second derivatives in
the coordinates of each electron ∇2

i and nucleus ∇2
I while the potential operator

depends on the coordinates of electrons ri and nuclei RI . MI and ZI are the mass
and electronic charge of each nucleus I, respectively. As Hartree atomic units are
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2. Theory

used the electron mass is 1 and electron charge -1. The wave function Ψ is a function
of the coordinates of the electrons and nuclei (and time for the time-dependent
Schrödinger equation)

Ψ = Ψ ({RI}I , {ri}i, t) . (2.6)

2.1.1 Born-Oppenheimer approximation
Since the mass of any nucleus is much larger than the mass of an electron MI � 1
it is reasonable to assume that the nuclei are motionless in short time scales. This
is called the Born-Oppenheimer approximation. The kinetic energy of the nuclei is
then zero and nucleus-nucleus interaction energy which is the third term of (2.5) is
constant

EII = 1
2
∑
I 6=J

ZIZJ
|RI −RJ |

. (2.7)

The Born-Oppenheimer Hamiltonian consists of the kinetic energy of the electrons T̂
and the potential energy of the interacting electrons V̂int. Additionally the electrons
are under the influence of an external potential V̂ext from the nuclei and possibly
other sources.

Ĥ = T̂ + V̂int + V̂ext + EII (2.8)

T̂ = −
∑
i

1
2∇

2
i (2.9)

V̂ext = −1
2
∑
i,I

ZI
|ri −RI |

(2.10)

V̂int =
∑
i 6=j

1
|ri − rj|

(2.11)

As the kinetic operator (2.9) and electron-electron interaction operator (2.11) always
are on the same form, we can say that all electronic systems are defined by the
external potential (from nuclei and externally applied fields) acting on it.

The Born-Oppenheimer Hamiltonian (2.8) and time-dependent or indepen-
dent Schrödinger equation (2.1), (2.2) describe the behavior of electrons, but these
equations are too complex to solve in practice. The main obstacle is that Ψ is a
function of 3N spatial coordinates. To represent it numerically, say on a grid of 10
points in each direction, would require 103N grid points. The exponential scaling of
the number of required points on N makes calculations practically impossible for
systems with more than a few electrons, and calls for the need of alternative methods
such as DFT.

2.2 Density functional theory
Density functional theory (DFT) is based on the formal proof by Hohenberg and
Kohn 20 that all properties of an electronic system are determined by the electron
density n(r) of its ground state. Furthermore n(r) is uniquely determined as the
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2. Theory

function that minimizes a universal energy functional E[n]. DFT is an exact refor-
mulation of quantum mechanics with the advantage that it concerns a function of
only three spatial variables for any system, while in the Schrödinger formulation the
many-body wave function depends on three coordinates per particle in the system.
DFT makes computational approaches tractable for systems consisting of more than
a few electrons.

The challenge of DFT is that the general expression for the universal functional
is not known. There are various approximate functionals; those relevant for this
thesis are described in this section.

2.2.1 Kohn-Sham approach
One of the difficulties in finding an expression for the functional E[n] is the con-
tribution of the kinetic energy (2.9). In the Schrödinger formulation of quantum
mechanics it is given by gradients (in the coordinates of each electron) of the many-
body wave function. This quantity cannot be simply extracted from the ground state
density. To circumvent this problem, Kohn and Sham 21 proposed an alternative
formulation of the problem. They assumed that there is an auxiliary system of N
non-interacting electrons in an effective potential veff(r), that has the same density
as the true system. Since the particles are independent they are described by N
wave functions φi(r) (refered to as the KS wave functions or KS orbitals), with the
density n(r) = ∑N

i=1 |φi(r)|2. In the Kohn-Sham formulation the universal energy
functional is written in the form

E[n] = Ts[n] +
∫

drVext(r)n(r) + 1
2

∫
dr dr′

n(r)n(r′)
|r− r′|

+ EII + Exc[n], (2.12)

where the five terms are described in the following paragraph. The first term Ts[n] =
−1/2∑i

∫
drφ∗i (r)∇2φi(r) is the kinetic energy of the auxiliary system. The second

term is the external energy of the electron density n(r) interacting with the external
potential Vext(r) from the atomic nuclei (and possibly an additional external electric
field). The third term is the Hartree energy and represents the classical electrostatic
energy. It can be understood as the energy of the density interacting with the
electric field the density creates. The fourth term EII is the Coulomb energy from
the nuclei interacting with each other. EII and Vext(r) depend only on the positions
and types of atomic nuclei, and the externally applied potential. The remaining
energy contributions are grouped into the fifth term Exc[n], called the exchange-
correlation energy. With the functional E[n] on this form, EII and Vext(r) are the
quantities that define the system, while all other quantities are universal.

The theory has been reformulated so that Exc[n] is the only unknown. Given
an exact expression for Exc[n], and assuming the validity of the KS Ansatz, the
theory is exact. In practice the exchange-correlation energy functional needs to be
approximated, and the approximations relevant for this thesis are described later
in this section. Usually this energy is further treated as exchange and correlation
separately. The former refers to the Pauli exclusion effect that electrons of the same
spin cannot be in the same position. The latter refers to a screening interaction;
the probability of finding an electron near another is decreased as it is energetically
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2. Theory

unfavorable. The correlation energy is especially important for electrons of opposite
spin, as they are not required to avoid each other due to Pauli exclusion.

By minimizing the energy functional (2.12) using the variational principle one
can show that the auxiliary system obeys the Schrödinger-like equation(

−1
2∇

2 + veff [n](r)
)
φi(r) = εiφi(r). (2.13)

The KS wave functions φi(r) are the eigenfunctions corresponding to the N lowest
eigenvalues of (2.13). The effective potential veff [n](r) can be expressed in terms of
functional derivatives

veff [n](r) = vext(r) + vHartree[n](r) + vxc[n](r) (2.14)

vext(r) = δ

δn(r)

∫
drVext(r)n(r) = Vext(r) (2.15)

vHartree[n](r) = δ

δn(r)
1
2

∫
dr dr′

n(r)n(r′)
|r− r′|

= 1
2

∫
dr′

n(r′)
|r− r′|

(2.16)

vxc[n](r) = δExc[n]
δn(r) . (2.17)

2.2.1.1 Local density approximation

In the local density approximation (LDA)22–24 the exchange-correlation functional
is taken to be the same as for the homogeneous electron gas. It is a local functional,
meaning it is on the form

ELDA
xc [n] =

∫
drn(r)[εx(n(r)) + εc(n(r))], (2.18)

where the exchange and correlation energy densities ε(n(r)) are functions of the
density at one point in space. The exchange has an exact analytic expression22,23,
and the correlation is fitted to Monte Carlo calculations24.

Since the LDA is based on a homogeneous electron gas it can be expected to
work best for nearly-free-electron metals, such as Na, and worst for isolated atoms and
molecules where the electron density continuously approaches zero. Comparisons of
LDA with small systems such as the H atom or H2 molecule for which exact solutions
are known shows that it tends to underestimate exchange energies and overestimate
correlation energies. Because the errors in exchange and correlation tend to cancel,
the total error is not too large even for isolated systems19.

2.2.1.2 Perdew-Burke-Enzerhof

The Perdew-Burke-Enzerhof (PBE) functional25 belongs to the generalized gradient
approximation (GGA) class of functionals. The idea behind GGAs is to extend the
energy density in (2.18) to depend also on gradients of the density

EGGA
xc [n] =

∫
drn(r)εxc(n(r),∇n(r), . . . ). (2.19)

The PBE functional has been developed to improve total energies for isolated
systems, without describing systems of slowly varying density worse25.
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2.2.1.3 GLLB-SC

In contrast to LDA and PBE, which are functionals for the energy Exc[n], the
Gritsenko-van Leeuwen-van Lenthe-Baerends (GLLB)26 functional is an expression
for vxc[n](r). It is a potential functional, without a well-defined total energy. The
most important feature of the GLLB functional is that it incorporates a discontinuity
in the exchange-correlation potential at integer occupation numbers

∆xc = lim
δ→0

vxc(r, N + δ)− vxc(r, N − δ) 6= 0 (2.20)

which LDA and PBE lack. It can be shown that the discontinuity must be a feature
of the true exchange-correlation functional27. The discontinuity is important to
obtain accurate band gaps.

The GLLB-SC functional28 is a modification of GLLB with better description
of solids and correlation. It greatly improves the location of the d-band in noble
metals, which is important for plasmonic systems composed of these metals17,29,30.

2.2.1.4 DFT+U

The DFT+U method is a way to compensate for interactions between localized
electrons which are underestimated by xc-functionals such as LDA or PBE19,31.
The correction is typically applied to electrons with a certain angular momentum
quantum number l, typically d- or f-electrons31, and its strength specified by a
Hubbard parameter U . In this thesis, the implementation follows Dudarev et al. 31

EDFT+U = ELDA/PBE
xc +

∑
a

U

2 Tr(ρa,l − ρa,lρa,l). (2.21)

Here the sum runs over all atoms a and ρa,l is a occupation matrix for atom a and
quantum number l. In this thesis the Hubbard +U correction is applied to d-electrons
of Ag with the PBE functional, to get a similar description as with GLLB-SC. This
is referred to as PBE+U.

2.3 Time-dependent density functional theory
In this thesis TDDFT is used to calculate the optical properties of systems. This is
done by considering a time-dependent external potential

vext(r, t) =
{
v

(0)
ext(r) , t < 0
v

(0)
ext(r) + v1(r, t) , t >= 0

(2.22)

which is initially static. At time t = 0 the potential v1(r, t) of an optical field is
turned on.

In this thesis, time-dependent functions and their Fourier transforms are
denoted by the same letter. The are distinguished by the dependence on time t or
frequency ω, e.g.

f(r, ω) =
∫ ∞
−∞

dt f(r, t)eiωt. (2.23)

9



2. Theory

2.3.1 Fundamental theory
While DFT describes systems in their ground state under the influence of a potential
constant in time, TDDFT extends the theory to describe systems in an explicitly
time-dependent potential. Analogously to the proof by Hohenberg and Kohn 20 ,
Runge and Gross 15 show that there is a one-to-one correspondence between the
external potential acting on a system and the time-dependent density of the system.
Formally, the external potential at any given time is a functional of the density at
all previous times and the many-body wave function Ψ0 of the system at t = 0.

Analogously to the Kohn-Sham equations (2.13) and (2.14) one assumes that
the time-dependent KS states make up the density ∑N

i=1 |φi(r, t)|
2 = n(r, t) and obey

the time-dependent Schrödinger-like equation
(
−1

2∇
2 + veff [n](r, t)

)
φi(r, t) = i

∂

∂t
φi(r, t). (2.24)

given some initial conditions on the KS wave functions φi(r, 0) = φ
(0)
i (r). Analogously

to the time-independent case

veff [n](r, t) = vext(r, t) + vHartree[n](r, t) + vxc[n](r, t) (2.25)

vHartree[n](r, t) = 1
2

∫
dr′

n(r′, t)
|r− r′|

. (2.26)

Since the external potential is defined by the system under study and the
Hartree potential only depends on the instantaneous density, the exchange-correlation
potential must formally depend on the density at all previous times, the initial many-
body wave function and the initial KS wave functions

vxc(r, t) = vxc

[
n,Ψ0,

{
φ

(0)
i

}N
i=1

]
(r, t). (2.27)

Making the assumption that the system initially is at rest, Ψ0 must be the ground
state many-body wave function which formally is a functional of the ground state
density. The initial KS wave functions are the ground state KS wave functions.
Thus the dependence on Ψ0 and φ

(0)
i vanishes. Still, the xc-functional remains a

complicated object that is difficult to describe.

2.3.2 Adiabatic approximation
The adiabatic approximation is commonly made, where a DFT xc-functional eval-
uated at the instantaneous density is taken as the the TDDFT xc-functional. The
adiabatic xc-functional has no explicit time dependence or memory. It is exact when
the external potential varies infinitely slowly (causing the system to always be in its
ground state).

It has been shown that TDDFT with adiabatic xc-functionals predicts ab-
sorption spectra of metallic particles that are consistent with experimental data32,33.
This motivates the use of the adiabatic approximation throughout this thesis.

10



2. Theory

2.3.3 Photoabsorption in the linear response regime
In this thesis the photoabsorption spectrum is a major quantity of interest. It is a
linear spectroscopic quantity, which is why we assume that the response of observables
is linear in the time-dependent potential v1(r, t). This requires v1(r, t) to be weak
enough to only slightly perturb the system. The linearity simplifies analysis as each
frequency component of observables depends only on the corresponding frequency
component of the perturbing potential. This section discusses the observables of
interest in the thesis.

The induced density

δn(r, t) = n(r, t)− n(r, 0) (2.28)

shows how the system deviates from its equilibrium. Tracing it in time can be of
interest in the study of ultra-fast excitations. Its Fourier transform n(r, ω) is related
to the strength of the response at a given frequency, i.e. the absorption spectrum.
The induced dipole moment in a direction, e.g. x, is

δµx(t) = −
∫

drxδn(r, t). (2.29)

The polarizability αij relates the induced dipole moment to the electric field strength
in two not necessarily same directions i and j. For example, assuming the time-
dependent potential has the form

v1(r, t) = zEz(t) (2.30)

the induced dipole moment in x is

δµx(t) =
∫ ∞
−∞

αxz(t− t′)Ez(t′) dt′ . (2.31)

The Fourier transform of the convolution on the right hand side is a product, allowing
to write the Fourier transform of the polarizability

αxz(ω) = δµx(ω)
Ez(ω) . (2.32)

The imaginary part of the polarizability diagonal elements gives the oscillator strength
function

Sz(ω) = 2ω
π

Im[αzz], (2.33)

which equals to the optical absorption cross-section save for a constant pre-factor.
Thus we can view Sz(ω) as the photoabsorption spectrum in the units of oscillator
strength.

In general, the oscillator strength fI is a measure of the strength of the optical
excitation from the many-body ground state Ψ0 with energy E0 to an excited state
ΨI with energy EI . The discrete oscillator strength is linked to the continuous
oscillator strength function S(ω) by

S(ω) =
∑
I

fIδ(ω − (EI − E0)), (2.34)

11



2. Theory

where δ is the Dirac delta function. Note however that we have only included (2.34)
and the discussion of discrete oscillator strength for general context. In the explicit
time propagation scheme employed in this thesis the discrete oscillator strengths are
never directly computed.

The oscillator strengths satisfy the sum rule that they sum to the number of
valence electrons ∑

I

fI = N. (2.35)

Because each delta function integrates to 1 the integral of the oscillator strength
function must also be the number of electrons∫ ∞

0
S(ω) dω = N. (2.36)
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3
(TD)DFT in practice

In this chapter the application of DFT and TDDFT is exemplified. The chapter con-
tains a step-by-step description of calculations for an example system and introduces
the reader to the electronic structure and plasmonic response of metal particles. In
the ground state DFT calculations, a self-consistent algorithm for finding the KS
orbitals is employed. Functions in space are represented numerically with either
a finite difference method or in the efficient LCAO basis. Also the PAW method,
density mixing and occupation number smearing are briefly introduced.

In the TDDFT calculations, an explicit time propagation scheme is utilized.
An initial δ-kick perturbation is applied to the system, and the density response as
a function of time is solved for. The δ-kick contains equal parts of all frequency
components. As it is assumed that it is weak enough to only induce a linear response,
the photoabsorption spectrum can be extracted. Also responses of observables to
any general perturbation that has the same polarization direction as the δ-kick can
be extracted.

The example system consists of eight atoms in a chain, illustrated in figure 3.1.
The calculations are first done for a sodium (Na) atom chain to show the free-electron-
gas-like behavior of the valence electrons. As silver is relevant for the remainder of the
thesis, the calculations are repeated for a silver (Ag) atom chain. The calculations
are done using the software GPAW17,34–38 and ASE39.

x = 12Å

y = 12Å

z = 36Å

Figure 3.1: A linear chain of eight atoms, an example system considered
throughout this chapter. The simulation box of 12Å × 12Å × 36Å drawn.

13



3. (TD)DFT in practice

3.1 Calculating the ground state with KS-DFT

The DFT calculation is set up by defining a simulation box of size 12Å×12Å×36Å
and the positions of 8 atoms in a chain. The atoms are placed in the middle of the
box with 3Å between each neighbor. In such a way there is 6Å of vacuum between
each atom and the closest edge of the box. The box and atoms are shown in figure
3.1.

The effective potential veff [n](r), electronic density n(r) and KS orbitals φi(r)
are represented numerically in one of several possible ways. One such numerical
representation is the finite difference method, where the functions are sampled on a
grid in the simulation box, with a fixed distance between each grid point. Another
representation is the LCAO method which is introduced in section 3.1.4. As boundary
conditions, veff [n](r) and n(r) are set to zero at the edges of the box. A sufficiently
large vacuum size (here 6Å) is needed between the atoms and the closest box edges
to describe veff [n](r) and n(r) correctly.

Within the Born-Oppenheimer approximation the atomic nuclei are treated
as fixed objects that define an external potential vext(r) (2.15). Because the KS wave
functions vary rapidly in the vicinity of the nuclei they would require a large com-
putational effort to represent numerically. To circumvent this problem the projector
augmented-wave (PAW) method40 is used in GPAW. It defines a projection that
maps the rapidly varying KS wave functions to smooth pseudo KS wave functions.
The projection also takes into account the behavior of core electrons within the frozen
core approximation, meaning that the core electrons are kept as for an isolated atom.
By including only valence electrons the runtime of calculations is decreased. The
PAW projector is unity outside a small region around each atom. Thus the pseudo
KS wave functions and KS wave functions are equal everywhere except for near the
nuclei.

The density is constructed from the N KS states to (2.13) corresponding to
the lowest energies εi. Assuming the system is not spin polarized we can consider
the spin indirectly by occupying every KS state twice. If N is even the ground state
density is (if N is odd then the last term lacks the factor 2)

n(r) = 2
N/2∑
i=1
|φi(r)|2. (3.1)

For molecular systems the highest occupied molecular orbital (HOMO) and
lowest unoccupied molecular orbital (LUMO) are of special relevance. In Na8 φ4(r)
is the HOMO and φ5(r) the LUMO. We define the Fermi level µ to be any energy
between the HOMO and LUMO energy. The precise energy of the Fermi level is
specified later in the chapter when occupation number smearing is introduced. Thus
all states below the Fermi level are occupied and all above are unoccupied.

A defining feature of bulk metallic systems is that both HOMO and LUMO
are at the Fermi level. In finite metallic systems there is a small gap due to the
discreteness of energy levels.

14



3. (TD)DFT in practice

3.1.1 The self-consistent algorithm
The procedure for finding the KS orbitals is a self-consistent algorithm, summarized
as a flowchart in figure 3.2. A trial electron density ntrial(r) is guessed. The effective
potential is constructed from equations (2.14) through (2.18). The KS equation
(2.13) is solved for the N/2 lowest eigenvalues, which correspond to the occupied KS
orbitals. The electronic density n(r) is constructed according to equation (3.1). If
the density n(r) differs from the trial density ntrial(r) by more than a small threshold,
a new trial density ntrial(r) is constructed according to a mixing scheme such as the
Pulay41 mixing scheme, and the steps are repeated. When the change in the density
n(r), KS wave functions φi(r) and the total energy E[n] between two iterations of the
algorithm is smaller than a threshold, self-consistency is said to have been reached
and the DFT calculation is done.

The mixing scheme could in the most simple case be to letting the output
density be the trial density. In practice this often leads to the algorithm taking too
large steps and getting stuck. The Pulay scheme suggests to let the trial density be
a linear combination of the output density, and previous trial densities.

Initial guess n(r)

Using n(r) construct veff(r), equations (2.14)-(2.18)

Solve for φi(r) for auxiliary system, equation (2.13)

Construct n(r) from φi(r), equation (3.1)

n(r), φi(r), E[n] unchanged
since previous iteration?

Done

n(r),
n(r)

at
few

previous
steps

Figure 3.2: Self-consistent algorithm for finding the ground state density,
described in section 3.1.1
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3.1.2 Occupation number smearing
Within the scope of this thesis KS-DFT is a zero-temperature theory that dictates
that the density should consist of the lowest KS orbitals. However the self-consistent
algorithm may often converge slowly or not at all when following this rule. Instead
a finite smearing parameter w may be introduced, defining a possibly fractional
occupation number fi. In GPAW, the density is constructed as

n(r) =
∞∑
i=1

fi|φi(r)|2 (3.2)

fi = 1
1 + exp[(εi − µ)/w] . (3.3)

The occupation number has the same form as the Fermi-Dirac distribution which
describes the distribution of states at finite temperatures. Its purpose is to approxi-
mate the step function and there are other viable smearing schemes which also can
approximate it. It does not represent a true temperature effect.

3.1.3 Density of states
The density of states (DOS) is commonly used as a measure of the number of states
at a certain energy (often per volume of the system). Within this thesis the DOS
is a tool to visualize to discrete KS energy levels εi as a continuous function. We
define it

D(ε) =
∞∑
i=1

gi(ε) (3.4)

where gi(ε) is a Gaussian function with an arbitrary broadening parameter σ

gi(ε) = 1√
2πσ2

exp
(
−(εi − ε)2

2σ2

)
. (3.5)

The DOS has units of inverse energy. Integrating it over a range of energies yields the
number of electrons in that energy range. In this chapter the broadening parameter
σ = 0.1 eV is used.

3.1.4 The LCAO basis set
Expansion in a linear combination of atomic orbitals (LCAO) basis set is a more effi-
cient numerical representation of spatial functions than the finite difference method.
The LCAO basis set consists of a total of Nbasis basis functions χµ(r). Each χµ(r)
is centered around one of the atoms. The indexes µ can be arranged so that the
first nbasis correspond to atom number 1, the next nbasis to atom number 2 and so
on. However, in general the number of basis functions nbasis does not need to be the
same for all atoms. The KS wave functions are written in the LCAO basis

φi(r) =
Nbasis∑
µ=1

Cµiχµ(r), (3.6)
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where Cµi is the LCAO coefficient for basis function µ of KS state i.
In GPAW, basis functions consist of numerical radial functions multiplied by

spherical harmonics, and are typically generated to approximate the KS orbitals
of isolated atoms. In this thesis the double-ζ polarized37 (dzp) basis is used for
predicting ground state properties. It includes two radial basis functions to describe
each valence state of the isolated atoms, and a polarization function with the spherical
harmonics corresponding to the first unoccupied state. A modified basis set17 is
used to predict excited state properties, where the polarization function has been
replaced with two radial functions approximating the lowest unoccupied KS state of
the isolated atom.

The advantage of LCAO over the finite difference method can be illustrated
by considering the number of parameters needed to represent spatial functions. With
a simulation box of size 12Å × 12Å × 36Å with 0.3Å between grid points 192 000
points are required in finite difference mode. The aforementioned modified basis sets
have 8 basis functions per atom for Na and 18 for Ag respectively. With 8 atoms
the number of LCAO coefficients Cµi needed is 8× 8 = 64 for Na and 8× 18 = 144
for Ag. Contrasting this to the 192 000 points needed in the finite difference mode
shows why it is advantageous to use LCAO for larger systems.

3.1.5 Ground state properties of Na and Ag chains
Figure 3.3 shows a selection of the converged KS orbitals and corresponding energies
for Na8 with the LDA xc-functional. In LCAO the KS orbitals are represented by
the LCAO expansion, and the density and potential are calculated on a grid with
0.3Å between grid points. In finite difference mode the KS orbitals, density and
potential are represented on a grid, with a tighter grid spacing of 0.093 75Å. The
energies are measured relative to the potential at the edges of the box, which is called
the vacuum level. States below the vacuum level are localized to the vicinity of the
atoms. The difference between occupied states calculated with the finite difference
and LCAO methods is small, justifying the use of the cheaper LCAO method.

The orbitals are ordered in energy according to the number of nodes in the
density, which is expected of a 1-dimensional electron gas. This is clearly seen for
states below −1.5 eV with respect to vacuum level. At −1.5 eV another sequence
of orbitals begins, with one node perpendicular to the chain axis. These states are
always degenerate because of the two symmetrically equivalent directions.

Above vacuum level the states are expected to be plane wave-like with the
density evenly distributed in space. In reality there should be a continuum of states
but this cannot be captured by the finite size simulation box. There are large
differences between the LCAO and finite difference methods, because LCAO lacks
the degrees of freedom to describe the plane wave-like states.

Figure 3.4 shows the densities of state for Na8 and Ag8 with the LDA and
GLLB-SC xc-functionals. Note that energies are shown with respect to Fermi level.
The Ag atom has 1 s-type and 10 d-type valence electrons, while Na has just one
s-type electron. Between −1 eV and 1 eV the DOS of Ag is similar to the DOS of
Na. This part of the DOS comes from the s-electrons. Below −2 eV in Ag there is a
large peak, which comes from the d-electrons.
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(b) States above vacuum level
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Figure 3.3: Densities of state and isosurfaces of selected KS orbitals for
Na8 in finite difference and LCAO mode. The Fermi level with finite differ-
ence/LCAO is marked with dashed lines. Isosurfaces of states are drawn at the
corresponding energies (in the case of nearby states a line points to the correct
energy). Degenerate states show up as larger peaks in the DOS.
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Figure 3.4: Densities of states for Na and Ag chains with finite differ-
ence/LCAO mode and LDA/GLLB-SC functional.
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The position of the d-electron peak in Ag depends on the xc-functional choice
and whether finite difference or LCAO is used. The shift to lower energies in GLLB-
SC is a desired feature of the functional17,29,30. The difference between LCAO and
the finite difference method indicates that the present basis set is insufficient in
describing Ag atom chains, as these ideally should not differ. For NPs which are of
real interest in this thesis the present basis set has been shown to give the correct
DOS17.

3.2 Calculating optical properties with TDDFT
The optical properties of the example system can be calculated from the response of
the time-dependent KS orbitals φi(r, t) to some time-dependent external potential
vext(r, t). In this thesis an explicit time propagation scheme with a δ-kick is employed,
where the external potential is

vkick(r, t) = Ezδ(t). (3.7)

As we are interested in the optical properties in the chain axis direction, the field is
polarized in the z direction. However for a full description of the optical properties
of non-isotropic systems up to three separate time propagation calculations with
differently polarized kicks are needed. This is seen in chapter 4.

The kick-strength is set to E = 1× 10−5 eVÅ−1 which is assumed to be weak
enough for the non-linear response to be negligible. The linearity of the response
allows us to extract the photoabsorption spectrum (in the polarization direction)
and the response to any other perturbation with the same polarization from the
response to the δ-kick. Relevant other perturbations are monochromatic laser fields,
and ultra-short laser pulses.

As the NPs in this thesis are much smaller than the wavelength of visible
light, we can consider the electric field as constant in space but varying in time. In
this so called dipole approximation, the potential of an monochromatic laser field
polarized in the z direction has the form

vlaser(r, t) = Ez sin (ωt). (3.8)

The ultra-short laser pulse used in chapter 5 is centered around time t0 and has a
parameter τ that determines its duration

vultra−short−pulse(r, t) = Ez sin (ωt) exp
(
−(t− t0)2

τ 2

)
. (3.9)

The three relevant potentials vlaser(r, t), vultra−short−pulse(r, t) and vkick(r, t) are
shown in the time- and frequency domains in figure 3.5 at some value r. The spatial
dependence is not shown as all potentials are proportional to z. Because the Fourier
transform of the δ-kick contains all frequencies (with equal proportions), responses
to the other perturbations can be extracted from the response to the δ-kick.

The time-dependent KS equation (2.24) is a differential equation with the
initial condition that the KS orbitals are the ground state KS orbitals φi(r, 0) =
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Figure 3.5: Relevant external potentials in the time and frequency do-
mains. The three potentials vlaser, vultra−short−pulse and vkick are evaluated at some
point r. In the linear-response regime the response to any pulse can be recovered
from the response to the δ-kick, which contains equal amounts of all frequencies.

φ(0)(r). Letting the external potential be the δ-kick the time-dependent KS orbitals
are calculated at subsequent points in time with the Crank-Nicholson algorithm
which is suitable for solving differential equations implicit in time. In this chapter
the size of the time steps is 20 as and the total length of the propagation 30 fs.

3.2.1 Calculating observables
Some observables, such as the dipole moment or induced density from the δ-kick,
are obtained directly in the calculations. For example by recording the dipole mo-
ment for all time steps during the propagation, and taking its Fourier transform the
photoabsorption spectrum can be obtained. To obtain responses to other perturba-
tions than the δ-kick, we express the observables in terms of the KS density matrix
operator.

The KS density matrix operator is defined

ρ̂(t) =
∑
n

|φn(t)〉 fn 〈φn(t)| , (3.10)

where fn is the occupation number of state n. It is written in the basis of ground
state KS orbitals

ρia(t) =
〈
φ

(0)
i

∣∣∣ ρ̂(t)
∣∣∣φ(0)
a

〉
=
∑
m

∫
dr dr′ fmφ(0)

i

∗
(r)φm(r, t)φm∗(r′, t)φ(0)

a (r′), (3.11)

where i and a are occupied and unoccupied KS states respectively. From the KS
density matrix of the δ-kick ρkick

ia (t) of strength E0, the KS density matrix of any
other perturbation vext(t) can be obtained as a convolution

ρia(t) = 1
E0

∫
dτ ρkick

ia (τ)vext(t− τ). (3.12)

Equivalently in frequency space

ρia(ω) = 1
E0
ρkick
ia (ω)vext(ω). (3.13)
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During time propagation, each matrix element ρkick
ia (t) of the δ-kick KS density matrix

at each time step is saved.
From the real part of the induced KS density matrix elements

Re δρia(t) = Re [ρia(t)− ρia(0)] (3.14)

the induced density is obtained

δn(r, t) = 2
fi>fa∑
ia

φ
(0)
i (r)φ(0)

a

∗(r) Re δρia(t). (3.15)

The induced dipole moment in the x direction is

δµx(t) = −
∫

drxδn(r, t)

= −2
∫

drx
fi<fa∑
ia

φ
(0)
i (r)φ(0)

a

∗(r) Re δρia(t)

= −2
fi<fa∑
ia

µxia
∗Re δρia(t) (3.16)

where the dipole matrix elements in the x direction are

µxia =
∫

drxφ(0)
i

∗
(r)φ(0)

a (r). (3.17)

An important reminder to the reader concerning Fourier transforms is that the
real part of a Fourier transform of a function is not in general the same as the Fourier
transform of the real part of the function. In the following the Fourier transform of
the real part of the induced KS density matrix is denoted [Re δρia](ω). Writing the
induced dipole moment as a convolution of the polarizability

∫ ∞
−∞

αxz(t− t′)Ez(t′) dt′ = −2
fi<fa∑
ia

µxia
∗Re δρia(t). (3.18)

and taking the Fourier transform

αxz(ω) = − 1
Ez(ω)2

fi<fa∑
ia

µxia
∗[Re δρia](ω) (3.19)

gives the polarizability. Its imaginary part gives the photoabsorption spectrum. To
summarize, the photoabsorption spectrum and induced density in terms of the KS
density matrix are

S(ω) = − 1
Ez(ω)

4ω
π

∑
ia

Im[µzia∗[Re δρia](ω)] (3.20)

δn(r, ω) = 2
∑
ia

φ
(0)
i (r)φ(0)

a

∗(r)[Re δρia](ω). (3.21)
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Since the photoabsorption spectrum (3.20) and induced density (3.21) are
both sums over all possible occupied-unoccupied pairs ia, the quantities can be
divided into contributions from occupied-unoccupied state transitions.

S(ω) =
∑
ia

Sia(ω) (3.22)

Sia(ω) = − 1
Ez(ω)

4ω
π

Im[µzia∗[Re δρia](ω)] (3.23)

δn(r, ω) =
∑
ia

δnia(r, ω) (3.24)

δnia(r, ω) = 2φ(0)
i (r)φ(0)

a

∗(r)[Re δρia](ω). (3.25)

A visual representation of Sia(ω) can be obtained by constructing a transition con-
tribution map (TCM) for a given frequency

M(ω, εo, εu) =
∑
ia

Sia(ω)
S(ω) gi(εo)ga(εu) (3.26)

gi(ε) = 1√
2πσ2

exp
(
−(εi − ε)2

2σ2

)
. (3.27)

The broadening parameter in this chapter is 0.1 eV.

3.2.2 Optical properties of Na and Ag chains
The photoabsorption spectra for Na8 and Ag8 are shown in figure 3.6. Both systems
have a distinct LSPR peak near 1 eV in the spectrum. For Ag the LSPR peak position
increases when replacing the LDA xc-functional with GLLB-SC, as the position of
the d-electron peak in the DOS changes.

Figure 3.7 shows the TCMs at the LSPR frequency of each system. The main
contribution to the absorption peak is a transition from the KS state just below the
Fermi level to the state just above it. Ag8 additionally has negative contributions
to the absorption which are transitions from the d-band to unoccupied levels.

The TCMs of Na8 and Ag8 with LDA at the LSPR are shown together with
induced densities in figure 3.8. For Ag8 the main positive contribution, and a few
of the negative contributions, are shown separately (together with corresponding
induced density contributions δnia(r, ω). While the total induced densities differ
between Na8 and Ag8 (panels (a) vs. (b)) the constructive contributions are similar
(panels (a) vs. (c)). The negative contributions in Ag8 (panel (d)) screen the plasmon
by being oriented in the opposite direction. Na8 lacks the negative contributions
because it doesn’t have d-type electrons.
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Figure 3.6: The photoabsorption spectrum in the chain axis direction for
the Na8 and Ag8 atom chains. The legend marks the used xc-functional.
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Figure 3.7: Transition contribution maps for Na8 and Ag8. The TCM
M(ω, εo, εu) at the LSPR is drawn as a heatmap. The densities of state corre-
sponding to unoccupied and occupied states i and a are drawn along its edges. In
each subpanel the LSPR frequency is given in paranthesis. This TCM is essentially
a visualization of the matrix elements of Sia(ω), meaning that positive values (red)
correspond to states contributing to the photoabsorption and and negative values
(blue) to damping the absorption. The units of the colorbar are eV−1.
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Figure 3.8: Isosurfaces of induced densities δn(r, ω) at the LSPR. Each panel
shows the induced density (to the right) from either all or a part of the transitions
and the corresponding transitions marked in the TCM (to the left). (a) The Na8
excitation, which consists of (nearly) one transition. (b) The Ag8 excitation, which
can be divided into constructive contributions (c) and screening (d). The units of
the colorbar are eV−1.
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4
Size dependence of

photoabsorption spectra

Experimentally fabricated NPs usually consist of a varying number of atoms. In any
real measurement of NP ensembles, the optical properties will be an average of the
properties of the individual NPs. Also the shape and substrate which the NPs are
on will affect the optical properties, although that is beyond the scope of this thesis.

In this chapter the photoabsorption spectra for Ag NPs with shapes close to
truncated octahedra (TO) are presented. The NPs consist of between 13 and 586
atoms. TO shapes are the lowest energy geometries for large NPs because the can
be constructed by truncating a FCC lattice with {111} and {100} faces, without
straining the structure. In the size range considered here other shapes (such as
icosahedra) are more energetically favored, however their high strain can affect their
optical properties and make analysis more difficult18.

Rahm and Erhart 18 have determined the minimum energy geometry of TO-like
NPs of all sizes considered here with Monte Carlo simulations in an embedded atom
method (EAM) potential42. Starting with the Ag atoms in the positions determined
by Rahm and Erhart 18 the ground state is computed with the PBE xc-potential.
Each atom is shifted by a small distance in the direction of the force acting on it and
the ground state computed again. This procedure, called a relaxation calculation,
is repeated until the maximal force on an atom is 0.01 eVÅ−1. For the spectrum
calculations the ground state is computed with GLLB-SC from the relaxed PBE
geometry and propagated through time for 30 fs with adiabatic GLLB-SC. The dzp
LCAO basis set is used for the relaxation calculations, while a basis set optimized by
Kuisma et al. 17 to represent bound unoccupied states is used for the time propagation
calculations.

Since every TDDFT calculation is fairly expensive in terms of computational
resources the NPs are sampled rather sparsely. At the beginning of the chapter the
chosen NPs are discussed. Then the energies of the structures are discussed and
then the spectra. Finally it is shown that the spectra are converged with respect to
the numerical parameters in the calculations.

4.1 Selected structures
Several NPs between 13 and 586 atoms in size have been selected for DFT and
TDDFT investigation. A representative subset of them is pictured in figure 4.1. The
Ag38, Ag201 and Ag586 NPs are so called regular truncated octahedra (RTOs) with
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4. Size dependence of photoabsorption spectra

8 identical and equilateral {111} faces, truncated by {100} faces. A few truncated
octahedra, rugby-like and egg-like structures are also shown.

Ag38 Ag201 Ag586

(a) Regular truncated octahedra (RTO’s)
Ag79 Ag405

(b) Truncated ocatehedra (TO’s)

Ag52 Ag244 Ag498

(c) Rugby-like structures
Ag305 Ag354

(d) Egg-like structures

Figure 4.1: Classification of some of the NPs studied in this chapter. (a)
The regular truncated octahedra (RTOs) Ag38, Ag201 and Ag586 have 8 identical
and equilateral {111} faces, truncated by 6 {100} faces. (b) The TOs Ag79 and
Ag405 are similar but the {111} faces are not equilateral. (c) The rugby-like and (d)
egg-like structures resemble TOs that have been elongated both ways and one way
respectively along some axis.

4.2 Size dependence of energies
The PBE ground state energies of the relaxed NPs are shown in figure 4.2 along with
the EAM cohesive energies of Rahm and Erhart 18 . The latter per atom energies
closely follow a third degree empirical polynomial in N−1/3

E

N
= a+ bN−1/3 + cN−2/3 + dN−1. (4.1)

By directly comparing the per atom energies in figure 4.2 it is difficult to draw
other conclusions than that they are decreasing with increasing NP size. Instead the
energies are compared to a common fit. Fitting the EAM RTOs (N = 38, 201, 586,
1289, 2406) to equation (4.1) shows that all other TO-like geometries are higher in
energy than the fit. The difference is up to 60 meV/atom for the smaller NPs and
between 0 and 10 meV/atom for N > 70. The three first RTOs have been studied
with DFT, so an exact fit to (4.1) to them can be made after setting d = 0. The
differences between the PBE energies and the corresponding fit to RTOs are greater
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4. Size dependence of photoabsorption spectra

in magnitude than with the EAM potential. Additionally two of the rugby-like
structures (Ag52 and Ag244) are lower in energy than the fit.

In contrast to the EAM potential which predicts the highest symmetry struc-
tures (RTOs) to be energetically most favorable, the PBE xc-functional with a dzp
LCAO basis set favors small rugby-like structures more. This could implicate that
they should be present in a larger fraction in manufactured NPs than EAM potentials
predict.
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Figure 4.2: (a) Energies of NPs as calculated from an EAM potential and DFT
calculations with the PBE xc-functional with a dzp LCAO basis set. The energies
of RTOs are fitted to (4.1) (for EAM, data is available for sizes outside the range
of the figure). (b) Difference between energies in (a) and the corresponding fits. In
general non-RTOs energies are underestimated by the fit, but PBE Ag52 and Ag244
are exceptions to this.

4.3 Calculated spectra
The photoabsorption spectra for several selected NPs are shown in figure 4.3. Gaus-
sian broadening with the parameter σ = 0.1 eV is used to present all spectra in this
section. LSPR peaks are clearly visible in the spectra. The fully isotropic system
Ag38 has identical spectra for all excitation directions, while Ag52 has the two equiva-
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4. Size dependence of photoabsorption spectra

lent directions x and y, and Ag25 has three different spectra. There are clear LSPRs
around 3.5–4 eV. Within one system, such as Ag52, the LSPR peak frequencies in
different excitation directions can differ by a few hundred meV. In certain systems,
such as Ag116, there are two distinct peaks, while for certain systems (e.g. Ag52 in x
direction) two peaks are close enough to appear as one wide peak with the chosen
value of the Gaussian broadening parameter.
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Figure 4.3: Photoabsorption spectra for selected NPs. For systems that are
not isotropic the absorption spectra in two (e.g. Ag52) or three (e.g. Ag25) excitation
directions have to be distinguished.

In an ensemble of NPs with no preferential alignment the measured spectra
will be an average over the present sizes and all excitation directions. It is therefore
meaningful to consider direction-averaged spectra for non-isotropic NPs. These
are presented in figure 4.4. Extracted frequencies, widths at half maximum and
intensities of the main LSPR peaks are shown in figure 4.5. In the large NP range
(N ≥ 201) there appears to be a linear dependence of the LSPR peak position versus
N−1/3. This is consistent with classical results with non-local dielectric functions for
spherical NPs43 which predict a dependence on the diameter D as 1/D. A similar
trend has also been observed for icosahedral Ag NPs in the same size range17.
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4. Size dependence of photoabsorption spectra

Figure 4.5 shows a fit of the peak frequencies for N ≥ 201 to a linear function
in N−1/3. In this size range, the peak frequencies are at most 2 % off from the fit. In
the large-size limit the fit extrapolates the peak frequency to 3.34 eV. This is fairly
close to the peak energies obtained with quasi-static finite difference time-domain
electromagnetic calculations with experimental Ag dielectric functions for icosahedral
and spherical NPs, which are 3.43 eV and 3.52 eV respectively17.
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Figure 4.4: Direction averaged spectra of NPs as a function of N−1/3.
Above N = 200 the LSPR frequency appears to depend linearly on N−1/3 with little
variation in width or intensity. Smaller NPs follow a similar trend with more scatter
in frequency, width and intensity. For Ag52 through Ag116 two peaks are visible.
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Figure 4.5: The LSPR energy (a) and intensity (b) versus N−1/3. The bars
indicate the width of the peaks at half maximum. The symbols and colors indicate
if the NP is a RTO, a different isotropic structure, or a structure of lower symmetry,
in which case the peaks in spectra in different excitation directions are shown. For
N ≥ 201 the LSPR peak frequencies have been fitted to a linear function in N−1/3.
In this size range there is little variation in peak width or intensity. Smaller NPs
follow a similar trend with more scatter in frequency, width and intensity.
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4. Size dependence of photoabsorption spectra

4.4 Choice of numerical parameters
In the DFT and TDDFT calculations there are parameters which should be extrem-
ized to get accurate results, but come with a computational cost. The following are
most prominent:

• The extent of vacuum on each side of the NP. In principle this should be
infinite to describe an isolated particle but it is sufficient and computationally
reasonable to consider a few Ångström. This parameter is denoted v.

• The grid spacing used to represent the electron density of the system. In
principle it should be infinitesimally small. It is denoted h.

• The time step taken during the time propagation. This parameter is denoted
dt and should also be as small as possible.

For this thesis, the parameters v = 6Å, h = 0.3Å and dt = 10 as have been chosen to
be a good tradeoff between computational speed and accuracy based on a convergence
test. The photoabsorption spectrum of the Ag13 cluster was calculated while keeping
two of the parameters fixed and varying the third. The results are seen in figure 4.6.
The appearance of the spectrum below 6 eV is practically unchanged for values of
v = 5Å or more and h = 0.3Å or less. The decrease of dt seems to blueshift all peaks
consistently, with some changes in intensity. It is not yet fully converged even at 5 as
however 10 as is chosen to get reasonable computational times. For large energies
6 eV there is more variation in the spectrum with respect to the parameters. Such
high energy contributions are disregarded, as they stem from unbound unoccupied
states which are inadequately described with LCAO basis sets.
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Figure 4.6: Convergence check for the parameters v, h and dt. Keeping two
of the parameters fixed at v = 6Å, h = 0.3Å, dt = 10 as and varying the third the
photoabsorption spectrum of Ag13 is calculated. (a) Varying v, (b) h and (c) dt.
At energies below 6 eV the spectrum is barely affected when varying v but shows a
blueshift of the peak with decreasing dt. (d) Summarizes the above by showing the
LSPR peak energy versus each of the varied parameters. v and h are taken to be
converged at the chosen values. The time step dt is not as clearly converged at 10 as
however this value is chosen to keep computation times reasonably short.
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4.5 Summary
• Truncated octahedron-like NPs consisting of between N = 13 and 586 atoms

were studied
• The structures (obtained from a study using a EAM potential) were relaxed

with the PBE xc-functional with a dzp LCAO basis set, obtaining ground state
energies
– Per atom energies were found to approximately follow a third degree

polynomial in N−1/3

– The energies of regular truncated octahedra and small rugby-like struc-
tures were found to be lower than the trend

• Photoabsorption spectra were calculated with the GLLB-SC xc-functional and
a LCAO basis set suitable to describe bound unoccupied states
– The LSPR peak energy was found to be linear in N−1/3 for N ≥ 201, even

for irregular shapes
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5
Hot-carrier transfer

The resonant absorption of light in a metal nanoparticle leads to the formation
of hot-electrons and holes. These hot-carriers can catalyze chemical reactions by
occupying the orbitals of nearby molecules. In the direct hot-carrier transfer process
which is the object of study in this chapter, the hot-carriers form directly in the
molecular orbitals due to the decay of the initial plasmon excitation.

In the simulations in this chapter, a Ag201 NP is excited by an ultra-short
laser pulse at the LSPR frequency ωpulse. The dynamics of plasmon formation and
decay into hot-carriers are resolved within the 30 fs of time propagation. Simulations
are repeated with a CO molecule at different positions relative to the NP. At the end
of the time propagation the fraction of hot-carriers formed in the direct hot-electron
and hot-hole transfer processes are measured. Thus the probabilities of the direct
hot-carrier transfer processes are calculated for many configurations of the NP and
molecule.

A similar study has been conducted by Kumar et al. 14 , where a CO molecule
was placed at the equilibrium distance from a Ag147 icosahedron. The probabilities
of direct hot-electron and hot-hole transfer were 0.9–2.0 % and 0.2–0.5 % respectively.
This thesis extends the study of Kumar et al., calculating the transfer probabilities
as a function of distance.

The chapter is structured as follows. In section 5.1 transition probabilities
and hot-carrier distributions are defined in terms of quantities extracted from the
TDDFT calculations. They are used to illustrate the process of plasmon formation
and decay in the bare Ag201 NP. Section 5.2 introduces the NP + CO system. A
few sites on the NP are selected as positions that the molecule approaches, and
binding energy calculations are performed. A Voronoi mapping is done to assign
each KS state to either the NP or the molecule (or partially to both). The Voronoi
map makes it possible to divide the total transitions into transitions from or to NP
or molecule. The aim is to separate the direct hot-electron transfer (transitions
from the NP to the molecule) and the direct hot-hole transfer (transitions from
the molecule to the NP) from transitions within the NP and within the molecule.
After presenting the probabilities of hot-carrier transfer as a function of distance
the projected densities of state (PDOS) for the NP and molecule are analyzed to
explain the results. Section 5.3 discusses possibilities to tune parameters of the NP
and molecule to obtain desirable traits in hot-carrier devices. For future studies,
a proof-of-concept probe orbital that can take the role of any molecular orbital is
introduced.

The DFT and TDDFT parameters in this chapter are set to the same values
as in chapter 4; the grid spacing is 0.3Å, vacuum size at least 6Å and time step
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5. Hot-carrier transfer

10 as. The pulse has a full width at half maximum (FWHM) of 0.73 eV.
In chapter 4 the GLLB-SC xc-functional was used because predicts the location

of the Ag d-band better than functionals without a derivative discontinuity. A similar
density of states can also obtained with PBE with a Hubbard +U correction on the
Ag d-electrons. Here, GLLB-SC and PBE+U are employed to calculate hot-carrier
distributions. Figure 5.1 shows the densities of state with GLLB-SC, PBE and
PBE+U. The value U = 3.5 eV has been chosen as it most closely reproduces the
GLLB-SC Ag DOS. Figure 5.2 shows that the peak frequency is similar with GLLB-
SC and PBE+U. Energy calculations are done with the PBE xc-functional without
+U as GLLB-SC is a potential functional without a well-defined energy.
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Figure 5.1: Density of states for the bare Ag201 RTO with the GLLB-SC,
PBE and PBE+U xc-functionals. The parameter U = 3.5 eV reproduces the GLLB-
SC DOS fairly well, while pure PBE overestimates the energy of the d-band edge.
The dashed and solid lines mark the Fermi and vacuum levels respectively.
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Figure 5.2: Photoabsorption spectrum of the bare Ag201 RTO calculated
with PBE, PBE+U and GLLB-SC. Similar results are obtained with GLLB-SC and
PBE+U, but PBE underestimates the LSPR frequency.
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5. Hot-carrier transfer

5.1 Hot-carrier dynamics for the bare NP
A central quantity for analyzing the hot-carrier dynamics in this chapter is the
transition probability Pia(t). It is expressed in terms of occupation numbers fi and
the induced KS density matrix elements δρia(t) defined in section 3.2.1

Pia(t) =
∣∣∣∣∣ δρia(t)√
fi − fa

∣∣∣∣∣
2

. (5.1)

The transition probability Pia(t) is well-defined for pairs of KS states i and a where
fi > fa. By interpreting the occupied KS states as electrons and unoccupied KS
states as holes, each matrix element Pia(t) is interpreted as the probability of the
electron i being in state a at time t. The matrix can be visualized by constructing a
transition contribution map (TCM)

M(t, εo, εu) =
fi>fa∑
ia

Pia(t)gi(εo)ga(εu) (5.2)

gi(ε) = 1
2πσ2 exp

(
−(ε− εi)2

2σ2

)
(5.3)

with a broadening parameter σ.
Figure 5.3 shows the TCM M(t, εo, εu) with σ = 0.07 eV and corresponding

induced densities, evaluated at a few time instances for the bare Ag201 RTO. The
snapshots at 11.3 fs, 11.6 fs and 11.9 fs correspond to the dipole moment taking its
largest positive value, the value zero, and its largest (in magnitude) negative value.
When the dipole moment is large in magnitude the density is collectively shifted
along the polarization direction of the pulse, similar to the conceptual picture of the
localized surface plasmon. The collective shift stems from transitions of s-electrons
from states at approximately −1 eV38, which can be seen in the TCM. In silver
the plasmon is screened by d-electrons38. This can be seen in the induced density
centered around each atom counteracting the collective oscillation, and in the TCM
as transitions from approximately −4 eV.

After the pulse has ended, the screened plasmon starts to decay into transitions
resonant with the pulse, that is where εa − εi = ~ωpulse. This can be seen in the
magnitude of the dipole moment oscillations decreasing. At 21.6 fs some of the s-
electron transitions making up the plasmon remain, while at the end of the time
propagation tend = 30 fs all transitions are resonant with the pulse.

The transition probability can be summed into a probability of holes P h
i (t)

or electrons P e
a (t) which corresponds to projecting the TCM on the electron or hole

energy exes

P h
i (t) =

fi>fa∑
a

Pia(t), P e
a (t) =

fi>fa∑
i

Pia(t) (5.4)

Mh(t, εo) =
∑
i

P h
i (t)gi(εo), M e(t, εu) =

∑
a

P h
a (t)ga(εu). (5.5)

At t = 30 fs the transition probabilities are close to (but not exactly at) the diagonal
εa−εi = ~ωpulse. Because both the pulse and absorption spectrum have a finite width
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5. Hot-carrier transfer

there are also transitions with close to ~ωpulse in energy difference. For reference,
the pulse FWHM is 0.73 eV. Thus the distributions of holes and electrons should be
similar save for a constant shift of ~ωpulse. They are shown in figure 5.4.
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Figure 5.3: TCMs M(t, εo, εu) to the transition probability Pia(t) with broad-
ening parameter σ = 0.07 eV and GLLB-SC xc-functional. The solid vertical and
horizontal lines indicate the position of the Fermi level on the hole and electron
energy axes respectively. The dashed line indicates the vacuum level. The diagonal
line indicates transitions where the energy difference equals the pulse frequency.
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Figure 5.4: Projection of the hot-carrier distribution M(t, εo, εu) at t = 30 fs
on the electron and hole energy axesMh(t, εo) andM e(t, εu). As all transitions
are resonant with the pulse, the electron and hole distributions have similar shapes.
For earlier time instances when the non-resonant transitions have not yet decayed
this would not be true.
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5.2 Hot-carrier transfer across CO-NP interface
The CO molecule is chosen as a system of study for hot-carrier transfer across
interfaces. It is placed at varying distances from four different sites on the Ag201
RTO, illustrated in figure 5.5. The binding energy as a function of distance is
computed for all four sites, and hot carrier distributions as a function of distance
are computed for the two most strongly binding sites.

The RTO surface is made up of eight equivalent {111} faces and six equivalent
{100} faces. On the [111] face the on-top site is right on top of the atom in the
middle of the face, and for the fcc site the position is shifted to the nearest hollow
between three Ag atoms. On the [100] face the hollow site denotes the position
between two atoms, as close to the middle of the face as possible. For each of the
aforementioned sites the molecule is oriented with the carbon atom facing the NP
and the bond axis perpendicular to the face. The distance is measured between the
carbon atom and the plane of Ag atoms in the face.

In the corner site configuration the CO is by a corner atom between the [100]
face and the two neighboring {111} faces. The bond axis of the molecule is aligned
with a line from the nearest corner atom and the corner atom on the opposite side
of the NP. Distance is measured between the C atom and corner Ag atom.

(a) [111] on-top (b) [111] fcc (c) [100] hollow (d) Corner

Figure 5.5: The four considered sites of CO adsorption are (a) between three
atoms on a [111] face (fcc site), (b) in the middle of the [111] face (on-top site), (c)
between two atoms on the [100] face and (d) in the corner between the [100] and
two {111} faces.

5.2.1 Binding energies as a function of distance
For each site and distance between NP and molecule the binding energy is calculated
from three ground state calculations, one with the total system NP+CO, one with
the bare NP and one with the bare CO molecule

Ebind(site, d) = ENP+CO(site, d)− ENP − ECO. (5.6)

The bare molecule calculation corresponding to each distance d is performed with
the molecule in the same position as in the total system calculation. LCAO basis
functions are placed at the positions corresponding to each Ag atom in the total
system. This is done to eliminate egg-box and basis set superposition errors. The
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5. Hot-carrier transfer

same procedure, with basis functions at the positions corresponding to the C and O
atoms, is done for the bare NP calculations.

With the present definition of the binding energy negative values Ebind(site, d)
imply that it is energetically favorable for the molecule and NP to be separated by
a distance d than to be entirely isolated. Local minima in Ebind are positions where
the molecule might get stuck for some time.

Figure 5.6 shows the binding energy as a function of distance for the four
sites. The corner site shows the strongest binding, with a minimum of −0.35 eV at a
distance of 2.2Å. The [111] on-top site is barely bound with a minimum of −0.02 eV
at d = 2.2Å. The [111] fcc and [100] hollow sites show initial repulsion below 3Å
which flattens out around 2Å.

Based on this information the molecule is expected to be near the corner site
and [111] on-top site the most of the time. These sites are chosen for the hot-carrier
analysis. It is however important to keep in mind that a real CO molecule is always in
thermal motion and may overcome barriers in the binding energy, and move laterally
or wiggle which the present analysis does not cover. A repulsion starts to be strong
below 1.8Å this is the smallest distance studied.

At large separations the binding energies approach zero, indicating that the
NP and adsorbate do not interact. At small separations there is very strong repulsion
due to the orbitals of the two systems starting to overlap. The repulsion starts at
the largest separations for the corner and on-top sites, ∼ 0.5Å closer for the fcc site
and yet ∼ 0.5Å closer for the hollow site. This behaviour is consistent with the
geometry of the sites. In the two former cases the approach happens straight on a
Ag atom, with the latter approaching the hollow space between two and three Ag
atoms.

Metallic NPs are known to contract with decreasing size because of the under
coordinated surface atoms preferring tighter bonds44. Considering the same adsorp-
tion curve calculation for NPs that have been artificially strained may therefore
indicate the behavior for other sizes. Figure 5.7 shows how adsorption to the [111]
on-top site depends on tensile and compressive strains of 1 and 2 %. The adsorption
minimum becomes deeper for tensile strain, suggesting that adsorption may occur
more easily on larger NPs.
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Figure 5.6: Binding energy curves for the four adsorption configurations.
The corner and [111] on-top sites show negative binding energies (the on-top minu-
mum being much weaker) around a minumum, meaning that adsorption is favorable.
Binding to the [100] hollow and [111] fcc sites is not energetically favorable but local
minima appear.
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Figure 5.7: Binding energy curves for strained NPs in the [111] on-top
configuration. The energy minima are marked with small crosses. From the figure
it appears that tensile strain increases the depth of the adsorption minimum, while
compressive strain weakens it.
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5.2.2 Projected densities of state

The next step of the analysis is to assign each KS ground state φ(0)
i (r) to either

the CO molecule, the Ag NP or partially to both. This is done by constructing a
Voronoi decomposition of space

a(r) =
{

CO if r closer to any CO atom than any NP atom
NP else. (5.7)

The function a(r) takes the value CO or NP, which numerically can be represented
with any unique integer. It is straightforward to generalize the decomposition into a
decomposition around each atom, or any group of atoms, but this is not necessary
for the present analysis.

Next, a weight wbi is assigned to each φ(0)
i (r)

wbi =
∫

dr
∣∣∣φ(0)
i (r)

∣∣∣2δa(r),b, (5.8)

where the Kronecker delta δa(r),b takes the value 1 if a(r) is the same identifier as b
and 0 otherwise. At large separations between the CO and NP we can expect the
weights to be either 0 or 1, meaning that the ground state KS orbitals are localized
to either of them. By construction, the Voronoi weights sum to one wCOi +wNPi = 1
for each state i.

We define the projected densities of state (PDOS)

Db(ε) =
∑
i

wbigi(ε). (5.9)

Their sum is the total DOS DCO(ε) +DNP(ε) = D(ε).
The molecular PDOS DCO(ε) shows strong distance dependence, which is

seen for the [111] on-top site with GLLB-SC xc-functional in figure 5.8. At large
separations d = 6Å the PDOS resembles the DOS of a bare CO molecule. The
highest occupied molecular orbital (HOMO) is a σ-type state at 4.7 eV below Fermi
level and the lowest unoccupied molecular orbital (LUMO) is a doubly degenerate
π-type state at 3.0 eV above Fermi level.

As the separation between NP and molecule decreases the molecular states
shift to lower energies. There are indications that the shifts between d = 6Å and
4Å, which are approximately 0.1 eV, could be attributed to a basis set superposition
error. The shifts below 4Å are greater in magnitude and more likely a real effect.
Particularly the energy of the HOMO state changes rapidly and crosses the next
highest occupied molecular orbital at 2.1Å. As the HOMO and LUMO states
hybridize with the NP at small separations the states split into several branches.
The total number of electrons in the hybridized HOMO and LUMO branches, i.e.
the integral of the PDOS in a region, is constant as a function of distance. This
splitting into several states as the molecule approaches the NP occurs earliest and
most strongly for the LUMO state.

Of direct relevance for the hot-carrier transfer are only the states within the
pulse energy ±~ωpulse of the Fermi level, as transfer can only occur between occupied
and unoccupied states. Note that the HOMO state is outside this range, however
some of the hybridized HOMO-like branches at small separations are in range.
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5. Hot-carrier transfer

The NP PDOS DNP(ε) on the other hand, shows little distance dependence,
and as seen in figure 5.1 there is little difference between the GLLB-SC and PBE+U,
U = 3.5 eV xc-functionals. In this chapter it is thus treated as constant, which
somewhat simplifies the analysis.

Figure 5.9 shows the distance dependence of the molecular PDOS for both
xc-functionals and sites. The HOMO state seems to behave similarly in all cases.
The energy of the LUMO state is at all separations lower by almost 1 eV with PBE+E
compared to GLLB-SC. For both functionals the same trend is seen between the
two sites; at small separations the LUMO state has a lower energy on the corner site
than at the [111] on-top site, but at large separations there is no difference between
sites.
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Figure 5.8: Molecular PDOS for the [111] on-top site with GLLB-SC func-
tional. The overlays of isosurfaces show the character of the corresponding KS wave
functions. At large separations the PDOS shows four distinct peaks. The states at
3.0 eV (LUMO) and at −7.3 eV are doubly degenerate, which is seen as the PDOS
being twice as large as for the other states. As the separation decreases the state
energies are lowered. Particularly the LUMO but to some extent also the HOMO
become delocalized and spread over a span of energies as they hybridize with the
NP states.
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Figure 5.9: Molecular PDOS for the [111] on-top site and corner site,
with both xc-functionals. Both sites show a similar PDOS at large NP-molecule
separations. PBE+U gives a LUMO level that is lower by almost 1 eV than the
GLLB-SC LUMO level.

5.2.3 Hot-carrier distributions after plasmon decay
With the Voronoi weights wbi we define the partial hot-carrier transition probabilities
between KS states i and a

P b→b′

ia (t) = Pia(t)wbiwb
′

a . (5.10)

Electron and hole distributions for the partial processes are formed analogously to
the full distributions.

The transition probabilities reach stationary values after the plasmon has fully
decayed. We define the process probabilities of the processes NP→ NP, NP→ CO,
CO→ NP, and CO→ CO as the fraction of transitions of each type over the total
transitions at the end of the time propagation tend

T b→b
′ =

∑
ia P

b→b′
ia (tend)∑

ia Pia(tend) . (5.11)

The process probabilities TNP→CO and TCO→NP, corresponding to the direct
hot-electron and hot-hole transfer processes respectively, are shown as a function of
distance, site and xc-functional in figure 5.10. The corresponding partial hot-carrier
distributions P h,b→b′(tend, εo), P e,b→b′(tend, εu) for the [111] ontop site and GLLB-SC
functional are shown as a function of distance in figure 5.11.

Direct hot-electron transfer (transitions NP→ CO) amounts for around
1-2 % of all transitions in a wide range of distances. Below 4Å there seems to be no
clear trend in the process probability with respect to site or functional. For example
the GLLB-SC functional predicts twice as much transfer for the [111] on-top site
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at d = 3.8Å than at d = 1.8Å. The hot-carrier distributions in figure 5.11a show
that the GLLB-SC [111] on-top transfer maximum at 3.8Å consists of transitions
from −0.7 eV to 2.9 eV. At smaller separations there are also hot-holes at −2.1 eV
and −1.5 eV and corresponding hot-electrons at 1.6 eV and 2.3 eV, but their total
amount is smaller than the amount of transitions at d = 3.8Å. For separations over
4-4.5Å the transfer probability decreases with increasing distance and there seems
to be less difference between two sites with the same functional.

Direct hot-hole transfer (transitions CO→ NP) amounts for between 0.2-
0.3 % of all transitions at d = 1.8Å. The contribution decreases almost monotonically
for both sites and functionals with increasing separation. For the GLLB-SC [111]
on-top site figure 5.11b shows contributions from several transitions. At small
separations the largest contribution is from a transition −0.7 eV to 2.9 eV. Near 4Å
the sole contribution is from a transition −2.9 eV to 0.9 eV.

Intra molecular transitions (CO→ CO) peak at small separations with
a probability of 100 ppm for the [111] on-top site and 50 ppm for the corner site,
decaying to zero at separations larger than 4Å. As the probabilities are small they
are not shown.

Intra nanoparticle transitions (NP→ NP) make up the remaining 98 -
99 %. Their distribution is close to the distribution for bare NPs shown in figure 5.4.

In previous work by Kumar et al. 14 an Ag147 icosahedron (NP with only
[111] surfaces) with CO at an equilibrium distance has been studied. The GLLB-
SC xc-functional and a similar time propagation scheme was employed. Kumar
et al.report direct hot-electron and hot-hole transfer probabilities of 0.9-2.0 % and
0.2-0.5 % respectively, depending on adsorption site, which is in line with the results
here.

The accuracy of the xc-functional is an important question that is beyond
the scope of this thesis. As shown in the reminder of this section, the appearance of
the hot-carrier distributions is largely determined by the molecular and NP PDOS.
Thus to obtain accurate transfer probabilities, accurate PDOSes are required. Those
could be retrieved from higher level theory or experiments.

45



5. Hot-carrier transfer

0.0%

1.0%

2.0%
(a) NP→ CO(a) NP→ CO(a) NP→ CO(a) NP→ CO Corner site (GLLB-SC)

Corner site (PBE+U)
111 on-top site (GLLB-SC)
111 on-top site (PBE+U)

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
0.0%

0.2%

(b) CO→ NP(b) CO→ NP(b) CO→ NP(b) CO→ NP

0.0 0.2 0.4 0.6 0.8 1.0

Distance of CO from NP (Å)
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Figure 5.10: Probabilities of hot-carrier transfer processes as a function
of the separation between the NP and CO molecule. (a) Direct hot-electron
and (b) hot-hole transfer process.
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Figure 5.11: GLLB-SC [111] on-top site hot-hole and hot-electron distri-
butions. (a) Direct hot-electron and (b) hot-hole transfer process.
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5.2.3.1 Direct hot-electron transfer

In this section it is shown that the particular appearance of the hot-carrier distribu-
tions for the direct hot-electron transfer process (NP→ CO) can be attributed to
the alignment between the NP PDOS DNP(ε) and the distance dependent molecular
PDOS DCO(ε). While this dependence is general for both sites and xc-functionals
the analysis is visualized for the [111] on-top configuration with the GLLB-SC func-
tional as an example. The sensitivity of the hot-carrier distributions to the molecule
PDOS is the cause for the varying transfer probabilities with adsorption site and
xc-functional.

Figure 5.12 shows the hot-hole distribution in the NP on the same energy
axis as the NP PDOS and the hot-electron distribution in the molecule on the same
energy axis as the molecular PDOS. As described earlier the hot-hole and hot-
electron distributions are similar (but not identical, due to the finite pulse width)
albeit shifted by the pulse energy ~ωpulse.

An observation from figure 5.12 is that the molecular state around 3 eV (to
the left of the rightmost blue guide line) is aligned with a peak in the NP PDOS.
The neighboring molecular state which is present at d < 3Å slightly above 2 eV is
aligned with a gap in the NP PDOS. Thus, even though the molecular PDOS is
higher at the latter state, the corresponding HC distributions are lower. When the
densities of these two states coincide around d = 4Å the HC transfer is maximal.

The importance of the alignment between NP and molecular PDOS is high-
lighted by plotting the joint density of states (JDOS)

JNP,CO(ε) = DNP(ε− ~ωpulse)DCO(ε) (5.12)

in figure 5.13. In the interval 0 < ε < ~ωpulse the JDOS looks as an approximation
to both the hot-hole and hot-electron distributions. Outside this interval transitions
cannot occur. For example the JDOS reproduces the gap in the hot-hole distribution
at ∼ −1.5 eV (corresponding to the gap in the NP PDOS) which is not seen in the
molecular PDOS alone.

Such a simplified JDOS does not capture effects from the finite width of the
pulse, which leads to hot-hole and hot-electron distributions differing. Neither does
it capture the decay of the hot-carrier distributions above d = 4Å due to the spatial
overlap between states decaying. Also, as the JDOS is constructed using ground state
DFT quantities only, it should not be expected to predict the coupling strength of
the plasmon to different electron-hole transitions correctly. Despite these limitations
the JDOS appears to approximate the hot-carrier distributions well.

5.2.3.2 Direct hot-hole transfer and other processes

The dependence of the hot-carrier distributions on the PDOS alignment apply equally
to the hot-hole transfer process and for NP→ NP and CO→ CO transitions. Here
the JDOS of interest are respectively:

JCO,NP(ε) = DCO(ε− ~ωpulse)DNP(ε) (5.13)
JNP,NP(ε) = DNP(ε− ~ωpulse)DNP(ε) (5.14)
JCO,CO(ε) = DCO(ε− ~ωpulse)DCO(ε). (5.15)
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Figure 5.12: GLLB-SC [111] on-top site hot-carrier distributions for the di-
rect hot-electron transfer process in relation to NP and molecular PDOS.
(a) Hot-hole and (b) hot-electron distributions as a function of distance. (c) The
NP PDOS, which is practically independent of distance. (d) The molecular PDOS
as a function of distance. To aid the eye, green and blue lines are drawn at a few
energies in panels (a) and (c) and at energies higher by ~ωpulse in panels (b) and (d).
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Figure 5.13: GLLB-SC [111] on-top site joint density of states related to
the direct hot-electron transfer process. This quantity shows how the hot-
electron distribution (and hot-hole distribution shifted by ~ωpulse) would look if it
only depended on the product of overlapping projected densities of state. The hot
electrons are required to be between the Fermi level and the pulse energy, which are
marked in the figure.
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The two most striking differences between the direct hot-hole transfer and
hot-electron transfer processes is that the former happens at most with one fifth
of the probability of the latter, and that its probability decays more rapidly with
distance. With the [111] on-top GLLB-SC site as an example, figure 5.14 relates
the NP and molecular PDOS to the direct hot-hole transfer process hot-carrier
distributions. Figure 5.15 shows the JDOS JCO,NP(ε). It is seen that the molecular
PDOS in the region ε from −~ωpulse to 0 is much lower than in the region 0 to
~ωpulse, and practically zero above 3Å. At small separations, the contributions to
the molecular PDOS in the region ~ωpulse ≤ ε ≤ 0 are hybridized states originating
from the HOMO. At large separations there is a large contribution in the JDOS
at −1 eV from the non-hybridized HOMO state, which cannot contribute to the
hot-carrier transfer because ε < 0.

It is worth noting here that the HOMO state at −1 eV in the JDOS presents
an opportunity for engineering the system for increased hot-hole transfer. If one
were to somehow raise the HOMO level with respect to the Fermi level by at least
1 eV, the hot-hole transfer process could be expected to be greatly enhanced.

The behavior of the NP→ NP and CO→ CO processes is also explained by
a JDOS anaylsis, however corresponding figures are not shown. The low molecule
PDOS in the region ε from −ωpulse to 0 is the reason for the low rate of CO→ CO
transitions, and the fact that the NP PDOS is non-zero almost everywhere is the
reason for the high rate of NP→ NP transitions.
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Figure 5.14: GLLB-SC [111] on-top site hot-carrier distributions for the
direct hot-hole transfer process in relation to NP and molecular PDOS.
(a) Hot-hole and (b) hot-electron distributions as a function of distance. (c) The
molecular PDOS as a function of distance. (d) The NP PDOS, which is practically
independent of distance. To aid the eye, green and blue lines are drawn at a few
energies in panels (a) and (c) and at energies higher by ~ωpulse in panels (b) and (d).
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Figure 5.15: GLLB-SC [111] on-top site joint density of states related
to the direct hot-hole transfer process. This quantity shows how the hot-
electron distribution (and hot-hole distribution shifted by ~ωpulse) would look if it
only depended on the product of overlapping projected densities of state. The hot
electrons are required to be between the Fermi level and the pulse energy, which are
marked in the figure.
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5.3 Generalization and future considerations
The previous section has highlighted the importance of the alignment of donor and
acceptor states for hot-carrier transfer. While other effects play a role the alignment
roughly determines the shape of the hot-carrier distributions. The implications of
this, and possibilities for applications are discussed in this section.

Figure 5.16 illustrates the process of hot-electron transfer. There are three
variables in this picture – the position of the donor state in the NP εdonor, the
frequency of the light ωpulse and the position of the acceptor LUMO level in the
molecule εLUMO. The prerequisite for hot-carrier transfer is

εdonor + ~ωpulse = εLUMO. (5.16)
The size, shape, composition and environment of the NP affects the LSPR frequency,
and thus the pulse frequency ωpulse if high efficiency is desired. The electronic
structure at the NP surface of interest (determining possible εdonor levels in the
direct hot-electron transfer process) may be more sensitive to local structure and
composition. For example by alloying or introducing local strain the NP energy
levels could be shifted. The acceptor energy levels are determined by the type of
molecule.

Fermi level~ωpulse

εdonor

ε′

εLUMO

Figure 5.16: Schematic drawing of conditions required for hot-electron
transfer. Hot-electron transfer can occur when εdonor + ~ωpulse = εLUMO. By en-
gineering these variables, hot-carrier transfer to certain orbitals may be favored or
inhibited. The pulse frequency ωpulse is set to the LSPR frequency, which is affected
by NP size, shape, etc. The NP levels εdonor, ε

′ may change by modifying the NP
surface.

The ability to modify the LSPR frequency and electronic structure at the
NP surface presents opportunities for engineering hot-carrier devices for specific
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applications. A possible way to boost the probability of hot-electron transfer in the
NP-CO system could be to shift the NP energy levels upwards so that transfer may
occur from the large d-band.

For photocatalysis applications selectivity is a desired trait, i.e. the favoring
of transfer to an orbital in one molecular species, but not to other. Achieving high
selectivity in hot-electron transfer would require a sharp peak in the occupied part
of the NP PDOS, that matches the LUMO state of the selected molecule.

For certain applications a high degree of charge separation may be desired,
i.e. significantly more transfer of one type of charge carrier than the other. This can
be achieved with a molecule (such as CO), where the states are well separated, or
with a wide band gap semiconductor.

5.3.1 Probe orbital approach
A future direction in the study of hot-carrier transfer in NP-molecule systems could
be the utilization of a probe orbital. As shown in the previous section, the PDOS is
key to hot-carrier transfer. The idea is to replicate the PDOS of the relevant states
of a real molecule (by for example consulting experiments or higher-level theory).
Here, such a probe orbital is introduced as proof-of-principle.

An external potential on the form

vext(r) =

 dprobe

[
2
(
|r−r0|
rprobe

)2
−
(
|r−r0|
rprobe

)4
− 1

]
, |rprobe − r0| < rprobe

0 , else
(5.17)

is added to the system. The potential is centered at r0 and has a tunable depth dprobe
and radius rprobe. The potential is approximately harmonic in the center of the well
and is continuous and differentiable everywhere. Figure 5.17 shows the potential for
different values dprobe.
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Figure 5.17: The potential used to implement the probe orbital. The radius
is rprobe = 1Å and the different values of the depth dprobe are indicated in the legend.

A similar study of the hot-carrier transfer distance dependence as for the CO
molecule is conducted with the probe orbital. The probe depth and radius are set
to 40 eV and 1Å respectively. As the ground state calculations could not reliably be
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converged with the GLLB-SC xc-functional PBE+U is used. Voronoi weights and a
probe PDOS are constructed in the same way as for the molecule.

Figure 5.18 shows the distance dependent PDOS of the probe orbital ap-
proaching the [111] on-top site. Here, the distance d is measured between the center
of the probe r0 and nearest Ag atom. For d > 4.5Å there is a single unoccupied
state (that is spherically symmetric in contrast to the π-type LUMO state of CO).
Its energy varies smoothly with distance between 1.5 eV and 3.3 eV. Below 4.5Å
a hybridized probe orbital state forms around the Fermi level. Thus only values
d ≥ 4.5Å are considered further. The corner site PDOS (not shown) has a similar
distance dependence, with a hybridized state forming at Fermi level for d < 4.8Å.

Figure 5.19 shows the direct hot-electron transfer probability for the probe
for the [111] on-top site and corner site. As the sole probe state with the present
radius and width is above Fermi level, there is no hot-hole transfer for the considered
distances. The direct hot-electron transfer has a wide peak around 6Å for both sites.
For the [111] on-top site there is additionally a peak around 5Å.

Figure 5.20 shows the hot-carrier distribution in relation to the PDOS and
figure 5.21 shows the JDOS for the [111] on-top site. Both of the previously mentioned
maxima in the hot-carrier distributions for the [111] on-top site are correlated to
the peaks in the NP PDOS aligning with the probe state. For the corner site (not
shown) the probe PDOS does not reach the energy 2.2Å at 5Å like the [111] on-top
site does, and consequently lack the corresponding maximum in the HC transfer.
This shows that the JDOS anaylsis framework works equally well for the NP+probe
system as the NP+molecule system.
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(Å

)

2

4

6

8

10

P
D

O
S

D
pr

ob
e
(ε

)(
1/

eV
)

Figure 5.18: PDOS of the probe orbital Dprobe(ε) for the [111] on-top site
with the PBE+U xc-functional.
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Figure 5.19: Probability of the direct hot-electron transfer process as a
function of the separation between the NP and probe.
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Figure 5.20: Probe orbital [111] on-top site hot-carrier distributions for the
direct hot-electron transfer process in relation to NP and probe PDOS.
(a) Hot-hole and (b) hot-electron distributions as a function of distance. (c) The
NP PDOS, which is practically independent of distance. (d) The probe PDOS as a
function of distance. To aid the eye, green and blue lines are drawn at a few energies
in panels (a) and (c) and at energies higher by ~ωpulse in panels (b) and (d).
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(Å

)

Fermi level
Pulse energy h̄ωpulse

100

101

102
Jo

in
tD

O
S

JN
P

,p
ro

be
(ε

)(
1/

eV
2
)

Figure 5.21: Probe orbital [111] on-top site joint density of states related
to the direct hot-electron transfer process. This quantity shows how the hot-
electron distribution (and hot-hole distribution shifted by ~ωpulse) would look if it
only depended on the product of overlapping projected densities of state. The hot
electrons are required to be between the Fermi level and the pulse energy, which are
marked in the figure.

55



5. Hot-carrier transfer

5.4 Summary
• The Ag201 RTO + CO system was studied
• Binding energies of the NP+CO system were calculated for four sites as a

function of distance, finding
– Minima in binding energy around d = 2.2Å for corner and [111] on-top

sites
– Initial repulsion when approaching [111] fcc and [100] hollow sites

• Probabilities of direct hot-electron and hot-hole transfer were determined as a
function of distance
– Direct hot-electron transfer around ∼ 1− 2 % for wide range of distances.

Sensitive to site and choice of xc-functional
– Direct hot-hole transfer at most 0.3 %, decaying with distance

• Found that HC distributions (and consequently transfer probabilities) are ex-
plained by alignment of NP and molecular states
– Hybridization important for distance dependence

• As proof-of-concept a probe orbital consisting of a harmonic-like potential was
demonstrated
– The same type of relations regarding PDOS alignment as for a CO

molecule are observed
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In this thesis optical and photocatalytical properties of Ag NPs have been studied.
For a sequence of thermodynamically stable truncated octahedron-like NPs between
13 and 586 atoms in size, the ground state energies and photoabsorption spectra
were computed. Confirming previous results obtained with an EAM potential, the
PBE ground state energies were found to closely follow a third degree polynomial
in N−1/3. While the EAM potential predicted regular truncated octahedra to be
lower in energy compared to the fit than other structures, the relative PBE energies
were found to be lower for some of the rugby-like structures. From the calculated
photoabsorption spectra the LSPR peak frequencies were found to be linear in N−1/3

above N ≥ 201, for both regular and irregular structures.
Binding energies as a function of distance were calculated for the Ag201 RTO

and a CO molecule. Out of the four considered sites of CO adsorption on the NP,
the corner site exhibited the strongest binding, followed by the [111] on-top site. The
[111] fcc and [100] hollow sites showed initial repulsion on CO approach.

For the same NP+CO system direct hot-electron and hot-hole transfer proba-
bilities were calculated as a function of distance. The system was excited by a laser
pulse tuned to the LSPR frequency. The two most strongly binding sites were consid-
ered. The direct hot-electron transfer process was found to occur with a probability
of ∼ 1− 2 % for wide range of distances. The particular value at a certain distance
was sensitive to site and choice of xc-functional. The direct hot-hole transfer process
was at most 0.3 % probable, its probability decreasing with increasing distance.

It was found that the distribution of hot-electrons and hot-holes in the direct
transfer processes was primarily determined by the alignment of molecular and NP
projected densities of state (PDOS). In particular there must be a donor state in one
PDOS and an acceptor state in the other, with their energy difference equal to the
energy of the pulse. Both the HOMO and LUMO state of the molecule hybridized
at small distances, spreading out over a range of energies. As the particular energies
of the hybridized LUMO state depended on site and choice of xc-functional, also
the hot-electron transfer showed this dependence. The energies of the hybridized
HOMO state were less dependent on those factors, thus yielding a uniform distance
dependence of the hot-hole transfer probability.

These findings imply that possible hot-carrier can be engineered by tuning the
LSPR frequency (by changing NP size, shape, environment and composition), and
surface electronic structure (by strain or alloying) to enchance or inhibit hot-electron
or hot-hole transfer to certain molecular orbitals.
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