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Scene Graph Memory Management

Minimising Cache Misses in Dynamic Scene Graphs

Magnus Akerstedt Bergsten

Department of Computer Science and Engineering

Chalmers University of Technology and University of Gothenburg

Abstract

Due to the growing disparity in performance between memory and processors, it
is becoming increasingly important to consider the layout of applications’ working
set data in memory to make effective use of cache memories and avoid performance
bottlenecks from memory latency.

This thesis studies the effects of data layout on scene graphs, a common data struc-
ture for organising scenes in graphics applications. Specifically, it studies (1) which
way of packing nodes in memory yield the best performance for typical scene graph
traversal patterns, and (2) proposes a novel technique for maintaining such a data
layout in a scene graph in which nodes are added and deleted.

Three data layouts — orderings for nodes, in which they are packed in memory —
are evaluated for static scene graphs: a depth-first order, a breadth-first order, and
a van Emde Boas layout. These are compared against a “naive” layout, wherein
nodes are individually allocated on the heap.

In a set benchmarks representing typical operations on scene graphs, all data layouts
yield similar performance, which is up to three times faster than the naive layout
for large scene graphs. They show very similar performance to the naive layout for
smaller scene graphs, however.

Further, the dynamic memory management system presented in this thesis yields
better performance than the naive layout, in an evaluation simulating a highly dy-
namic scene-graph application, by up to a factor two for large scene graphs. A
limitation with the approach, though, is that memory usage increases on average by
a factor of 2.2 in the evaluation.

Keywords: Computer, science, computer science, engineering, thesis, scene graph,
memory management, cache friendly, cache efficient.
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Glossary

BFS layout A data layout for graphs where the nodes are stored in a sequence
matching the order in which a breadth-first search would visit them.

BVH Bounding-volume hierarchy.

cache Cache (more specifically, cache memory) refers to small but fast memories
residing between the CPU and main memory, which provide faster access to a
subset of the current working set data.

cache line A contiguous block of memory, the unit in which memory is transferred
between levels in a memory hierarchy.

cache miss An access to a memory location not currently in the cache.

data layout The way a (subset of) an application’s working set data is laid out in
memory; in this report, this term is used to discuss the layout of scene-graph
nodes in memory.

DFS layout A data layout for graphs where the nodes are stored in a sequence
matching the order in which a depth-first search would visit them.

directed acyclic graph Directed graphs in which there are no cycles; i.e. there is
no path from a node to itself.

hierarchical memory A model of memory where there are multiple memory levels
organised in a hierarchy, for example, multiple levels of cache and a main
memory.

prefetching The process of moving cache lines into the cache before they are re-
quested. Exists both as hardware prefetching and as software prefetching.

random-access memory A model of memory in which all memory accesses are
assumed to be of equal cost.

real time A requirement on the timeliness of results in a system: timeliness is
considered necessary for correctness.
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Glossary

scene graph A hierarchical data structure (tree or directed acyclic graph) repre-
senting objects to be rendered in a scene.

vEB layout A data layout for trees where nodes are laid out according to a recur-
sive structure, with the characteristic that root-to-leaf traversals have provable
bounds on number of cache misses.
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1

Introduction

In computer graphics applications, data structures are used to organise virtual
scenes. In the simplest case, a scene could be described by an array containing
objects to be rendered. A more complex but common approach is the scene graph:
a data structure describing the objects in a scene as a hierarchy, where properties
are propagated from parent to child. Good performance is required for such data
structures to prevent graphics applications from being limited by CPU and memory
speeds.

To achieve good performance in a data structure, one should consider not only the
algorithmic complexities of its operations, but also factors such as memory-access
costs. Memory-access performance can vary wildly depending data layout — how
data is organised in memory. This is because memory is organised in a hierarchy:
there is a small memory called the cache in between the CPU and main memory,
the former of which is much faster than the latter. Memory accesses that hit the
cache allow the program to proceed much faster than otherwise. If the data is laid
out in a cache-efficient manner, more memory accesses will hit the cache than they
would otherwise.

This thesis project presents research on data layouts with the goal of reducing cache
misses in scene graphs. A set of data layouts are evaluated for static scene graphs,
and an experimental solution for maintaining such layouts in a dynamic scene graph
is described and evaluated.

This project is done in collaboration with Carmenta AB.

1.1 Background

Much has been written in recent years on how data structures and algorithms may
be designed and analysed for hierarchical memory, in which memory is organised
in layers of increasing size and decreasing speed. In practice, these levels consist of
cache memories residing between the CPU and main memory. This differs from the
conventional random-access memory model for algorithm analysis in that memory
accesses are not all assumed to be of equal performance cost [4]: accessing memory
from a cache is significantly faster than accessing main memory (or even secondary
storage). The motivation for this research is the ever-widening gap between pro-

1



1. Introduction

cessor and memory performance; memory latency has become a bottleneck for an
increasing number of applications [8].

This applies especially to real time graphics applications. As graphics processing
units have become faster, it has become increasingly important to ensure that appli-
cations make efficient use of CPU and main memory. Otherwise, scene complexity
and fidelity may become limited by — for example — main memory latency, while
much of the graphics processing capacity is left unused.

The scene graph is a central data structure in many graphics applications. A scene
graph is a hierarchical representation of objects and properties thereof in a virtual
scene [2, Chapter 19]. A conventional implementation technique for scene graphs is
to store nodes at arbitrary locations in main memory. The graph is traversed by
following pointers between node objects, which (especially for large and dynamic
scene graphs) is an ineffective use of cache memories. This results in a large amount
of cache misses, where the CPU has to wait for the requested data to be transferred
from main memory to the cache memories [8].

While cache-efficient implementations of some data structures! have been studied in
detail, there is, to our knowledge, no material in the literature on cache-efficient scene
graphs in particular. The wide-spread use of scene graphs in graphics applications
and the high performance requirements of those systems provide ample motivation
for such research.

1.2 Purpose

The aim of this project is to research, implement, and evaluate memory-management
techniques for dynamic scene graphs for modern CPUs, with the goal of minimising
performance bottlenecks caused by memory access costs. The research questions
are:

1. how to lay out nodes in memory to minimise cache-miss costs for typical scene-
graph use cases, and

2. how to maintain such a data layout as the scene graph is modified.

1.2.1 Scope and Limitations

Scene graphs have varying characteristics and use cases for different applications.
They are typically either trees or directed acyclic graphs [2, Chapter 19], but there
is no agreed-upon topology in the definition of the term “scene graph”. To specify
a distinct subject for this project, the following limitations are made:

o The implementation is restricted to a tree topology.

ISee Chapter 2, Related work.
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e The implementation is intended and evaluated for applications in which traver-
sal follows a pattern typical of scene graph applications (as explained in Sec-
tion 3.2).

e The implementation is designed as an in-memory data structure and is targeted
at and evaluated using commodity hardware.

o Focus lies on soft real-time graphics applications: applications where timeliness
of results (consistency of frame rate) is important, but occasional untimeliness
results in degraded quality, not outright incorrectness [30].

o Empirical measurements of execution time is the main evaluation criteria, but
theoretical asymptotic cache-efficiency analysis? is in some cases performed to
aid analysis.

1.3 Outcome

For each investigated scene-graph usage pattern — scene graph update, transform
propagation, and rendering traversal — a benchmark application was created along
with a “frame emulation”-benchmark which combines all three, executed subse-
quently, to emulate the usage pattern of a scene graph during a single frame of
a graphics application. The benchmarks were implemented to perform the traver-
sals in different ways to evaluate the effects of various combinations of scene-graph
memory layouts and traversal patterns.

For static scene graphs, depth-first order and breadth-first order data layouts were
found to be most efficient with very comparable performance, up to three times
faster in large scene graph than a “naive” data layout. A “van Emde Boas” data
layout provided performance very close to the depth-first and breadth-first layouts.
Performance difference varied with graph size; for small graphs, memory layout had
a smaller impact on performance.

The dynamic scene graph data structure was up to 60% faster than the naive solution
for large scene graphs, but provided little benefit for smaller ones. Additionally, it
requires significantly more memory than the naive solution. This suggests that
there is value in the approach of the dynamic data structure, but further research
is required to improve it.

2See Section 3.1.3 for an explanation of asymptotic cache-complexity analysis.
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Related work

This chapter presents previous work on related subjects and discusses those results’
applicability to the research questions considered in this report. It presents both
published scientific work and an analysis of techniques used in practice via a survey
on open-source scene-graph code bases.

2.1 Cache-efficiency in tree data structures

There are several results on cache-efficient tree data structures in the cache-aware
and cache-oblivious models (described in Section 3.1.3) [27, 4]. However, these
largely focus on search trees such as B-trees; as a result of that, they also focus
on particular traversal patterns — usually root-to-leaf search paths — which do
not correspond exactly to those of scene graphs (as is discussed in Section 3.2). A
selection of such results are presented below.

2.1.1 Cache-efficient search trees

In 1999, Prokop introduced the notion of cache-oblivious algorithms [27]. One of the
presented results is the van Emde Boas data layout for binary search trees'. This
layout has provable worst-case bounds for the number of cache-lines traversed on
any root-to-leaf path. For an explanation of cache obliviousness and the van Emde
Boas layout, see Section 3.1.3. This method is, however, limited to static complete
binary trees.

Bender et al. generalised the concept of cache-oblivious trees as introduced by
Prokop, presenting a cache-oblivious dynamic B-tree [5]. This tree relies on strongly
weight-balanced update algorithms to maintain the van Emde Boas data layout dur-
ing node insertions and deletions. They present asymptotic bounds on the number
of cache-block transfers for search traversals, insertions, and deletions.

Several further results on dynamic B-trees simplified the aforementioned approach
while maintaining the same asymptotic bounds on cache-block transfers. One such

!The van Emde Boas data layout is named for its parallels to a data structure presented by P. van
Emde Boas [9].
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example is the density-based dynamic B-tree of Brodal et al. [7]. A very similar
result, with the same complexity bounds, was independently discovered by Bender
et al. [6]. Their tree data structure works by embedding the dynamic binary tree of
height log N + O(1) (where N is number of nodes) within a static, complete binary
tree of height H. The static tree is, in turn, laid out in an array using the van
Emde Boas data layout. The dynamic tree is kept at a small height — so that it
may fit inside the static tree — using update algorithms that re-balance the tree to
minimise its height.

The aforementioned results diverge from the requirements of scene graphs in two
ways: firstly, they are optimised for the particular traversal patterns of root-to-leaf
searches rather than the traversal patterns of typical scene-graph use cases?; and sec-
ondly, they work on the assumption of balanced trees with a fixed branching factor,
whereas scene graphs can have arbitrary tree topology and may be unbalanced.

2.1.2 Cache-efficient layouts for bounding volume hierar-
chies

A result somewhat close to the subject of this project was presented by Yoon and
Manocha [34]. They present an algorithm that computes cache-efficient data layouts
for bounding volume hierarchies (BVH, hierarchies of geometry-enclosing volumes
used to accelerate collision queries, e.g. ray-to-volume collision for ray-tracing). The
algorithm uses an analysis of BVH traversal patterns, which includes spatial locality,
parent-child locality, and a geometrically-based probabilistic model, pre-computing
the probabilities that a query visiting one node will also visit each of its children.
This is used to compute a static data layout for the nodes in the tree.

This result has some applicability to scene graphs. First, scene graphs sometimes
embed a BVH?, and traversals (e.g. for rendering) may be guided by a collision
query such as view frustum against scene elements, to only traverse visible nodes.
Further, the considered BVH — unlike the trees in the results presented above —
does not have a fixed branching factor. Finally, in a BVH, traversals also often
visit many more nodes than only those on a root-to-leaf search path (much like in
a scene graph). However, the algorithm produces a static data layout and requires
significant processing to do so; as such, it is not directly applicable to the subject
of this project.

Another result on cache-efficient BVH layouts — a cache-oblivious R-tree — is
presented by Arge et al [3]. This, too, is an algorithm for determining a static data
layout. Further, R-trees have particular topology requirements which do not apply
to scene graphs.

2Such traversals are described in Section 3.2.
3E.g. by storing, in each node, a variable with the minimum radius that encloses all objects within
the sub-tree rooted in that node.
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2.2 Scene-graph optimisation

Roth et al. present an approach for allowing multiple threads to work on a shared
scene graph using data replication and synchronisation techniques [28]. They con-
sider the scene graph’s data layout with the goal of avoiding destructive interference
due to multiple threads writing to the same cache line, but focus lies on providing
thread-safe concurrent mutable access to a shared scene graph.

Worister et al. describe a scene-graph rendering system which aims to achieve high
performance by maintaining rendering caches, which are efficient representations of
the rendering instructions required to draw entire scene graph sub-trees [32]. They
present a method for updating the rendering caches without traversing the scene
graph through the use of graphs modelling the dependencies between the rendering
caches and scene graph components.

The approach of Wérister et al. can be compared to that of the NVidia Pro Pipeline
scene graph, which is described in the next section. Both of these have as a goal to
eschew scene graph traversal in favour of maintaining separate scene representations
which are kept in sync with the scene graph.

2.3 Survey of open-source scene graphs

Due to the scarcity of published research on memory management in scene graphs,
a survey of open-source code bases containing scene graphs was undertaken. This
provides some insights into how the problem has been handled in various projects
before.

The following code bases were studied, each at their most recently published versions
as of February 2019:

e Ogre3D (versions 1.11 and 2.1) [23]
o OpenSceneGraph [206]

o VulkanSceneGraph® [31]

o Sceniz [21]

o NVidia Pro Pipeline [20]

o Irrlicht [15]

A noteworthy fact is that some of these code bases have, in later revisions, been
reworked to be more cache-efficient. For example, the data layout differs vastly
between versions 1.11 and 2.1 of Ogre3D. This was done to improve graph traversal
performance with large scene graphs [24, 22]

4 VulkanSceneGraph was in an early prototype phase at the time of surveying.
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The code bases exemplified a variety of techniques for the implementation of their
graph data structures and the associated memory management. The techniques are
broadly classified in the following sections.

2.3.1 Self-contained and individually allocated node objects

This is the most conventional and straightforward object-oriented implementation
technique. Node classes contain all per-node data and represent edge relationships
using pointers to other nodes. Variations on this scheme include reference-counted
lifetime management of nodes and slightly different memory allocation schemes.

Surveyed code bases that fall under this classification are:

e Ogre3D version 1.11 (but not version 2.1)

OpenSceneGraph
VulkanSceneGraph

Sceniz

Irrlicht

OpenSceneGraph, VulkanSceneGraph, and Irrlicht are fairly straightforward exam-
ples of this implementation technique. Sceniz works in much the same way, but uses
a special “chunk memory allocator” that places small objects within pre-allocated
blocks of memory, which may have some positive impact on the cache-efficiency
of the scene graph. These four all use reference-counted lifetime management for
nodes.

VulkanSceneGraph, despite being a separate project that is developed from scratch,
maintains the same general graph implementation technique as OpenSceneGraph.
It has, however, been optimised for cache efficiency by reducing the size of each
node by moving non-essential data out of the node classes and into optional “aux-
iliary” classes, referred to by an optional pointer in the node. VulkanSceneGraph
also includes an interface allowing the user to provide their own memory allocation
implementation for its object types, but uses the standard C++ dynamic memory
allocator by default.

Ogre3D version 1.11 also falls into this classification, but does not use reference
counting. The lifetimes of node objects are bound to their owning SceneManager,
and may be manually destroyed by the client code.

2.3.2 Ogre3D 2.1: Node objects with separately managed
data

Ogre3D has had its scene graph data representation vastly redesigned in version 2.1.
While the API still presents a similar structure to that of earlier versions, the actual
data storage is entirely different and optimised for cache-efficient traversal.

8
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The Ogre3D 2.1 data layout can be described as “structure-of-arrays with a con-
ventional node graph interface”. In practice, all the data is stored in a collection
of arrays of homogeneous types (e.g. translation vectors). The nodes in the scene
graph store pointers to each of their associated data values in these arrays. As such,
they can be used to read and modify the contents of the data arrays. There is one
data array per depth level in the scene-graph hierarchy.

Hence, the actual graph data structure implementation consists of a set of arrays,
one for each kind of attribute in the nodes (structure-of-arrays representation), in-
cluding parent-child relationships. Some types of traversals can be done very cache-
efficiently with this layout by iterating over these arrays instead of following pointers
between nodes. The conventional node objects act as a more convenient (but less
efficient) interface to query and manipulate the actual array-based data representa-
tion.

The data arrays are managed by an array memory manager each, which allocates
slots within its array upon request. The array memory managers may also defrag-
ment their arrays. This is possible since the array memory managers keep track of
to which node in the scene graph each array slot belongs. After defragmenting, it
notifies the node to update its data pointers to the new location. This is done when
enough slots have been de-allocated, leaving holes in the array.

One final aspect of the data layout is the fact that vector values in the data arrays
are “packed” in units fitting the target platform’s vector-register size. As an ex-
ample, a 3D translation vector may be represented in groups of four as XXXX YYYY
ZZ7Z, instead of as XYZ XYZ XYZ XYZ. Traversal over the graph (for example, to
calculate absolute transform values®) processes four nodes at a time and use single-
instruction multiple-data operations to process all four at once. In a conventional
object-oriented graph representation, this would scarcely have been possible, which
illustrates the ability of careful data layout to enable optimisations beyond that of
cache efficiency.

2.3.3 NVidia Pro Pipeline: Mixed representation

As with Ogre 2.1, the NVidia Pro Pipeline scene graph has been designed to reduce
CPU and memory overhead. The project takes quite a different approach, how-
ever. Instead of optimising the traversal of the scene graph, it has been designed to
minimise the amount of traversal required.

NVidia Pro Pipeline maintains multiple data representations of the scene: a con-
ventional directed-acyclic graph, a strictly tree-shaped graph, and a linear sequence
of renderable objects. The former of these stores most of the required data and is
the application’s interface for modifying the scene. The other two representations
are automatically updated to reflect changes to the scene graph using notifications
built using the observer pattern [12].

5This process is described in Section 3.2.2.
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The tree-shaped graph is an “expansion” of the scene graph in the sense that sub-
graphs with multiple parents are copied as separate nodes under each of the parents.
The nodes in the tree are, however, much smaller than in the scene graph, referencing
the data stored therein rather than copying it all. The goal of keeping both of these
scene representations is to get the benefits of both approaches: sub-graphs can be
re-used to reduce redundancy and memory overhead, and having a unique path from
any node to the root (as in the tree) helps with caching intermediate results in nodes.

10



3

Theory

This chapter presents underlying theory. It explains how cache memories work, how
software may be optimised and analysed for cache efficiency, and what scene graphs
are and how they are used.

3.1 Cache memory

Memory speed has become an increasingly central bottleneck in computer perfor-
mance during the last decade, as CPU speeds have increased at a higher rate than
memory speeds [13]. As a result of this, the time spent by a CPU waiting for data
has increased in proportion to the time spent performing useful operations, limiting
performance.

This performance discrepancy — the processor-memory performance gap or memory
wall [33, 18] — has been partially ameliorated through the use of cache memory in
CPUs, which allows the CPU to work with a subset of the memory data in a faster
but smaller memory [13, 8, 10]. There may be one or more layers of cache between
the CPU and the main memory, constituting a memory hierarchy, where increasing
levels are larger in capacity but slower to access. The smallest and fastest cache
level is called the L1 cache, the next level is called L2, and so on. The number of
cache levels varies with processor, but two or three levels of cache are common.

The L1 cache is typically divided into an instruction cache for the CPU instruction
stream and a data cache for application data. This project investigates a data
structure from a cache-efficiency perspective, hence we focus on the data cache.

In multi-core systems, it is common for the cores to share lower-level (larger) caches
but for each core to have its own higher-level (smaller) cache. As an example, on
an Intel i7-8700 CPU (as used in the evaluations for this thesis), there are three
cache levels. Each core has its own L1 and L2 cache of sizes 64 KiB and 256 KiB

respectively!, and all cores share a 12 MiB L3 cache.

The memory address space is divided into a set of cache lines (or cache blocks) of
equal size?. Data from main memory is copied into the cache (and written back to

IThe L1 cache is divided into a 32 KiB L1i instruction cache and a 32 KiB L1d data cache
2A typical cache-line size is 64 bytes [8, 11].

11



3. Theory

memory) in units of cache lines. When a cache line is copied from main memory to
the cache, another line may need to be evicted from the cache to make space.

When the CPU needs to access a certain memory location, the cache memory is
first checked; if the required data is in the cache, there is a cache hit: the program
can continue executing faster than if it was not — a cache miss — as that would
require the cache line containing the data to be fetched from main memory, a much
slower operation [13].

Each cache-line is mapped to a certain block in cache memory. The mapping between
memory location and cache line is usually performed by considering only some of
the lower-valued bits of a memory address value [13].

Since the main-memory address space is far larger than the cache memory, such a
mapping scheme would mean that there will be many different addresses in memory
that map to the same block in the cache. If an algorithm alternately accesses two
memory locations a and b such that they both map to the same cache line, each
access to a would have to evict the cache line holding b and vice versa, nullifying
the benefit of having a cache. To resolve this, caches usually have some level of
associativity. N-way set associativity means that for any cache line, there are N
locations in the cache to which it may be mapped. For example, for a cache with
two-way set associativity, two cache lines with the same mapping (as given by their
addresses’ lower-valued bits) may be in cache simultaneously. In contrast, a cache
wherein each memory location may only correspond to one location in cache is called
a direct-mapped cache.

When a cache line is loaded in a N-way set associative cache, a choice must be made
of which of the N potential lines in cache to evict. This selection is typically done
by evicting the least-recently used of the cache lines.

3.1.1 Prefetching

Processors use certain heuristics to predict which memory locations are likely to be
used in the near future, and preemptively copy the relevant cache lines from main
memory into the caches in a process called hardware prefetching.

One common type of hardware prefetching is called stream prefetching. Stream
prefetching maintains a stream buffer of cache lines which is separate from the
cache. When a cache line a is requested, causing a cache miss, the stream prefetcher
may be triggered; it would then load lines a + 1,a + 2,a + 3,... into the stream
buffer. If cache line a + 1 is requested next, it can be served from the stream buffer
instead of from main memory, resulting in faster memory access. The head of the
stream buffer would then advance to a + 2, and so on [16, 8, 19].

Stream prefetching is typically triggered by a series of cache misses within some
CPU-specific hardware-cache prefetch trigger distance [8]. Some hardware prefetch-
ers detect the stride between requested cache lines to skip prefetching lines that will
not be used. For example, if a program requests cache lines a,a+4,a+8,a+12, ...,
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then the prefetching logic may detect that the stride is 4 cache lines and prefetch
accordingly; this is referred to as a stride prefetcher. CPUs are often able to track
multiple streams (with differing stride) and can contain multiple stream buffers [16,
8, 14].

Another type of hardware prefetching is adjacent-line prefetching (also known as
spatial prefetching) [14]. This simply means that each cache line is considered to
belong to a pair together with an adjacent cache line; when a cache miss triggers the
loading of one cache line in such a pair into the cache, the other is prefetched. For
example, requesting a memory location in a cache line a might also prefetch a + 1
into the L2 cache.

The Intel 64 and IA-32 Architectures Optimization Manual describes the hardware
prefetchers in recent Intel CPUs, which include stride prefetching and adjacent-line
prefetching [14].

In addition to hardware prefetching, there is also software prefetching. This con-
sists of CPU instructions which may be included in software to instruct the CPU
to prefetch specific cache lines to one or more cache levels [19, 17, 14]. These in-
structions may be manually inserted by a programmer or automatically inserted by
a compiler.

3.1.2 Cache efficiency

While cache memories are designed to be efficient for typical memory-access patterns
in software, it is still important for programmers to be aware of the memory caches
and to structure programs’ working-set data and the associated memory accesses
— the programs’ memory-access patterns — in a way that minimises cache misses.
Doing so entails programming to maximise locality of reference: data used together
should be stored together, which helps as it increases the probability that a memory
access refers to a memory location that is already in cache (or that the memory
accesses follow predictable patterns, making effective use of hardware prefetching).

There are two types of locality relevant to cache-efficiency: spatial locality and tem-
poral locality. Spatial locality means that data used together is stored close together
in memory This type of locality benefits from caching partly because the data may
share the same cache line, and partly because memory accesses become more pre-
dictable for the hardware-prefetching logic. Temporal locality means that recently
used data is likely to be used soon again. A program exhibiting temporal locality
benefits from the cache in that further accesses to the same memory location have
greater probability of hitting the cache.

In a scene graph, nodes are sometimes larger than typical cache-line sizes (often
64 bytes). Hence, when laying out nodes in memory, there is limited benefit from
considering spatial locality with the goal of fitting more nodes in the same cache
line. However, the data layout can have a major impact on the effectiveness on the
hardware prefetcher. If the nodes are stored in the same order that they are accessed
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during a traversal, the hardware-prefetching logic should trigger stream prefetching
of the following nodes.

3.1.3 Cache models for algorithm analysis

The conventional big-O asymptotic time complexity analysis for algorithms relies
on a random-access model of memory, wherein all memory accesses are assumed to
be of equal performance cost. In a memory hierarchy, this is not the case: accessing
memory locations corresponding to cache lines already in the cache is much faster
than accessing other memory locations [4]. As such, a data structure or algorithm
may have worse performance in practice than conventional time-complexity analysis
suggests.

To resolve this, several models that do not assume random-access memory have
been proposed. One such memory model is the two-level I/0O model by Aggarwal
and Vitter [1]. In this two-level model, there is a faster memory of size M and an
external memory of infinite size. Data is transferred between these two levels in
blocks of size B. The model is then used to analyse the number of such memory
transfers of an algorithm, often asymptotically, yielding what we will refer to as
cache complexity, analogously to conventional time complexity of algorithms.

In contrast to the typical case for cache memories, the 1/O model assumes that
memory transfers are completely controlled by the algorithm; as such, it is closer to
a model of the relationship between secondary storage and internal memory, rather
than between cache memory and internal memory.

Chatterjee et al. extended this model for further applicability to cache memories
[29]. There, they add a parameter L for the relative cost of accessing the slow,
large memory in relation to the cost of accessing the small, fast memory. A fixed
mapping from memory address to cache block, as in a typical cache memory, is
assumed. They provide a method for emulating the behaviour of algorithms in the
I/O model using an extra buffer, allowing results for the I/O model to also apply
to this cache model. Finally, they further extend the model to consider the effects
of limited associativity and to include multiple levels of cache.

3.1.3.1 Cache-aware and cache-oblivious algorithms

There has been significant work on creating and tuning algorithms to reduce the
cache complexity in various cache models. A cache-aware algorithm is defined as
an algorithm with parameters that may be tuned to optimise the performance for
some particular cache-line size (or other parameters of the cache) [27].

Cache-oblivious algorithms, introduced by Prokop in 1999, were proposed to avoid
limitations with cache-awareness [27, 4]. In contrast to cache-aware algorithms,
cache-oblivious ones make no use of parameters such as cache-line size. An algorithm
that is optimal in terms of cache complexity in a cache-oblivious manner is optimal
regardless of the actual cache parameters of the system on which it is run. This
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Figure 3.1: A binary tree in a van Emde Boas data layout.
The numbers indicate the nodes’ location in the data layout.

makes algorithms more stable and portable to different systems and also allows
them to be optimised for all levels of a memory hierarchy simultaneously.

Prokop presents a number of cache-optimal algorithms in the cache-oblivious model
[27]. Since then, a large amount of further algorithms and data structures have
been studied under this model. The cache-complexity analysis underlying these
results builds on a two-level ideal-cache model wherein the first level — the cache —
has size M and cache-line size B, and the second level (random-access memory) is
arbitrarily large3. Cache lines can be placed at arbitrary locations in the cache, which
is assumed to be fully associative and to be using an ideal replacement strategy: the
cache line for which the next access is the furthest in the future is evicted first.
Further, it is often assumed that the size of the cache is at least the square of the
cache-line size: M > B?. This is called the tall-cache assumption.

Some of the assumptions above may seem generous, but the number of memory
transfers under this model have been shown to be within a constant factor from
more realistic cache models (e.g. using least-recently-used cache-line eviction) [27].
Indeed, algorithms designed for the cache-oblivious model have been shown in em-
pirical investigations to have comparable — albeit slightly worse — performance to
cache-aware solutions [4].

A pertinent example of a cache-oblivious result, presented by Prokop, is the van
Emde Boas data layout for binary search trees*. It is a recursive data layout that
provides optimal cache-complexity for root-to-leaf traversals [27].

This data layout places the nodes in an array of size N (where N is the number of
nodes) in the following manner. Divide the tree into a top tree and a set of bottom
trees by splitting it in half by its height hA°. The layout then consists of the van

3Prokop’s thesis uses the notation Z for cache size and L for cache-line size.

4The van Emde Boas data layout is named for its parallels to a data structure presented by P. van
Emde Boas [9].

5There are a few different ways to distribute the height between top and bottom trees if the height
is not an even number. One such way gives the top tree the height |h/2] and the bottom trees
height [h/2].
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Emde Boas layout recursively applied to the top sub-tree followed by the van Emde
Boas layouts of each of the bottom sub-trees (in left-to-right order). In the base
case, the height h = 1, in which case the layout simply consists of that one node.
An illustration of this layout can be seen in Figure 3.1.

The key to the cache-optimality of root-to-leaf searches in the van Emde Boas tree
layout lies in its recursive nature. For any cache-line size B, pick the shallowest level
of the recursion such that the size of the top and bottom sub-trees are less than or
equal to B. The whole tree is divided into sub-trees of this size, and from the
definition of the van Emde Boas layout, each such sub-tree is stored in a contiguous
block of memory. Any path from root to leaf will traverse log N/log B = loggz N such
sub-trees, each invoking O(1) memory transfers (since the sub-trees are smaller than
or equal to B in size). The resulting asymptotic cache-complexity is thus logg N,
which is equivalent to that of a cache-aware B-tree [4].

3.2 Scene graphs

Scene graphs are hierarchical graphs (usually trees or directed acyclic graphs) repre-
senting a scene for 3D visualisation [2, Chapter 19]. Scene graphs are organised by
spatial relations and semantic relations. For example, a node representing a car may
have five child nodes: one for each wheel and one for the car’s body. Node properties
such as location in the scene are propagated to the node’s children recursively down
toward the leaf nodes. Scene graphs may also organise objects by other properties,
such as surface material.

A typical flow for rendering a scene is that the scene graph is traversed from root
toward the leaves, rendering the objects described by the nodes. Properties such as
location are propagated from parent node to child node when the scene is rendered
(or in a pass before). Hence, it suffices to change the location of the car node (from
the previous example) to relocate both the car’s body and its wheels.

Many results on cache-efficiency in tree data structures focus on various kinds of
search trees, for example binary trees, B-trees, and so on. These differ from scene
graphs in a crucial way: in search trees, the typical and the most performance-
critical traversal is along a path from the root node to a leaf. This avoids (by
design) visiting as many nodes as possible. In a scene graph, however, all nodes
(or a large subset thereof) are visited each frame. The tree topology is not used to
guide a traversal in order to find a node; instead, it represents the relation between
nodes.

Due to the real-time nature of many scene graph use cases, it is vital that these data
structures performs well; they must have an acceptable worst-case performance. In
real-time visualisations, the scene needs to be rendered at a certain rate, for example
60 times per second [2, Chapter 1], which requires all per-frame computations to
finish within about 16 ms. Average performance may also be important, but even
occasional slow-down such that the system does not meet its timeliness requirements
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results in reduced utility (in a soft real-time requirement) or even outright failure of
the system (in a hard real-time requirement) [30].

Scene graphs have a wide variety of use cases within applications, where some are
more performance-critical than others. The order in which nodes are visited (which
may vary depending on implementation) is of fundamental importance to the de-
sign of cache-efficient memory layouts. For this project, a particular usage pattern
for scene graphs, intended to be representative of a single frame in a graphics ap-
plication, is considered. The following sections describes each step of this usage
pattern.

3.2.1 Updates

The application will often make changes to the scene graph during its running time,
in both content and topology. This often consists of changing data within existing
nodes (e.g. changing the translation value of a node’s transform to move the cor-
responding object) but may also include destroying and creating nodes. The latter
may occur when input parameters change, so that cached data must be re-computed;
when scene elements are streamed in from secondary storage, as the viewer traverses
the virtual world; when replacing a sub-tree with a simpler one, to represent a simpli-
fied version of an object when it is distant, or vice versa (level-of-detail rendering)
[2, Chapter 19]; and simply when entities are created or disappear in the virtual
world.

Updates are typically implemented by allocating and destroying node objects using
regular dynamic memory allocators. In this thesis, a memory-management technique
which can maintain the desired data layouts is required. Due to the apparent lack
of published research on the topic, a novel technique is proposed in Section 4.4.

3.2.2 Transform propagation

One of the fundamental uses of a scene graph is to organise the spatial relations
between objects in a scene in a hierarchical manner. Typically, this is achieved
through the use of a transform hierarchy, wherein nodes contain a transform value.
A transform is a collection of three attributes: translation, orientation (rotation),
and scale. A translation is an offset in each of the two or three spatial dimensions
of the scene. Transforms are commonly expressed as collections of vectors (for
translation and scale) and unit quaternions (for orientation) or as a transform matrix
[2, Chapter 4] (or both, the latter being calculated from the former).

The transform of a node is specified relative to the transform of its parent, and so
on all the way up to the root. This way, changing the transform of a node that is
root of a sub-tree (e.g. by adjusting the translation to move it up into the air) will
also recursively affect all of its children.

To borrow the car-example from before (where a car is represented as a node with
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four child nodes for wheels and one child node for the body), moving the car’s
root node also moves all of the car’s components. Each wheel node could specify a
rotation around the wheel’s axis as they roll; this rotation would then be applied
after the rotation of the car’s root node.

In some scene graphs, every node has a transform value (Ogre is an example of this
[23]); in others, only special node types specify a transform, which applies recursively
to that node’s children (this is the case in OpenSceneGraph [26]).

This is may implemented by storing both relative (to parent node) and absolute (in
world-space) transform values in each transform node [2, Chapter 19]. The absolute
transform values are calculated by combining the relative-transform value of each
node with the absolute-transform value of its parent, for example via matrix multi-
plication. There is an ordering dependency here, since parents’ absolute-transform
value must be calculated before that of any of its children. This is done by travers-
ing the scene graph, propagating the effects of parent nodes down toward the leaf
nodes, starting from the root.

Transform propagation is one example (perhaps the most important) of propaga-
tion of node properties in a scene graph. The approach can be generalised to the
propagation of other properties; hence, we shall study how this type of propagation
may be done in more detail. Two ways of performing propagation traversals are
described below.

3.2.2.1 Breadth-first transform propagation

The breadth-first approach to transform propagation works as follows. For a tree-
topology (as this project is restricted to) this type of traversal is equivalent to the
following: divide the tree into a set of “depth levels” consisting of nodes at the
same depth (i.e. distance from root); then traverse all the nodes in each depth level,
starting with the root depth level and continuing downwards.

Breadth-first traversal can be implemented very cache-efficiently: traversing over the
nodes in a depth level represented as an array results in © (m/B) memory transfers®,

where m is number of nodes in the depth level and B is the cache-line size”.

For transform propagation, however, it is also required to read the transform values
of each node’s parent. This entails a look-up into the depth-level above the currently
traversed one. If there is no relation between the ordering of nodes in the two depth
levels, then each access of a parent node’s transform is effectively random; this
means that in the worst case, there may be a cache miss for each visited node: a
cache-complexity of O(m).

This changes if there is a distinct relation between the ordering of the nodes in the
depth levels. If the nodes’ data layout is a BFS layout, the cache-complexity has a

6For these cache-complexity analyses, we consider the maximum difference in size between node
types to be a constant factor.
"This is simply the cache-complexity of scanning any array.
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Algorithm 1 Depth-first transform propagation traversal

1: procedure TRANSFORM__DFS(parent__ transform, cur_node)
2: cur_node.absolute__transform <
COMBINE (parent__transform, cur_node.relative_transform)

3: let cur_transform < cur_node.absolute_transform
4: for child in cur_node.children do
5: TRANSFORM__DFS(cur__transform, child)

better upper bound:

Theorem 1. The cache-complexity of sorted BFS-traversal for transform propaga-
tion is bounded by O (%), where my, My are the number of nodes in the depth-
level currently traversed and the one above.

Proof. When visiting a node, it either has the same parent as the preceding node, or
a different parent; in that case the parent either immediately follows the preceding
node’s parent in the DFS-ordering, or there are one or more leaf nodes at the parents’
depth-level in between. Hence, the index of the parent of each visited node must be
non-decreasing as the index of the currently visited node grows.

As a result, the cache-complexity is bounded by the sum of the complexity of scan-
ning the two depth-level arrays separately: Consider two caches of size M/2 and
cache-line size B. Dedicate one of the caches to scanning the parent-depth array and
the other to scanning the lower one. This results in a cache complexity of O (m;/B)
and O (my/B), respectively. By the ideal-cache assumption, the number of cache
misses when using one cache to scan the two arrays (with any interleaving) can be
no worse than this. Hence, the total cache-complexity is in O (% . O

3.2.2.2 Depth-first transform propagation

This works very similarly to the aforementioned breadth-first approach. For this
type, however, the traversal follows a depth-first ordering.

Keep the latest (parent node’s) transform value on the function stack. Start with
an identity transform, combine it with the root node’s transform, and write the
result to the root. Then, recursively call the function on each of the child nodes,
and repeat the aforementioned procedure until reaching a node with no children (a
leaf node). This is expressed in pseudo-code in Algorithm 1.

Theoretically, the ideal data layout for such a traversal is the DFS layout, which
stores the nodes in the same order as they are visited. This effectively reduces the
traversal to iterating over an array for the purposes of cache complexity, which for
arrays of length n is © (n/B).

However, if the parent transform which is accessed in the procedure (cur_transform
in the pseudo-code in Algorithm 1) is a reference to the transform value stored
within the parent node object, the traversal is no longer equivalent to iterating over
an array. To see why, consider a tree with a root node with two children, each the
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root of a sub-tree consisting of m nodes: When the traversal visits the first child of
the root node, then parent_transform refers to location 0 in the tree’s data layout
and cur_transform refers to location 1. Then, the algorithm continues through the
sub-tree rooted in the first child, visiting all m nodes within. Afterwards, it visits the
second child of the root node, which would have location m + 2; parent_transform,
however, is still stored at location 0, resulting in a memory access far backward,
how far depending on the size of the sub-tree.

This can be avoided by keeping the whole parent-transform value on the function
stack instead of as a reference to the value in its node. This will, however, result
in a larger function stack, and an additional transform copy operation per recursive
iteration.

3.2.3 Rendering traversal

The arguably most important operation done using a scene graph is rendering. This
is typically done by traversing the scene graph from the root node and towards the
leaf nodes; when reaching nodes representing an object to be rendered, a draw call
is either dispatched directly or a draw command is written to some buffer to be
handled by a separate rendering system®. Hierarchical properties in particular node
types, such as surface material, are picked up during the traversal and are applied
to the objects in the sub-tree below.

If some or all nodes in the scene graph contain bounding-volume information —
information on the spatial extents of all objects within the sub-tree rooted in a
node, such as a bounding sphere — this can be used in the rendering traversal to
skip rendering objects outside of the current view, a technique called frustum culling
[2, Chapter 19]. Using such techniques changes the rendering operation’s traversal
patterns from visiting all nodes to skipping whole sub-trees. Since this is effectively
including a bounding-volume hierarchy into the scene graph, previous research on
traversal patterns for bounding-volume hierarchies [34] may be applicable to such
traversals.

8There are several reasons why the latter approach may be preferred. One such reason is that the
render-command buffer can be sorted to minimise costly changes to graphics-API state (for more
details on this, refer to the book “Real-time rendering” [2, Section 18.4]). Another is that scene
graph traversal might be distributed over multiple threads; in some graphics APIs, draw calls can
only be dispatched from one particular thread.
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Implementation

This chapter describes the ways in which scene-graph data structures, their memory-
management systems, and their associated traversals were implemented. To evaluate
different data layouts and dynamic scene-graph memory-management techniques,
the following components were implemented:

e A set of scene-graph nodes, representing a some commonly used node types in
scene-graph applications.

o A set of traversals performing typical performance-sensitive operations on the
scene graph.

o A data structure for maintaining a cache-efficient layout in a dynamic scene
graph (where nodes are created and destroyed during an application’s running
time).

The implementation is done in standard C+-+17.

4.1 Scene-graph data layouts

This section presents the data layouts considered in this project. The set of child-
pointers in a node is considered to be ordered and the data layouts (and traversals)
follow this ordering. Four layouts were considered: depth-first layout, breadth-first
layout, van Emde Boas layout, and a “naive” layout. In these data layouts, with
the exception of the naive layout, nodes are tightly packed in a contiguous range of
memory in the order described below for each.

[a]le][<][e][e][][s]n][x]
0 1 2 3 4 5 6 7 8

Figure 4.1: An example of a tree in a depth-first order layout (DFS layout).
The tree topology is presented on the left, and its layout in memory on the right.
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Figure 4.2: An example of a tree in a breadth-first order layout (BFS layout).
The tree topology is presented on the left, and its layout in memory on the right.

The depth-first layout, or DFS layout, has the nodes laid out in the order that they
would be visited by a depth-first search. An example can be seen in Figure 4.1.

The breadth-first layout, or BF'S layout, is defined similarly, the nodes are laid out
in the order that they would be visited by a breadth-first search. An example can
be seen in Figure 4.2.

The van Emde Boas layout, or vEB layout, which is cache-optimal for search trees,
is described above in Section 3.1.3.1. An example can be seen in Figure 3.1.

Finally, the “naive” layout consists of allocating each node individually on the heap
so that nodes are not stored contiguously and there is no pre-defined ordering be-
tween the nodes’ addresses in memory. This applies to both the static scene graph
evaluation and the dynamic data structure.

4.2 Node types

The scene-graph implementation uses a particular set of node types, representing a
minimal subset of the node types which may be used in a scene-graph application.
These nodes types are required to position, rotate, and scale elements in the scene;
to describe the shapes to be rendered; and to describe the surface properties of
those shapes. The library OpenGL Mathematics (GLM) [25] was used for vector,
quaternion, and matrix types and for operations on those.

Three node types were implemented:

e TransformNode: a node containing two transform values: one transform rel-
ative to the parent and one absolute transform in world space!. Each of
these consists of a translation, an orientation, and a per-axis scaling factor.
The translation and per-axis scaling are represented by three-dimensional vec-
tors of 32-bit floating-point values. The orientation is represented by a unit-

quaternion value consisting four 32-bit floating-point values.

o MaterialNode: a node that contains a dummy pointer which in a real scene
graph would point to the surface material that applies (recursively) to all child
nodes.

1See Section 3.2.2 for an explanation of why both are needed.
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constexpr size_t local_storage_size = 8;
struct Mesh; // Empty stand-in, never defined.
struct Material; // Empty stand-in, never defined.

// Used to refer to nodes in the dynamic data structure.
struct NodeHandle {
uint32_t slice_index;
uint32_t internal_index;
}
struct NodeBase {
small_vector<NodeBase*, local_storage_size> children;
NodeBase* parent;
NodeHandle self_handle;
uint32_t  depth;
3
struct Transform {
glm: :quaternion orientation;
glm: :vec3d translation;
glm: :vec3 scale;

};

struct TransformlNode : NodeBase {
Transform transform;
Transform absolute_transform;

};

struct Materialllode : NodeBase {
Material* material;

};

struct ShapelNode : NodeBase {
Meshx* mesh;

glm: :mat4 matrix;

};

Listing 1: Simplified definition of node types used in the experiments. lo-
cal__storage__size is the number of elements for which storage is to be reserved inline

in children.

e ShapeNode: a node containing a dummy pointer, which in a real scene graph
would point to a geometrical shape (e.g. a 3D mesh) to render. It also contains
a 4 x 4 transform matrix consisting of 32-bit floating-point values, representing
the absolute transform for the node (renderers often require transform matrices

of this form).

All of these inherit from a base class NodeBase, which contains common data like
parent and child pointers. It also stores the node’s depth (distance from root) and its
self-handle (which is used to locate the node’s storage in the dynamic data structure,
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Node type Size in bytes

TransformNode 180
MaterialNode 108
ShapeNode 172

Table 4.1: Size of node types in bytes on the evaluated platforms.
These values may depend on platform, compiler, and compiler configuration.

see Section 4.4.5).

The child-pointers are stored in a small_vector container, which is a dynamic array
similar to the C++4 standard library’s std::vector, except that it reserves — inline
within the small _vector-object — a fixed amount of storage; it falls back to dynamic
memory allocation only when the number of elements grows past the fixed storage
size — here eight elements. This is good for cache-efficiency, since accessing the child
pointers of a node has high spatial locality in the common case of a node having
eight or fewer children.

For exposition, simplified C++ definitions of the node types are presented in List-
ing 1. The sizes of each node type in bytes (on the tested platforms) can be seen in
Table 4.1.

4.3 Traversals

This section presents the ways in which the scene-graph traversals described in
Section 3.2 were implemented. All of the traversals were implemented using the
visitor pattern, which allows different function overloads to be applied depending on
an object’s derived type without requiring operations to be implemented as virtual
functions in the class hierarchy [12]. Each traversal is implemented as a visitor class
which has a member function wvisit, overloaded for each node type. These traversals
were used in benchmarks to evaluate scene-graph memory-management techniques,
as is described in Chapter 5.

4.3.1 Transform propagation

Since the transform values in the scene graph are hierarchical such that each node’s
transform value is provided relative to that of its parent, they must at some point
be propagated downwards, from the root towards the leaves, such that the absolute
transform value for each node is produced. It may either be done in the same
traversal as rendering or before it, in a separate traversal pass; the latter was chosen
for this thesis.

Two ways to perform this type of traversal are described in detail in Section 3.2.2.
The implementation follows the DFS-traversal order described in that section. The
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void TransformVisitor::visit(TransformNode& node) {

// Combine relative transform with parent's absolute transform
// using overloaded operators from the glm library.
node.absolute_transform.orientation = node.transform.orientation

* parent_abs_transform->orientation;
node.absolute_transform.translation = node.transform.translation

+ parent_abs_transform->translation;
node.absolute_transform.scale = node.transform.scale

* parent_abs_transform->scale;

parent_abs_transform = &node.absolute_transform;
visit_children(node);
parent_abs_transform = current_transform;
}
void TransformVisitor::visit(ShapeNode& node) {
node.matrix = glm::mat4_cast(t.orientation) * glm::translate(t.translation)
* glm: :scale(t.scale);
visit_children(node);
}
void TransformVisitor::visit(MaterialNode& node) {

visit_children(node) ;

Listing 2: Simplified C+4 implementation of Transform Visitor.

BFS-traversal order is difficult to apply efficiently to this scene graph, since any
given TransformNode might not have another TransformNode as its parent; thus,
finding the parent transform to combine with the transform of any visited node
might entail traversing up all the way back to the root. The DFS-traversal is hence
more general and works for more kinds of scene graphs.

Transform propagation is implemented as a visitor called Transform Visitor. It con-
tains a pointer to TransformNode called parent_abs_transform. When the visitor is
first constructed, parent abs_transform points to an identity-transform value. The
implementation is shown in Listing 2. The visitor traverses tree in DFS-order, with
the different node types handled as follows.

When visiting a TransformNode a, the relative transform of a is combined with the
transform pointed to by parent _abs transform and the resulting absolute transform
is stored in a’s absolute-transform value. parent abs transform is then set to point
to a’s new absolute-transform value, and the visitor then visits the node’s children.
After the sub-tree has been traversed, parent_abs transform is reset to the value it
had before.

When visiting a ShapeNode, a transform matrix is calculated from the current value
of parent__abs_transform, and is stored in the node.

Transform Visitor performs no operation when visiting a MaterialNode, and only
continues to the child nodes.
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struct DrawCmd {
Mesh constx* mesh;
Material const* material;

};

std: :vector<DrawCmd> draw_command;

std::vector<glm::mat4> draw_matrices;

void visit(TransformNode& node) final { visit_children(node); }

void visit(ShapeNode& node) final

{
draw_command.push_back({ node.mesh, current_material });
draw_matrices.push_back(node.matrix) ;
visit_children(node);

}

void visit(MaterialNode& node) final

{
Material const* const prev_material = current_material;
current_material = node.material;
visit_children(node);
current_material = prev_material;

}

Listing 3: Simplified C++ implementation of RenderSim Visitor.

4.3.2 Rendering traversal

Since this project is only concerned with the cache-efficiency aspect of scene graphs,
no actual scene rendering was implemented. A traversal simulating how a scene
graph might be accessed for rendering was, however, implemented to evaluate the
effect of node data layout on rendering traversals.

The implemented traversal constructs two arrays holding data required for rendering,
which in a real graphics application would be passed on to a rendering system. This
type of separation between scene-graph traversal and rendering is one way in which
a scene-graph renderer may be implemented; as was mentioned in Section 3.2.3, an
alternative approach would be to dispatch draw calls to the GPU directly during
the scene-graph traversal instead of creating intermediate arrays. For this project,
though, what we aim to measure for is the performance cost of traversing the scene
graph and reading the data. As such, it is of less importance which type of renderer
is being simulated.

The rendering-simulation traversal works by traversing the scene graph in DFS-order
in the following manner. When visiting a ShapeNode, the contained Mesh and Ma-
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terial pointers are copied out into an array stored in the visitor?. The ShapeNode’s
transform matrix is also copied out into a separate array within the visitor. These
represent a minimalist data set required for rendering. The arrays are cleared be-
tween each iteration of the benchmark loop. A simplified C++ implementation is
shown in Listing 3.

4.4 Dynamic scene graph data structure

The first research question of this project is to find which data layout is best (with
regards to cache efficiency) for scene graphs. The second research question is how
to maintain such layouts when the scene graph undergoes changes: how to maintain
a dynamic cache-efficient scene graph. This section describes the implementation of
a novel dynamic scene-graph data structure.

4.4.1 Goals and requirements

The main goal for the data structure is to minimise cache-miss performance costs
during traversal by approximating the data layouts found most efficient for static
scene graphs. Secondly, the space and time overhead for maintaining the data
structure itself should be minimised.

Ideally, the dynamic scene graph data structure should be configurable to maintain
any of the data layouts considered for this project. In practice, however, restricting
the design to a particular data layout allows more flexibility in the design of the data
structure. The present implementation supports only the DFS layout, but could be
extended to allow other data layouts. This restriction allows a simple method of
deciding in which contiguous block of memory to store any given node, and allows
an efficient algorithm for determining desired node order. Further research would be
required to find efficient algorithms for maintaining other data layouts in dynamic
scene graphs.

4.4.2 Data structure design

An overview of the design is as follows. The nodes are allocated in memory-managing
units which we will refer to as slices. Each slice consists of a contiguous region in
memory, which is divided into a node-storage region and a meta-data region. All
nodes stored in a slice belong to the same sub-tree and are stored as close to DFS-
layout order as possible.

A slice may hold up to a certain amount of nodes, limited by its storage space and
meta-data capacity. The meta-data in a slice consists of an array of structures of

2The std::vector dynamic arrays have memory reserved before the benchmark loop, to avoid the
re-allocation and copying operations that would otherwise be required to grow the arrays.
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struct NodeMeta {
uint32_t offset;
uint32_t size;
uint32_t next_free;

};

class Slice {
std: :unique_ptr<uint8_t[]> data;

span<uint8_t> storage; // view into data
span<NodeMeta> node_metadata; // wview into data
uint32_t num_nodes;
uint32_t next_storage_index;
uint32_t next_insert_offset;
uint32_t occupied_space;
uint32_t first_free;
public:

Slice(size_t node_storage_size, size_t max_num_nodes);

template<typename NodeT, typename... Args>

uint32_t insert(Args&&... args); // Returns node's internal_index

void erase(uint32_t node_internal_index);

void reconstitute(float expansion_factor);

};

Listing 4: Simplified definition of the Slice data management type. The span
values are views into the byte-array owned by data, and consist of a pointer and a
size.

the form {node_ offset, node__size, next_free}. These values represent, respectively,
at which offset in the node-storage region a node is located and what the size of
the storage allocated to the node is (the purpose of next_free is discussed in Sec-
tion 4.4.4). The index of the meta-data-array element that corresponds to a certain
node is that node’s internal index in the slice. The internal index remains valid for
the lifetime of the referred-to node, even when the slice is re-built in the reconstitu-
tion operation (which is described below).

A simplified definition of the Slice implementation is shown in Listing 4. The fol-
lowing operations are provided:

« Constructor: create a new slice. Allocates, in a single allocation, space for
both node storage and node meta-data. Parameters: node_storage size, the
size (in bytes) to allocate for storing nodes; maz_num_nodes, the size of the
array for storing node meta-data.
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Allocated Fragmented Awvailable

space space space

Figure 4.3: An example of a node-storage data region with space lost to fragmen-
tation.

e insert: create a new node of a requested type, forwarding the provided argu-
ments to the node’s constructor. Returns the new node’s internal-index value
(or —1, if the node cannot fit).

e erase: destroy the node with the given internal-index.

o reconstitute: allocate new, larger storage, and move nodes and associated
meta-data to the new storage. The nodes are tightly packed in the new storage
in the DFS-layout order.

The whole data structure consists of a set of such slices. Exactly how the scene graph
should be divided into slices can be adjusted using application-specific knowledge,
but for this thesis, a particular system was chosen, as follows. The root node is
given its own slice, which is just large enough to store it. When a node created with
the root as its direct parent, a new slice is created for it. In all other cases, the node
is created in the same slice as its parent.

The rationale for this approach is based on the following observation. In a scene
graph, the only relation between two nodes a, b which are immediate children of the
root node (and the sub-trees rooted in a and b) is that they are present in the same
scene. We shall use the term independent sub-tree to refer to sub-trees rooted in
such nodes. Separating the storage management for each independent sub-tree is a
natural and practical choice: it is likely that whole independent sub-trees are created
in a single frame, and similarly for destruction. If, in contrast, all nodes were stored
in the same memory region, it may be necessary to move an unbounded number of
nodes to fit new nodes. When the storage is separated per independent sub-tree,
the number of nodes which would have to be moved in such a case is limited by the
number of nodes within that sub-tree.

4.4.3 Node-storage memory management

The node-storage region in a slice is managed by a memory-allocation policy. One
such policy is implemented: a linear allocation policy. The linear allocation pol-
icy allows nodes of varying size to be tightly packed in memory with very quick
(constant-time) allocation performance, at the cost of high fragmentation. The
fragmentation and data-layout-ordering problems are both handled by the reconsti-
tution operation as described in Section 4.4.6.
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A linear allocator simply tracks where the end of the previous allocation is and
allocates further nodes at the immediately-following address. The benefit of this
is that nodes will be tightly packed in memory irrespective of their size. However,
the only condition by which it is possible to re-use memory after de-allocating a
node is when the most recently allocated node is de-allocated (a first-in, last-out
order). Other de-allocations will leave unusable gaps in the node-storage memory;
the space is lost to fragmentation. Such losses will, however, be reclaimed during
the next reconstitution operation. An example of a storage region, managed by a
linear allocator, in fragmented state can be seen in Figure 4.3.

4.4.4 Management of meta-data array

Whenever a new node is inserted into the slice, an element of the meta-data ar-
ray must be allocated for it. To track which elements in the meta-data array are
unoccupied, a free-list of unoccupied elements is embedded in the array.

The slice contains a variable first_free, which holds the index of the first unoccupied
meta-data array element (or —1, in case all elements in the array are occupied). Each
unoccupied meta-data element contains a variable nezt free, the index of the next
unoccupied element. When the slice is first initialised, the first free variable is
assigned 0; then, the meta-data array is iterated and the next free in each element
is set to refer to the next element. The nexzt free in the very last element of the
array instead gets —1.

Whenever a new node is inserted, the first free element (i.e. the one at index
first_free) is allocated for the new node’s meta-data. The element is removed from
the free-list by overwriting the slice’s first_free value with the element’s next_free.

Similarly, when a node is removed, its meta-data element is appended to the free-
list by assigning its next free the value currently in first free, and then assigning
first__free the index of the newly-unoccupied meta-data element.

4.4.5 Maintaining references to relocated nodes

As the scene graph changes with nodes being added and removed, maintaining a
cache-efficient layout will require moving existing nodes to different locations in
memory. One of the challenges with this is to ensure that external references to
individual nodes are not invalidated. Regular C++ pointers and references would
be invalidated, as the memory address to which they refer no longer holds the target
node. This requires that the implementation either provides a handle-to-node data
type which remains valid even as the nodes are relocated or that all references to a
node are updated when the node changes.

The implementation here does both: NodeHandle objects, consisting of a slice-index
and a internal-indez (each an unsigned 32-bit integer) may be used to refer to nodes
in a manner robust to relocations. Further, the nodes’ parent and child pointers —
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______

Figure 4.4: An illustration of the reconstitution operation.

The slice’s original node-data storage is shown on top and the corresponding (sub-)
tree is shown on the right. The application attempts to insert node G, but there
is not enough space at the end of the node-storage area. Hence, reconstitution is
invoked. The result is the larger node-storage area on the bottom, where the nodes
are now stored in DFS-layout order and are tightly packed in memory.

which are still regular pointers — are updated to refer to the new location when a
node is relocated.

4.4.6 The reconstitution operation

When a slice cannot fit any more nodes — either because the node cannot fit into
the remaining node-data storage, or because the meta-data array is fully occupied
— it may be reconstituted. This means that a new, larger region of memory is
allocated, and all nodes are moved over into the new region. In addition, the nodes
are rearranged in memory as they are copied, such that they will be in the desired
DF'S data layout order in the new storage, irrespective of whether they were before.

Reconstitution is implemented as follows. First, the new storage size is calculated.
This is done by multiplying the storage size by some ezpansion factor. Exactly
what this factor is can be exposed as a configurable parameter; for this project, an
expansion factor of 1.5 was experimentally chosen. The new storage is allocated by
creating a new slice with the requested size, and all node meta-data is copied over
into the new slice.

An array of all nodes’ internal-index values, stored in the desired DFS-layout order,
is created as follows. The node which is root of the sub-tree within the slice is visited
by a recursive function make_sorted_node indices. This function first checks if the
node belongs to the same slice (by extracting the slice index from the node’s self-
referencing NodeHandle, see Section 4.2). Otherwise, it writes the node’s internal-
index (also from the self-referencing NodeHandle) to the internal-index array. It
then recurses over all the node’s children. Hence, the result is an array of all nodes
within the slice in DFS-layout order.

The array is then traversed and the contained node-indices are used to find each node
in the now-sorted order; these nodes are moved over into the new slice by copying
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their data (using the C++ “move-construction” mechanism?). The child-pointer in
the node’s parent and the parent-pointers of all its children are updated to refer to
the new address. Updating the child-pointer in the node’s parent requires scanning
through all the parent’s child pointers to find the right one to update. Finally, the
storage buffer for the original slice is released and is replaced with the new slice
data.

The time complexity of the reconstitution operation is bounded by O(nm), where
n is the number of nodes in the slice and m is the largest number of children of any
node. The operation (as described above) visits each node in the slice only once; it
constructs an array of internal-indices of size n and iterates over this list to move
each node. Moving a node has time complexity m (the largest number of children
of a node). This is due to the updating of the node’s parent’s child-pointer. If m
is bounded by a constant, the reconstitution operation can thus be said to run in
linear time?.

4.4.7 Configurable parameters
The data structure has some (compile-time) configurable parameters. These are
listed below.

e expansion__factor: the factor by which a slice’s node-storage space and meta-
data array should grow during reconstitution.

o initial_slice_storage_size: the initial node-storage size (in bytes) for new
slices.

o initial_slice_max_num_nodes: the initial meta-data array size (in number of
elements) for new slices.

3 An implementation problem manifests here. The slice operations work with pointers to NodeBase
objects, but the actual nodes are of some derived type. Copying or moving an object in C++
requires that the actual type is known. To resolve this, NodeBase was given a virtual member
function NodeBase::move__to(void* target_address), which is implemented in the derived types
to perform the actual move-operation.

4 Another approach for linear-time reconstitution exists: within each node, store the index (in the
parent’s child-pointer array) of the child-pointer corresponding to itself (aka. the node’s sibling
indez). This allows direct access to the parent’s corresponding child-pointer without scanning the
array. However, that approach had worse performance in practice: when a node is deleted, the
sibling index of the children following the deleted one must be updated, as they shift to cover the
gap. This updating increased the number of cache misses, decreasing overall performance.
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Evaluation methodology

This chapter describes the methods by which different data layouts were evaluated
for static scene graphs and how the dynamic scene-graph data structure was evalu-
ated.

A set of benchmarks were created, measuring the time taken to perform the traver-
sals described in the previous chapter. The benchmarks make use of pseudo-random
number generation. This was done using deterministic number generators and fixed
seed-values, such that each invocation of a benchmark performs the exact same
operations (regardless of e.g. which data layout is studied).

The benchmarks were run on the hardware and software platforms described in
Table 5.1. For benchmarks on Windows, the code was compiled with Visual Stu-
dio 2019. For benchmarks on Linux, the code was compiled with GCC 9.0. The
maximum optimisation level and latest available instruction set were used (-03
-march=native for GCC and /02 /arch:AVX2 for Visual Studio).

Each benchmark was made in two varieties: one with and one without flush. In the
flush benchmarks, the x86-assembly instruction clflush is used to evict the entire
scene graph from all levels of cache between each iteration. Flushing the scene
graph from cache in-between each iteration is intended to simulate an application
with a large working set outside of the scene graph. Results in a real application
would likely fall somewhere in between the flush and no-flush benchmarks. Flushing
also highlights the effect of hardware prefetching.

CPU L1f Lof L3 RAM 0S

Intel i7-8700 64KiB 256KiB 12MiB 32GiB DDR4-2666 Windows 10
Intel i5-6300HQ 64KiB 256KiB 6MiB  8GiB DDR4-2133  Linux Mint 18

Table 5.1: The hardware and software platforms upon which evaluation was per-
formed.
"Each CPU core has its own L1 and L2 caches.
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Type Probability
TransformNode 0.4
ShapeNode 0.4

MaterialNode 0.2

Table 5.2: Distribution of node types in the benchmark scene graphs.

5.1 Scene graph data layout evaluation

To answer the first research question — how to layout node data in memory to min-
imise memory-transfer costs for typical scene graph use cases — a set of benchmarks
implementing the traversals described in the theory section (see Section 3.2) were
created for various data layouts and scene graph sizes. The benchmarks measure
the wall-clock time taken to perform the selected operations on the scene graphs.

The following data layouts, as described in Section 4.1, were considered:
« Depth-first (DFS layout)
 Breadth-first (BFS layout)
« van Emde Boas (VEB layout)

« Each node allocated individually on the heap (naive layout)

Algorithm 2 Pseudo-code outline of all static scene graph benchmarks.

1: procedure BENCHMARK (num__nodes, benchmark__operation, iterations)
2 let scene__graph < MAKE__SCENE__GRAPH (num__nodes)

3 let timings < []

4: for i from 0 to iterations do

5 START _TIME__COUNT()

6 BENCHMARK__OPERATION(scene__graph)

7 APPEND(timings, FINISH__TIME__COUNT())

All benchmarks follow the same general outline. The outline is described in pseudo-
code in Algorithm 2. A scene graph is constructed by adding nodes one-by-one as a
child to a pseudo-randomly selected existing node. For each node to be created, the
type is chosen pseudo-randomly with the following probability distribution: 40%
probability of TransformNode, 40% probability of ShapeNode, 20% probability of
MaterialNode.

After the scene graph is constructed, the main benchmark code is run and measured
over 30 iterations. The whole process is repeated enough times to traverse 222 =
4194304 nodes per benchmark (irrespective of scene-graph size, i.e. there are more
repetitions for the benchmarks with small scene graphs). Results are collected for
each repetition, for each benchmark and scene-graph size.
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Num. nodes 512 4096 32768 262144 1048576

Iterations 8192 1024 128 16 4
Data set size 81.2KiB 649KiB 5.07MiB 40.6MiB 162MiB

Table 5.3: Scene graph sizes, number of benchmark iterations, and data set size
for all benchmarks.

The data set size is calculated as the sum of node-type-size X node-type-proportion x
num-nodes for all node types.

Each benchmark is run for a variety of graph sizes (in terms of number of nodes).
The chosen graph sizes are described in Table 5.3. While the larger of these sizes
may seem quite large for many scene graph applications, they are of interest for the
following reasons:

o Measuring up to very large graph sizes indicates the scalability of the solution.

e A real application will likely have a significant working set aside from the
scene graph. Hence, the cache memory (and memory throughput) would not
be entirely dedicated to the scene graph. The performance of benchmarking a
large scene graph might hence be more representative for real applications.

o Results for large graphs are an indication of the performance on more con-
strained hardware environments (with more limited memory throughput or
smaller cache memory, for example).

o The larger graph sizes are not inconceivable for some types of applications.

Benchmark applications were constructed for both of the traversal types described
in Section 4.3: transform propagation and rendering simulation, along with a “frame
simulation” benchmark that performs both traversals to simulate the behaviour of
a graphics application during a single frame. For each iteration of the benchmark,
the latter first performs a transform-propagation traversal and then a rendering
simulation traversal.

5.1.1 Dynamic scene graph data structure evaluation

To evaluate the dynamic scene graph data structure, the same set of benchmarks as
described above were run: transform propagation, rendering simulation, and frame
simulation. However, the benchmarks were extended with updates: the scene graph
is modified between each iteration, simulating an application updating the scene
graph between frames. The new outline can be seen in pseudo-code in Algorithm 3.

5.1.1.1 Scene graph updates

To simulate updates to the scene graph in a graphics application, the scene graph
is modified in the following manner. 20% of the nodes are marked for modification:
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Algorithm 3 Pseudo-code outline of dynamic scene graph benchmarks; similar to
that for static scene graph benchmarks but with updates to the scene graph in each
iteration. update__proportion was set to 0.1 (10% of nodes deleted per iteration and
equally many added).

1: procedure BENCHMARK (num__nodes, benchmark__operation, iterations)
2: let scene__graph < MAKE__SCENE__GRAPH (num__nodes)

3: let num_ to_update < num_nodes X update__proportion

4: let update timings < []

5 let traversal timings < []

6: for ¢ from 0 to iterations do
> Select nodes for updating (delete/extend).
T: let leaves <~ GET__ALL__LEAF__NODES(scene__graph)
8: RANDOM__SHUFFLE(leaves)
9: let to_delete «+— SUBARRAY(leaves, begin: 0, num: num_ to_update)
10: let to_extend <— SUBARRAY (leaves, begin: num_ to_update,
num: num__to_update)
> Perform scene-graph updates.
11: START__TIME_ COUNT()
12: for node in to_delete do
13: DELETE__NODE(scene__graph, node)
14: for node in to__extend do
15: CREATE__NODE_ WITH__PARENT(scene__graph, node)
16: APPEND(update__timings, FINISH _TIME__COUNT())
> Perform scene-graph traversal.
17: START _TIME__COUNT()
18: BENCHMARK__OPERATION(scene__graph)
19: APPEND(traversal__timings, FINISH__ TIME__COUNT())
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10% to be deleted, 10% to be extended with a new child node. This is done in two
phases.

First, handles to all leaf nodes in the scene graph are created and a number of
them, corresponding to 10% of the number of nodes in the scene graph, are pseudo-
randomly selected for deletion. The selected nodes are then deleted. Restricting
deletion to leaf nodes ensures that only one node is deleted. As such, the size of
the scene graph remains the same before and after the update. If other nodes were
selected, then the whole sub-tree would have to be deleted, changing the number of
nodes in the graph between iterations.

After the deletion phase, equally many handles to remaining leaf nodes are selected
to be extended: to receive a new child node. The type of node to insert is pseudo-
randomly selected following the same probability distribution as the distribution of
node types in the scene graph as a whole (40% probability of TransformNode, 40%
of ShapeNode, and 20% of MaterialNode). The new nodes are then inserted into the
scene graph as child nodes to the nodes selected for extension.

The benchmark measurements do not include the time taken to create the lists
containing the nodes to delete and extend.
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Parameter Value

expansion__factor 1.5
initial_node__storage size 1024
nitial _max_num_nodes 12

Table 5.4: Parameters for the dynamic scene graph data structure and their chosen
values.

5.1.2 Parameters

A few configurable parameters for the dynamic data structure were mentioned in
Section 4.4.7. The values chosen for them in the evaluation are shown in Table 5.4.
All of the values were chosen experimentally.

For convenience, we summarise the function of each parameter here:

o expansion__factor is the factor by which a slice’s node-storage space and meta-
data array should grow during reconstitution.

« initial_slice storage size is the initial node-storage size (in bytes) for new
slices.

o initial_slice_maz_num_nodes is the initial meta-data array size (in number
of elements) for new slices.
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Results

This chapter presents the results of the benchmarks described in Chapter 5 along
with analysis of causes and implications of the results.

An interesting, overarching result is that performance is very similar across the
two test platforms, despite one having significantly greater processing capacity than
the other. This illustrates how memory may bottleneck applications, preventing
computation capacity from reaching maximal utilisation. Some of the effect may
also be caused by differences in code generation between the compilers.

The results in the benchmarks with cache flush may be compared with the upper
limit on performance when considering only memory bandwidth. Assuming mem-
ory speed is the only limiting factor, that performance would be achieved with
perfect prefetching: then, bandwidth would be the only limiting factor, not memory
latency. The ¢7-8700 and i5-6300H() test platforms had DDR4-2666 and DDR4-
2133 memory types, respectively, with bandwidths of 21333 MiB/s and 17066 MiB/s.
Comparing with the average node size — weighted by node-type distribution — of
162 bytes!, this results in

162B

DU333MABs A
per node for the ¢7-8700 platform, and
162B

17066 MiB/s 0o

per node for the i5-6300H() platform.

6.1 Data-layout evaluation for static scene graphs

The results of the transform propagation and rendering-simulation benchmarks are
shown in Figures 6.1 and 6.2, respectively. The error bars show the standard devia-
tion. These results suggest that depth-first order, breadth-first order, and van Emde
Boas data layouts are similarly ideal for the investigated scene-graph usage patterns.
For both benchmarks, breadth-first, depth-first, and van Emde boas memory layout

1See Tables 4.1 and 5.2.
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Figure 6.1: Results of the transform-propagation benchmark.
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Figure 6.2: Results of the rendering-simulation benchmark.
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Figure 6.3: Results of the combined-traversals benchmark (both transform prop-
agation and rendering simulation).
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provided close-to-linear scaling with graph size, whereas the naive layout resulted
in super-linear scaling (as the probability of cache miss per node access increased).

The performance impact was greatly dependent on problem size; for small scene
graphs, memory layout had little effect on results. This may be explained by the
fact that the entire graph fits in cache memory, and will hence invoke no cache misses
after the first benchmark iteration. This is confirmed by the values obtained for the
benchmarks with “flush” — ones in which all scene-graph cache lines are flushed
between each iteration of the benchmark, since the results for the naive layout is
significantly slower than the others even at small scene-graph sizes.

The flush benchmarks highlight the effect of hardware prefetching. Performance is
almost unaffected by problem size in the transform-propagation benchmarks with
flush. At the start of each iteration, none of the scene graph data are in cache, and
yet the performance is significantly better for the non-naive data layouts, which can
only be explained by prefetching.

Interestingly, there is not much difference between the results of the various non-
naive layouts, only between those and the naive layout. One might have expected
DFS layout to provide superior performance, since it stores the nodes in the same
order as they are accessed, which should be ideal for hardware prefetching. The
fact that the others fair equally well demonstrates the capability of the hardware
prefetching logic to detect multiple memory-access streams.

In the results for the Intel i5-6300HQ), for the no-flush benchmarks, the performance
difference between scene-graph sizes of 4096 nodes and 32768 nodes are much more
pronounced than those in the results of the Intel i7-8700K. This is because the data

size of a scene graph of 32768 nodes fits well inside the larger 1.3 cache of the latter
CPU.

Execution times in the rendering-simulation benchmarks appear to be slightly more
sensitive to the scene graph’s size than in the transform-propagation benchmark.
This may be explained by the different types of work performed. The rendering-
simulation benchmark performs no calculations, only traversing the graph and copy-
ing out data, whereas the transform-propagation benchmark is more computation-
ally expensive due to the transform-combination calculations. The latter may “hide”
some of the latency of memory accesses.

6.2 Dynamic scene graphs

Evaluating the dynamic scene-graph data structure benchmarks displayed significant
performance improvements compared with the naive implementation — wherein
each node is allocated individually using regular dynamic memory allocation — for
large benchmarks. The execution time does scale super-linearly as a function of
scene-graph size, but the effect of the data layout is large enough to more than
compensate for the overhead of maintaining the data layout. The general approach
of the dynamic data structure is thus promising. Note also that updates themselves
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Figure 6.4: Results of the dynamic transform-propagation benchmark.
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are generally faster in the dynamic data structure than in the naive implementation.
Despite the overhead of reconstution, avoiding dynamic memory allocations for each
node is thus still a performance gain.

Memory usage, however, rose significantly. The increased memory usage is caused
by the unused memory allocated to the data structure’s slices. On average, as can
be seen in Figure 6.7, the storage overhead increased by a factor of circa 2.2, with
a maximum of about 3.3.

The difference between flush and no-flush benchmarks is much smaller here than
in the static scene-graph benchmarks. This is likely due to the increased data
throughput of the benchmark code itself. To perform the updates in each iteration,
a list of all node-handles has to be created and shuffled. This increases contention
for the cache and will cause many scene-graph cache lines to be evicted between
traversals even in the no-flush case.
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Discussion

Data layout had — on its own — a major impact on performance, by about a factor
of three in the rendering simulation benchmark for large, static scene graphs. This
is a clear illustration of the importance of data layout and memory access patterns.

Maintaining a good data layout when the scene graph undergoes unpredictable
changes is challenging. Better results could likely be gained by using application-
specific knowledge; using knowledge about how large a sub-tree is, whether a given
sub-tree will change, and what sub-trees represent logically distinct objects can be
immensely useful when maintaining the data layout.

7.1 Limitations of the dynamic data structure

The dynamic data structure proved useful in the benchmarks but has some limita-
tions. A pathological case for its design is a scene graph where the root node has
only one child node which in turn is parent to a large sub-tree. This would cause
all nodes but the root to be stored in the same slice. A different slice-distribution
mechanism would be needed for such cases.

7.2 Other approaches

This project was only concerned with node data layout. This allows existing scene
graphs to be adapted, since the only thing that needs to be modified is the data
placement. However, it may be possible to achieve better results by studying the
possibilities of more fundamental changes to the scene graph representation. For
example, one might want to separate the storage of node’s data from the topology
information; that is, do not store the parent and child-pointers together with the rest
of the data. This could allow more radically different scene graph representations
such as structure-of-arrays (SoA) approaches.
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7.3 Ethical considerations

The project consists entirely of the development and analysis of a low-level software
component. As such, there are no particular ethical issues involved. A more efficient
scene-graph data structure can not, in itself, cause any harm. A higher-level software
system built using the results could cause harm, but that applies no more to this
project than to any other low-level software component or optimisation technique.
The project made no use of human or animal subjects and no sensitive data was
handled.

7.4 Future work

The results were promising but had some limitations, as discussed above. Some sug-
gested directions for future work to resolve these limitations and to explore different
approaches are described here.

7.4.1 Traverse in breadth-first order

In this report, all traversals over the scene graph move across it in depth-first or-
der. An alternative traversal order was described for transform propagation in
Section 3.2. Investigating such traversals over different data layouts would also
be interesting; however, it may place some requirements on the graph’s structure.
Specifically, BFS-traversal for transform propagation does not naturally extend to
scene graphs were not all nodes have transforms — as in the scene graph used for
evaluations in this report — since there is no guarantee that any transform node
has another transform node as parent.

7.4.2 Have a maximum size for slices

The benefit of storing nodes together in a slice does not scale linearly with the
amount of nodes in the slice. The memory and performance overhead, however, does
scale linearly. For this reason, it seems good to limit how large a slice can become.
Beyond some maximum size, the slice would have to split into two or more. Doing
so would bound both the cost of reconstituting a slice and the memory overhead
of unused space in slices. Exactly how the splitting should be done requires some
research. The resulting splits should still store a contiguous sub-tree each, they
should ideally be of similar size, and the splitting algorithm should ideally be of
linear time complexity. An exploration of such algorithms meeting those criteria is
thus required.
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7.5 Conclusion

The results illustrate the importance of data layout on performance. Interestingly,
of the studied data layouts, all aside from the naive layout resulted in very similar
performance. The performance difference between different data layouts was of little
significance for small scene graphs, but as they grew larger, the difference grew as
well — with good data layout, the time spent per node did not grow as much with
scene graph size as it did with the naive layout.

For the largest scene graphs, the performance difference between naive and non-
naive data layouts was a factor of three. The performance effect of different data
layouts was, however, very small for smaller scene graphs. This is because the whole
scene graph fits in cache memory and will remain in cache in between benchmark
iterations. The difference is larger when the scene graph is flushed from cache in
between iterations, confirming this. A real application would likely have a larger
working set aside from the scene graph; as such, less of the scene graph can be
expected to remain in cache between frames than between iterations in the (no-

flush) benchmarks.

The dynamic data structure for maintaining depth-first layout showed promising
results. It outperformed a naive layout by up to a factor of two for large scene
graphs and was not slower in any of the benchmarked cases. This shows that the
overhead of maintaining the layout is more than compensated by the performance
improvements gained by resulting layout. It also resulted in significant memory
overhead, however, perhaps limiting its usefulness without further work. It may be
possible to achieve more performance benefit with less memory overhead by using
application-specific knowledge of the scene graph and what changes it may undergo.
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