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Göteborg, Sweden 2012



Methods for Anonymizing Patterns of Human Mobility
MARTIN NORDSTRÖM
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Abstract

In recent years, the ability to efficiently gather location information of
individuals has gained a lot of attention in the research community. There
are multiple methods for collecting this data, but this thesis primarily
considers data collected from base stations connected to the mobile phones
used by people today. Because many users use mobile subscriptions, the
demographic data of the users can be collected as well.

However, to maintain the privacy of the individual, the collected data
must be anonymized. The aim of this master’s thesis is to develop a
method to anonymize the data so that it is not possible to identify an in-
dividual with a probability above a certain threshold, while still preserving
as much information as possible.

The anonymization is mainly divided into two parts. The first part
anonymizes the data containing the movement of individuals, while the
second part anonymizes the demographic data. The principle of k-anonym-
ization was applied in both parts, which means that each entry in the
output of the anonymization is indistinguishable from k− 1 other entries.
Hence, it is only possible to identify an individual with a probability of
at most 1/k. For the anonymization of the demographic data a genetic
algorithm was used which minimizes a new definition of information loss
which is presented in this thesis. This definition was derived using the
Kullback information.

Keywords: Inference attacks, information theory, k-anonymity, loca-
tion information, location privacy, spatial databases
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1 Introduction

Today it is possible to collect and share data of where people are and
how they move in general. The demographic data of each individual, such
as age, gender and income, can be collected as well. There are several
use cases for analyzing this data, e.g. to find out which sequences people
often travel in order to optimize public transport or where it is most
profitable to place specific advertisement banners aimed at people with
specific demographic data.

However, one must not forget to preserve the personal integrity. There-
fore the collected data of where people are must be anonymized before it
is shared to third-parties. Even though names and other data which can
be directly linked to an ID (such as the home address) are removed from
the anonymized set (the output of an anonymization algorithm), there
are still other ways to figure out which individual is associated to some
specific data, if it is not anonymized correctly. If one succeeds in obtain-
ing the ID of someone together with a sensitive data of a location, from
an anonymized set, then one has performed a so called inference attack.
Sensitive data or sensitive value is an attribute which must not be linked
to a specific person in order to preserve the privacy.

One way of performing an inference attack is to link so called quasi-

identifiers to a specific individual. A quasi-identifier is information about
an individual which cannot, by itself, be linked to a unique ID. However,
if several quasi-identifier are used in combination it can be linked to the
individual in question.

If you have enough quasi-identifier you can say for certain that there is
only one individual who has the properties given by the quasi-identifiers.
Hence, if you ever, with high probability, can say that an individual with
these quasi-identifiers have traveled a certain route you can strongly sus-
pect that this person was there.

An example of an inference attack through quasi-identifier linking: Say
that you have a table containing patients in a hospital with demographic
data of each individual, such as birth date and home address, and what
disease each patient has. You are given the task of releasing this data for
research purposes but you have to respect the personal integrity. Thus the
sensitive value disease should not be linked to the corresponding individ-
ual. If you just remove the name and the home address but the zip code,
birth date and disease of each individual is left in the table T , this might
be prone to inference attacks. There are often very few people with the
same birth date and zip code. Say that an attacker obtains an information
table S including name and the corresponding zip code and birth date of
people living near the hospital in question. Then the attacker has a high
probability of being able to link the quasi-identifiers zip code and birth
date in table S with the corresponding attributes in table T to see what
individuals name has what disease.

The aim of the master’s thesis is to anonymize positional data, with
demographic data, such that no inference attacks, of where a specific in-
dividual has been, can be performed but, at the same time, preserve as
much information as possible that can be used by third-parties. The
main approach to achieve this, which is used in this thesis, is to apply
k-anonymization, which implies that each entry in the output is indistin-
guishable from k − 1 other points. This is described in more detail in
Section 3.1.

This master’s thesis is part of a project called Consider8, which is
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a collaboration project between Swedish Institute of Computer Science

(SICS) and Ericsson Research. In this project, location data from mobile
phones is first collected. This data is then mapped to predefined, so called,
routes and stations. Sequences of both routes and stations is then created
from the collected location data. This data, together with demographic
data is then anonymized by the algorithms presented in this thesis. Routes
are segments in which the person in question travels along, such as roads.
Stations are areas in which many people in general stay in, at least, for a
while, for example shopping centers.

The rest of the thesis is organized as follows. First some related work
in this area is presented in Section 2. Then the problem and some defini-
tions are formulated in Section 3. After that, all necessary steps required
for anonymization of the problem given in this thesis is presented in Sec-
tion 4. This section also includes some common steps that are used in
this area and why some of these does not work for this problem. Two dif-
ferent methods are also described for solving the problem in this section,
where each method has its advantages as well as disadvantages. Some
experimental evaluation on simulated data is presented in Section 5 and
comparisons of the results using the two methods are given. Section 6
includes some discussion of the different methods presented in this thesis
as well as suggestions for future work. Lastly, some conclusions of the
thesis are given in Section 7.

2 Related work

In recent years, several approaches have been suggested which allow for
releases of spatio-temporal data while still preserving privacy.

Several methods for anonymizing entire sequences travelled by indi-
viduals have been proposed [1, 7, 16, 11]. One common approach is to
anonymize individual sequences which consists of positional data with high
accuracy (e.g. GPS coordinates) [1, 7]. In these methods the sequences
consists of three-dimensional points, where two of the dimensions repre-
sents the position (latitude, longitude) and the third dimension is time.
In [1] the anonymization is done such that all unique sequences are clus-
tered together so that there are between k and 2k − 1 nearby sequences
in each cluster. These are clustered such that each original position in
each cluster is not moved too far. If a sequence has to be moved a total
distance that is above a given threshold, in order to be included in the
anonymized set, it is completely removed instead. If a total number of
removed sequences are above another threshold the algorithm starts all
over with a higher value of the first threshold. This method returns an
anonymized set where each item is the average trajectory of each cluster,
together with the number of trajectories represented by the cluster.

A similar approach is given in [7]. Trajectories are initially clustered,
and new randomly generated sequences within the volume contained by
the sequences in each cluster are returned. This makes sure that the re-
turning data is anonymized while it still reflects where people have trav-
elled. The number of generated sequences is the same as the number of
sequences in the cluster.

In [16] a somewhat different approach is used. They describe a method
for anonymizing different sequences consisting of GPS-data mapped to a
grid with arbitrarily defined resolution. Each point in the sequence has
the time attached to it. The anonymized set consists of a table where each
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row corresponds to an individual and each column a specific time. The
entries in the table are spatial rectangles of where the individual has been
located in at the time given by the row and column respectively. The first
method in the article describes how this table can be constructed such
that k-anonymization is applied for each individual. However, the full
k-anonymized table contains sequences which can lead to inference attack
and the privacy can be breached by using an attack method presented
in the article. So, a second method was developed and presented in the
article, which makes sure that the identified attack method does not work
and that the anonymized data is safe from these kinds of inference attacks.

Instead of anonymizing sequences directly, one approach is to first de-
fine some indivisible parts which is often travelled by people and then
map the sequences on these parts. Each part can, for example, be a road
segment. This makes it easier for someone who analyzes the anonymized
data to know what the sequence refer to and the anonymized data will be
consistent for the same travelled road sequence for multiple anonymiza-
tions during different time intervals. By using the method described in
[11] it is possible to anonymize data which has been preprocessed into
these indivisible parts. However, this method can be used for any type
of sequential discrete data and is not restricted to the indivisible parts
described here. By using this method a tree is usually created, where
each branch represents a sequential item. All branches which reaches k-
anonymity is then moved to an anonymized tree. Some of the sequences of
branches that do not reach k-anonymity are modified to fit into a sequence
of the k-anonymized tree.

However, as far as I know, no attempt has been done before which
anonymizes sequences, where demographic data of each traveling individ-
ual is also known. A method for solving this problem is the foremost
contribution of this thesis.

When anonymizing non-sequential data (also known as micro data), k-
anonymization is often performed on quasi-identifiers after ordinary iden-
tifiers have been removed. This approach was first introduced in [13].
Different definitions of the “quality” of a k-anonymization have been pro-
posed before [4, 2, 5, 6] and it has been proven to be NP-hard to solve the
minimality of k-anonymization [8].

An incremental dataset is when data is continuously added to some
dataset. In order to be able to release multiple releases of the data over
time, one has to consider previously released data. In [3] incremental
datasets are considered for anonymization. When new data is added to
the original (non-anonymized) dataset, it is first placed in a “waiting list”
which requires that at least k items are in an equivalence class before it
can be released in the anonymized set. They also describes how to split an
equivalence class to reach a higher resolution of the released anonymized
set while preventing inference attacks. The article only shows examples
of how to do this with so called l-diversity (see [3]), but, according to
the authors, k-anonymization should be equivalent. However, this article
describes datasets which are only incremental and does not describe how
to deal with data where some items in the original dataset are removed
over time as well.

Multiple releases of the same dataset can be useful if different at-
tributes are presented in different releases. However, due to overlaps
between attributes in different releases it might be possible to perform
inference attacks. In [14] the (X,Y )-anonymity is described, which is a
generalization of k-anonymity. By using (X,Y )-anonymity it is possible
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to prevent inference attacks which uses different kinds of overlaps between
different releases.

In [4] the classification metric was introduced for the first time. They
split d-dimensional data points (where d is an arbitrary positive integer)
in so called single dimensional partitionings and use a straightforward ge-
netic algorithm to minimize the classification metric with k-anonymization
as constraint. In [2] the discernability metric was introduced. In this arti-
cle, the same type of data is anonymized and single dimensional splits were
used as well. Even though the algorithm finds the optimal solution (which
is NP-hard), it manages to do so in a reasonable time on realistic data
by taking advantage of some properties of the discernability metric. They
were also able to do the same for the classification metric. In [6] a greedy
algorithm for optimizing the discernability metric is explained. This al-
gorithm produces so called strict multidimensional partitionings, and the
result from this algorithm is not guaranteed to be optimal for this parti-
tioning. However, because the algorithm produces strict multidimensional
partitionings they were able to, in an experimental evaluation, obtain a
result which discernability metric value is more optimal compared to the
result given in [2] (which returns the optimal solution using only the single
dimensional partitioning).

3 Definitions and problem formulation

3.1 k-anonymization

k-anonymization is used for the methods in this thesis in order to prevent
inference attacks.

Definitions:

• A Quasi-Identifier is an attribute of an individual which cannot by
itself be used to identify the individual. However, if several quasi-
identifiers are joined together it might be possible to identify an
individual. This is because a combination of a certain set of different
quasi-identifiers is represented by only a few individuals. Quasi-
identifiers can for example be age, gender and income etc.

• A Sensitive Value is the kind of attribute that must not be linked
to the corresponding individual, in order to preserve the privacy. If
a sensitive value is linked to an individual, an inference attack has
been performed.

• An Equivalence class consists of different intervals in different di-
mensions, one for each quasi-identifier. If a point is contained by
all intervals of an equivalence class, the point is contained by that
equivalence class. Thus, an equivalence class is represented by its
intervals and the number of points in the interval. For example: 23
individuals with an age of 20–25 years and an income of 3,000–4,000$
per month. In Section 4.4.3, where a new definition of information
loss is introduced, the correspondence to the equivalence class is
called an anonymized interval.

• k-anonymization clusters the data such that each cluster contains at
least k entries. A cluster can for example be an equivalence class.

From these definitions we see that, for each element in the anonymized
set, there are at least k−1 elements with the same representation (that are
in the same cluster). Therefore, each element is indistinguishable from at
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least k− 1 other elements. Given this information, the probability to link
a specific individual to a sensitive value is thus less than or equal to 1/k.
If suppression is allowed (ability to remove data) and there are less than
k people represented in a cluster, the number of individuals shown in this
cluster is truncated to zero after anonymization (or it is not represented
at all).

3.2 Problem specific definitions

• Demographic data is a set of attributes of an individual, such as the
individuals age, gender and income etc. Every trajectory includes
a demographic data set. Other data may also be included in this
data, even though it is not really demographic data. This data can
include information of the trajectory, such as the average speed of
the trajectory and at what time the trajectory started and ended.

• A route is an indivisible segment in which a person can travel along,
such as a road segment. A station is an area in which many people in
general stay in, at least, for a while, for example shopping centers.
Routes and stations are equivalent for the anonymization in this
thesis and are therefore always referred to by routes.

• A sequence is an ordered list of subsequent routes and stations which
an individual can travel.

• A trajectory is a sequence that a specific person has traveled which
contains demographic data. That is, it is a sequence with associ-
ated demographic data. It can be either the full sequence that the
individual has traveled or a part of the full sequence.

• A trajectory group is a group of trajectories that share the same
sequence. That is, it is a single sequence together with a number of
demographic data representing individuals.

3.3 Problem formulation

The data that will be anonymized is trajectories travelled by people. This
problem requires that even with external information, it should not be
possible to infer more information, which is considered as sensitive data,
about a specific individual from the anonymized set. The anonymized set
is the anonymized output of a given algorithm. In this case, sensitive data
is when you can conclude, with a probability above a certain threshold,
that a specific individual has been or has not been traveling a specific
sequence.

All data that is attached to each sequence, such as demographic data,
should be considered as quasi-identifier because all this data can be ob-
tained externally. This includes subsequent location data, that is, parts of
the full sequence. This is included because one can find out that a specific
individual has been located on a certain route or station from surveillance
cameras etc. Location is the only data that is considered as sensitive data
one can obtain from the anonymized set. Hence, location data should be
considered both as quasi-identifier and sensitive value. Attributes which
has this kind of property has some interesting properties which will be
discussed more later on.

A simple example on input trajectories and anonymized output tra-
jectory groups can be seen in Figure 1
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Input:
Trajectories

Anonymized output:
Trajectory groups

age: 17

age: 22
age: 27

2 people:
20 - 30 years

Figure 1: This is a simple example of anonymization of trajectories with demographic
data. The circles in this figure represents nodes and the arcs between nodes are routes.
The arrows in the left part are original trajectories. The arrows on the right part
represents anonymized trajectory groups. The sequence for a trajectory group is given
by an arrow. k = 2 in this example and because there is only overlap between two
trajectories in one route, this is the only sequence that is represented in the anonymized
set. The demographic data of the two individuals who travelled this sequence were
anonymized and represented as well.

4 Methods

The anonymization consists mainly of two different parts. The first part
deals with anonymizing the sequences while the second part takes care
of anonymizing the demographic data and makes sure that the output
of the entire anonymization procedure is anonymized. The input to the
anonymization method is first sent to the trajectory anonymizer. The
output of the trajectory anonymizer is the input to the demographic data
anonymizer. After that, one to two simple filters are applied to the output
of the demographic data anonymizer and the resulting output is the fully
anonymized data, see Figure 2. This figure contains, generally, all steps
from the collection of data to the anonymized data. The preprocessing of
trajectories maps the raw data from mobile phones to travelled trajectories
on predefined routes. In this part there is some information loss, so this
can also be considered as part of the anonymization. However, the box
marked “Anonymization” in this figure shows which parts, of all required
steps, that have anonymization as their main purpose. The output of
all steps shows XML as an example, but any type of output is of course
possible. The output file can then be used for visualization or other types
of analyzation methods.

In this thesis, two different methods are presented for the trajec-
tory anonymizer and one method is presented for the demographic data
anonymizer. The two methods for the trajectory anonymizer both have
their advantages as well as disadvantages compared to each other. How-
ever, as long as the prerequisites (described below) of each part is pre-
served, according to how you define some certain aspects, you can use
almost any method for each part and the resulting set should be protected
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Figure 2: An overview of how the full anonymization is performed. “Anonymize tra-
jectories” and “Anonymize demographic data” are the, so called, main anonymization
methods. The interval filter does not have to be applied in some cases.

from inference attacks. This is not proven but I will strongly argue for this
claim. In Section 4.3 the two methods of the trajectory anonymization
are compared to each other.

Prerequisites for part I, trajectory anonymization:

1. Input: A set of trajectories.

2. Output: A set of trajectory groups, where each trajectory group is
represented by at least k individuals. The sequences in the trajectory
groups may be altered in order to fulfill k-anonymization. Trajectory
groups which does not reach k-anonymization are suppressed.

All groups in the output of part I are anonymized independently of
each other in part II. Hence, part II can be applied to all trajectory groups
concurrently.

Prerequisites for part II, demographic data anonymizer:

1. Input: Demographic data points belonging to one of the groups in
the output of part I.

2. Output: Equivalence classes with k-anonymized demographic data
which also fulfills the criteria that one cannot infer that a specific
individual belongs to or does not belong to a certain group. This
should hold even when combining the output of the demographic
data anonymizer from other groups.

These prerequisites are very general and more detailed information
on how they are used for the task in this thesis is presented below. These
are summarized under some rules, also given below.

The output after applying the two parts are different trajectory groups
containing different sequences, and each trajectory group also contains
equivalence classes of demographic data. Each trajectory group represents
at least k individuals who travelled the trajectory group’s corresponding
sequence (in the given direction), either as a full sequence or as a part of
a longer sequence.The demographic data of these individuals are repre-
sented by the trajectory group’s equivalence class and the boundaries of
the equivalence class’s intervals are placed such that it is not possible to
infer an exact data value, see Section 4.4.5.
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4.1 Anonymization approach

One approach of preventing inference attacks while still keeping as much
information as possible is to let all data go through a filter and, if the
filter identifies possible inference attack, the outgoing data is modified
such that this kind of inference attack cannot be performed. However,
in order to prevent all kinds of inference attacks using this approach, we
must first prove that we have found all possible inference attacks that can
be performed (which is very often close to an impossible task [13]).

A different approach is to apply the same modification (anonymiza-
tion) to all data. This modification algorithm is developed such that we
can show that the possible inference attacks that we have identified can-
not be performed on this modified data. When using this approach, we
probably prevent inference attacks which are closely related to the ones
we have identified and even others as well. We consider this to be a safer
approach compared to identify inference attacks during the anonymization
and only modify this data.

In some cases it has been found that it is possible to, in some worst-case
scenarios, perform inference attacks on data that have only been anony-
mized by the two major anonymization methods (trajectory anonymizer
and demographic data anonymizer). In these cases we have developed ad-
ditional filters for anonymization which are to be applied after the main
method. Again, even though some of these additional filters are applied
to prevent only one single type of inference attack which we have found,
all data is modified by these filters. Hence, we never try to identify a pos-
sible inference attack during the anonymization, but rather rely on that
the modification of the data prevents inference attack.

The anonymization is also done such that it considers data of previous
anonymized releases. Several approaches take this case into considera-
tion, for example [15, 3]. In these methods, new data is combined with
previously released data for a new release and the anonymization directly
considers previously anonymized releases such that the new anonymized
set is safe from inference attacks. A different possible approach is to use
some modification method which is developed such that when applied to
some original data during the anonymization, the result is always safe
from inference attacks. This should hold regardless if some of the original
data has been used in previously anonymized releases or not. We choose
the latter anonymization alternative because some inference attacks that
would be possible by using data from other sources, together with our
anonymized data, is likely to be prevented, see Section 4.5.3.

When applying k-anonymization in all methods described in this the-
sis, it is required that k different individuals were in the trajectory group
that will be represented in the anonymized set. However, once this limit
has been reached, the number attached to each trajectory group, rep-
resents the number of trajectories of that trajectory group. Thus, one
individual can be represented multiple times in a trajectory group if he or
she travelled along that trajectory multiple times. Hence, this preserves
the privacy of people who travels unique trajectories many times. For ex-
ample, if one individual travelled on the same sequence k times where no
other people travelled at that time, this will not be shown in the anony-
mized set. However, if k people travelled on the same sequence once per
person and another person travelled on the same sequence k times, this
will be shown in the anonymized set as if there were 2k trajectories on the
corresponding trajectory group. The same holds for demographic data in
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equivalence classes of a trajectory group. Even though this is sometimes
loosely referred to by “k people” or similar, this still holds for all methods
in this thesis.

4.2 Interval filter

In order to prevent inference attacks, the filter described here must be
applied in some cases. The reason for why it must be implemented is
somewhat different for different algorithms and the reason is described
whenever the interval filter is required to be applied.

This filter is used in order to cover the exact number of people. The
interval filter simply replaces the number of people in each output of an
algorithm with the corresponding interval with size Is. The intervals,
where the first one starts with k, are non-overlapping and are therefore
given by

[k + Isi .. k + Is(i+ 1)), i ∈ N0 (1)

(N0 ≡ N ∪ {0}, [a..b) ≡ {x ∈ N0|a ≤ x < b}).
For example, if k = 10 and Is = 5, the first three intervals are repre-

sented by the values {10, 11, 12, 13, 14}, {15, 16, 17, 18, 19} and {20, 21, 22, 23, 24}.
If the number of people is 16 and is hidden by the interval filter it is, in this
case, replaced by the interval represented by the values {15, 16, 17, 18, 19}.

4.3 Part I: Trajectory anonymization

Location data is, partially, considered as a quasi-identifier and hence, at
least k sequences are required before they can be included (location data
is also considered as sensitive value). It is important to keep location
data unaltered as this is often the most important data of the input set.
If there are less than k instances of the same sequence it cannot be used as
a complete sequence but a subsequence may be used instead. These can
be added to the anonymized set when there are at least k subtrajectories
over the same sequence. We now have the rules for part I.

4.3.1 Rules for trajectory anonymizer

1. The output must be k-anonymized. Therefore the anonymized set
contains trajectory groups which each contains k individuals or more.

2. Sequences are here considered as the most important part of the data
and are therefore not altered. This means that similar sequences
may not be “approximated” to a single sequence and that multiple
sequences that has some parts in common may not be concatenated
together to a long sequence. The only alteration of sequences that
we allow is when multiple sequences share the same subsequence so
that this subsequence can be used as the sequence for a trajectory
group.

3. A trajectory can be used in multiple trajectory groups if its subse-
quences are non-overlapping. Overlapping subtrajectories from the
same trajectory can only be used if the algorithm prevents inference
attacks which exploits overlapping subsequences and only attacks di-
rectly on the anonymized set together with publicly available demo-
graphic data are considered. Hence, if it is assumed that a possible
attacker can get some other external data (such as the number of
people who travels on a certain route), overlapping subtrajectories
are not allowed.
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create all
trajectory groups

Original trajectories Trajectory groups

Figure 3: An example of the creation of all possible trajectory groups. The circles
in this figure represents nodes and the arcs between nodes are routes. The arrows in
the left part are original trajectories, where each individual traveling each trajectory
is represented by either a star, a pentagon or a square. The arrows on the right part
represents different trajectory groups. The sequence for a trajectory group is given by
an arrow, and the shapes (a star, a pentagon and/or a square) on the arrow represents
the individuals who travelled along the sequence given by the arrow. k-anonymization
has not been applied to the trajectory groups in this figure.

Two algorithms are presented below which both have their advantages
as well as disadvantages compared to the other method. In short the
overlapping trajectory anonymizer is suitable for a high amount of people
where it is possible to have a high value of k (order of magnitude at least
102) without too much information loss, for example big cities. However,
the overlapping trajectory anonymizer has some weaknesses that should be
considered before that method is chosen, see Section 4.3.2. The nonover-

lapping trajectory anonymizer is suitable when the amount of people is
moderate and the value of k must be low (order of magnitude 101) in
order to not loose too much information.

4.3.2 Overlapping trajectory anonymizer

This method has relatively low information loss but some types of in-
ference attacks are possible in some worst-case scenarios. However, for
high values of k these types of inference attacks might be considered as
tolerable. The method is very simple and works as follows.

The algorithm finds all possible trajectory groups where at least k
people have travelled. As previously defined, a trajectory is either a part
of a sequence travelled by an individual, or the full sequence. Hence,
the same travelled sequence can be represented multiple times in multiple
trajectory groups. For example, say that k = 5 and five people have
travelled the exact same sequence, which has a length of ten routes. In
that case, when all possible trajectory groups are created, the number of
trajectory groups is then (10 + 1)10/2 = 55.

See Figure 3 for another example where all possible trajectory groups
are created. k-anonymization was not applied in this figure. When k-
anonymization has been applied, these trajectory groups, together with
the people who travelled each subsequence are placed in the anonymized
set. Hence, by using this algorithm, all data which corresponds to at least
k people have a representation in the output of the algorithm.
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This method requires that the interval filter (see Section 4.2) is applied
in order to prevent inference attacks. The interval size, Is, is either k/2
or k. This depends on what type of inference attacks which are tolerated
in some worst-case scenarios. In order to come to this conclusion we
must first introduce the demographic data anonymizer. The conclusion
of this fact is therefore derived in Section 4.5.1. In this section some
other inference attacks are discussed as well and this should thoroughly
be considered before making the decision to use this algorithm.

4.3.3 Nonoverlapping trajectory anonymization

This method has higher information loss compared to the overlapping

trajectory anonymizer, but no inference attack has been found when using
this method for anonymization. This holds even for inference attacks that
uses information outside the scope of publicly available demographic data
connected to a corresponding individual. For example, information from
surveillance cameras is considered as information outside this scope.

Because we want as low information loss as possible it is advantageous
to put as long and as many trajectories as possible in the anonymized set.
To achieve this we do as follows. All possible trajectory groups with more
than or equal to k individuals are created. This means that all possible
trajectory groups with less than k people are not used and are therefore be
removed. We call this set of groups the initial set. Hence, the initial set of
this algorithm is actually the output of overlapping trajectory anonymizer.

Each trajectory group is assigned a score. We want to maximize the
total score of the anonymized set. Therefore a higher score means that it
is more probable for that trajectory group to be included in the anony-
mized set. The score of the trajectory group can be obtained from any
arbitrary function but as was stated earlier we wanted as long and as many
trajectories as possible. However, we consider longer sequences to have
priority over the number of trajectories of a trajectory group. Therefore
we define the following score function:

S(G) = n · l2 (2)

where S(G) is the score for the given trajectory group G, n is the number
of people in G and l is the length of the sequence which G represents.

This is the score function used when evaluating the algorithm (see
Section 5.1).

In order to handle the large number of trajectory groups, we employ
a greedy algorithm that if fast, but that does not guarantee to find the
optimal solution, given by the maximum total score of all trajectory groups
in the anonymized set.

In each iteration of the greedy algorithm, as many trajectories as pos-
sible up to k trajectories are extracted from the trajectory group with the
highest score and are put in the anonymized set in the corresponding tra-
jectory group. If there has been more trajectories extracted from the same
trajectory group earlier, the new extracted trajectories are put in the same
trajectory group in the anonymized set. When a subtrajectory t is moved
to the anonymized set, all trajectories, which overlaps with t and were also
created from the same original trajectory as t, are removed. This is done
to prevent some inference attacks that uses information from the same
trajectory on overlapping subtrajectories which can occur when using the
overlapping trajectory anonymizer. See Section 4.5.1 for more information
about this. This operation can cause some trajectory groups in the initial
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set to contain less than k trajectories. If this happens and there is no cor-
responding trajectory group in the anonymized set, all these trajectories
are removed immediately (they can never reach k-anonymization). These
steps are iterated until there are no trajectories left. Hence, by using this
algorithm the resulting anonymized set has the following property: Each
trajectory represented in the anonymized set is only represented multi-
ple times if the representations (given by trajectory groups) of the same
original trajectory are non-overlapping.

During the execution of the algorithm, if there are more than k trajec-
tories in the trajectory group with the highest score, the trajectories that
are moved to the anonymized set are selected at random. The reason for
this is that we want the selected trajectories to be unbiased.

There is also a reason for why we choose to only move at most k
trajectories at a time, from the initial set to the anonymized set. For
example, consider the situation when several long trajectory groups have
one route in common. In many cases, the trajectory group with this
common route as its sequence, is the top scored trajectory group. If we
choose to move all trajectories from the top scored trajectory group, then
all other trajectory groups passing through this common route (which all
have a sequence length of at least two) have to be removed. In that case
we lose information of the combination of where people travel before and
after this common route. Also, there is a risk that this approach is farther
from the optimal solution compared to the approach of only moving k
trajectories from the top scored trajectory group at a time. This is the
reason for why we choose the latter approach. The optimal solution in
this case is the set of trajectory groups in the anonymized set with highest
total sum of scores.

The resulting trajectory groups in the anonymized set is the output of
this part. Figure 4 shows an example run of this algorithm on a simple
example.

Origin – destination groups As stated before, when using this
algorithm the information loss is much higher compared to the overlap-
ping trajectory anonymizer. However, it is possible to add additional
parts to the nonoverlapping trajectory anonymization algorithm in order
to preserve more information while still preserving privacy. One kind of
information that is often desired is the origin-destination, that is, where
one started a trip and where the trip ended. Because the nonoverlapping
trajectory anonymization algorithm only extracts at most some subtrajec-
tories of each full trajectory in the initial set, the information of the entire
trajectory is often lost. To keep some information of origin-destination we
can add the following part, which is executed after the main part of the
nonoverlapping trajectory anonymizer: For each trajectory group in the
anonymized set, find all common nearby origin nodes and/or destination
nodes. For example, if at least k trajectories in a trajectory group started
their sequences in nodes which are all close to each other, this information
can be preserved without violating privacy. In principle, any definition of
“nodes which are all close to each other” works but an example of a more
strict definition is the following: A common group of nodes are one node
together with all its neighboring nodes (a neighboring node is connected
by a single route).

To avoid overlap, each trajectory may only be included in at most
one origin group and one destination group. The information about the
common groups are added to the anonymized trajectory group. This in-
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Figure 4: This is a simple example of the algorithmic steps for the nonoverlapping
trajectory anonymizer. The circles in this figure represents nodes and the arcs between
nodes are routes. The top left map shows all possible trajectory groups which are
created as the first step of the algorithm. The algorithmic steps goes from left to right
and the trajectory groups for both the initial and the anonymized set are shown for each
step. The anonymized set is initially empty. The first step of the algorithm filters out
all trajectory group that cannot reach k-anonymity. In this case it keeps all trajectory
groups with at least two represented individuals. After that, all trajectory groups
are given a score according to the score function. k individuals from the top scored
trajectory group is moved to the anonymized set. All representations of individuals,
that are moved to the anonymized set, in trajectory groups that overlaps with the top
scored trajectory group, are removed from the initial set. These steps continues until
the initial set is empty. The trajectory groups in the anonymized set is the output of
the nonoverlapping trajectory anonymizer.
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formation contains, for each common group, the nodes in the common
group, if it is an origin group or destination group, and how many tra-
jectories in the trajectory group that started or ended their sequence in
this common group (which must be at least k trajectories). This is, again,
an optimization problem to preserve as much information possible and an
approach similar to the main nonoverlapping trajectory anonymization al-
gorithm can be used here as well. For example, give each common group,
with at least k trajectories, a score given by some score function and move
k trajectories to a new anonymized set from the common group with the
highest score.

4.3.4 Algorithms

Pseudo code for both the overlapping trajectory anonymizer and the
nonoverlapping trajectory anonymizer are given in algorithm 1 and 4 re-
spectively.

Algorithm 1 Overlapping Trajectory Anonymizer

OverlappingTrajectoryAnonymizer[trajectories, k]

Ensure: tg.size ≥ k ∀tg ∈ tgMap.trajectoryGroups
// A hash table where the key is a sequence and the value is a trajectory group:
tgMap← map[key = Sequence](value = Trajectorygroup)
// Fill trajectory groups with trajectories:
for t ∈ trajectories do

subsequences← getAllSubsequences(t.sequence)
tgMap← registerTrajectoriesInTrajectoryGroups(t, tgMap, subsequences)

end for

Remove all trajectory groups in tgMap with less than k individuals
return tgMap.trajectoryGroups

Algorithm 2 Returns all possible subsequences

getAllSubsequences[sequence]

Ensure: |subsequences| = (n+ 1)n/2, where n = sequence.length
subsequnces← {}
for j ∈ 0..sequence.length do

for i ∈ 0..j − 1 do

subsequences← subsequences ∪ {sequence[i : j]}
// list[i : j] is the tuple of items given by the i’th item in list to the (j − 1)’th
item in list

end for

end for

return subsequences

4.4 Part II: Demographic data anonymization

The output of the first part is multiple trajectory groups. Each one con-
tains individuals with their demographic data. This demographic data
contains quasi-identifiers, so each trajectory group must be anonymized.
However, there is no direct relation between different trajectory groups.
This means that the same demographic data anonymizer can be applied on
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Algorithm 3 Registers the given trajectory t in the trajectory groups with
given subsequences

registerTrajectoriesInTrajectoryGroups[t, tgMap, subsequences]

for subseq ∈ subsequences do

if subseq /∈ tgMap then

tgMap[subseq]← New trajectory group with subseq as sequence
end if

// Obtains the value given by subseq as key:
tg ← tgMap[subseq]
tg.add(t)

end for

return tgMap

Algorithm 4 Nonoverlapping Trajectory Anonymizer

NonoverlappingTrajectoryAnonymizer[trajectories, k]

Ensure: tg.size ≥ k ∀tg ∈ anonymizedTGMap
// A hash table where the key is a sequence and the value is a trajectory group:
tgMap← map[key = Sequence](value = Trajectorygroup)
// Fill trajectory groups with trajectories and define siblings:
for t ∈ trajectories do

subsequences← getAllSubsequences(t.sequence)
subsequences← registerOverlappingSubsequencesAsSiblings(subsequences)
tgMap← registerTrajectoriesInTrajectoryGroups(t, tgMap, subsequences)

end for

anonymizedTGMap← map[key = Sequence](value = Trajectory)
// Move trajectories from top scored trajectory groups to anonymizedTGMap until
tgMap is empty:
while tgMap 6= ∅ do

tg ← Top scored trajectory group in tgMap
trajectories← Get up to k trajectories from tg
Remove all siblings to all trajectories from tgMap
Move trajectories from tgMap to anonymizedTGMap
Remove trajectory groups from tgMap which can never reach k-anonymization

end while

return anonymizedTGMap.trajectoryGroups
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Algorithm 5 All subsequences in the given input which are overlapping have
pointers to each other. This is used to ensure that the same trajectory is never
used multiple times in overlapping trajectory groups.

registerOverlappingSubsequencesAsSiblings[subsequences]

for subseq ∈ subsequences do

for otherSubseq ∈ subsequences\{subseq} do
// if there is some overlap between subseq and otherSubseq:
if subseq ∩ otherSubseq 6= ∅ then

subseq.siblings← subseq.siblings ∪ {otherSubseq}
end if

end for

end for

return subsequences

each trajectory group concurrently. There are still some indirect relations
between different trajectory groups. How to deal with this is described
later on.

The demographic data anonymizer of the algorithm uses k-anonymization
to preserve the privacy. Hence, if possible, this method groups points
together in intervals containing k to 2k − 1 points (if a group contains
≥ 2k points it can, in many cases, be split into at least two groups with
≥ k points in each group, therefore obtaining a higher resolution while
maintaining k-anonymization). Again, a point is the representation of de-
mographic data of an individual. However, in some cases the resolution
needed, to split data such that < 2k are in each group, is too high. There-
fore it is sometimes not possible to achieve intervals containing between k
and 2k−1 points. Another possibility is that more than 2k points have the
exact same value, which makes them indistinguishable from start. There-
fore, it is not a requirement that each interval contains between k and
2k − 1 points each.

The approach of dividing the points into different equivalence classes is
often done such that every equivalence class contains ≥ k points, and ev-
ery point is represented in one equivalence class. Thus, no points are
suppressed. In this thesis we will refer to this approach as interval-

anonymization without point suppression.

Disadvantages for interval-anonymization without point sup-
pression Interval-anonymization without point suppression (where no
points are suppressed) has however, several disadvantages, especially in
our problem. If a data point has relatively unique data, that is, it is far
from most other points for at least one parameter, this point must still
be included in an interval. This will result in that the interval of the
group that it belongs to is relatively large in at least one dimension (one
parameter) because of the data point’s relatively unique value. Thus, in
some cases, it is better to remove so called outliers (points far away from
other points) so that the resolution of the groups is higher compared to
keeping the outliers in the groups.

Another disadvantage of using interval-anonymization without point
suppression is that it often assumes that the attacker already knows that
the individual that he wants to attack is in the set. In our case this is not
always the case. We don’t want an attacker to infer from the anonymized
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set that a specific individual has traveled a specific sequence where the
only prior knowledge is this individual’s demographic data. In some cases
the demographic data of an individual is relatively unique. For example,
say that we have the two-dimensional space (age, income) and that there
is an individual with relatively high income at a low age, which in this case
is a relatively unique value. Say also that interval-anonymization without
point suppression was applied for anonymizing the data. In that case an
attacker can just look for trajectory groups, with attached demographic
data intervals, over the city that he knows that the individual lives in, and
search for intervals including the individual that is being attacked. If the
individual’s demographic data is sufficiently unique only a few sequences
will be found and the attacker can strongly suspect that the individual that
is being attacked has traveled on, at least, some of these few sequences.

When using the overlapping trajectory anonymizer, there is yet an-
other disadvantage of using the interval-anonymization without point sup-
pression on this problem, which is due to the fact that location data is
considered as both quasi-identifier and sensitive value. Say that an at-
tacker, for some reason, knows that a specific individual is leaving a spe-
cific station during a specific time interval (it might be possible to know
this from surveillance cameras etc.). Say also that all possible trajectory
groups which starts in this station is represented in the anonymized set,
up to a node several routes away from the starting station. Now, there
might be a risk that the individual that is being attacked is only included
in one of the trajectory groups which the starts at the station (this de-
pends on how unusual demographic data the attacked individual has).
Then the attacker knows exactly which sequence the individual travelled
on, because the individual cannot be included in any other sequence. This
is clearly a serious inference attack (the attacker knows for sure where the
individual went). Again, this problem occurs due to the fact that location
data is both quasi-identifier and sensitive value.

How to anonymize demographic data linked to trajectories
How do we address the problems described above? Three possible solu-
tions have been found. Each solution confuses a possible attacker in one
way or another.

Attempt 1: One way is to add trajectories in order to confuse a pos-
sible attacker and then apply interval-anonymization without point sup-
pression. For example, suppose that an individual starts a new sequence
in station A and the demographic data is unique enough such that the
demographic data is only included in one of the sequences’ intervals in the
anonymized set starting at station A. Say also that this sequence ends in
station B. To confuse the attacker we can then add a new trajectory going
from A to, another station, C. However, if this happens every weekday
this new trajectory must be saved so that the next time this individual
goes from A to B the other trajectory going from A to C is used again.
If we don’t do this, an attacker can easily see which trajectories that are
real ones and which trajectories that are inserted to confuse the attacker
because only one trajectory is consistent. It may also be possible that
the individual takes the sequence B to A, say, eight hours after the initial
sequence started. If a sequence from C to A does not occur at the same
time the attacker will probably eventually conclude which of the trajec-
tories is the right one. As you can probably see from this example is that
it is very hard to prevent all kinds of inference attack by only adding new
trajectories to the original data set. Also, this does not prevent a possi-
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ble attacker from finding out that the specific individual frequently visits
station A. One might even say that this makes it easier for an attacker
to conclude this fact. Yet another problem with this approach is that it
adds a lot of false data which will influence the quality of the anonymized
data negatively.

Attempt 2: Another approach to solve this problem is to do the
following. One can find the distribution of points in the demographic
data to a specific sequence and then regenerate new points according to
this distribution. If interval-anonymization without point suppression is
applied to this new data it is very hard to conclude if a specific individual is
in that trajectory group or not. Even if the individual’s data is relatively
unique and an interval is matching the individual’s demographic data
this could be due to a generated point and the individual was not in the
corresponding trajectory group. Even though this might seem like a good
approach in short-term it turns out that it is not a good approach in
long-term if k is relatively low (101 in order of magnitude). This is due
to the fact that we often have frequently occurring data, many people
take the same trip to work every weekday and does so even the same time
every day. If we look at the anonymized data from regenerated data of
the same original data frequently, and there are not too many people who
travels this specific sequence, it will not be long until we can make some
conclusions of what the original data looks like. Therefore this approach
is not sufficient. Also, this approach perturbs the data which, of course,
results in higher information loss which is not desirable.

Attempt 3: The last possible approach that we came up with is
to remove some data. One approach is to remove outliers in the demo-
graphic data. This eliminates the problem that intervals becomes unnec-
essary large when outliers are part of the set because all points must be
included, which is a requirement for some approaches (such as interval-
anonymization without point suppression). Another advantage of doing
this is that an attacker cannot conclude that a certain individual did not
travel a specific sequence, because the attacker does not know if the in-
dividual was an outlier and therefore suppressed from the output or if
the individual did not travel that specific sequence. However, there are
some ways to perform inference attacks which may work if only outliers
are removed. The points on the boundary are especially prone to at-
tacks. For example, say that we have person with the highest income in
a neighborhood, without having that high of an income in order to be
an outlier. If this person travels a sequence one day, this individual can
easily be found, if the approach for anonymizing demographic data, sets
the intervals such that the boundary points are prone to inference attack.
An inference attack on boundary points can for example be possible if the
interval boundaries are set exactly where the points on the boundaries are
located. This means that the boundary of the intervals must somehow
be set such that it does not depend on a single individual per interval
boundary. Hence, even though the approach of removing some outliers
can prevent some kinds of inference attacks, some other aspects needs to
be accounted for as well.

We now have the rules required for the second part of the anonymiza-
tion method.
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4.4.1 Rules for demographic anonymizer

1. If an attacker knows the demographic data of a specific individual
and also knows that this individual traveled a specific subsequence,
the attacker should not be able to conclude the full sequence from
the anonymized set (inference attack by exploiting that sequences
are both quasi-identifier and sensitive value). This means that the
attacker should not be able to link some external information with
the anonymized set in order to find what sequence a specific individ-
ual travelled.

2. The anonymized interval boundaries must be set such that it is not
possible to perform an inference attack using the positions of the
boundaries.

Also, remember that what is anonymized by the method described be-
low is the demographic data to individuals which belongs to one trajectory
group at a time.

This method suppresses outliers, so the first rule is fulfilled. To prevent
inference attacks, which takes advantage of the position of the boundaries,
the resolution of the smallest interval of the anonymized set should not be
too high (as was explained earlier). For example, the demographic data
age can have intervals of five years as the smallest interval rather than
one interval per year.

Because the intervals’ boundaries are discrete and the resolution may
be low, it is difficult to do inference attacks that takes advantage of that
the second rule is not fulfilled. However, in order to completely fulfill the
second rule boundary hiding should be implemented as well, which is a
method described in Section 4.4.5.

The demographic data anonymization is a genetic algorithm and an
introduction to this concept is given below. The approach is to minimize
the information loss when the demographic data anonymization is applied.
The definitions for the information loss is given in Section 4.4.3 and the
algorithm to minimize this is described in Section 4.4.4.

4.4.2 Introduction to genetic algorithms

A genetic algorithm is a stochastic algorithm which is strongly inspired by
Darwinism. The algorithm uses the approach of “survival of the fittest”
on different solutions to distinguish the better solutions from the rest.
Small changes are also applied as well as mixing different solutions to
do a heuristic search of the space of solutions to find better and better
solutions over time. It should be noted that this is only an introduction
to genetic algorithms. Some parts of genetic algorithms have been left out
for simplicity, and many variations of the methods described here exists
as well.

A population of so called chromosomes are generated, where each chro-
mosome represents a possible solution of the problem which we want to
optimize. A fitness function must be defined, which evaluates how good a
chromosome is. The goal of the genetic algorithm is to either maximize or
minimize the value of the given fitness function. The initial chromosomes
can be completely randomly generated. However, it is common to create
rather good initial chromosomes through some simple function in order
to speed up the evolution. These initial chromosomes should be different
to some degree in order to have a sufficiently large search space to start
with.
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During each iteration, or so called generation, of the algorithm, chro-
mosomes are selected using some selection method. There are many dif-
ferent selection methods but what they have in common is that better
chromosomes have a higher probability of being selected. This is where
“survival of the fittest” is applied. Each selected chromosome can then
be both mutated and applied to crossover. A mutation is when a small
change is done to the chromosome. Mostly mutations are bad (resulting
in a worse fitness value) but a few is to the chromosome’s advantage. A
crossover combines the solutions of two chromosomes to create new off-
springs, which are new chromosomes, which in turn replaces its parents.

Through these iterations, better and better chromosomes emerges when
this heuristic search of the solution space is performed. The evolution is
stopped when some criteria has been attained, for example after a fixed
number of iterations. The chromosome with the best fitness value of all
generations is the output of the algorithm.

Because a genetic algorithm is a stochastic algorithm, the output is
not guaranteed to be optimal and the output differs for different runs.

4.4.3 Defining the Kullback penalty

Several definitions of information loss when anonymizing data have been
introduced in the literature [4, 2]. These have in common that they mini-
mize the aspects of information that the author finds important. However,
these definitions are often ad hoc and hence without theoretic foundation.

In this thesis a different approach is used, which, to the best of the
author’s knowledge, has not been used before. In the well known field of
information theory there is a definition for information gain of an observa-
tion, the Kullback information, K. Our approach is to let the information
loss, IL, from the original data to the anonymized set, be reflected by
the information one would gain from first observing the anonymized set
to getting access to the original data. The value of this information gain
is given by the Kullback information.

The Kullback information has the following definition:

K
[

P (0);P
]
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n∑

i=1

pi log
pi
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i
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}n

i
and P = {pi}

n
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For this definition we also define 0 · log(0/0) ≡ 0.
P (0) is the a priori probability distribution of a system of which we do

not have full knowledge and P is the probability distribution of an obser-
vation in which more knowledge is obtained. The Kullback information
also requires that whenever the a priori probability p

(0)
i = 0 we also have

that pi = 0 (if p
(0)
i = 0 and pi > 0 we would obtain infinite information

from this observation).
We now define the information loss of going from the original set to

the anonymized set as the Kullback information where the anonymized set
is the precondition and the original set is the postcondition or, in other
words:

os = original set, as = anonymized set (4)

IL(os → as) ≡ K [as; os] (5)

See Figure 5.
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Figure 5: A schematic picture of how the information loss presented in this thesis is
defined.

In order to calculate probability pi of the original set, the points in the
original set are first discretized into intervals. Exactly how the points are
discretized is up to the implementer of the algorithm. Here, we will only
use uniform interval sizes for each demographic data. This means that we
are not computing the information loss from the actual original set to the
anonymized set but from a discretized version of the original set, o′s, to
the anonymized set.

The smallest possible interval is given by the fixed interval positions
in each dimension. These intervals creates small volumes in the full di-
mensional space. We call these volumes atomic intervals. A probability
pi is given for each atomic interval.

The output of the algorithm is d-dimensional intervals in the anony-
mized set, where d is the total number of dimensions. These intervals
are non-overlapping and can be larger than the atomic intervals but the
interval boundaries of the intervals in the anonymized set coincides with
interval boundaries of the atomic intervals. In fact, each interval in the
anonymized set, a so called anonymized interval, consists of one or more
atomic intervals such that a rectangular cuboid in the entire dimensional
space is formed. Hence, an anonymized interval is the equivalence to what
was previously defined as equivalence class.

Each anonymized interval also has a number attached which represents
the number of people in that interval. Because k-anonymization is applied,
intervals with less than k people will have its attached number truncated
to zero. See Figure 6 for an example of an output.

In order to simplify equations later on, we make the following defini-
tions.

Ii : the i’th atomic interval (6)

n : the total number of atomic intervals (7)

A(Ii) : the anonymized interval that Ii belongs to (8)

Aj : the j’th anonymized interval (9)

S(Aj) : the number of atomic intervals Aj contains (10)

m : the total number of anonymized intervals (11)

D : the entire space in which all points can be located (12)

N(I ′) : the number of points in interval I ′ (13)

I ′ can be either an anonymized or atomic interval

pi represents the probability in the atomic interval Ii for o′sand p
(0)
i

represents the probability in the same atomic interval, Ii, for as.
The probability of pi for o

′
sis the probability of finding a specific point

in Ii or, in other words, the number of points in Ii divided by the total
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Figure 6: An example of the output of k-anonymization on strict multidimensional
partitioning. The number in each anonymized interval represents the number of people
with the corresponding demographic data.

number of points:

pi =
N(Ii)

N(D)
(14)

This, of course, has the property of probabilities that

0 ≤ pi ≤ 1,

n∑

i

pi = 1 (15)

The probability p
(0)
i of the anonymized set is somewhat similar. If

there are more than k points in the anonymized interval that p
(0)
i belongs

to, this means that these points will be represented in the output of this
algorithm. In that case, the definition of p

(0)
i should be similar to the

definition of pi. However, the anonymized interval that p
(0)
i belongs to

can be larger than the atomic interval that pi belongs to. Also, p
(0)
i

should represent the probability of finding a specific point in interval Ii.
Therefore, we have to normalize p

(0)
i such that it has the same value as all

other probabilities in the same anonymized interval, or, in other words,
p
(0)
i = p

(0)
j ∀i, j where A(Ii) = A(Ij). Because the interval sizes are

uniform, we have

p
(0)
i =

N(A(Ii))

N(D)

1

S(A(Ii))
, if N(A(Ii)) ≥ k (16)

Intervals which contain less than k points are suppressed in the anony-
mized set. Therefore, if N(A(Ii)) < k then p

(0)
i equals the probability of

finding a specific suppressed point throughout all intervals which are sup-
pressed in the anonymized set. This reflects that every point which is
suppressed in the anonymized set is indistinguishable from all other sup-
pressed points.

This can be expressed as

Isuppr =
n⋃

i

{
Ii if N(A(Ii)) < k
∅ otherwise

(17)
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p
(0)
i =

N(Isuppr)

N(D)

1

S(Isuppr)
, if N(A(Ii)) < k (18)

To summarize the definitions above, we now have:

p
(0)
i =

{
N(A(Ii))
N(D)

1
S(A(Ii))

if N(A(Ii)) ≥ k
N(Isuppr)

N(D)
1

S(Isuppr)
otherwise

(19)

By using this definition the following holds

0 ≤ p
(0)
i ≤ 1,

n∑

i

p
(0)
i = 1 (20)

So, we want to find intervals for the anonymized set in order to mini-
mize the information loss. In order to optimize the computation we rewrite
the information loss:

min

(
n∑

i=1

pi log
pi

p
(0)
i

)

= min

(
n∑

i=1

pi

(

log
1

p
(0)
i

− log
1

pi

))

= min









n∑

i=1

pi log
1

p
(0)
i

−
n∑

i=1

pi log
1

pi
︸ ︷︷ ︸

C









(21)

Because the original set is static, pi is static ∀i and thus C is a constant.
Therefore we only need to minimize

min

(
n∑

i=1

pi log
1

p
(0)
i

)

(22)

To speed up the computation the equation above is rewritten such that
we want to minimize

min

(

−
n∑

i=1

pi log p
(0)
i

)

(23)

(unnecessary division computation was removed).
If we look closely at equation (23) we are able to optimize the compu-

tation even more. We start by rewriting it as

min



−
m∑

j

∑

i s.t.Ii∈Aj

pi log p
(0)
i



 (24)

This is possible since anonymized intervals are non-overlapping.
If we look at equation (19) we see that p

(0)
i is identical ∀i s.t.Ii ∈ Aj .

We now define
p
(0)
Aj
≡ p

(0)
i ∀i s.t.Ii ∈ Aj (25)

Using equation (19) we have

p
(0)
Aj

=

{
N(Aj)

N(D)
1

S(Aj)
if N(Aj) ≥ k

N(Isuppr)

N(D)
1

S(Isuppr)
otherwise

(26)
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Thus equation (24) can be rewritten as

min











−
m∑

j














∑

i s.t.Ii∈Aj

pi





︸ ︷︷ ︸

PAj

· log p(0)Aj





















(27)

PAj =
∑

i s.t.Ii∈Aj

pi
(14)
=

∑

i s.t.Ii∈Aj

N(Ii)

N(D)
=

N(Aj)

N(D)
(28)

N(D) is a positive constant, so this can be removed when minimizing
the function.

Thus, instead of minimizing equation (23), we minimize

min

(

−
m∑

j

[

N(Aj) · log p
(0)
Aj

]
)

(29)

As long as at least some of the anonymized intervals are larger than
the atomic intervals, it is computationally faster to minimize equation
(29) compared to directly minimize equation (23).

We call this function the Kullback penalty :

KP ≡ −
m∑

j

[

N(Aj) · log p
(0)
Aj

]

(30)

Another important fact from this sum is that

0 ≤ p
(0)
Aj
≤ 1∀i⇒ log p

(0)
Aj
≤ 0⇒ −

m∑

j

[

N(Aj) · log p
(0)
Aj

]

≥ 0 (31)

This is important because some implementations of genetic algorithms
requires that the fitness value is greater than or equal to zero. Therefore,
the Kullback penalty function can be directly used as a fitness function,
if that is desirable.

Comparison with Discernability metric In [2] another cost met-
ric to minimize information loss, for k-anonymization, was introduced.
That is the discernability metric, which is a cost metric that can also be
used on multidimensional splits.

CDM =
m∑

j s.t.N(Aj)≥k

N(Aj)
2 +

m∑

j s.t.N(Aj)<k

N(D)N(Aj) (32)

However, as stated before, this metric is somewhat ad hoc, and used
for its ability to “capture in a straightforward way the desire to maintain
discernability between tuples as much as is allowed by a given setting of
k” [2].

In comparison, the Kullback penalty, also has one more advantage
compared to the discernability metric. The discernability metric mini-
mizes the number of points in each anonymized interval. However, the
size of each anonymized interval is not considered by the metric. Hence,
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the optimal output may contain large anonymized intervals where the
points may be located in only small parts of these intervals. This as-
pect is captured by the minimization of the Kullback penalty because it,
roughly speaking, maximizes the average density of non-suppressed inter-
vals, while, at the same time, penalizes suppressed points. Thus, if a large
anonymized interval has between k and 2k points, and all points are lo-
cated in just a subinterval I ′ of this interval, a higher density is obtained
if this subinterval is an anonymized interval by itself. This is captured
by the Kullback penalty but not by the discernability metric. Similarly,
if only most points, but still more than or equal to k points, are in I ′, in
some cases the optimal configuration for the Kullback penalty is when the
points outside I ′ are suppressed and I ′ is an anonymized interval. This
depends on the density of the points in I ′ relative to the penalty which is
given by the suppressed points.

Algorithm The Kullback penalty can be computed using algorithm 6.

Algorithm 6 Compute Kullback penalty

KullbackPenalty[root, k, D]

Require: k ≥ 2
Ensure: il ≥ 0
Lunsuppr ← {l.Aj |N(l.Aj) ≥ k, l ∈ root.leaves}
Lsuppr ← {l.Aj |N(l.Aj) < k, l ∈ root.leaves}
Isuppr ←

⋃

Aj∈Lsuppr
Aj

ilunsuppr ← −
∑

Aj∈Lunsuppr

[

N(Aj) log
(

N(Aj)
N(D)

1
S(Aj)

)]

ilsuppr ← −N(Isuppr) log
(

N(Isuppr)
N(D)

1
S(Isuppr)

)

il← ilunsuppr + ilsuppr
return il

4.4.4 Genetic algorithm approach for optimizing the Kull-

back penalty with k-anonymization as constraint

The problem described in Section 4.4.3 is NP-complete. This can be
shown from the equivalence of the problem described in [6], which is also
NP-complete. Therefore, an algorithm which does not necessarily find
the optimal, but close to optimal solution was developed. A genetic algo-
rithm was chosen because of its ability to find a near optimal solution in
dimension spaces which may differ a lot for small changes of the input and
has many local minima. However, as we will show later on, this system
has a very erratic behavior which is not the perfect problem for a genetic
algorithm. To account for this, only small modifications are made to the
so called chromosomes which are used in the genetic algorithm.

Note that the method described in this section is a general anonymizer
for d-dimensional points (where d is an arbitrary positive integer) and can
be used to anonymize any kind of demographic data and does not depend
on any method described in this thesis.

Because we want the output of the algorithm to be a set of rectangular
cuboid intervals, we can perform splits on the full domain. Thus, a so
called binary space partitioning is created. After one split in one dimension
has been made, two new intervals have been created. These can, in turn,
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Figure 7: An example of a binary space partitioning tree together with the resulting
binary space partitioning. The left child of a branch is the partition below the branch’s
split and the right child is the partition above the split. The leaves in the tree,
represented by a to g, are represented by the corresponding partitions in the two
dimensional space.

be split again, independent to each other. Thus, one of the two created
intervals can be split multiple times while the other remains as a full
interval. These splits can occur until the smallest possible intervals, the
atomic intervals, emerges.

This will create so called strict multidimensional splits [6]. These splits
creates the anonymized intervals of the anonymized set.

These splits are represented by a special case of a binary space parti-

tioning tree. Each branch in the tree contains a split, which is represented
by the dimension of the split together with where, in this dimension, that
the split occurs. Each branch also contains the interval that it represents.
The left child of a branch is the interval below the split in the branch and,
respectively, the right child is the interval above the split in the branch. If
a child is a branch this interval is split even further. The leaves are empty
and shows that no more splits occurs and each leaf is therefore one of the
anonymized intervals which the full tree represents. See Figure 7 for an
example of a tree together with the resulting intervals.

Each chromosome in the genetic algorithm contains a valid tree. A
valid tree means that, for each branch, the split in the branch is not on
the boundary or outside its own interval.

For example, a tree has two splits, represented by the root node that
is a branch and its left child which is also a branch. All other nodes are
leaves. The left child must, in this case contain a split in its own interval,
that is, in the lower interval that is given by the root branch’s split. The
left child can thus not have a split in the interval represented by the root’s
right child or have the same split as the root branch.

Mutations The tree has a very erratic behavior. A small change in
one of the top branches can have a huge impact on the resulting intervals.
Therefore the mutations are designed to make small, but still noticeable
changes.

Four different mutations were developed:
Split mutation: This mutation starts with finding all leaves which

consists of anonymized intervals containing more than one atomic interval.
These leaves can be divided. We call the set of these leaves Lsplit. Each
leaf in Lsplit is then selected for mutation with a probability of 1/|Lsplit|.
The decision of applying a mutation is done for each leaf in Lsplit inde-
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pendently. Thus zero to |Lsplit| mutations can occur if this mutation is
applied. Splits are performed on all leaves that were selected. The per-
formed split is one of all possible splits that can occur on the leaf, where
all possible splits in the leaf have the same probability of being performed.

This mutation can be considered as the opposite to the merge muta-
tion, as described next.

Merge mutation: This mutation can merge some branches to a leaf.
All parents which has at least one child which is a leaf creates the set
Pmerge. After that, each of the branches in Pmerge is selected with the
probability of 1/|Pmerge|. As with the split mutation, the decision for
mutating a branch is independent from all other branches. If a mutation
occurs it simply converts the selected split branch into a leaf (and thereby
merges its children’s intervals into the interval in the selected branch).
Again, the reason why only parents which has at least one child which is
a leaf may be mutated by this mutation is because the mutations should
not have a too high impact on the chromosomes.

This mutation can be considered as the opposite to the split mutation
(the mutation above).

Move split mutation: This mutation starts with selecting one of all
branches in the tree, where each branch has equal probability of being
selected. The split of the selected branch is moved one atomic interval,
in the same dimension, to either one atomic interval level above or below.
The direction of the mutation (above or below) has equal probability.

If the split is moved “outside” the valid range of splits, that is, it is
moved to either one step above the highest valid split or one step below
the lowest valid split, the branch is removed. If the split is moved one
step above the highest valid split, the left child, which is the child with
the lower interval, replaces the branch on which the mutation occurred.
Similarly, if the split is moved one step below the lowest valid split, the
right child, which is the child with the higher interval, replaces the branch
on which the mutation occurred. See Figure 8 for an example when a split
is moved “outside” the valid range of splits.

After the mutation it might happen that the tree is no longer valid and
has to be fixed. This happens when the split is moved to a split which
occurs on a branch below the the mutated split. The split, on the branch
below the mutated split, is now either one step above the highest valid
split or one step below the lowest valid split. To fix the tree a simple
search for all branches below the mutated branch, with the same split as
the mutated branch, is performed. These branches are simply removed
from the tree (converted to a leaf) and the tree is yet again valid.

Branch swap mutation: Just as with the move split mutation, this
method starts by selecting one of all branches in the tree, and each branch
has equal probability of being selected. However, the root node cannot be
selected by this mutation. The mutation then swaps the position of the
selected branch, b, with its parent p. When doing so, one of b’s children,
ci, must be replaced by p. However, p has a vacant position, where b
originally was. Thus ci is placed in this position, such that ci becomes
one of the two children of p. The child ci of b is selected at random, with
equal probability of the two children of b. See Figure 9 for an examples
of this mutation.

Similar to the move split mutation, this mutation can result in a non-
valid tree. This time we have to perform a full fix on the parent branch of
the b branch after the mutation. This is done as follows: In each branch,
check if the split in the branch is valid for its interval. If it is not valid,

27



Figure 8: An example of a move split mutation with both the two dimensional space
and the corresponding tree. The branch is, in this case, moved outside the valid range,
so that the branch is replaced by its corresponding child.

apply
mutation
on 

if    replaces

otherwise

Figure 9: An example of a branch swap mutation. The branch b is randomly chosen
as the branch to mutate. One of the two possible branch swap mutations for b is
applied (where both possible mutations have equal probability of being performed).
The leaves are not shown in this figure.

28



convert the branch to a leaf. If it is valid, perform the split in the branch
and set the resulting intervals for both children correspondingly and con-
tinue the same procedure on the children. Because all branches which
may not be valid (after the mutation) are checked and fixed, the resulting
tree is valid.

This mutation might seem somewhat arbitrary, but there is a good
reason for why it is used. If we have a tree, where the lower branches have
splits which results in a low Kullback penalty, but some of the branches
in the upper part of the tree are not optimal, this mutation can help the
chromosome from getting stuck in a local minima by swapping branches
in the upper part of the tree.

Crossover Only one type of crossover is used and it is the type of
crossover that is usually used on binary trees.

The crossover goes as follows. Two trees are randomly selected for
crossover. On each tree a cut between a random child and its parent node
is performed. The subtree below the cut of one tree is combined with the
subtree above the cut of the other tree. This creates one chromosome. If
vice versa is done, we can also get another chromosome from the crossover
at the same time.

This can, of course, create invalid trees, so the new trees must be fixed
before they are returned as a chromosomes. This fix only needs to be
performed on the subtree of the parent branch of the cut, because the rest
of the tree should be valid. See Figure 10 for an example of crossover.

Initial chromosomes In order to speed up the search for the optimal
solution, using a genetic algorithm, it is common to help the evolution by
creating initial chromosomes which are not completely random, but rather
have a good approximation of the optimal solution.

The initial chromosomes are created using a recursive function, where
the root branch of an empty tree is the input parameter of the first call
to this function. In each call, the function searches through all possible
splits which can be performed on the current interval, to find the splits
which divides the current branch such that at least k points are in each
of the two resulting leaves. One of these splits is selected at random and
is then performed on the branch. The children, given by the split, are,
independent to each other, divided through the same recursive function.
Hence, no points are suppressed using this method. If no splits, as the
ones described above, can be found, the current branch is not divided.
Hence, the recursive function is guaranteed to terminate.

Furthermore, a few completely random valid trees are also generated
for the initial chromosomes to get a better initial cover of the search space.

4.4.5 Boundary hiding

When implementing the demographic data anonymizer described in Sec-
tion 4.4.4, the resulting intervals represent the number of people in each
interval. From these intervals we can strongly suspect that there is at
least one person represented in one atomic interval on the boundary of
an anonymized interval. Even a single person can make a difference of
where the boundary is and therefore boundaries might be prone to infer-
ence attacks. Say that a possible attacker knows that a person, p, living
in an area, has a relatively unique demographic data in one attribute.
Now, if the attacker finds out that this data is represented in a trajectory
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Figure 10: An example of a crossover of two binary space partitioning trees. The left
resulting tree is nonvalid and is fixed before it is returned as an output. The input
and output partitionings are also shown in the figure. A and B are the two dimensions
and the subscript of each dimension is the dimension split.
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age

10 people

Figure 11: An example where boundary hiding is applied. The grey lines represents
the age of different individuals. k/2 = 2 so the average value of the two individuals
with lowest age is computed and stored in the variable alow. The lower boundary is
then moved to the lower coarse grained value (atomic interval) closest to alow. The
corresponding is done to the two highest values and the higher boundary is moved to
the higher coarse grained value (atomic interval) closest to ahigh.

group leaving from this area he can strongly suspect that p travelled on
this subsequence and an inference attack has in that case been performed.
However, if it is possible to hide where the boundary is, in the case when
there are few people in the trajectory group, it becomes very hard for a
possible attacker to perform this kind of inference attack.

The idea of boundary hiding goes as follows. The boundary is hidden
in one dimension at a time. The average value of the k/2 lowest values in
the anonymized interval is computed. We call this value alow. The lower
boundary is now moved to the closest lower atomic interval boundary to
alow. Respectively, the average value of the k/2 highest values is computed
and is saved in the variable ahigh. The higher boundary is then moved
to the closest higher atomic interval boundary to ahigh. However, even
though the boundary has been moved we still say that the same number
of people are in this new interval (the same number of people as in the
original anonymized interval). See Figure 11 for an example of boundary
hiding.

By applying this method it is hard to know exactly where the boundary
is which prevents an attacker to perform inference attacks on boundaries.
The reason for this is because a single point (representing demographic
data for an individual) never decides exactly the boundary is (at least
for k > 2, which we assume is always the case). However, because the
change is very small, if there is a change at all, an analyzer of the data
will probably not care about the small differences and will just consider
the intervals’ boundaries as the true intervals.

For a large number of people this might seem unnecessary because the
probability of the kind of inference attacks that this method prevents is,
in that case, very low. However, if this additional method is applied when
it actually is unnecessary it will probably not change the data at all, and,
if it does, the change is very small. Thus, this method only makes larger
changes when it really is necessary. Also, this method is fast to execute
so it is not a performance issue.

4.5 Additional methods

4.5.1 Interval size Is
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Figure 12: An example of two overlapping trajectory groups. The circles represents
nodes and the grey lines are routes. The interval represented by [a..b) is the interval
of number of people in the corresponding trajectory group. The full line is thus a
trajectory group which sequence consists of two routes and the dotted line is another
trajectory group which sequence consists of one route.

Is for the overlapping trajectory anonymizer As discussed
before, in order to use the overlapping trajectory anonymizer the interval

filter must be applied. The interval size Is must be decided and to keep
as much information as possible we want to minimize Is. The following
examples discusses the minimum size of Is that is needed in order to
prevent inference attacks.

Interval size example: Figure 12
In this example we see that there are more people traveling along

the dotted subsequence compared to the full line. We also see that the
minimum difference between the number of people is min([k + Is..k +
2Is))−max(k..k+ Is)) = 1 and the maximum is max([k+ Is, k+ 2Is))−
min(k, k + Is)) = 2Is − 1. In other words, the difference in the number
of people is [1, 2Is). If Is = k/2 we obtain the difference in the number
of people [1..k). This is, strictly speaking, an inference attack according
to k-anonymization because we might say something about an individual
with higher probability than 1/k (the probability in this case is 1/(k−1)).
However, we can redefine what is considered an inference attack and in-
stead say that if we know something about k − 1 individuals, or larger
interval, it is not an inference attack. If Is < k/2 even this new definition
is violated, so it is required that Is ≥ k/2.

Hence, the anonymization used for overlapping trajectory anonymizer

is:
k−1-anonymization: k−1 ≡ k − 1
The anonymization is violated if we can say something about an
individual with a probability higher than 1/k−1 = 1/(k − 1)

Interval example: Figure 13
As is shown in the figure, the interval size Is = k/2. In this example

there is a difference between the intervals in the demographic data of two
overlapping subsequences. This means that there must be a difference in
the people that travelled along each subsequence. The dotted subsequence
is completely overlapped by the full lined subsequence and therefore we
can infer that the difference between the subsequences is that there are
more people on the dotted subsequence compared to the full line. From the
demographic data we can infer that at least one of the people that are only
on the dotted subsequence has an age in the interval [30..35). From this
information we can conclude that one to four ([1..k/2)) people travelled on
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Figure 13: An example of two overlapping trajectory groups. The circles represents
nodes and the grey lines are routes. The interval represented by [a..b) is the interval
of number of people in the corresponding trajectory group or demographic interval.
The full line is thus a trajectory group which sequence consists of two routes and the
dotted line is another trajectory group which sequence consists of one route. The two
graphs to the right are the demographic intervals of the two trajectory groups. The
interval in full line is the demographic interval for the trajectory group in full line
and, correspondingly, the dotted interval is the demographic interval of the dotted
trajectory group.

the dotted subsequence and has an age in the interval [30..35). Even if we
use k−1-anonymization, this is still considered an inference attack. If this
kind of inference attack happens on multiple different demographic data
at the same time, one might be able to strongly suspect that a specific
person travelled along the dotted trajectory group.

To prevent these kinds of inference attack the interval size has to be
larger than or equal to k. However, one might consider that interval size
too large. An alternative approach is to accept these inference attacks,
when the interval size is k/2 and set the value of k such that k/2 − 1 is
“high enough”. What value k should have in this case for k/2 − 1 to be
“high enough” is up to the user of the algorithm.

If k is low we can extend this kind of inference attack even further.
Say, for example that the demographic data age is divided into 20 intervals
and that k = 10. If this extension of intervals (in the example above),
between two different subsequences, occurs on roughly k different intervals
in the same demographic data, at the same time, we know that there is
roughly one individual in each extended interval. Even if this is unlikely
to happen, this is a serious inference attack (we know something about a
single individual) and thus k should be higher than the maximum number
of divisions of any demographic data.

Number of people example: Figure 14
Another serious inference attack have been found when using this al-

gorithm. However, this inference attack requires that the attacker has
external information that is outside the scope of publicly available demo-
graphic data connected to corresponding individuals. Hence, the user of
this algorithm might not consider this kind of inference attack.

This inference attack requires that the attacker knows exactly how
many people that travelled on some subsequences. This data can, for
example, be obtained from surveillance cameras. In Figure 14 we have
an example where this kind of inference attack occurs. From the anony-
mized data alone we cannot perform an inference attack. However, let’s
first start with what information we can obtain from this figure before
performing the inference attack where we know exactly how many peo-
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Figure 14: An example of three overlapping trajectory groups. The circles represents
nodes and the grey lines are routes. The interval represented by [a..b) is the interval
of number of people in the corresponding trajectory group or demographic interval.
The grey circles with a number is the exact number of people in the corresponding
trajectory group (this is not shown in the anonymized set, but may be obtained from,
for example, surveillance cameras). The three trajectory groups, the full line, the
dotted and the dashed line, have corresponding demographic intervals to the right
with the same shape.

ple that travelled on some subsequences. We know that there are peo-
ple that travelled only on the dotted subsequence because, if we add
up the maximum number of people on the full lined and dashed sub-
sequence this number does not add up to the interval of the dotted
subsequence, max([10..15) + [10..15)) = 14 + 14 < min([30..35)). We
can also see that there is a demographic interval in the dotted subse-
quence that does not show up in the either the full lined or dashed
subsequence. We call this interval Ib. The highest possible number of
people in Ib, that comes from the full lined and dashed subsequence, is
4 + 4 = 8, because the lowest possible number of people in the intervals
that are shown in the full lined and dashed subsequences is ten respec-
tively (max([10..15)) −min([10..15)) = 4). Therefore at least two people
from the dotted subsequence are represented in Ib.

So, if we now, for example, are able to obtain that 14 people trav-
elled on the full lined subsequence and 14 on the dashed subsequence we
have enough information to perform an inference attack. We can now
calculate how many people that were at most present only on the dotted
subsequence: max([30..35)) − (14 + 14) = 6. If we add up this with our
previous result we now know that [2..6] people travelled only on the dotted
subsequence and [2..6] of these are represented in Ib. This is clearly an
inference attack because 6 < k = 10. If the attacker also is able to obtain
that there were, for example, exactly 30 people who travelled along the
dotted subsequence, we now know that there were only two people who
travelled only on the dotted subsequence and that these two are repre-
sented by the interval Ib. If this happens on multiple demographic data
it might be relatively easy to identify an individual.

It is also possible to show that this kind of inference attack can still
be performed if we increase Is to k.

Hence, by only obtaining exactly how many people who travels along
some subsequences it can be possible to, together with the anonymized
data, in some worst-case scenarios, identify individuals when using this
algorithm, no matter how high the value of k is.

If k is high it might be harder for the attacker to know exactly how
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many people that travelled on a specific subsequence, even though it is of
course still possible.

Is for the nonoverlapping trajectory anonymizer When anony-
mizing using the nonoverlapping trajectory anonymizer, overlapping tra-
jectory groups (with respect to sequences) may not include the same in-
dividual. Is for the overlapping trajectory anonymizer was introduced
because that method may construct overlapping trajectory groups which
contains the same individual, which may lead to possible inference attacks
if the value of Is is not high enough. Thus, the nonoverlapping trajectory
anonymizer together with boundary hiding has no need for the interval
filter for the anonymization discussed so far. However, if some extra re-
quirements are added, the interval filter may need to be applied to the
output of the nonoverlapping trajectory anonymizer as well, see Section
4.5.2 and 4.5.3.

4.5.2 Concurrent release of overlapping data

When anonymizing demographic data, the data can be partitioned in dif-
ferent ways. One way is to group all demographic data of an individual to
a d-dimensional point, where d is the number of demographic attributes.
d-dimensional equivalence classes are then created which represents the
anonymized set. Another approach is to divide each demographic data
into d separate points, one for each demographic attribute. The anony-
mized set then contains separated equivalence classes, one for each dimen-
sion. A third approach is to have something in between, that is, group
demographic attributes where one wants to see the correlation and sepa-
rate groups where the correlation is not so important. For example, say
that we have the three attributes age, gender and income, and we want
to see the correlation between age and income, and we separately want
to see the distribution of the gender. In that case we can separate the
data into (age, income) and (gender) and the resulting equivalence classes
in the anonymized set contains equivalence classes with these attributes,
grouped in this way.

If several of these different types of equivalence classes are applied to
the same data and then released, one might think that by combining the
overlap between different equivalence classes, it is possible to perform an
inference attack. This is often the case, but in our case it is required
that the interval size Is = k for the overlapping trajectory anonymizer.
This means that it is, in this case, not possible to infer the demographic
data of less than k people. Hence, this does not violate k-anonymization.
Thus, all possible combinations of anonymized versions of demographic
data can safely be released concurrently without violating the privacy.
This data can be used in several ways. If only one demographic data is
anonymized, the highest possible resolution for this data is acquired. But
in this case you cannot see the relation to other demographic data. If
all demographic data is anonymized in the same set at the same time,
the relation between all demographic data is obtained, but in this case
the resolution will be low unless the number of data points is very high
compared to k. If only the relation between some demographic data is
desirable, the resolution will be somewhere in between the two extreme
cases. Again, all the anonymized versions of combinations of the data can
be released and an analyzer of the data can get exactly the combination
(and relations) of demographic data he or she wants, with the highest
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possible resolution, while still preserving the privacy.
Again, this requires that Is = k. In order to be able to do this when

using the nonoverlapping trajectory anonymizer (which does not initially
require to use the interval filter) we must set Is = k as well.

4.5.3 Time intervals

There are two alternatives to include the time when anonymizing the data.
The first alternative is to have fixed time intervals in which all tra-

jectories to the input of the anonymization occurred. By using the same
reasoning as in Section 4.5.1 (where the size of Is for the overlapping
trajectory anonymizer was concluded), it is possible to have overlapping
time intervals, with respect to anonymized releases, if the interval filter is
applied and Is is sufficiently large (see Section 4.5.1). This can advanta-
geously be used to see the movement only during rush hours and also be
able to use the same data to see the movement of all times during a week.
If interval filter is not applied (which only holds for the nonoverlapping
trajectory anonymizer when boundary hiding is applied) only nonoverlap-
ping time intervals, with respect to anonymized releases, are allowed.

The other alternative is to let the time be an attribute in the demo-
graphic data. Again, if the interval filter is not used, the same trajectory
may not be used for multiple anonymizations.

4.5.4 Active inference attacks

Definition: An active inference attack occurs when one actively changes
the raw data, which will be anonymized at a later time, in order to be
able to perform an inference attack using both the exact information of
the changed data, together with the anonymized data.

In the case for the problem described in the paper, active inference
attack would be to travel a certain sequence with mobile phones registered
with the same specific demographic data in order to elicit demographic
data of other individuals traveling the same sequence. The attacker has
now knowledge both about the exact demographic data of the mobile
phones and the anonymized data of the sequence that he or she travelled.
By combining this information the attacker might be able to identify an
individual.

However, when we require that the interval filter is applied where
Is = k, active inference attacks are very hard to perform. If a possible
attacker has k−1 mobile phones registered to the same demographic data
and [k..2k) users on this sequence are represented in the anonymized set,
all the attacker knows is that [1..k] users, who travelled on this sequence,
has this demographic data. This is not a violation of k-anonymization.

There is one extreme case where this type of inference attack can be
performed. Assume that an attacker has k − 1 registered mobile phones,
with the same demographic data, and travels on a sequence where n other
people travelled. If n < k then [k..2k) people will be represented in
the anonymized set as the number of people who travelled this sequence.
If the demographic data, that were registered on the attackers mobile
phones, are represented in the anonymized set, the attacker knows that
at most n people has this demographic data. Because n < k the k-
anonymization has been violated. However, this type of inference attack
is both time and resource consuming and we highly doubt that anyone
would ever consider this just to suspect that a certain individual travelled
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Figure 15: A randomly generated city which is used for evaluating both trajectory
anonymization methods. A circle represents a node and these are connected by routes
which goes in both directions.

on a specific sequence with a probability above 1/(k − 1). To actually
identify an individual with a high probability using this method requires
a worst-case scenario which is very unlikely.

When the interval filter is not required to be applied it is obviously
easier to perform active inference attacks. A user of the algorithm might
thus consider implementing the interval filter with the only purpose of
preventing active inference attacks. Even small values for Is might be
better than not using the interval filter at all when considering active
inference attacks.

5 Experimental evaluation

5.1 Trajectory anonymization

The execution times of the nonoverlapping trajectory anonymizer and
the overlapping trajectory anonymizer were compared using randomized
“maps”which were generated as follows: The map on which the two meth-
ods are compared to each other is randomly generated using the following
method. 80 nodes are uniformly distributed in the unit square and routes
are created between all nodes with a distance of maximum 0.17 from each
other. See Figure 15 for an example map. A number of trajectories were
then randomly generated on this map. These trajectories has a length
between four and 15 routes. A generated trajectory starts at a random
node and performs a random walk to neighboring nodes (connected by
routes) such that the same node is not visited several times for the same
trajectory.

The implementation of both the nonoverlapping trajectory anonymizer
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Figure 16: Benchmark times for executing the overlapping as well as nonoverlapping
trajectory anonymizer. The overlapping trajectory anonymizer clearly outperforms
the other method in execution time by at least one order of magnitude. This plot was
obtained for k = 10. Each point in this plot is the average value of the output from
five runs on five different randomly generated maps.

and the overlapping trajectory anonymizer were done in Python 2.6.6. All
experiments were performed on an Intel(R) Core(TM) i5 CPU M 480 @
2.67GHz with 3.5GB Memory. In Figure 16 the execution times for the
two methods are presented. From this figure we see that the overlap-
ping trajectory anonymizer clearly outperforms the nonoverlapping tra-
jectory anonymizer. It is not surprising that the nonoverlapping trajectory
anonymizer is slower than the overlapping trajectory anonymizer because
the steps of the overlapping trajectory anonymizer is done as just a part
of the entire nonoverlapping trajectory anonymizer.

A comparison of how much information which is preserved was done as
well. This comparison was done on the same map which was generated to
benchmark the execution times. We now make the following definitions.
l(ti) is the length of the sequence of input trajectory number i. l(tgj)
is the length of trajectory group number j and s(tgj) is the number of
individuals represented in that trajectory group. The information which
is preserved is reflected by the following ratio:

R =

∑

i l(ti)∑

j
l(tgj)s(tgj)

(33)

Thus, this ratio R reflects how much of the input trajectories that are
represented in the anonymized set. Because the nonoverlapping trajectory
anonymizer does not allow overlapping trajectory groups to include the
same individual, this number is between zero and one. In contrast, each
individual can be represented in overlapping trajectory groups for the
overlapping trajectory anonymizer. Thus, the number for that method
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Figure 17: The x-axis is the number of generated trajectories in the city. The y-
axis represents the ratio, between the total length of all anonymized trajectory groups
times their corresponding number of individuals, in relation to the total length of all
input trajectories. This plot was obtained for k = 10. Each point in this plot is the
average value of the output from five runs on five different randomly generated maps.

can be larger than 1. The result can be seen in Figure 17. The fact that
the overlapping trajectory anonymizer outperforms the nonoverlapping
trajectory anonymizer is obvious.

5.2 Demographic data anonymization

This section evaluates the genetic algorithm which is used as demographic
data anonymizer in this thesis. The data that was evaluated is the Adults
database from the UC Irvene Machine Learning Repository [10], which is
very common to use to benchmark k-anonymization methods [4, 2, 6]. The
evaluation of the genetic algorithm presented in this thesis is compared
to the greedy method described in [6]. The evaluation for both methods
were done using the Kullback penalty and the discernability metric.

There are multiple articles which shows how to optimize micro data
in so called full-domain generalization [5, 12] and single-dimensional par-
titioning [2, 4]. In [6] it is shown that the greedy algorithm in the same
article results in higher quality, for real world experiments, compared to
the optimal solutions using either full-domain generalization or single-
dimensional partitioning. Also, the output of our algorithm produces
multi-dimensional partitionings, just as in [6]. These are the reason to
why we choosed to compare our algorithm with the one described in [6].

The configuration of the data was done as described in [6]. Thus,
only eight attributes were used and the data does not have a categorical
structure but instead all values are placed in a continuous ordering. The
order of educational data is the same as in [4]. Only tuples, in the Adults
dataset, with no missing values in the eight anonymized attributes were
used. This results in 30,162 records.

In this thesis, the methods are not allowed to place points which are
on the same boundary in different equivalence classes. However, this is
allowed when executing the method we call Mondrian, which is the greedy
method described in [6]. Hence, a few modifications were done to Mon-
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drian in order to compare it with the genetic algorithm presented in this
thesis. When choosing the dimension where the split will be performed
in each iteration of Mondrian, the dimension with the widest normalized
range of values is selected, just as in [6]. However, if the split given by
that dimension results in that fewer than k points are in one of the two re-
sulting partitions, this split is reverted. In that case, the dimension with
the second widest normalized range of values is selected instead. This
iteration continues until a dimension which split results in that the two
resulting partitions has more than or equal to k points each is found, or
until all dimensions have been evaluated, and failed to perform a valid
split (a valid splits is when ∃ ≥ k points in both resulting partitions). In
the latter case the equivalence class is not divided.

For the genetic algorithm, the population is 40 and the number of
generations is 40 as well. Crossover was applied with a probability of 0.8
and each mutation was also applied with a probability of 0.8. Elitism was
used as well, where the best chromosome from each generation is directly
moved to the next generation without applying any mutation.

Both resulting metric penalties for both the genetic algorithm and
Mondrian can be seen in Figure 18 and 19 respectively. From these figures
we see that the genetic algorithm performs better for both metrics and
for all values of k which were evaluated. However, the difference when
optimizing the discernability metric is very small. The reason for why
there is a larger difference in the case for the Kullback penalty is due to
the fact that Mondrian only optimizes to include as few points ≥ k in each
equivalence class but does not try to optimize the density in all equivalence
classes, which the genetic algorithm is able to do. However, because the
genetic algorithm takes longer time to execute compared to Mondrian,
Mondrian can be a good alternative to minimizing the Kullback penalty
if the execution time is considered to a larger degree.

6 Discussion and future work

The problem for this thesis is somewhat different from most articles in the
area of anonymization so far, because that the data that is anonymized
contains both sequences travelled by people and their demographic data.
Since the input contains different types of data, that is, sequences of data
(representing travelled trajectories) as well as d-dimensional single points
(representing demographic data), the anonymization was divided into two
different major anonymization methods. However, because there is an
indirect relation between the trajectory groups created by the first part
of the main anonymization, the anonymization of the demographic data
(which does not account for this indirect relation) does not guarantee
the preservation of the privacy. Therefore, two additional filters were
introduced in order to account for this indirect relation and hence preserve
the privacy. If, however, a universal method, for anonymizing all data at
once, is developed, then it is likely that no additional filters have to be
applied. However, it is probably difficult to develop such a method since
the sequential data and the d-dimensional single points are represented in
very different ways.

Two different methods for anonymizing the trajectories were devel-
oped. Even though they have the same type of output (anonymized set
containing trajectory groups) the actual output of the full anonymization
has some differences. The output of the overlapping trajectory anonymizer

40



100 101 102 103

k

400000

420000

440000

460000

480000

500000

520000

540000

560000

580000
Ku

llb
ac

k 
pe

na
lty

Genetic algorithm
Mondrian
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may include overlapping trajectory groups which contains the same in-
dividual. Because this is not allowed in the nonoverlapping trajectory
anonymizer, there is a big difference in how much information which is
preserved when comparing both methods. This is clearly shown in the
experimental evaluation where the output of these two methods are com-
pared. However, because the interval filter must be applied to the output
of the overlapping trajectory anonymizer, where the recommended value
for Is is k, a big amount of information is unfortunately lost here. This
is only a requirement for nonoverlapping trajectory anonymizer in some
cases. Thus, the information loss is applied on different aspects, either on
which individuals who are included in different trajectory groups, or in
the certainty of the number of people.

The performance of the genetic algorithm presented in this thesis can
probably be improved even more. For example, it might be possible
to identify mutations to the chromosomes which results in better search
heuristics. A more thorough search for better parameters of the genetic
algorithm can be done as well.

7 Conclusions

In this thesis, two different methods are presented for anonymizing trajec-
tories travelled by people, with associated their demographic data. One
of the methods has low information loss but can, in some worst-case sce-
narios, be prone to inference attacks. The other method has a higher
information loss, compared to the first one, but no possible inference at-
tack has been found for this method. The anonymization consists mainly
of two parts for both methods, where the second part is the same. The first
part anonymizes only the trajectories while the second part anonymizes
the demographic data of the individuals. The second part also makes sure
that the output of the entire anonymization procedure is anonymized.
k-anonymization, which is widely used for anonymizing spatio-temporal
data [9], was used in both parts for both methods.

To only use a straightforward k-anonymization on two different meth-
ods, first on the travelled sequences and then on the demographic data,
was not enough to preserve the privacy. Some additional filters were added
to prevent the kinds of inference attacks that were identified after only the
straightforward k-anonymization was applied. One of these methods is to
replace the exact number of people ≥ k with an interval which that num-
ber corresponds to. To the best of the author’s knowledge, this approach
has not been applied in the area of anonymization before.

For anonymizing the demographic data, a new method was developed,
which minimizes the information loss given by an information theoretic
measure, while still fulfilling the constraint of k-anonymization. To the
best of my knowledge, the approach of defining information loss as it is
done in this thesis, have not been done before. By taking advantage of
some of the properties of this definition, it is shown that the information
loss can be computed in a reasonable time, even for a high number of
dimensions (the computation mainly depends on the number of leaves,
see equation (29)). The new method creates, so called, strict multidi-
mensional partitionings and minimizes the informations loss by using a
genetic algorithm. It is also shown that this algorithm can find better so-
lutions, in a reasonable time, compared to a previously presented greedy
algorithm. Also, this algorithm is not strongly tied specifically to the full
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anonymization method. Hence, it can separately be used to anonymize
any kind of demographic data and does not depend on the other methods
described in this thesis.
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