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Abstract

Pipe systems in nuclear power plants must be able to withstand forces caused by changes
in the system conditions. To investigate how the pipe system reacts due to these changes
mechanics and structural mechanics calculations are performed . At Ringhals AB, a two
step simulation is performed where the output from the fluid mechanics calculations is
used as an input for the structural mechanics calculations. This one-way fluid-structure
interaction does not take into account that the structural movement can influence the
flow and pressure of the fluid, which may yield higher forces that the system has to
withstand.

This master thesis develops a method for modelling two-way fluid-structure interaction,
by using the method of characteristics to transform the partial differential equations of
mass and momentum into ordinary differential equations yielding the pressure and flow
of the fluid. Matlab is used for calculating these properties, and the toolbox CalFEM
is used when calculating the structural mechanics, the two solvers are coupled to obtain
the two-way interaction.

The developed Matlab program show satisfactory results both when comparing the two
solvers separately to software used at Ringhals AB, and when comparing with results
obtained from Adina, a software for calculating two-way fluid-structure interaction. The
Matlab program provides the user a familiar and easy way of building pipe systems and
evaluating how the fluid properties changes and how the pipe system reacts on these
changesss.
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Notations

Abbreviations

FSI Fluid-structure interaction

MOC Method of Characteristics

RAB Ringhals AB

RELAP Reactor Excursion and Leak Analysis Program

NPP Nuclear Power Plant

MWC Meter water column

Letters

Q Flow [m3/s]

H Piezometric head [m]

V Velocity [m/s]

A Area (cross sectional area) [m2]

f Darcy-Weisbach friction factor [−]

c Wave propagation speed [m/s]

ν Poisson ratio [−]

E Young’s modulus [Pa]

t Time [s]

D Diameter [m]

σz Axial stress [N/A]

B Characteristics impedance [s/m2]

g Gravitational acceleration [m/s2]

x Discretization length [m]

E Young’s modulus [Pa]

τ Valve opening degree [−]

Cv Flow coefficient [−]

R Resistance coefficient [s2/m3]
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1
Introduction

1.1 Background

In the nuclear power industry it is important to know how different transients influence
the pipe system in the plant. The system will be exposed to changes in flow conditions
due to pressure reduction, pipe ruptures, managing of valves and start and stop of
pumps, among other things. These changes in flow yield forces that the pipe system has
to withstand since the system cannot take too high stresses, which can arise due to the
forces.

At Ringhals AB, RAB the fluid mechanics and structural mechanics calculations
are made in two separate steps, using the software Relap for the fluid mechanics and
Pipestress for the structure mechanics. For the fluid part, the flow and pressure in the
pipe system is calculated, but also the forces acting on the system. In the structural
mechanics calculations the stresses, caused by the forces, are calculated and used to
predict how well the structure withstand the forces. This simplification, where only the
flow influences the structural movements in the system and not vice versa, could yield
computational errors due to the fact that structural movement can affect the behaviour
of the flow. Today there is no way to investigate the errors, and it is uncertain to which
extent it effects the results.

1.2 Purpose

The purpose of this master thesis is to develop a two-way fluid-structure interaction,
two-way FSI, method for analysis of pipe systems. The method should be able to use to
investigate the inaccuracies of the one-way interaction approach used at RAB today. It
will be investigated how this affect the result, i.e. if the pressure and the flow will differ
when using two-way FSI instead.

With software available at RAB, a program will be built to give an understanding
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1.3. LIMITATIONS CHAPTER 1. INTRODUCTION

of how different transients affects the flow and pressure in pipe systems and how the
systems response to these changes. The program will provide the user with an easy way
to know if the results using one-way FSI is a valid approximation or not, and how reliable
the results of the calculations are for different scenarios.

1.3 Limitations

Matlab will be used for coding purposes, and Excel for most of the input writing. The
focus will be on how the system reacts to pressure changes when using valves and re-
sevoirs; no start/stop of pumps or pipe rupture will be taken to account. Concerning
the dimension of the pipes, all pipes in the system are assumed to have the same di-
ameter and thickness. RELAP5 och Pipestress will be used in a small extent for fluid
and structural mechanics calculations, respectively, for comparing the present solution
method.

1.4 Research questions

Q1. Can a program be built to implement the feedback from structural movement?

Q2. Can the present method used at RAB be used, or should two-way FSI be used
instead?

Q3. To what extent does the structural movement of the pipe system affect the pressure
and the flow?
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2
Theory

In a nuclear power plant, NPP, fluids are transported through many different piping
systems. It can be circuits where drain from preheaters is transported to the condense
system and . These fluid transporting systems contain pipes, pumps, reservoirs and dif-
ferent types of valves controlling the flow. It is important that the system can withstand
different types of transients that can occur, both considering daily changes in the sys-
tem like opening/closing of valves and pressure gradients, but also transients occurring
more infrequently like earth quakes. Due to this, investigations are done to predict how
the system reacts while being exposed to this kind of transients. The fluid transported
through the system give rise to forces leading to physical effects like displacement of the
pipes, yielding stresses in the system. Different parts of the system can handle different
stresses; there is a maximum allowable stress ratio that must not be exceeded to ensure
that the construction will hold. This stress ratio is established for each segment, and is
a relation between the largest allowable stress and the actual stress.

2.1 The present method

At RAB a two step method is used for the analysis of the pipe system, where the FSI is
seen as a one-way interaction. In the first step RELAP5, is used for calculating the forces
acting on the piping system caused by the movement of the fluid. In the second step
these forces are used as an input in the structural analysis software Pipestress, which
verifies if the pipe system manages the requirements.

2.1.1 RELAP5

RELAP5 is used for the fluid mechanics calculation, this is an one-dimensional sim-
ulation software made for transients analysis in NPPs and for analysis of the reactor
design. RELAP5 is used in the first step in the present method at RAB, where different
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2.2. FLUID-STRUCTURE INTERACTION CHAPTER 2. THEORY

properties of the fluid are calculated [1]. After the simulation data such as the mass flow
through components, opening/closing of valves and the pressure throughout the system
can be obtained. By the use of existing variables, new once can be introduced: such as
forces acting on the pipe system. The software only provides raw data, but the result
can be plotted in the software AptPlot for analysis of the result.

2.1.2 Pipestress

In Pipestress, the system is analysed with respect to the structural quality in situations
where the system is exposed to forces. Evaluation of the stresses in the system yields
information of how well the piping system manages the different transients. The loads
are divided into categories, depeding on the magnitude of the allowable stress.

There are three different load categories: sustained loads, occasional loads and ex-
pansion loads. The first two load types are loads arising due to forces and the third
is loads caused by structural movement. Sustained loads occur on a regular basis, e.g.
loads due to the dead weight of the system. The occasional loads occur during shorter
periods like seismic loads, vibrations and pipe rupture. Expansion loads are loads due
to displacements of the piping system and can be an effect of thermal expansion of the
piping [2].

2.2 Fluid-structure interaction

When pressure waves propagate through the fluid, it also propagates through the pipe
wall due to different coupling mechanisms. The coupling mechanisms are divided into
Poisson coupling, friction coupling and junction coupling. When the pressure waves
transmits energy through the walls, the diameter of the pipe will increase which causes
strains. The high speed of the generated precursor waves lead to interaction between
the flow and structure, resulting in pressure changes in the fluid and movements of the
pipe system. The mentioned interaction is called Poisson coupling and is a distributed
force, since it interacts along the entire pipe. Another distributed coupling mechanism
is represented by the mutual interaction between fluid and pipe and referred to as the
friction coupling [3]. In most cases, the dominant coupling mechanism between fluid
and pipe is due to local forces, this is called junction coupling and refers to the axial
loads leading to an increase of the dynamic pressure due to structural movement. This
interaction often occurs at bends and cross-sections where the pipe area changes [4].

2.3 Finite Element Method

Many physical phenomena can be described by using differential equations, but most of
the equations are too complex to be solved in an analytical manner. To understand the
physical behaviour, a numerical approach can be applied giving approximative solutions
to general differential equations that are valid over a certain region of the area of interest.
[10]. Dividing the geometry into these small parts, called finite elements, simplifies the
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solution process since a generic solution for the entire geometry does not need to be
considered. The numerical approximation is done over each of the finite elements and
assembled to yield a solution valid for the whole geometry. The number of elements the
geometry is divided into depends on the complexity of the area and the level of accuracy
of the simulation; the more elements the better solution. However, more elements leads
to longer computational time.

2.4 Two-way FSI

There are some software solving two-way fluid-structure interaction problems. The solv-
ing process is an iterative procedure, with solvers for the fluid mechanics equations and
for the structural mechanics equations. The different solvers gather data from each other,
iterating until the transferred data have converged [6]. The system can e.g. involve an
iterative process where the mesh is updated with loads from the other solver taking
system deformation into account [7].

The main idea for the solution procedure, for this project, can be seen in the flowchart
in Figure 2.1.

Start

t = t + Δt

Fluid solver: 
pressure, flow 

Main program: 
loadvector 

Structure 
solver: 

displacements 
Section forces 

Stresses 

Figure 2.1: The solution procedure
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2.4. TWO-WAY FSI CHAPTER 2. THEORY

The program will contain several subprograms, solving different parts of the problem.
From the fluid solver the pressure and flow is computed, and used for generating a
load vector in the main program. The loads causing displacements in the structure are
computed using the load vector in the structure solver. The normal forces, caused by
the displacements, are used calculating the stresses. The stresses are then included as
an extra term in the modified fluid mechanics equation, to calculate the pressure and
the flow.
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3
Method

A Matlab program is developed for calculating the pressure head and the flow in the pipe
system. The main program contains several sub programs; specifying the pipe geometry,
calculating pressure and flow for the fluid, setting the different boundary conditions and
calculating the structural response. More about how to use the program in section 5
Users guide.

3.1 Methods of Characteristics

The pressure head and the flow in the pipe system are calculated using the conservation of
linear momentum, Equation 3.1, and conservation of mass (also known as the continuity
equation) Equation 3.2 [3].

∂Q

∂t
+ gA

∂H

∂z
+ SQ|Q| = 0 (3.1)

S = f/(2DA)

∂H

∂t
+

c2

gA

∂Q

∂z
− 2c2ν

gE

∂σz
∂t

= 0 (3.2)

The term 2ν
gE

∂σz
∂t , where σz represents the axial stress in the pipe, is neglected if not

taking axial stress or strain into account, an assumption that usually is made. The
following derivations are done under this assumption, but will later be modified [8].
To solve the system numerically, the partial differential equations above are converted
into the following ordinary differential equations:

8



3.1. METHODS OF CHARACTERISTICS CHAPTER 3. METHOD

C+ :


g

c

dH

dt
+

1

A

dQ

dt
+

1

A

fQ|Q|
2D

= 0

dx

dt
= +c

(3.3)

C− :


−g
c

dH

dt
+

1

A

dQ

dt
+

1

A

fQ|Q|
2D

= 0

dx

dt
= −c

(3.4)

C+ and C− are known as the two compatibility equations.
The system of equations can be solved using the finite difference method. A pipe

of length L is divided into N number of elements, giving N + 1 number of nodes. For
every time step ∆t, the pressure and flow is computed in each node. The time step is
determined by the pipe length and the wave speed according to: ∆t = ∆x/c. The C+

equation is valid upstream i.e. when using information from the previous node in the
previous time step, represented by the characteristic line with positive slope in Figure
3.1. The C− equation is valid downstream i.e. when using information from the next
node in the previous time step represented by the line with negative slope.

Figure 3.1: The x-t diagram for a pipe
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3.1. METHODS OF CHARACTERISTICS CHAPTER 3. METHOD

The solution to the system of equations, for some point i, will then be:

C+ : Hi = CP −BP ·Qi (3.5)

C− : Hi = CM +BM ·Qi (3.6)

CP = Hi−1 +BQi−1 (3.7) BP = B +R|Qi−1| (3.8)

CM = Hi+1 −BQi+1 (3.9) BM = B +R|Qi+1| (3.10)

Where:
B =

c

gA

R =
f∆x

2gDA2

The first compatibility equation is valid along the characteristic line ∆x = c · ∆t,
obtaining CP and BP at the distance i−1 from the point of interest, i.e. at the previous
time step t −∆t. The other one is valid along ∆x = −c ·∆t, with CM and BM at the
distance i+ 1. The mentioned quantities can be calculated through Equation 3.7-3.10.

Using the expressions above in combination with Equation 3.5 and 3.6, the pressure
head and flow can be calculated for each internal node according to Equation 3.11 and
Equation 3.12, respectively [3].

Hi =
CPBM + CMBP

BP +BM
(3.11)

Qi =
CP − CM
BP +BM

(3.12)

3.1.1 Boundary conditions

To obtain the pressure head and flow at the boundary nodes, there are different boundary
condition that can be applied depending on which element the pipe is attached to. Which
equation to use depends on how the pipe is connected to the element i.e. if the boundary
condition is upstream or downstream end of the pipe. Having a downstream boundary
condition the C+ equation is used, and for upstream boundary condition the C− equation
is used [5].
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3.1. METHODS OF CHARACTERISTICS CHAPTER 3. METHOD

t   

C+ C-

i-1         i+1

x   

dx dx

  dt

i

Figure 3.2: x-t diagram

Two pipes connected in a series

If two pipes are connected in a series as illustrated in Figure 3.3, the conservation of
mass gives that the flow in the end of the first pipe, i.e. in the last node, and the flow
in the beginning of the second pipe, i.e. the first node, will be the same.

Qpipe1,N+1 = Qpipe2,1

Figure 3.3: Pipes connected in a series

Similar, the conservation of energy gives

Hpipe1,N+1 = Hpipe2,1

The unknown pressure head is given by Equation 3.13

Hpipe1,N+1 =
CP /Bpipe1 + CM/Bpipe2

1/Bpipe1 + 1/Bpipe2
(3.13)

and the flow is calculated by using Equation 3.5.
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Reservoir

A reservoir can be modelled in two ways, either the reservoir is placed in the beginning
of the system, Figure 3.4(a), or at the end of the system, Figure 3.4(b).

(a) Reservoir at the start of the system (b) Reservoir at the end of the system

Figure 3.4: Boundary condition: reservoir

The pressure head in the node in contact with the reservoir is assumed to be equal
to the pressure head of the reservoir. Having a reservoir at the upstream end of the pipe
this yields:

Hpipe,1 = Hres,up (3.14)

and with a reservoir at the downstream end, the pressure at the last node in the adjacent
pipe is set to

Hpipe,N+1 = Hres,dwn (3.15)

The flow can then be calculated by using Equation 3.6 for the first case, and Equation
3.5 for the latter. This yields the following equations:

Q1 =
H1 − CM
BM

(3.16)

QN+1 =
CP −HN+1

BP
(3.17)

Valve

Depending on which component the valve is attached to, different equations are used for
computing the flow and the pressure head. In this case the valve is attached either to a
reservoir, as illustrated in Figure 3.5(a), or as a coupling between two pipes as in Figure
3.5(b).
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(a) Valve attached to a reservoir (b) Valve as a coupling between two pipes

Figure 3.5: Boundary condition: valve

Valve with resevoir at the downstream end

A pressure drop will occur over the valve, denoted as ∆H, which can be calculated by
using information from the last node of the previous pipe Hpipe,N+1.

∆H = Hpipe,N+1 −Hreservoir =
KQ2

pipe,N+1

A22g
(3.18)

where K is the loss coefficient of the valve. The flow at the end of the previous pipe can
be calculated using the degree of opening of the valve τ , and the steady state condition
(subscripted with 0). The opening of the valve is adjusted depending on the required
levels in the reservoirs.

Qpipe,N+1 =
Q0√
H0

τ
√
Hpipe,N+1 (3.19)

This can be used in combination with the C+ compatibility equation, for computing the
flow at the downstream pipe end

Qpipe,N+1 = −BPCv +
√

(BPCv)2 + 2CvCP (3.20)

Cv is the flow coefficient for the valve and is a function of the valve opening grade

Cv =
(Q0τ)2

2H0

The pressure head in Hpipe,N+1 can then be determined with the C+ equation.

Two pipes connected by a valve

The modelling of two pipes connected through a valve can be simplified as an abrupt
change of area of the pipe. The pressure drop over the valve is calculated through the
following expression:

13



3.2. MODIFIED MOC CHAPTER 3. METHOD

∆H = Hup −Hdown =
1

2gAvalve(t)
·Qi|Qi| (3.21)

Replacing Hup with Equation 3.5, and Hdown with Equation 3.6, Qi for the point of
interest can be solved

(CM +BM ·Qi)− (CP −BP ·Qi) =
1

2gAvalve(t)
Qi|Qi|

⇔

Qi = −(BM +BP )(2gAvalve(t))

2
±

√(
(BM +BP )(2gAvalve(t)

2

)2

− (CP − CM ) (3.22)

The flow will be equal in and out through valve, giving

Qi = Qup = Qdown

The pressure head can then be calculated with Equation 3.5 and 3.6 for the previous
pipe respective the next pipe.

Dead end

A dead end, illustrated in Figure 3.6 at the downstream end of the pipe gives no flow at
the last node, i.e.

QN+1 = 0

.

Figure 3.6: Boundary condition: dead end

The pressure head is calculated using Equation 3.5, or Equation 3.6 if the dead end
is on the upstream side [5].

3.2 Modified MOC

By introducing an additional term in the compatibility equations, the influence of struc-
tural movement can be taken into account. Using Equation 3.2, having axial stress, the
compatibility equations can be rewritten according to Equation 3.23 and 3.24.

C+ :
1

A

dQ

dt
+
g

c

dH

dt
+ f

1

A2

Q|Q|
2D

− gc 2ν

gE

∂σz
∂t

= 0 (3.23)
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C− :
1

A

dQ

dt
− g

c

dH

dt
+ f

1

A2

Q|Q|
2D

− gc 2ν

gE

∂σz
∂t

= 0 (3.24)

The derivative of the stress can be approximated as shown below, for the C+ equation
[4].

∂σz
∂t

= σi− 1
2
(t+ ∆t)− σi− 1

2
(t)

Using the approximation together with the finite difference method the compatibility
equations above are rewritten as:

Hi = Hi−1 −B(Qi −Qi−1)−RQi|Qi−1|+ c∆x
2ν

gE
(σi− 1

2
(t)− σi− 1

2
(t−∆t)) (3.25)

Hi = Hi+1 −B(Qi −Qi+1) +RQi|Qi+1|+ c∆x
2ν

gE
(σi+ 1

2
(t)− σi+ 1

2
(t−∆t)) (3.26)

Instead of interpolating between the current step and the previous one when using
σi− 1

2
(t), further simplifications are done for the Matlab program, using only the previous

node σi−1(t). This approximation is also used in the C− equation, but using the next
node.

3.3 Structural modelling

For the structural modelling of the pipes, the finite element toolbox CalFEM in Matlab is
used. The pipes are modelled as three-dimensional beams and the dynamic behaviour is
computed using predefined functions. The CalFEM functions used are: beam3d, beam3s
and step2.

3.3.1 Beam3d

To generate the mass and stiffness matrices, Ke and Me, of the pipe geometry the
function beam3d is used. The function returns the element matrices for a dynamic
analysis of three-dimensional beam elements according to the expression below.

[K,M ] = beam3d(ex,ey,ez,ec,ep,eq)

where ex, ey and ez are element coordinate matrices in x, y and z direction. The
variable ec is a vector giving the direction of the local z axis. The data vector ep contains
the modulus of elasticity, the shear modulus, cross sectional area, moment of inertia with
respect to y and z axes, and the St Venant torsional stiffness factor [11].

From the stiffness and mass matrix, the damping matrix can be computed according
to C = µM + λK where µ is the mass proportional Rayleigh damping coefficient and λ
is the stiffness proportional Rayleigh damping coefficient.
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3.3. STRUCTURAL MODELLING CHAPTER 3. METHOD

3.3.2 Beam3s

The beam3s function shown below is used to compute the section forces, es, and the
element displacement, edi, at the evaluation points. The x-coordinates for these points
are specified in eci. The input variables ex, ey, ez, ec, ep, and eq are described under
the beam3d section.

[es,edi,eci] = beam3s(ex,ey,ez,ec,ep,ed,eq,n)

The variable ed contains the element displacement vector, and n specifies the number
of evaluation points in which the section forces and displacements are computed [11].

3.3.3 Step2

To compute the dynamic solutions to a set of second order differential equations, the
CalFEM function step2 is used. The function computes the solution to a second order
differential equation of the form:

Md̈+ Cḋ+Kd = f(x,y)

The function returns new displacements, velocities and acceleration according to
the expression below. In Dsnap snapshots of the displacements are stored for certain
timesteps, that can be plotted to see how the structure move due to the forces.

[Dsnap,D,V,A] = step2(K,C,M,d0,v0,ip,f,bc)

The input arguments for the function are, besides the stiffness, damping and mass
matrix, the initial conditions for the displacement and velocity, d0 and v0. The parame-
ters governing the time integration are given in the variable ip, the matrix f containing
the time dependent load vector and bc containing the boundary conditions [11].
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4
Users guide

The input is divided into two sections; one for the fluid mechanics and one for the
structural mechanics. In the fluid input sheet, boundary conditions for the system as
well as fluid properties and pipe lengths are entered. In the structure input sheet,
structure properties, lengths and angles are entered. To provide the user with a familiar
and simple input module, the sheets are built in the same was as the existing Excel
script used at RAB for the present RELAP5 calculations.

4.1 Building the system

4.1.1 Fluid input sheet

The fluid input sheet, Figure 4.1, recognizes a number of boundary conditions: Pipe,
Tank, Valve and Deadend.

Figure 4.1: Fluid input sheet
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Pipe properties

To add a pipe to the system, the word Pipe is entered on the first column in the Excel
sheet, see Figure 4.2. Note that pipes that are linked to each other has to be entered
in the right order, without inserting any space between the rows (compare with when
adding a valve after a pipe in Figure 4.1).

Figure 4.2: Fluid input: pipe

Each pipe must have a unique pipe-ID, specified in column B. The ID is used for
specifying to which pipe a specific boundary condition is connected to. A pipe name can
be entered in column C for simplification purposes; for the user to keep track of where
in the system the pipe is connected, but this is optional. The list below explains the rest
of the properties that has to be set, where some of them are presented in Figure 4.3.

t

OD      

(a) Pipe: crossection

L

(b) Pipe

Figure 4.3: Pipe: the geometry

• Column D: Length [m] – Pipe length

• Column E: dx [m] – Length of each pipe element that the pipe is divided into for
the calculations

• Column F: Di [m] – Inner diameter of the pipe

• Column G: t [m] – Pipe thickness

• Column H: Vert. ang. [◦] – Vertical angle

18
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• Column I: Azi. ang. [◦] – Azimuthal angle

• Column J: e [mm] – Surface roughness

• Column K: K [Pa] – Bulk modulus

• Column L: ForceID – To facilitate the identification of a force acting on a specific
pipe segment

• Column M: E [Pa] – Young’s modulus

• Column N: v [-] – Poisson ratio

• Column O: f [-] – Friction factor

Boundary conditions

The boundary conditions are entered in a similar manner to the pipes; specifying which
boundary condition that is being used in the first column, see Figure 4.4.

Figure 4.4: Fluid input: boundary conditions

The boundary conditions do not necessarily need to be modelled in a specific order,
but the connection between the boundary conditions and the pipes has to be specified.
This is done by writing the ID of the connecting pipes in the fromID column (if the
pipe is connecting from the boundary condition) and in the toID column (if the pipe is
connecting to the boundary condition).

Tank
If there is a reservoir in the beginning of the system, the word Tank has to be entered in
the first column and the toID in column D to specify the position of the reservoir. If the
reservoir is placed at the end of the system the fromID in column C is entered instead.
There are two options for entering the pressure: in column B a file name of a dat-file
can be entered if the pressure change is given over a certain time period, or a constant
pressure can be entered in column E. If e.g. having a pulse where the pressure alternates
from 0 Meter Water Column (MWC) to 600 MWC and back to 0 MWC again, in a
time range of 10 milliseconds this is written as follows in the dat-file:

0 0

0.005 600

0.010 0
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The first column represents at which time the different pressures occurs, and the other
column represents the pressure head. These values are then interpolated in the program
to get the distribution of the pressure head over the time interval.

Valve
The degree of valve opening can be entered in the same way as the pressure in the
boundary condition Tank : either specified in a dat-file or as a constant degree of open-
ing. For the first case the file name is entered in column B, and for the constant degree
of opening, the value is entered in column E.

Dead end
To add a dead end, the word Deadend is entered in the first column, and the fromID in
column C are entered.

4.1.2 Structure input sheet

The structure input sheet, Figure 4.5, is very similar to the fluid input sheet. The module
consists of three input sections: one defining general material properties, one specifying
the cross sections and one defining the geometry.

Figure 4.5: Structure input sheet

Material

In the material section, Figure 4.6, an ID is given to each of the materials in column
B. The ID is used when referring to the material utilized in the geometry section. In
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column C and D respectively, the Young’s module and the shear module are given.

Figure 4.6: Structure input: material

Cross section

In the same manner to the material input, each cross section for the pipes has to be
given an ID name in column B that is unique for the specific cross section, see Figure
4.7.

Figure 4.7: Structure input: cross section

In addition to this there are some other information that has to be set in the input sheet,
but the user only has to enter the first two parameters, and the last one:

• Column C: OD [mm] – Outer diameter

• Column D: t [mm] – Pipe wall thickness

• Column E: A [m2] – Inner pipe area

• Column F: Iy [kgm2] – Moment of inertia, y direction

• Column G: Iz [kgm2] – Moment of inertia, z direction

• Column H: Kv [m4] – Section factor of torsional stiffness

• Column I: mass/length [kg/m] – Mass per unit length

• Column J: j [m3] – Polar moment of inertia per unit length

• Column K: Name – Name of the cross section

The information i column E-J is calculated automatically in excel by the following
equations:

A =
π(OD2 − (OD − 2t)2)

4
(4.1)
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Iy = π · OD
4 − (OD − 2t)4

64
(4.2)

Iz = π · OD
4 − (OD − 2t)4

64
(4.3)

Kv = π · OD
4 − (OD − 2t)4

32
(4.4)

mass/length = A · ρpipe +
ρwaterπ(OD − 2t)2

22
(4.5)

j = 2πt

(
OD − t

2

)2

(4.6)

Geometry

The geometry input, Figure 4.8, is similar to the pipe input in the fluid sheet. Concerning
the pipes, the following information must be given:

• Column B: Unique ID – A unique pipe ID used when referring to the pipe

• Column C: Material – Specify which pre-defined material that is used

• Column D: Cross section – Specify which pre-defined cross section that is used

• Column E: Length [m] – Pipe length

• Column F: Vert. ang. [◦] – Vertical angle

• Column G: Azi. ang. [◦] – Azimuthal angle

Figure 4.8: Structure input: geometry

When coupling pipes with each other no junction has to be added in the sheet, but
to set junctions for other purposes, add the word junction in the first column and then
set the following information:

22



4.2. SAVING THE RESULT CHAPTER 4. USERS GUIDE

• Column B: fromID – Unique ID of the element that is located before the junction

• Column C: toID – Unique ID of the element that is located after the junction

• Column D: fromNode – Is set to 1 if the coupling is set at the beginning of the
coupled element, or 2 if the coupling is set at the end of the coupled element

• Column E: toNode – Same as described above

4.1.3 Anchor points

To introduce anchor points, enter the unique ID of the pipe connected to the anchor
point and specify how it is connected to it: 1 for the beginning of the pipe and 2 for the
end of the pipe.

4.1.4 Load case input

The load case specifies where the load is applied, at which pipe and in which nodes.
The input is written as a matrix in Matlab and saved as a mat-file. The matrix defines
where a pipe starts and where it ends, which is important since a pipe can be divided
into several sections in the input sheet. The node column can be assigned the values 1
or 2, where 1 is the first node of the pipe and 2 is the last node of the pipe. This data
is written as an matrix in the following format:

[
Fluid pipe Fluid node Structure pipe Structure node

Fluid pipe Fluid node Structure pipe Structure node

]

The first row represents the beginning of the pipe, and the second row the end of the
pipe.
For example, if having two pipes that is connected, where the first pipe has been divided
into three pipes (in both the fluid sheet and the structure sheet) the following matrix is
entered in the mat-file: 

1 1 1 1

3 2 3 2

4 1 4 1

4 2 4 2


4.2 Saving the result

In Matlab a result matrix is generated where information can be stored for each time
step, giving how properties like flow, pressure and displacements alternates over time.
The information can then be plotted to illustrate how the properties varies. The pipe
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geometry is visualized through a plot, where the pipes are numbered and the degrees of
freedom are shown. The content of the result matrix can be changed to get the time
dependence of the wanted variable. This must be done in the Matlab code under section
”Plot of the result”, that can be seen in appendix B.1 Main program.

4.3 Running the program

To run the two-way FSI solver, the main program Master is used. Master will ask for
the fluid input sheet and for the structure input sheet to get the required information to
run the program. The computational process is an iterative process, as the one described
in Figure 2.1.
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5
Results and discussion

5.1 Model accuracy

To determine the validity of the Matlab program, comparisons were made with exist-
ing software: the fluid mechanics solver was compared to RELAP5, and the structure
mechanics solver was compared to Pipestress. The simulation made using the two-way
FSI model was compared to a simulation made by Onsala Ingenjörsbyr̊a, in the software
Adina.

5.1.1 Validation of the fluid solver

To validate the fluid solver, a system was simulated in both the Matlab program, modified
to only use the fluid mechanics solver, and in RELAP5. The system, represented in
Figure 5.1, consists of two reservoirs connected by 15 mm thick steel pipes of 255 mm
inner diameter, and a valve placed in the middle. The ends of the pipes, that are
connected to each reservoir, are set as anchor points and are completely fixed.

Figure 5.1: RELAP simulation: the system

In the simulation, the pressure in the reservoir to the left is 70 bar and the pressure
in the right one is 65.5 bar. The valve closes during 33 millisecond after one second of
simulation, yielding pressure changes along the pipes.
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A pressure wave develops, traveling back and forth through the system between the
reservoirs. How the pressure alternates in the node right before the valve can be seen in
Figure 5.2 for the RELAP5 simulation, and in Figure 5.3 for the Matlab simulation.

Figure 5.2: RELAP simulation: Pressure as a function of time in the first pipe

Figure 5.3: Matlab simulation: Pressure as a function of time in the first pipe

Comparing the two graphs it shows that the two simulations gives similar result.
The maximum pressure is a bit higher in the first graph, and do not alter as fast as the
other one, rather stay quite constant for a short period of time at the highest and lowest
points in the graph. The slightly different shape and the difference in maximum and
minimum values is is probably a consequence of the approximations made when deriving
the equations that are used.
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Conclusions

Due to the similar behaviour and magnitude of the pressure in the two simulations, the
conclusion is made that the fluid solver is accurate enough to be used in the two-way
FSI model.

5.1.2 Validation of the structural solver

The validity of the structural mechanics calculations in the Matlab solver was evaluated
by comparing the results from the structure mechanics solver, i.e. when using CalFEM,
with the results from Pipestress. The geometry of the case studied can be seen in Figure
5.4 below. The nodes where the pipes are connected to the wall were set as anchor
points.

  P   

F2      

F3

    F1

20.5 m F4  

20.5 m

 6 m

21 m

Figure 5.4: Geometry for validating the structure solver

In the end of each pipe segment forces, were applied, marked with F1 -F4 in the figure
above. The forces, that varies over time, had the same magnitude in both simulations
and were applied at the same locations. The displacements as a function of time at
point P in the figure above are visualized in Figure 5.5 for the Matlab and Pipestress
simulations.

(a) Displacements when using Matlab (b) Displacements when using Pipestress

Figure 5.5: Displacements as a function of time, using only the structural mechanics solvers
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The displacements varies in a very similar manner in the two cases, in general the
look of the two graphs are almost the same where the fluctuations only differs a bit in
some places.

Conclusions

The previous figures shows that the behaviour of the displacements are quite much the
same for the two simulations, which are verified in the combined plot in Figure 5.6. It
is hard to distinguish the two results from each other, indicating that the structural
mechanics solver in the Matlab program yields satisfactory results.

Figure 5.6: Comparison between the displacement obtained from Matlab and Pipestress
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5.1.3 Validation of the two-way FSI model

To validate the accuracy of the two-way FSI model, combining the fluid and the struc-
tural mechanics solvers, a simulation done by Onsala Ingenjörsbyr̊a was studied. In the
simulation two-way FSI has been used to analyse the flow and pressure in the pipe sys-
tem shown in Figure 5.7, by using the software Adina. The construction is a simple pipe
system without any reservoirs or valves, that are divided into four sections with lengths
according to the figure below. The beginning of the first vertical pipe and the end of the
last pipe are anchor points. The end of last pipe is modelled as a dead end, i.e. the flow
is zero.

  P   
20 m        

 5 m

20 m

20 m

Figure 5.7: Onsala simulation: the system

A triangular pressure pulse, starting in the pipe where the vertical arrow points,
propagates through the system exposing it to 60 bar over a time of 10 milliseconds.
Figure 5.8 shows how the pressure alternates during a time period of 0.12 seconds at
point P, in the middle of the first pipe section.
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Figure 5.8: Pressure in the first pipe: comparison between Adina and Matlab

The continuous line shows how the pressure in the Matlab simulation alternates, and
the other one how it alternates in the Adina simulation.

The pressure between the two big peaks varies in a similare manner, but concerning
the magnitude of the second peak the pressure differs very much. The Matlab simulations
shows a reduction of about 2 bar after one millisecond, while the other shows a reduction
of more than 20 bar.

Figure 5.9 shows the displacements in millimetres over a time period of 0.12 seconds
in the first pipe obtained through the Matlab program in Figure 5.9(a), and for the
Adina simulation in Figure 5.9(b).

(a) Displacements when using Matlab (b) Displacements when using Adina

Figure 5.9: Displacements as a function of time: comparison between Matlab and Adina

There are some variations in the displacement, having almost the same magnitude
for the maximum value and behaves quite much in the same way, but the amplitude
varies more over time using Adina.
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Conclusion

The Matlab program gives decent result when comparing to the Adina simulation, where
the pressure follows the same pattern and the displacements alters in a similar way but
with different amplitudes. The difference in displacements may depend on the difference
in pressure, which yields different loads and thereby the displacements will vary.

5.2 One-way versus two-way FSI

In this section, the pressure exerted on the pipe walls when excluding the influence of
structural movement are referred to as one-way FSI. The forces generated when including
the influence of structural movement are referred to as two-way FSI.

This system, represented in Figure 5.10, has a reservoir in one end and a dead end in
the other. The system is coupled using five pipes of 240 mm inner diameter, where the
beginning of the first pipe and the end of the last pipe are anchor points. The transient
is initiated by altering the pressure in the tank, creating a pressure pulse of 800 MWC
over 20 milliseconds, that propagates through the system.

   5 m5 m

         10 m

  P

   10 m      10 m

Figure 5.10: Two tank system

Figure 5.11 shows the pressure variation as a function of time at point P, both for
the one-way FSI in and for the two-way FSI.

31



5.2. ONE-WAY VERSUS TWO-WAY FSICHAPTER 5. RESULTS AND DISCUSSION

Figure 5.11: Two tank system

In Figure 5.11 the pressure is plotted for both the one-way FSI simulation and the
two-way FSI simulation. The difference between the results are very hard to see, but
with a closer look at the peaks and inbetween the peaks some difference can be seen,
shown in Figure 5.12.

(a) Pressure at P, zoom between the peaks (b) Pressure at P, zoom at the first peak

Figure 5.12: Pressure: comparing one-way and two-way FSI

The pressure variation is similar in both cases, where almost no difference in magni-
tude is seen when comparing the peaks in Figure 5.12(b). Though, in between the peaks
there are some variation in the behaviour where fluctuations can be seen while using
two-way FSI, see Figure 5.12(a). When using one-way FSI, the pressure immediately
after the pressure wave has passed returns to the initial value.
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Conclusion

The pressure, and thus the time-resolved forces acting on the structure, is overall very
similar in both one-way and two-way FSI. Since the only noticeable difference is when
evaluating the behaviour in between the pressure peaks, and due to the fact that the
maximum pressure is almost the same for the two methods, the conclusion is drawn that
two-way interaction does not need to be considered for this case.
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6
Conclusion

The main focus during the master thesis were the following research questions:

Q1. Can a program be built to implement the feedback from structural movement?

Q2. Can the present method used at RAB be used, or should two-way FSI be used
instead?

Q3. To what extent does the structural movement of the pipe system affect the pressure
and the flow?

An overall conclusion is made from this, concerning the accuracy of the developed
program, the accuracy of the mathematical model and how the results differs then using
two-way FSI instead of one-way FSI.

6.1 The developed program

From the three validation cases, when the developed Matlab program is compared with
other software, the conclusion is made that the program predicts the fluid behaviour and
the structural response in a decent manner.

The pressure and displacement comparisons made with the Adina simulation shows
satisfactory results. The higher pressure obtained with the developed program can be
seen as conservative since it would generate higher forces acting on the structure. Con-
cerning the displacements, the order of magnitude is correct compared to the Adina
result, which is of high importance when determine the structural response to the load.

The results from the comparison case in chapter 5.2 indicates that there is a minor
difference using one-way FSI instead of two-way FSI. However, using two-way FSI did
not give a higher maximum pressure, and the forces acting on the pipe system remained
almost the same. Due to this, the conclusion is drawn that the present method used at
RAB gives satisfying results and a two-way interaction does not need to be considered.
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Though, it should be noted that more complex systems have not been tested in the
developed program, where two-way FSI might be of more importance e.g. when involving
valves in the system.

6.2 Approximations

Some approximations are done when deriving the compatibility equations when using
the method of characteristics, escpecially concerning the modified version. How large
errors that occur when using the first order approximation, for deriving the stress term,
is unknown and should be investigated further. For simplifying the programming, the
stress term was further simplified using the stress from the previous (or the next) node
instead of using half-steps as in Equation 3.25-3.26. An interpolation between the time
steps and nodes, to yield the stresses at half time step and and half distance, should be
done to ensure better results.

6.3 Further development

The program should be further developed, to be able to properly implement the valve
function in the two-way FSI simulations, enabling the possibility of building more com-
plex systems. In order to make this possible, the load vector that specifies where the
loads are applied, should take boundary conditions like valves into account. In addition,
the applied load should be based on the valve degree of opening. Also the approxima-
tions, mentioned in section 6.2, should be further developed providing a better coupling
between the structural mechanics solver and the fluid mechanics solver.
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A
Derving the compability

equations

Momentum equation
1

A

∂Q

∂t
+ g

∂H

∂x
+

f

2D
Q|Q| = 0 (A.1)

Continuity equation
∂H

∂t
+

c2

gA

∂Q

∂x
− 2c2ν

gE

∂σx
∂t

= 0 (A.2)

Combining the equations, using Lagrange multiplier λ at Equation A.3, and gathering
related terms with each other:

λ

(
1

A

∂Q

∂t
+ gA

∂H

∂x
+

f

2DA2
Q|Q|

)
+

(
1

c2

∂H

∂t
+

1

gA

∂Q

∂x
− 2c2ν

gE

∂σx
∂t

)
= 0

(
λ
∂Q

∂t
+
c2

g

∂Q

∂x

)
+

(
λg
∂H

∂x
+
∂H

∂t

)
+

f

2D
Q|Q| − 2c2ν

gE

∂σx
∂t

= 0 (A.3)

Identification of λ using derivative rules:

λ
dV (x,t)

dt
= λ

∂V

∂t
+ λ

∂V

∂x

dx

dt
(A.4)

λ
dx

dt
=
c2

g
⇔ dx

dt
=

1

λ

c2

g
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dp(x,t)

dt
=
∂V

∂t
+
∂V

∂x

dx

dt
(A.5)

dx

dt
= λg

⇒ λg =
1

λ

c2

g
⇒ λ = ± c

g
(A.6)

The stress term kan be integrated over respective characteristic line, and approximated
as follows:

∫ i

i−1

∂σx
∂t

dt ≈
〈
∂σx
∂t

〉n+ 1
2

i− 1
2

∆t ≈ σi−1(t)− σi−1(t−∆t)

∆t
∆t = σi− 1

2
(t)− σi− 1

2
(t−∆t)

(A.7)

Combining Equation A.4 and A.5 with Equation A.3 gives

λ
1

A

dQ
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+
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dt
+ λf

1
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λ
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1
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Q|Q|
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λ

2ν

gE

∂σx
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c2 = 0

The two values of λ, computed in Equation A.6, gives two different values to the ex-

pression above. The positive root, λ =
c

g
, gives the expression for the C+ compability

equation.

C+ :
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g
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Rewriting Equation A.8 using finite difference method and Equation A.7:
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The negative root, λ = − c
g

, gives the C− compability equation.
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1
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gE
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x
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= 0 (A.10)

Using the same method, rewriting Equation A.10 using Equation A.7:
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1
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2D
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2
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2
(t−∆t)) = 0

1

A
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c
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1

A2

f∆t

2D
Q|Q|+ gc∆t

2ν

gE
(σi+ 1

2
(t)− σi+ 1

2
(t−∆t)) = 0

Hi = Hi+1 +
c

gA
(Qi −Qi+1) +

c

g

f∆t

2DA2
Q|Q|+ c2∆t

2ν

E
(σi+ 1

2
(t)− σi+ 1

2
(t−∆t)) = 0

Hi = Hi+1 +
c

gA
(Qi−Qi+1)+

f∆x

2gDA2
Q|Q|+c∆x2ν

E
(σi+ 1

2
(t)−σi+ 1

2
(t−∆t)) = 0 (A.11)

The term c
gA is the characteristic impedance of the pipe, denoted as B, and the term

f∆x
2gDA2 is the resistance coefficient of the pipe, denoted as R. These denotations are used
in Equation A.9 and A.11, yielding the final expressions:

Hi = Hi+1 −B(Qi −Qi+1)−RQ|Q|+ c∆x
2ν

E
(σi+ 1

2
(t)− σi+ 1

2
(t−∆t)) = 0 (A.12)

Hi = Hi+1 +B(Qi −Qi+1) +RQ|Q|+ c∆x
2ν

E
(σi+ 1

2
(t)− σi+ 1

2
(t−∆t)) = 0 (A.13)
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Matlab code

B.1 Main program

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%MASTER

% Authors: Daniel Edebro, Oskar Lindgren, Janna Hempel

%

% Main program that runs an iterative process for a specified time, calling

% the fluid mechanics solver, moc.m, and the structure mechanics solver,

% getBeamForces.m. The program calls the sub programs; initilizing the

% pressure and the flow, and defining the loads.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear all

clc

close all

global pipes BC %Global matrices for pipe propterties and boundary conditions

t = 0; %Initilize time t

t_break = 0.3; %When to stop the iteration

dt = 0.1e-3; %Timestep

%%%%%%%%%%%%%%%%%%%%%% Generates matrices %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

[pipes, BC] = readInputFluid(); %Pipes and boundary conditions

[pipeGeo, supportGeo,anchorList,loadList,DOFcnt,inputpathname] = ...

readInputStructure(); %Structure input

[K,M,bc] = writeMatrixAndBC(pipeGeo,supportGeo,anchorList,DOFcnt);

%Stiffness, mass, boundary
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[loadDefFile, loadDefPath] = uigetfile({’*.mat’,’mat-files (*.mat)’;’*.txt’,

’Text files (*.txt)’;’*.*’,’All files (*.*)’}

,’Read load definition...’);

if loadDefFile == 0, return; end

if ~strcmp(loadDefPath(length(loadDefPath):length(loadDefPath)),’\’),

loadDefPath = [loadDefPath,’\’]; end

d0_old = zeros(DOFcnt,1); %Old displacement, from last timestep

v0_old = zeros(DOFcnt,1); %Old velocity, from last timestep

N_old = cell(size(pipes,1),1); %Old forces, from last timestep

for i = 1:size(pipes,1);

for j = 1:size(pipes{i,1},2)

N_old{i} = zeros(j,1);

end

end

moc(5000,0); %Fluid solver: initialzing the matrices

%steady state

loadDefinition = load([loadDefPath,loadDefFile],’-ascii’);

%Defining where the load is applied

C = 0.000*M+0.003*K; %Damping matrix

%%%%%%%%%%%%%%%%%%%%%% Time iteratation parameters %%%%%%%%%%%%%%%%%%%%%%%%

result = zeros(t_break/dt,7); %Time history for each time step

cnt = 0; %Counting the time steps

%%%%%%%%%%%%%%%%%%%%%% Iteration of the solution %%%%%%%%%%%%%%%%%%%%%%%%%%

while 1

cnt = cnt + 1; %Time step

t = t + dt; %Time

%%%%%%%%%%%%%%%%%%%%%% Starting the fluid solver %%%%%%%%%%%%%%%%%%%%%%%%%%

%Iterating one timestep at the time

moc(1,t);

%%%%%%%%%%%%%%%%%%%%%% Time integration parameters %%%%%%%%%%%%%%%%%%%%%%%%

%Generating load vector

ntimes = 0;
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nhist = 1:DOFcnt;

ip = [dt dt 0.25 0.5 size(ntimes,2) size(nhist,2) ntimes nhist];

f = loadvector(loadDefinition,pipes,pipeGeo,DOFcnt);

%%%%%%%%%%%%%%%%%%%%%% Time integration %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Integration in second-order systems

[Dsnap,D,V,A] = step2(K,C,M,d0_old,v0_old,ip,f,bc);

d0_old = D(:,2); %Updating old displacements

v0_old = V(:,2); %Updating old velocities

%%%%%%%%%%%%%%%%%%%%%% Calculating the stresses %%%%%%%%%%%%%%%%%%%%%%%%%%%

for k = 1:size(pipes,1)

%Extracting forces, shear stresses and momentum

[es,edi,eci] = getBeamForces(pipeGeo,k,D,size(pipes{k,1},2));

N = es{1,2}(:,1); %Force from a pipe element

A = pipeGeo{k,3}(1,3); %Pipe cross-sectional area

deltaSigma = (N - N_old{k})/(A); %Change in stress

N_old{k} = N; %Updating old foces

pipes{k,4} = deltaSigma; %Saving stress in pipe-cell

end

%%%%%%%%%%%%%%%%%%%%%% Updating result matrix %%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Saving results from each time step

result(cnt,1) = t; %Time vector

%Pressure head

result(cnt,2) = pipes{1,1}(1,size(pipes{1,1},2)); %First pipe last node

result(cnt,3) = pipes{2,1}(1,1); %Second pipe first

%Flow

result(cnt,4) = pipes{1,2}(1,size(pipes{1,1},2)); %First pipe last node

result(cnt,4) = pipes{2,2}(1,1); %Second pipe first node

%Displacement

result(cnt,6) = D(size(pipes{1,1},2)/2,2);

%Force

result(cnt,7) = f(size(pipes{1,1},2)/2,2);

%%%%%%%%%%%%%%%%%%%%%% Stop the iteration %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if t > t_break

break;

end

end
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%%%%%%%%%%%%%%%%%%%%%% Plot of the result %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

figure(1) %Pressure head, first pipe last node

plot(result(:,1),result(:,2));

figure(2)

plot(result(:,1),result(:,4)); %Flow, first pipe last node

figure(3) %Pipe struture

plotPipeSystem(pipeGeo,supportGeo)
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B.2 MOC

%moc(nr_of_tsteps,time) - calculates the pressure head and the flow at

% the inner nodes of the pipes

% Authors: Janna Hempel, Oskar Lindgren

%

% Input arguments

% nr_of_tsteps - the number of time steps the iteration will run

% time - used as input parameter in the boundary conditions tank and

% valve

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

global pipes BC

for i = 1:nr_of_tsteps

%%Calculation of flow and pressure head in internal nodes

for j=1:size(pipes,1)

nr_of_nodes = size(pipes{j,1},2); %Number of nodes in

%respective pipe

for k = 2:nr_of_nodes-1 %Iteration for each inner

%node

Ha = pipes{j,1}(2,k-1);

Hb = pipes{j,1}(2,k+1);

Qa = pipes{j,2}(2,k-1);

Qb = pipes{j,2}(2,k+1);

sigmaconst = pipes{j,3}(1,7);

dsigma = pipes{j,4}(k);

B = pipes{j,3}(1,6);

R = pipes{j,3}(1,5);

Cm = Hb-B*Qb;

Bm = B+R*abs(Qb);

Cp = Ha+B*Qa;

Bp = B+R*abs(Qa);

Hp = (Cp*Bm+Cm*Bp)/(Bp+Bm)+(sigmaconst*dsigma);

Qp = (Cp-Cm)/(Bp+Bm);
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pipes{j,1}(1,k) = Hp;

pipes{j,2}(1,k) = Qp;

end

end

%%Setting the boundary conditions using sub programs

for j = 1:size(BC,1)

BCtype = BC{j,1};

switch BCtype

case ’Tank’

tank(j,time);

case ’Valve’

valve(j,time);

case ’Junction’

pipe(j);

case ’Deadend’

deadend(j);

case ’Valvedwn’;

valvedwn(j);

case ’Orifice’;

valvedwn(j);

end

end

for row=1:size(pipes,1)

pipes{row,1}(2,:) = pipes{row,1}(1,:);

pipes{row,2}(2,:) = pipes{row,2}(1,:);

end

end

end
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B.3 Valve

%valve(BCIndex) - calculates the pressure head and the flow before

% and after a valve.

% Authors: Janna Hempel, Oskar Lindgren

%

% Input arguments

% BCIndex - the index of the certain boundary condition in the BC-matrix

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

global pipes BC %Calls the global variables

g = 9.81; %Gravitational constant

pipe1 = BC{BCIndex,2}(1,1); %Pipe index before the valve

pipe2 = BC{BCIndex,2}(1,2); %Pipe index efter the valve

nodes1 = size(pipes{pipe1,1},2); %Number of nodes in pipe1

%Interpolation if the degree of opening is not constant

if max(size(BC{BCIndex,4},1)) > 1

time = BC{BCIndex,4}(:,1); %Time vector

tau = BC{BCIndex,4}(:,2); %Vector: degree of opening of the valve

A_const = interp1(time,tau,t); %Interpolation

%If tau has a fixed value

else

A_const = BC{BCIndex,4};

end

Ha = pipes{pipe1,1}(2,nodes1-1); %Pressure before the valve

Qa = pipes{pipe1,2}(2,nodes1-1); %Flow before the valve

Ba = pipes{pipe1,3}(6); %Charactaristic impedance of pipe1

Ra = pipes{pipe1,3}(5); %Resistance coefficient of pipe1

Hb = pipes{pipe2,1}(2,2); %Pressure after the valve

Qb = pipes{pipe2,2}(2,2); %Flow after the valve

Bb = pipes{pipe2,3}(6); %Charactaristic impedance of pipe2

Rb = pipes{pipe2,3}(5); %Resistance coefficient of pipe2
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Di = pipes{pipe2,3}(3); %Inner diameter

A_vlv = (pi()*Di^2/4)*(A_const); %Area of the valve

a = (1/2)*(1/(A_vlv^2*g));

b = Ba+Ra*abs(Qa)+Bb-Rb*abs(Qb);

c = Ha+Ba*Qa-Hb+Bb*Qb;

if A_const <= 0.00 || a == Inf; %Zero flow if the valve is closed

Qp = 0;

else

Qp = -b/(2*a)+sqrt((b/(2*a))^2 + c/a); %Flow

end

sigmaconst_a = pipes{pipe1,3}(1,7); %Stress constant, pipe1

dsigma_a = pipes{pipe1,4}(nodes1-1); %Change in stresses before the valve

sigmaconst_b = pipes{pipe2,3}(1,7); %Stress constant, pipe2

dsigma_b = pipes{pipe2,4}(2); %Change i stresses after the valve

%Head, node before the valve

Hpa = Ha-Ba*(Qp-Qa)-Ra*abs(Qa)+sigmaconst_a*dsigma_a;

%Head node after the valve

Hpb = Hb+Bb*(Qp-Qb)-Rb*abs(Qb)+sigmaconst_b*dsigma_b;

%%%%%%%%%%%%%%%%%%%%%% Updating the pipes-matrix %%%%%%%%%%%%%%%%%%%%%%%%%%

pipes{pipe1,1}(1,nodes1) = Hpa; %Pressure head at the last node in pipe1

pipes{pipe1,2}(1,nodes1) = Qp; %Flow at the last node in pipe1

pipes{pipe2,1}(1,1)= Hpb; %Pressure head at the first node in pipe2

pipes{pipe2,2}(1,1) = Qp; %Flow at the first node in pipe2

end
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B.4 Tank

%tank(BCIndex) - calculates the pressure head and the flow in the pipe

% connected to the reservoir.

% Authors: Janna Hempel, Oskar Lindgren

%

% Input arguments

% BCIndex - the index of the certain boundary condition in the BC-matrix

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

global pipes BC %Call the global variables.

pipe1 = BC{BCIndex,2}(1,1); %Pipe index before the reservoir

pipe2 = BC{BCIndex,2}(1,2); %Pipe index efter the reservoir

%Interpolation if the pressure in the tank not is constant

if length(BC{BCIndex,4}) > 1

tVector = BC{BCIndex,4}(:,1); %Time vector

PVector = BC{BCIndex,4}(:,2); %Pressure vector

H_tank = interp1(tVector,PVector,time); %Interpolation

%If the pressure is constant

else

H_tank = BC{BCIndex,4};

end

%%Tank located to the left of the pipe

if pipe1 == 0

pipes{pipe2,1}(2,1) = H_tank; %Pressure in the first node of the connected pipe

Hb = pipes{pipe2,1}(2,2); %Pressure in the second node in the pipe

Qb = pipes{pipe2,2}(2,2); %Flow in the second node in the pipe

B = pipes{pipe2,3}(6); %Charactaristic impedance of the pipe

R = pipes{pipe2,3}(5); %Resistance coefficient of the pipe

Cm = Hb-B*Qb;

Bm = B+R*abs(Qb);

Hp = H_tank; %Pressure head at the first node in the pipe

Qp = (Hp-Cm)/Bm; %Flow at the first node in the pipe
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%%%%%%%%%%%%%%%%%%%%%% Updating the pipes-matrix %%%%%%%%%%%%%%%%%%%%%%%%%%

pipes{pipe2,1}(1,1) = Hp; %Pressure head in the first node in the pipe

pipes{pipe2,2}(1,1) = Qp; %Flow in the first node in pipe

%%Tank located to the right of the pipe

elseif pipe2 == 0

nodes = size(pipes{pipe1,1},2); %Number of nodes in the pipe

Ha = pipes{pipe1,1}(2,nodes-1);

Qa = pipes{pipe1,2}(2,nodes-1);

B = pipes{pipe1,3}(6);

R = pipes{pipe1,3}(5);

Cp = Ha+B*Qa;

Bp = B+R*abs(Qa);

Hp = H_tank;

Qp = (Cp-Hp)/Bp;

%%%%%%%%%%%%%%%%%%%%%% Updating the pipes-matrix %%%%%%%%%%%%%%%%%%%%%%%%%%

pipes{pipe1,1}(1,nodes) = Hp; %Pressure head at the last node in the pipe

pipes{pipe1,2}(1,nodes) = Qp; %Flow at he last node in the pipe

end
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B.5 Pipe

%pipe(BCIndex) - calculates pressure head and flow for two connected pipes

% Authors: Janna Hempel, Oskar Lindgren

%

% Input arguments

% BCIndex - the index of the certain boundary condition in the BC-matrix

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

global pipes BC %Calingl the global variables

pipe1 = BC{BCIndex,2}(1,1); %Pipe index before the pipe connection

pipe2 = BC{BCIndex,2}(1,2); %Pipe index efter the pipe connection

nodes1 = size(pipes{pipe1,1},2); %Number of nodes in pipe1

sigmaconst = pipes{pipe1,3}(1,7); %Stress constant, pipe1

dsigma = pipes{pipe1,4}(nodes1-1); %Change in stresses at the end of pipe1

Ha = pipes{pipe1,1}(2,nodes1-1); %Pressure head before pipe connection

Qa = pipes{pipe1,2}(2,nodes1-1); %Flow before pipe connection

Ba = pipes{pipe1,3}(6); %Charactaristic impedance of pipe1

Ra = pipes{pipe1,3}(5); %Resistance coefficient of pipe1

Hb = pipes{pipe2,1}(2,2); %Pressure head after pipe connection

Qb = pipes{pipe2,2}(2,2); %Flow after connection

Bb = pipes{pipe2,3}(6); %Charactaristic impedance of pipe2

Rb = pipes{pipe2,3}(5); %Resistance coefficient of pipe2

Cp = Ha + Ba*Qa - Ra*Qa * abs(Qa);

Cm = Hb - Bb*Qb + Rb*Qb * abs(Qb);

%Pressure at the point of the connection

Hp = ((Cp/Ba)+(Cm/Bb))/((1/Ba)+(1/Bb))+sigmaconst*dsigma;

%Flow at the point of connection

Qp = (Cp - Cm)/(Ba+Bb);

%%%%%%%%%%%%%%%%%%%%%%%% Updating the pipes-matrix %%%%%%%%%%%%%%%%%%%%%%%%

pipes{pipe1,1}(1,nodes1) = Hp; %Pressure head at the last node in pipe1

pipes{pipe1,2}(1,nodes1) = Qp; %Flow at the last node in pipe1

pipes{pipe2,1}(1,1)= Hp; %Pressure head at the first node in pipe2

pipes{pipe2,2}(1,1) = Qp; %Flow at the first node in pipe2

end
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B.6 GetBeamForces

%[es,edi,eci] = getBeamForces(pipeGeo,pipeIndex,D,n)

% returns section forces, the displacements and

% the evaluation points for the beam element

% Authors: Daniel Edebro, Oskar Lindgren, Janna Hempel

%

% Input arguments

% nr_of_tsteps - the number of time steps the iteration will run

% time - used as input parameter in the boundary conditions tank and

% valve

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

N = size(D,2);

es = cell(1,N);

edi = cell(1,N);

eci = cell(1,N);

xVec = [pipeGeo{pipeIndex,9}(1),pipeGeo{pipeIndex,10}(1)];

yVec = [pipeGeo{pipeIndex,9}(2),pipeGeo{pipeIndex,10}(2)];

zVec = [pipeGeo{pipeIndex,9}(3),pipeGeo{pipeIndex,10}(3)];

DOF1 = pipeGeo{pipeIndex,7};

DOF2 = pipeGeo{pipeIndex,8};

%%%%%%%%%%%%%%%%% Pipe propoerties from pipeGeo %%%%%%%%%%%%%%%%%

% pipeGeo{i,3} = [E,G,A,Iy,Iz,Kv,m,j,OD,t,YS,TS]

E = pipeGeo{pipeIndex,3}(1);

G = pipeGeo{pipeIndex,3}(2);

A = pipeGeo{pipeIndex,3}(3);

Iy = pipeGeo{pipeIndex,3}(4);

Iz = pipeGeo{pipeIndex,3}(5);

Kv = pipeGeo{pipeIndex,3}(6);

vertAngle = pipeGeo{pipeIndex,4}(2)*pi/180;

aziAngle = pipeGeo{pipeIndex,4}(3)*pi/180;

%%%%%%%%%%%%% Global vector parallel to the beam local z-direction %%%%%%%%%%%%%

c = [cos(vertAngle+pi/2)*cos(aziAngle),cos(vertAngle+pi/2)*sin(aziAngle),...

sin(vertAngle+pi/2)];

ep = [E,G,A,Iy,Iz,Kv];

q = [0,0,0,0]; % Element load vector [qx,qy,qz,qw]
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for i = 1:N

ed = D([DOF1,DOF2],i)’;

[es_tmp,edi_tmp,eci_tmp] = beam3s(xVec,yVec,zVec,c,ep,ed,q,n);

es{1,i} = es_tmp;

edi{1,i} = edi_tmp;

eci{1,i} = eci_tmp;

end
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B.7 LoadVector

%f = loadvector(loadDefinition,pipes,pipeGeo,DOFcnt)

% returns section forces, the displacements and

% the evaluation points for the beam element

% Authors: Daniel Edebro, Oskar Lindgren, Janna Hempel

%

% Input arguments

% loadDefinition - Defining where the loads are applied

% pipes - Matrix for pipe propterties from the fluid sheet

% pipeGeo - Matrix for pipe propterties from the structure sheet

% DOFcnt - Number of degrees of freedom

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

loadCnt = size(loadDefinition,1); %Defines the count load

f = zeros(DOFcnt,1); %Force vector for all degrees fo freedom

for i = 1:loadCnt %Loop through the count load

FluidPipe = loadDefinition(i,1); %Defines where in the load defintion

%matrix the fluid pipe is

FluidNode = loadDefinition(i,2); %Defines where in the load defintion

%matrix the fluid node is

StructPipe = loadDefinition(i,3); %Defines where in the load defintion

%matrix the structure pipe is

StructNode = loadDefinition(i,4); %Defines where in the load defintion

%matrix the structure node is

pipeArea = pipes{FluidPipe,3}(1,3); %Defines the pipe area

rho = 998; %Density of water

g = 9.81; %Gravitational constant

if FluidNode == 1 %First node

Force = pipes{FluidPipe,1}(2,1)*pipeArea*rho*g; %Force acting

%on the structure

else

nodeCnt = size(pipes{FluidPipe,1},2); %Last node

Force = pipes{FluidPipe,1}(2,nodeCnt)*pipeArea*rho*g;

end

%Specifying the degrees of freedom

DOFs = pipeGeo{StructPipe,6+StructNode}(1:3);

%Generates a vector with the same length as the struture pipe

pipeVector = pipeGeo{StructPipe,10} - pipeGeo{StructPipe,9};
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%Creates a unit vector for the beam element

pipeUnitVector = pipeVector/sqrt(pipeVector(1)^2+pipeVector(2)^2+pipeVector(3)^2);

if FluidNode == 1

ForceVector = -pipeUnitVector*Force; %Defines the force vector, with direction,

else %if the node in the fluid pipe is 1

ForceVector = pipeUnitVector*Force; %Defines the force direction, if the

end %node in the fluid pipe is the last node

f(DOFs(1)) = f(DOFs(1)) + ForceVector(1);

f(DOFs(2)) = f(DOFs(2)) + ForceVector(2);

f(DOFs(3)) = f(DOFs(3)) + ForceVector(3);

end
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