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Abstract
Vehicles that are capable of automating different aspects of the driving task are
becoming increasingly potent. Lane keeping assist and autonomous cruise control
systems are already capable of handling some parts of the driving task autonomously.
One of the most challenging and vital parts of autonomous vehicle design is the
problem of locating the vehicle with respect to the road and its surroundings. This
is important in order to support lane-keeping, path planning, and prediction of other
road users for threat assessment. The performance of these systems are often limited
by the mapping and localization accuracy. In the following thesis, this problem is
addressed and the proposed solutions are tested using real data recorded at a test
track in Trollhättan Sweden. A test vehicle is equipped with a front facing lidar,
inertial measurement unit (IMU) sensors, and a differential global positioning system
(DGPS) used as reference.
A map consisting of landmarks is created using the lidar measurements, where the
landmarks are objects represented by ellipsoids. A mapping algorithm makes use of
Gibbs sampling to find the most likely data association, given the asumptions that
the existence of landmarks is Bernoulli distributed and that measurements appear
according to a Poisson point process. The map is then used together with new lidar
and IMU measurements in a marginalized particle filter used for localization. The
states estimated from the localization filter is position, heading, turn rate and speed.
Training and test data is collected in a rural environment, where localization can
be hard. When evaluating the localization accuracy, the position is compared to
the DGPS reference system. The resulting accuracy during localization stays below
0.16 m lateral error and 0.6 m longitudinal error in this scenario. Furthermore,
the system is also capable of finding the correct position when the initial position
is known with a few meters deviation. It is shown that the proposed method for
mapping is capable of creating accurate maps for localization even in sub-optimal
rural environments with few distinct landmarks. The method is also capable of
producing accurate maps with a relatively low number of landmarks, meaning that
it is suitable for mapping of larger areas.

Keywords: Lidar, marginalized particle filter, Poisson multi-bernoulli mixture, Map-
ping, Localization.
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1
Introduction

The field of advanced driver-assistance systems (ADAS) and autonomous driving
(AD) is an increasingly popular research area, in both the vehicle industry and
academia. By adding the capability of making decisions and planning a safe route
for the vehicle, the goal is to avoid problems caused by human factors, and also
avoid situations where the human abilities are insufficient. An immediate benefit
of these systems is the safety factor. According to the world health organization[1].
road traffic injuries are the number one cause of death among ages 15-29. A report
published by the U.S. Department of Transportation shows that over 90% of all
road crashes are partly, or fully, caused by human factors[2]. This means that even
marginal improvements in this area, through ADAS and AD systems, can have a
large impact on the number of saved lives, if implemented on a global scale.

Several researchers also believe that autonomous vehicles can have a positive effect
on the environment through different kinds of rental and taxi services, see, e.g, [3],[4].
The researchers believe that personal vehicles can be replaced by small autonomous
electric vehicles with optimized daily usage and optimized energy consumption. This
would reduce the number of vehicles needed and thereby the emissions caused by
the vehicle fleet.

The focus in this thesis is to investigate one of the crucial tasks of an autonomous
vehicle, namely the positioning of the car. This task needs to be robust and should be
able to work even when some sensors fail. Commonly used sensors for positioning
include GPS, cameras, and Inertial measurement units (IMU). These are sensors
that are prone to disturbances or complete failure. The GPS only works when there
is a clear line of sight, and fails, e.g., when there are tall buildings or other obstacles
in the way. In cities with tall buildings, the multi-path effect is also a big challenge
for the GPS. The camera relies heavily on the lane markings, and is very sensitive
to lighting conditions. Thus, redundancy is needed to safely navigate a vehicle.

This thesis have been carried out in cooperation with DENSO Sales Sweden AB,
which provided sensor data. A lidar (light detection and ranging) sensor is used
together with an accurate reference DGPS sensor that estimates the vehicle pose, to
create a map of the environment. The localization is then performed using only the
onboard IMU, together with a front facing lidar sensor and the created map. Both
the mapping and localization problems are solved using probabilistic methods.
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1. Introduction

1.1 Purpose, Objective and Contributions

The purpose of this thesis is to implement a Bayesian probabilistic mapping method
using random finite sets, and a Bayesian probabilistic localization method using a
marginalized particle filter. The methods are tested using lidar data collected from
a car in a country-side environment, and the results are evaluated to see if the
proposed mapping and localization approach is desirable for this type of sensor and
scenario.

The objectives of the thesis are the following:

• Create a map of the environment using a lidar sensor and a reference position
sensor.

• Implement a localization system to position the vehicle using only IMU, lidar
and the previously created map.

• Evaluate the mapping and localization methods used, to see if they are able
to position a vehicle within the specified maximum deviation. The chosen
specifications are based on previous localization work[5], and are to position
the vehicle within 0.2 m laterally and 1 m longitudinally from the DGPS
reference position.

The main contributions in this thesis are the following:

• An investigation regarding how a Poisson multi-Bernoulli mixture (PMBM)
filter performs in mapping, evaluated on real lidar sensor data from a country-
side road scenario.

• Performance enhanchements to an already existing PMBM mapping algo-
rithm.

• An evaluation of the localization performance of a marginalized particle filter,
together with a PMBM map, in a country-side road scenario.

• A discussion regarding the viability of the methods being used in autonomous
vehicles in these type of scenarios.

1.2 Thesis outline

The thesis starts with a problem description that describes the system setup, the
simulation environment and the collected data. Chapter 3 describes the theoretical
background that the thesis is based on, which includes models used in mapping
and filters used in localization. The different models used for describing the vehicle
and the sensor dynamics are described in Chapter 4, and the methods implemented

2



1. Introduction

for mapping and localization are described in Chapters 5 and 6. The results are
presented in Chapter 7 and are discussed in Chapter 8. The thesis ends with a
discussion of the results and a conclusion in Chapter 9.
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2
Problem description

The problem of mapping in the context of AD and ADAS systems is to describe the
environment in a way such that it is possible to use the created map for localization in
this environment. There are two main approaches to representing a map, occupancy
grid maps and landmark maps[6]. The method proposed in this thesis uses the
landmark approach. When using landmarks to describe the environment, the goal
is to estimate the state of each landmark, and also estimate the total number of
landmarks. Given a set of measurements a challenge with landmark mapping is to
solve the data association, i.e., associating each measurement to the landmark from
which it originates.

Localization is the problem to describe the position and orientation of the vehicle
using sensor measurements. In this thesis the measurements will come from an IMU
sensor, wheel speed sensor, and a lidar sensor. Although these tasks can be solved
simultaneously, i.e., simultaneous localization and mapping (SLAM), we have for
simplicity separated the two problems. However, with the framework used in this
thesis it is possible to connect the mapping and localization.

2.1 Scope

The scope of this thesis is to use a front facing lidar sensor to investigate a mapping
algorithm and a localization algorithm. Both algorithms that are investigated use
Bayesian inference and random sampling. The data used for both algorithms are
collected on a test track with the lidar mounted to a test vehicle. The map, repre-
sented by extended objects in three dimensions, is then created offline to later be
used in the localization algorithm.

The localization algorithm is designed under the assumption that the initial position
is known with a few meters uncertainty and that a map exists beforehand. The
position estimated by the algorithm is limited to the horizontal plane to improve
computational efficiency. Information about the vertical height of the sensor or the
road can be included in the map, but the results should not differ significantly in
this scenario, because the environment is very flat.

5



2. Problem description

2.2 System setup

The system used in this thesis is provided by DENSO Sales Sweden AB (DSSE),
and consist of a test vehicle equipped with a front facing lidar and IMU, and a
reference sensor. The lidar gives range, bearing and elevation measurements. The
IMU provides yaw-rate as well as wheel-speed. The reference position sensor, an
Oxford RT 2000, contains a DGPS with 0.02 m standard deviation, and a precise
IMU with below 0.1 degrees standard deviation in roll, pitch and yaw.

2.3 Simulation environment

A simulation environment is used to verify that the mapping algorithm works as
intended. The environment is created by using point sources placed next to a road;
the points return measurements as the simulated vehicle passes them. The measure-
ments have measurement noise in the x, y and z direction according to a normal
distribution with standard deviation 0.1 m. The simulation is not designed to re-
produce lidar measurements in particular, they are instead designed to match the
proposed landmark model. The measurements should ideally be mapped to the
landmark from which they are originating from, to get an as accurate representa-
tion of how the sensor perceives the landmark as possible. An illustration of the
simulated environment can be seen in Figure 2.1.

2.4 Test scenario

The data acquisition is carried out on the National Electric Vehicle Sweden (NEVS)
test track in Trollhättan. The local environment at the test track contains a few
houses, guardrails, some bushes and some trees. An areal photo of scenario can
be seen in Figure 2.2a, and in Figure 2.2b the created three dimensional map is
projected onto a two dimensional satellite photo of the scenario. The car was driven
on the road closest to the four white houses. The two uppermost houses were not
present during the data acquisition, and are therefore not represented in the map.
Two data sets from the same environment are available, one data set is used for
producing the map, and the other is used for localization in the created map.
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(a) Landmarks from a small area of the
simulated environment.
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(b) Measurements from a small area of the
simulated environment.

(c) Overview of the simulation environ-
ment

Figure 2.1: The simulated environment contains a set of landmarks and a set of noisy
measurements originating from the landmarks. Note that both the landmarks and mea-
surements are represented in three dimensions.
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2. Problem description

(a) An aerial photo of the testscenario in
Trollhättan. From [7].

(b) The 3 dimensional map projected onto
the scenario. Note that the real map is in
three dimensions. From [7].

Figure 2.2: An overview of the test scenario. Note that structured objects like the walls
of the houses and the guardrail are mapped as very distinct landmarks, while unstructured
objects like trees and bushes are mapped as larger and less distinct landmarks.
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3
Background theory

This chapter introduces different theoretical concepts used in the thesis, for the
purpose of priming the presentation of the methods described in chapter 5 and 6.
An overview is given of Bayesian filtering in general, and specifically of Kalman
filters and particle filters which are used for localization. The statistical models
used for modelling the map and its landmarks are also presented.

3.1 Bayesian filtering

In Bayesian filtering the aim is to recursively estimate some state of the surrounding
world. A detailed description of the Bayesian filtering problem is given in, e.g., [8,
p.17-20]; the following is a brief overview of the problem.

Each state vector xk describes some properties of the world at time index k. The
states are estimated given a series of measurements

z1:K = {z1, z2, . . . , zK}. (3.1)

Both the states and the measurements are assumed to be stochastic, which is de-
sirable when dealing with imperfect measurements and models. The posterior,
p(xk|z1:k), is the probability density function of the current state xk given all the
measurements up until time k. Using Bayes’ theorem, the posterior density can be
derived as

p(xk|z1:k) = p(zk|xk)p(xk|z1:k−1)
p(zk|z1:k−1) , (3.2)

The likelihood p(zk|xk) is given by a measurement model, and the prior is denoted
p(xk|z1:k−1). Lastly, p(zk|z1:k−1) is a constant normalization factor. Not considering
the normalization constant, the posterior density can be achieved from the process
model and the measurement model proportionally as

9



3. Background theory

posterior ∝ prior× likelihood. (3.3)

To complete the iteration the predicted state, i.e., the new prior, is described by the
Chapman-Kolmogorov equation,

p(xk|z1:k−1) =
∫
p(xk|xk−1)p(xk−1|z1:k−1) dxk−1 (3.4)

where p(xk|xk−1) is the process model, and p(xk−1|z1:k−1) is the posterior distribu-
tion from the last step.

3.1.1 The Kalman filter

The process model and the measurement model are often written as

xk = fk−1(xk−1,vk−1) (3.5)
zk = hk(xk,wk) (3.6)

where vk−1 is the process noise and wk is the measurement noise. If both the
process and measurement model are linear with additive i.i.d. Gaussian noise then
the Kalman filter (KF) performs optimal filtering. To indicate that the models are
linear we write them as

xk = Fk−1xk−1 + vk−1 (3.7)
zk = Hkxk + wk. (3.8)

If the prior distribution p(x0), the process model, as well as the likelihood, are
assumed to have normally distributed noise, then the posterior distribution is also
normally distributed for all times, and can be expressed as

p(xk|z1:k) = N (xk; x̂k,Pk|k), (3.9)

where x̂ is the estimated state vector and P is the state estimate covariance matrix.
Similarly to the general case, the Kalman filter can be divided into two steps: the
prediction step and the update step. A detailed derivation of the Kalman filter is
presented in e.g., [9]. The predicted mean and covariance are calculated by prop-
agating the mean and covariance from the previous time step through the process
model,

10



3. Background theory

x̂k|k−1 = Fx̂k−1 (3.10)
Pk|k−1 = Fk−1Pk−1|k−1FT

k−1 + Qk−1, (3.11)

where Q is the state noise covariance matrix and the notation k|k − 1 is used to
indicate that the variable at time k has been calculated using information up to
time k − 1. Next, the update step is calculated using equations

Sk = HkPk|k−1HT
k + Rk, (3.12)

Kk = Pk|k−1HT
kS−1

k , (3.13)
x̂k|k = x̂k|k−1 + Kk(zk −Hkx̂k|k−1), (3.14)
Pk|k = Pk|k−1 −KkSkKT

k , (3.15)

where S is the innovation covariance, R is the measurement covariance matrix, K
is the Kalman gain and x̂k|k is the updated state estimate.

3.1.2 Particle filters

The KF has assumed linear process models and measurement models. Other filtering
methods such as the extended Kalman filter (EKF) can handle models that are close
to linear, but are vulnerable to highly non-linear models. The particle filter is a
non-parametric approach to the filtering problem, see, e.g., [8, p.24-25]. Instead of
linearizing the models (3.5),(3.6), as is done in the EKF, the approach in particle
filtering is to estimate the posterior distribution using N weighted samples, called
particles, as

p(xk|z1:k) ≈
N∑
i=1

ω
(i)
k δ(xk − x(i)

k ), (3.16)

where ω(i)
k is the weight and x(i)

k is the state of particle i at time index k. When deal-
ing with non-linear models, it is often hard, or impossible, to sample directly from
the posterior distribution p(xk|z1:k). A sampling method called importance sam-
pling (IS) is therefore used, where the idea is to sample from a proposal probability
distribution q(xk|z1:k) instead. The samples are weighted according to

ω
(i)
k ∝

p(x(i)
k |z1:k)

q(x(i)
k |z1:k)

(3.17)

11



3. Background theory

to fit the posterior distribution. If the proposal density is chosen so that it satisfies
the Markov property,

q(x(i)
k |z1:k) = q(x(i)

k |x
(i)
k−1, z1:k)q(x(i)

k−1|z1:k−1), (3.18)

and

q(x(i)
k |z1:k) = q(x(i)

k |x
(i)
k−1, zk), (3.19)

then the weight calculation can be done sequentially as more measurements arrive.
The resulting equation for calculating the weights is shown in [10, p.178] to be

ω
(i)
k = ω

(i)
k−1

p(zk|x(i)
k )p(x(i)

k |x
(i)
k−1)

q(x(i)
k |x

(i)
k−1, zk)

. (3.20)

This is known as sequential IS (SIS) and is the core of particle filters. A common
choice for the proposal density is the transition density

q(x(i)
k |x

(i)
k−1, zk) = p(x(i)

k |x
(i)
k−1), (3.21)

which results in the simple and intuitive weighting equation

ω
(i)
k = ω

(i)
k−1p(zk|x

(i)
k ). (3.22)

There are however many other methods for choosing the proposal density, e.g. the
likelihood can be chosen, see [10].

A problem with particle filters is that they suffer from degeneracy, meaning that
the number of particles with insignificant weights increase over time. The common
solution to this problem is to resample the particles according to their weight. Par-
ticles with low weight are then likely to disappear, while particles with high weight
are likely to be duplicated. After resampling, all weights are set equal as

ω
(i)
k = 1

N
. (3.23)

Another problem with particle filters is that the computational complexity increase
rapidly with the dimension of the state vector xk. One approach to solve the problem
is to exploit the linear properties of the system; this is the topic of the next section.

12



3. Background theory

3.1.3 Marginalized particle filters

By using standard optimal filtering in the form of a KF for the linear states and a
particle filter for the nonlinear states, the number of particles needed to efficiently
estimate the posterior can be decreased, and in turn the computational complexity
is also decreased[11]. In addition, an EKF can be used for the mild nonlinearities.
The approach is to divide the state vector into one linear part and one nonlinear
part as

xk =
[
xlk
xnk

]
, (3.24)

where xlk is the linear states and xnk is the nonlinear states. The state density for
the nonlinear states is represented similar to the standard particle filter in (3.16),
while the linear states are represented by a normal distribution as in (3.9). In [11,
p.2280-2283], 3 process models of different complexity are presented. In this thesis, a
constant turn motion model is chosen, see Chapter 4. Thus, the second marginalized
particle filter model in [11], called the Triangular Model, is used since it fits that
motion model well,

xnk+1 = fnk (xnk) + An
k(xnk)xlk + vnk , (3.25a)

xlk+1 = Al
k(xnk)xlk + vlk, (3.25b)

zk = hk(xnk) + Ck(xnk)xlk + wk, (3.25c)

where fnk is the terms of the process model for the nonlinear states not containing the
linear states, An

k is the terms of the process model for the nonlinear states containing
the nonlinear states, Al

k is the motion model for the linear states, hk is the terms
of the measurement model not containing the linear states, Ck is the terms of the
measurement model containing the linear states and finally vnk and vlk is the additive
i.i.d. Gaussian noise for the linear and nonlinear states respectively. The resulting
measurement update equations for the linear states can be written as

x̂lk|k = x̂lk|k−1 + Kk(zk − hk −Ckx̂lk|k−1), (3.26a)
Pk|k = Pk|k−1 −KkCkPk|k−1, (3.26b)

Sk = CkPk|k−1CT
k + Rk, (3.26c)

Kk = Pk|k−1CT
kS−1

k , (3.26d)

and the prediction update equations can be written as

13



3. Background theory

x̂lk+1|k = Al
kx̂lk|k + Lk(zk −An

k x̂lk|k), (3.27a)
Pk+1|k = Al

kPk|k(Al
k)T + Ql

k − LkNkLT
k , (3.27b)

Lk = Al
kPk|k(An

k)TN−1
k , (3.27c)

Nk = An
kPk|k(An

k)T + Qn
k . (3.27d)

Here, Pk|k is the posterior error covariance matrix for the linear states, Ql
k is the

covariance of the process noise for the linear states vlk and Qn
k is the covariance of

the process noise for the nonlinear states vnk . Rk is the measurement covariance.

The time and measurement updates for the nonlinear states are done according
to the standard particle filter described in section 3.1.2. The algorithm for the
marginalized particle filter is described as pseudo code in algorithm 3.1.

Algorithm 3.1: Marginalized particle filter, Algorithm 1 from [11]
1) for i =1:N

I n i t i a l i z e the p a r t i c l e s ’ non−l i n e a r s t a t e s
xn,(i)

0 ∼ p(x0)
and the l i n e a r s t a t e c o v a r i a n c e s
xl,(i)

0 = x̄l
0

P(i)
0 = P̄(i)

0
end

2) for i =1:N
Evaluate the importance weights
ω

(i)
k

= ω
(i)
k−1p(yk|x

n,(i)
1:k , z1:k)

end
and normal ize

ω̄
(i)
k

=
ω

(i)
k∑N

j=1
ω

(j)
k

3) Resample a l l p a r t i c l e s with p r o b a b i l i t y
accord ing to t h e i r weight
for i =1:N

Pr
(

xn,(i)
k|k = xn,(j)

k|k−1

)
= ω̄

(j)
k

end

4) P a r t i c l e f i l t e r time update and Kalman f i l t e r i n g
for i =1:N

a ) Kalman f i l t e r measurement update accord ing to equat ions (3.26)

b) P a r t i c l e f i l t e r time update ( p r e d i c t i o n v ia the p r o c e s s model )
xn,(i)

k+1|k ∼ p(x
n
k+1|k|x

n,(i)
1:k , z1:k)

c ) Kalman f i l t e r time update accord ing to equat ions (3.27)
end

5) Set k=k+1 and r e i t e r a t e from step 2 .

14



3. Background theory

3.2 Mapping

In this thesis, the scope of the mapping problem is to estimate landmarks in a static
environment using a known vehicle pose and lidar measurements. The number of
landmarks is unknown, and also the size and location of these objects are unknown
and need to be estimated. This is done using two different mapping methods.
A random finite set (RFS) method modeling clusters of measurements originating
from the same landmark as RFSs, and a simple clustering method based only on
the proximity of measurements. The proximity clustering is used as a comparison
to evaluate the performance of the more advanced RFS based method.

3.2.1 Poisson Multi-Bernoulli mapping with random finite
sets

A Bayesian inference method based on random finite sets, specifically Poisson Multi-
Bernoulli distributions, will be used for map estimation. The theoretical background
used for this method is presented here.

A RFS X is a set which has a random cardinality specified by a discrete distribution,
where all elements in the set (xi), are random variables with probability distributions
from the same family,

X = {x1, x2, ..., xn}. (3.28)

The RFS X has the density

p(X) = p(n)n!
∑
N

fn(x1, x2, ..., xn) (3.29)

where N represents all permutations of the set X, fn is a joint distribution for
the set, and p(n) is a distribution which describes the cardinality of the set. This
method of statistical models is useful when observing different patterns that are
showing fluctuating behaviour, see e.g., [12].

In this thesis, RFSs are used to model the mapping problem. A landmark can
be for example a wall or part of a guardrail, see Figure 2.2. The carnality of the
map RFS, i.e, the number of landmarks in the map, is random since we have no
prior information about the number of landmarks in the scenario. The random
state (extent and location) of each landmark is then described by the measurements
associated to each landmark. These states are described by the parameters of some
probability distributions, in this thesis the location of a landmark is described by a
multivariate normal distribution and the extent is described by an inverse Wishart
distribution.
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3. Background theory

3.2.1.1 Multi Bernoulli mixture

A Bernoulli RFS[13] is a set which is empty with probability 1−r, or with probability
r contains a single element with state x and state distribution f(x). In this thesis
x represent a landmark. A Bernoulli RFS X has set density

fB(X) =


1− r X = ∅
rf(x) X = {x}
0 |X| > 1

.

 (3.30)

where |X| is the cardinality, i.e, size of the set and can be either zero or one. If
several objects are modelled, a multi Bernoulli (MB) RFS can be used. The MB
is the union of multiple independent Bernoulli RFSs, and is used to describe all
objects that are of interest. In this thesis a MB RFS is used to represent the whole
map. The MB RFS {X1, X2, ..., XI} is described by the parameters {ri, fi(x)}i∈I .
The MB set density is

fMB(X) =
∑

X=X1]···]XI

∏
i∈I
fBi(Xi) (3.31)

where ] is a disjoint union. To model data association hypotheses, a multi Bernoulli
mixture (MBM) can be used. A MBM is described by the parameters

{Wj, {ri,j, fi,j(x)}i∈Ij
}j∈J , (3.32)

where Wj is the weight of each MB, ri,j, fi,j are the parameters of each Bernoulli in
this MB, J is the index set of MBs in the mixture, Ij is the index set of Bernoullis
in the j:th MB. The set density is

fMBM(X) =
∑
j∈J

WjfMBj(X) (3.33)

3.2.1.2 Poisson point processes

In this thesis the landmarks are assumed to be extended objects, meaning that each
object may generate more than one measurement at each time instant. This makes
it possible to estimate both the size and the extent of an object, see [14]. The
measurements are modelled as a Poisson point process (PPP) where the landmarks
together with their expected number of measurements represent the PPP intensity,
which is used during the localization. Also clutter measurements and landmarks
that has not yet been measured are modeled as PPPs.
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3. Background theory

A PPP is a RFS Y with two parameters: the rate µ, and the spatial distribution
f(y), where y ∈ Y . The PPP has an intensity µf(y), which in this thesis represents
the intensity of measurements, or landmarks, appearing in the space. A PPP RFS
Y has set density

fP (Y ) = e−µ
∏
y∈Y

µf(y) (3.34)

where the number of elements y ∈ Y is a Poisson distributed random variable.
Integrating the intensity µf(y) over the area A gives the expected cardinality of Y
in A,

E[|Y |A] = ΛA =
∫
A
µf(y)dy. (3.35)

The number of elements in A is Poission distributed with the parameter ΛA,

P (|Y |A = n) = e−ΛA
Λn
A

n! (3.36)

In this thesis the rate µ represents the expected number of measurements from a
landmark, or the expected number of landmarks in the map. The distribution f(y)
corresponds to either the landmark itself modeled as an extended object, or how the
landmarks are expected to be distributed in the map.

3.2.2 Gibbs sampling

Gibbs sampling is a Markov chain Monte Carlo method for sampling from a probabil-
ity distribution, see, e.g.,[15], and is a method that is often used when the posterior
distribution is hard to calculate. Gibbs sampling can then be used to approximate
different properties of the posterior distribution, such as the expected value. The
method draws samples randomly from the marginal distribution of each variable in
the distribution. The idea is that given enough iterations, the samples will spread
out in the variable space, according to the true posterior distribution.

In some cases the parameter space can be large and impractical to sample from, and
an option is then to use a collapsed Gibbs sampler. The collapsed Gibbs sampler
marginalizes over one or more variables, to make sampling easier and more efficient.

In this thesis a collapsed Gibbs sampler is used to sample data associations from
the space of all possible associations where each sample corresponds to a MB in
the MBM. The posterior distribution of all detected landmarks that represents the
map, can be marginalized over the landmark states to only describe the probability
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of an individual data association. This makes the probability function used during
sampling easier to describe and evaluate.
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4
Models

In this chapter, the vehicle model and the measurement model used in the local-
ization filter is presented. The vehicle model is used for state prediction and the
measurement model is used to connect the measurements to the state vector.

4.1 Vehicle model

In Bayesian filtering a prediction of the next state given measurements up to the
current state is needed. For the localization problem handled in this thesis, the
state of the car can be predicted using a vehicle model. Vehicle models range in
complexity from simple random walk models to more complex models using specific
vehicle paramters.

For this thesis, a model with constant yaw-rate and constant velocity, often called
constant turn (CT), has been chosen. This model is intuitive and easy to implement,
for details see, e.g. [16]. Due to the fast sampling frequency of 5 Hz or faster for
all sensors and a relatively low speed of maximum 30 km/h, there is no need for a
highly complex model. The state vector for a CT model in two dimensions is

xk =
[
x y ψ v ψ̇

]T
, (4.1)

where x and y are the spatial position in the horizontal plane, ψ is the yaw angle,
v is the speed and ψ̇ is the yaw rate. The state transition can be expressed on
state-space form as


xk
yk
ψk
vk
ψ̇k

 =


xk−1 + Tvk−1 cos(ψk−1)
yk−1 + Tvk−1 sin(ψk−1)

ψk−1 + T ψ̇k−1
vk−1
ψ̇k−1

 , (4.2)

where T is the sampling time. Notice that the vehicle position in the z direction is
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4. Models

not estimated even though the map is created in three dimensions. This is done to
reduce the number of states estimated by the particle filter, and in turn reduce the
computational complexity. This is a reasonable simplification in this scenario since
it is very flat. In a more hilly environment it would most likely affect the accuracy
of the localization. Pitch and roll angles are omitted for the same reason. Given
that we have a good location, the map could provide altitude, pitch, and roll.

4.2 Measurement models

The purpose of the measurement models is to connect the measured variables to the
latent variables used in the state vector (4.1). In the lidar sensor, the measurements
are given as a range r and two angles referred to as azimuth α and elevation ε.

Y

-0.2

0

0.2

0.4

0

0.6

0.8

1

1

1.2

Z

0.5
0.5

1

X

0

Figure 4.1: The illustration shows the sensor reference frame, the sensor is facing
the x direction and detects a measurement at the blue circle. The elevation is the
angle from the xy plane to the measurement in red and the azimuth is the angle
from the xz plane to the measurement in blue. The range is the distance from the
measurement to origo.

The measurements z can be transformed to the spatial sensor frame s as

x
s
z

ysz
zsz

 =

r cos(α) cos(ε)
r sin(α) cos(ε)

r sin(ε)

 (4.3)

20



4. Models

The measurement can then be rotated and translated from the sensor frame to the
global frame g using the vehicle pose and rotational matrices as

x
g
z

ygz
zgz

 = Rz(ψ)Ry(θ)Rx(φ)

x
s
z

ysz
zsz

+

x
g
v

ygv
0

 (4.4)

where

Rz(ψ) =

cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 , (4.5)

Ry(θ) =

 cos(θ) 0 sin(θ)
0 1 0

− sin(θ) 0 cos(θ)

 , (4.6)

Rx(φ) =

1 0 0
0 cos(φ) − sin(φ)
0 sin(φ) cos(φ)

 , (4.7)

and xgv and ygv is the vehicle position in the global frame, note that subscript z in
Rz represents a rotation around the z axis. The position in z is zero due to the
assumption of a flat scenario, see Section 4.1. The angles ψ, θ and φ represents the
yaw, pitch and roll euler angles. The choise of vehicle model also means that only the
ψ angle is estimated by the filter. However, there exists pre-filtered measurements
of φ and θ from the IMU, which in this thesis is used directly in the rotational
matricies.

The measurement equation for the sensor (4.4) can then be summarized as

zgz = h(xk) =

x
g
z

ygz
zgz

 (4.8)

where xk is the state vector from equation (4.1) and zgz is the measurements in the
global frame. Note that there is no added measurement noise. We motivate this
by the fact that the resolution and the accuracy of the lidar sensor is very high, in
relation to the uncertainty introduced by the vehicle motion model.

The measurement model used for the IMU is a linear model with additive normal
distributed noise rk,

zIMU = hIMU(xk) =
[
vk
ψ̇k

]
+ rk. (4.9)
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5
Mapping methods

The mapping problem in this thesis is to describe the environment around the vehi-
cle for the purpose of localization. Landmarks are used to describe specific objects
that are of interest for localization. Two methods are implemented, one probabilistic
method that models the uncertainties in the environment and measurements from
it, and focuses on a minimal representation of the environment. The other method
does not model uncertainties in the landmark extent, but is motivated by its sim-
plicity and low computational complexity during map creation. It will also serve
as a performance reference when evaluating the performance of the probabilistic
method. The derivation and implementation of these two methods are described in
this section. Both mapping methods assume accurate knowledge about the vehicle
pose at all times during mapping.

5.1 Poisson Multi-Bernoulli mixture

The map is created by grouping measurements that are likely to come from the same
object into a cluster. The landmarks are estimated using a Poisson multi-Bernoulli
mixture (PMBM) model, with a Normal Gamma inverse Wishart landmark model.
The PMBM is used since it describes both the uncertainty in the number of mea-
surements from a landmark, as well as the landmark location and extent, as random
variables, and can thus estimate both simultaneously. The method is largely based
on [17] with some changes to fit the problem, and to decrease the computational
complexity. The following sections describes how the map is estimated from mea-
surements.

5.1.1 Mapping models

To be able to create a map of the environment, models are used to describe the
clutter, the previously undetected landmarks, and the detected landmarks. These
models are based on the theory described in Section 3.2, previous work done in
mapping [17],[18], and Poisson point process (PPP) models described in [19]. To
simplify notation, the set of all measurements from the lidar sensor is described as
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5. Mapping methods

Z = z1:K = {z1, z2, . . . , zK}. (5.1)

where measurements from each time instance zk consists of several lidar detections
z. This way, we have removed the time index from measurements completely. Please
note that z is the assumed noise free measurements in the global cartesian domain.
Furthermore, we denote the set of landmarks by

Θ = {θ1, θ2, ...}, (5.2)

where a landmark is defined by the triple θi, with the three entities µi, the loca-
tion of a landmark, Σi, the extent of a landmark and ωi, the expected number of
measurements from a landmark,

θi = (µi,Σi, ωi). (5.3)

The landmarks are further explained in 5.1.3.

5.1.1.1 Clutter

The clutter is modelled as a Poisson Point process (PPP) with two parameters, the
rate λc and the spatial distribution c(z). The PPP intensity is λcc(z) and describes
clutter intensity. The spatial distribution of the clutter is assumed to be uniformly
distributed in the sensor’s field of view (FoV) c(z) = 1/V , i.e., the clutter is equally
likely to be measured anywhere inside the FoV. Here V is the volume of the FoV.
The PPP for the clutter measurements Zc ⊆ Z is then described as

fP (Zc) = e−λc
∏
z∈Zc

λcc(z). (5.4)

5.1.1.2 Undetected landmarks

The yet undetected landmarks are also modelled as a PPP with two parameters,
the rate λu and the spatial distribution φ(z|θ). The spatial distribution is modelled
by φ(z|θ) = N (z;µ,Σ), where θ(µ,Σ) is a landmark with the parameters µ for
mean position and Σ is modelled by a random matrix which describes the extent of
the landmark and z is the measurement from the sensor. The PPP for undetected
landmarks Θu is then described as

fP (Θu) = e−λu
∏
θ∈Θu

λuφ(z|θ). (5.5)
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5.1.1.3 Detected landmarks

The previously detected landmarks are described by a multi-Bernoulli mixture (MBM),
where each multi-Bernoulli represents a possible data association. The posterior dis-
tribution is

fMBM(Θd) =
∑
j∈J

Wj

∑
X=X1]···]XI

∏
θ∈Θd

fB(θ), (5.6)

where Θd is the set of all detected landmarks and N represents all ways of parti-
tioning the Bernoulli components. The weightWj of each multi-Bernoulli represents
the probability that the corresponding data association for all measurements is the
right one given the modelling and a priori assumptions, and J is the total number
of hypotheses in the mixture.

5.1.2 Partitions

By partitioning the measurements, the weight of each partition can be calculated
to get a likelihood of that data association. The likelihood can then be used in
an optimization algorithm to get the most likely data association. In this case, a
modified Gibbs sampler is used. A partition is a hypothesis of the data associa-
tion, meaning that the measurements are partitioned into cells associated with the
landmarks. The partitions will be indexed by j ∈ J , and the subsets of landmarks
by i ∈ I. The measurements that belong to a specific landmark is denoted Zj,i,
which is a subset of all the measurements Z. From each landmark there will be
a series of measurements originating from different time samples, but since we do
batch processing using all measurements from the whole time sequence we denote
the measurement set with only the partition index Zj.

The weight of each partition is proportional to the product of the likelihood of each
Bernoulli in that partition, or the likelihood of each landmark in the partition. The
partitions are used when creating the map, optimally the chosen partition should
represent the most likely data association given the mapping models.

Sampling will be used as a Bayesian inference method to update the posterior density
of the map. The method used to estimate the posterior of the map is to sample from
the different partitions. The posterior distribution (5.6) can be rewritten to the joint
distribution, for the purpose of being able to sample from it. When describing the
joint posterior, we describe the map using one partition as

p(Θd, j) = Wj

∑
N

∏
θi∈Θd

fB(θi). (5.7)

The detected landmarks can then be marginalized out to get the probability of
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partition j, which is the weight of the partition

P (j) = Wj. (5.8)

This weight represents the probability of each data association, and sampling from
these associations can be done by calculating the weight of the corresponding par-
titions. This weight is proportional to the combined likelihood of each landmark

Wj ∝
∏
i∈I
Lj,i. (5.9)

To calculate the weights, the likelihood integral is calculated as

Lj,i = λu0

∫
fu0 (θ)lj,i(θ)dθ, (5.10)

where fu0 (θ) and λu0 is the prior spatial density and rate of an undetected landmark,
and the likelihood lj,i comes from the PPP of undetected landmarks

lj,i = e−γ(θ) ∏
z∈Zj,i

γ(θ)φ(z|θ), (5.11)

with the parameters described in 5.1.1.2. This likelihood will be used to calculate
the weight of a partition, as a measure of how good the data association is.

5.1.3 Landmark representation

The map is built up by many landmarks θi, each represented by its parameters
µi,Σi, ω which is the mean, extent matrix and expected number of measurements.
The landmark state density is assumed to be a normal inverse Wishart gamma
distribution,

f(θi) = N (µ;µi, (ci)−1Σ)IW(Σ;Si, vi)GAM(ω;αi, βi), (5.12)

where the normal distribution describes the mean of the landmark spatial position
(µi), the inverse Wishart describes the extent of the landmark (Σi), and the gamma
distribution describes the expected number of measurements from the landmark
(ωi). The expected values of the distributions represents the parameters that are
later used for each landmark.

The resulting map is represented by a PPP intensity function as an unnormalized
Gaussian mixture over all the landmarks.
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I(z) =
I∑
i

ωiN (z;µi; Σi), (5.13)

where i is the landmark index and I is the total number of landmarks and z is the
noise free measurements in the cartesian domain. The intensity is proportional to
the probability of a landmark generating a measurement in a specific location.

5.1.4 Computing the weight of a partition

The map posterior distribution will be estimated by sampling from the partition
distribution, using the weight of the partitions (5.8), described in 5.1.2. The deriva-
tion of the weight function is described in this section. According to Theorem 1 in
[17], the weight is proportional to the likelihood of all landmarks in the partition.

One landmark has the proportional likelihood

Lj,i ∝
∫
fu0 (θ)lj,i(θ)dθ. (5.14)

which will be used to calculate the weight of this specific landmark. The following
assumptions are used to solve this integral: the probability of detection is constant
in the FoV and the parameters of the map is a priori distributed in a conjugate prior
form as

fu0 (θ) = U(µ)IW(Σ;S0, v0)GAM(ω;α0; β0), (5.15)

where U denotes a uniform distribution over the map, IW is the inverse Wishart
distribution and GAM is the gamma distribution. This means that the position µ of
a landmark is a priori uniformly distributed, the extent Σ is a priori inverse Wishart
distributed and the number of measurements ω is gamma distributed. These prior
distributions have been used in previous work regarding PMBM tracking and map-
ping [13, 17]. The likelihood is

lj,i = pD(θ)e−γ(θ) ∏
z∈Zj,i

γ(θ)φ(z|θ), (5.16)

where φ(z|θ) = N (z;µ,Σ), and γ(θ) = ωFoV(µ, xk), with FoV as the field of view
function that returns 1 if µ is inside the FoV from location state xk and 0 if it is
not. The integral to solve (5.14) is then
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∫
fu0 (θ)lj,i(θ)dθ =

∫
U(µ)IW(Σ;S0, v0)×

GAM(ω;α0; β0)pkDe−ωFoV(µ,xk) ×
∏

z∈Zj,i

(ωFoV(µ, xk)N (z;µ,Σ))dµdΣdω. (5.17)

Assuming that the landmark that is updated has measurements (Zj,i 6= ∅) and that
the entire landmark is inside the FoV (U(µ) = 1/VA,FoV(µ, xk) = 1), the integral
can be simplified to

∫
fu0 (θ)lj,i(θ)dθ = pkD/VA

∫
ω|Z

j,i|e−ωGAM(ω;α0, β0)dω×∫
IW(Σ;S0, v0)

∏
z∈Zj,i

N (z;µ,Σ)dµdΣ. (5.18)

This equation can be separated into two parts. The first part is the gamma dis-
tribution describing the expected number of measurements, and the second part
consists of a normal and inverse Wishart distribution representing the position and
extent of a landmark. The second part is proportional to a normal inverse Wishart
distribution.

The first part is the expected number of measurements, this can be calculated by
using the Gamma pdf

GAM(ω;α0, β0) = βα0
0

Γ(α0)ω
α0−1e−β0ω. (5.19)

This gives the following solution

∫
ωce−ωGAM(ω;α0, β0)dω =

=
∫
ωce−ω

βα0
0

Γ(α0)ω
α0−1e−β0ωdω

= βα0
0

Γ(α0)
Γ(α0 + c)

(β0 + 1)α0+c

∫ (β0 + 1)α0+c

Γ(α0 + c) ωα0+c−1e−ω(β0+1)dω

= βα0
0

Γ(α0)
Γ(α0 + c)

(β0 + 1)α0+c

∫
GAM(ω;α0 + c, β0 + 1)dω

= βα0
0

Γ(α0)
Γ(α0 + c)

(β0 + 1)α0+c , (5.20)

where c = |Zj,i|, i.e. the cardinallity of the partition set. This is the gamma distri-
bution update by the measurements in Zj,i, and can be simplified by introducing
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αj,i = α0 + |Zj,i| (5.21a)
βj,i = β0 + 1, (5.21b)

which gives

∫
ω|Z

j,i|e−ωGAM(ω;α0, β0)dω = βα0
0 Γ(αj,i)

(βj,i)αj,iΓ(α0) . (5.22)

The second part of the integral (5.18) is the location and extent of the landmark.
This is assumed to be proportional to a normal inverse Wishart

NIW(µ,Σ;µj,i, cj,i, Sj,i, vj,i) = N (µ;µj,i, (cj,i)−1Σ)IW(Σ;Sj,i, vj,i) (5.23)

and is calculated in the same way derived in [17, 20] and the parameters are updated
by the measurements in Zj,i as

vj,i = v0 + |Zj,i| − 1, (5.24a)
Sj,i = S0 +

∑
z∈Zj,i

(z− z)(z− z)′, (5.24b)

µj,i = z, (5.24c)
cj,i = |Zj,i|. (5.24d)

The parameters in (5.21) and (5.24) defines the landmark, and are updated every
time the data association is changed. The complete integral (5.18) is

∫
IW(Σ;S0, v0)

∏
z∈Zj,i

N (z;µ,Σ))dµdΣ = |S0|0.5v0Γ2(0.5vj,i)
|Sj,i|0.5vj,iΓ2(0.5v0)πvj,icj,i0.5

. (5.25)

Please note that |S0| is the determinant of the matrix, not the cardinality which has
the same notation. Together with the expected number of measurements, this gives
the likelihood of an updated landmark,

Lj,i ∝
βα0

0 Γ(αj,i)
(βj,i)αj,iΓ(α0)

|S0|0.5v0Γ2(0.5vj,i)
|Sj,i|0.5vj,iΓ2(0.5v0)πvj,i(cj,i)0.5 . (5.26)

The weight of a multi Bernoulli is proportional to the likelihood of each landmark
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Wj ∝
∏
i

Lj,i, (5.27)

which can be simplified by removing the constants, since it is a proportionality,

Wj ∝
∏
i

Γ(αj,i)
(βj,i)αj,i

Γ2(0.5vj,i)
|Sj,i|0.5cj,iπvj,i(cj,i)0.5 . (5.28)

This is the resulting weight of a partition when it is updated by new measurements.

5.1.5 Sampling the partitions

To find the best possible map, a Bayesian inference method is used. The method
is based on Gibbs sampling[17], but with some differences and is suitable when the
parameter space is large and other methods are difficult to apply[21]. The method
starts with an initial partitioning of the measurements: this could be any valid
partition. Then a new set of possible partitions are considered by moving one or
more measurements to another cell or to a new cluster, and the resulting partition
weight of each one is calculated. These weights are normalized, used as probabilities,
and sampled from, to get a new partition. The new partition is then used and a
new set of possible partitions are considered. This results in a chain of partitions
separated by an action. The possible actions are described below with N number of
clusters. The first step is to choose a cluster and a measurement from that cluster
randomly.

• Move the point to another cluster - One option is to move the point from
the chosen cluster and place it in another cluster. This gives N − 1 options,
since all clusters can receive the point except the cluster in which it is already
placed.

• Create new cluster - The point could belong to a single point cluster, this
represents that the point is assumed to be clutter. This gives 1 option.

• Merge two clusters - Merging two clusters is an option to increase the filter’s
speed of convergence. The measurements from the chosen cluster and another
cluster are combined into one cluster. This gives N−1 options, since it cannot
merge with itself.

• Split the cluster in two - The opposite action to merging two clusters is to
split them in two. This gives 1 option. To do this, a clustering algorithm can
be used. In this thesis kmeans++[22] is chosen, but any method to cluster
points can be used. This gives a deterministic behaviour in the splitting of
clusters, which means that the algorithm is no longer a valid Gibbs sampler,
since there is no guarantee to get back from any merge to the same partition as
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before. The method is therefore not a true Markov chain Mote Carlo (MCMC)
sampling method.

5.1.6 Batch mapping

To create the map, a batch solution is implemented. This solution uses all recorded
measurements to infer the posterior map. The mapping is done by calculating the
final weight (likelihood) of the partition for all the possible 2N actions. The weights
are then normalized and sampled from as probabilities. The chosen action is applied
to the partition, which yields the next partition in the chain. This should increase
the total weight of the partition until a maximum is reached, and the solution
converges i.e. when the maximum partition weight have not increased for some set
number of iterations. This could be a local maximum, but since stochastic methods
are used, a global maximum should be reached given enough samples.

When the solution has converged, the partition with the highest weight and its
corresponding MB is chosen as the resulting map. This is opposed to the standard
Gibbs sampling where a set of samples would be used to represent the posterior. In
the MBM case this would mean than a set of MB samples would be used to find the
MB that best represents the MBM, examples of such a method is described in e.g.
[23]. A motivation for using the maximum weighted MB is that we are not interested
in estimating the whole MBM, but to obtain a MB with as large likelihood (5.8) as
possible given the data. An example of the partition weights is shown in Figure 5.1.

The pseudo code for the mapping is shown in Algorithm 5.1, which uses the inputs
reference location x and the set of all measurements z. A flowchart of the algorithm
is presented in Figure 5.2 to complement the pseudo code.

Figure 5.1: Example of the partition weight over time during sampling
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Figure 5.2: Flowchart of the mapping algorithm.

Algorithm 5.1: Mapping Pseudo Code
input : measurements z , pose x
output : p a r t i t i o n P
begin

I n i t i a l i z e a l l measurements in some p a r t i t i o n i n g .
while ( not converged )

p ick a random measurement from a random c l u s t e r
eva luate the r e s u l t i n g weight o f each a c t i o n accord ing to 5.28
sample one o f the p o s s i b l e a c t i o n s accord ing to t h e i r weights

end
return h i g h e s t weighted p a r t i t i o n

end

An example of the algorithm, during a few iterations is shown in Figure 5.3. Initially
all measurements are chosen to be in the same cluster, see Figure 5.3a. After one
iteration of the algorithm, the initial partition is split into two, see Figure 5.3b. The
next iteration is also a split into two new clusters resulting in three clusters total,
see Figure 5.3c. After 88 iterations the algorithm has converged i.e. the maximum
partition weight have not increased for some number of iterations. The resulting
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partition is shown in Figure 5.3d. This series of images illustrates the principle
behind the algorithm. The weight of the current partition during the sampling is
shown in Figure 5.1.

(a) Initial clustering of measurements. (b) Resulting clusters after one iteration.

(c) Clusters after two iterations.
(d) The resulting clusters after 88 itera-
tions when the algorithm has converged.

Figure 5.3: Example of the clustering in different iterations of the algorithm.

5.2 Proximity landmarking

An alternative method for data association is to group measurements based on
the distance between them. The basic assumptions here are that measurements
originating from the same landmark are located within a specified distance from
each other. With this assumption, a new measurement can either be a part of an
existing landmark or originating from a new previously unmeasured landmark.

The algorithm starts with calculating the euclidean distance to all existing land-
marks when receiving a measurement. This distance is then compared to a param-
eter d that decides if it is a part of the landmark or from a new one.
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If it is part of an existing landmark, the position of the landmark is updated ac-
cording to

µ = 1
N

∑
p1 + p2 + ...+ pN (5.29)

or a new landmark is initialized at the measurements location. The extent is de-
scribed by the sample covariance of the points

Cov(X) = 1
N

∑
(p2
i − µ2) (5.30)

A flowchart of the algorithm is shown in Figure 5.4. The only parameter of this
algorithm is d, which is tuned to create suitably large landmarks. The algorithm
iterates over all the measurements and groups them based on the parameter d.

Figure 5.4: Flowchart of proximity mapping algorithm

5.3 Implementational aspects

The implemented methods are used only with pre-filtered data, such that only mea-
surements that are aligned vertically within a small radius remain i.e. if two or
more measurements from the same azimuth angle are closer than a set distance
from each other when projected onto the horizontal plane, the measurements are
kept. The idea is that only measurements originating from objects with a verti-
cal surfaces remain such as houses, posts and trees, while measurements from the
road and nearby hills are removed. This makes the algorithm run faster due to less
data, while only filtering out measurements from horizontally flat objects that are
redundant for localization.
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The weight between two consecutive partitions in the chain differs only by the
changed landmarks. Therefore only the weight of the affected landmarks are re-
calculated. Hence, the new weight of a partition after an action is

LWnew = LWold + LWsource + LWtarget, (5.31)

where

LWsource = LW after
source − LW before

source (5.32)
LWtarget = LW after

target − LW before
target , (5.33)

where LW is the logarithmic weight of a partition (log(W )), the weights before and
after an action is applied to the specific landmarks source and target, note that the
weights are additive due to being logarithms of the true weights. All weights are
calculated as logarithms of the true weights to avoid computational errors due to
very small or large numbers.

When the PMBM algorithm is initiated, the initial clustering of the measurements
is made by using the proximity clustering method with a large parameter d. This is
to increase the speed of convergence, since measurements in close proximity do have
a higher chance of belonging to the same landmark. Even if the association is wrong,
the sampling will correct this. An alternative is to start with each measurement in
a separate landmark, this gives a lot of landmarks and slows down the calculations
significantly.

Since kmeans++ is used when splitting landmarks, the sampling algorithm in Section
5.1.5 is not a true MCMC technique. Any valid clustering technique could be used
when splitting, but this method was used for implementational simplicity. The end
result should not be radically different from a standard Gibbs sampling algorithm,
since the method mostly uses the split/merge in the beginning of the clustering.
When the method is close to convergence mostly one point is moved, as is the case
in a true Gibbs sampler. If a true Gibbs sampler is desired, the split/merge could
be disabled when the sampling seems to have converged, i.e., when the maximum
partition weight have not increased for a set number of iterations. This would give
a true MCMC sampling technique.
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Localization method

Localization is the problem to estimate the position and orientation of the vehicle
using the motion and measurement models, together with a set of measurements.
In this thesis, the localization is done using a marginalized particle filter, where
some linear states are estimated using a Kalman filter, and some non-linear states
are estimated using particles. The particles are weighted using a previously created
map, together with lidar measurements of the environment. A calculation of the
expected number of measurements from a landmark is also done from the estimated
position and orientation.

6.1 Marginalized particle filter

The purpose of using a marginalized particle filter is to reduce the number of states
estimated by the particle filter, and in turn reducing the number of particles needed
to accurately estimate the states [11], see Section 3.1.3. In the presented case,
the measurement model connecting the map and lidar measurements to the vehicle
location and orientation is highly nonlinear. The vehicle state vector

xk =
[
x y ψ v ψ̇

]T
, (6.1)

is therefore divided into linear and nonlinear states. The orientation and location is
treated as nonlinear states,

xnk =
[
xk yk ψk

]T
. (6.2)

The speed and angular velocities are measured directly by the internal sensors and
expressed linearly in the CT motion model (4.2), and can therefore be estimated by
the Kalman filter part of the marginalized particle filter,

xlk =
[
vk ψ̇k

]T
. (6.3)
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Given the chosen motion model presented in (4.2), the state-space equations for the
particle filter are given by

fn(xnk) =
[
xk yk ψk

]T
, (6.4)

An(xn
k) =

T cos(ψk−1) 0
T sin(ψk−1) 0)

0 T

 , (6.5)

Al =
[
1 0
0 1

]
, (6.6)

these equations are used for prediction in the Kalman filter of the marginalized
particle filter, in (3.25a) and (3.25b).

6.1.1 Prediction and measurement update

The prediction step is done according to (3.27), using the motion models above.
The measurement update is done in two steps. First the linear states are estimated
using the measurement update (3.26). The nonlinear states are then updated by
weighting the particles using the lidar measurements and the map. The weight for
each particle is calculated by evaluating the map, represented by a poisson point
process intensity (5.13), according to

wpk =
M∏
m=1

I∑
i=1

ω̂iN (zm,p; µ̂i, Σ̂i), (6.7)

where M is the number of measurements at time k, I is the total number of land-
marks i, and zm,p is the spatial position of lidar measurementm given the state vector
xp of particle p. For details about the measurement transformation, see section 4.2.
Furthermore, ω̂ µ̂i and Σ̂i are the estimated landmark states. The derivation of
the expected number of measurements ω̂ is presented in the next section, 6.1.2. It
should also be noted that the roll angle φ and the yaw angle ψ are used in addition
to the state vector when evaluating the spatial position of the measurement. The
reason why the roll angle φ and the pitch angle θ are not represented in the state
vector is because they are already pre filtered and very accurate.

The problem with data association is avoided for the localization when using the
particle filter since the particle measurement update is performed given the whole
static map instead of associating each measurement with a single landmark, as would
be the case in a standard Kalman Filter measurement update.
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6.1.2 Expected number of measurements

The expected number of measurements from a landmark is estimated by the updated
gamma paramters when creating the map, however if the landmark is not seen
from the same angle or even the same distance, the initial expected number of
measurements might be incorrect. To get past this problem, a calculation of the
expected number of measurements is made, based on the size of a landmark and the
current pose of the sensor.

The expected number of measurements ω̂ can be obtained by setting up equations
for the intersection between the laser ray from the lidar sensor to the landmark with
the range r as unknown variable. If the equations have a real solution it means that
the ray in theory should hit the landmark [24], not considering the possibility of
other landmarks blocking the sensor field of view. The equation describing the laser
ray with unknown variable r is

x
s
i

ysi
zsi

 =

r cos(α) cos(ε)
r sin(α) cos(ε)

r sin(ε)

 , (6.8)

where α is the azimuth angle and ε is the elevation angle of the laser ray. The
intersection point can be described in the landmark frame by transforming the laser
ray via the global frame

x
l
i

yli
zli

 = (Rl
g)−1

Rg
s

x
s
i

ysi
zsi

+

x
g
v

ygv
zgv

−
x

g
l

ygl
zgl


. (6.9)

Here the variable superscripts represent the frame in which the variable is repre-
sented; s for sensor, g for global, and l for landmark. The subscript indicates which
point is represented by the variable, i for intersection between laser ray and land-
mark, l for the landmark location, and v for vehicle location. The two rotation
matrices Rg

s and Rl
g rotates the intersection point from the sensor frame to the

global frame and from the global frame to the landmark frame, respectively. The
rotation matrix Rg

s is a standard rotation using the orientation of the car. The
landmark orientation needed for Rl

g, on the other hand, is not known explicitly, and
is calculated from the covariance matrix Σl as follows,

ψl = tan−1(−y1, x1),
θl = sin−1(z1), (6.10)
φl = tan−1(−z2, z3),

where
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v1 =

x1
y1
z1

 , v2 =

x2
y2
z2

 , v3 =

x3
y3
z3

 , (6.11)

are the eigenvectors of Σl. Using equation (6.8) and (6.9), three equations are
obtained describing the point of intersection, with only the radius r as unknown
variable. The surface of the landmark is described by the ellipsoid equation

xli
s2

1
+ yli
s2

2
+ zli
s2

3
= 1, (6.12)

where s1, s2 and s3 are given by the eigenvalues for the landmark covariance matrix
Σl. Combining equation (6.8), (6.9), and (6.12) the resulting equation is a second
order polynomial,

Ar2 +Br + C = 0. (6.13)

The derivation of the coefficients A, B and C was done in MATLAB using symbols.
Given the vehicle state, the laser ray angles and the landmark state, equation (6.13)
can be solved for r. If r is real the laser ray intersects the ellipsoid and the expected
number of measurements counter ω̂ is increased by one.

6.2 Implementational aspects

In this section some of the more important implementations aspects and difficulties
are described, to help further research of similar algorithms. An overview of the
algorithm is presented in Figure 6.1. The localization algorithm can be initialized
either with the nonlinear state vector (6.2) known from the reference sensor, with
the states uniformly distributed or normally distributed. After the initialization, the
algorithm starts the time iterations. First the algorithm takes in lidar measurements
and particles are weighted accordingly as can be seen in the top center and top left
box in Figure 6.1. The particle weighting is by far the heaviest part of the algorithm
in terms of computation time. In each time step an order of 1000 measurements
arrive from the lidar, each measurement should be evaluated for the whole map of
an order 100 landmarks represented by 3d multivariate normal distributions. This
means that the algorithm have to perform an order of 1000 rotations and translations
and evaluate an order of 100 000 3d multivariate normal distributions. To decrease
the computation time, some simplifications are made.

First we include the possibility to cluster measurements according to their mutual
proximity, see Section 5.2, and only use the mean of the clusters as measurements,
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Figure 6.1: Overview of the marginalized particle filter algorithm

this is only used to improve computation time during testing and not used for the
results presented in Chapter 7. Moreover, a windowing function is implemented for
the purpose of limiting the weighting calculation to only include landmarks within a
set distance from the individual measurements. The assumption is that landmarks
far from the measurement will have a negligible contribution to the final weight. At
this stage, an estimation of all states is made according to the weighted mean.

Next, a Kalman filter measurement update is made for the nonlinear states given
the measurements from the IMU and wheel speed sensors. The particles are then
propagated through the vehicle model, the linear states are updated through the
Kalman filter prediction update, and the next iteration is initialized.

During the whole algorithm, the unnormalized weights are stored as log-likelihoods
to avoid computational problems with small or large numbers. For summation when
normalizing, the logarithmic summation identity is used,

log(
∑

Wj) = log(Wmax) + log
1 +

∑
j 6=max

exp (logWj − logWmax)
 , (6.14)

where Wmax = max({W1, W2, ...}). To improve computational speed, the expected
number of measurements is only calculated for the estimated state, hence, all parti-
cles have the same ω̂ for each landmark.
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7
Results

In this chapter, the results are presented. The main focus of the thesis is to develop
a mapping algorithm and a localization algorithm that together perform as accu-
rate localization as possible. First, both mapping algorithms are validated using
simulated data, where the true state of all landmarks are known. The algorithm is
also validated with the test track using an aerial photo as reference, and in terms
of how well the localization performs. The localization is evaluated on the recorded
test track data using several different maps; this evaluates the combination of the
localization and mapping together.

7.1 Data sets

There are three data sets used: one simulated environment, and two data sets
recorded on a test track. The recorded data sets are two different runs in the same
scenario, where one is used for mapping and one for evaluation of the localization.

Examples of the lidar data and the simulated data is shown in Figure 7.1, which
shows the measurements in the global frame. This should mimic the poles of a
guard rail along a road with two distinct turns. The measurements are normally
distributed around a point source, where both the location of the point and the
variance of the measurements are known.

The data sets that were collected at the test track have been filtered by removing
measurements that does not have 3 or more measurements aligned vertically within a
small radius. This is done to remove measurements from the road or inclined nearby
hills. Mapping such data into landmarks would not be optimal for localization, since
such landmarks would be very sensitive to small changes in the vehicle roll or pitch.
Another reason to pre-filter the data is to reduce the number of measurements and
in turn reduce the computational effort needed.
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(a) Measurements from the simulated
data.

(b) An example of the collected lidar mea-
surements from one frame.

Figure 7.1: Exampels of the used data sets. The simulated data is from a whole run,
while the lidar data is only a portion of the data collected in one time frame.

7.2 Map validation

The mapping functions are evaluated on simulated data as well as on recorded data.
The performance for the simulated data is evaluated by comparing the estimated
number of landmarks with the known truth and with the integrated squared er-
ror measure. For the recorded data, the mapping is evaluated by the localization
performance.

7.2.1 Simulated data

The two mapping methods are compared on the simulated data using a known
number of landmarks. The evaluation is done both by comparing the number of
landmarks estimated, and visually how well the map represents the data. The
PMBM map is created using prior parameters S0 = 2I, v0 = 5, β0 = 0.2, α0 =
0.1. The parameters are chosen by trial and error, until the estimated landmarks
approximately represent the true landmarks. The resulting landmarks are shown
in Figure 7.2 where the extent of the estimated landmarks are shown in red. The
proximity map is created using the parameter d = 1 m which gives a visually similar
map as the PMBM map. The number of landmarks are closer to the actual number,
as can be seen in table 7.1.

Map Landmarks ISE
True 276

PMBM 218 3.2398e+05
Proximity 260 1.5393e+05

Table 7.1: Mapping result on simulated data
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Figure 7.2: Resulting map after convergence, using the PMBM mapping algorithm

Both maps are compared in a section of the map together with the measurements,
this is shown in Figure 7.3 and 7.4. This shows how the different methods cluster
their measurements.

Figure 7.3: PMBM map and measure-
ments in section of map

Figure 7.4: Proximity map and mea-
surements in section of map

The two methods are also compared using the integrated squared error (ISE) [25],
calculated as

ISE(Θ, Θ̂) = ITT − 2ITE + IEE

ITT =
NT∑
i=1

NT∑
j=1

ωiωjN(µi;µj,Σi + Σj)

ITE =
NT∑
i=1

NE∑
j=1

ωiω̂jN(µi; µ̂j,Σi + Σ̂j) (7.1)

IEE =
NE∑
i=1

NE∑
j=1

ω̂iω̂jN(µ̂i; µ̂j, Σ̂i + Σ̂j)

where NT is the number of true landmarks, NE is the estimated number of land-
marks, ω is the number of measurements, µ is the mean of a landmark and Σ is the
extent of a landmark. The ISE is presented together with the number of estimated
landmarks for each method in Table 7.1.
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7.2.2 Test track data

The test track data is recorded in two runs on the same road. One of the runs are
used for mapping and the other one is used for evaluation. In Figure 7.5 and Figure
7.6, the mapping method is evaluated using aerial photos of the scenario. Distinct
landmarks, such as the houses to the south in the figures, and the guardrails, are
clearly represented in the map. Notice also that landmarks that are less distinct,
such as trees and bushes, have a more rounded shape.

Figure 7.5: The testscenario in Troll-
hättan. Image from [7].

Figure 7.6: The figure shows the 3 di-
mensional map projected onto the sce-
nario. Image from [7].

7.3 Localization performance

The localization is evaluated together with the map on the test track data. The
localization is tested with an unknown starting location within 10 × 10 m2 around
the true starting location, to verify that, e.g., a GPS position can be used as an
initial condition. The map and localization performance is evaluated by observing
that the drift of the IMU is rejected and that the localization stays below the given
performance from Section 1.1.

The test track scenario is described in Section 2.4, where the road has been driven
twice. One run is used for mapping, and one is used during localization. The
map is created using the DGPS sensor while the localization is performed without
GPS, only relying on the on-board sensors in the vehicle as well as the lidar. All
evaluations are made using the prior parameter settings as
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Qn =

0.01 0 0
0 0.01 0
0 0 π/180

 , R =
[
8.08e-4 0

0 1.5e-5

]
, Ql =

[
1 0
0 1

]
. (7.2)

The localization filter is implemented as described in Chapter 6 and the performance
with only the IMU is evaluated to compare and verify the drift of this sensor system,
the errors is shown in Figure 7.7.
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Figure 7.7: Longitudinal and lateral error using only the IMU

The map created using the PMBM method is evaluated in Figure 7.8, and shows
the lateral and longitudinal error of the vehicle during localization. The map used is
the one which gives the best performance during localization. The prior paramteters
for mapping are shown in Table 7.2 and Table 7.3. However, only the localization
result from the PMBM map with Setting 3 and Proximity map with d = 0.5 is shown
since they performed best localization: both lower maximum longitudinal error, and
lower average error. The performance of all maps are evaluated on the same data
sets with the same localization filter. This gives the result in Figure 7.10.

Setting S0 v0 α0 β0
1 100 5 0.1 0.5
2 50 5 0.1 0.5
3 10 50 0.1 0.5
4 10 5 1 0.5
5 10 5 0.1 0.5
6 1 5 0.1 0.5

Table 7.2: Map parameters during test
for the PMBM method.

d [m]
/data set 3
2
1
0.5

Table 7.3: Map parameters during test
for the proximity method.

The problem of uncertain initial position is also evaluated using the PMBM map.
Using an unknown initial position of an area of 100m2 around the starting position
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Figure 7.8: Longitudinal and lateral er-
ror using the map in Figure 7.9 and 500
particles.

Figure 7.9: A small section of the map
constructed using PMBM with parame-
ters according to setting 3 in table 7.2.
The total number of clusters is 190.
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Figure 7.10: Longitudinal and lateral
error using the map in Figure 7.11 and
500 particles.

Figure 7.11: A small section map con-
structed using proximity clustering with
distance parameter 0.5 m. The total
number of clusters is 1452.

Map Long/Lat Mean Std Maximum
PMBM Long 0.209 0.1468 0.5627

Proximity Long 0.1882 0.1254 0.52
PMBM Lat 0.06549 0.03639 0.1525

Proximity Lat 0.05584 0.03782 0.1614

Table 7.4: Errors during localization in meters.

yields the result in Figure 7.12. Where the estimated position is unknown initially
but does move closer to the result from the localization with known initial position.
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Figure 7.12: Lateral and longitudinal error when unknown initial position is used.
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Discussion

The mapping results from the simulated data show that the proximity map have an
amount of landmarks closer to the actual amount compared to the PMBMmap. This
indicates that the proximity map is estimating the true landmarks better. The map
produced by the proximity method also have a lower ISE than the PMBM method,
which also indicates that it is a better representation of the true landmarks. The
Figures 7.3 and 7.4 show that both methods are similar, but the PMBM method
clusters two landmarks into one in more occasions than the proximity method; this
is the reason why the ISE differs between the methods.

This result is expected since the true landmarks are fairly distinct and all of them
have the same extent. This makes the environment suitable to the proximity method,
where the distance parameter can be set to match the extent of the landmarks.
However the advantage of using the PMBM method is that landmarks of different
extents can be estimated. The results indicates that both methods work as expected.
It is worth noting that both methods could be tuned to match this scenario better,
or possibly even exactly.

The test scenario that is used for data collection is challenging for mapping and
localization. An easier environment would consist of many distinct and vertical
landmarks that are spread out in the environment, such as posts, houses, fences and
so on. In the given test scenario there exists only few distinct landmarks, including
three small buildings in the beginning of the run, two posts and a guardrail.

When performing localization using the test track data, both mapping methods
completely remove the drift in position that is induced by the IMU localization.
This indicates that the global positioning for both of these methods do work. The
lateral position is better estimated than the longitudinal position for both methods,
as can be seen in Figures 7.8 and 7.10. This is most likely due to the guardrail. Since
the guardrail is pointing in the direction of the road, measurements originating from
the guardrail have a very wide range spread in the longitudinal direction, and a very
narrow spread in the lateral direction. This means that there exists a very clear
reference in lateral position during the whole run. However the longitudinal position
only have a clear reference in the beginning of the run in the form of buildings and
a post. After the buildings, the longitudinal reference consists of trees and bushes,
which is challenging, because the measurements become less distinct, due to leaves
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and branches. This might be the reason why we see a less accurate localization in
the longitudinal direction.

Both methods gives similar performance during the evaluation, where they both
succeed in keeping the localization under 0.2 m laterally and 1 m longitudinally.
When comparing the complexity of the methods the proximity method need a higher
number of landmarks to achieve the same accuracy as the PMBM method, possibly
due to the PMBM method’s ability to cluster landmarks of different shape and size.
The number of landmarks increases with the area that is mapped and keeping the
complexity of the map as low as possible is desirable when mapping larger areas,
since memory often is limited. This is where the more advanced method using
PMBM might be preferable. However, the proximity method can be tuned to also
cluster fewer and larger landmarks while still performing decent localization, making
it hard to draw any conclusions which method is preferable for mapping of larger
areas.

On the other hand, the proximity method is less computationally complex, and is
therefore much less time consuming. Even though computational performance was
not the focus in this thesis, it is worth noting that the method of sampling partitions
is rather demanding. However, alternative faster methods could be considered to
handle data association in order to approximate the posterior map. However, when
considering the mapping problem separate from the localization, as opposed to the
SLAM problem, the mapping is done offline. Computational efficiency is therefore
less important.

The system is capable of finding the true position when the initial position is un-
known, as can be seen in Figure 7.12. This is desired if the system should work as a
complement to, e.g., a GPS system, or other applications where the initial position
is known with some standard deviation.

An objection to the proposed method might concern the choice of model for the
extended object. It is questionable if the assumption that measurements from a
landmark are normally distributed around the landmark mean is the best model. In
good conditions, the lidar tends to collect dense and evenly spread out measurements
with low noise. This means that the shape of landmarks is more visible compared
to, e.g., a radar sensor, where measurements often originates from a single point
with high reflectivity. This reasoning might suggest that some sort of shape from
which measurements originate uniformly would be a better choice for the landmark
extent in the presented case, and that the proposed model would fit better for a
radar sensor. This is an interesting topic for future research.
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Conclusion

This study shows that the lidar sensor used has high accuracy and resolution, this
is desirable for a mapping and localization problem. It is also shown to be suitable
for environments similar to the presented scenario.

The combination of a PMBM map with a marginalized particle filter does position
the vehicle under the proposed limit of 0.2 m laterally and 1 m longitudinally in
this scenario. It is also noted that the properties of particle filters, specifically the
weighting function, fit the proposed map well in that no explicit data association is
needed.

Using the more complex PMBM mapping method, a map with relatively few land-
marks is achieved compared to the simpler proximity landmarking method with
similar localization accuracy. This property is vital when mapping larger areas.

Even though the localization is accurate, the choice of landmark model might not
fit the lidar sensor. A radar sensor might fit the model better, this is a subject for
further investigation.
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