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Abstract
The task of lane detection has lately been dominated by deep learning approaches
for monocular vision which aim to predict the lanes in the image plane. These
have recently been extended to deep learning models that instead predict 3D lanes
directly, and are trained end-to-end for this task. These models overcome some of the
shortcomings of previous methods, including the difficulties involved in lane model
fitting and image-to-world correspondence. However, the 3D lane detection models
need to be trained on 3D lanes data, which is difficult and costly to create. In this
thesis project, we adopted a semi-automatic approach for creating a labeled 3D lanes
dataset by combining manually annotated images with depth maps from aggregated
LiDAR point clouds. Though semi-automatic, this method still entails manual labor
of annotating the lanes in the images. In order to mitigate the need for annotating
large datasets, our work investigates the possibility of training a 3D lane detection
model on unlabeled data. We propose a novel spatio-temporal consistency loss
together with a semi-supervised training scheme that allows for training the model
both on available labeled and unlabeled data. In the conducted experiments, the size
of the labeled dataset was varied between 512 and 3194 images while the unlabeled
dataset always consisted of 5050 images. Our results show that the proposed method
for leveraging unlabeled data increases the performance of the model when the
available labeled dataset is small, and thus proves the feasibility of the approach. In
particular, when training semi-supervised on 512 labeled and 5050 unlabeled images
instead of training only on the 512 labeled images in a fully supervised manner, the
average lateral error of the predictions in the far range (40-100 meters) decreases
from 50.9 to 39.7 cm and the F-Score and Average Precision increase from 0.864
to 0.881 and from 0.924 to 0.950 respectively. However, little or no improvements
are observed when the size of the labeled dataset is increased and therefore further
research is needed if this method should replace substantial amounts of labeled data.
We also generated synthetic data with the open-source simulator CARLA and used
1609 of these images to pre-train the model in an attempt to increase performance
on real-world data. However, no significant improvements were observed, which was
probably a result of both poor generalizability from synthetic to real world images
as well as difficulties involved in creating such a dataset with CARLA since the
simulator does not have support for lane instance annotations.

Keywords: 3D Lane Detection, Semi-automatic 3D Lane Annotations, Machine
Learning, Deep Learning, Semi-supervised Learning, Spatio-temporal Consistency,
Autonomous Vehicles.
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1
Introduction

This chapter includes the background and aim of this thesis project as well as the
relevant delimitations.

1.1 Background

In recent years, the dream of manufacturing fully autonomous vehicles has become
less of a fiction and instead something many believe to be achievable. Much of
the progress made within the field of autonomous driving can be attributed to the
advances made in the regime of machine learning, which have resulted in efficient
solutions to many fundamental image processing tasks. This has in turn lead to
the development of increasingly complex perception systems which is viewed as a
necessity for enabling autonomous vehicles to safely navigate the roads, including
following traffic rules and showing consideration for other road users.

The development of autonomous vehicles is motivated by the fact that the critical
reason for traffic accidents is assigned to the driver in 94(±2.2)% of all cases [1].
Traffic accidents cause many deaths and injuries every year and are the leading cause
of death for people aged between 5 and 29 years. The number of fatal accidents sums
up to over 1.3 million and an additional 20-50 million people suffer non-fatal injuries,
often resulting in long-term disabilities [2].

One of the most fundamental tasks for autonomous vehicles is to detect the lanes
of the road. As described by [3], lane detection is involved in features such as Lane
Departure Warning (LDW), Adaptive Cruise Control (ACC), Lane Change Assist
(LCA) and is also a necessity for fully autonomous vehicles. Each of these features
has different demands on the performance and reliability of the lane detection algo-
rithm. For instance, in a LDW system, where a warning should be issued whenever
the vehicle is close to exiting the ego-vehicle lane, it is only necessary to detect the
ego-vehicle lane for a short distance ahead and neighboring lanes can be ignored
completely. On the other hand, both ego-vehicle and neighboring lanes need to be
handled in a LCA system and the detection range needs to be much larger. For a
fully autonomous car it is also essential that the system can manage non-linear lane
topologies such as merges and splits.
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1. Introduction

There exist two main approaches to lane detection. Firstly, the vehicle’s position
relative to the lanes can be computed by using maps created offline and monitoring
the vehicle’s position within the map. Secondly, the use of an on-board perception
system can allow for detection of lanes during run time without relying on any such
map. The offline approach to lane detection can be accomplished for example by
combining GPS data, Inertial Measurement Unit (IMU) and high-resolution aerial
images. This option has been explored extensively in the DARPA Grand Challenge
[4] and Urban Challenge [5], where several vehicles successfully navigated the roads
using only rudimentary on-board perception systems. However, the reliability and
accuracy of this approach is not satisfactory according to [3]. It is also difficult and
expensive to create the maps and keep them up to date. Furthermore, a perception
system is in any case needed for fully autonomous vehicles, which among other
things also need to take other road users into consideration. Most research towards
lane detection has therefore aimed at utilizing the on-vehicle perception systems.

There also exists a number of perception modalities that have been extensively used
for perception systems in vehicles. As described by [3], some of the most common
ones are monocular vision (i.e. a single camera), LiDAR (Light Detection And Rang-
ing), stereo vision (two cameras enabling perception of depth), radar, Geographic
information systems (GIS), GPS, and inertial measurement unit (IMU). Each of
these sensors has their pros and cons, both regarding price, reliability and the abil-
ity of detecting different objects and perceiving the road surface. Mainly due to the
accessibility and low price of cameras, as well as the success of deep convolutional
neural networks on tasks such as image classification, segmentation and object de-
tection following their introduction by [6], the methods based on monocular cameras
have achieved most attention in recent years. Methods based on monocular cameras
have also had great success in the task of lane detection and is the most common
perception-based solution according to [7].

Current lane detection methods relying on images from a monocular camera usually
treat the problem as a 2D detection problem where the lanes are detected in the
images. The lane features are usually extracted with deep convolutional neural
networks. One popular approach is using a semantic segmentation network to find
the pixels that correspond to a lane and then using some method of lane model fitting
to create lane instances from the detected pixels [8], [9]. When lane detections have
been made in the image, the lanes can be projected to 3D coordinates under the
assumption of a flat ground. This method has the obvious drawback that it gives
inaccurate estimates of the 3D position of the lanes when the road is hilly, even if
lanes were correctly detected in the image.

Therefore, data driven methods that predict 3D lanes from images without using any
flat ground assumption or constraints on the lane geometry have been investigated
by for example [7], [10], [11]. Garnett et al. [7] published their model 3D-LaneNet
in 2019 and [10], [11] are essentially follow-up papers on 3D-LaneNet, which marked
the first step towards data driven 3D lane detection. These methods are all based on
deep convolutional neural networks that are used to extract the lane features of the
image and make predictions of the 3D lane geometry in a unified model. However,
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1. Introduction

since these models aim to predict 3D lanes directly, rather than 2D lanes, the data
needed to train these models consists of 3D lane ground truths.

Such data is expensive to create as it entails using complex multi-sensor setups such
as IMU, LiDAR and camera, which is used by [7], and possibly also highly accurate
maps which is used by [12]. Therefore, there is an interest in requiring as little
labeled data as possible. In fact, both the models 3D-LaneNet [7] and Gen-LaneNet
[10] were developed using only synthetic data. Although [7] also generated their own
real-world dataset, they only used this for validating their approach, and preferred
using the synthetic data for development since the ground truths of the real-world
dataset were flawed in some aspects. Furthermore, they did not investigate whether
the synthetic data could be used to increase the performance of the model on real-
world data. However, [13] do investigate the possibility of leveraging synthetic data
for the task of 2D lanes detection, and show that training on synthetic data indeed
resulted in increased performance on their real-world dataset. Since synthetic data
is much easier to collect than real-world data, they also request further research on
this topic for 3D lanes detection. This was investigated by [11] and they found that
training on synthetic data could increase the performance also of 3D lane detectors
on real-world data. However, they still use a large labeled real-world dataset of
around 300 000 images and do not establish how much labeled real-world data
can be replaced by synthetic data (while maintaining good performance). Large
labeled real-world datasets are therefore probably still required for any real-world
application, although the improvements made from using synthetic data indicates
that synthetic data may be used to replace some of the expensive real-world data.

Another way of replacing expensive labeled data is of course leveraging unsupervised
learning. Works like [14]–[19] show the feasibility of unsupervised or semi-supervised
learning for tasks such as image classification, object detection and semantic seg-
mentation, which traditionally require vast amounts of labeled data. To the best of
our knowledge, no approaches for unsupervised learning of 3D lane detection models
have yet been proposed. Since 3D lanes are arguably even more expensive/difficult
to annotate than for example the data used for image classification and 2D object
detection, methods for unsupervised learning for 3D lanes would be of great value.

Although some methods for creating 3D lanes datasets exist, including the one
used by [7] and the automatic approach introduces by [12], it is difficult to get the
desired precision in the ground truths as well as acquiring a dataset that is diverse
enough. Even with the automatic approach it is expensive and difficult to create a
dataset that covers all possible scenarios of driving, e.g. different road topologies,
weather conditions, lighting and so on. Since a large and diverse dataset is essential
for reaching high performance with any deep learning model the value of using
unsupervised learning may not only be to decrease the need for labeled data, but
rather also improve the performance of the model. Any efforts in improving the
lane detection models are well worth while since this enables more safe and reliable
advanced driver-assistance systems as well as autonomous driving capabilities of
future vehicles.

3



1. Introduction

1.2 Aim
The recent papers [7], [10], [11] have shown the feasibility of data-driven end-to-end
models for 3D lane detection. However, the difficulty of creating real-world 3D lanes
datasets impairs both research and possible real-world application of these models.
In an attempt of mitigating the need for large labeled 3D lanes dataset and possibly
also improving the performance of the models, the aim of this thesis is to develop a
method for unsupervised learning, as well as generating a synthetic dataset, suitable
for training a 3D lane detector when the amount of labeled real-world data is limited.

Open source implementations are available for both 3D-LaneNet [7] and Gen-LaneNet
[10], which make them suitable for further investigation. However, Gen-LaneNet uti-
lizes a two-stage architecture where the first part of the network constitutes semantic
segmentation of the image and the second part takes the semantic image as input
and predicts 3D lanes only based on this. This makes Gen-LaneNet less suitable for
a real-world application, since the information given by a semantic image is obvi-
ously quite limited. Because of this, it seems likely that 3D-LaneNet, which is truly
trained end-to-end on the input images, is the best candidate for scalable 3D lane
detection. Motivated by this, the following research question is formulated:

Can training on unlabeled data improve the performance of the 3D lane detection
model 3D-LaneNet?

Since the benefit of training on unlabeled data can be assumed to decrease with
increasing amounts of available labeled data a second research question is formulated
as follows:

How does the (potential) performance gain from training on unlabeled data depend
on the size of the labeled dataset?

Furthermore, to investigate whether synthetic data also can be used to improve the
performance of 3D-LaneNet on real-world data, and thereby mitigate the need for
large labeled real-world datasets further, the final research question is formulated
as:

Can labeled synthetic data be used to improve the performance of 3D-LaneNet on
real-world data?

1.3 Delimitations
One delimitation we make is to only use a single image from a monocular camera
to predict the 3D lanes during inference. Using multiple cameras in a stereo vision
setup or combining the image data with a LiDAR could be a way to increase the
performance of the model, but any such approaches will not be considered in this
thesis. Furthermore, tracking the lanes over several video frames and applying a
method of temporal aggregation could also lead to increased performance, but since
we only consider one image at a time this will not be investigated either.
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A critical requirement of a fully autonomous car is the ability to handle all possible
traffic situations, e.g. highways, multiple lanes, splits, merges, crossings and round-
abouts. Moreover, different types of road conditions such as weather and different
times of the day must also be managed. In this project however, the used datasets
can not be expected to contain all possible scenarios and the performance of the
implemented lane detection model is therefore not expected to meet the require-
ments of real-world applications. Furthermore, since the main goal of this thesis is
to develop a method for unsupervised learning of 3D lanes, rather than optimizing
the model’s performance for a real-world application, we will not focus on collecting
a dataset that is as diverse as possible, but rather a dataset that can be used to
prove the feasibility of the proposed semi-supervised approach. Much work will be
left before the implemented model can be put to the test in an autonomous vehicle.

The computational efficiency is also of great importance for any algorithms related
to the perception system of autonomous vehicles. Since the vehicles need to perceive
their surroundings in real time the algorithm for lane detection needs to be fast. This
aspect is not investigated in this thesis and the main goal is to improve detection
accuracy without any concern for the computational efficiency. In any case, the
work done in this thesis only modifies the training process and therefore does not
affect the run time during inference of the chosen model 3D-LaneNet.
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2
Theory

This chapter includes the relevant theoretical framework used in the thesis. Since
we aim to train the deep learning model 3D-LaneNet, which casts the lane detection
problem as an object detection one, on unlabeled data, this chapter is divided into
four main sections: deep learning, object detection with deep learning, unsupervised
learning, and related work.

2.1 Deep Learning
This section aims to give the reader an introduction to deep learning and describe
the fundamental building blocks and training procedure of artificial neural networks.

2.1.1 Introduction to Deep Learning
Artificial neural networks (ANNs) are computing systems with one or several layers
of artificial neurons. Networks equipped with multiple layers between the input and
output layers are called deep neural networks. The layers are usually ordered sending
information from the first layer l1 to the next layer l2 and so on until reaching the last
layer ln, also know as the output layer. These forward passing networks are known as
feedforward neural networks. Between each layer there exist a number of connections
linking the neurons from layer li to layer li+1. These connections are associated with
a weight and bias that scales and shifts the output of the previous neuron. Each
neuron is equipped with what is called an activation function. The collection of these
neurons and the weighted connections between them create trainable systems that
have shown great potential for tasks such as image classification, image segmentation
and object detection. The end goal when training a neural network is to make the
model correctly map an input X to the corresponding output y. For example models
trained to classify handwritten digits, e.g. correctly assigning the label 7 to a given
input image of a handwritten 7. The design of the network architecture will depend
on input and output as well as the desired properties of the model. For instance
optimizing the balance between precision and recall. The topology of models can
vary by e.g. changing the number of layers, changing the number of neurons in the
layers and/or using different activation functions in different layers.

An artificial neuron receives the output from all n connected neurons in the previous
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layer as input. The inputs x = {xi}n
i=1 are first scaled by the weights w = {wi}n

i=1
associated with the corresponding connections, then summed up and added to the
next neurons bias b. Finally, the neurons activation function, denoted as ϕ in this
thesis, is applied and the resulting value is the output of the neuron. This process
is visualized in Figure 2.1.

Figure 2.1: Illustration of an artificial neuron. Here {xi}n
i=1 are the inputs to the

neuron, {wi}n
i=1 are the weights associated with each corresponding input and b is

the neurons bias. The neuron’s input is weighted and summed up, added to the
neurons bias and passed through the activation function ϕ. The resulting value is
the output of the neuron.

If the network is to solve nontrivial problems, the model must contain nonlinear ac-
tivation functions. Two commonly used activation functions are the ReLU (Rectified
Linear Unit) and the Sigmoid function [20]. The ReLU function is a piecewise lin-
ear function and is defined as max(0, α), where α is the input, meaning that the
function will output α if α > 0 and zero otherwise. This makes the activation func-
tion computationally cheap. It also help to prevent issues such as The vanishing
gradient problem, making the function well suited for hidden layers in larger neural
networks. The Sigmoid function involves exponentials for both the the function and
it’s derivative, making it less computationally efficient. However, a common appli-
cation is to use it in the final layer to force the output of the network to lie between
0 and 1. The output of a network can hence be interpreted as a probability and is
used for tasks such as image classification and segmentation. The shape of these
two functions can be seen in Figure 2.2 together with their derivatives, which are
used when training the network.
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α

1

(a) ReLU

α

1

(b) Sigmoid

Figure 2.2: A schematic illustration of two activation functions ϕ(α) shown as
solid cyan lines and their derivative ϕ′(α) shown as dashed purple lines. Figure 2.2a
illustrates the ReLU function and Figure 2.2b illustrates the sigmoid function.

2.1.2 Training Neural Networks
The training of a neural network revolves around updating the weights and biases of
the model. The most common form of training is referred to as supervised learning,
where the model receives a training set containing input data together with their
corresponding labels. During training, the model is fed the input data and tries to
classify the data according to the corresponding label. The model is penalized based
on the difference between the prediction and the true label (also known as the ground
truth) of each training example. The magnitude of the penalty is determined by the
loss function. Hence the training of the network entails minimizing the total error
in the loss function. Even though the individual parts of a neural network often are
convex, the composition of them is often non-convex. Optimization of a non-convex
problem is known to be hard (NP-hard) to solve [21]. The optimal weights for a
neural network is therefore approximated, often by the use of Stochastic gradient
descent(SGD) and Backpropagation [21].

2.1.2.1 Loss Functions

One of the most important parts of the training of neural networks is choice of the
loss function, since it determines the magnitude of inaccuracy of the predictions
when compared to the ground truths. There exist many different categories of loss
functions, designed for different prediction task. A few examples are:

• Regression.

• Binary classification.

• Multi-class classification.

For this thesis there are two main loss functions utilized; a binary classification loss
called cross entropy and a regression loss called l1-norm loss.

Cross entropy The cross entropy is a measurement used when comparing two
probability distributions. When used in machine learning, cross entropy can be used
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as a signal when comparing the true probability distribution with the predicted one
made by the model. For a set of predictions {y}N

j=1 and the corresponding true
labels {ŷ}N

j=1, a cross entropy loss function can be formulated as:

LossCE = −
N∑

i=1
[ŷi log(yi) + (1− ŷi) log(1− yi)] . (2.1)

l1 The l1-norm is the sum of the absolute distance in each dimension between two
points. Therefore it can be used to penalize networks predictions of objects in 3D-
space by comparing the predicted location to the true position. Formulated as a
loss function the penalty becomes:

Lossl1 =
N∑

i=1
|yi − ŷi|, (2.2)

where N is the dimension in which the object lies and yi (ŷi) is the coordinates of
the predictions (ground truths).

2.1.2.2 Optimization

When training neural networks, the aim is to find the optimal values Θopt of the
networks weights, such that given an input training setX to the model, the loss func-
tion is minimized. Gradient descent is a first-order iterative optimization algorithm
used for finding local minimum for a differentiable function such as neural networks
equipped with a loss function. For each iteration of the algorithm the weights of the
network are updated by following the opposite direction of the gradient, since this
is the direction of the steepest descent [22].

The update of the networks weights are done by calculating gradient of the loss
function L with respect to the networks weights Θ. The magnitude of this update
is scaled by what is known as the learning rate η. In each iteration of the gradient
descent method Θ is updated according to:

Θ −→ Θ− η ∂L
∂Θ . (2.3)

The calculation of the gradient of feed forward neural networks is done via Back-
propagation. The algorithm is based on the chain rule and calculates the gradient
of one layer at a time propagating backwards through the network [23].

There exist many different types of variations of the gradient descent algorithm, but
a commonly used update rule is Adam (Adaptive Moment Estimation) [24].

10



2. Theory

2.1.2.3 Train/Validation/Test split and Overfitting

The training of neural networks is usually done by repeatedly presenting the training
data to the model, decreasing the error in the loss function every iteration. Doing
this will make the model increasingly adept at predicting the correct outputs for the
given dataset. However, if this process is repeated too many times a problem known
as Overfitting can occur. A model is considered overfitted if the model performs
well on examples within the training dataset but performs considerably worse on
examples outside the training set. This means that the model has only learned what
to predict for the training set but is not able to generalize to new data. To remedy
this problem the labeled data can be divided into a Train/Validation/Test split.
The model is then presented with data from the training set and for each iteration
trained to minimize the loss function with respect to this data. This is what is
referred to as the training of a neural network. For each iteration, the performance
is also measured on the validation set. Although the validation set is repeatedly
presented to the model during training, the model’s weights are not updated as to
minimize the loss function for the validation set. Instead, this is only done for the
training set. Therefore, the model is not trained explicitly to perform well on the
validation set, but if it generalizes well to new data it should of course exhibit good
performance also on this dataset if it performs well on the training set. To make sure
that the model is able to generalize to new data, a model is considered optimized
when the performance on the validation set is the highest. High performance on
the validation set is a good indicator that the model is able to generalize to new
data, and thus is not overfitted to the training set. However, since the optimal
model is chosen such that the performance on the validation set is maximized, the
performance on the validation set is inherently inflated and a test set is used as an
unbiased final measure of the model’s performance on unseen data.

2.1.3 Layers

Depending on the purpose of a neural network, the layout of the model can be
altered by introducing different types of layers.

In this section we will describe the basic types of layers of the 3D-LaneNet [7] used in
this thesis, together with a short description of their functionality. We will describe
another type, the Projective Transformation Layer separately, see Section 3.2.

2.1.3.1 Fully-connected

One of the most common layers within neural networks is the fully-connected layer,
also known as the dense layer. A fully-connected layer is defined such that all its
associated neurons are connected to every neuron in the following layer [25]. This
is visualized in Figure 2.3 with a small deep neural network with two dense layers.
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Figure 2.3: A schematic illustration of a small deep neural network with an input
layer consisting of three input neurons, two fully connected layers each consisting of
four neurons and an output layer consisting of one output neuron.

2.1.3.2 Convolutional and Pooling

Convolutional layers are commonly applied in neural networks to analyze images.
By utilizing shared-weight architecture of the convolutional kernels, also known
as filters, they become space invariant [26]. In a standard Convolutional Neural
Network (CNN), the input is a tensor of shape:

(#inputs)× (input height)× (input width)× (#input channels).

The input is passed through convolutional layers which contains one or several fil-
ters that transform the information from the image into so called feature maps. A
standard convolutional filter is a n ×m matrix, where each cell is associated with
a trainable weight. Since features in images can occur at different locations the
weights and thresholds of a filter is held constant regardless of where the filter is
applied. The current part of the image the filter is applied on is referred to as the
receptive field of the filter [27] (Section 8.1). A convolutional filter takes in the cur-
rent receptive field and scale each element by the corresponding weight. This is then
added to the filters threshold and passed through the filters activation function. The
resulting value is the output of the filter at that specific location. By applying the
filter to several positions of the input a new output feature map is created for each
filter in the layer. The number of feature maps created by a convolutional layer is
hence equal the number of filters. If the filter is a MaxPooling-filter the output of
each receptive field is the maximum value of all cells. To illustrate the difference
between a standard convolutional filter and a MaxPooling filter, the resulting output
of both filters applied on the same receptive field is shown in Figure 2.4.
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Figure 2.4: Two example of space invariant filters without activation functions.
(left) A convolutional filter. The output becomes (1×2)+(0×3)+(0×5)+(1×7) = 9.
(right) A MaxPooling filter. The output becomes max(all cells) = 7.

The convolutional layers are also equipped with hyperparameters such as padding
and stride. Padding changes the output dimension of the output feature map by
adding a row (or rows) of zeros along the width and/or height of the input. The
dimension of the output feature maps can also be changed by using different strides.
A (sx, sy)-stride shifts the receptive field by sx cells horizontally and sy cells verti-
cally. In Figure 2.5 a single 2 × 2 filter with no padding and a stride of (2, 2) acts
on a input of shape 4 × 4, producing an output with shape 2 × 2. The filter is
applied on each of the 4 colored areas of the input resulting in a single value in the
corresponding colored area in the output. In general the filter is swept over a much
larger input, such as the width and height of a Full-HD image with 1920 × 1080 -
pixels.

Figure 2.5: Demonstration of convolutional filters with a 2× 2-filter with a 2× 2-
stride. The filter is applied on each of the 2× 2 colored squares in the input layer,
producing a single value to the corresponding colored output position.
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2.1.3.3 Batch Normalization

Batch normalization is used to standardize the inputs to a layer by re-centering and
re-scaling [28]. This method may in some cases, particularly for large networks,
reduce the amount of training epochs required for training and stabilize the learning
process, see Section 7.7.5 in [27].

2.1.3.4 Dropout

Dropout layers are used in neural networks to avoid overfitting. One type of dropout
is to randomly set input units to 0 with a given frequency f [29]. To keep the sum
over all inputs unchanged the units not set to 0 are scaled up by 1

1−f
. Randomly

dropping out some nodes of a model is an effective regularization method commonly
employed for larger and more complex networks, see Section 7.7.3 in [27].

2.2 Object Detection with Deep Learning
One of the most fundamental computer vision tasks is object detection, which entails
finding the objects in an image and both specifying their position and class. Object
detection does not only form the basis of other computer vision tasks such as object
tracking and image captioning, but is also involved in many real world application
including autonomous driving and video surveillance [30].

The field of object detection has been dominated by deep learning approaches since
2014, when R. Girshick et al. [31] introduced their method R-CNN for object detec-
tion. [31] and similar approaches such as [32]–[34] essentially treated the task in two
steps, by first making region proposals in the image and then classifying the proposed
regions as one of the object classes. The two-stage detection approach is perhaps
the most straight-forward way of extending the simpler task of image classification
to object detection, and these models have had great success and out-performed the
previous (traditional) approaches for object detection by large margins. The main
problem with the two-stage detection methods is that they are slow. Therefore,
these models have largely been replaced by one-stage detectors, such as [35]–[37]
in recent years. The one-stage detectors essentially skip the region proposal part
and instead make predictions of the objects position and class directly, in a single
forward pass through the network. These models have proven to be much faster
than the two-stage detectors and still maintain relatively high performance. In the
remainder of this section, the one-state detectors will be presented in more detail as
well as the evaluation metrics commonly used for the object detection task.

2.2.1 One-stage Detectors
What allows the one-stage detectors to skip the region proposal step is essentially
the use of predefined regions, also known as anchors or anchor boxes (bounding
boxes). Instead of making explicit region proposals, the networks simply predicts
offsets to these anchors to localize the objects in the image. All three papers [35]–
[37] use a large set of predefined anchors with different sizes and aspect ratios that
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densely covers the input image. For each anchor box, the models predict how likely
it is that an object in the image is covered by the box, what the object’s offset
to the predefined box is and what class the covered object belongs to. The offsets
to the anchors are usually defined by lateral and vertical offsets x and y as well
as width and height offsets w and h. Together with the corresponding anchor box
they determine the position, size and aspect ratio of the final prediction. This is
illustrated in Figure 2.6, where a set of anchor boxes are shown and the prediction
in terms of offsets to one of the boxes is also illustrated (this is just an illustrative
example and in reality the number of anchor boxes is much larger). The networks
can of course output many object predictions for each image and the number of
classes can be close to 100, which is the case of the famous COCO dataset [38].

Figure 2.6: A depiction of how a predicted bounding box (orange) is derived from
the predicted offsets (x, y, w and h) to a corresponding anchor box (blue). The black
boxes represents all anchor boxes that densely cover the image (in reality there are
many more anchor boxes than shown here).

During training, the objects in the image are assigned to one (or several) of the
anchor boxes and the model is trained to predict which anchors have been assigned
an object and what the corresponding ground truth offsets and classes are. At test
time, the model’s predictions of which anchors have been assigned a box is exposed
to a threshold, and only those predictions that are confident enough are kept. The
predicted offsets are then applied to the selected anchor boxes to arrive at the final
object detections.

2.2.2 Evaluation Metrics

F1-Score

A common metric used for measuring the performance of object detection models is
F1-score. This classification metric is based on two measures that can be calculated
from the confusion matrix, namely the precision and recall. An overview of the
confusion matrix is illustrated in Figure 2.7. Here the true labels are compared with
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the predicted labels. A True Positive (TP) is defined such that both the ground
truth and predictions are positive. Besides TP, there are False Positives (FP),
True Negatives (TN) and False Negatives (FN) as defined in the confusion matrix.
This definition can be extended to a multi-class classification problem, but this is
not applicable for our purpose.

Figure 2.7: Confusion matrix for binary classification.

The precision of a test is the measure of how many percent of the positive predictions
were accurate and is calculate as:

Precision = TP
TP + FP

. (2.4)

Whereas the recall of the test is the measure of how many percent of the true positive
labels were predicted correctly and is calculated as:

Recall = TP
TP + FN

. (2.5)

The F1-score is defined as the harmonic mean of recall and precision, which is cal-
culated as:

F1 = 2 · Precision · Recall
Precision + Recall

. (2.6)

The definition of precision and recall requires that one can establish under which
category in the confusion matrix the predictions fall into. In object detection, a
common metric used for this purpose is the IoU (intersection over union) which
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takes into account the shape, size and location of the predicted bounding box. By
the use of IoU, the quality of the predictions can be classified binary. The IoU is
defined as the fraction between the intersection and the union of two bounding boxes
as illustrated in Figure 2.8.

Figure 2.8: Visualization of the IoU-metric, defined as the fraction between the
intersection and the union of the predicted (orange) and the ground truth (blue)
bounding box.

Using the IoU, the predictions can be classified as accurate (TP) or inaccurate (FP).
A (positive) predictions is considered a TP if the IoU is higher than a set threshold
(between 0 and 1) and a FP otherwise. It also provides the false negatives (FN) as
objects that the model was unable to identify or if the IoU score was too low.

Average Precision and maximum F1-score

Another metric used for evaluating the performance of an object detection model
is the average precision (AP). This metric is calculated by recording the precision
as a function of recall(p(r)) as the confidence threshold is varied and creating a
precision-recall curve from this. The average precision computes the average value
of p(r) over the interval r ∈ [0, 1], which in practice is replaced with a finite sum
over every recorded positions of precision and recall [39]:

AP =
∫ 1

0
p(r)dr ' 1

n

n∑
k=1

Pr(r(k)), (2.7)

where k is the recorded positions, n is the number of recorded positions, r(k) the
recall at position k, Pr(r(k)) the precision at recall r(k).

The highest F1-score calculated at each of the recorded positions is what we call the
Maximum F1-score.
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2.3 Unsupervised Learning

As discussed in the previous sections, supervised learning usually entails making
some prediction (e.g. classification or regression) based on an observation. Dur-
ing training, the model should essentially learn the conditional probability density
Pr(Y |X) and thereby manage to predict the correct label y given a new input x at
test time. On the other hand, the labels are unknown in the setting of unsupervised
learning. Therefore, the desired output of the model may not be specified and the
goal of unsupervised learning is usually to infer the properties of the probability
density Pr(X), rather than making any specific predictions [40].

This can be viewed as a type of data exploration and many methods have been
adopted for this task. For example, clustering is used for creating groups of data
based on the underlying probability density. The goal is usually to group the data
such that samples within the same group are more ”similar” than samples from dif-
ferent groups. Different measures of similarity can be used depending on the task
and there is usually no ”correct” way of grouping the data, but rather there may
exist several distinct groupings of the data that are all meaningful. Sometimes the
goal is also to impose some hierarchical ordering of the constructed clusters, or to in-
vestigate whether there exist different clusters at all or if the acquired data is in fact
drawn from a common distribution. Among other clustering algorithms, K-means,
Hierarchical clustering and DBSCAN have been used extensively. Another field
of unsupervised learning that has been intensely studied is dimensionality reduc-
tion. In this case, the goal is to find a small set of important variables/dimensions
that describe the original high-dimensional data as well as possible. Methods such
as Principal Component Analysis, Non-negative Matrix Factorization and Kernel
Principal Components have been used for this purpose [40].

Although the goal and purpose of unsupervised learning traditionally have been
described as above, learning from unlabeled data has also proven useful for several
tasks that are usually considered supervised learning tasks. This includes for exam-
ple image classification, object detection, semantic segmentation and even monocu-
lar depth estimation [14]–[19]. Thanks to the extensive research on this topic, there
exist many different methods for leveraging unlabeled data in the training process.

In some cases it is possible to train a network fully unsupervised even for complicated
prediction tasks such as mono depth prediction. Although the task here is of the
supervised nature (predict label y given input x) [19] solve it without any labeled
data. However, what is perhaps more common is to use the unlabeled data in
conjunction with a (small) labeled dataset, which is referred to as semi-supervised
learning. One common approach to semi-supervised learning is self-training, which
revolves around training the model on labeled data and then predicted pseudo-
labels for the unlabeled data that can then be added to the training. Usually only
the unlabeled data for which the model makes confident predictions are added to the
training set, in an attempt to ensure good quality of the generated pseudo labels.

The purpose of semi-supervised learning is to increase the model’s performance and
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decrease the amount of labeled data required to excel at a certain task. Since
unlabeled data is more accessible than labeled data, it is also a good means for
collecting large and diversified datasets that is a necessity for generalizable and
accurate deep learning models. The common belief is that semi-supervised learning
is well suited for cases where little labeled data exist. Obviously, there is no need for
training on unlabeled data in the (unrealistic) case of accessing unlimited amounts
of labeled data. Therefore, one can expect that training on unlabeled data may not
significantly increase the performance when the available labeled dataset is large.

2.4 Related Work

As described by [3], the typical lane detection pipeline consists of four steps:

1. Local lane feature extraction.

2. Lane model fitting.

3. Image-to-world correspondence.

4. Temporal aggregation.

The literature on lane detection is vast and a myriad of methods for lane feature
extraction and lane model fitting have been proposed. However, the third and
fourth steps of the pipeline have not been investigated as extensively, mainly due to
the fact that most research towards lane detection has been dedicated to 2D lane
detection. In this case, the lanes are only predicted in the image plane and therefore
one does not care for the image-to-world correspondence that is necessary for 3D
lane detection. The reason for little research towards 3D lane detection is probably
the difficulty in creating a large-scale labeled real world 3D lanes dataset, and the
first such dataset that was made publicly available was published by [12] as late as
2019.

Furthermore, although temporal aggregation can be assumed to make the predic-
tions more accurate and robust, it is often left as future research in the literature.
The general idea is that accurate lane predictions can be achieved by first making
as accurate predictions as possible for any individual timestamp and then using
temporal aggregation as a post-processing step to make the predictions more stable.
Therefore, much of the research has focused on making accurate predictions from a
single input frame and don’t use temporal aggregation at all, which is also the case
for 3D-LaneNet [7].

Up until recently, the feature extraction step has been done by using different heuris-
tic methods. Various feature extraction methods based on gradients is utilized by
[41]–[44] among others. [45] uses the well-known Canny edge detector (combined
with a multi-resolutional Hough transform), and [46] instead extracts features in
the frequency domain by utilizing the discrete cosine transformation. Furthermore,
there exists a variety of filters that are handcrafted to be sensitive to edges, for exam-
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ple used by [47]–[50]. These traditional methods work quite well in simpler settings
of lane detection, for example in a lane departure warning application where only
the ego-lane needs to be detected for a relatively short distance ahead. However,
the generalizability of these models is usually limited and they often struggle in
different kind of lighting and weather conditions, especially in the far range where
lane information is scarce in the image. Like in many other image processing tasks,
neural networks have proven to be very efficient in extracting lane features. In
2015, [51] showed the feasibility of using deep learning methods for lane detection
and thereafter these heuristic methods have largely been replaced by convolutional
neural networks. One common deep learning approach is to treat the lane feature
extraction step as a semantic segmentation task. This is done by [8], [9] among
others. In these cases, the lane feature extraction step usually consists of binary
segmentation (classifying each pixel as belonging to a lane or not) followed by a
clustering step where lane instances are identified from the binary mask.

After extracting the relevant visual features of an image one needs to fit a lane model,
which is often done using parametric or semi-parametric models [3]. For example,
[45], [50] use the Hough transform (although slightly modified versions) to fit straight
lines to the extracted features. Low order polynomials are also common parametric
models used by [8], [9] among others. One downside of parametric models is that
they assume global geometries of the lanes. Semi-parametric models such as splines
or polylines are more adaptive and is used for example by [44], [52]. In general,
lanes are only well approximated by straight lines close to the vehicle and a low
order polynomial may not have the required complexity to correctly model the lane
over far distances either. However, since the extracted visual features usually are
noisy, any complex models will be prone to over-fitting. To alleviate this, RANSAC
has been commonly used when fitting any type of lane models [3].

Furthermore, transforming the image to a virtual top-view (sometimes called bird’s-
eye view) generally decreases the complexity of the lanes in the image and has
therefore widely been used as a pre-processing step to the lane model fitting. The
top-view image is essentially created by warping the image such that it looks like it is
viewed from above, which will be explained in more detail in Section 3.2. Extracting
local lane features and fitting a lane model to these concludes the task of 2D lane
detection.

Very few papers directly address the task of 3D lane detection and most that do
use a flat earth assumption to project the 2D lane detections into the 3D world [3].
Under the flat earth assumption, the image-to-world correspondence is established
by simply estimating the camera’s position and orientation with respect to the local
road surface. However, inaccuracy in both elevation and curvature of the 3D lanes
is expected when the flat earth assumption is violated. [47] assumes a constant
relation between camera coordinates and road coordinates and thus simply does a
calibration before the start of a run. However, they found that this was problematic
when the slope of the ground changes drastically. Others therefore predict the
camera position and orientation to improve the image-to-world correspondence, but
nevertheless still relying on a flat earth assumption. [53], [54] use a stereo setup
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to infer depth information and can therefore drop the flat earth assumption. [55]
makes 3D lane predictions with a single camera setup using an extended Kalman
filter and modeling the road curvature with third order polynomials. Although more
flexible than using a flat earth, this parametric model of the road still imposes some
constraints on the possible lane shapes.

Recently, a new type of model for 3D lane detection was proposed by [7] and further
investigated by [10] that does not make any flat earth assumption nor any explicit
modeling of the road surface. They are able to predict lanes accurately as far
as 100 meters in front of the vehicle and can also handle complex lane topologies
such as merges and splits, making them suitable for many real-world applications
of lane detection. These data-driven models treat the 3D lane detection task in
an end-to-end fashion and predict 3D lanes from a single input image. They are
both based on convolutional neural networks that implicitly handle local lane feature
extraction, lane model fitting and image-to-world correspondence in a single forward
pass through the proposed networks.

Both networks in 3D-LaneNet [7] and Gen-LaneNet [10] make predictions in terms
of confidences and geometric offsets to a set of predefined anchors. These models
essentially work in the same way as one-stage object detectors such as SSD [35]
and YOLO [36] and thus cast the lane detection task as an object detection one.
3D-LaneNet utilizes a dual pathway architecture were features are extracted both
from the original image and from the virtual top-view of the image. The features
from both pathways are then used to make predictions of the 3D lanes. Since 3D-
LaneNet assumes zero yaw and roll of the camera the warping/transformation from
image-view to top-view is uniquely defined by the camera pitch and height with
respect to the local road surface, which are predicted by the network. While 3D-
LaneNet train their feature extractor directly for the task of 3D lane prediction (as
well as camera height and pitch prediction), Gen-LaneNet instead predicts a binary
segmentation of the input image (classifying each pixel as belonging to a lane or not)
as a first step in their feature extraction. They then use this predicted binary mask as
input to the second part of the network that extracts further features by subsequent
convolutional layers and then predicts 3D lanes solely based on this, without using
any other information from the original input image than the extracted binary mask.
The reason for their adoption of a two stage framework is that it lets them utilize
large 2D lane detection datasets to make a good feature extractor (the part of
the network that predicts the binary mask), while 3D-LaneNet is constrained to
training their whole architecture only on annotated 3D lanes data. While this is an
obvious advantage of Gen-LaneNet, it is also an apparent drawback since valuable
information may be lost when converting the original image to a binary mask.

In summary, these data-driven 3D lane detection models have the possibility of
overcoming many of the shortcomings of previous methods, including poor gen-
eralizability of heuristic methods for feature extraction, complex and error-prone
clustering of the extracted features to create lane instances, as well as commonly
used assumptions on road and lane geometry. However, as explained in Section 1.1
these models rely on expensive training data in the form of 3D lanes annotations.
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While both 3D-LaneNet [7] and Gen-LaneNet [10] use synthetic data to develop
their models, they don’t investigate if the synthetic data can mitigate the need for
labeled real-world data. As described in Section 1.1, Garnett et al. [13] show that
training on synthetic data can increase the performance on real-world data for the
task of 2D lane detection. The problem with training on synthetic data is that the
difference in appearance between synthetic and real-world images makes it difficult
for the model to generalize to real-world data. [13] therefore investigates several do-
main adaption techniques, including a novel autoencoder-based approach, that aim
to adapt models trained on the unrealistic synthetic images to real-world images.
Although their proposed domain adaption techniques indeed make the network gen-
eralize better to real-world data, they also show that training on the synthetic data
in a naive way, using the regular supervised loss function, also improves the perfor-
mance of the model, regardless of the domain differences. This basic approach of
leveraging synthetic data is also used by [11] for 3D lane detection and they show
that training on synthetic data increases the performance of their 3D lane detector.
However, [11] have a large labeled real-world dataset of around 300 000 images and
it is yet unclear how much of this data can effectively be replaced by the synthetic
data.

To the best of our knowledge, improving the performance of 3D lane detection mod-
els by training on unlabeled data has not been investigated either. However, there
has been extensive research towards leveraging unlabeled data to train deep learning
models for other (supervised) tasks. For example, [19] leverage right-left consistency
of two monocular cameras mounted at the front of a vehicle to learn monocular depth
estimations from unlabeled data. Pasad et al. [56] also utilize a notion of consis-
tency of objects between different frames, but instead of using two different cameras
they take these frames from a video sequence captured by a single camera. The
videos are taken from static indoor scenes with a moving camera that captures the
scene from different viewpoints and they leverage these unlabeled video sequences to
improve the performance of a semantic segmentation model. Their idea is to utilize
spatio-temporal consistency of the objects seen in the video sequence and train the
network to make consistent predictions over consecutive frames. For this purpose
they formulate a measure of consistency between the predicted semantic mask of any
two consecutive frames Ft and Ft+1. By predicted the camera’s movement between
the two frames they can compute the transformation T that transforms the pixels of
frame Ft into frame Ft+1. Using this transformation, they compute T (Pt) that is the
predicted mask Pt of frame Ft transformed into frame Ft+1. Since the video is taken
from static scenes one can expect T (Pt) and Pt+1 to be similar if both predictions
are correct, and therefore the network is penalized by any difference between T (Pt)
and Pt+1.

This loss function formulation for unlabeled data is only dependent on the predic-
tions of the network and therefore no ground truth labels are needed. [56] first train
their model on a small labeled dataset until convergence and then add the unla-
beled data and use the consistency loss as an additional supervision signal to train
the model further. This is done at different levels of supervision (using different
amounts of labeled data), while always using the full unlabeled dataset. The key
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result of their work is that a model trained with the consistency loss on unlabeled
data in conjunction with supervised training on a small labeled dataset achieved
comparable performance with a model trained on a labeled dataset of four times the
size. This means that the semi-supervised approach effectively reduced the amount
of required labeled data by a factor of four. However, an increase in performance
when adding the unlabeled data was only observed when the size of the labeled
dataset was relatively small. Meaning that no gain in performance was observed
when the model had access to a much larger labeled dataset.

Although [56] consider the problem of semantic segmentation, the main ideas of
their approach may be applicable also to other tasks. In particular, they leverage the
spatio-temporal consistency of static objects filmed by a moving camera. Since lane
markings on the roads are also static objects and the movement of a vehicle-mounted
camera can be computed easily by using for example an Inertial Measurement Unit
(IMU), it is not too far-stretched to believe that the same concept could be applied
also to 3D lane detection. Using a measure of consistency of 3D lanes through video
sequences could allow for training 3D lane detection models on unlabeled data in
a similar fashion as [56] did for semantic segmentation, and thus mitigate the need
for large labeled real world 3D lanes datasets.
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Methods

Motivated by the recent success of 3D lane detection models, as well as semi-
supervised learning methods, we introduce and investigate a novel spatio-temporal
consistency loss for 3D lane detection that we use to train 3D-LaneNet [7] on unla-
beled data in a semi-supervised fashion. While the consistency loss and method for
semi-supervised training is new, we do not make any additions to the architecture of
3D-LaneNet. Instead, we use the unofficial Pytorch implementation of 3D-LaneNet,
made by [10], as reference and reimplement 3D-LaneNet in Tensorflow without any
major changes.

The layout of this chapter is as follows: Sections 3.1, 3.2 and 3.3 describe the relevant
coordinate systems as well as the top-view projection and lane anchors used by the
model. The architecture and implementation details of the model are then described
in Section 3.4, followed by a description of the used evaluation metrics in Section
3.5. Thereafter, the semi-supervised approach is explained in Section 3.6 and finally
the datasets and conducted experiments are described in Sections 3.7 and 3.8.

3.1 Coordinate Systems

There are two coordinate systems used in this project which are called Ccam and
Croad. The coordinate system Ccam is simply defined as the system with the camera
in the origin and orientated with the forward direction pointing in the direction of
the camera. The coordinate system Croad lies straight beneath Ccam but is oriented
such that the forward direction is aligned with the road surface. This means that the
transformation between these coordinates systems is uniquely defined by the camera
pitch (with respect to the local road surface) and the height of the camera above the
ground. Estimating the transformation by predicting the camera pitch and height
allows for warping the image to a virtual top-view, which is a key component in the
network architecture. Furthermore, Croad is also used when representing both the
ground truth and predicted lanes. In Croad, the x-axis points to the right (lateral
direction), the y-axis points forward (longitudinal direction) and the z-axis points
up (vertical direction), as shown in Figure 3.1.
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Figure 3.1: An illustration of the coordinate systems Ccam and Croad.

3.2 Top-view Projection
A core piece of the model is the representation and extraction of feature maps in both
the image plane and the virtual top-view. This is done by transforming the image-
view feature maps (feature maps extracted from the input image) to top-view feature
maps by using the predicted camera pitch and height. To get a good understanding
of what the top-view is, an example where the input image is transformed to top-view
is shown in Figure 3.2. As will become clear after reading Section 3.4.1, it is only the
extracted feature maps from convolutional layers that are transformed to top-view
and not the input image itself, which is important to keep in mind when reading this
section. However, since feature maps essentially can be viewed as images with some
height, width and number of channels, the method for top-view transformation can
be used analogously for both images and image-view feature maps. The top-view
projection is done in the Projective transformation layers, which can be seen in the
model architecture in Figure 3.4.

To transform the image to top-view a uniform, rectangular grid consisting of ŵ× ĥ
points is defined in the coordinate system Croad. The width and height/length of
the grid is 20 and 96 meters respectively and the points in the grid are evenly spaced
between x = −10 and x = 10 meters and y = 5 and y = 101 meters in Croad, while
the z-coordinate is zero for all points (meaning that the grid lies flat on the ground).
In other words, the grid consists of regularly spaced rows with a distance of 20/ŵ
meters between each row in the lateral direction and 96/ĥ meters in the longitudi-
nal direction, with corners in {(x, y)}4

i=1 = {(−10, 5), (10, 5), (−10, 101), (10, 101)}.
After the grid has been defined, it is transformed into the coordinate system Ccam

by using the predicted height and pitch of the camera. It is thereafter projected
into image by using the intrinsic calibration matrix of the camera, which depends
on certain properties of the used camera such as the focal length of the lens. The
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intrinsic calibration is held constant for the experiments with data collected from
the same dataset (taken with the same type of camera). As seen in Figure 3.2, the
grid does not look regular when viewed in the image, which is of course due to the
perspective transformation that makes distant objects appear smaller in the image
than objects close to the camera.

When projected into the image, the grid simply defines which points to sample
from the original image to create the top-view image. That is, each point in the
grid determines the value of one pixel in the top-view image, which is computed by
sampling the original image at the positions specified by the grid. Since the position
of each grid point in the image is not necessarily integer valued, while the image
is discretized in pixels, bilinear interpolation is used to compute the value of the
image pixels at the specified positions. This is done for each channel separately, thus
preserving the number of channels of the input. Since each grid point determines
the value of one pixel in the top-view image, the width and height of the top-view
is equal to the width and height of the grid.

Figure 3.2: Illustration of how an image is transformed to top-view by sampling
the image at the positions specified by the sampling grid. This transformation is
then applied on each color channel.

3.3 Anchors
Since 3D-LaneNet essentially casts the lane detection task as an object detection one
and works in a similar fashion as one-stage object detectors, it too uses the concept
of anchors to make predictions. In this case, the set of anchors {Ai}N

i=1 consists of
equally spaced longitudinal lines with zero height and constant lateral offset. Each
anchor is represented by the set of k points in the coordinate system Croad given
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by {(X i
A, yj, 0)}k

j=1, where y = {yj}k
j=1 is common for all anchors and specifies the

predetermined values in the longitudinal direction and X i
A is the constant lateral

offset of anchor Ai. With respect to each of the N anchors, the output of the network
consists of a confidence prediction pi that describes whether anchor i is associated
with a lane or not, as well as predictions (xi, zi) = {(xi

j, z
i
j)}k

j=1 that correspond to
lateral and vertical offsets with respect to the k points of anchor i. In summary, the
prediction (xi

j, z
i
j) corresponds to the point in 3D space given by (X i

A + xi
j, yj, z

i
j) in

the coordinate system Croad. The anchor representation is illustrated in Figure 3.3.

Figure 3.3: Illustration of the lane anchors and the predicted offsets at the prede-
fined y-values to a given anchor.

For the purpose of training, the ground truth lanes are assigned to the closest anchor
at yref = 20m. If more than one lane is closest to the same anchor the longest
lane will be assigned to this anchor, while the other lane(s) are disregarded during
training. Following the method of 3D-LaneNet, any lanes that do not cross yref

inside the top view region (described in Section 3.2) are disregarded during both
training and validation.

In our experiments, the number of anchors N was set to 16 and the anchors were
chosen to be represented by ten points (k = 10). The predefined y-values of the
anchors were set to {6.5, 10, 15, 20, 30, 40, 50, 60, 80, 100} meters and the constant
lateral offsets X i

A were equally spaced between -10 and 10 meters, meaning that the
distance between the anchors is ≈ 1.33 meters. This is the same setup that [10]
used in their unofficial implementation of 3D-LaneNet, with the exception that we
have changed the first y-position from 5 to 6.5. This was done because the hood of
the vehicle usually covered the road at y = 5 meters and therefore we did not have
many ground truth lanes starting this early.
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3.4 Model

The model used in this study is a reimplementation of the 3D-LaneNet [7] in Keras,
based on the code used in the article Gen-LaneNet [10].

3.4.1 Architecture

A schematic overview of the network is illustrated in Figure 3.4 and the specific
details are listed in Table 3.1. The layers are clustered into what we call L−layers.
Information passed to the network is split up and processed in two parallel pathways
via the so called dual-pathway backbone [7]. The model can be divided into four
quadrants, which in the 3D-LaneNet article are called: the Image-view pathway, the
Road plane prediction branch, the Top-view pathway and the Lane prediction head.

Figure 3.4: The 3D-LaneNet [7] architecture used in this thesis. The model consists
of a dual pathway that includes convolutional, max pooling and dense layers together
with a projective transformation layer that transforms the feature maps from image-
view to top-view. The image is inspired by [7].
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L−layer Width Height #Filters
1 w h N/A
2 w h 64
3 w/2 h/2 128
4 w/4 h/4 256
5 w/8 h/8 512
6 w/16 h/16 512
7 w/32 h/32 256
8 w/64 h/64 128
9 w/128 h/128 64
10 dim = 1× 1× 64
11 dim = 1× 1× 1
12 ŵ = 128 ĥ = 208 N/A

13 ŵ/2 ĥ/2 128
14 ŵ/4 ĥ/4 256
15 ŵ/8 ĥ/8 = 26 256
16 ŵ/8 24 64
17 ŵ/8 22 64
18 ŵ/8 20 64
19 ŵ/8 16 64
20 ŵ/8 12 64
21 ŵ/8 8 64
22 ŵ/8 4 64
23 dim = 1× ŵ/8× 256
24 dim = 1× ŵ/8× 64
25 dim = 1× ŵ/8× 3(2k + 1)

Table 3.1: Table containing information about the dimensionality of the L−layers.
Here w and h are the width and height of the input image while ŵ and ĥ are the
width and height of the first top-view feature map.

Image-view pathway

The first part of the network is the Image-view pathway. This part of the net-
work takes in the RGB-channels of the input image and propagates the information
through several convolutional and maxpooling layers, following the structure of the
first part of the standard VGG16 [57] network. Here spatial features in the original
image-plane are preserved. The final output of the Image-view pathway is sent to the
road plane prediction branch. Furthermore, the output from L3, L4, L5 and L6 is
sent to the Top-view pathway via a Projective transformation layer which transforms
these image-view feature maps to top-view as described in Section 3.2.

Road plane prediction branch

From the Image-view pathway the output features of L6 is sent to the Road plane
prediction branch which goes through a similar process as the Image-view pathway of
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convolving and maxpooling. The information is then sent to L10 and L11 which are
two fully connected layers resulting in two values: the predicted height and pitch of
the camera (Θt in Figure 3.4). The predicted pitch and height is then sent together
with the outputs from L3, L4, L5 and L6 to a Projective transformation layer, see
Section3.2.

Top-view pathway

The second part of the parallel pathway is the Top-view pathway where all features
are represented in the top-view plane. Following a similar procedure as in the
image-view pathway, the signals are convolved and maxpooled with the addition of
concatenation of the projected outputs of the feature maps from the L3, L4, L5
and L6. This means that we are combining the spatial features gathered in both
the image-view plane and the top-view plane. The signal is then sent to to Lane
prediction head where the final predictions of the 3D-Lanes are made.

Lane prediction head

The final part of the network is the Lane prediction branch, which takes in the
output features of L15 and further convolves the information. The final output of
L25 are the predicted 3D lanes which are represented by the lane anchors defined
in Section 3.3. The output contains the predicted lateral and height offsets to each
of the anchors as well as confidence scores of the existence of a lane at each anchor.

The final output dimension of the network becomes dim = N × (2k + 1) = 336,
where N = 16 is the number of anchors and k = 10 is the number of points that
each anchor consists of.

3.4.2 Supervised Loss Function
The supervised training of the model is done using a loss function consisting of three
parts:

L = −
[

N∑
i=1

(p̂i log(pi) + (1− p̂i) log(1− pi))
]

+
N∑

i=1
p̂i ·

(
‖xi − x̂i‖1 + ‖zi − ẑi‖1

)
+ |θ − θ̂|+ |h− ĥ|.

(3.1)

In Equation 3.1, the variables with hat denotes the ground truth labels while the
ones without are the predictions. Here p is the probability that there is a lane at
the given anchor (the ground truth is simply an indicator taking the value 0 or
1), {xi}N

i=1 and {zi}N
i=1 are the offsets with respect to the lane anchor i for all N

anchors, θ is the camera pitch and h is the camera height.
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The first sum is a cross entropy loss over the confidence scores of the lane anchors.

The second sum is a l1-norm penalty for the vertical and lateral offsets. Each term
in the sum is multiplied with the ground truth lane anchor probability, which is
either 1 or 0. Since we only have information about the lanes that exist and do
not know anything about the other anchors, we cannot penalize the models outputs
where lanes do not exist. Finally a penalty for the predicted height and pitch is
added to the loss function.

3.4.3 Implementation Details
The model was implemented in Keras, Tensorflow, where the VGG16 architecture is
easily accessible. We do not use any pre-trained weights for the VGG16 [57] back-
bone, or any other parts of the model, but instead use random initialization for all
the weights in the network. We use the standard Glorot normal initializer avail-
able in Keras, which is also known as the Xavier normal initializer. Following the
unofficial implementation of 3D-LaneNet by [10], we include batch normalization
layers after every convolutional and dense layer (except for those layers that out-
put the predictions of the network) and include a dropout layer before the camera
height and pitch prediction (L11). However, since it is not clear if 3D-LaneNet [7]
actually used batch normalization and dropout in their original implementation, we
introduce the hyperparameters batch norm and dropout to allow for training models
also without these optional layers. The batch normalization and dropout layers are
included if the hyperparameters batch norm or dropout is True respectively, and
excluded otherwise.

For supervised training, the learning rate is scheduled such that it is divided by
a constant LRd (learning rate decay) every LRi (learning rate interval) epochs.
Therefore, the learning rate schedule entails three hyperparameters given by the
initial learning rate and the constants LRd and LRi. During all experiments, the
Adam optimizer was used to train the network.

Regularization was also investigated as a way of facilitating the training process.
The kernel och bias l1-regularization available in Keras was applied on every con-
volutional and dense layer except for those responsible for the predictions of the
network. To be able to adjust the amount of regularization we defined the input
to the Keras regularizer, which determines the magnitude of the regularization, as
a hyperparameter that we call regularization. No regularization is applied if regu-
larization is zero and the magnitude of the applied regularization is scaled linearly
with regularization if it is greater than zero.

Since we use a very small dataset compared with [7] (3194 labeled images in the
training set instead of roughly 100,000 images) we also tried using a constant camera
height and pitch instead of predicting these values. In this case, the mean height
and pitch of the training set was used to transform image view feature maps to
top-view in the projective transformation layers, rather than using the predicted
height and pitch. The hypothesis was that using a constant height and pitch may
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be advantageous in the case of little available data since poor height and pitch
predictions may result in skewed/erroneous top-view projections, which make it
difficult for the model to accurately predict the 3D lane geometry. For this purpose,
a hyperparameter denoted as constant cam was introduced, which takes the value
True if a constant height and pitch is used and False otherwise.

3.5 Evaluation
To evaluate the predictions of the network on the validation and test datasets,
the network’s output was first transformed into 3D lanes. This is accomplished
by first applying a probability threshold pth on the predicted confidence scores of
the network’s sixteen anchors. Each anchor with predicted confidence less than pth

were discarded and the predictions with higher confidence than pth are considered
as positive predictions. For each positive prediction, the 3D lane geometry is then
computed by using that the predictions xi and zi of anchor i correspond to the
points in 3D space given by {(X i

A + xi
j, yj, z

i
j)}k

j=1, as explained in Section 3.3. This
essentially transforms the predicted confidences and offsets of the sixteen anchors
into a (small) set of predicted 3D lanes.

In order to evaluate how well the set of predicted 3D lanes approximates the set
of ground truth lanes, the global optimal matching between the two sets is sought.
Following the method of [10], this is accomplished by formulating the matching
problem as bipartite matching problem and seeking the solution with the min-cost-
flow solver from the ORTOOLS package in Python. For this purpose, the lanes are
first resampled into a denser representation such that each lane is represented by a
set of K points {xi

j, yj, z
i
j}K

j=1, where {yj}K
j=1 = {7, 8, 9, 10, ..., 100} is common for

all lanes and {xi
j}K

j=1 and {zi
j}K

j=1 depends on the corresponding prediction. The
sampling is done via piece wise linear interpolation in x and z, meaning that these
variables are viewed as functions of the position in the forward direction y. For
example, to compute the x-value at a point y = b that lies in between y = a and
y = c, for which the predictions are xa and xb respectively, the following equation
is used:

xb = (c− b) xa

c− a
+ (b− a) xc

c− a
. (3.2)

This holds for any point a <= b <= c where a and c is in the set of original y-values
({6.5, 10, 15, 20, 30, 40, 50, 60, 80, 100}) and b is one of the new y-values. z-values at
the interpolated points are computed analogously. After resampling the lanes into
denser representations, the cost of matching lane m with lane n is defined as

costmn =
K∑

j=1
dmn

j ,

where dmn
j is given by the following equation:
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dmn
j =

log(
√

(xm
j − xn

j )2 + (zm
j − zn

j )2 + 1), if both lanes exist at j
dth, otherwise.

(3.3)

This definition of the cost of matching two lanes is used by the min-cost-flow solver
and the global optimal matching is defined as the one that matches the set of
ground truth and predicted lanes with the lowest total cost. By adding a penalty of
dth for each point that is not covered by both lanes, it is possible to match partly
overlapping lanes with this method. This is important since the ground truth lanes
of our datasets don’t always stretch over the full prediction range of 6.5-100 meters.

This formulation of the distance metric dmn
j is slightly different from the one used

by [10]. They use the Euclidean distance if both lanes exist for a point, instead of
the natural logarithm of the Euclidean distance (plus one) as we do. The reason for
adding the logarithm is that it makes the matching more stable.

Consider for example the fictional case shown in Figure 3.5, where the positions
of a lane for simplicity is represented by a single point on a one dimensional line.
In this case, the ground truth lanes A and B have the following distances to the
predicted lanes C and D: ‖A− C‖ = 1, ‖A−D‖ = 2, ‖B − C‖ = 0, ‖B −D‖ = 1.
The cost of the matching A− C and B −D is therefore equals 2, which is also the
cost of matching A − D and B − C when dmn

j is defined without the logarithm.
However, when defining dmn

j with the logarithm the cost of matching A − C and
B − D becomes log(1 + 1) + log(1 + 1) ≈ 1.39, while the cost of matching A − D
and B − C is only log(2 + 1) + log(0 + 1) ≈ 1.10. In this case, it seems likely that
prediction C is trying to predict the ground truth lane B, while prediction D is a
faulty detection. Therefore, the latter method for matching the lanes is preferred
(the fact that A is matched with D in this case is not an issue and will be handled
later as an invalid match).

Figure 3.5: Simplified one dimensional representation of ground truth lanes (blue)
and predicted lanes (orange).

This theoretical motivation also translates to practical scenarios such as the one
shown in Figure 3.6, where ground truth and predicted lanes are shown in blue
and orange respectively. In this example, the min-cost-flow solver not using the
logarithm finds the matching between ground truths and predictions as 1→1, 2→2
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and 3→3 (see the numbering of the lanes in Figure 3.6). This is obviously not
desired and is a consequence of the linear scaling of the Euclidean distance. When
incorporating the logarithm, the matching instead becomes 1→2, 2→3 and 3→1
between ground truths and predictions.

Figure 3.6: The figure shows three predicted lanes (orange) and three ground truth
lanes (blue).

After the global optimal matching has been found, it is known what predictions
correspond to what ground truths. It is then possible to define metrics such as
precision and recall as well as measuring the average distance between the matched
lane pairs. Ground truth lanes are considered detected successfully if at least 75 %
of its points (may be fewer points than K since not all ground truth lanes stretch the
full range from 7 to 100 meters) have a distance less than dth to the matched lane.
That is if dmn

j is less than dth for at least 75 % of its points. Similarly, a prediction
is considered correct if at least 75 % of its (always K) points have a distance less
than dth to the matched ground truth. The precision and recall is computed as

Precision = Predcorrect

Predtotal
(3.4)

and
Recall = GTdetected

GTtotal
. (3.5)
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In the above equations, Predcorrect and Predtotal are the number of correct predic-
tions and the total number of predictions respectively, while GTdetected and GTtotal
is the number of successfully detected ground truth lanes and the total number of
ground truth lanes respectively. Note that the numerator is not necessarily the same
in these definitions and therefore differs from the standard definitions of precision
and recall in this sense. The numerators may differ if for instance a short ground
truth lane is matched with a long predicted lane. In this case, the ground truth lane
may be considered detected successfully since all of its points may be covered by the
predicted lane, while the predicted lane is considered incorrect since less than 75 %
of its points may be covered by the short ground truth lane.

The precision-recall curve is then computed by varying the probability threshold
from 0.05 to 0.95 with step length 0.05 and computing precision and recall for each
value. The F-score is also computed for each value of the probability threshold and
the maximum F-score is reported as one of the key metrics. Precision and recall
was set to 0 and 1 for pth = 0 and set to 1 and 0 for pth = 1 respectively for the
purpose of computing the average precision (AP). The found values of recall and
precision constitute a set of irregularly spaced points that are then interpolated at
even intervals with piece wise linear interpolation. The mean of these interpolated
points constitute the average precision of the model. Figure 3.7 illustrates the
experimentally found points in blue (with the exception of the first and last points
that are added manually), from which the red points are interpolated and used to
compute AP. This method of computing AP is not exactly in line with what was
found in the theory section and may give rise to some error since the end points
of the graphs are not correctly accounted for. However, this is the method that
Gen-LaneNet [10] used to compute AP and since this is one of the few sources for
comparison available, we chose to do the same.

Figure 3.7: Illustration of an experimentally found precision-recall curve (blue)
and the regularly spaced interpolated points of this curve (red).
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Furthermore, for each matched lane pair with average point wise distance less than
dth (denoted as a valid match) the average absolute lateral and vertical error is
computed. This is done in the close range (0-40 meters) and far range (40-100
meters) separately for each such lane pair. The close and far range errors are then
averaged over all such lane pairs to get the close and far range error metrics for the
whole dataset. The probability threshold pth is set to the same value that gave rise
to the maximum F-score described earlier, such that both the lane geometry errors
and the reported (max) F-score are based on the same set of predictions (using the
same probability threshold).

In our experiments, dth is set to log(1.5 + 1) such that

log(
√

(xm
j − xn

j )2 + (zm
j − zn

j )2 + 1) < dth ⇐⇒
√

(xm
j − xn

j )2 + (zm
j − zn

j )2 < 1.5.
(3.6)

Meaning that dth = log(1.5 + 1) does not allow for an Euclidean distance between
points larger than 1.5 meters when for example computing precision and recall,
which effectively is the same threshold as [10] used. In summary, the metrics used
to evaluate the model’s performance is (max) F-score, AP and x-error and z-error
in the close and far range.

3.6 Semi-supervised Training
The developed method for unsupervised training is based on the assumption of con-
sistency of 3D lanes in video sequences. In general, it is likely that some parts of the
lanes observed in one frame of a video sequence are also observed in the next frame,
given that the time interval between the two frames is not too large. Therefore, the
predicted 3D lanes of two such frames should partly overlap/be close together in 3D
space, if the predictions are close to correct. The proposed method leverages this
fact and constitutes a framework for training 3D-LaneNet to make consistent predic-
tions on unlabeled video data. The remainder of this section describes our method
in detail as well as the assumptions and observations that lead up to the proposed
method. Section 3.6.1 describes the consistency loss function that is used as an unsu-
pervised training objective and Section 3.6.2 describes the semi-supervised training
scheme used for training the model on labeled and unlabeled data simultaneously.

3.6.1 Consistency Loss
Given two images from a video sequence, one can impose some notion of consistency
on the predicted 3D lanes as these should partly overlap for correct predictions.
However, it is not certain that consistent predictions are correct. For example, if
both images from the video sequences are taken from the same position (i.e. the
vehicle is standing still) the predicted 3D lanes will be consistent as long as the
predictions are the same in both frames. That is, the network can predict any kind
of lanes in both frames and be consistent, but certainly not correct. On the other
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hand, if the vehicle has significant movement in between the two frames it is likely
that the vehicle’s relative position to the lanes as well as the lane curvature (as
viewed from the vehicle) changes between the two frames. In this case, making
correct predictions of lanes seems like one of the only possibilities for the network
to be consistent. This observation poses a constraint on the unlabeled dataset used
for consistency loss: the vehicle should have significant movement between the video
frames in order to avoid any trivial consistent predictions.

Another concern about the consistency of lanes is that lanes visible in one frame are
not always visible in the next. Particularly in urban environments, where lane
topologies are complex and can change quickly over short distances, it is quite
common that the lanes seen in one frame are not the same as those seen in the next
frame, especially when it is desired that the vehicle has some movement between
the frames as described previously. Due to the regularity of the lanes on highways,
this road type seems particularly well suited for imposing consistency. The fact that
the lane topologies are usually constant over far distances on highways makes it
possible to impose consistency between lanes even though the vehicle has significant
movement between the frames. Due to this reason, and to keep the unlabeled
dataset and consistency between 3D lanes as simple as possible, the dataset used
for unsupervised training only includes images from highways. Furthermore, the
method that will be presented here only considers consistency between image pairs,
although it could be possible to impose consistency over several frames.

It is now time to formalize the notion of consistency between two sets of lanes.
Intuitively, if one knows that a predicted lane of frame t corresponds to the same
ground truth lane as a predicted lane of frame t+1, it makes sense to enforce spatial
consistency on these predictions such that they align well in 3D space. However,
since the ground truth lanes are unknown for unlabeled data we are forced to guess
which predictions correspond to the same ground truth. This guessing game becomes
quite difficult since the vehicle’s movement relative to the lanes between the two
frames makes it so that the responsibilities of the 16 anchors of the network may
change between the frames. For example, it may be the case that the seventh anchor
in frame t predicts the same lane as the tenth anchor in frame t+ 1. Since there is
no easy way of knowing which lane each anchor will predict in the two frames, we
resort to investigating this explicitly by matching the predicted 3D lanes of the two
frames. This is done by first transforming the predicted 3D lanes of frame t+ 1 into
frame t using the 3D coordinate transformation between these two frames given by
processed accurate GPS data. The global optimal matching between the two sets
of lanes is then sought in analogy with the matching process used during evaluation
as described in Section 3.5. When matches between the predicted lanes have been
found, it is possible to enforce spatial consistency between the matched lanes as well
as penalizing the network’s confidence predictions. The method for computing the
consistency loss is schematically illustrated in Figure 3.8.
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Figure 3.8: Schematic illustration of how the consistency loss is computed between
two sets of predicted lanes.

What follows is the mathematical definition of the consistency loss that is used
to penalize both lane geometry and confidence predictions. Given the predictions
{pi}N

i=1 and {(xi, zi)}N
i=1 of frame t and {p̂i}N

i=1 and {(x̂i, ẑi)}N
i=1 of frame t+1, all the

predictions with confidence less than pth is disregarded. The remaining predictions
are then transformed into 3D space by using the fact that the prediction (xi

j, z
i
j)

corresponds to the point in 3D space given by (X i
A + xi

j, yj, z
i
j) in the coordinate

system Croad, as described in Section 3.3. The predictions of frame t + 1 are then
transformed to Croad of frame t and the lanes are resampled at common longitudinal
positions by piece wise linear interpolation. The resampled lane that originated from
predictions pi and (xi, zi) is now defined by a new set of points in 3D space given by
(xiext,yext, ziext), where each of these vectors are of some length q and yext is a vector
of predetermined sampling positions. Similarly, the resampled lane that originated
from the predictions p̂i and (x̂i, ẑi) of frame t+ 1 is denoted by (x̂iext,yext, ẑiext).

Note that the longitudinal positions given by yext is the same for the predictions
of both frame t and t + 1. Furthermore, yext only corresponds to points that lie
within the common region of the lanes from frame t and t+1 as shown in Figure 3.8
(e.g. 50-100 meters in Croad), which depends on the distance traveled by the vehicle
between the two frames. In our work, yext is by default set to 10, 15, 20, ..., 100 and
then the points that don’t lie within the common region are removed, such that
both predictions of frame t and t+ 1 exist for all the remaining points in yext.

After resampling the lanes at the positions defined by yext, the lanes are matched
using the min-cost-flow algorithm with the same cost function as described in Section
3.5. Again, the matched lane pairs that have a smaller average distance than dth

(again compared with the logarithm of the Euclidean distance as in Equation 3.6)
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are considered valid matches. The consistency loss then consists of two components,
one for valid matches and one for invalid matches. If the predicted lane given by pm

and (xm, zm) of frame t forms a valid match with the prediction p̂l and (x̂l, ẑl) of
frame t+ 1, the consistency loss between this lane pair is computed as

Lm,l
valid = Lm,l

p + Lm,l
xz , (3.7)

where

Lm,l
xz = ‖xmext − x̂

l
ext‖1 + ‖zmext − ẑ

l
ext‖1 (3.8)

Lm,l
p = − log(pm)− log(p̂l). (3.9)

The total consistency loss of all valid matches is then given by

Lvalid =
∑

(m,l)∈V

Lm,l
valid, (3.10)

where V is the set of all valid matches. Finally, a penalty for not finding a valid
match is applied as

Linvalid = −
∑

i∈U1

log(1− pi) +
∑
i∈U2

log(1− p̂i)
 , (3.11)

where U1 and U2 are the set of all anchors of frame t and t+ 1 respectively that did
not find a valid match.

The total consistency loss is the sum of the penalty applied on the valid and invalid
matches, such that

Lc = Lvalid + Linvalid. (3.12)

In summary, the anchors that correspond to valid lane matches are penalized as to
predict 1.0 confidence and all other anchors are penalized to predict 0.0 confidence
using the cross entropy loss. The underlying assumption of penalizing the confidence
predictions in this way is that lanes that found a valid match over the two frames are
likely to be correct, while the lanes that do not are likely to be incorrect predictions.
Furthermore, the predictions of the lane geometry of valid matches are penalized
with l1-norm to be consistent.

Note that the geometric part of the consistency loss penalizes the predictions of
the network implicitly by computing the loss based on, for example, xmext and x̂lext
rather than the predictions xm and x̂l. However, each of the points in xmext depends
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linearly on some two points of xi, so it’s straight forward to compute the gradients
from this formulation.

The described consistency loss entails two hyperparameters, namely the distance
threshold dth that defines which matches are valid and the probability threshold
pth that defines which predictions are considered positive predictions. The distance
threshold should be set low enough such that the predictions of two adjacent lanes
can never be considered valid, meaning that dth should be smaller than log(x + 1)
(again using Equation 3.6) where x is the typical lane width (in Sweden the minimum
width of a standard lane is 3.25m [58]). Of course, dth should not be too close to
zero either, because then essentially no lanes will constitute valid matches. However,
there is a quite large span of values between 0 and the typical lane width that could
work well, and it is difficult to argue which value of dth is most suitable without doing
any experiments. On the other hand, it is certainly easier to argue which value of the
probability threshold should work best. Since the consistency loss is based on the
assumption that the predicted (and matched) lanes describe the underlying ground
truth lanes as well as possible, the obvious choice of pth is to set it to the value that
resulted in the maximum F-score on the validation set. This is straight-forward
to compute since, in the semi-supervised approach (explained in the next section),
predictions on unlabeled data are always preceded by supervised training. In a sense,
this value of the probability threshold results in the most accurate predictions of the
network (best trade-off between precision and recall). Using this value of pth and
some appropriate value of dth together with the loss function explained above will
later be referred to as the standard consistency loss.

Although this choice of the hyperparameter pth should be suitable for the consistency
loss, it could also be interesting to investigate the effects of setting pth = 0. In this
case, all the 16 predicted lanes of the network are considered positive predictions.
This implies that the 16 lanes from frame t will be matched with the 16 lanes from
frame t + 1, which makes it likely that the number of found valid matches greatly
exceeds the number of ground truth lanes. Therefore, the underlying assumption
that valid matches over the two frames are likely correct will not hold in this case,
and the proposed way of penalizing the confidence predictions is not appropriate.
In order not to make any such assumption in the case of pth = 0, Equation 3.9 can
be replaced by Lm,l

p = |log(pm) − log(p̂l)| such that valid matches are penalized to
predict the same confidence, rather than predicting 1 in confidence. However, any
invalid matches can still be penalized to predict zero confidence. Using pth = 0
and this alternative confidence penalization was investigated as an option to the
standard consistency loss and will later be referred to as the alternative consistency
loss.

This concludes the definition of the consistency loss function that is used to supervise
the network on unlabeled data. What remains is to formulate a semi-supervised
training scheme that allows for utilizing both labeled and unlabeled data during
training, which is done in the next section.

41



3. Methods

3.6.2 Semi-supervised Training Scheme

As described in the previous section, the formulated consistency loss requires a
matching between the predicted lanes of frame t and those of frame t + 1. The
matching is essential in the consistency loss formulation as it defines how the network
will be penalized during training (one type of penalization is applied to anchors
that found a valid match and another to those that didn’t). Since the matching is
done between the predicted 3D lanes, it is evident that the computed matching is
dependent on the predictions of the network. To ensure that the matching between
the anchors in any given unlabeled image pair doesn’t change sporadically during the
course of training, we propose computing the matching only once and thus keeping
the matching (and the consistency loss function) constant during the entirety of the
training. If the matching is recomputed at every epoch, the way that the consistency
loss penalizes the network may change from one epoch to another, which makes it
difficult for the network to converge.

Therefore, we propose the following method for training the model semi-supervised,
which we call the Basic scheme.

Basic scheme:

1. Train the network on the labeled dataset until convergence.

2. Make predictions on the unlabeled dataset and compute the global optimal
matching for each unlabeled image pair given the current predictions.

3. Add the unlabeled data for which the consistency loss can be used (the network
found at least one valid match) to the training set.

4. Train further on both labeled and unlabeled data using the regular loss and
the consistency loss respectively (since the matching is kept constant for each
unlabeled image pair it never has to be recomputed during training).

One drawback of computing the matching only once is that a poor matching will
effect the network negatively during the whole training. For instance, if there exist
three ground truth lanes in a given image pair but the network only found two valid
matches, the network will be trained to only detect these two lanes and disregard
the third one. Therefore, it is essential that the matches are of good quality for
the consistency loss to work well. To ensure this, one could instead only add the
unlabeled data for which all of the network’s predicted lanes constitute valid matches
to the training set. The assumption that motivates this approach is that it is less
likely that the network missed any ground truth lanes, or predicted too many lanes,
if every predicted lane of the two frames constitute a valid match.

However, using this constraint on the unlabeled data used for training makes it likely
that only a small subset of the unlabeled dataset will be added when semi-supervised
training is started. It is therefore motivated to attempt adding more unlabeled data
at some later stage during semi-supervised training. This approach has similarities
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with commonly used self-training methods as mentioned in Section 2.3, where only
the confident predictions are used as pseudo-labels and more and more unlabeled
data is added iteratively as the network’s performance increases. To investigate
whether this attempt of ensuring good quality of the added unlabeled data (and
the found matches) is beneficial for semi-supervised training, we also propose the
iterative training scheme defined as follows.

Iterative scheme:

1. Train the network on the labeled dataset until convergence.

2. Make predictions on the (remaining) unlabeled data and compute the global
optimal matching for each unlabeled image pair given the current predictions.

3. Add the unlabeled data for which all of the network’s predictions constitute
valid matches to the training set.

4. Train further on both labeled and unlabeled data for a given number of epochs.

5. Iterate over step 2-5 until the unlabeled dataset is exhausted or no further
improvements are made.

The iterative training scheme is also illustrated in Figure 3.9.

Figure 3.9: Overview of the semi-supervised training scheme.

When training on the labeled data and unlabeled data simultaneously, it is necessary
to decide how the supervised loss (from Section 3.4.2) and the consistency loss should
be weighted compared to each other. For the possibility of varying the relative
importance of the supervised and consistency loss during training, we introduced
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the hyperparameter α and computed the total loss during training according to

Ltotal = (1− α)Lsup + αLc,

where Lsup is the supervised loss and Lc is the consistency loss.

3.7 Datasets

This section describes the collection/creation of the datasets used in this thesis.
The training, validation and test sets consists of 3194, 510 and 510 labeled real-
world images respectively. The unlabeled dataset used for semi-supervised training
consists of 2525 sequences containing two images each and the synthetic dataset
consists of 1609 labeled images.

3.7.1 Real-World Labeled Dataset

The real-world 3D lanes dataset was created by combining depth maps from ag-
gregated LiDAR point clouds (the depth maps constitute ground truth depths of
the pixels in the images) with 2D lane instance annotations and then applying some
post-processing to refine the extracted lanes. A schematic illustration of the method
is shown in Figure 3.10. Transforming the pixels that are annotated as lanes to 3D
coordinates with the help of the camera intrinsic matrix and pixels depths results
in 3D point clouds that correspond to the 3D ground truth lanes. Since the used
2D annotations were so called instance annotation, which constitute separate labels
for each lane instance, the output is a separate point cloud for each annotated lane.
Some post processing was then applied to these point clouds in order to remove
noise from the data as well as creating a continuous representation of the lanes.
A continuous representation is needed to be able to uniquely determine the lane’s
lateral and vertical offsets to the assigned anchor at every predefined position in the
forward direction during training.
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Figure 3.10: Overview of how 3D lanes are extracted from 2D lane annotations
and depth maps from aggregated LiDAR point clouds.

In order to create continuous lanes each point cloud was divided into bins that
each occupy 20 cm in the forward direction. The median of the points in each bin
was computed and saved as the lane’s position for this bin. Continuous lane lines
was then created by simply connecting the computed median points of each bin
with straight lines. The error introduced by approximating the lane’s position with
straight lines in between the median points of the bins is usually small since the
point clouds are dense. However, it is not always the case that all the bins are
occupied, especially when dealing with dashed lane markings, occlusions or lanes in
the far range where information in the image is more scarce. In these cases, there
may be gaps of several meters between the closest occupied bins. There is therefore
a risk of introducing a non-negligible error when approximating the lane’s position
with a straight line between such distant bin points. However, since the lane’s
position needs to be defined at the prespecified y-values for training it is necessary
to interpolate the lanes position at least a couple of meters (for example to overcome
the gaps in dashed lane markings). To cover as many of the predefined y-values as
possible, a quite generous threshold were used that allowed for connecting any bins
that were less than 20 meters apart.

Since the depth maps from the accumulated LiDAR point clouds were not completely
noise free there was also a need for filtering the point clouds for outliers. For this
purpose, the density based clustering algorithm DBSCAN was applied. Due to the
regularity of the typical lane geometry it is sensible to assume that the lane’s lateral
and vertical position changes slowly over distances in the forward direction. To
leverage this assumption, the lateral and vertical axes were scaled up such that
DBSCAN became more sensitive to changes in these dimensions. Therefore, if some
points of the lane have different vertical or lateral position from most nearby points
(in the forward direction) these will be classified as outliers. DBSCAN is effective in
filtering outliers when the density of the outliers is much smaller than the density of
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the inliers (hence the name). However, the density of the inliers can be very low in
the case of 3D lanes, especially in the far range, but this can also happen in the case
of partial occlusions and dashed lane markings. To deal with sparse inliers in the
far range, DBSCAN was applied in two different ranges separately, once in the close
range and once in the far range, using different hyperparameters for the algorithm
to match the general density of the lanes in both regions. Thereafter, RANSAC was
also applied to filter any outliers that DBSCAN missed. This helps in cases where
large parts of the data are faulty and therefore classified as inliers by DBSCAN
due to high density. RANSAC instead leverages the fact that lanes locally are well
estimated by lines and removes any points that deviate too much from the best line
fit to the data. Therefore RANSAC can also remove dense clusters of faulty points.
RANSAC was applied at three separate intervals (0-33, 33-67 and >67 meters in
the forward direction) to make sure that not many points were removed simply due
to lane curvature or other violations of the straight line assumption.

Finally, the ground truth pitch and height of the camera with respect to the local
road plane was determined. In our case, a static pitch and height calibration was
used for each separate drive of the vehicle. Any changes in pitch and height due to
vehicle dynamics (e.g. large acceleration) was therefore not taken into consideration.
Furthermore, the images were cropped and rescaled (we removed the top and bottom
parts of the image that correspond to sky and vehicle hood) to reduce the number
of computations during training. The final size of the images that are fed to the
network is 962 (3848/4) times 274 (1094/4) pixels.

The real-world dataset was divided into a training set of 3194 images and a validation
and test set of 510 images each. Since 3D-LaneNet had only been tested on highway
roads before [7], it was decided to include only such images in the validation and
test set (images taken on roads with speed limit at least 100 km/h in our case).
However, the images in the training set come from both urban and highway scenes.
Another reason for including only highway roads in the a validation and test set
was that it makes sense to evaluate the model on long lanes that stretch over the
full prediction range (≈6-100 meters) to estimate the close and far range predictions
errors as well as possible.

3.7.2 Real-World Unlabeled Dataset

The collected unlabeled real-world dataset consists of 2525 sequences containing two
images each. All image pairs were taken from highways (roads with speed limit of
at least 100 km/h) and the time interval between any two pairs is between 0.5 and
2.5 seconds. The ground truth labels of this dataset consists of the camera pitch
and height as well as the transformation between the vehicles position in the image
pairs. The transformation was computed using processed GPS data that accurately
measures the vehicle’s movement between the two frames. The transformation allows
for transforming the predicted 3D lanes of two consecutive images into a common
coordinate system where they can then be compared.
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3.7.3 Synthetic Dataset
To extend our dataset further, we created synthetic data with the open-source sim-
ulator CARLA (version 9.11) [59].

The synthetic dataset is based on Towns 1-7, which are seven maps available for
download from the CARLA [59] repository on GitHub. Each map can be modified
by changing different environmental settings such as cloudiness, precipitation and
sun altitude angle. CARLA [59] also provides a handful of options regarding vehicles
and pedestrians/cyclists that are able to move around the environment and interact
with each other, such as forming queues and following the rules of traffic. The data
acquisition was made by the following steps:

1. Select a random Town and add randomly selected environmental settings.

2. Spawn 30 actors (either a type of vehicle or a pedestrian).

3. Attach a camera to one of the vehicles (randomly selected) that collects RGB,
depth and segmentation images.

4. Collect 250 images at a frame rate of 2 images per second.

An example of the collected RGB, depth and segmentation images at a given times-
tamp is shown in Figure 3.11.

(a) RGB (b) Depth

(c) Lane segmentation

Figure 3.11: RGB (a), Depth (b) and Lane segmentation (c) images collected from
CARLA [59].

47



3. Methods

The lane annotation from Carla is simply the pixels containing lane markings. By
combining the lane annotations with the depth maps, we are able to create point
clouds that correspond to the annotated lane markings in 3D-space. However, the
labels gathered from CARLA [59] were simply all pixels containing road markings,
including special road markings such as the arrows shown in Figure 3.11c. Hence
some post-processing is needed to divide the markings into lane instances and remove
the unwanted special road markings. For this purpose we adopted an iterative
RANSAC algorithm. RANSAC is short for Random sample consensus and is an
iterative method used to find linear dependence within data clusters. This is done
by iteratively creating straight line fits based on a few points selected at random.
From the straight line fit, the points within the vicinity are denoted as inliers and
the rest outliers. This is done for a number of iterations and the line fit that gives
the highest count of inliers is the selected best fit [60]. RANSAC is equipped with a
residual threshold for the line fit and also a parameter for the number of iterations.
These were set to 0.5m and 1 000 iterations respectively, and the number of points
used for each fit was set to five.

Since the number of pixels for the lane markings increase vastly as we get closer to the
camera, the point clouds were first binned into boxes with side length binsize = 0.2
meters. All points in each bin were then replaced by a single representative point.
This helps to even out the density of points over the whole point cloud. The binning
was done by the following steps:

1. Find the maximum and minimum position of the point cloud in the x, y and
z coordinates.

2. Create 3D-bins (cubes) with side length binsize over the span:

([xmin, xmax], [ymin, ymax], [zmin, zmax]).

3. For each bin that contains at least one point, replace all points in the bin by
a new one located at the mean in each dimension.

This helps for cases such as dashed lane markings, where the high density of points
close to the camera can cause the RANSAC algorithm to falsely assign the closest
dash of each lane instance to the same cluster, although they belong to different
lane instances.

After binning the data, the RANSAC algorithm from scikit-image was applied, which
separates the data into two parts; the most likely straight line fit and outliers. In
order for the straight line to be considered a valid lane, it is required that it extends
over yref = 20m so that it can be represented by a lane anchor. The straight line
cluster is removed from the point cloud regardless if valid or not and saved as a lane
instance if valid. The outliers are kept as the remaining point cloud. Lane instance
points beyond y = 100m are discarded since these lie outside of the predictive range
of our model. The RANSAC is applied on the remaining point cloud and repeated
until one of the stop criteria is met.
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Stop criterion

• There are too few points left in the lane markings data.

• The number of found lanes surpasses the number of lane anchors for the 3D-
Lane detection model (in our case 16).

The extracted 3D lane instances from the example above are shown in Figure 3.12,
where they are projected into the RBG image. As can be seen in this image, only
fragments of the special road markings (arrows) remain after clustering the 3D point
cloud into lane instances, and the method successfully distinguishes the apparent
lane instances from each other. However, the lanes are rather straight in this example
and the method is more prone to making errors in more complex scenarios, such as
curved lanes, since the RANSAC algorithm is not well suited for these cases.

Figure 3.12: Resulting lane instance annotation from our iterative RANSAC al-
gorithm, reprojected on the RGB image.

During training, the extracted synthetic 3D lanes are treated in the same way as the
real-world 3D lanes. That is, using the same anchor assignment and representation
of the lanes in the coordinate system Croad.

For a model to be able to learn efficiently, the quality of the ground truth is of
great importance. After manual inspection 2/3 of the collected synthetic data was
discarded, leaving 1609 images to train on.

3.8 Experiments
To investigate weather semi-supervised learning can be used for the task of 3D lane
detection, 3D-LaneNet was first trained on the labeled real-world training set and
evaluated on the validation set. Thereafter, the model was trained further using the
proposed semi-supervised training method and evaluated again to see if this would
increase the performance. Since adding unlabeled data to the training set can be
expected to have greatest impact when the labeled dataset is relatively small, this
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experiment was repeated using only parts of the labeled dataset. Experiments were
done with labeled datasets including 512, 1024, 1536, 2048 and 3194 images and
this will later be referred to as training the model at different levels of supervision.
In each case, the model was first trained on the labeled data for 100 epochs and
then trained further using semi-supervised learning for five epochs with the chosen
labeled data and all of the collected unlabeled data. To prevent overfitting during
the first 100 epochs, the performance on the validation set was monitored during
training and the best performing model over all epochs was saved/chosen for further
semi-supervised training. On the other hand, it was assumed that overfitting would
not occur during the five epochs of semi-supervised training and therefore the final
model was simply chosen in this case.

Both supervised and semi-supervised training entails setting the hyperparameters
to some sensible values during training. As explained in Section 3.4.3, the hyper-
parameters related to supervised training consists of (initial) learning rate, learning
rate decay (LRd), learning rate interval (LRi), regularization, batch norm, dropout
and constant cam. These hyperparameters determine the learning rate schedule and
the regularization amount, as well as whether batch normalization, dropout and
constant camera pitch and height should be used. For semi-supervised training, the
hyperparameters consist of the distance threshold dth related to the consistency loss,
α that determines the relative importance of the supervised loss and the consistency
loss, as well as the initial learning rate. The hyperparameters for both supervised
and semi-supervised training were determined by doing randomized hyperparameter
searches and selecting those that resulted in the best performance on the validation
set.

After investigating the potential benefits of semi-supervised learning, two important
aspects of the semi-supervised approach was investigated in detail. Firstly, the basic
training scheme, which adds (almost) all unlabeled data at once, was compared
with the iterative scheme, which entails cherry picking unlabeled data to be added
successively during training. Secondly, the alternative consistency loss was compared
with the standard consistency loss. As described in Section 3.6.1, the main difference
between the alternative and standard consistency loss is that pth is set to zero when
using the alternative formulation while it is set to the value that gave rise to the
highest F-score on the validation set when using the basic consistency loss. Due to
limited computational resources and time, these investigations were done only at
the lowest level of supervision.

Finally, the generated synthetic data was added during training in a separate ex-
periment to study whether the synthetic data could increase the performance of the
model. Since the main focus of this thesis is to develop an unsupervised training
method, we don’t investigate any of the domain adaption techniques presented by
[13]. Instead, we used a straight forward approach of pre-training the model on the
synthetic data and then training further on only the real-world data.

The validation set was used during the development of the methods in order to leave
the test set untouched. Therefore, much of the analysis and conclusions made in
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this thesis are based on the performance on the validation set. In the end, the key
results are however also validated on the test set. This is done to get an accurate
estimate of the model’s performance on unseen data and to give more credibility to
the main conclusions.
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Results

In this chapter, the results from the aforementioned experiments are presented. The
test set was left untouched during the bulk of the experiments and therefore it is
the performance on the validation set that is reported in this chapter if not stated
otherwise.

4.1 Semi-supervised Training at Different Levels
of Supervision

To study the effect of using semi-supervised learning at different levels of supervi-
sion, the model was trained on subsets of the labeled dataset and thereafter trained
further on both labeled and unlabeled data in a semi-supervised fashion. The hy-
perparameters used for supervised training was decided based on a hyperparameter
search that was done for the model trained on the full labeled dataset. During this
search, which is described in detail in Section A.1.1 in Appendix, the hyperparam-
eters were randomized and the parameters that resulted in the highest F-score on
the validation set, without using any regularization techniques, are shown in Table
4.1. What is denoted as Learning rate is the initial learning rate during training.

Table 4.1: hyperparameters for supervised training that are denoted as set 1.

Learning rate LRd LRi Regularization Constant cam Batch norm Dropout
0.000123 6 40 0 0 0 0

This set of parameters will be referred to as set 1. It was noted that a slight increase
in performance could be achieved by using regularization and batch normalization,
but in this case the semi-supervised learning did not work well, which is shown in
Section A.1.2 in Appendix. Therefore, the parameters of set 1 were used instead.

A hyperparameters search for semi-supervised training (described in Section A.1.2
in Appendix) was also completed on the highest level of supervision. In this case, the
chosen hyperparameters were those that resulted in the largest decrease of geomet-
rical error since no increase in F-score was observed. The chosen hyperparameters
are shown in Table 4.2 and are later referred to as set 2.
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Table 4.2: hyperparameters for semi-supervised training that are denoted as set 2.

Learning rate Distance Threshold (dth) α
0.000003 0.779 (log(1.179 + 1)) 0.552

Continuing training in a semi-supervised fashion with hyperparameter set 2 after
training the models on labeled data with hyperparameters set 1 gave the results
shown in Figure 4.1. For each level of supervision, five models were trained super-
vised with hyperparameters of set 1 until convergence (training for 100 epochs and
preventing overfitting by monitoring the validation set performance as explained
in Section 3.8). The model with the highest F-score at each level of supervision
was then used for further semi-supervised training using hyperparameters of set 2
for 5 epochs. Each chosen model was trained further with semi-supervised train-
ing five times since the training process is inherently stochastic. In Figure 4.1, the
blue and orange graphs show the mean values and standard deviations of the five
models trained supervised and the five models trained semi-supervised respectively.
The red stars indicate the (common) starting point of all of the models trained
semi-supervised.
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(a) F-score (b) AP

(c) x-error-close (d) x-error-far

(e) z-error-close (f) z-error-far

Figure 4.1: Performance comparison of models trained supervised with those
trained semi-supervised.

In general, a slight performance increase can be observed across the board from uti-
lizing semi-supervised training, except for z-error-close for low levels of supervision
and F-score and AP for high levels of supervision where the performance actually
dropped. One concern raised by these results is that the observed performance
increase may be too subtle to be considered statistically significant. One reason
for this may be that the chosen hyperparameters, both for supervised and semi-
supervised training, were optimized at the highest level of supervision and may not
be optimal also for lower levels of supervision. Therefore, a hyperparameter search
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for supervised and semi-supervised training was also done for the model trained
on 512 labeled data to see if the performance could be increased further (see Sec-
tion A.1.3 in Appendix for a detailed description of the parameter search). Figure
4.2 shows the same results as above but now also including the best performance
achieved by supervised and semi-supervised models during the rigorous parameter
search on the lowest level of supervision. For transparency, the best performance
achieved during the supervised and semi-supervised hyperparameter searches on the
full labeled dataset is also included.

(a) F-score (b) AP

(c) x-error-close (d) x-error-far

(e) z-error-close (f) z-error-far

Figure 4.2: Performance of models trained only supervised and models trained
semi-supervised. The best achieved performance from the hyperparameter searches
on the lowest and highest levels of supervision are also included.
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These results show that a general boost in performance was achieved when optimiz-
ing the hyperparameters of semi-supervised training for the model trained on 512
labeled images. In fact, an increased performance was observed in every metric com-
pared to the results achieved when training semi-supervised with hyperparameter
set 2. This concludes that hyperparameter set 2 was not well suited for training the
model on the lowest level of supervision. Also the best supervised model became a
bit better after optimizing the supervised hyperparameters at the lowest level of su-
pervision. Furthermore, the best performance achieved from semi-supervised train-
ing (orange triangle) exceeds the best performance achieved by supervised training
(blue triangle) at the lowest level of supervision in the metrics x-error-far, F-score
and AP while the performance between the models is very similar for x-error-close,
z-error-close and z-error-far. The most noticeable performance increase is shown in
x-error-far where semi-supervised training at the lowest supervision level accounts
for an error decrease of more than 10 cm. At the highest level of supervision there
was only a performance increase in z-error-far of about 2 cm while the performance
did not increase in any other metric. As expected it seems like the semi-supervised
approach works best when little labeled data is available.

Figures 4.3 and 4.4 show an example of the qualitative effect of training with the
consistency loss on unlabeled data. The figures show the predictions of the network
on a pair of unlabeled images (frame t and t+ 1) that was added to the training set
during semi-supervised training. The predicted lanes for the two consecutive frames
are transformed into the coordinate system of the first frame and shown projected
into the image (frame t) in Figure 4.3 and in “3D” in Figure 4.4. In each figure,
the predictions are shown both before and after semi-supervised training in order
to illustrate how the network is trained on the unlabeled data. It is evident that
the predicted lanes align better after semi-supervised training and it also seems like
the lane curvature is predicted more accurately, although the ground truths are not
known for this image.

What is surprising in this example is that the network predicts four lanes for both
frame t and t + 1 after semi-supervised training (four blue and four orange lanes),
although only three matches were found for this example (there is only three orange
lanes in the case of supervised training, so surely no more than three matches could
be found). This does not reflect the goal of the consistency loss since the fourth,
unmatched lane will be trained to predict zero in confidence (see the definition of
Linvalid in Section 3.6.1 that describes how unmatched lanes are penalized). However,
the network is trained on thousands of images simultaneously and it is the overall
training loss that is expected to decrease during training, not every specific part
of the training loss in every training example. Therefore, these kinds of deviations
from the training objective can of course occur.
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(a) Supervised

(b) Semi-supervised

Figure 4.3: Projection of the predicted lanes from the supervised (a) and semi-
supervised (b) model at the lowest level of supervision. The orange lanes are the
predictions of frame t+1 while the blue lanes the predictions of frame t (the current
frame).
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(a) Super-
vised

(b) Semi-
supervised

Figure 4.4: The predicted lanes from the supervised (a) and semi-supervised (b)
model at the lowest level of supervision. The orange lanes are the predictions of
frame t+ 1 while the blue lanes the predictions of frame t (the current frame).

Figures 4.5 and 4.6 show a similar example where instead the unmatched lane “dis-
sappears” after training semi-supervised, which is the expected behavior of training
with the consistency loss. Although the adjustments made in the lane geometry
looks promising, this example highlights a drawback with the approach. That is
the network will not be trained to predict any lanes that was missed during the
matching procedure.
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(a) Supervised

(b) Semi-supervised

Figure 4.5: Projection of the predicted lanes from the supervised (a) and semi-
supervised (b) model at the lowest level of supervision. The orange lanes are the
predictions of frame t+1 while the blue lanes the predictions of frame t (the current
frame).
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(a) Super-
vised

(b) Semi-
supervised

Figure 4.6: The predicted lanes from the supervised (a) and semi-supervised (b)
model at the lowest level of supervision. The orange lanes are the predictions of
frame t+ 1 while the blue lanes the predictions of frame t (the current frame).

4.2 Iterative Training Scheme

In order to investigate whether the iterative method for semi-supervised training is
better than the basic method, another ten semi-supervised trainings were completed
at the lowest level of supervision. The hyperparameters for semi-supervised training
were randomized in the same way as before (see Section A.1.3 in Appendix), but this
time the iterative training scheme was used instead of the basic scheme. The same
supervised model as before was used as starting point for semi-supervised training
and the unlabeled data was added at four different stages, letting the model train for
five epochs after every addition to the training set. For one of the best performing
models this results in adding around 2000 unlabeled images at the first iteration,
1000 images at the second and third iteration and 500 images in the last iteration.
The results are shown in Figure 4.7. In the figure, SS is an abbreviation of semi-
supervised, which will be used also later in the report. Furthermore, what is called
Best SS Basic in this figure corresponds to the same results as Best Semi-supervised
in Figure 4.2, now taking on a new name to distinguish it from the iterative approach.

61



4. Results

(a) F-score (b) AP

(c) x-error-close (d) x-error-far

(e) z-error-close (f) z-error-far

Figure 4.7: Comparing iterative training scheme with basic approach.

Slight improvements are observed across the board from utilizing the iterative train-
ing scheme instead of the basic one. F-score, AP and z-error-far are now competitive
with the model trained supervised on 1024 labeled images. Furthermore, x-error-far
decreased to 0.383 meters when using the iterative semi-supervised training scheme
and it is competitive with the model trained on 2048 labeled images. The best
supervised model at the lowest level of supervision only achieves 0.521 meters in x-
error-far and the best supervised model at the highest level of supervision achieves
0.316 meters in x-error-far. The semi-supervised approach thus reduced this perfor-
mance gap between the models at the lowest and highest level of supervision from
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over 20 cm to under 7 cm.

The purpose of the iterative training scheme was to ensure high quality of the added
unlabeled data. It was hypothesized that only adding unlabeled data for which the
model found valid matches for all its predictions would result in fewer missed and
faulty predicted lanes, such as the right-most lane of Figure 4.5. Although this
probably helped a bit, which can explain the improvements seen in Figure 4.7, some
lanes are still missed as seen in the examples shown in Figure 4.8.

(a) An example from the unlabeled dataset where the right-most lane is missed.

(b) An example from the unlabeled dataset where the left-most lane is missed.

Figure 4.8: Projection of the predicted lanes in two examples from the unlabeled
dataset. The model found matches between all the predictions in both cases but
still missed one lane in each image.

4.3 Alternative Consistency Loss
Twenty semi-supervised runs were made at the lowest level of supervision with the
alternative consistency loss, which is defined in Section 3.6.1. The hyperparameters
were randomized in the same way as before (see Section A.1.3) with the exception
that pth was set to zero. Furthermore, the iterative training scheme was not used for
these experiments and therefore the results are compared with those of the previous
experiments on the basic semi-supervised training scheme. It is evident that this
method also achieves a decrease in x-error-far compared with the model trained on
only labeled data, but it does not improve performance significantly in any of the
other geometrical metrics. Furthermore, it is outperformed by the basic method for
semi-supervised training in all metrics except for z-error-close and z-error-far, where
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the performance is similar. Semi-supervised training with the standard consistency
loss also achieves increased F-score and AP compared to the supervised model while
this is not seen when training with the alternative consistency loss. Based on these
observations, it seems like the alternative consistency loss also penalizes the lane
geometry in a reasonable manner, while the confidence scores are penalized more
appropriately with the standard consistency loss, since no improvements in F-score
and AP are seen when using the alternative consistency loss.

(a) F-score (b) AP

(c) x-error-close (d) x-error-far

(e) z-error-close (f) z-error-far

Figure 4.9: Results from using the alternative formulation of the consistency loss.

64



4. Results

4.4 Leveraging Synthetic Data

The generated synthetic data was also investigated as a tool for improving the
model’s performance at low supervision level. In this case, the model was pre-trained
on the synthetic data and then trained further on only the real world dataset of 512
labeled images. In total 30 runs were made and the best achieved performance is
shown in Figure 4.10

(a) F-score (b) AP

(c) x-error-close (d) x-error-far

(e) z-error-close (f) z-error-far

Figure 4.10: Results from training on both labeled real data and synthetic data
compared with the models using only labeled real data and semi-supervised training.
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In each of the 30 runs, 100 epochs were completed and overfitting was prevented by
monitoring validation set performance as explained in Section 3.8. Hyperparameters
were randomized in the same way as when using only the 512 labeled images (see
Section A.1.3) and the same set of hyperparameters was used both when training on
the synthetic and real world data. In Figure 4.10, small improvements are observed
in x-error-far, F-score and AP while the performance in the other metrics decreased
slightly. Overall, synthetic data does not seem to improve performance significantly.

4.5 Validation on Test Set
The performance on the validation set was used when developing the method for
semi-supervised training and thus all previously shown results are the performance
on this set. Since a lot of experiments were made and the model with the best
performance on the validation set was chosen in each case, the reported performance
on the validation set is inherently inflated. Furthermore, since the aim of this
project was to develop a semi-supervised training method, one may suspect that
the performance of the semi-supervised models are more inflated than those of the
supervised models, and thereby questioning the credibility of the results. In order to
remove any such doubts and give a proper estimate of the models’ performances on
unseen data, the best supervised and semi-supervised models trained on 512 labeled
images were also evaluated on the test set. The results are shown in Table 4.3 and
show similar performance to that of the validation set presented in Figure 4.7. On
the test set, x-error-far decreased from 0.509 to 0.397 and F-score and AP increased
from 0.864 to 0.881 and 0.924 to 0.950 respectively when leveraging semi-supervised
training. The changes observed in x-error-close, z-error-close and z-error-far are not
very significant.

Table 4.3: The test set performance of the best (with respect to validation set
performance) models trained supervised and semi-supervised with a labeled dataset
of size 512.

Model F-score AP x-error-close (m) x-error-far (m) z-error-close (m) z-error-far (m)
Supervised 0.864 0.924 0.279 0.509 0.076 0.206
Semi-supervised 0.881 0.950 0.254 0.397 0.084 0.190

Figures 4.11 and 4.12 illustrate a qualitative comparison between the predictions
of the supervised and semi-supervised models on a set of curved lanes from the
test set that both models fail to predict accurately. However, improvements from
using semi-supervised training are still observed in two aspects. Firstly, the semi-
supervised model manages to predict the double lane marking while this is not done
by the supervised model. Secondly, the predicted curvature in the far range is more
pronounced after semi-supervised training and is closer to the ground truth lanes.
It may not look like a large adjustment, but in fact the position of the lanes at
the farthest away points changed with around two meters after semi-supervised
training, which can be considered a huge improvement since the average lateral error
in the far range is only in the order of half a meter as seen in Table 4.3.

66



4. Results

(a) Supervised

(b) Semi-supervised

Figure 4.11: Re-projected predictions on a test set example of the model trained
supervised (a) and semi-supervised (b) at the lowest level of supervision.

(a) Super-
vised

(b) Semi-
supervised

Figure 4.12: 3D lanes predictions on a test set example (shown in Figure 4.11)
of the model trained supervised (a) and semi-supervised (b) at the lowest level of
supervision.

67



4. Results

Figures 4.13 and 4.14 show another example from the test set where the predictions
in the far range become more accurate after semi-supervised training. This example
shows a typical case where both models predict the same set of lanes but the error
in the far range is usually larger for the model trained only supervised, and there is
little difference between the two models in the close range.

(a) Supervised

(b) Semi-supervised

Figure 4.13: Re-projected predictions on a test set example of the model trained
supervised (a) and semi-supervised (b) at the lowest level of supervision.
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(a) Super-
vised

(b) Semi-
supervised

Figure 4.14: 3D lanes predictions on a test set example (shown in Figure 4.13)
of the model trained supervised (a) and semi-supervised (b) at the lowest level of
supervision.
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5
Discussion

In this chapter, the analysis of the results as well as a discussion of future work are
presented.

5.1 Analysis of Results
From Figure 4.7 it is clear that the semi-supervised approach leads to increased
performance at the lowest level of supervision, which was also verified on the test
set as shown in Table 4.3. Using the semi-supervised approach with 512 labeled
and 2525 unlabeled image pairs results in competitive performance with the mod-
els trained supervised on 1024-2048 labeled images in several metrics. However, as
noted in Figure 4.2 the performance of the supervised model using only 512 images
increased a bit when optimizing the hyperparameters for this level of supervision.
There is therefore a chance that the performance of the models trained supervised
on the intermediate supervision levels (1024, 1536 and 2048) may also increase if the
hyperparameters were optimized for them specifically, rather than using hyperpa-
rameter set 1 that was found from the hyperparameter search at the highest level of
supervision. However, since hyperparameter set 1 was optimized at the highest level
of supervision it is sensible to believe that it should work better at the supervision
level 2048 than they do at 512, since the difference between the datasets is not that
great in this case. Therefore, the performance at supervision level 2048 is not ex-
pected to increase a lot when optimizing the hyperparameters for this dataset, while
the performance is likely to increase a bit more for the lower levels of supervision
such as 1024.

Given the results shown in Figure 4.7, it is therefore reasonable to state that the
semi-supervised model at the lowest level of supervision reaches competitive per-
formance with the model trained supervised on 2048 labeled data in the metric
x-error-far. However, as AP and F-score only barely reach the performance level of
supervised training on 1024 labeled images we dare not state that much more than
a few hundred labeled images can be replaced by the semi-supervised method for
the purpose of achieving high F-score and AP with little labeled data. It would of
course have been best if hyperparameter searches could have been done at each level
of supervision, but due to limited time and computational resources we had to re-
sort to this solution. In summary, what is certain is that the performance increased
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significantly with respect to F-score, AP and x-error-far when using semi-supervised
learning at the lowest level of supervision, but it did not reach as good performance
as the model trained on all of the labeled data.

One reason to the limited performance increase from semi-supervised training may
be that the unlabeled dataset was not large enough. In particular, the relative size
of the unlabeled dataset compared to the labeled dataset may be of importance. At
the lowest level of supervision, the total size of the training set is increased to ≈ 10
times the size when adding the unlabeled data, and therefore it is very likely that
the dataset in its entirety becomes more diversified when adding the unlabeled data.
However, at the higher levels of supervision, the relative increase of the dataset size
is not as significant, and it is more likely that the labeled data already covers most of
the examples of the added unlabeled data. Since the goal of semi-supervised training
essentially is to allow the network to train on many new examples (a more diversified
dataset) it may be necessary to add a larger unlabeled dataset at the higher levels of
supervision to see an increase in performance. Our unlabeled dataset of 2525 image
pairs can be considered fairly small since unlabeled data can be collected with very
little effort and there is a chance that improvements would be observed across the
board if a larger unlabeled dataset had been used. Of course, this would entail
longer training times, which is why we used a rather small unlabeled dataset during
the development of our methods.

Furthermore, the results showed that the improvements in F-score and AP was not as
pronounced as the improvements made in x-error-far. The semi-supervised approach
therefore seems most suitable for adjusting the predictions of the lane geometry,
rather than training the confidence predictions of the network. The example from
the unlabeled training set shown in Figure 4.5 gives a hint of why this may be the
case. Since the network’s confidence predictions are penalized based on the found
matches it happens that the network is faulty penalized when the matches don’t
describe the underlying ground truth lanes accurately. For instance, the network
will be trained not to predict any lanes that are missed/not matched, which was
the case of this particular example. On the other hand, the lane geometry is always
penalized “correctly” even if some lanes are missed or faulty matched. In summary,
the problem is that the number of ground truth lanes are unknown, and only if all of
the lanes are predicted (and matched) will the consistency loss work in the intended
way.

To alleviate this problem, the iterative semi-supervised training scheme was adopted.
Although it resulted in improvements across the board, it did not solve the problem
completely, which is seen in Figure 4.8 where one lane was missed in each example.
Therefore, there is a good chance that developing an even better training scheme can
increase the performance further. However, it should also be noted that the number
of epochs was larger when using the iterative scheme rather than the basic one
(twenty epochs instead of five). There is therefore a possibility that the enhanced
performance of the iterative scheme simply comes from the fact that it spent more
time training. This was not investigated explicitly since we only trained the models
for just enough epochs to prove the feasibility of both methods, and therefore the
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performance of both methods could increase if longer trainings had been done.

We can therefore not establish that the iterative method certainly achieves higher
performance than the basic method, although it seems likely given the identified
problem with faulty lane matches and the iterative method’s potential of dealing
with this issue. To establish which of the two methods is most suitable for large-
scale applications, it is also important to study the training speed. Although the
iterative training scheme spends some time cherry picking the images, it saves time
during training since less data is included in the training set. In our case of using
only about 5000 unlabeled images, the overhead from cherry picking the data may
be very large compared with the time saved during training, but in a practical
case where hundreds of thousands of unlabeled images are available, it may be well
worth while to exclude some unwanted images from the training set and thus speed
up training.

Introducing the alternative consistency loss that uses pth = 0 was another attempt of
mitigating the effects of missed lanes in the unlabeled data. Although this method
also resulted in a significant decrease in x-error-far compared with the supervised
model as seen in Figure 4.9, it performed worse than the standard consistency loss
in all metrics. The hope was that the alternative formulation of the consistency
loss would be beneficial in scenarios where the standard consistency loss would
penalize the confidence predictions inaccurately due to a missed or faulty match.
For instance, in the case that the network predicts high confidence of a lane in one
frame and low in the other, the regular consistency loss may not find a valid match
between these lanes and penalize both to predict zero confidence. On the other
hand, the alternative consistency loss would match the lanes (due to zero probability
threshold) and penalize the predictions to be consistent, which would probably lead
to the confidence predictions converging to some intermediate value (like 0.5) rather
than zero. However, there is certainly a greater risk of finding inappropriate/faulty
matches between the predictions when trying to match 16 lanes with another 16
lanes rather than matching a small set of (usually) 3-5 lanes which is the case of the
standard formulation. This is probably the cause for the low general performance
of the alternative consistency loss.

From the experiments on synthetic data, it is clear that training on the synthetic
dataset of 1609 images did not increase the performance of the model significantly.
The main reason for this is probably the difference in appearance between the syn-
thetic and the real-world images. As mentioned in Section 2.4, Garnett et al. [13]
adopted several domain adaption techniques to overcome the visual differences of
the source domain (synthetic data) and target domain (real-world data) in their
work on 2D lane detection. It is likely that some method of domain adaption also
is required for our case of 3D lane detection. However, both [13] and [11] also
concluded that training on labeled synthetic and real-world data resulted in better
performance than only training on real-world data even without using any domain
adaption techniques. Therefore, we believe that the difference in appearance be-
tween our synthetic and real-world dataset may not be the only reason for the failure
in improving the performance, but rather also the quality of the synthetic dataset.
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Since no instance annotations of lanes were available in the CARLA [59] simulator,
we needed to apply post-processing in the form of binning and RANSAC to extract
the lane instances. This may have resulted in reduced diversity of the dataset in
the sense that the more difficult-to-extract lane instances, including curved lanes,
merges and splits, may often have been excluded from the dataset, thereby leaving
only the more simple cases of straight lanes over-represented. Since the model deals
with the simple examples quite well already after training on the real-world data,
there may not be much to gain from adding more examples of that type to the
training set.

5.2 Future Work

The iterative training scheme was introduced to ensure that the consistency loss
works as intended on the unlabeled data that is added during training, and our
results indicate that it had a positive effect on the model’s performance. One way
to reduce the number of missed lanes/faulty matches further could be to use more
than two consecutive frames and thereby give the network more chances to detect
any inconsistencies. For example, if the network predicts the same lanes for ten
consecutive images it should be very likely that these predictions indeed correspond
to all ground truth lanes of the image. Although it should be possible to better
leverage the assumed consistency of lanes through videos if more consecutive frames
are used from each video sequence, this would also entail longer training times. Fur-
thermore, since all frames from the same video are highly correlated (they are taken
from close to the same geographical location and time) little is gained in the sense of
diversifying the unlabeled dataset when adding additional frames from the same se-
quence. That said, there is a good chance that utilizing more than two frames could
improve the performance and is worth investigating further. Furthermore, when
applying semi-supervised training at larger scales, with access to potentially hun-
dreds of thousands of unlabeled images, the training speed may become increasingly
important. Therefore, the basic and iterative scheme should not only be evaluated
based on performance, but also with respect to training speed, to see which of the
methods is best suited for large-scale applications.

Another aspect of the consistency loss worth investigating more closely is the way
that the predictions from the consecutive frames supervise each other. Currently,
we assign equal importance to the predictions of both frames in the sense that they
are both penalized equally if they do not align well in 3D space. Since the results
show that the close range predictions are more accurate than the far range predic-
tions (hardly surprising) one could argue that it would be better to assign greater
importance to the close range predictions, and thus penalize the predictions of the
first frame more than those of the second frame. One could in fact only penalize the
lane geometry predictions of the first frame while not penalizing those predictions
of the second frame at all, since it is believed that the far range predictions of the
first frame cannot supervise the more accurate close range predictions of the second
frame.
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This idea of course makes most sense if the traveled distance between the frames is
large. For instance, in the case that the traveled distance between the two frames
is 90 meters, it does not make sense to adjust the ”very” close range predictions
(0-10 meters) of the second frame based on the ”very” far range predictions (90-100
meters) of the first frame. In our case, the traveled distance between the frames
was usually around 20-50 meters and therefore penalizing both predictions to some
extent was probably a good idea. However, it would definitely be interesting to
investigate a weighted loss function that takes into account the assumed importance
of the two predictions (close and far range) in an attempt to improve the semi-
supervised approach further. This could result in decreased lateral and vertical
errors in both the close and far range. Furthermore, this idea of leveraging the close
range predictions may be even more applicable if more than two images from each
sequence are used. For instance, if ten images are used from each sequence and
the vehicle travels around ten meters between each frame, the accurate close range
predictions between 0 and 10 meters of each frame could effectively supervise the
full extent of the predicted lanes (0-100 meters) in the first frame.

It would also be interesting to see what performance can be achieved if the unlabeled
dataset is extended. In our work, we only used an unlabeled dataset of 2525 image
pairs and in practice this could be extended significantly with very little effort. The
downside of extending the dataset is of course increased training times, but if a
larger dataset can increase the performance further, it could definitely be worth
considering for real-world applications.

We would also like to see further research towards synthetic data generation with
CARLA [59] and how it can be used for the purpose of lane detection. The main
issue with our method for generating synthetic 3D lanes with CARLA [59] is that the
proposed method for extracting lane instances often makes mistakes, which results
in faulty labels. The main reason for this being that the topology of the lanes in the
image is too complex and/or not linear enough for the RANSAC algorithm to be
able to cluster the lane point clouds into lane instances correctly. Other clustering
methods, such as DBSCAN, could be investigated as an alternative approach to
the RANSAC algorithm, or one could also try using some heuristic methods for
this purpose. However, the best solution would of course be if CARLA [59] would
support lane instance annotations in their segmentation source code directly, thereby
removing any needs for post-processing and clustering of the lanes. Some of the
domain adaption techniques presented by [13] should also be investigated in the
setting of 3D lane detection to overcome the differences in appearance between
synthetic and real-world images.
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6
Conclusion

The primary aim of this thesis was to investigate whether unlabeled data could be
used to improve the performance of the 3D lane detection model 3D-LaneNet and in
that way mitigating the need for large labeled 3D lanes datasets. The first research
question was therefore formulated as follows:

Can training on unlabeled data improve the performance of the 3D lane detection
model 3D-LaneNet?

To answer this question, we introduced a novel consistency loss that leverages the
assumed spatio-temporal consistency of 3D lanes through videos and used this to
train 3D-LaneNet on unlabeled data. Furthermore, an iterative semi-supervised
training scheme was adopted, where the unlabeled data is added in turns. The
results from our work show that training on unlabeled data in a semi-supervised
fashion significantly improves the performance of the model when the size of the
available labeled dataset is small. Improvements were mainly observed in the pre-
dictions of the lane geometry in the far range (40-100 meters) as well as in the
detection metrics F-score and Average Precision. When using a labeled dataset of
512 images, the semi-supervised training accounted for a decrease of the lateral error
in the far range from 50.9 to 39.7 cm. Improvements were also seen in F-score and
AP that increased from 0.864 to 0.881 and from 0.924 to 0.950 respectively.

Since it is sensible to assume that the value of adding unlabeled data to the training
set is dependent on the size of the available labeled dataset, a second research
question was formulated as:

How does the (potential) performance gain from training on unlabeled data depend
on the size of the labeled dataset?

To this end we trained 3D-LaneNet at different levels of supervision (using different
amounts of labeled data) both supervised and semi-supervised to study the effect
of adding unlabeled data to the training set when different amounts of labeled
data is available. The results show that training on unlabeled data increased the
performance significantly at the lowest level of supervision (512 labeled images)
while little or no improvements were observed at the highest level of supervision
(3194 labeled images). Semi-supervised training with 5050 unlabeled images at
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6. Conclusion

the lowest level of supervision resulted in competitive performance with supervised
training on 2048 labeled images in terms of lateral error in the far range and with
supervised training on 1024 images in terms of F-score and Average Precision.

In conclusion, it has been shown that the proposed consistency loss and semi-
supervised training scheme for 3D lane detection has the potential of mitigating
the need for expensive labeled 3D lanes datasets, but further research is needed to
apply this on larger scale and successfully replace substantial amounts of labeled
data.

The third and final research question of this thesis was stated as:

Can labeled synthetic data be used to improve the performance of 3D-LaneNet on
real-world data?

To give an answer to this question, we generated synthetic data with the open-source
simulator CARLA [59] and used it to pre-train 3D-LaneNet before training further
on the labeled dataset. The result from this experiment was that the generated
synthetic data did not increase the performance of the network significantly. The
reason for this was probably the difference in appearance between synthetic and real-
world images and the fact that the CARLA [59] simulator does not have support
for lane instance annotations, which made it difficult to create a 3D lanes dataset
of high quality.
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A
Appendix 1

A.1 Hyper Parameter Search

A.1.1 Supervised Training
The first hyper parameter search constitutes 34 training runs on the full labeled
dataset where the hyper parameters were chosen by random sampling in the follow-
ing manner: learning rate was drawn form a uniform distribution on the interval [5 ·
10−5, 5.5·10−4], LRd and LRi were chosen randomly from the set {2, 3, 4, 5, 6, 7, 8, 9, 10}
and {2, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50} respectively, regularization was chosen ran-
domly to either 0 or drawn from a uniform distribution on the interval [10−5, 1.001 ·
10−2], while batchnorm, dropout and constant cam was set to either true or false (1
or 0) with equal probability.

The five models that achieved highest F-score out of the 34 runs are presented in
ascending order (best one last) in Table A.1.

Table A.1: The F-score and hyper parameters of the five models with the highest
F-scores found in the initial hyper parameter search.

F-score Learning rate LRd LRi Regularization Constant Cam Batch Norm Dropout
0.917 0.000449 2 10 0 0 1 1
0.918 0.000123 6 40 0 0 0 0
0.918 0.000534 9 45 0 0 1 1
0.919 0.000187 10 35 0 0 0 1
0.929 0.000185 7 50 0.002282 0 1 0

From these first set of experiments it was concluded that setting LRi to some rel-
atively high number (30-50), LRd to 6-10 and learning rate to 0.0001-0.0003 seems
to constitute a good learning rate schedule. It was yet unclear whether batch nor-
malization enhanced the performance or not and although dropout was used in four
of the top five performing models it was not used in the best one. However, it was
clear that setting constant camera to 0 is best (that is using the predicted camera
pitch and height to transform image view features to top view). Furthermore, zero
regularization was used in all of the top 5 models except for the best one, which
used a low regularization of ≈ 0.002. This resulted in trying smaller values of regu-
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larization in the next set of experiments (regularization was often 0.001-0.01 in the
previous runs).

To search further for the best set of hyper parameters another 20 training runs were
completed with the following randomized hyper parameters: LRd and LRi chosen
randomly from the set {6, 7, 8, 9, 10} and {30, 35, 40, 45, 50} respectively, learning
rate drawn from a uniform distribution on [0.0001,0.0003], dropout and batchnorm
was chosen randomly to either True or False while constant cam was set to False
in all experiments. Furthermore, a new randomization scheme was adopted for
regularization to better cover values close to zero. Regularization was set to r · x
where r was drawn randomly from the set {10−6, 10−5, 10−4, 10−3} and x was a real
valued random number drawn from the uniform distribution on [0, 10].

After 20 completed runs with these settings, the top-5 F-score models were those of
Table A.2. The new runs produced 4 new models in the top-5, but the best one was
still the best performing model from the first set of runs. Therefore, it seems difficult
to achieve any better performance than this and since computation resources and
time is limited this concludes the hyper parameter search for supervised training.

Table A.2: The F-score and hyper parameters of the five models with the highest
F-scores found in the second hyper parameter search.

F-score Learning rate LRd LRi Regularization Constant Cam Batch Norm Dropout
0.926 0.000222 8 30 4.00E-06 0 1 0
0.926 0.000291 6 50 0 0 1 1
0.926 0.000188 9 40 2.00E-06 0 1 0
0.928 0.000161 9 40 0 0 1 1
0.929 0.000185 7 50 0.002282 0 1 0

The hyper parameters of the best model in Table A.2 will in coming sections be
referred to as set 3, while the hyper parameters of the fourth best model in Table A.1
are those referred to as set 1 in the report. The hyper parameter set 3 and set 1 gave
rise to the model achieving the highest F-score with and without any regularization
techniques respectively. These sets of hyperparameters are also summarized in Table
A.3.

Table A.3: Hyperparameter sets 1 and 3.

Hyperparameter set Learning rate LRd LRi Regularization Constant Cam Batch Norm Dropout
Set 1 0.000123 6 40 0 0 0 0
Set 3 0.000185 7 50 0.002282 0 1 0

A.1.2 Semi-supervised Training
The supervised model trained with hyper parameters of set 3 (see Section A.1.1
for the definition) was trained further using semi-supervised training. The hyper
parameters of the semi-supervised training were randomized and around ten runs
were made on both the labeled dataset of size 512 and the full labeled dataset.
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Learning rate was sampled as x · a + 10−6 where x was drawn from the uniform
distribution on [0, 1] and a was chosen randomly to 10−4 or 10−5, α was sampled
from a uniform distribution on [0.1, 0.9] and dth was set to log(x + 1) where x
was sampled uniformly on the interval [0.3, 2.0]. The probability threshold pth was
always set to the value that gave rise to the maximum F-score on the validation set
from supervised training and the models were trained semi-supervised for 5 epochs.
Results are shown in Tables A.4 and A.5 at the highest and lowest level of supervision
respectively.

Table A.4: Results from the semi-supervised hyper parameter search on the highest
level of supervision, using the model trained supervised with hyper parameters set
3.

Model x-error-close x-error-far z-error-close z-error-far F-score AP
Supervised 0.157 0.339 0.070 0.210 0.929 0.981

Semi-supervised 1 0.385 0.519 0.1282 0.327 0.752 0.791
Semi-supervised 2 1.745 1.152 0.1649 0.356 0.162 0.085
Semi-supervised 3 0.401 0.662 0.122 0.308 0.773 0.818
Semi-supervised 4 0.361 0.629 0.108 0.265 0.763 0.804
Semi-supervised 5 0.677 0.807 0.115 0.371 0.542 0.539
Semi-supervised 6 1.472 0.954 0.175 0.480 0.399 0.296
Semi-supervised 7 0.985 1.112 0.094 0.287 0.403 0.286
Semi-supervised 8 0.256 0.443 0.086 0.222 0.911 0.971
Semi-supervised 9 1.178 1.051 0.289 0.752 0.227 0.124
Semi-supervised 10 0.441 0.620 0.114 0.326 0.718 0.760
Semi-supervised 11 0.209 0.420 0.083 0.218 0.905 0.959

Table A.5: Results from the semi-supervised hyper parameter search on the lowest
level of supervision, using the model trained supervised with hyper parameters set
3.

Model x-error-close x-error-far z-error-close z-error-far F-score AP
Supervised 0.320 0.595 0.103 0.278 0.818 0.863

Semi-supervised 1 0.735 0.948 0.116 0.272 0.552 0.526
Semi-supervised 2 0.657 0.915 0.123 0.282 0.563 0.505
Semi-supervised 3 0.682 0.919 0.121 0.304 0.560 0.548
Semi-supervised 4 0.519 0.861 0.111 0.265 0.655 0.624
Semi-supervised 5 0.863 0.998 0.305 0.337 0.435 0.291
Semi-supervised 6 0.663 0.956 0.092 0.270 0.537 0.485
Semi-supervised 7 0.781 1.037 0.143 0.293 0.458 0.331
Semi-supervised 8 0.754 0.899 0.205 0.372 0.437 0.270

As seen in Table A.4, the performance degraded in every metric when incorporating
semi-supervised training at the highest level of supervision. At the lowest level of
supervision the performance increased slightly in z-error-close and z-error-far as seen
in Table A.5, but since F-score and AP dropped tremendously for all cases it can
not be viewed as an improvement overall. The conclusion from these experiments is
that semi-supervised training degrades the performance of the models trained with
hyper parameter set 3 on labeled data. We did not investigate very closely why this
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is the case, but we believe that the issue is related to batch normalization, dropout
or regularization. One theory is that batch normalization doesn’t work well for
semi-supervised training due to the small batch size which equals two in this case.

The model trained with hyper parameter set 1 on the full labeled dataset was also
trained further using semi-supervised learning with hyper parameters randomized
in the same way. In this case, 15 runs were completed and the results are shown in
Table A.6. As seen in the table, no increase in F-score was achieved but there was
a slight decrease in geometrical error.

Table A.6: Results from the semi-supervised hyper parameter search on the highest
level of supervision, using the model trained supervised with hyper parameters set
1.

Model x-error-close x-error-far z-error-close z-error-far F-score AP
Supervised 0.166 0.316 0.0624 0.180 0.920 0.966

Semi-supervised 1 0.169 0.307 0.0615 0.167 0.917 0.968
Semi-supervised 2 0.152 0.315 0.062 0.170 0.918 0.966
Semi-supervised 3 0.158 0.342 0.062 0.171 0.919 0.965
Semi-supervised 4 0.164 0.313 0.060 0.166 0.915 0.959
Semi-supervised 5 0.156 0.309 0.061 0.169 0.911 0.961
Semi-supervised 6 0.179 0.376 0.074 0.186 0.901 0.954
Semi-supervised 7 0.161 0.359 0.063 0.171 0.912 0.964
Semi-supervised 8 0.160 0.313 0.062 0.163 0.909 0.958
Semi-supervised 9 0.178 0.346 0.068 0.200 0.898 0.954
Semi-supervised 10 0.156 0.329 0.065 0.176 0.916 0.966
Semi-supervised 11 0.168 0.348 0.068 0.172 0.912 0.961
Semi-supervised 12 0.160 0.308 0.062 0.168 0.917 0.966
Semi-supervised 13 0.158 0.302 0.061 0.166 0.915 0.964
Semi-supervised 14 0.159 0.359 0.070 0.191 0.919 0.973
Semi-supervised 15 0.170 0.326 0.067 0.186 0.910 0.962

Since it had been hypothesized that the semi-supervised training would be best
suited for decreasing the geometric errors, we choose the hyper parameters for semi-
supervised training based on the metric x-error-far. Table A.7 shows the five best
performing models with respect to x-error-far and their corresponding hyper param-
eters. The best model in this aspect actually outperforms the corresponding super-
vised model slightly in all of x-error-close, x-error-far, z-error-close and z-error-far,
although F-score and AP decreases slightly as seen in Table A.6.

Table A.7: The x-error-far and hyper parameters of the five models with the lowest
x-error-far found in the hyper parameter search.

x-error-far Learning Rate Distance Threshold (dth) α
0.302 3.00E-06 0.779 0.552
0.307 3.30E-05 0.494 0.394
0.308 2.00E-06 0.449 0.341
0.309 6.00E-06 0.922 0.569
0.313 8.00E-06 0.557 0.246
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The hyper parameters used by the best performing model in Table A.7 are those
referred to as set 2 in the report. These hyperparameters are also shown in Table
A.8.

Table A.8: Hyperparameter set 2.

Hyperparameter set Learning Rate Distance Threshold (dth) α
Set 2 3 · 10−6 0.779 0.552

A.1.3 Extra Search at the Lowest Level of Supervision
To search for the best set of hyper parameters for supervised training at the low-
est level of supervision, 20 training runs were completed with the same method
for randomizing hyper parameters as in the latest search on the highest level of
supervision. That is: LRd and LRi chosen randomly from the set {6, 7, 8, 9, 10}
and {30, 35, 40, 45, 50} respectively, learning rate drawn from a uniform distribution
on [0.0001, 0.0003], dropout and batchnorm was chosen randomly to either True
or False while constant cam was set to False in all experiments. Furthermore,
regularization was set to r · x by first drawing a random number r from the set
{10−6, 10−5, 10−4, 10−3} and then drawing a random real valued number x uniformly
from the interval [0, 10].

Searching for appropriate hyper parameters for semi-supervised training at the low-
est level of supervision was also done in the same way as at the highest level of
supervision. That is: learning rate was sampled as x · a + 10−6 where x is sampled
uniformly in the interval (0, 1) and a is chosen randomly to 10−4 or 10−5, α was
sampled from a uniform distribution on [0.1, 0.9] and dth was set to log(x+1) where
x is sampled uniformly at [0.3, 2.0]. The probability threshold pth was always set to
the value that resulted in the maximum F-score on the validation set. Twenty runs
were completed and all models were trained semi-supervised for 5 epochs.
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