

Concept of an Environmentally Effective Solution for a Building

Master of Science Thesis in Civil and Environmental Engineering

PETR SCHORSCH

Department of Civil and Environmental Engineering Division of Building Technology, Building Physics CHALMERS UNIVERSITY OF TECHNOLOGY Göteborg, Sweden 2010 Master's Thesis 2010:14

MASTER'S THESIS

Concept of an Environmentally Effective Solution for a Building

Master of Science Thesis in Civil and Environmental Engineering

PETR SCHORSCH

Faculty of Civil Engineering Department of Building Structures CZECH TECHNICAL UNIVERSITY IN PRAGUE Prague, Czech Republic 2010

Department of Civil and Environmental Engineering Division of Building Technology CHALMERS UNIVERSITY OF TECHNOLOGY Göteborg, Sweden 2010 Concept of an Environmentally Effective Solution for a Building Master of Science Thesis in Civil and Environmental Engineering PETR SCHORSCH

© PETR SCHORSCH 2010

Examensarbete / Institutionen för bygg- och miljöteknik, Chalmers tekniska högskola 2010:14

Department of Civil and Environmental Engineering Division of Building Technology, *Building Physics* Chalmers University of Technology SE-412 96 Göteborg Sweden Telephone: + 46 (0)31-772 1000

Department of Civil and Environmental Engineering Göteborg, Sweden 2010 Concept of an Environmentally Effective Solution for a Building Master of Science Thesis in Civil and Environmental Engineering PETR SCHORSCH

ABSTRACT

Issues connected with the sustainable construction and the environmental impact of structures are getting into the centre of interest nowadays. The attention to energy consumption of buildings is paid and several methodologies evaluating the sustainability of buildings have started to be used. This thesis deals with the environmental impact of materials used for the construction of a residential building. It shows a design of such a building in four material alternatives in the low-energy standard and their comparison in terms of the environmental impact. The original system of criterions is used as well as a standard methodology SBTool CZ. These two opportunities of how to evaluate the environmental impact of a building are also compared each to other.

Key words: sustainable construction environmental impact of structures material alternatives energy consumption

embodied energy, emissions

Contents

ABSTRACT	Ι
CONTENTS	III
PREFACE	V
NOMENCLATURE	VI
1 INTRODUCTION	1
1.1 Why to focus on Sustainable Development in construction	1
1.1.1 Environmental impact of building materials1.1.2 Why to design buildings with lower energy consumption	3 6
1.2 The aim of the thesis1.2.1 Methodology used for evaluation according to Sustainal Development	7 ble 7
1.3 Limitations	10
2 DESCRIPTION OF THE ORIGINAL BUILDING	11
2.1 Purpose and architectural description	11
2.2 Structure description	14
2.2.1 Vertical structures	14
2.2.2 Horizontal structures	14
3 MATERIAL ALTERNATIVES – SKELETON CONSTRUCTIO	
SYSTEMS	16
3.1 Steel based structure	16
3.1.1 Design of the structure3.1.2 Description of used compositions	16 18
3.1.3 Thermal performance of designed compositions	28
3.1.4 Acoustics performance	32
3.2 Timber based construction	33
3.2.1 Design of the structure	33
3.2.2 Description of used compositions	35
3.2.3 Thermal performance of designed compositions3.2.4 Acoustics performance	45 48
4 MATERIAL ALTERNATIVES – WALL CONSTRUCTION SYSTEMS	50
4.1 Reinforced concrete based structure	50
4.1.1 Design of the structure	50
4.1.2 Description of used compositions	51
4.1.3 Thermal performance of designed compositions4.1.4 Acoustics performance	56 58
1	59
4.2 Light-weight concrete blocks based structure4.2.1 Design of the structure	59 59

	4.2.2 4.2.3 4.2.4	B Thermal performance of designed compositions	59 61 62
	7.2	reousties performance	02
5	EVA	LUATION OF THE ENERGY CONSUMPTION	63
5	.1	Evaluation of the original building	63
5	.2	Evaluation of the steel variant	66
5	.3	Evaluation of the timber variant	68
5	.4	Evaluation of the concrete variant	70
5	.5	Evaluation of the light-weight concrete variant	72
6 Tei		ESSMENT OF THE INDIVIDUALLY DESIGNED OPTIONS OF THE ENVIRONMENTAL IMPACT	IN 76
6	.1	Embodied energy, CO ₂ and SO ₂ emissions assessment	77
6	.2	Usage of raw materials vs. recycled materials	79
6	.3	Ranking of evaluated variants	81
	RMS	ESSMENT OF THE INDIVIDUALLY DESIGNED OPTIONS OF THE ENVIRONMENTAL IMPACT, DONE BY THE SBTOOL DOLOGY	
7	.1	Description of the SBTool CZ methodology	87
7	.2	Results from the SBTool CZ methodology	90
8	CON	ICLUSIONS	93
9	LIST	Γ OF TABLES	94
10	LIST	ſ OF FIGURES	95
11	REF	ERENCES	98
12	VIS	ITED WEB PAGES	99
13	APP	ENDIX	101

Preface

In this study, the environmental impact of construction materials for residential building has been investigated. The study has been carried out from February 2010 to May 2010 at the Department of Civil and Environmental engineering, Chalmers University of Technology, Sweden. The project has been supported by the Department of Building Structures, Czech Technical University in Prague, Czech Republic.

This project has been carried out under the supervision of Angela Sasic Kalagasidis, assistant professor from the Department of Civil and Environmental engineering, Chalmers University of Technology and prof. Ing. Petr Hájek, CSc from the Department of Building Structures, Czech Technical University in Prague. I would like to express my thanks to both of my supervisors for taking care of me and for valuable information that have helped me. Ing. Karel Mikeš, PhD. is highly appreciated for his help during the work on the thesis. I am also thankful for the help from Ing. Martin Vonka, Ph.D. and Birgit Brunklaus. I would also like to thank to my family and friends for their support during my work.

I declare that I worked out the thesis on my own, using the literature stated in references.

Göteborg May 2010

Petr Schorsch

Nomenclature

Roman upper case letters

A _{tot}	Total floor area of the building
E _{C,H}	Energy demand for cooling per year
E _{P,A}	Total energy demand for building per year
$E_{P,F}$	Energy demand for ventilation per year
E _{P,H}	Energy demand for heating per year
$E_{P,W}$	Energy demand for hot water preparation per year
L _{nw}	Level of impact sound
$Q_{H,nd}$	Specific heat consumption for heating
Pe	Design partial pressure of vapour
R_w	Airborne sound insulation
Te	Design outdoor temperature
T _i	Design indoor temperature
T_m	Mean temperature during the heating season
T _{st}	Outdoor temperature when the heating starts
U	Heat transmittance coefficient
U _{em}	The average heat transmittance coefficient for the building envelope
U_N	Recommended value of heat transmittance coefficient
V_{tot}	Total volume of the building

Roman lower case letters

e_2	Coefficient of the construction type
-------	--------------------------------------

- b₁ Factor of temperature reduction
- c_m Heat capacity of indoor mass
- t_{hs} Length of the heating season

Greek lower case letters

 ϕ_e Relative humidity of the outdoor air

1 Introduction

1.1 Why to focus on Sustainable Development in construction

What is sustainable development and why should its rules be followed? Sustainable development itself can be expressed as a rule for mankind on how to behave towards nature, especially when speaking about industry and civil engineering. It can be said that the first and basic definition was stated in The Bruntland Report. This one was made by the World Commission on Environment and Development in 1987. It is stated in there that sustainable development is: *"development that meets the needs of the present without compromising the ability of future generations to meet their own needs*". The other expressions, which were stated during the following years, meet the same aim. For example, a note about another definition which was stated in 1996 at the Civil Engineering Research Foundation (CERF) symposium can be maid. This is: *"Sustainable development is the task of meeting human needs mediated by natural resources, industrial products, energy, food, transportation, dwellings and effective management of waste while preserving and protecting the quality of the environment and natural raw materials basis for the future development.*"

Even though the environment is a very important part, it can not be said that sustainability and environment are exactly the same things. But as it is obvious from the statements written above that, the idea of sustainable development lies mainly in supporting the environment and helping it. The roots of sustainability and sustainable development were set in the tendency and speed of evolution of nowadays world. Sustainability itself involves a huge amount of issues and their influence on each other. Issues like differences between the world of rich and poor people, safety, health basic needs of societies or rights of individuals can be found in it. But the main point of all this is still in the right of the future generation on the certain living opportunity. The environmental aspect is taken as the fundamental for sustainability. One can imagine that our behaviour and our activities can have an impact on current life quality and health. The consequences can hit the other species and future generations as well.

If we want to achieve sustainability, we have to learn how to fit in the limits of the materials that can be provided for us by earth and how to absorb all the waste and pollution which is produced by us and our activities. There is a need for lowering down the amount of emissions and waste that we were used to produce during the last decades. As for the latest progression we can say that the situation has been improving. This is mainly thanks to that of sustainable development which has become a stated policy both of many governments and global companies. The governments have to work together with the building industry, if we want to improve this situation. There are a few main policy aims. These are: reduction of the energy demand of buildings, the increase of energy efficiency of appliances using energy, an encouragement of energy generating and distributing companies to support emission reduction, to change attitudes and behaviour of people to decrease the energy consumption. Building structures is a branch of industry where it is more difficult to find out the environmental quality of structures in comparison to the other branches of industry. Improvements and environmental standards vary from country to country according to the size and skills of organizations and individuals.

Generally, there is a high pressure on decreasing the energy consumption. This means decreasing the emissions that are emitted when producing the energy needed for heating or cooling. Moreover, it is important to take in account the energy needed for structures themselves. A new methodology of LCA (,,Life Cycle Approach") used for evaluating them has risen up. This one is used to evaluate the environmental influence of the structure from production of materials needed for it up to the demolition (,,cradle-to-grave").

We can find out the following as a result of the meaning sustainability and building structures. It is appropriate to design a solution for a building that the requirements on low energy demand are reached in an effective way. Especially with low investment cost and low loading for the environment and this is meant for the whole entire life of the structure. The energy properties of each building can be usually influenced during the creation of the building conception in the preparatory phase of the project. The best points on how to do that are a good coordination of the facade structure with the load bearing structure, the design of the heating system and lighting. Such a conception should be characterized by the equilibrium between the volume and structural design of all areas and structures.

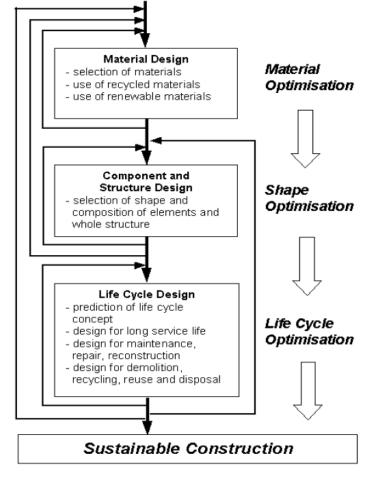


Figure 1.1 Concept of structure optimisation based on the environmental issues (Hájek, P. ,,Sustainable Construction Through Environment-Based Optimisation")

The environmental based optimisation means to focus on a few basic optimisation steps, which are material optimisation, shape optimisation, life cycle optimisation and optimisation in energy consumption of a building. The goal of all these optimisations should be to keep the materials used for construction in a closed cycle and to minimise inputs like materials from non-renewable sources, energy and outputs like emissions and waste. The idea of this procedure is described in *Figure 1.1*.

Still it has to be kept in mind that buildings have a relatively long service life, when compared with products from any other industry. This results in that every change that is made in the conception of the building design will be shown after many years. This is the reason why the changed wanted to be made has to be considered very carefully. According to this it is necessary to use the Life Cycle Approach. From that it can seen for example that the production and the origin of emissions during the life time of the building. It shows us that approximately 80 % of emissions is produced thanks to the operational phase of the building (heating, cooling, ventilation, lighting and appliances) and the other 20 % is for the materials used for construction (production, transportation, construction, maintenance, renovation and demolition).

1.1.1 Environmental impact of building materials

It can be said that the materials used for building structures can be divided into two major groups. These are stated according to the resource that is used for the certain material. There are these two types, renewable and non-renewable resources. For example timber fits in the group of renewable materials. These resources can be harvested regularly. As for the second group, these resources can be harvested just once. Iron or clay used for masonry fit in this group. The resources for these materials are limited and they can appear scarce as we are getting closer to their depletion. The most affected groups of materials are almost all kinds of ore minerals and also the materials used for energy production such as fossil oil or natural gas. There is a description of reserves of basic building materials in the *Table 1-1*. The scarcity of certain materials may happen in some regions even now. That is why it is reasonable and important to design structures according to materials that can be easily provided in that area. It is usually cost effective.

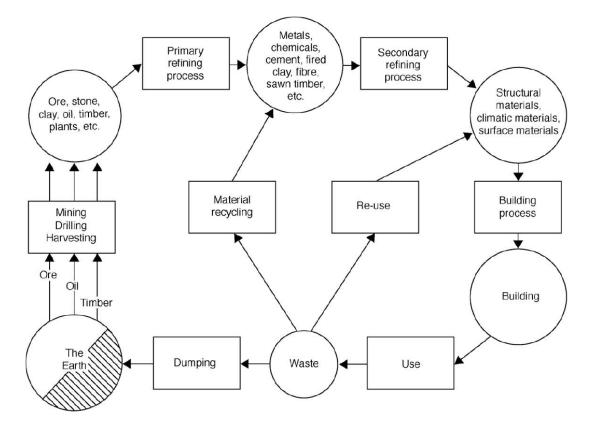

DefermineProbProb22Assenic2030633Bauxite141180644Bentonite (Montmorillonite)LargeLarge55Boric salts3586166BromLargeLarge170Cadmium267181ChromeCa. 25Ca. 40892Clay, for fired productsVery LargeVery Large15111Copper31613122Diatomite (silicious fossil meal)LargeLarge-133Earth, for compressingVery LargeVery large-144FeldsparLargeLarge155Gold17361-166GypsumLargeLarge171Iron9521915-182KaolinLargeVery Large194Lead204215-195ImaNicaVery Large196LargeVery Large197Mineral salt (sodium chloride)Very Large198Mineral salt (sodium chloride)Very Large199LargeLargeLarge191LargeLargeLarge192Mineral salt (sodium chloride)Very Large-	<i>Raw ma</i>	aterial	Reserve [years]	Reserve base [years]	Annual growth in consumption 1999–2006 [%]
ABauxite14118064Bentonite (Montmonilionite)LargeLarge5Boric salts358616BromLargeLarge17Cadmium26718ChromeCa.25Ca.4089Clay, for fired productsVery LargeVery Large1510Cobalt12126311Copper3161312Diatomite (silicious fossil meal)LargeLarge113Earth, for compressingVery LargeVery Large114FeldsparLargeLarge115Gold17S6116GysumLargeLarge117Iron952191.518KaolinLargeLarge119LeadLargeLarge1.519LangeLargeLarge1.519KaolinLargeLarge1.510IronS7S1S111FordantinLargeLarge1.511KaolinLargeLarge1.512IronLargeLarge1.513KaolinLargeVery Large1.514MagnesiumLargeVery Large1.515MargeLargeVery Large1.516MargensiumLargeVery Large<	1	Aggregate (sand, gravel)	Very Large	Very Large	
4Bentonite (Montmonilonite)LargeLarge5Boric salts358615BromLargeLarge16Brom267717CadmiumCa.25Ca.4089Clay, for fired productsVery LargeVery Large1510Cobalt1212261511Copper3161312Diatomite (silicious fossil meal)LargeLarge-13Earth, for compressingVery LargeVery Large1014FeldsparLargeLarge115Gold1736116GypsumLargeLarge117Iron952191018KaolinLargeLarge-19LeadLargeVery Large-19LangenumLargeVery Large-21MagnesiumLargeVery Large-22Mineral salt (sodium chloride)Very Large23NickélLargeLarge24PosphateLargeLarge25PoshateLargeLarge26PoshateLargeLarge27MospateLargeLarge28NickélLargeLarge29PosphateLarge <td< td=""><td>2</td><td>Arsenic</td><td>20</td><td>30</td><td>6</td></td<>	2	Arsenic	20	30	6
aaa6Boric saltsGaLargeLarge6BromLargeLargeI7Cadmium267718ChromeCa.25Ca.4089Clay, for fired productsVery LargeVery Large1510Cobalt1212261511Copper3161312Diatomite (silicious fossil meal)LargeLarge-13Earth, for compressingVery LargeVery large-14FeldsparLargeLarge115Gold1736116GypsumLargeLarge1017Iron952191018KaolinLargeLarge1.519LeadQuYery LargeVery Large21MagnesiumLargeVery Large-22Manganese40472923MicaVery LargeVery Large-24Mineral salt (sodium chloride)Very LargeVery Large25NickelLargeLarge-26PerliteLargeLarge-27PhosphateLargeLarge-28PotshLargeLarge-29PuniceLargeLarge-29PuniceLargeLarge-29PuniceLargeLarge- <td>3</td> <td>Bauxite</td> <td>141</td> <td>180</td> <td>6</td>	3	Bauxite	141	180	6
ArrowLargeLarge7CadmiumCargeLarge7CadmiumCa267718ChromeCa.25Ca.4089Clay, for fired productsVery LargeVery Large1510Cobalt1212261511Copper3161312Diatomite (silicious fossil meal)LargeLarge113Earth, for compressingVery LargeVery large-14FeldsparLargeLarge115Gold1736116GypsumLargeLarge117Iron952191018KaolinLargeLarge1.519Lead20421.520LimeVery LargeVery Large21MaganeseJargeVery Large22ManganeseVery LargeVery Large23NickeLargeLarge124Mineral salt (sodium chloride)Very LargeVery Large25NickelLargeLarge126PerliteLargeLarge127PhosphateLargeLarge128NickelLargeLarge129PuniceLargeLarge129PuniceLargeLarge120Limeral salt (sodium chloride)LargeLarge	4	Bentonite (Montmorillonite)	Large	Large	
7Cadmium26718ChromeCa.25Ca.4089Clay, for fired productsVery LargeVery Large1510Cobalt1212261511Copper3161312Diatomite (silicious fossil meal)LargeLarge-13Earth, for compressingVery LargeVery large-14FeldsparLargeLarge-15Gold1736116GypsumLargeLarge-17Iron952191018KaolinLargeLarge-19Lead20421.520LimeVery LargeVery Large21MagnesiumLargeVery Large22Manganese40472923MicaVery LargeVery Large24Mineral salt (sodium chloride)Very LargeVery Large25NickelLargeLarge-26PerliteLargeLarge-27PhosphateLargeLarge-28PotashLargeLarge-29PurniceLargeLarge-29PurniceLargeLarge-21SilicaLargeLarge-23SilicaLargeLarge-24SilicaLargeLarge- <td>5</td> <td>Boric salts</td> <td>35</td> <td>86</td> <td>1</td>	5	Boric salts	35	86	1
And the second	6	Brom	Large	Large	
9Clay, for fired productsVery LargeVery LargeVery Large15100Cobalt12122615111Copper31613112Diatomite (silicious fossil meal)LargeLargeLarge123Earth, for compressingVery LargeVery large1154FeldsparLargeLarge1155Gold17361166GypsumLargeLarge1170Iron9521910181KaolinLargeLarge1.5182KaolinLargeVery Large1.5184KaolinLargeVery Large1.5195LeadQuery LargeVery Large1.5206MingensiumLargeVery Large1.5217MagnesiumLargeVery Large1.5218MicaSiloi14905219NickelLargeLarge1.5219NickelLargeLarge1.5219NickelLargeLarge1.5219NickelLargeLarge1.5219NickelLargeLarge1.5219NickelLargeLarge1.5219NickelLargeLarge1.5219NickelLargeLarge1.5219NickelLargeLarge1.5219Nickel <td< td=""><td>7</td><td>Cadmium</td><td>26</td><td>77</td><td>1</td></td<>	7	Cadmium	26	77	1
Cobalt1212261511Copper3161312Diatomite (silicious fossil meal)LargeLarge	8	Chrome	Ca. 25	Ca. 40	8
InterpretAndAnd11Copper3161312Diatomite (silicious fossil meal)LargeLarge13Earth, for compressingVery LargeVery large14FeldsparLargeLarge15Gold1736116GypsumLargeLarge17Iron952191018KaolinLargeLargeLarge19Lead20421.520LimeVery LargeVery Large21MagnesiumLargeVery Large22Manganese40472923MicaVery LargeVery Large24Mineral salt (sodium chloride)Very LargeVery Large25Nickel124345026PerliteLargeLargeLarge27PhosphateLargeLargeLarge28PotashLargeLargeLarge29PuniceLargeLargeLarge29PuniceLargeLargeLarge31SilicaLargeLargeLarge31SilicaLargeLargeLarge32Silver14293	9	Clay, for fired products	Very Large	Very Large	
Diatomite (silicious fossil meal)LargeLarge12Diatomite (silicious fossil meal)LargeVery large13Earth, for compressingVery LargeVery large14FeldsparLargeLargeLarge15Gold1736116GypsumLargeLarge1017Iron952191018KaolinLargeLarge1519Lead20421.520LimeVery LargeVery Large21MagnesiumLargeVery Large22Manganese40472923MicaVery LargeVery Large24Mineral salt (sodium chloride)Very LargeVery Large25Nickel124345026PerliteLargeLargeLarge27PhosphateLargeLargeLarge28PotashLargeLargeLarge29PumiceLargeLargeLarge29PumiceLargeLargeLarge31SilicaLargeLargeLarge32Silver14293	10	Cobalt	121	226	15
13Earth, for compressingVery LargeVery large13Earth, for compressingVery LargeLarge14FeldsparLargeLarge15Gold1736116GypsumLargeLarge17Iron952191018KaolinLargeLarge19Lead20421.520LimeVery LargeVery Large21MagnesiumLargeVery Large22Manganese40472923MicaVery LargeVery Large24Mineral salt (sodium chloride)Very LargeVery Large25NickelA190526PerliteLargeLargeIarge27Phosphate124345028PumiceLargeLargeLarge29PumiceLargeLargeLarge29SilicaLargeLargeLarge30GuartzLargeLargeLarge31SilicaLargeLargeLarge32Silver14293	11	Copper	31	61	3
14FeldsparLargeLargeLarge15Gold1736116GypsumLargeLargeLarge17Iron952191018KaolinLargeLargeLarge19Lead20421.520LimeVery LargeVery LargeVery Large21MagnesiumLargeVery Large922Manganese40472923MicaVery LargeVery LargeVery Large24Mineral salt (sodium chloride)Very LargeVery Large25Nickel12490526PerliteLargeLargeIarge27Phosphate124345028PotashLargeLargeLarge29PumiceLargeLargeLarge29SilicaLargeLargeLarge30SilicaLargeLargeLarge31SilicaLargeLargeLarge32Silver14293	12	Diatomite (silicious fossil meal)	Large	Large	
15Gold1736115Gold1736116GypsumLargeLarge117Iron952191018KaolinLargeLarge1.519Lead20421.520LimeVery LargeVery Large21MagnesiumLargeVery Large22Manganese40472923MicaVery LargeVery Large24Mineral salt (sodium chloride)Very LargeVery Large25Nickel4190526PerliteLargeLargeIarge27Phosphate124345028PotashLargeLargeLarge29PumiceLargeLargeLarge30QuartzLargeLargeLarge31SilicaLargeLarge332Silver14293	13	Earth, for compressing	Very Large	Very large	
16GypsumLargeLargeLarge17Iron952191018KaolinLargeLarge1219Lead20421.520LimeVery LargeVery Large1.521MagnesiumLargeVery Large922Manganese40472923MicaVery LargeVery LargeVery Large24Mineral salt (sodium chloride)Very LargeVery Large25NickelLargeLargeJanese26PerliteLargeLargeJanese27Phosphate124345028PotashLargeLargeLarge29PumiceLargeLargeLarge29SilicaLargeLargeLarge30SilicaLargeLargeLarge31SilicaLargeLargeLarge32Silver14293	14	Feldspar	Large	Large	
IndicationPointPoint17Iron952191018KaolinLargeLargeLarge19Lead20421.520LimeVery LargeVery LargeImage21MagnesiumLargeVery Large922Manganese40472923MicaVery LargeVery LargeImage24Mineral salt (sodium chloride)Very LargeVery Large25Nickel4190526PerliteLargeLargeLarge27Phosphate124345028PotashLargeLargeLarge29PumiceLargeLargeLarge30QuartzLargeLargeLarge31SilicaLargeLargeLarge32Silver14293	15	Gold	17	36	1
18KaolinLargeLarge19Lead20421.520LimeVery LargeVery Large21MagnesiumLargeVery Large22Manganese40472923MicaVery LargeVery Large24Mineral salt (sodium chloride)Very LargeVery Large25NickelLargeLarge526PerliteLargeLarge1027Phosphate124345028PotashLargeLargeLarge29PuniceLargeLargeLarge30QuartzLargeLargeLarge31SilicaLarge14293	16	Gypsum	Large	Large	
19Lead20421.520LimeVery LargeVery LargeVery Large21MagnesiumLargeVery Large922Manganese40472923MicaVery LargeVery Large124Mineral salt (sodium chloride)Very LargeVery Large25Nickel4190526PerliteLargeLarge27Phosphate124345028PotashLargeLargeLarge29PumiceLargeLargeLarge30QuartzLargeLargeLarge31SilicaLargeLargeJarge32Silver14293	17	Iron	95	219	10
20LineVery LargeVery Large20LineVery LargeVery Large21MagnesiumLargeVery Large22Manganese40472923MicaVery LargeVery Large24Mineral salt (sodium chloride)Very LargeVery Large25Nickel4190526PerliteLargeLarge27Phosphate124345028PotashLargeLargeLarge29PumiceLargeLargeLarge30QuartzLargeLargeLarge31SilicaLargeLargeLarge32Silver14293	18	Kaolin	Large	Large	
21MagnesiumLargeVery Large22Manganese40472923MicaVery LargeVery Large24Mineral salt (sodium chloride)Very LargeVery Large25Nickel4190526PerliteLargeLarge27Phosphate124345028PotashLargeLargeLarge29PumiceLargeLargeLarge30QuartzLargeLargeLarge31SilicaLargeLargeJarge32Silver14293	19	Lead	20	42	1.5
22Manganese40472923MicaVery LargeVery LargeVery Large24Mineral salt (sodium chloride)Very LargeVery Large25Nickel4190526PerliteLargeLarge027Phosphate124345028PotashLargeLargeLarge29PuniceLargeLargeLarge30QuartzLargeLargeLarge31SilicaLarge14293	20	Lime	Very Large	Very Large	
233MicaVery LargeVery Large243Mineral salt (sodium chloride)Very LargeVery Large244Mineral salt (sodium chloride)Very LargeVery Large255Nickel41905266PerliteLargeLarge277Phosphate1243450288PotashLargeLarge299PumiceLargeLarge300QuartzLargeLarge311SilicaLargeLarge322Silver14293	21	Magnesium	Large	Very Large	
24Mineral salt (sodium chloride)Very LargeVery Large25Nickel4190526PerliteLargeLarge27Phosphate124345028PotashLargeLarge29PumiceLargeLarge30QuartzLargeLarge31SilicaLargeLarge32Silver14293	22	Manganese	40	472	9
Z5Nickel4190526PerliteLargeLarge27Phosphate124345028PotashLargeLargeLarge29PumiceLargeLargeLarge30QuartzLargeLargeLarge31SilicaLargeLargeLarge32Silver14293	23	Mica	Very Large	Very Large	
26PerliteLargeLarge27Phosphate124345028PotashLargeLarge29PumiceLargeLarge30QuartzLargeLarge31SilicaLarge142932Silver14293	24	Mineral salt (sodium chloride)	Very Large	Very Large	
27Phosphate124345028PotashLargeLarge29PumiceLargeLarge30QuartzLargeLarge31SilicaLargeLarge32Silver14293	25	Nickel	41	90	5
PotashLargeLarge28PotashLarge29PumiceLarge30QuartzLarge31SilicaLarge32Silver14293	26	Perlite	Large	Large	
29PumiceLargeLarge30QuartzLargeLarge31SilicaLargeLarge32Silver14293	27	Phosphate	124	345	0
30QuartzLargeLarge31SilicaLargeLarge32Silver14293	28	Potash	Large	Large	
31 Silica Large 32 Silver 14 29 3	29	Pumice	Large	Large	
31SilicaLargeLarge32Silver14293	30	Quartz	Large	Large	
32 Silver 14 29 3	31	Silica			
33 Soda ash Large Large	32	Silver			3
	33	Soda ash	Large	Large	

Table 1-1 Non-renewable resources for building materials production.

Reserve is defined as that part of the reserve base that could be economically extracted or produced at the time of determination. Reserve base includes those resources that are currently economic (Reserves), marginally economic, and some of those that are currently subeconomic. Both Reserve and Reserve base are estimated without growth in consumption. (Berge, B., (2009): The ecology of building materials. Architectural Press, Oxford, UK)

,, Resources are not anything static, but something as dynamic as civilization itself." Zimmermann 1933

Nowadays civil engineering is the second largest consumer of raw materials in the world. Largest in this consumption is the food production. If we want to follow the concept of sustainability we will have to focus on the reduction of usage of raw materials. Recycling goes hand by hand with this. It is highly recommended to do recycling as a next step after demolition. It is better to keep the materials at the same level of quality. This is much better than to leave them for downcycling. As it is visible in the *Figure 1.2* with increasing the amount of materials that can be reused or recycled we decrease the amount of waste and raw materials that are scarce.

Figure 1.2 The cycle of materials (Berge, B., (2009): The ecology of building materials. Architectural Press, Oxford, UK)

As for the sustainability and building materials it is important to design buildings in the way to lower down the usage of necessary materials and mainly to use the materials from renewable resources or materials that can be recycled or reused. There should be also an effort put to decrease the waste production during the construction and the workmanship, but this is mainly the task for the building companies.

Civil engineering has also a big part in responsibility for emissions of greenhouse gases. The overall emission production has been stated of 30-40% contributing to the total global emission production. In this number we can find emissions that are produced when using a certain building – emissions from energy needed for heating, cooling or lightning. This one represents the major part in the overall amount of emissions. If we look in the past we can see that the major producers of emissions were highly developed countries. As the world has been changing and there are many developing countries becoming richer and rising up a lot of industry in their areas, we can expect that the amount of emissions per capita. The other part of emissions connected to building structures are the emissions produced by the structure itself. By this we mean emissions during the transportation, building up, demolition and production which are set as the embodied emissions of each type of material.

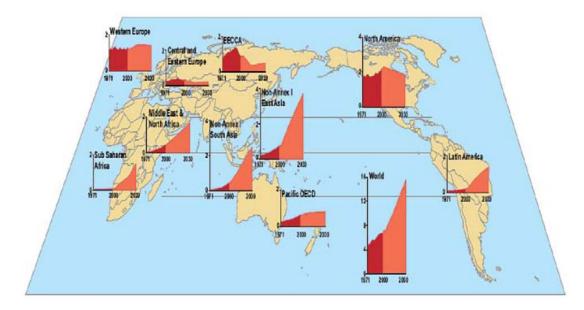


Figure 1.3 CO₂ emissions from buildings (dark red: 1971 – 2000, light red: projection for years 2001 – 2030. ("Building and climate change", UNEP SBCI 2009)

1.1.2 Why to design buildings with lower energy consumption

Energy is the biggest driving force of the climate change and is the biggest cause of air pollution. The amount of energy consumption all over the world still remains in very high numbers and it is expected to be increased as the new developing countries are increasing their energy demand. The relatively low prices of energy in the past did not set the right atmosphere for improving the efficiency both in energy production and in use. Nowadays we can see that more and more people prefer to build a low-energy house instead of the normal one. It is usually not because they want to be environmental friendly or that they want to behave sustainable, but the main reason for them is that they save money. Another motivation that can lead people to build house with lower energy demand is the government policy. For example, this can be done by encouraging people with some kind of subsidies under condition that they build the house with lower energy consumption. Such a programme was launched in the Czech Republic 2 years ago and it has turned out to be successful.

Buildings consume about 40 % of the global energy usage. This is closely correlated with the production of CO_2 emissions. Greater efficiency in the production and use of energy is then the key to sustainable construction.

In the optimistic predictions we can find that low energy and passive houses will take about 50 % of the market with production of new buildings (according to the ISES study). Speaking generally there is no reason today to build houses in a different standard than in the low-energy one. Low energy consumption for heating has many advantages like lower dependance on the energy supply and saving money for it (especially when the price of energy has still rising up) or better indoor climate. This all is for about 5 - 8 % of increase in costs of the new building.

1.2 The aim of the thesis

The aim of this thesis is to design an environmentally and energy efficient building. There is a given building (the building is called original version more further) to fulfil this task. This one is a residential house located in the suburb of Prague. It is made from reinforced concrete and has five floors. This given object is described more in details in the next chapter. There are made three material alternatives to this chosen building. The different materials that are used then are timber, steel, reinforced concrete and light-weight concrete blocks Ytong. There is done a structural design, thermal performance, acoustic performance, energy and environmental evaluation for all alternatives.

All alternatives are designed as the low-energy buildings. The given building is turned into it as well. This is done in accordance with that what was stated in the previous chapter, that the biggest energy consumption and also production of CO_2 emissions is during the operational phase of the building.

At the end of the thesis the best material is chosen. So there is a comparison of four structural materials and their influence on the environment. The materials are rated according to the original criteria system of this thesis. The results from this system of criteria are compared with the results from evaluation by SBToolCZ methodology, which is the methodology for the comprehensive evaluation. SBTool is one of the possible ways on how to evaluate the sustainability of buildings and thus can determine the potential of how to improve and optimise the design of building.

1.2.1 Methodology used for evaluation according to Sustainable Development

The evaluation and the design of buildings as low-energy ones have a lot of rules stated mainly by the legislation. This became stricter in 2002 when the new standardization became valid. It is stated in there that the low-energy houses should have now the specific heat consumption for heating lower than 50 kWh/m²y and passive ones lower than 15 kWh/m²y. The other requirements on these structures were set as well. Next one is that the value η_{50} for airtightness should be maximally 0,6 h⁻¹ at pressure difference 50 Pa. This should be proved by the Blower Door test which is done after the construction of the building is finished. The total amount of primary energy consumed during the operational mode should not overcome 120 kWh/m²y.

In the *Table 1-2* you can see the requirements on heat transfer coefficient that are valid today. These are used for the normal category of new buildings. Recommended values for low-energy houses are about 2/3 of recommended values stated in this table and values for passive houses should be even lower. This is the basic overview on the basic requirements used in the Czech Republic. More detailed ones are used directly in the evaluations.

Description of the construction	Type of constru ction	values U _N	mended	constru ction type	Factor of tempera ture reducti on b1 [-]
Flat roof or pitched roof with maximal angle of 45°, including The floor above the outdoor space The ceiling under the unheated garret where is a roof without thermal	light	0,24	0,16	0,80	1,25
insulation Floor or wall with heating	heavy	0,30	0,20	0,80	1,00
External wall Pitched	light	0,30	0,20	1,00	1,25
roof with the angle over 45°	heavy	0,38	0,25	1,00	1,00
Floor or wall adjacent to the soil (with the exception of Note 2) Ceiling or wall between the heated and unheated area		0,60	0,40	0,80	0,49
Ceiling or wall between the heated and partially heated area		0,75	0,50	0,80	0,40
Wall between neighbouring buildings between rooms with the max. difference in temperatures 10°C, incl.	Ceiling	1,05	0,70	0,80	0,29
Wall between rooms with the max. difference in temperatures 10°C,	incl.	1,30	0,90	1,00	0,29
Ceiling between rooms with the max. difference in temperatures 5°C	, incl.	2,20	1,45	0,80	0,14
Wall between rooms with the max. difference in temperatures 5°C, in	ncl.	2,70	1,80	1,00	0,14
Window or the other type of construcion hole filling from the	new	1,80	1,20	5,50	0,15
heatened room (including the frame, that has max. 2.0 W/(m ² .K))	reconstr.	2,00	1,35	6,00	0,15
Doors, gates and the other types of construction hole filling from the heatened or unheatened room (including the frame)	partially	3,50	2,30	6,00	0,66

Table 1-2 Required and recommended values of heat transfer coefficient U_N for buildings with the prevailing internal temperature $\theta_{im} = 20 \text{ °C}$

1.2.1.1 Description of used programmes

Teplo 2009 (,,Heat 2009")

The programme Teplo 2009 allows the steady-state calculation of the basic thermal performance of the building structures according to the Czech standardizations ČSN EN ISO 6946, ČSN EN ISO 13788 and ČSN 73 0540 The programme calculates the thermal resistance, thermal transmittance, inner surface temperature, temperature factor, thermal inhibition, decrease in the contact temperature of the floor structure and an annual review of condensed and evaporated moisture. It is possible to solve structures consisting of up to 15 layers in any of boundary conditions. Calculation of the annual balance of water vapour is in the program, implemented in accordance with European methodology prescribed in ČSN EN ISO 13788 and with the national methodology specified in ČSN 73 0540-4 as well

Area 2009 (,,Area 2009")

The programme Area 2009 allows the calculation of the steady-state twodimensional thermal fields, partial pressures of vapour and the estimation of annual balance of vapour in the construction of two-dimensional details. The programme also calculates the heat flow through thermal bridges. It includes an auxiliary calculation of modules to determine the thermal transmittance of window designs and light cladding according to the standardisations ČSN EN ISO 10077 and ČSN EN 13947, for determination of linear factors of heat according to ČSN EN ISO 10211 and to determinate the temperature factor of the 3D thermal bridges and bonds under ČSN EN ISO 10211-2. The Calculation of steady-state two-dimensional field is done using the finite element method.

Energie 2010 (,,Energy 2010")

The programme Energie 2010 allows the calculation of average heat transfer coefficient of the building envelope according to ČSN 730 540, the energy performance of the building according to ČSN EN ISO 13790, the energy performance of low-energy residential buildings in the TNI 73 0330 TNI 73 0329 and a specific energy needs according to. The programme can determine the energy consumption of the building according to ČSN EN ISO 13790 in two ways: one the more detailed calculation for individual months or through the simplified calculation of the heating season (seasonal calculation).

Neprůzvučnost 2005 ("Soundproof 2005")

The programme Neprůzvučnost 2005 allows the theoretical calculation of air and impact soundproof of structures according to ČSN EN ISO 717. The programme calculates the weighted soundproof and calculation of the weighted normalized levels of impact noise for simple (single-layer, sandwich and multi-layer) for double structures, the construction of composites (combined) and the ceiling with floating floor coating. It is possible to solve structures consisting of up to 5 layers.

Fin 3D

The programme FIN 3D performs structural analysis of 3D frame and beam structures, computation of deformations, internal forces, eigen modes and frequencies. Features like the second order analysis and linear stability are also available. The programme includes other programmes for dimensioning of structures and verification of fire situation.

List of standardisations used in programmes:

ČSN EN ISO 6946, (2008) : Stavební prvky a stavební konstrukce - Tepelný odpor a součinitel prostupu tepla - Výpočtová metoda, (Building components and building elements - Thermal resistance and thermal transmittance - Calculation method). Czech Standards Institute

ČSN EN ISO 13788, (2002) : Tepelně vlhkostní chování stavebních dílců a stavebních prvků - Vnitřní povrchová teplota pro vyloučení kritické povrchové vlhkosti a kondenzace uvnitř konstrukce - Výpočtové metody, (Hygrothermal performance of building components and building elements - Internal surface temperature to avoid critical surface humidity and interstitial condensation -Calculation methods). Czech Standards Institute

ČSN 73 0540, (2005) : *Tepelná ochrana budov, (Thermal protection of buildings)*. Czech Standards Institute

ČSN EN ISO 10077, (2004) : *Tepelné chování oken, dveří a okenic, (Thermal performance of windows, doors and shutter)*. Czech Standards Institute

ČSN EN 13947, (2007) : Tepelné chování lehkých obvodových plášťů -Výpočet součinitele prostupu tepla, (Thermal performance of curtain walling -Calculation of thermal transmittance). Czech Standards Institute ČSN EN ISO 10211, (2009) : Tepelné mosty ve stavebních konstrukcích -Tepelné toky a povrchové teploty - Podrobné výpočty, (Thermal bridges in building construction - Heat flows and surface temperatures - Detailed calculations). Czech Standards Institute

ČSN EN ISO 13790, (2009) : Energetická náročnost budov - Výpočet spotřeby energie na vytápění a chlazení, (Energy performance of buildings - Calculation of energy use for space heating and cooling). Czech Standards Institute

TNI 73 0330, (2009) : Zjednodušené výpočtové hodnocení a klasifikace obytných budov s velmi nízkou potřebou tepla na vytápění - Bytové domy, (Simplified computational evaluation and classification of residential buildings with very low for heating - Residential buildings). Czech Standards Institute

TNI 73 0329, (1998) : Zjednodušené výpočtové hodnocení a klasifikace obytných budov s velmi nízkou potřebou tepla na vytápění - Rodinné domy, (Simplified calculation of evaluation and classification of residential buildings with very low for heating – Detached houses). Czech Standards Institute

ČSN EN ISO 717, (1998) : Akustika – Hodnocení zvukové izolace stavebních konstrukcí a v budovách, (Acoustics – Rating of sound insulation in buildings and of building elements). Czech Standards Institute

1.3 Limitations

The thesis is based on already prepared project documentation. This point itself is one of the biggest limitations if speaking about the structural design, because there are set fixed dispositions. The project documentation of an apartment building 'Viladům Kobylisy" is used for this work. Supporting documents were given by the architectural studio A + R System Ltd. To have the project solution of all variants the design is focused on statics, building physics – heat engineering, acoustic, evaluation of material influence on environment and overall evaluation of energy consumption and sustainability. The illumination is assumed to be already done within the project design of the chosen building. For all evaluations like snow, wind loading or moisture and temperature the conditions for Prague, the Czech Republic are taken.

Other limitation that was taken in concern is the allowed height of the building for timber structure. As for Sweden there is no limitation, but for the Czech Republic there is a limit of 9 meters. I was told that this limit will be risen up to 12 meter in the near future. But still the height of the timber variant is bit more (13 meters). Because of this the design is meant as a model situation, not as a proposal of a building that can be built nowadays.

2 Description of the original building

2.1 Purpose and architectural description

This is a residential house with five floors. Under the building there is a basement used for garages, cellars and technical background of the building. The first floor is designed for a non-residential use. Above it there are three residential floors, the latest one is designed as a recessive one. The building is situated in the suburb of Prague in the Czech Republic.

The main entrance to the house and garages is on the eastern edge of the lot. Behind the entrance gate a pavement runs along the entrance ramp to garages and rises into the garden, where the access to the house is. This entrance is designed also for disabled people. The entrance is done as roofed vestibule. After that there is the entrance hall with the stairway that connects the residential house with the basement floor.

Living part of the building occupies two full floors and a recessive one. On the 2^{nd} and 3^{rd} floor there are always five flats of size category 1x 2+kk and 4x 3+kk (x+kk, this means the number of rooms in the flat + kitchen corner) proposed. Apartments are accessible from the corridor which is separated from the stairway area. Facilities for each flat include a storage cellar and one common room of the house (cleaning room in 2^{nd} floor / bikes and strollers in 3^{rd} floor). The layout of the 2^{nd} and 3^{rd} floor is described in the *Figure 2.1*. On the recessed floor there are four flats of categories 3x 3+kk and 1x 4+kk with high surface area standards. There is a direct access to the terrace from all the rooms. Apartments are individually accessible from a separate corridor. The layout of the 4^{th} floor is visible in the *Figure 2.2*.

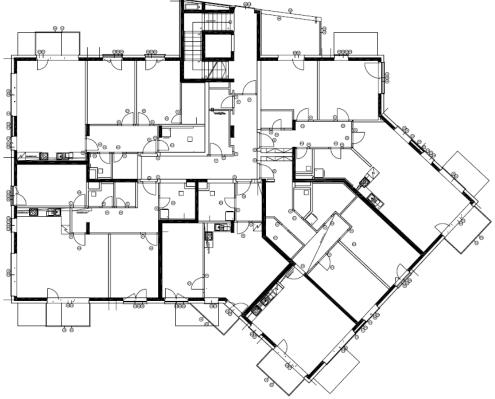
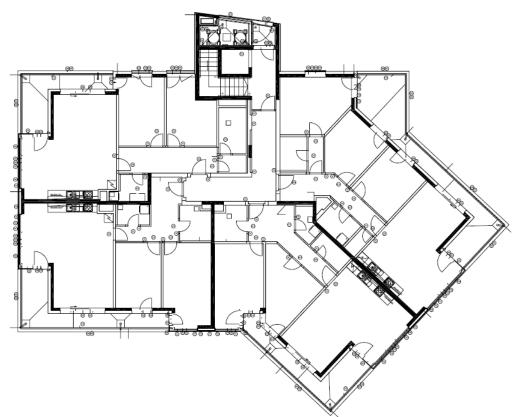
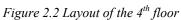




Figure 2.1 Layout of the 2nd and 3rd floor

The non living area on the 1^{st} floor is done as a open space which offers the ability for the future owner to create the disposition. The layout of the 1^{st} floor can be seen in the *Figure 2.3*.

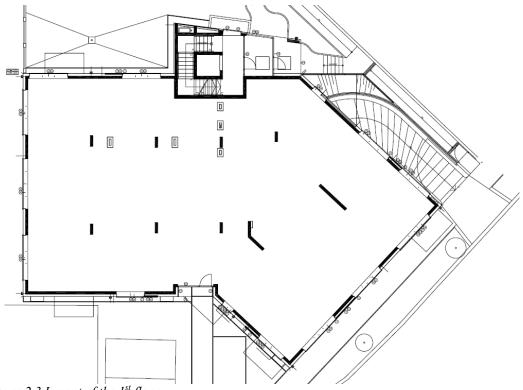


Figure 2.3 Layout of the 1st floor

The basement is primarily for garaging. In total, the proposed garage contains 18 parking places and one which is dimensionally adapted for people with reduced mobility. This one is located right at the entrance to the stairs area with an elevator. The basement is also proposed for common facilities. There is a room with a heat exchanger station, room with ventilation technology for parking area and a place for water meter assembly. Residual area of the basement is used for storage cellars of dwellings in a total capacity of 6 separate cellars. All the layouts can be found in the appendix.

Figure 2.4 Northern view of the building

Figure 2.5 Western view of the building

2.2 Structure description

2.2.1 Vertical structures

The actual building is designed as a solid reinforced concrete monolithic skeleton with concrete walls forming the facade, internal reinforced concrete flat columns (short walls) and internal reinforcing concrete walls. Basic spans of various supporting structures are designed in the range from 5.0 m to 6.6 m. Reinforced concrete walls on each floor inside the dispositions have not just a function as reinforcements, but also serve as a supporting structure for ceiling slabs, allowing the minimization of their thickness. Moreover, they also have an acoustic function. The lowest floor (garages) has around its perimeter load-bearing reinforcing monolithic reinforced concrete wall connected to the base-related structures. Inside, the layout of garage floor flat columns are designed for better handling of vehicles. The reinforced concrete stair core passes through all of the floors of the house to the object surface. This also serves as a reinforcement to the entire height of the object. Elevator shaft is separated from the other structures, because of the acoustical reasons. Arrangement of vertical structures of the garage floor and the rest of the building is maintained in the same modular outline and vertical loading goes directly to the foundations of the house.

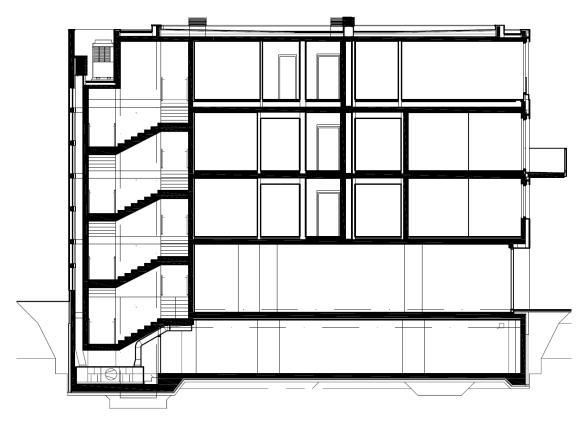


Figure 2.6 Section of the building

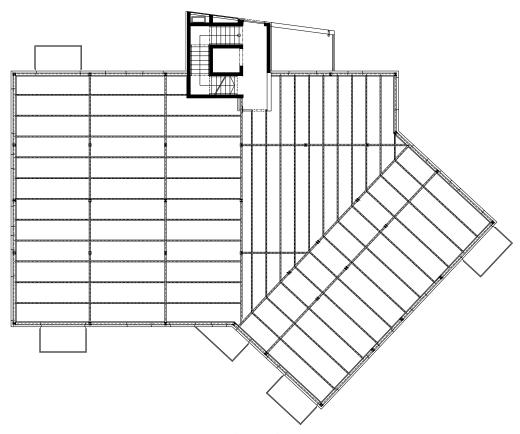
2.2.2 Horizontal structures

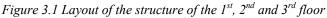
All of the horizontal structures are designed as reinforced concrete, monolithic, cross reinforced slabs supported linearly by circumferential and inner reinforcing walls and locally supported by flat columns. Slab thicknesses are

optimized according to spans and loads, and are designed emphasizing to the use of conventional concrete reinforcement. Ceiling slabs over the basement and 3rd floor have a thickness of 250 mm, there are slabs with thickness of 200 mm in the other floors. Ceiling slab above the 3rd floor will be loaded by the recessive 4th floor. Balcony slabs are thermally separated from the structure using, ISO beams. Thickness of the balcony slabs are 160 mm at the connection to the main structure. The roof is designed as a flat one and the layers are placed directly on the ceiling slab.

Composition Heat transfer coefficient		
Main wall	0.24	W/m ² K
Wall in the basement	0.33	W/m ² K
Insert spaces between windows	0.28	W/m ² K
Roof	0.20	W/m ² K
Terrace	0.20	W/m ² K
Ceiling above the basement	0.30	W/m ² K
Stairway wall	0.42	W/m ² K
Stairway wall to interior	0.65	W/m ² K

Table 2-1 An overview of the heat transfer coefficient of the reference building


These values were evaluated according to the compositions of the given building)


3 Material alternatives – skeleton construction systems

3.1 Steel based structure

3.1.1 Design of the structure

First alternative is designed as a steel skeleton system. There is a particular attention paid to preserve the dispositions of the original building when designing this alternative. The only place where it was necessary to change the original disposition is the 1st floor with open space offices. This was because there were new columns added in this floor. Parts that were needed to change and the other opportunity how to arrange the disposition in there is given in the appendix of this thesis. The variability of this area is still kept. Some of the windows in the other floors had slightly to change the place as well, but the glazing area remained at the same level.

The material used for the basement of the building, the floor with garages and the stairway is the same as in the original building (reinforced concrete). The change of the material is done in the residential part $(1^{st}, 2^{nd}, 3^{rd}, 4^{th}$ floor). The structure is designed as a heavy skeleton, just the 4th floor is done as a light one. The main load bearing parts of the structure are columns set in the maximum span of 5 m. The HEB profiles are used for the columns. Columns in the 4th floor are also in HEB, but placed in the maximal distance of 1,25 m.

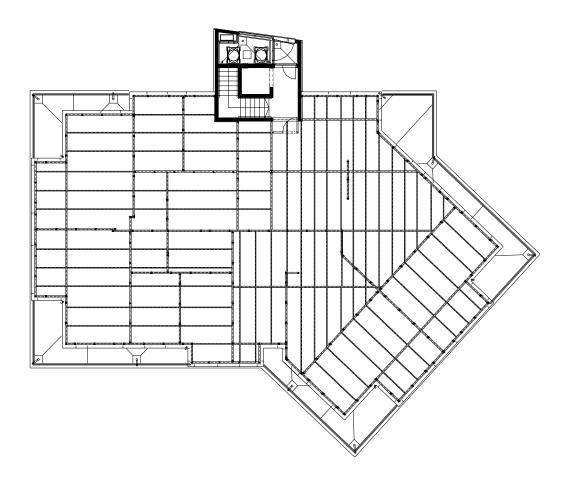
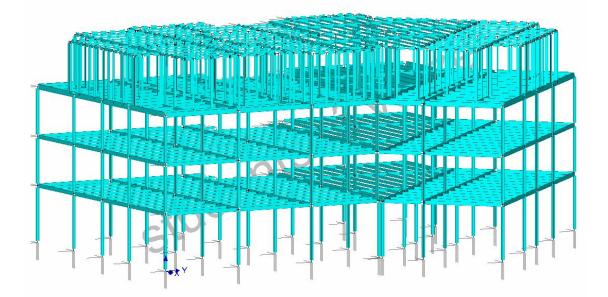


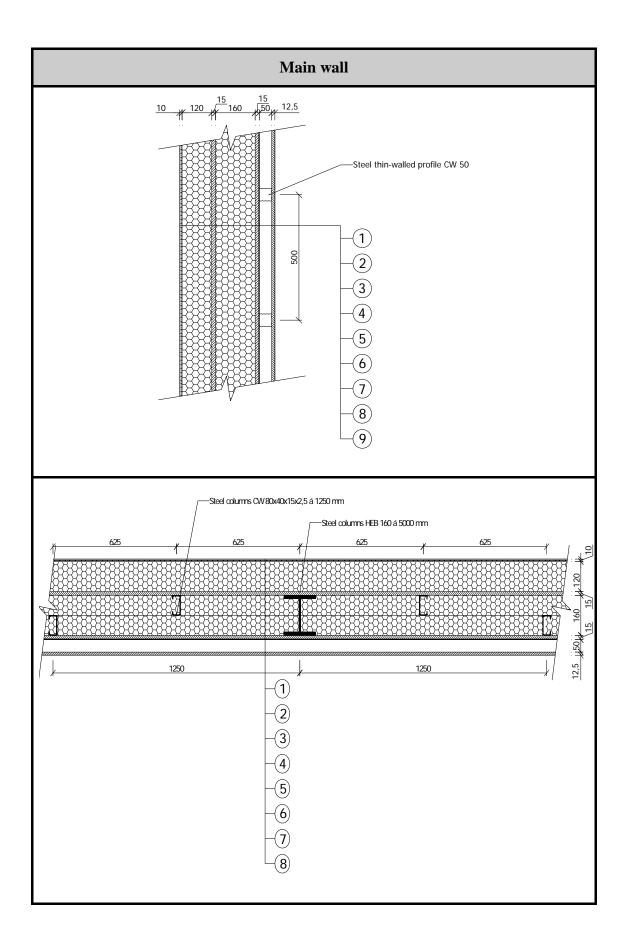
Figure 3.2 Layout of the structure of the 4th floor

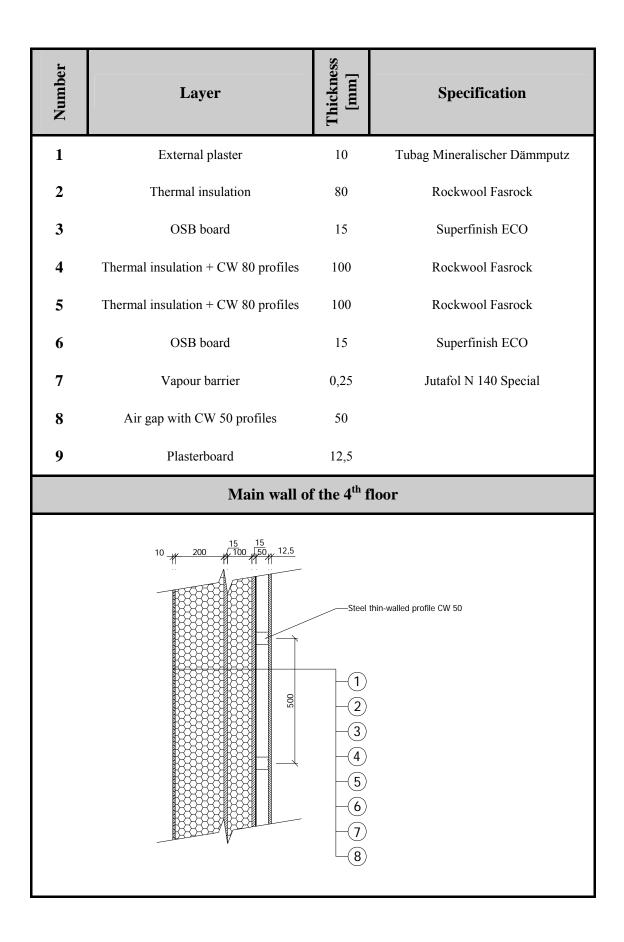
The horizontal load bearing structure is designed from girders and joists. There is a difference between profiles used in the ceiling above the 3rd floor and the rest. This is because of the recessed floor above it. Joists and beams in the ceiling above the 3rd floor have to carry the load from roof and 4th floor walls as well. When designing the horizontal structure it was considered the interaction between the steel profiles and the concrete slab above which is used for the flooring. The only part of the horizontal structure that was not properly designed are the profiles that would be used for the construction of balcony.

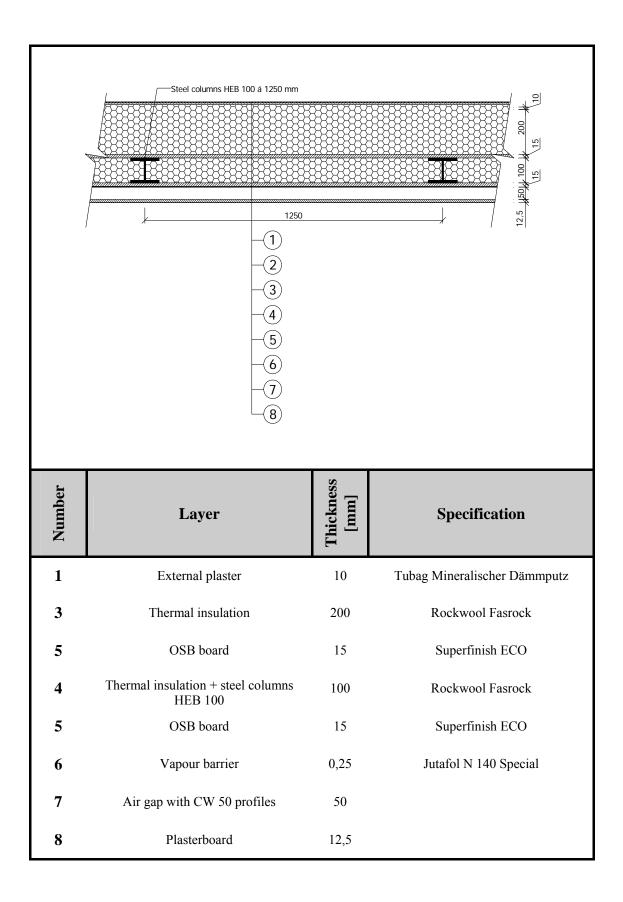
The loadings that were used for the evaluation are: self-weight load, imposed load, snow load and wind load. The area of stairway is kept in the same place and is used as the reinforcement mainly for the wind load. There is a presumption that the rigid concrete slab used in the floor and roof compositions will interact with steel load bearing elements and therefore it will distribute the horizontal forces caused by the wind loading. It is also presumed that the internal and circumference walls will act as reinforcements thank to their composition which consists of at least two OSB boards in every case. The overall static evaluation can be found at the end of this thesis in the appendix.

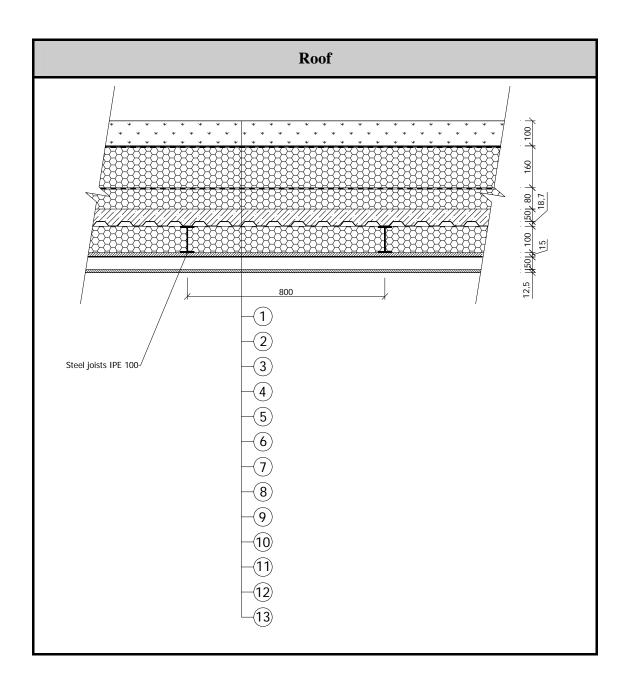
According to the structure system the compositions of walls and floors had to be changed as well. All these compositions are described later in this chapter.



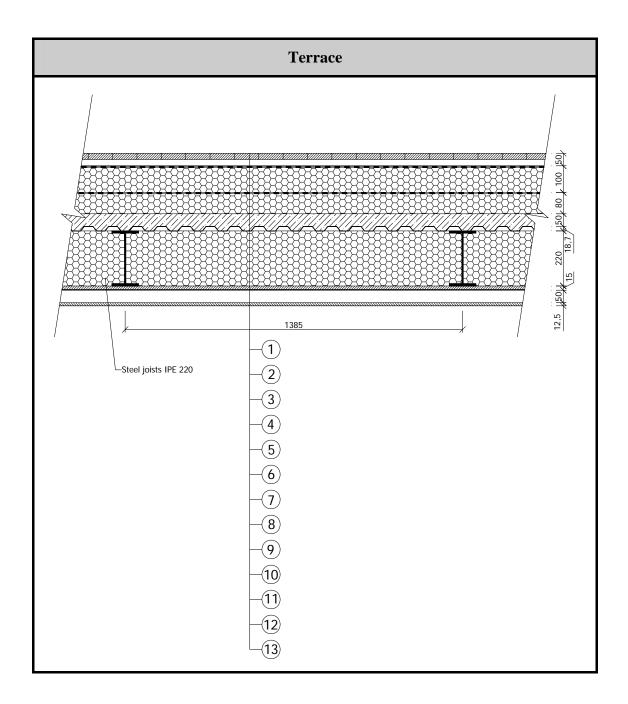

Figure 3.3 Image of the designed steel structure (result from the programme FIN 3D)

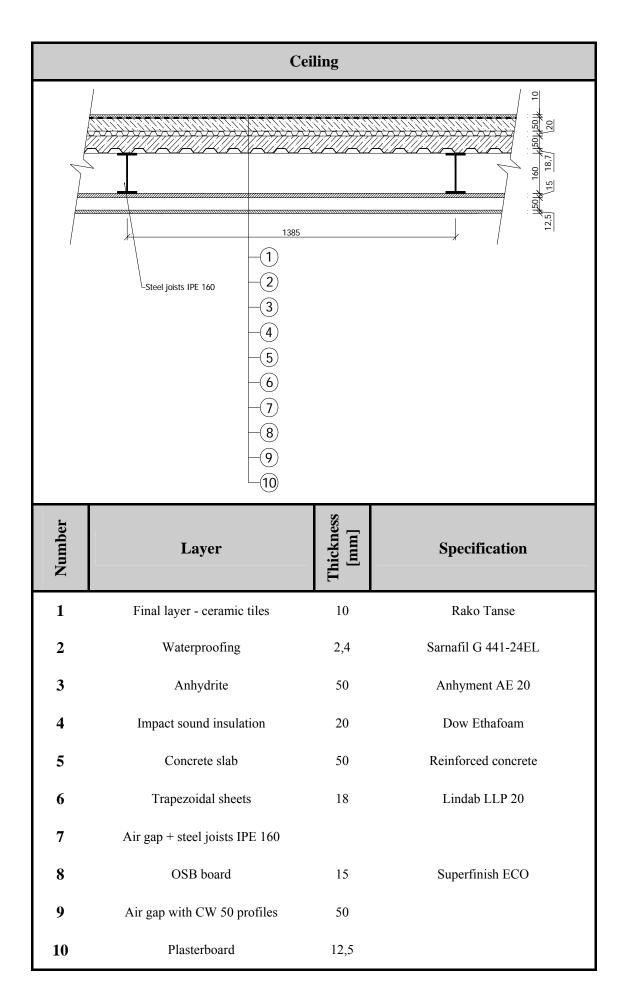

List of elements designed for the steel structure			
	Element	Profile	
	roof	IPE 100	
joist	2 nd , 3 rd floor	IPE 160	
	4 th floor	IPE 220	
aindon	2 nd , 3 rd floor	IPE 220	
girder	4 th floor	IPE 300	
•	1 st , 2 nd , 3 rd floor	HEB 160	
column	4 th floor	HEB 100	

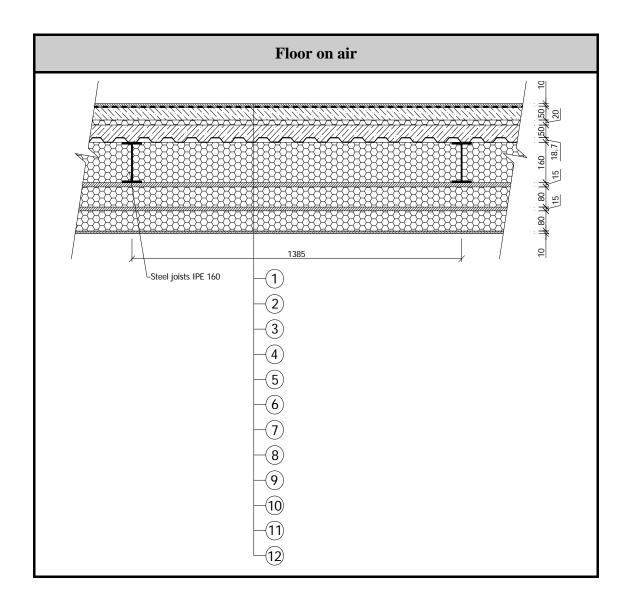

Table 3-1 An overview of the designed steel elements


3.1.2 Description of used compositions

Here is an overview of all compositions designed for the steel structure variant. The aim was to get the value of heat transmission coefficient that the specific heat consumption of the building is about 20 kWh/m²y. The compositions of all variants were done with an idea to get nearly the same values of heat transmission coefficient for all alternatives. To avoid the moisture condensation in the structure itself and to ensure the airtightness, the vapour barrier was used in all of the compositions. All the used OSB boards are produced without an addition of formaldehyde. Compositions are described in *Table 3-2* below. Mineral wool is used as a thermal insulation. Only in the composition of roof and terrace extruded polystyrene is used. This is because of the need to use a thermal insulation with the resistance to the moisture. Always there is a risk of perforation of the first layer of waterproofing. The other reason for extruded polystyrene is the resistance to pressure. This allows to put the walking coat on terrace and keeps the same possibility for roof.



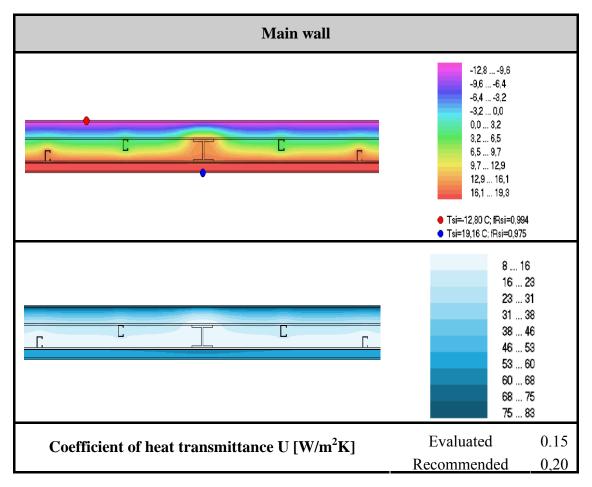


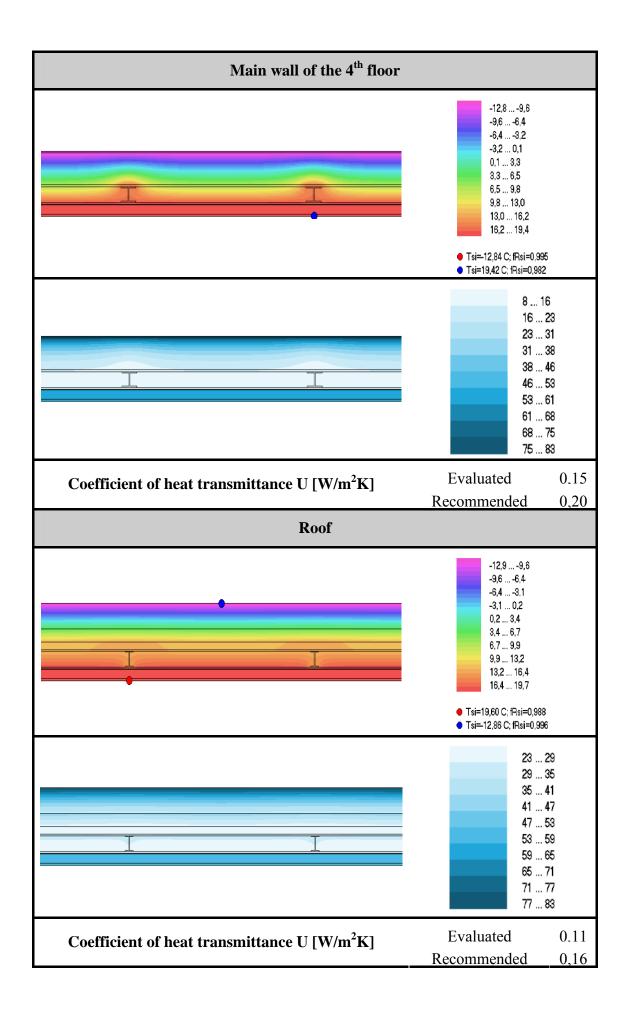


Number	Layer	Thickness [mm]	Specification
1	Greening	100	
2	Geotextile	0,25	Filtek
3	Waterproofing	2,4	Sarnafil G 441-24EL
4	Thermal insulation	160	Dow Roofmate SL
5	Waterproofing	1,2	Sikaplan D
6	Thermal insulation	80	Dow Roofmate SL
7	Concrete slab	50	Reinforced concrete
8	Trapezoidal sheets	18,7	Lindab LLP 20
9	Thermal insulation + steel joists IPE 100	100	Rockwool Rockroll
10	OSB board	15	Superfinish ECO
11	Vapour barrier	0,25	Jutafol N 140 Special
12	Air gap with timber joists 60 x 40	50	
13	Plasterboard	12,5	

Number	Layer	Thickness [mm]	Specification
1	Final layer - walking coat	50	Parador outdoor classic 7020
2	Geotextile	0,25	Filtek
3	Waterproofing	2,4	Sarnafil G 441-24EL
4	Thermal insulation	100	Dow Roofmate SL
5	Waterproofing	1,2	Sikaplan D
4	Thermal insulation	80	Dow Roofmate SL
7	Concrete slab	50	Reinforced concrete
8	Trapezoidal sheets	18,7	Lindab LLP 20
9	Thermal insulation + steel joists IPE 220	220	Rockwool Rockroll
13	OSB board	15	Superfinish ECO
14	Vapour barrier	0,25	Jutafol N 140 Special
15	Air gap with timber joists 60 x 40	50	
16	Plasterboard	12,5	

Number	Layer	Thickness [mm]	Specification
1	Final layer - ceramic tiles	10	Rako Tanse
2	Waterproofing	2,4	Sarnafil G 441-24EL
3	Anhydrite	50	Anhyment AE 20
4	Impact sound insulation	20	Dow Ethafoam
5	Concrete slab	50	Reinforced concrete
6	Trapezoidal sheets	18,7	Lindab LLP 20
7	Thermal insulation + steel joists IPE 160	160	Rockwool Rocknroll
8	OSB board	15	Superfinish ECO
9	Thermal insulation + CW 80 profiles	80	Rockwool Fasrock
10	OSB board	15	Superfinish ECO
11	Thermal insulation	80	Rockwool Fasrock
12	External plaster	10	Tubag Mineralischer Dämmputz


Table 3-2 An overview of the designed steel compositions


3.1.3 Thermal performance of designed compositions

The programme Area 2009 was used for the evaluation of thermal fields and moisture situation. Here are described results for the location of Prague. Design conditions are shown in the *Table 3-3* below. These solutions were made for the steady-state condition. All the solutions are stated in the *Table 3-4*. The recommended values stated in there show the value recommended by the czech standardization ČSN 73 0540 for the certain type of structure. Evaluated values are the exact values for each of the compositions. The steel elements that are in each composition were taken in account when evaluating the heat transmittance coefficient. The value of thermal conductivity of steel according to the amount and size of used steel elements.

Design conditions for the location of Prague		
Design outdoor temperature during the winter period T _e	-13	°C
Design relative humidity of the outdoor air during the winter period ϕ_e	84	%
Design partial pressure of vapour P _e	167	Ра
Mean temperature during the heating season T_m	4,3	°C
Length of the heating season t _{hs}	225	days
The outdoor temperature when the heating is started T_{st}	13	°C

Table 3-3 Design conditions for the location of Prague

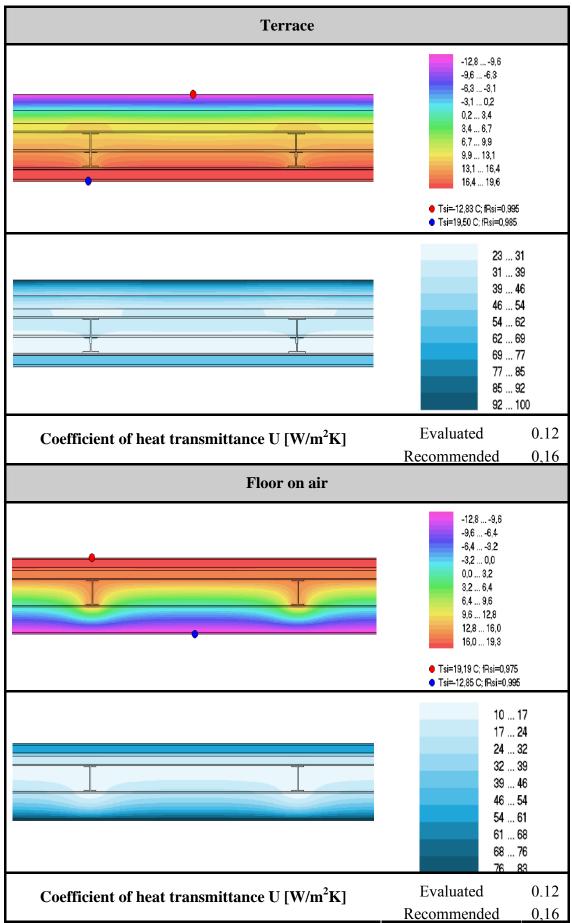


Table 3-4 Thermal performance of designed compositions for the steel structure variant

3.1.4 Acoustics performance

The sound proof of structures dividing two flats or flats from the corridor was evaluated. The reason why exactly these are evaluated is that there are the highest requests on them. The partition between two flats or between a flat and a corridor has to fulfil the request of 52 dB on airborne sound insulation. The request for ceiling is that the maximal level of impact sound must be lower than 58 dB. These requests are stated according to the Czech standardisation ČSN EN ISO 717. The programme Neprůzvučnost was used for the evaluation. Results are show in Tables 3-5 and 3-6 below.

Composition layers	Thickness [mm]	Values of Airborne sound insulation R _W [dB]
Plasterboard	25	Requested
Mineral wool	50	
Gypsum-fibre board	15	52
Mineral wool + CW 100 profiles	100	
Gypsum-fibre board	15	Evaluated
Mineral wool	50	53
Plasterboard	25	

Table 3-5 Values for airborne sound insulation of the steel variant

Composition layers	Thickness [mm]	Values of impact sound level L _{nW} [dB]
Anhydrite	50	Requested
Impact sound insulation	20	
Concrete slab	50	58
Trapezoidal sheets	18	
OSB board	15	Evaluated
Air gap with CW 50 profiles	50	27
Plasterboard	12,5	27

Table 3-6 Values for impact sound level of the steel variant

3.2 Timber based construction

3.2.1 Design of the structure

This alternative was done in a quite similar style as the previous steel one. The attention to preserve dispositions was paid here as well. The only place where it was necessary to change a bit the original disposition is also the 1st floor with open space offices. Extra columns were needed to be put in there. But the other opportunity how to arrange the disposition in there is given in the appendix of this thesis. The variability of this area is still kept. As in the steel variant some of the windows had slightly to change the place as well, but the glazing area remained at the same level.

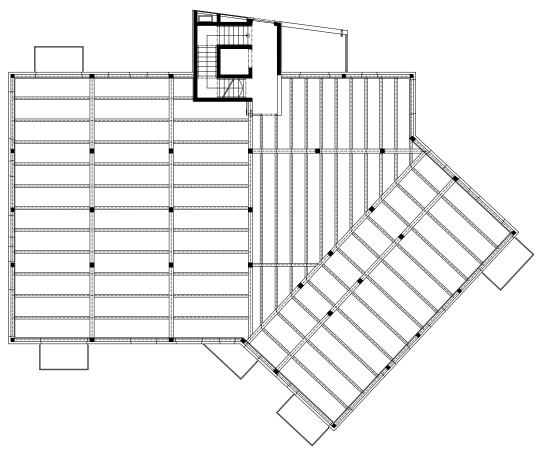
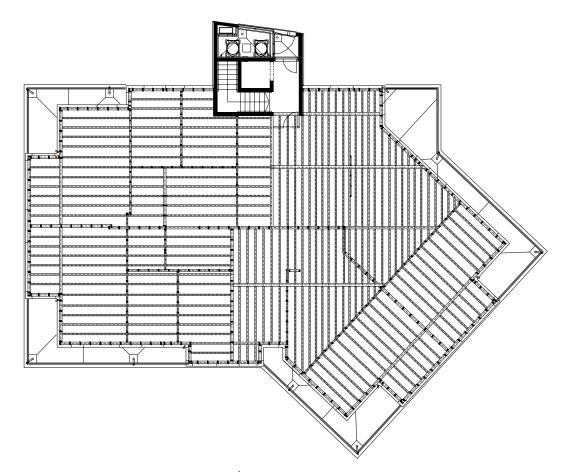



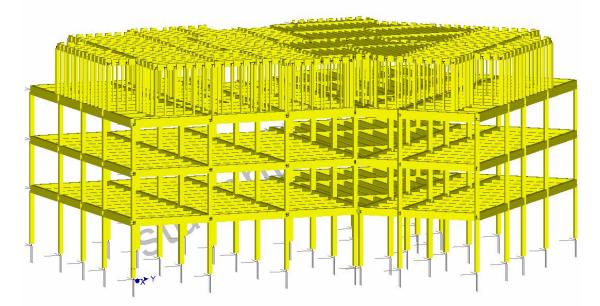
Figure 3.4 Layout of the structure of the 1^{st} , 2^{nd} and 3^{rd} floor

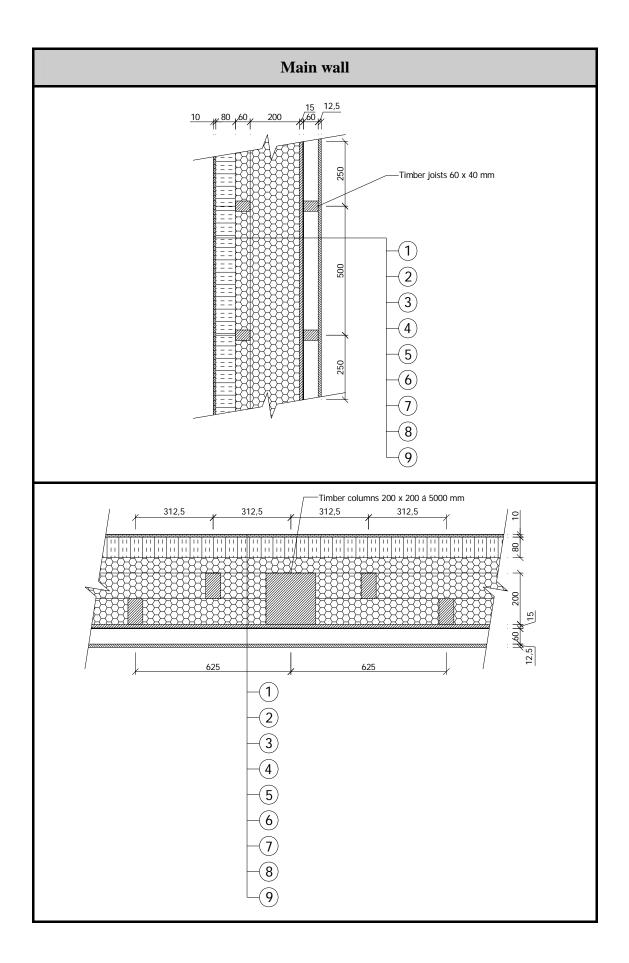
The material used for the basement of the building, the floor with garages and the stairway is the same as in the original building (reinforced concrete). The change of the material is done in the residential part (1st, 2nd, 3rd, 4th floor). The structure is designed as a heavy skeleton just the 4th floor is done as the 2by4 system. The main load bearing parts of the structure are columns set in the maximum span of 5 m. According to the force that was counted in each element the certain material was chosen. Joists were designed from the grown timber, girders and columns will be made from the glue-laminated timber.

Figure 3.5 Layout of the structure of the 4th floor

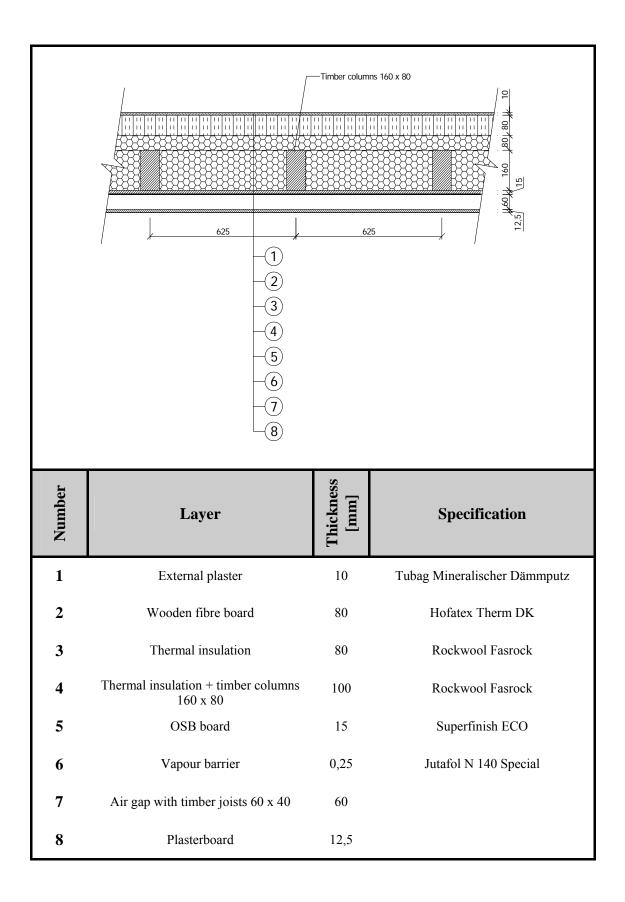
The horizontal structure is designed from girders and joists. There is a difference between profiles used in the ceiling of the 3^{rd} floor and the rest. This is because of the recessed floor above it. Joists and girders in the ceiling above the 3^{rd} floor have to carry the load from roof and 4^{th} floor walls as well. All of the elements were designed as simple beams. The only part of the horizontal structure that was not properly designed are the profiles that would be used for the construction of balcony.

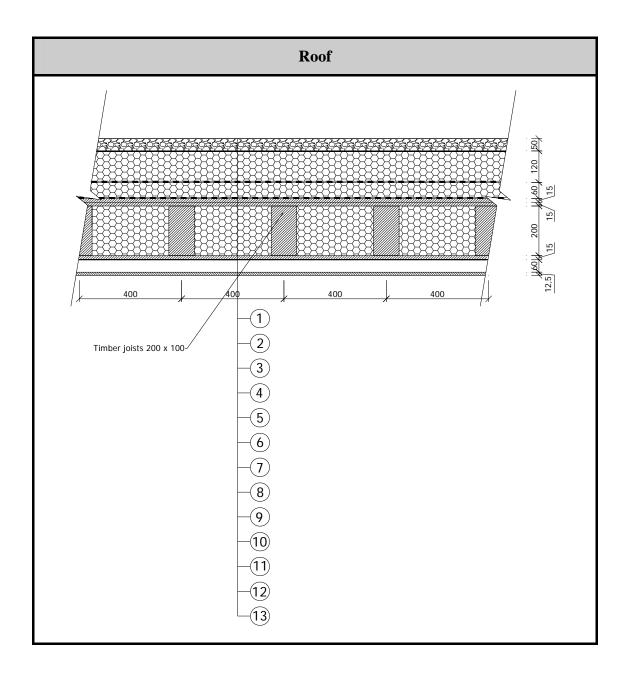
The loadings that were used for the evaluation are these: self-weight load, imposed load, snow load and wind load. The area of stairway is kept in the reinforced concrete in the same place and is used as the reinforcement mainly for the wind load. There is a presumption that the ceiling will act as a rigid slab. There are at least three OSB boards used in every composition. All of the walls are also assumed to act as the wind reinforcement. This is thanks to their composition that consists of OSB boards as well. The overall static evaluation can be found at the end of this thesis in the appendix.



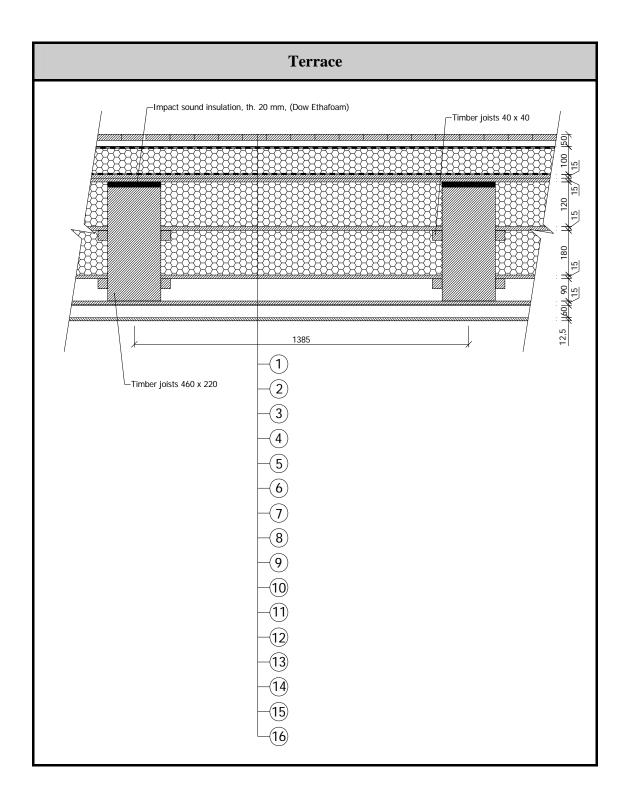

Figure 3.6 Image of the designed timber structure (result from the programme FIN 3D)

List of e	List of elements designed for the timberl structure			
	Element	Profile		
	roof	200x100		
	2 nd , 3 rd floor	280x160		
joist	4 th floor	360x180		
	4 th floor terrace	460x220		
	4 th floor large	500x260		
	2 nd , 3 rd floor	380x200		
girder	4 th floor	520x260		
	roof	280x160		
	2 nd , 3 rd floor	260x260		
column	1 ^{sr} , 2 nd , 3 rd floor wall	200x260		
	4 th floor	160x80		

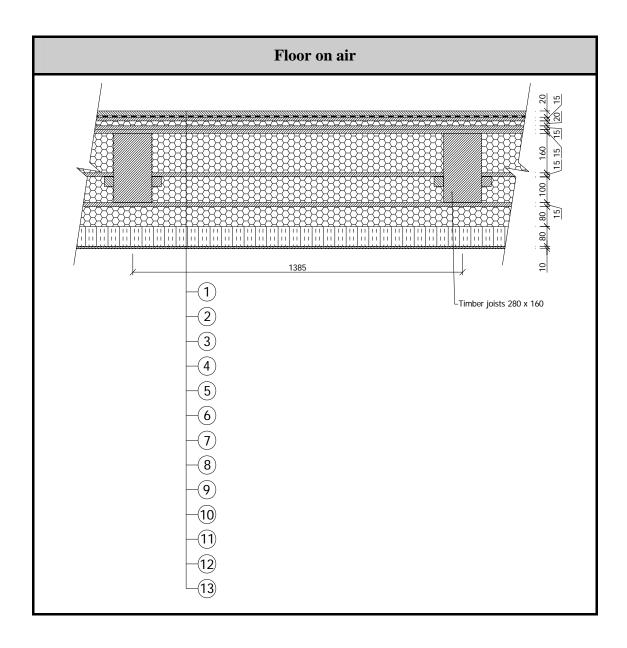

Table 3-7 An overview of the designed timber elements


3.2.2 Description of used compositions

Here is an overview of all compositions designed for the timber structure alternative. The aim was to get the value of heat transmission coefficient that the specific heat consumption of the building is about 20 kWh/m²y. The compositions of all variants were done with an idea to get nearly the same values of heat transmission coefficient for all alternatives. To avoid the moisture condensation in the structure itself and to ensure the airtightness, the vapour barrier was used in all of the compositions. All the used OSB boards are produced without an addition of formaldehyde. Compositions are described in *Table 3-8* below. Mineral wool is used as a thermal insulation. Only in the composition of roof and terrace extruded polystyrene is used. This is because of the need to use a thermal insulation with the resistance to the moisture. Always there is a risk of perforation of the first layer of waterproofing. The other reason for extruded polystyrene is the resistance to pressure. This allows to put the walking coat on terrace and keeps the same possibility for roof.



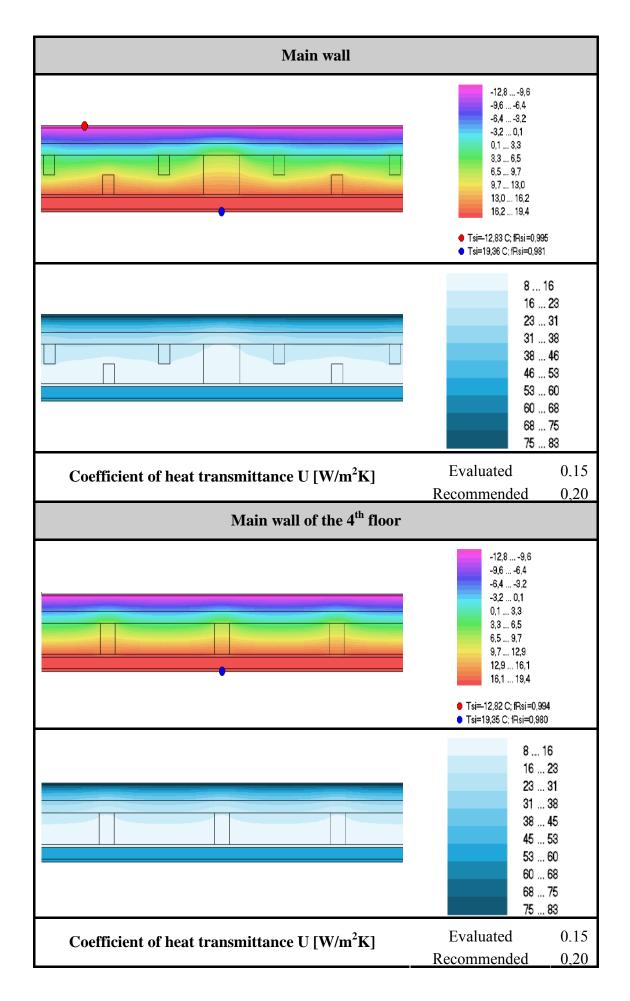
Number	Layer	Thickness [mm]	Specification	
1	External plaster	10	Tubag Mineralischer Dämmputz	
2	Wooden fibre board	80	Hofatex Therm DK	
3	Thermal insulation	60	Rockwool Fasrock	
4	Thermal insulation + timber columns 100 x 60	100	Rockwool Fasrock	
5	Thermal insulation + timber columns 100 x 60	100	Rockwool Fasrock	
6	OSB board	15	Superfinish ECO	
7	Vapour barrier	0,25	Jutafol N 140 Special	
8	Air gap with timber joists 60 x 40	60		
9	Plasterboard	12,5		
	Main wall of the 4 th floor			
			-Timber joists 60 x 40 mm -(1) -(2) -(3) -(4) -(5) -(6) -(7) -(8)	



Number	Layer	Thickness [mm]	Specification
1	Gravel	50	
2	Geotextile	0,25	Filtek
3	Waterproofing	2,4	Sarnafil G 441-24EL
4	Thermal insulation	120	Dow Roofmate SL
5	Waterproofing	1,2	Sikaplan D
6	Thermal insulation	60	Dow Roofmate SL
7	OSB board	15	Superfinish ECO
8	OSB board	15	Superfinish ECO
9	Thermal insulation + timber joists 200 x 80	200	Rockwool Rockroll
10	OSB board	15	Superfinish ECO
11	Vapour barrier	0,25	Jutafol N 140 Special
12	Air gap with timber joists 60 x 40	60	
13	Plasterboard	12,5	

Number	Layer	Thickness [mm]	Specification
1	Final layer - walking coat	50	Parador outdoor classic 7020
2	Geotextile	0,25	Filtek
3	Waterproofing	2,4	Sarnafil G 441-24EL
4	Thermal insulation	100	Dow Roofmate SL
5	Waterproofing	1,2	Sikaplan D
6	OSB board	15	Superfinish ECO
7	OSB board	15	Superfinish ECO
8	Thermal insulation + timber joists 460 x 220	180	Rockwool Rockroll
9	OSB board	15	Superfinish ECO
10	Thermal insulation + timber joists 460 x 220	180	Rockwool Rockroll
11	OSB board	15	Superfinish ECO
12	Air gap	90	
13	OSB board	15	Superfinish ECO
14	Vapour barrier	0,25	Jutafol N 140 Special
15	Air gap with timber joists 60 x 40	60	
16	Plasterboard	12,5	

	Ceiling			
	-1 -1 -1 			
Number	Layer	Thickness [mm]	Specification	
1	Final layer - ceramic tiles	10	Rako Tanse	
2	Waterproofing	2,4	Sarnafil G 441-24EL	
3	OSB board	15	Superfinish ECO	
4	Impact sound insulation	20	Dow Ethafoam	
5	OSB board	15	Superfinish ECO	
6	OSB board	15	Superfinish ECO	
7	OSB board	15	Superfinish ECO	
8	Air gap with timber joists 60 x 40	60		
9	Plasterboard	12,5		



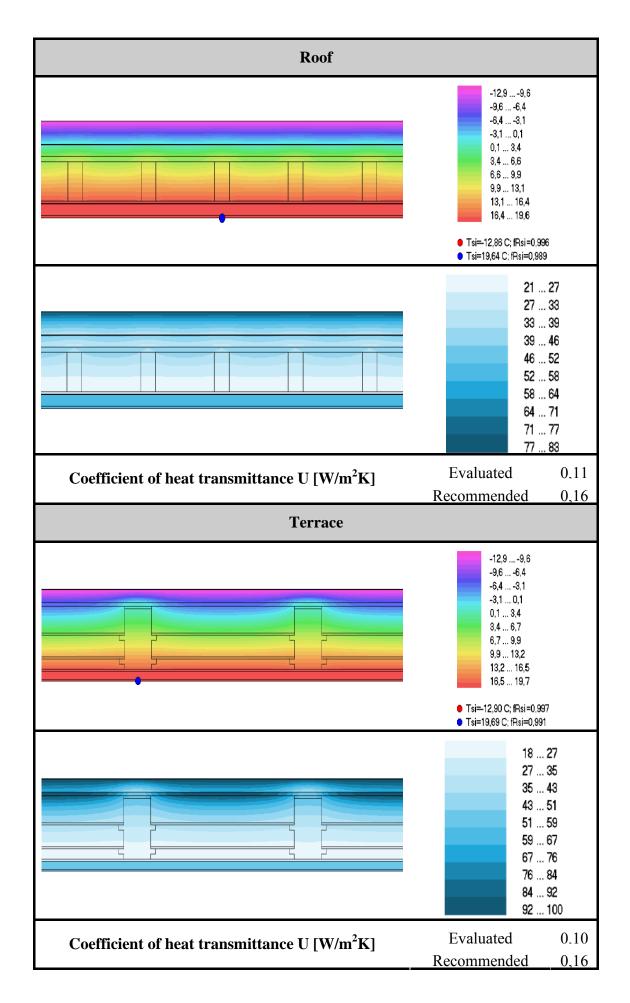

Number	Layer	Thickness [mm]	Specification
1	Final layer - ceramic tiles	10	Rako Tanse
2	Waterproofing	2,4	Sarnafil G 441-24EL
3	OSB board	15	Superfinish ECO
4	Impact sound insulation	20	Dow Ethafoam
5	OSB board	15	Superfinish ECO
6	OSB board	15	Superfinish ECO
7	Thermal insulation + timber joists 280 x 160	160	Rockwool Rocknroll
8	OSB board	15	Superfinish ECO
9	Thermal insulation + timber joists 280 x 160	100	Rockwool Rocknroll
10	OSB board	15	Superfinish ECO
11	Thermal insulation + timber joists 80 x 40	80	Rockwool Fasrock
12	Wooden fibre board	80	Hofatex Therm DK
13	External plaster	10	Tubag Mineralischer Dämmputz

Table 3-8 An overview of the designed timber compositions

3.2.3 Thermal performance of designed compositions

The programme Area 2009 was used for the evaluation of thermal fields and moisture situation. Here are described results for the location of Prague. Design conditions are shown in the *Table 3-3* in the previous chapter. These solutions were made for the steady-state conditions. All the solutions are stated in the *Table 3-9*. The recommended values stated in there show the value recommended by the Czech standardization ČSN 73 0540 for the certain type of structure. Evaluated values are the exact values for each of the compositions. The timber elements that are in each composition were taken in account when evaluating the heat transmittance coefficient. The value of thermal conductivity of each layer was increased by the value thermal conductivity of steel according to the amount and size of used steel elements.

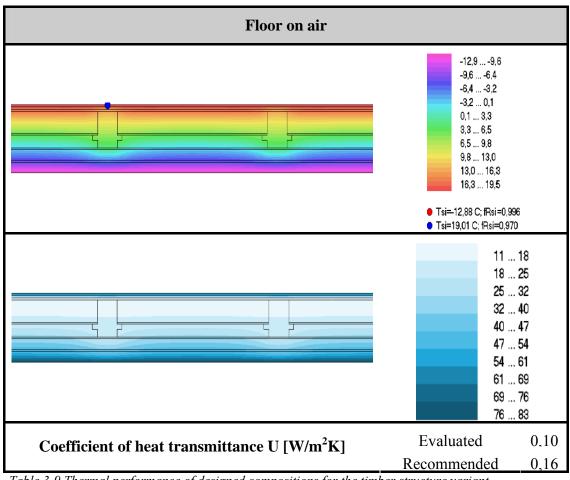


Table 3-9 Thermal performance of designed compositions for the timber structure variant

3.2.4 Acoustics performance

The sound proof of structures dividing two flats or flats from the corridor was evaluated. The reason why exactly these are evaluated is that there are the highest requests on them.

Composition layers	Thickness [mm]	Values of Airborne sound insulation R _w [dB]
Plasterboard	25	Requested
Mineral wool	60	
Gypsum-fibre board	22	52
Mineral wool + CW 100 profiles	100	
Gypsum-fibre board	22	Evaluated
Mineral wool	60	52
Plasterboard	25	52

Table 3-10 Values for airborne sound insulation of the timber variant

4.2 Light-weight concrete blocks based structure

4.2.1 Design of the structure

The layout of the original building was also followed when designing this alternative. The basement, the floor with garages and the stairway were kept in reinforced concrete as in the previous variants. For the living part of the building, the load bearing walls and also the inner walls were changed to light-weight concrete blocks. The static evaluation of the load bearing capacity of such a wall can be found in the appendix. The horizontal structures remained in the reinforced concrete, so they are the same like in the previous alternative.

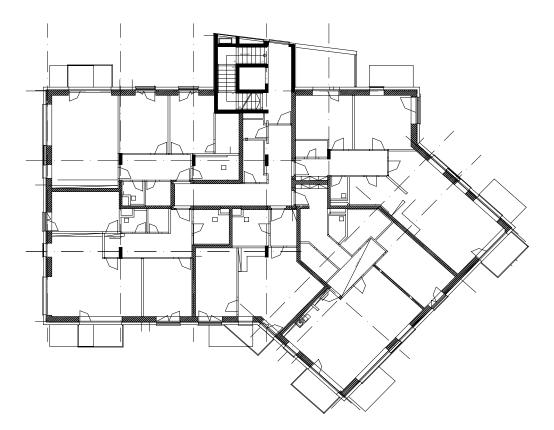
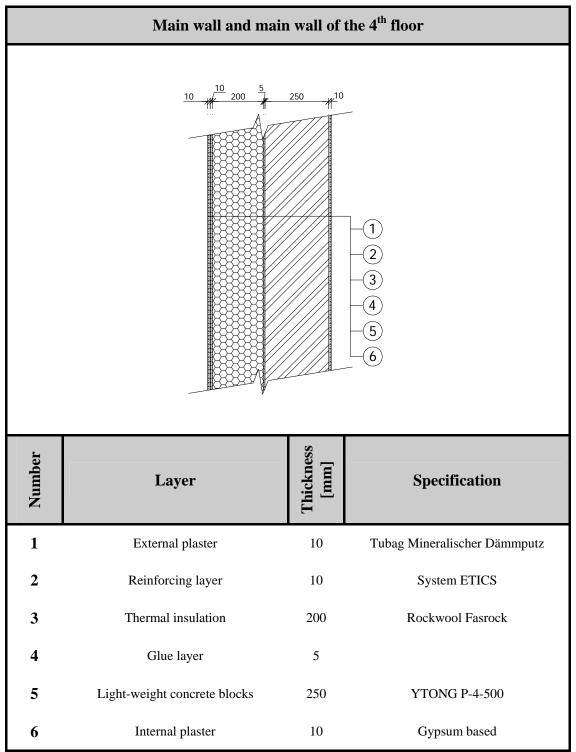
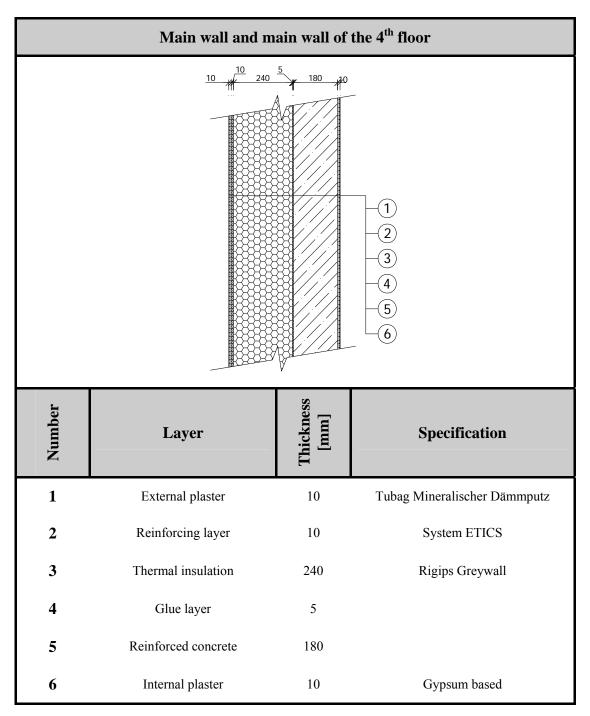
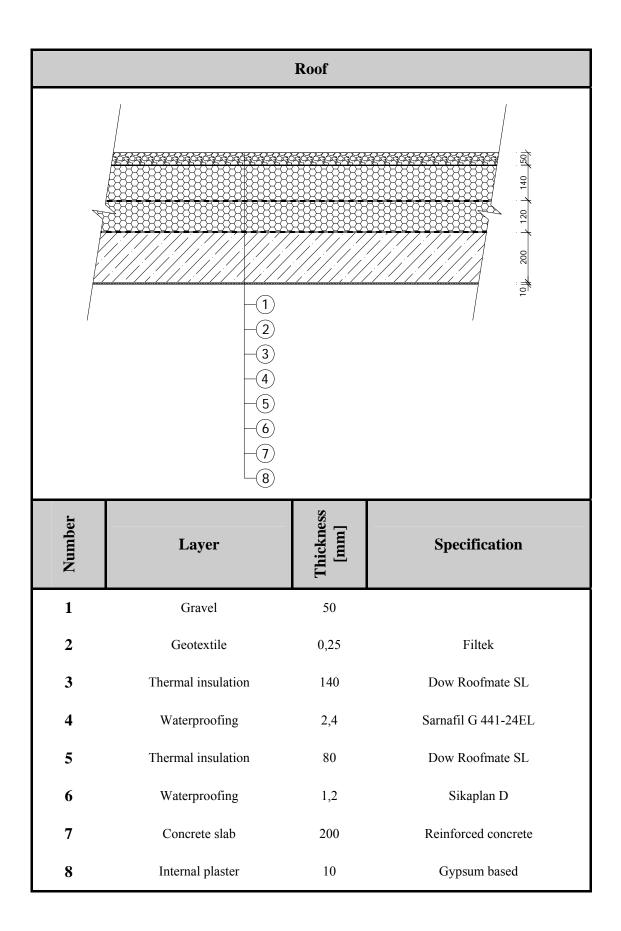
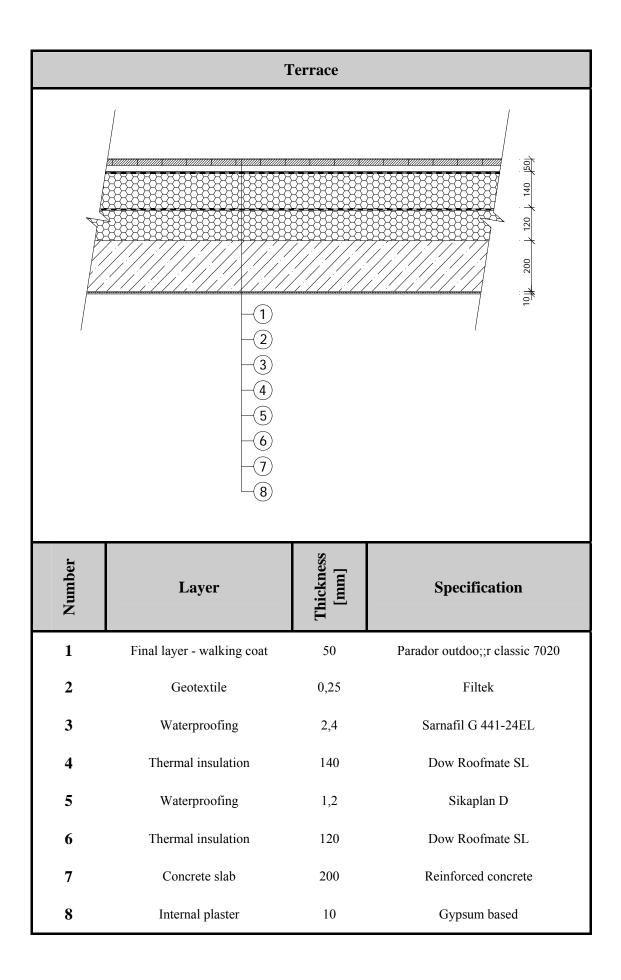


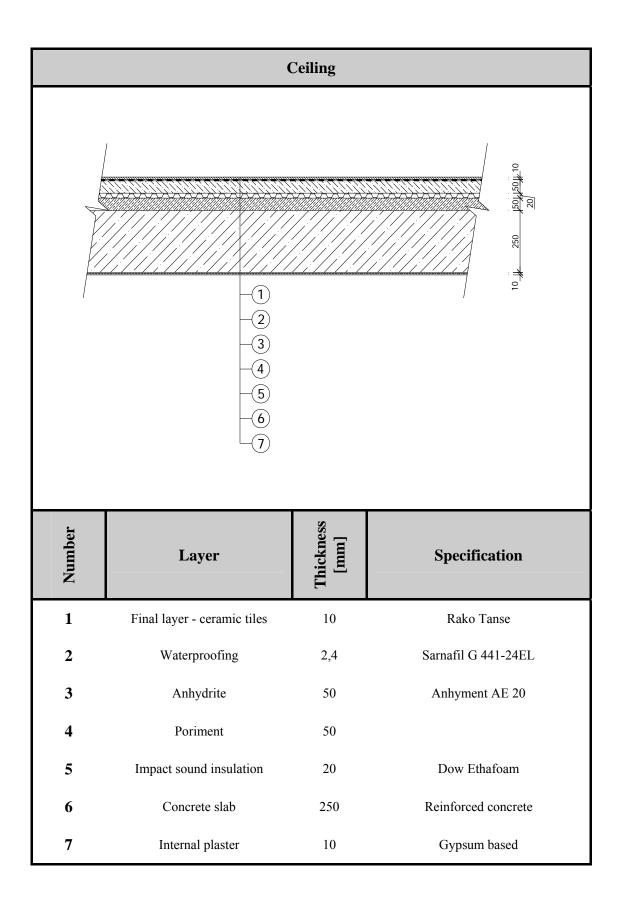
Figure 4.2 Layout of the 2nd and 3rd floor

4.2.2 Description of used compositions

This is an overview of all compositions used for the light-weight concrete structure variant. The aim was kept to get the specific heat consumption of the building about 20 kWh/m²y. There is only the composition of the main wall in this alternative. The other compositions are the same in the reinforced concrete alternative. The composition of the main wall is described in the *Table 4-5* below.


Table 4-5 An overview of the designed light-weight concrete compositions


4.1.2 Description of used compositions

Here is an overview of all compositions designed for the reinforced concrete structure variant. The aim was to get the specific heat consumption of the building about 20 kWh/m²y. The compositions of all variants were done with an idea to get nearly the same values of heat transmission coefficient. Compositions are described in *Table 4-1*.

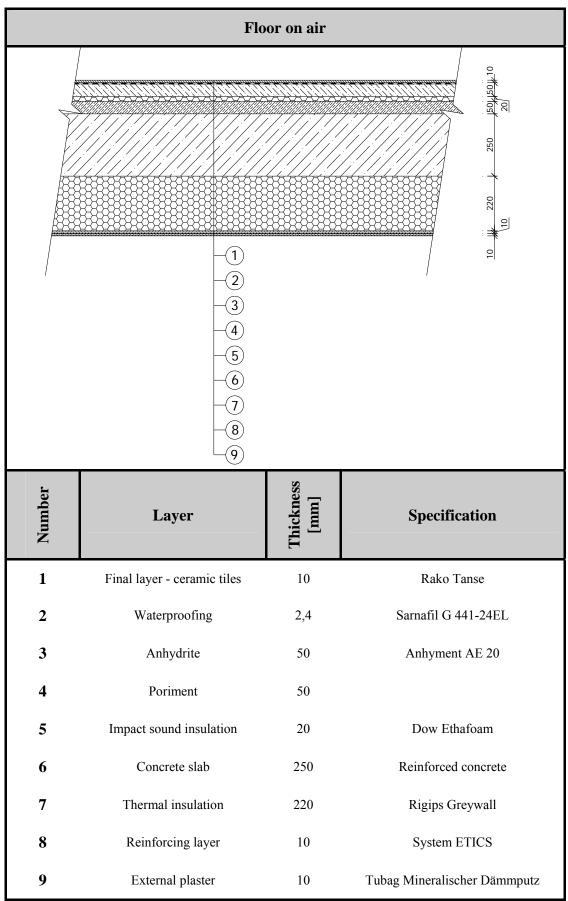
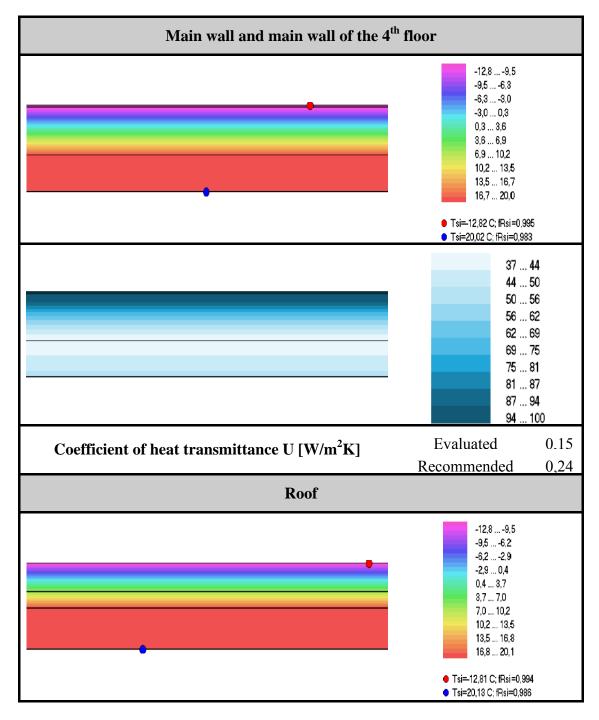
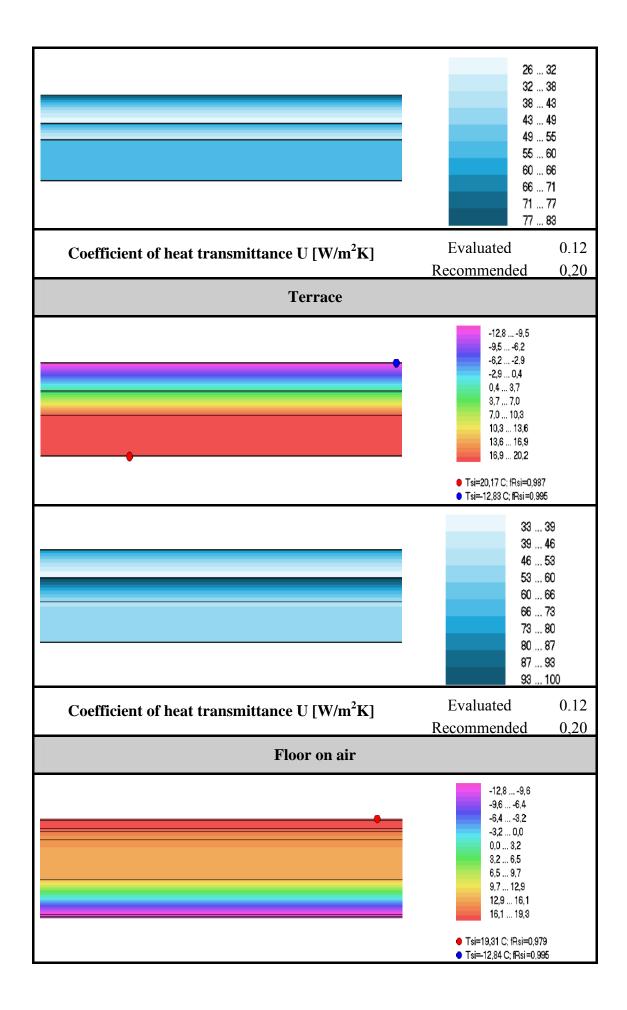




Table 4-1 An overview of the designed concrete compositions

4.1.3 Thermal performance of designed compositions

The programme Area 2009 was used for the evaluation of thermal fields and moisture situation. Here are described results for the location of Prague. Design conditions are shown in the *Table 3-3*. These solutions were made for the steady-state condition. All the solutions are stated in the *Table 4-2*. The recommended values stated in there mean the value recommended by the Czech standardization ČSN 73 0540 for the certain type of the structure. Evaluated values are the exact values for each of the compositions.

CHALMERS / CTU, Civil and Environmental Engineering, Master's Thesis

Table 4-2 Thermal performance of designed compositions for the concrete structure variant

4.1.4 Acoustics performance

The sound proof of structures dividing two flats or flats from the corridor was evaluated. The reason why exactly these are evaluated is that there are the highest requests on them. The partition between two flats or between a flat and a corridor has to fulfil the request of 52 dB on airborne sound insulation. The request for ceiling is that the maximal level of impact sound must be lower than 58 dB. These requests are stated according to the Czech standardisation ČSN EN ISO 717. The programme Neprůzvučnost was used for the evaluation. Results are show in Tables 4-3 and 4-4 below.

Composition layers	Thickness [mm]	Values of Airborne sound insulation R _w [dB]
		Requested
Reinforced concrete	200	52
Kennoreed concrete		Evaluated
		55

Table 4-3 Values for airborne sound insulation of the concrete variant

Composition layers	Thickness [mm]	Values of impact sound level L _{nw} [dB]
Anhydrite	50	Requested
Poriment	50	58
Impact sound insulation	20	Evaluated
Concrete slab	250	27

Table 4-4 Values for impact sound level of the concrete variant

4.2 Light-weight concrete blocks based structure

4.2.1 Design of the structure

The layout of the original building was also followed when designing this alternative. The basement, the floor with garages and the stairway were kept in reinforced concrete as in the previous variants. For the living part of the building, the load bearing walls and also the inner walls were changed to light-weight concrete blocks. The static evaluation of the load bearing capacity of such a wall can be found in the appendix. The horizontal structures remained in the reinforced concrete, so they are the same like in the previous alternative.

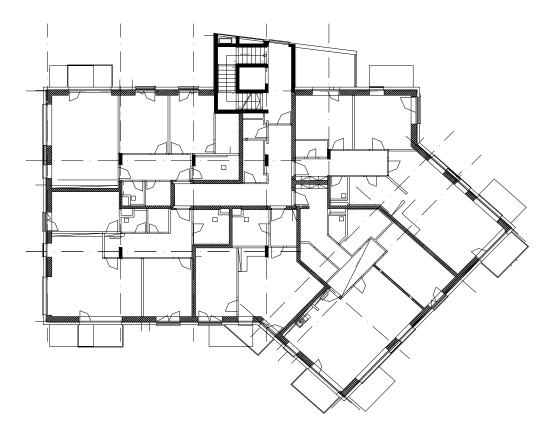


Figure 4.2 Layout of the 2nd and 3rd floor

4.2.2 Description of used compositions

This is an overview of all compositions used for the light-weight concrete structure variant. The aim was kept to get the specific heat consumption of the building about 20 kWh/m²y. There is only the composition of the main wall in this alternative. The other compositions are the same in the reinforced concrete alternative. The composition of the main wall is described in the *Table 4-5* below.

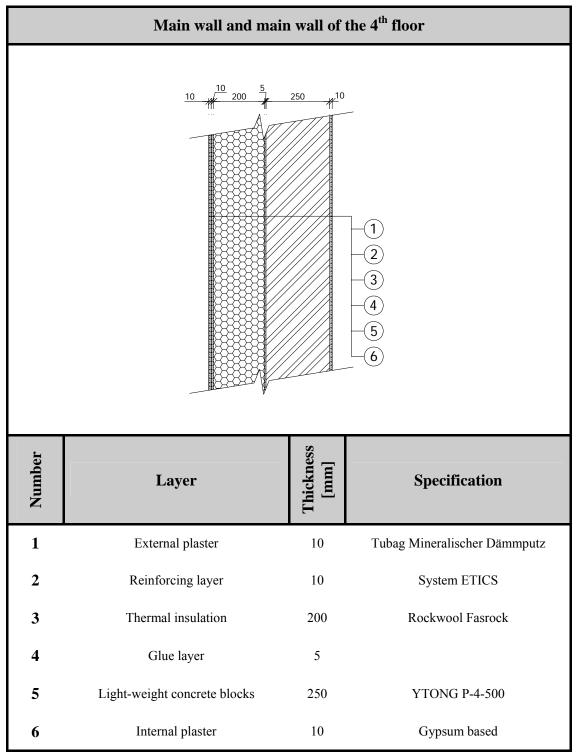


Table 4-5 An overview of the designed light-weight concrete compositions

4.2.3 Thermal performance of designed compositions

The programme Area 2009 was used for the evaluation of thermal fields and moisture situation. Here are described results for the location of Prague. Design conditions are shown in the *Table 3-3*. These solutions were made for the steady-state conditions. All the solutions are stated in the *Table 4-4*. The recommended values stated in there mean the value recommended by the czech standardization ČSN 73 0540 for the certain type of the structure. Evaluated values are the exact values for each of the compositions.

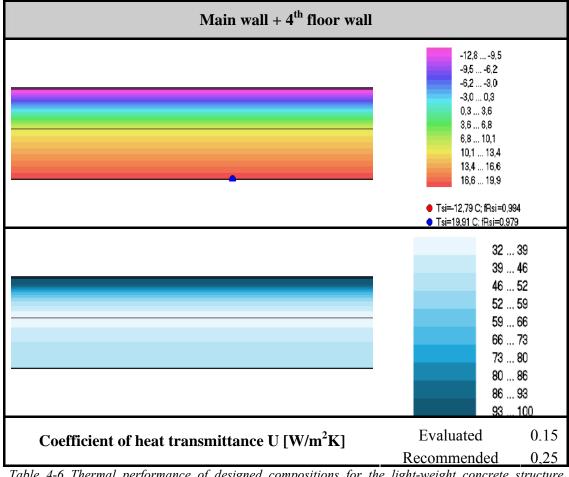


Table 4-6 Thermal performance of designed compositions for the light-weight concrete structure variant

4.2.4 Acoustics performance

The sound proof of structures dividing two flats or flats from the corridor was evaluated. The reason why exactly these are evaluated is that there are the highest requests on them. The partition between two flats or between a flat and a corridor has to fulfil the request of 52 dB on airborne sound insulation. The request for ceiling is that the maximal level of impact sound must be lower than 58 dB. These requests are stated according to the Czech standardisation ČSN EN ISO 717. The programme Neprůzvučnost was used for the evaluation. Results are show in Tables 4-7 and 4-8 below.

Composition layers	Thickness [mm]	Values of Airborne sound insulation R _w [dB]
Plasterboard	15	Requested
Mineral wool	50	52
Light-weight concrete	200	
Mineral wool	50	Evaluated
Plasterboard	15	52

Table 4-7 Values for airborne sound insulation of the light-weight concrete variant

Composition layers	Thickness [mm]	Values of impact sound level L _{nw} [dB]
Anhydrite	50	Requested
Poriment	50	58
Impact sound insulation	20	Evaluated
Concrete slab	250	27

Table 4-8 Values for impact sound level of the light-weight concrete variant

5 Evaluation of the energy consumption

There is a description of energy consumption evaluated for each alternative and for the original building in this chapter. To do this, the building was divided into two zones: the living part with flats (zone 1) and the stairway (zone 2). Temperature used for calculation of the energy demand for heating was for the living part of the building 20,0 °C and for the stairway 13,0 °C. Garages in the basement were stated as an unheated space (5,0 °C) which is separated from the main part of the building by the floor in the lowest storey. Temperature used for the calculation of the energy demand for cooling was 26 °C.

For all options natural gas is assumed to be as a energy source for heating. Furthermore, the wooden windows with double glazing and coefficient of heat transmittance of 1,2 W/m²K. The evaluation was made in the programme Energie 2010 for the conditions of Prague – the Czech Republic. Energy consumptions and values used for the evaluation are described for each variant separately.

5.1 Evaluation of the original building

There is a presumption of natural ventilation in the evaluation of the energy consumption of the original building. Multiplicity of air exchange 0,5 1/h is considered for the natural ventilation. This is a minimal value according to the valid standards. This value was chosen, although the intensity can be higher in the reality. Basic values used in the evaluation itself are described in the *Table 5-1* below. Further, there are shown values of heat losses and energy consumptions.

Total volume of the original building Q _{tot}	6 800	m ³	
Total floor area of the original building A_{to}	ot	2 064	m ²
The average heat transmittance coefficient for the building envelope U_{em}		0.44	W/m ² K
Haat consulty of indeer mass C	zone 1	518	kJ/(Km ²)
Heat capacity of indoor mass C _m zone 2		565	kJ/(Km ²)
Indoor tomporature T	zone 1	20	°C
Indoor temperature T _i	zone 2	13	°C

Table 5-1 Basic values used in the evaluation of energy consumption of the original building. Evaluation of heat capacity of indoor mass can be found in the appendix. Layer of 100 mm of all structures that are in the contact with indoor air was taken in account. The final value was reached by dividing the heat capacity by the total floor area.

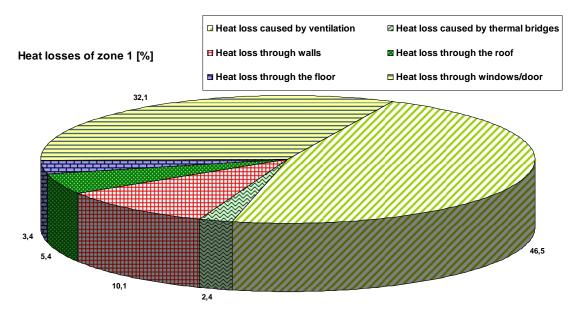


Figure 5.1 Heat losses of the zone 1

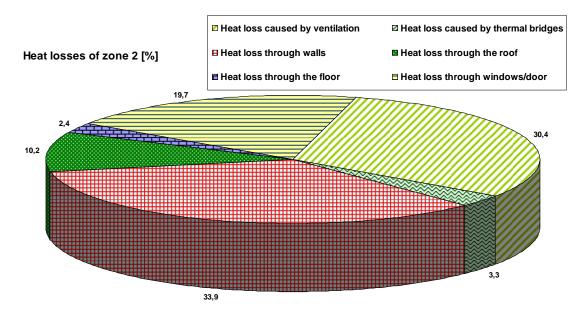


Figure 5.2 Heat losses of the zone 2

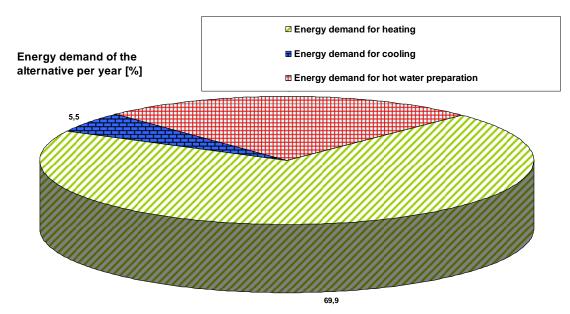


Figure 5.3 Total energy demand of the original building

Specific heat consumption for heating Q _{h,nd}	319	GJ	43	kWh/(m ² .y)
Energy demand for heating per year $E_{P,H}$	380	GJ	51	kWh/m ²
Energy demand for cooling per year $E_{C,H}$	33	GJ	4	kWh/m ²
Energy demand for hot water preparation $E_{P,W}$	132	GJ	18	kWh/m ²
Total energy needed E _{P,A}	545	GJ	73	kWh/m ²

Table 5-2 Energy consumption of the original building

5.2 Evaluation of the steel variant

There is a presumption of mechanical ventilation in evaluation of the energy consumption of the steel variant. Considered efficiency of the heat recovery is 70%. Basic values used in the evaluation itself are described in the *Table 5-3* below. Further, there are shown values of heat losses and energy consumptions. The energy consumption of fans for mechanical ventilation was calculated separately and is stated in the appendix.

Total volume of the assessed building Q _{tot}	6 800	m ³	
Total floor area of the assessed building A	tot	2064	m ²
The average heat transmittance coefficient building envelope U_{em}	0.40	W/m ² K	
Hast consists of indeer mass C	zone 1	156	kJ/(Km ²)
Heat capacity of indoor mass C _m	zone 2	565	kJ/(Km ²)
Indoor tomporature T	zone 1	20	°C
Indoor temperature T _i	zone 2	13	°C

Table 5-3 Basic values used in the evaluation of energy consumption of the steel alternative Evaluation of heat capacity of indoor mass can be found in the appendix. Layer of 100 mm of all structures that are in the contact with indoor air was taken in account. The final value was reached by dividing the heat capacity by the total floor area.

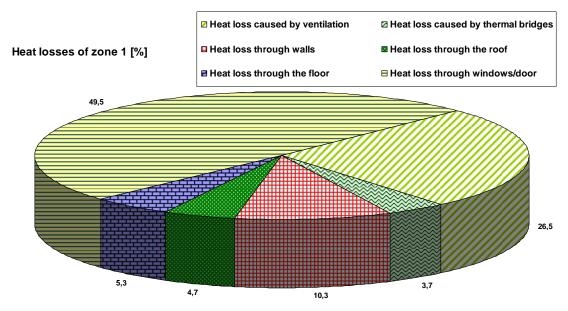


Figure 5.4 Heat losses of the zone 1

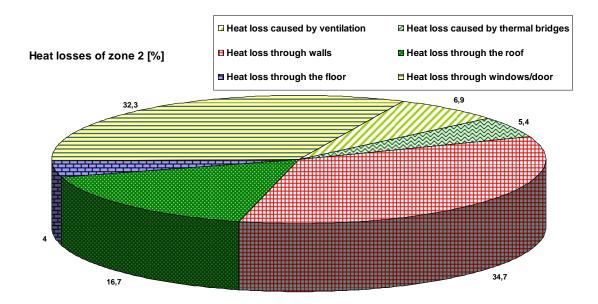


Figure 5.5 Heat losses of the zone 2

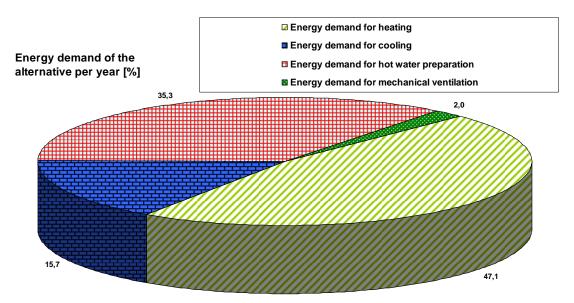


Figure 5.6 Total energy demand of the steel variant

Specific heat consumption for heating Q _{h,nd}	150	GJ	20	kWh/(m ² .y)
Energy demand for heating per year $E_{P,H}$	179	GJ	24	kWh/m ²
Energy demand for cooling per year $E_{C,H}$	61	GJ	8	kWh/m ²
Energy demand for mechanical ventilation $E_{P,F}$	24	GJ	3	kWh/m ²
Energy demand for hot water preparation $E_{P,W}$	132	GJ	18	kWh/m ²
Total energy needed E _{P,A}	396	GJ	53	kWh/m ²

Table 5-4 Energy consumption of the steel variant

5.3 Evaluation of the timber variant

There is a presumption of mechanical ventilation in the evaluation of the energy consumption for the timber variant. Efficiency of heat recovery is 70%. Basic values used in the evaluation itself are described in the *Table 5-5* below. Further, there are shown values of heat losses and energy consumptions. The energy consumption of fans for mechanical ventilation was calculated separately and is stated in the appendix.

Total volume of the assessed building Q_{tot}	6 800	m ³	
Total floor area of the assessed building A	tot	2064	m ²
The average heat transmittance coefficient building envelope U_{em}	0.40	W/m ² K	
Hast consists of indeer mass C	zone 1	120	kJ/(Km ²)
Heat capacity of indoor mass C _m	zone 2	565	kJ/(Km ²)
Indoor tomporature T	zone 1	20	°C
Indoor temperature T _i	zone 2	13	°C

Table 5-5 Basic values used in the evaluation of energy consumption of the timber alternative Evaluation of heat capacity of indoor mass can be found in the appendix. Layer of 100 mm of all structures that are in the contact with indoor air was taken in account. The final value was reached by dividing the heat capacity by the total floor area

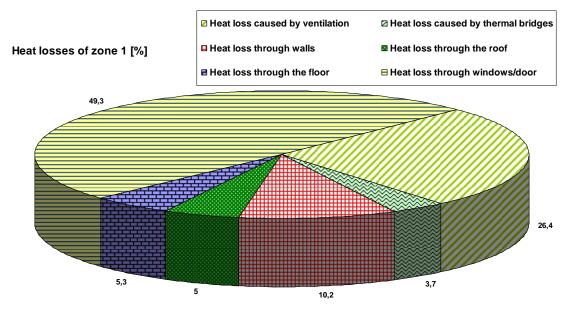


Figure 5.7 Heat losses of the zone 1

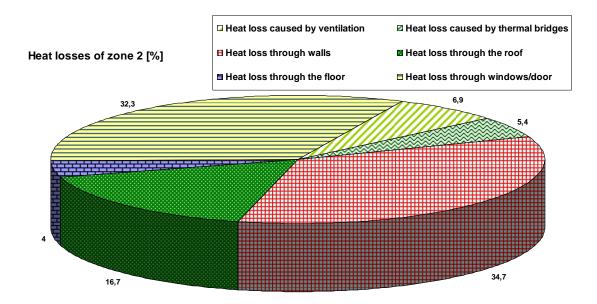


Figure 5.8 Heat losses of the zone 2

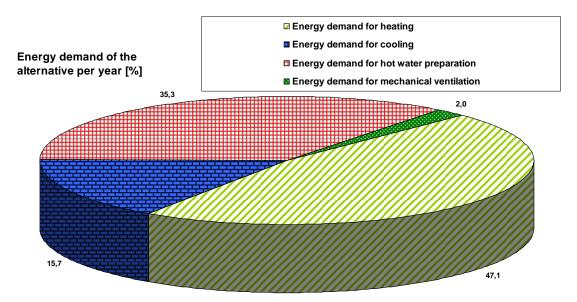


Figure 5.9 Total energy demand of the timber variant

Specific heat consumption for heating Q _{h,nd}	155	GJ	21	kWh/(m ² .y)
Energy demand for heating per year $E_{P,H}$	185	GJ	25	kWh/m ²
Energy demand for cooling per year $E_{C,H}$	63	GJ	8	kWh/m ²
Energy demand for mechanical ventilation $E_{P,F}$	24	GJ	3	kWh/m ²
Energy demand for hot water preparation $E_{P,W}$	132	GJ	18	kWh/m ²
Total energy needed E _{P,A}	404	GJ	54	kWh/m ²

Table 5-6 Energy consumption of the timber variant

5.4 Evaluation of the concrete variant

There is a presumption of mechanical ventilation in the evaluation of the energy consumption for the concrete variant. Efficiency of heat recovery is 70%. Basic values used in the evaluation itself are described in the *Table 5-7* below. Further, there are shown values of heat losses and energy consumptions. The energy consumption of fans for mechanical ventilation was calculated separately and is stated in the appendix.

Total volume of the assessed building Q_{tot}	6 800	m ³	
Total floor area of the assessed building A	tot	2064	m ²
The average heat transmittance coefficient building envelope U_{em}	0.40	W/m ² K	
Hast consulty of indeer mass C	zone 1	518	kJ/(Km ²)
Heat capacity of indoor mass C _m	zone 2	565	kJ/(Km ²)
Indoor tomporature T	zone 1	20	°C
Indoor temperature T _i	zone 2	13	°C

Table 5-7 Basic values used in the evaluation of the energy consumption of the concrete alternative Evaluation of heat capacity of indoor mass can be found in the appendix. Layer of 100 mm of all structures that are in the contact with indoor air was taken in account. The final value was reached by dividing the heat capacity by the total floor area

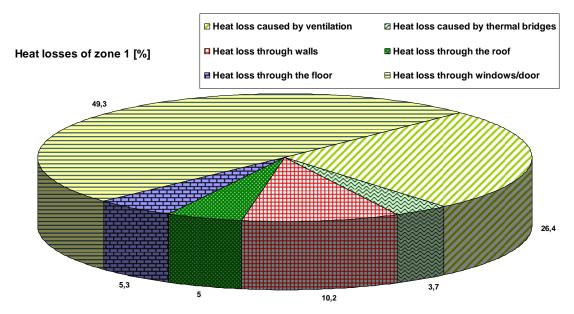


Figure 5.10 Heat losses of the zone 1

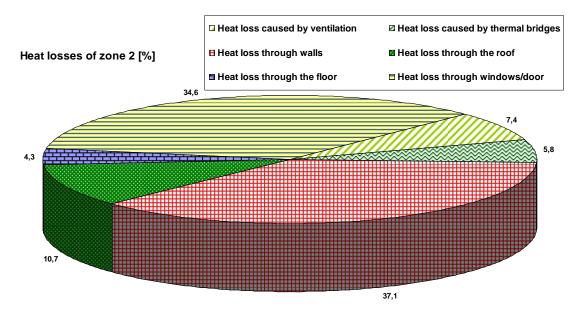


Figure 5.11 Heat losses of the zone 2

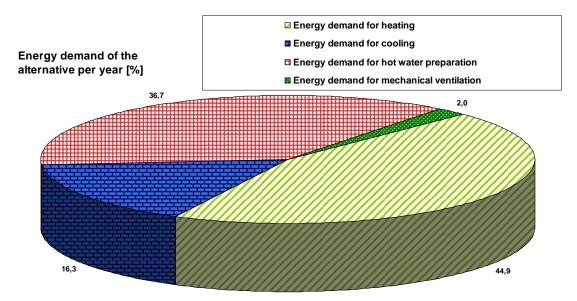


Figure 5.12 Total energy demand of the concreter variant

Specific heat consumption for heating Q _{h,nd}	143	GJ	19	kWh/(m ² .y)
Energy demand for heating per year $E_{P,H}$	170	GJ	23	kWh/m ²
Energy demand for cooling per year $E_{C,H}$	57	GJ	8	kWh/m ²
Energy demand for mechanical ventilation $E_{P,F}$	24	GJ	3	kWh/m ²
Energy demand for hot water preparation $E_{P,W}$	132	GJ	18	kWh/m ²
Total energy needed E _{P,A}	383	GJ	52	kWh/m ²

Table 5-8 Energy consumption of the concrete variant

5.5 Evaluation of the light-weight concrete variant

There is a presumption of mechanical ventilation in evaluation of energy consumption for the reference building. Efficiency of heat recovery is 70%. Basic values used in the evaluation itself are described in the *Table 5-9* below. Further, there are shown values of heat losses and energy consumptions. The energy consumption of fans for mechanical ventilation was calculated separately and is stated in the appendix.

Total volume of the assessed building Q _{tot}	6 800	m ³	
Total floor area of the assessed building A	tot	2064	m ²
The average heat transmittance coefficient building envelope U_{em}	0.40	W/m ² K	
Hast consists of indeer mass C	zone 1	327	kJ/(Km ²)
Heat capacity of indoor mass C _m	zone 2	565	kJ/(Km ²)
Indoor tomporature T	zone 1	20	°C
Indoor temperature T _i	zone 2	13	°C

Table 5-9 Basic values used in the evaluation of the energy consumption of the LW concrete alternative Evaluation of heat capacity of indoor mass can be found in the appendix. Layer of 100 mm of all structures that are in the contact with indoor air was taken in account. The final value was reached by dividing the heat capacity by the total floor area

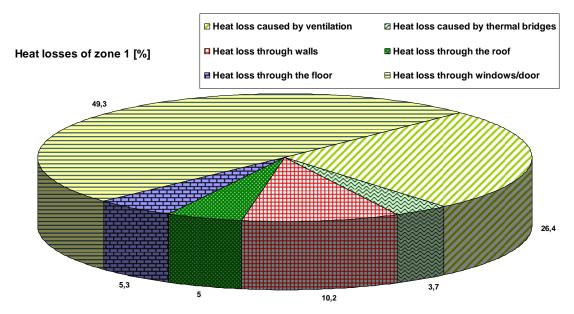


Figure 5.13 Heat losses of the zone 1

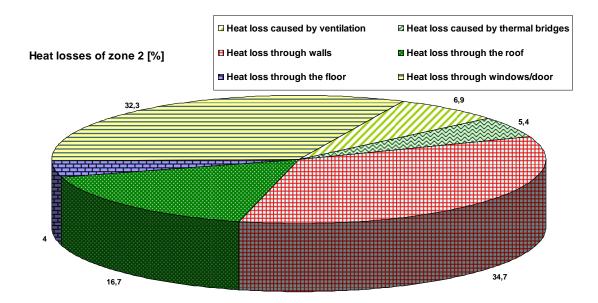


Figure 5.14 Heat losses of zone 2

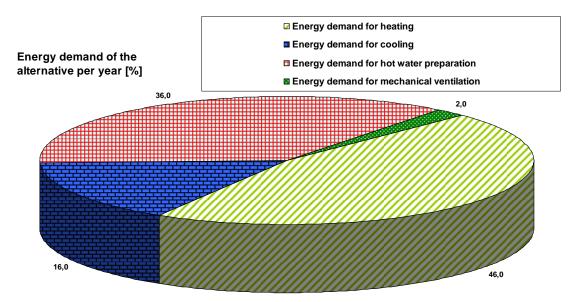


Figure 5.15 Total energy demand of the L-W concrete variant

Specific heat consumption for heating Q _{h,nd}	145	GJ	19	kWh/(m ² .y)
Energy demand for heating per year $E_{P,H}$	172	GJ	23	kWh/m ²
Energy demand for cooling per year $E_{C,H}$	58	GJ	8	kWh/m ²
Energy demand for mechanical ventilation $E_{P,F}$	24	GJ	3	kWh/m ²
Energy demand for hot water preparation $E_{P,W}$	132	GJ	18	kWh/m ²
Total energy needed E _{P,A}	386	GJ	52	kWh/m ²

Table 5-10 Energy consumption of the light-weight concrete variant

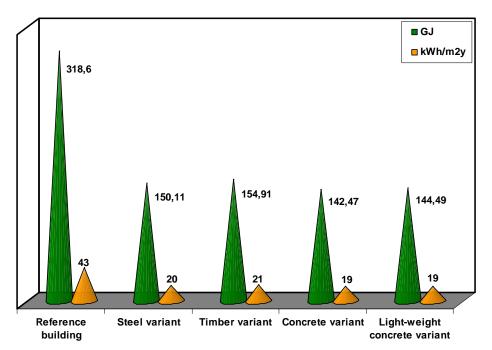
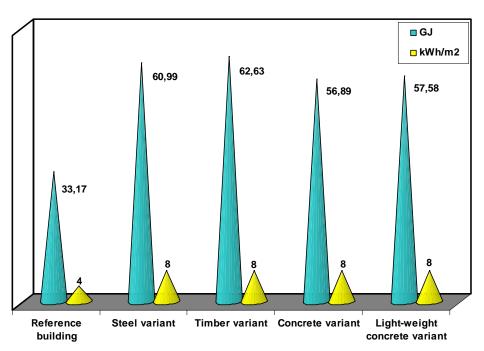
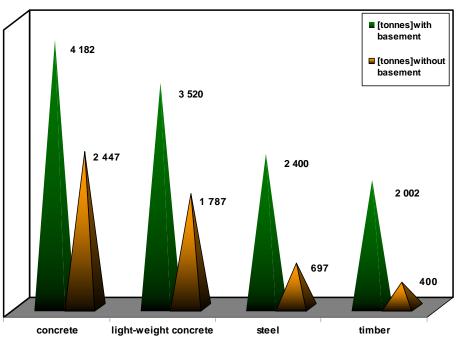



Figure 5.16 Specific heat consumption for heating for all variants

Energy demand for cooling per year

Figure 5.17 Energy demand for cooling per year for all variants


From the energy consumptions it is obvious that, when improving the heat transmission coefficient of the building envelope the energy needed for heating is decreasing, but the energy needed for cooling is increasing. We have to deal with this mainly when designing the ventilation systems. The way to solve this problem can be in decreasing the solar gains. To be successful in this we have to lower them down just during the summer period, but to allow them during the winter time when they are helping us with heating up the building.

There are several ways how to do this. One of them is to use interior or exterior blinds. From these two types we can say that the exterior ones are more efficient, because they are stopping the solar radiation outdoors and then there is no risk of overheating in areas close to windows. These blinds can be divided in anther two groups: with automatic control or that we can let to be controlled by the people currently living in the building. Me personally I do not think than any of these possibilities are good ones. If you let people to control the shading system on their own there is a risk that they just forget to do it. (especially if they leave to work in the morning when it is not so hot). The other type with automatic control is usually quite complicated system and due to that this system is often exposed to rain it can break down. I would recommend using rather some of the passive systems. For example we can use marguees which have their lamellas in the angle that they prevent the building from the solar gains during the summer when the sun is higher at the horizon and during the winter time when the sun is much lower it allows them. Other possibility of passive solution is to plant trees around the building. During the summer time when they have their leaves on they prevent and obviously during the winter they let the solar radiation to get in the building.

6 Assessment of the individually designed options in terms of the environmental impact

Here is described an evaluation of the environmental impact of materials used for the construction. The calculation is based on the overall amounts of materials used in the building. The sheets with those exact amounts of materials can be found in the appendix of this thesis. The amounts were stated for two cases. First one is the whole building including basement, floor with garages and the stairway (these parts are made from reinforced concrete in every variant). In the second case only the living part is considered. So the differences between each construction system according to used materials are more visible.

The values needed for every kind of material (values of embodied energy, CO_2 emissions and SO_2 emissions) were taken from the list that is given in the "Details for Passive Houses - A Catalogue of Ecologically Rated Constructions" (Waltjen, 2008). Values taken from this publication are world-wide accepted and so are considered as the proved ones. All the values given to each material are stated in the appendix in the part with amounts of materials. In the *Figure 6.1* there are shown differences in the weight of the construction system of each variant. What is impressive is the difference between the weight of the concrete and the timber variant.

Weight by variant

Figure 6.1 Weight by variant.

There are two numbers for each material – for the whole building ("with basement") and only for the parts where the structure was changed ("without basement")

6.1 Embodied energy, CO₂ and SO₂ emissions assessment

As it was said before the values of the embodied energy, CO_2 and SO_2 emissions for all materials are stated in the appendix. The values for the basic materials used in the structure are shown in the *Table 6-1*.

Material	Embodied energy MJ/kg	Embodied CO ₂ emissions kg/kg	Embodied SO ₂ emissions g/kg
concrete	0,69	0,103	0,24
light-weight concrete	4,2	0,5	1,4
steel	125	8,91	42,8
timber	2,72	-1,49	1,61
glue - lam. timber	8,04	-1,26	3,41

Table 6-1 An overview of embodied values for the main materials used in the structure

Here more further are the results for the comparison of each variant. In these numbers the environmental impact of steel is clearly shown. Steel is one of the most influential building materials. The energy needed for producing it and the emissions connected to its production are very high. The embodied values of steel are much higher than of the other materials. Even though the weight of the structure is on the half of the weight when compared with the concrete variant, the energy needed for producing it is at the almost same level. This is shown in *Figure 6.2*. In *Figures 6.3* and *6.4* are the values for the embodied emission of each variant and in these numbers the steel variant is getting even worse. As for these first numbers the steel seems to be the worst material that we can use for the construction, but as it is shown in the next part the big advantage of steel is the possibility of recycling it.

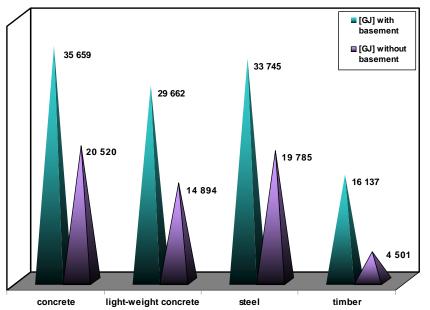


Figure 6.2 Amount of embodied energy for each variant. There are two numbers for each material – for the whole building ("with basement") and only for the parts where the structure was changed ("without basement")

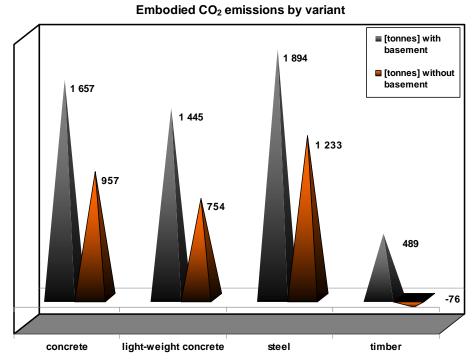
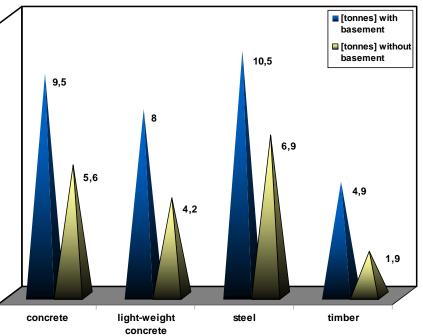



Figure 6.3 Amount of embodied CO_2 emissions for each variant. There are two numbers for each material – for the whole building (,,with basement") and only for the parts where the structure was changed (,,without basement")

Embodied SO₂ emissions by variant

Figure 6.4 Amount of embodied SO_2 emissions for each variant. There are two numbers for each material – for the whole building ("with basement") and only for the parts where the structure was changed ("without basement")

6.2 Usage of raw materials vs. recycled materials

It can be said that the consumption of raw materials is a significant problem for the whole civil engineering. It is getting more necessary and reasonable to use recycled or renewable materials as much as it is possible. In the next *Figures 6.4* and 6.5 the percentage of materials used for construction of each variant is shown. It is quite clear that the concrete based structures are really bad at this point. For both concrete and light-weight concrete we get almost 100 % of usage of raw materials. In comparison to this the steel has much lower value and timber is even better. The difference is much more significant when looking at *Figure 6.5* where the material comparison is without foundations, stairway and floor with garages.

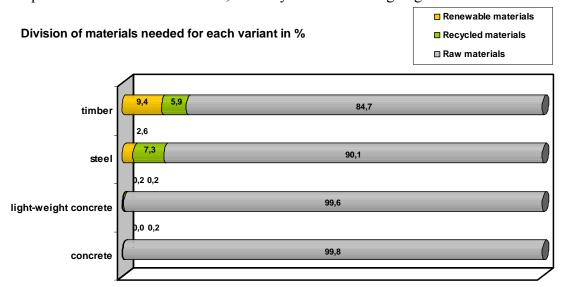
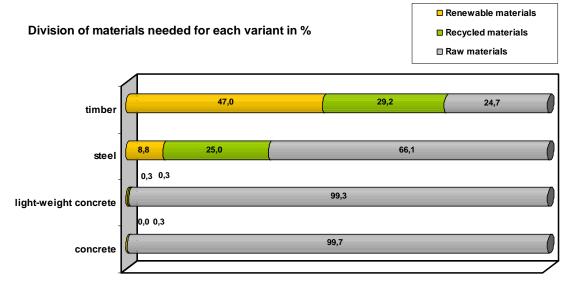



Figure 6.5 Usage of materials in the structure (including foundations, floor with garages and the stairway)

Figure 6.6 Usage of materials in the structure (only the living part of the building)

Next point used for assessment of different variants was production of waste during construction and demolition. This one is assessed by the percentage division of materials used in the structure according to what can be done with them after the demolition. Materials were divided into three parts. Those that can be fully recycled (this is a material that has the same qualities and properties after recycling), partly recycled (this is recycling with down cycling effect, which means that the recycled material has worse qualities and properties than that one which came to recycling) and waste. It should be kept in mind that the graph is shown in percentages, so it does not describe the real amount of waste produced. Here it is stated as a ratio with the total amount of materials.

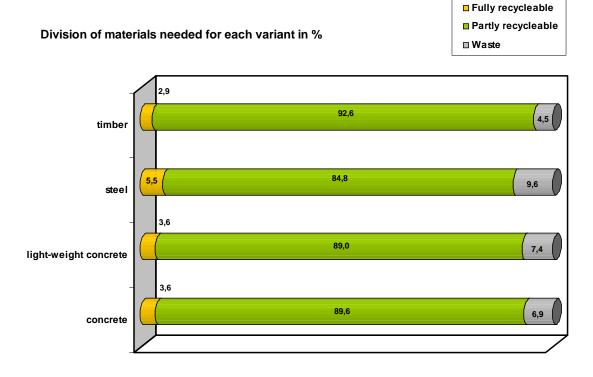


Figure 6.7 Usage of materials in the structure (including foundations, floor with garages and the stairway)

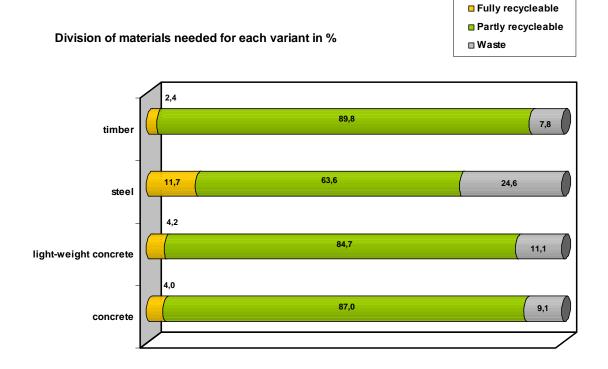


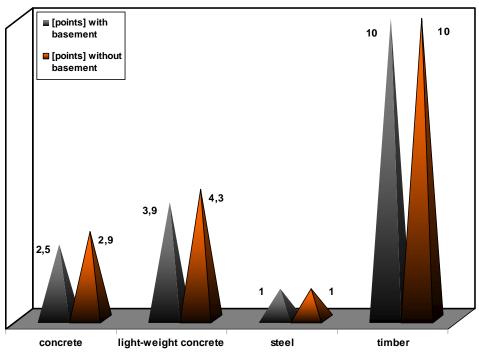
Figure 6.8 Usage of materials in the structure (only the living part of the building)

6.3 Ranking of evaluated variants

Several criterions were used to compare the designed structures one to each other. There were given weights to each of these to show their importance. The criterions and their weights can be found in the *Table 6-2*. These basic criterions and their weight were provided by Ing. Martin Vonka, Ph.D. The real values evaluated for each variant according to the field of importance were described previously. The description of the system of ranking is provided in this part.

Criterion	Weight of each criterion
Embodied energy	40 %
Embodied CO ₂ emissions	10 %
Embodied SO ₂ emissions	10 %
Usage of raw materials	20 %
Raw materials / all used materials	6 %
Waste / all used materials	6 %
Volume of used materials / volume of the building	8 %

Table 6-2 An overview of criterions used for the comparison of the designed variants


The list of these criterions was chosen, because exactly these ones include all the bad environmental influences of building materials used during the construction.

There were given points to each variant for each criterion. These points are based on the values that each variant has. Points were distributed in this way: for each criterion the best variant was given 10 points and the worst one was given 1 point. Points for variants between this were evaluated according to the linear dependency. For the final ranking all of these points were multiplied by the weight and than summarized. This was done for each variant separately. In *Figures* 6.9 - 6.14 below the results for every criterion are shown.

Embodied energy by variant

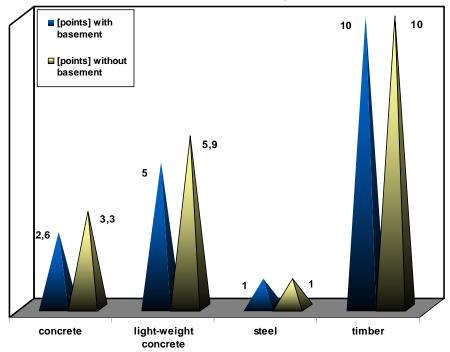
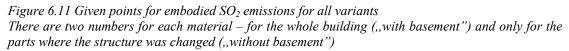


Figure 6.9 Given points for embodied energy for all variants There are two numbers for each material – for the whole building (,,with basement") and only for the parts where the structure was changed (,,without basement")



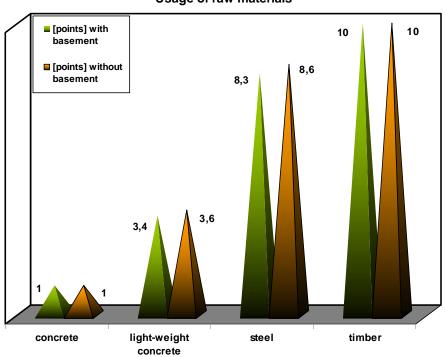
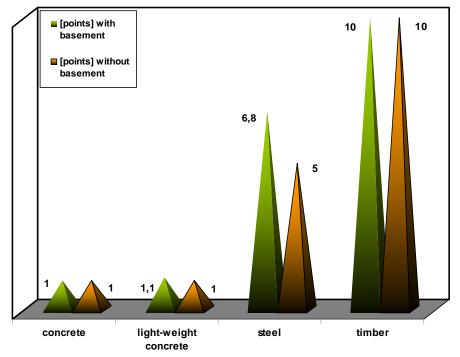
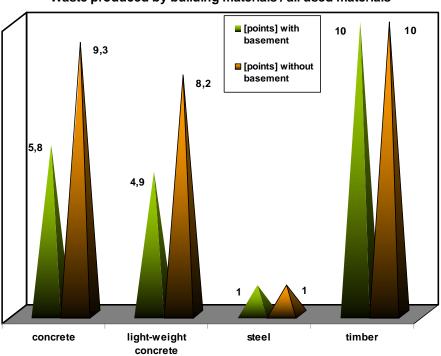

Embodied CO₂ emissions by variant

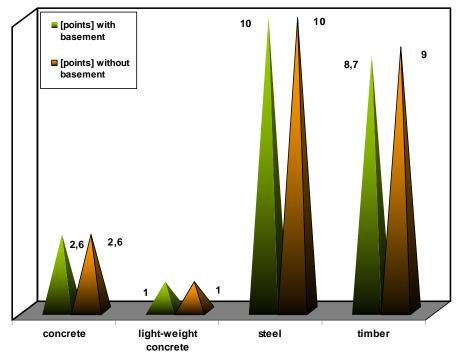
Figure 6.10 Given points for embodied CO_2 emissions for all variants There are two numbers for each material – for the whole building (,,with basement") and only for the parts where the structure was changed (,,without basement")


Embodied SO₂ emissions by variant

Usage of raw materials


Figure 6.12 Given points for the usage of materials during construction for all variants There are two numbers for each material – for the whole building (,,with basement") and only for the parts where the structure was changed (,,without basement")

Usage of raw materials / all used materials


Figure 6.13 Given points for usage of raw materials during construction in contrast with all used materials for all variants

There are two numbers for each material – for the whole building ("with basement") and only for the parts where the structure was changed ("without basement")

Waste produced by building materials / all used materials

Figure 6.14 Given points for embodied energy for all variants There are two numbers for each material – for the whole building (,,with basement") and only for the parts where the structure was changed (,,without basement")

Volume of used materials / volume of the building

Figure 6.15 Given points for embodied energy for all variants There are two numbers for each material – for the whole building (,,with basement") and only for the parts where the structure was changed (,,without basement")

A review of points given to each variant is given in the *Figure 6.15*. These are still without weights. The comparison of all variants under all criterions can be seen in here. Obviously the timber variant is the best in almost all criterions. So we can predict that also after multiplying it by weights, timber will be found as the best solution in case of environmental issues.

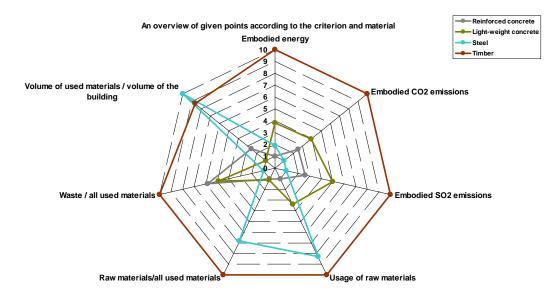


Figure 6.16 Summary of given points to each variant (relative comparison)

The final ranking is shown in the next *Figure 6.16*. Weights are included in this summary so we have the real comparison for all variants. From this it can be said

that the timber variant is the best solution that can be provided. This variant got significantly much higher points than the other variants. What is quite interesting is the change at the second and third position. This can be explained by the amount of points that were given in the part where the percentage of waste was evaluated. The big difference is caused by the weight of light-weight concrete structure that gives to the variant lower percentage of waste. But it can be said that these two possibilities have almost the same environmental impact. The structure made completely from reinforced concrete is stated as the worst variant for the environment. The other possibility how to evaluate the environmental influence of the structure is provided in the next chapter.

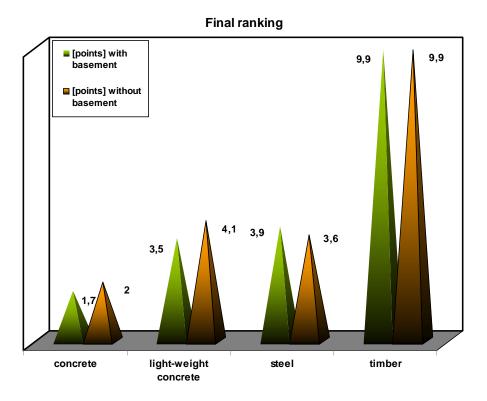


Figure 6.17 Summary of result points for all variants There are two numbers for each material – for the whole building ("with basement") and only for the parts where the structure was changed ("without basement")

7 Assessment of the individually designed options in terms of the environmental impact, done by the SBTool CZ methodology

7.1 Description of the SBTool CZ methodology

The SBTool CZ methodology for comprehensive assessment of the quality of buildings is based on the general scheme of the international SBTool. This is developed by the organization International Initiative for a Sustainable Built Environment (iiSBE), which offers huge database of criterions for sustainable constructions for-specific conditions of participating states.

The structure of the criterions used for evaluation by the SBTool CZ methodology is divided in accordance with the principles of sustainable construction into the three basic groups: environmental, socio-cultural and economics. Each of these groups are divided into subgroups, and then to the final evaluation criterions. The range of the criterions that are used for the evaluation of each building varies according to the type of the building (residential building, office block, hospital, commercial building) and by the phase of the life cycle (phase of project planning, commissioning, operation phase of the building). The structure of criterions and weights between them are designed in accordance with the principles of sustainable construction.

Each criterion has its own algorithm for the evaluation. Then there are points given according to the result from this algorithm. The points are given from the scale 0 - 10. The scale corresponds to the limits (benchmarks) that are provided to every criterion. The value of ten points corresponds to the best available technology. Five points correspond to the current best experience and zero expresses the usual condition in the region or meets the requirements given by the government.

It should be noted that the benchmarks are set so that the scoring of 10 points really means the best and the most advanced solutions in practice and it is practically unrealistic at the moment to achieve these values. Most of the rated buildings have reached levels between 1 and 5, which is something between a permissible and a good solution.

Values of benchmarks are one of the basic values of this methodology. Their work out is mainly based on the statistical data (for example: limits for operational energy, embodied energy, operational emissions or embodied emissions) or is based on the scientific research (such as use of the rainwater, the availability of services, etc.). Values of benchmarks can be stated in numbers or by word as well.

The SBTool methodology is one of the possible ways on how to evaluate the sustainability of buildings and thus can determine the potential of how to improve and optimise the design of building.

Criterions for the env	60 %	
Group of criterions Criterion		Weight of criterion
Climate change	Operational CO ₂ emissions	21,8 %
	Embodied CO ₂ emissions	3,8 %
Air quality	Operational SO ₂ emissions	5,6 %
	Operational NO _x emissions	5,6 %
	Use of greenery on the land	8,4 %
Biodiversity	Use of greenery on the facade and roof	4,0 %
	Ecological value of the place	6,0 %
	Consumption of primary energy for operation of the building	12,2 %
Use of resources	Embodied energy	4,0 %
	Use of structural material during construction	9,2 %
	Construction waste during construction and demolition	4,0 %
	Use of rainwater	6,0 %
	Reuse of land	4,4 %
Environmental risks	Ration of rainwater kept on the land	5,0 %

Table 7-1 Criterions used for evaluation of the environmental impact of the residential building

Criterion for the socio	30 %	
Group of criterions Criterion		Weight of criterion
	Eyesight comfort	8,9 %
Quality of indoor environment	Acoustic comfort	12,6 %
	Thermal comfort	13,4 %
	Air quality in the building	9,4 %
	Access to public places for relaxation	10,9 %
	Availability of services	9,7 %
Availability	Availability of public transport	9,1 %
	Promotion of cycling	6,3 %
	Access for disabled people	3,4 %
Safety	Safety in the building and its	6,6 %
	Security of the building	6,6 %
Functionality	Adaptability	3,1 %

Table 7-2 Criterions for the socio – cultural area used for evaluation of the residential building

Criterion for the area	10 %	
Group of criterions	Weight of criterion	
LCC	Analysis of operating costs	33 %
Support of the local economy Use locally produced products		22 %
	Innovative approach	15 %
Externalities	Provision of operational and detailed documentation	10 %
Risks	Minimisation of regional climatologic risks	8,7 %
	Embodied energy	11,3 %

Table 7-3 Criterions for the area of economics used for evaluation of the residential building

	Benchmarks				Given points					
Criterion		L-w concrete.	Steel	Timber	Original	Concrete	L-w concrete.	Steel	Timber	Original
Operational CO ₂ emissions	7,2	7,1	7,1	7,0	6,7	1,57	1,56	1,54	1,53	1,46
Embodied CO ₂ emissions	0,0	0,0	0,0	2,7	0,0	0,00	0,00	0,00	0,10	0,00
Operational SO ₂ emissions	7,1	7,0	6,9	6,9	7,2	0,39	0,39	0,39	0,39	0,4
Operational NO _x emissions	6,8	6,8	6,7	6,7	6,5	0,38	0,38	0,38	0,37	0,36
Use of greenery on the land	2,0	2,0	2,0	2,0	2,0	0,17	0,17	0,17	0,17	0,17
Use of greenery on the facade and roof	0,0	0,0	0,0	0,0	0,0	0,00	0,00	0,00	0,00	0,00
Ecological value of the place	10,0	10,0	10,0	10,0	10,0	0,60	0,60	0,60	0,60	0,60
Consumption of primary energy for operation of the building	7,7	7,7	7,6	7,6	1,3	0,94	0,94	0,93	0,93	0,89
Embodied energy	0,0	0,0	0,0	0,0	0,0	0,00	0,00	0,00	0,00	0,00
Use of structural material during construction	0,0	0,1	1,8	2,8	0,0	0,00	0,01	0,16	0,25	0,00
Construction waste during construction and demolition	0,0	0,0	0,0	0,0	0,0	0,00	0,00	0,00	0,00	0,00
Use of rainwater	0,0	0,0	0,0	0,0	0,0	0,00	0,00	0,00	0,00	0,00
Reuse of land	0,0	0,0	0,0	0,0	0,0	0,00	0,00	0,00	0,00	0,00
Ration of rainwater kept on the land	0,0	0,0	0,0	0,0	0,0	0,00	0,00	0,00	0,00	0,00
Total points for the environmental area						4,06	4,04	4,17	4,34	3,89
Eyesight comfort	8,0	8,0	8,0	8,0	8,0	0,71	0,71	0,71	0,71	0,71
Acoustic comfort	4,0	4,0	4,0	4,0	4,0	0,50	0,50	0,50	0,50	0,50
Thermal comfort	4,0	4,0	4,0	4,0	2,0	0,54	0,54	0,54	0,54	0,27
Air quality in the building	6,0	6,0	6,0	6,0	6,0	0,56	0,56	0,56	0,56	0,56
Access to public places for relaxation	10,0	10,0	10,0	10,0	10,0	1,09	1,09	1,09	1,09	1,09
Availability of services	10,0	10,0	10,0	10,0	10,0	0,97	0,97	0,97	0,97	0,97
Availability of public transport	10,0	10,0	10,0	10,0	10,0	0,91	0,91	0,91	0,91	0,91
Promotion of cycling	7,0	7,0	7,0	7,0	7,0	0,44	0,44	0,44	0,44	0,44

7.2 Results from the SBTool CZ methodology

Access for disabled people	5,5	5,5	5,5	5,5	5,5	0,19	0,19	0,19	0,19	0,19
Safety in the building and its surroundings	0,0	0,0	0,0	0,0	0,0	0,00	0,00	0,00	0,00	0,00
Security of the building	0,0	0,0	0,0	0,0	0,0	0,00	0,00	0,00	0,00	0,00
Adaptability	1,0	1,0	10,0	10,0	1,0	0,03	0,03	0,03	0,03	0,03
Total points for the socio – cultural area						5,95	5,95	6,22	6,22	5,67
Analysis of operating costs	3,0	3,0	3,0	3,0	3,0	0,99	0,99	0,99	0,99	0,99
Use locally produced products	1,0	1,0	1,0	1,0	1,0	0,22	0,22	0,22	0,22	0,22
Innovative approach	10,0	10,0	10,0	10,0	10,0	1,50	1,50	1,50	1,50	1,50
Provision of operational and detailed documentation	5,0	5,0	5,0	5,0	5,0	0,50	0,50	0,50	0,50	0,50
Minimisation of regional climatologic risks	10,0	10,0	10,0	10,0	10,0	0,87	0,87	0,87	0,87	0,87
Autonomy of operation	0,0	0,0	0,0	0,0	0,0	0,00	0,00	0,00	0,00	0,00
Total points for the area of economy						4,08	4,08	4,08	4,08	4,08
Total points for each variant						4,63	4,61	4,78	4,88	4,45

Table 7-4 An overview of points evaluated by the SBTool methodology

Results that came from the evaluation of structures in the SBTool methodology gave nearly the same ranking as the one previously stated. The only difference is in the change of positions of reinforced concrete structure and the structure made from light-weight concrete. The difference between the positions of each variant is also much lower. This is caused by the amount of criterions, which is used in each evaluation. The first methodology was focused only on the environmental impact of the structure itself and the criterions were chosen according to it. As for the second one, the criterions for the overall evaluation of the building are implemented. This causes the reduction of the influence of the structure itself.

The other issue is that the limits set for the assessment of the environmental impact are really strict. This means that almost all variants got zero points for the environmental criterions connected with the structure. This can be found for the criterions like embodied energy and emissions, waste production and usage of materials. Only the timber variant got some points in all of these parts. The reason for such a strict limitation of the criterions is in that the methodology should be used over a long term period. If the limitation was not that strict, all the structures would be revealed as the best ones in a few years. The comparison of all variants is shown in *Figure 7.1* below.

Also the better position of concrete is caused by the stricter limitation. As a result of this it appears that the concrete variant is better thanks to the lower

operational emissions and energy. But as stated previously the difference between the structural materials can not be shown in the set of SBTool CZ criterions.

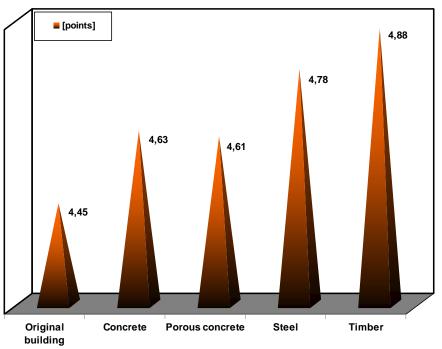


Figure 7.1 Total ranking evaluated by the SBTool CZ

The result for the original building is also shown. Here the difference caused by the operational phase of the building is visible. It can be found when comparing the result of the original building and the concrete variant. The difference is not substantial because of the reasons stated previously and also because of the different source of energy used for the original building and for the concrete variant. In terms of the original building the main source of energy is natural gas. For the concrete variant the main source is the same, but the consumption of energy needed for ventilation is rising up and the source for it is electricity. In fact the energy needed for the concrete variant is lower, but partly the energy is changed from the natural gas to electricity. This means higher operational emissions and higher consumption of primary energy for this changed part of energy.

From these results it can be seen that the use of the SBTool methodology for the comparison of several material variants does not prove to be efficient. This methodology is definitely better for the ranking of different buildings thanks to the wide range of criterions and their weights, but when considering which material is better for the structure it is better to use a system developed from your own criterions. This helps to distinguish the variants one from each other in much better resolution.

8 Conclusions

There were four material alternatives of a residential building designed in this thesis. All of them were done to fulfil the requests in the field of structural design, thermal performance, acoustics performance and energy consumption. The idea was to compare real structures from different materials under the same conditions according to their environmental impact. Therefore the compositions in all of the variants have nearly the same values of heat transmission coefficient (facade U = 0.15 and roof U = 0.12) and in the end nearly the same energy consumptions.

The original system of criterions was used for the comparison of material options and the other opportunity when using the multi-criterion assessment methodology SBTool CZ. From the first system it was stated that timber option is definitely the best possibility. Timber variant has two times lower values of embodied energy and emissions than the second best option. Huge differences between points given to the timber option and the rest were described in chapter 5. According to the second possibility of evaluation timber is also stated as the best solution, but it can be found that the differences between each option are not that clear. It is hard to distinguish the alternatives.

So, it can be said, that when trying to compare several possibilities it is more essential to use an original system of criterions that fulfils the requests set on it. This allows for clearer results. It has to be stated here, that a lot of attention should be paid to the chosen criterion and their weights. It is up to everyone which criterion to choose. Which of them are the most essential ones to fulfil the task.

9 List of Tables

Table 1-1 Non-renewable resources for building materials production.	4
Table 1-2 Required and recommended values of heat transfer coefficient U_N j buildings with the prevailing internal temperature $\theta_{im} = 20$ °C	
Table 2-1 An overview of the heat transfer coefficient of the reference building	15
Table 3-1 An overview of the designed steel elements	18
Table 3-2 An overview of the designed steel compositions	28
Table 3-3 Design conditions for the location of Prague	29
Table 3-4 Thermal performance of designed compositions for the steel structu variant	
Table 3-5 Values for airborne sound insulation of the steel variant	32
Table 3-6 Values for impact sound level of the steel variant	32
Table 3-7 An overview of the designed timber elements	35
Table 3-8 An overview of the designed timber compositions	45
Table 3-9 Thermal performance of designed compositions for the timber structu variant	
Table 3-10 Values for airborne sound insulation of the timber variant	48
Table 3-11 Values for impact sound level of the timber variant	49
Table 4-1 An overview of the designed concrete compositions	55
Table 4-2 Thermal performance of designed compositions for the concrete struct variant	
Table 4-3 Values for airborne sound insulation of the concrete variant	58
Table 4-4 Values for impact sound level of the concrete variant	58
Table 4-5 An overview of the designed light-weight concrete compositions	60
Table 4-6 Thermal performance of designed compositions for the light-weigconcrete structure variant	
Table 4-7 Values for airborne sound insulation of the light-weight concrete variant	62
Table 4-8 Values for impact sound level of the light-weight concrete variant	62

Table 5-1 Basic values used in the evaluation of energy consumption of the original building. 63
Table 5-2 Energy consumption of the original building 65
Table 5-3 Basic values used in the evaluation of energy consumption of the steel alternative 66
Table 5-4 Energy consumption of the steel variant 67
Table 5-5 Basic values used in the evaluation of energy consumption of the timber alternative 68
Table 5-6 Energy consumption of the timber variant
Table 5-7 Basic values used in the evaluation of the energy consumption of the concrete alternative 70
Table 5-8 Energy consumption of the concrete variant 71
Table 5-9 Basic values used in the evaluation of the energy consumption of the LW concrete alternative 72
Table 5-10 Energy consumption of the light-weight concrete variant
Table 6-1 An overview of embodied values for the main materials used in the structure 77
Table 6-2 An overview of criterions used for the comparison of the designed variants
Table 7-1 Criterions used for evaluation of the environmental impact of theresidential building
Table 7-2 Criterions for the socio – cultural area used for evaluation of theresidential building
Table 7-3 Criterions for the area of economics used for evaluation of the residential building 89
Table 7-4 An overview of points evaluated by the SBTool methodology

10 List of Figures

Figure 1.1 Concept of structure optimisation based on the environmental issues (Hájek, P. ,,Sustainable Construction Through Environment-Based Optimisation")....2

Figure 1.3 CO_2 emissions from buildings (dark red: 19 for years 2001 – 2030. (,,Building and climate change	
Figure 2.1 Layout of the 2 nd and 3 rd floor	11
Figure 2.2 Layout of the 4 th floor	12
Figure 2.3 Layout of the 1 st floor	12
Figure 2.4 Northern view of the building	
Figure 2.5 Western view of the building	
Figure 2.6 Section of the building	14
Figure 3.1 Layout of the structure of the 1^{st} , 2^{nd} and 3^{ra}	<i>floor</i> 16
Figure 3.2 Layout of the structure of the 4 th floor	17
Figure 3.3 Image of the designed steel structure (resul	
Figure 3.4 Layout of the structure of the 1^{st} , 2^{nd} and 3^{ra}	<i>floor</i>
Figure 3.5 Layout of the structure of the 4 th floor	
Figure 3.6 Image of the designed timber structure (ro 3D)	
Figure 2.1 Layout of the 2 nd and 3 rd floor	
Figure 2.1 Layout of the 2 nd and 3 rd floor	
Figure 5.1 Heat losses of the zone 1	64
Figure 5.2 Heat losses of the zone 2	64
Figure 5.3 Total energy demand of the original buildin	g65
Figure 5.4 Heat losses of the zone 1	
Figure 5.5 Heat losses of the zone 2	67
Figure 5.6 Total energy demand of the steel variant	67
Figure 5.7 Heat losses of the zone 1	
Figure 5.8 Heat losses of the zone 2	
Figure 5.9 Total energy demand of the timber variant	
Figure 5.10 Heat losses of the zone 1	
Figure 5.11 Heat losses of the zone 2	

Figure 5.12 Total energy demand of the concreter variant	71
Figure 5.13 Heat losses of the zone 1	72
Figure 5.14 Heat losses of zone 2	73
Figure 5.15 Total energy demand of the L-W concrete variant	73
Figure 5.16 Specific heat consumption for heating for all variants	74
Figure 5.17 Energy demand for cooling per year for all variants	74
Figure 6.1 Weight by variant	76
Figure 6.2 Amount of embodied energy for each variant	77
Figure 6.3 Amount of embodied CO_2 emissions for each variant.	78
Figure 6.4 Amount of embodied SO ₂ emissions for each variant	78
Figure 6.5 Usage of materials in the structure (including foundations, flor garages and the stairway)	
Figure 6.6 Usage of materials in the structure (only the living part of the build	ing) . 79
Figure 6.7 Usage of materials in the structure (including foundations, flor garages and the stairway)	
Figure 6.8 Usage of materials in the structure (only the living part of the build	ing) . 80
Figure 6.9 Given points for embodied energy for all variants.	
Figure 6.10 Given points for embodied CO_2 emissions for all variants	
Figure 6.11 Given points for embodied SO_2 emissions for all variants.	
Figure 6.12 Given points for the usage of materials during construction variants.	•
Figure 6.13Given points for usage of raw materials during construction in c with all used materials for all variants.	
Figure 6.14 Given points for embodied energy for all variants.	84
Figure 6.15 Given points for embodied energy for all variants.	85
Figure 6.16 Summary of given points to each variant (relative comparison)	85
Figure 6.17 Summary of result points for all variants	86
Figure 7.1 Total ranking evaluated by the SBTool CZ	92

11 References

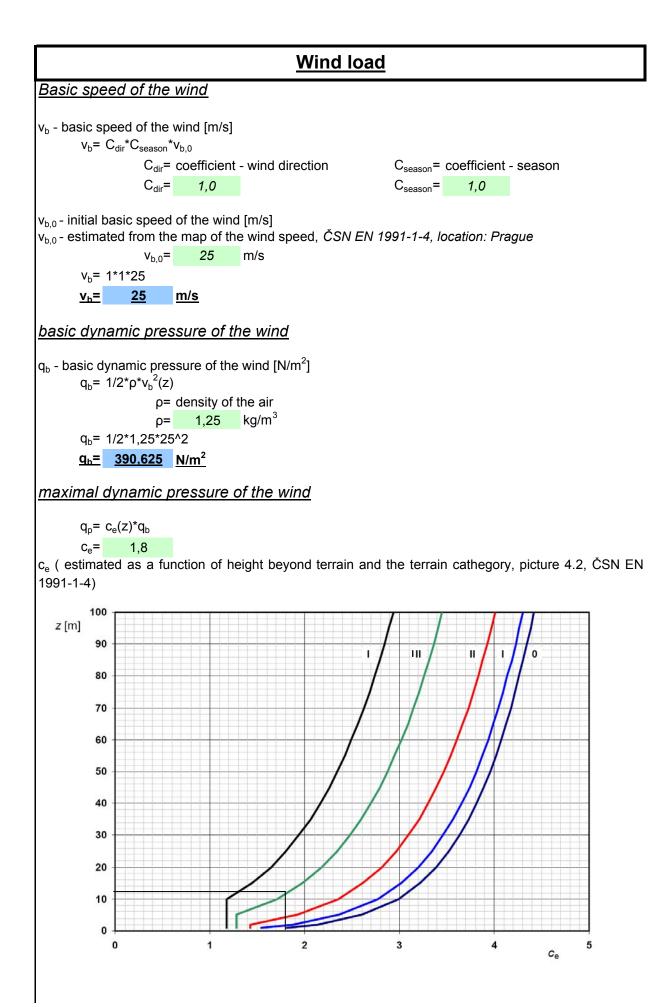
Haliday, S., (2008): Sustainable construction. Butterworth-Heinemann, Oxford, UK

- Berge, B., (2009): The ecology of building materials. Architectural Press, Oxford, UK
- Tywoniak, J., (2005): *Nízkoenergetické domy, (Low-energy houses)*. Grada Publishing, Prague, Czech Republic
- Hájek, P., (2002): Sustainable Construction through Environmentally Based Optimisation, IABSE Symposium Towards a Better Built Environment, Melbourne
- UN Documents, (1987): Report of the World Commission on Environment and Development: Our Common Future (Burtland Report). University Press, Oxford, UK
- CIB Document, (1999): Agenda 21 for sustainable construction. CIB Report Publication 237, Rotterdam, Netherlands
- UNEP SBCI, (2009): *Buildings and climate change*. United Nations Environment Programme, Paris, France
- Waltjen T., (2008): Passivhaus-Bauteilkatalog Ökologisch bewertete Konstruktionen (Details for Passive Houses - A Catalogue of Ecologically Rated Constructions). IBO - Austrian Institute for Healthy and Ecological Building, Wien, Austria
- CIDEAS Document, (2009): Manual for evaluation of the structure according to SBTool CZ methodology
- Backström Ch., (2000): Assessing the Power Efficiency of Fans and Air Handling Units. Swedish Association of Air Handling Industries, Stockholm, Sweden
- Kuklík P, Kuklíková A., Mikeš K., (2008): Dřevěné konstrukce 1, cvičení (Timber structures 1, practice). ČVUT publishing, Prague, Czech Republic
- ČSN EN 1991-1-1, (2004) : Eurokód 1 : Zatížení konstrukcí Část 1-3 : Obecná zatížení – Objemové tíhy, vlastní tíha a užitná zatížení pozemních staveb, (Eurocode 1 : Actions on structures – Part 1-1 : General actions – Densities, selfweight, imposed loads for buildings). Czech Standards Institute
- ČSN EN 1991-1-3, (2004) : Eurokód 1 : Zatížení konstrukcí Část 1-3 : Obecná zatížení – Zatížení sněhem, (Eurocode 1 : Actions on structures – Part 1-3 : General actions – Snow loads). Czech Standards Institute
- ČSN EN 1991-1-4, (2005) : Eurokód 1 : Zatížení konstrukcí Část 1-4 : Obecná zatížení Zatížení větrem, (Eurocode 1 : Actions on structures Part 1-4 : General actions Wind loads). Czech Standards Institute
- ČSN EN 1993-1-1, (2006) : Eurokód 3 : Navrhování ocelových konstrukcí Část 1-1: Obecná pravidla pro pozemní stavby, (Eurocode 3: Design of steel structures – Part 1-1: General rules for buildings). Czech Standards Institute

- ČSN EN 1996-1-1, (2007) : Eurokód 6: Navrhování zděných konstrukcí Část 1-+ : Obecná pravidla pro vyztužené a nevyztužené zděné konstrukce, (Eurocode 6 : Design of masonry structures – Part 1-1 : General rules for reinforced and unreinforced masonry structures). Czech Standards Institute
- ČSN EN 1995-1-1, (2006) : Eurokód 5 : Navrhování dřevěných konstrukcí Část 1-1: Obecná pravidla – Společná pravidla a pravidla pro pozemní stavby, (Eurocode 5: Design of timber structures – Part 1-1: General - Common rules and rules for buildings). Czech Standards Institute
- ČSN 73 0540, (2002) : *Tepelná ochrana budov, (Thermal protection of buildings)*. Czech Standards Institute
- ČSN EN ISO 717, (1998) : Akustika Hodnocení zvukové izolace stavebních konstrukcí a v budovách, (Acoustics – Rating of sound insulation in buildings and of building elements). Czech Standards Institute

12 Visited web pages

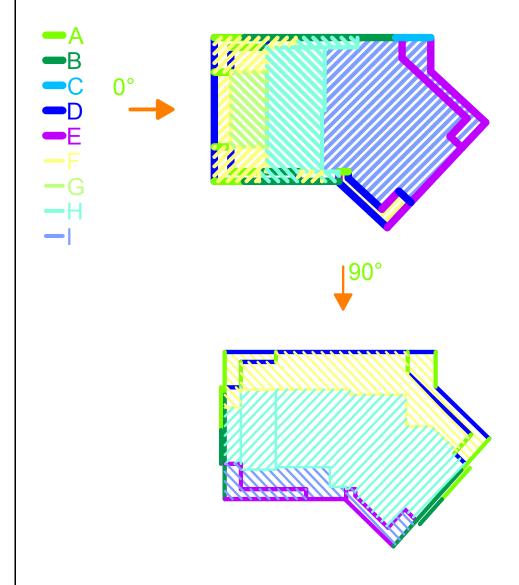
www.substance.cz	sustainable building
www.xella.cz	light-weight concrete blocks producer
www.ferona.cz	steel profiles producer
www.lindab.cz	trapezoidal sheets producer
www.rockwool.cz	thermal insulation from mineral wool producer
www.hofatex.eu	wooden fiber boards producer
www.unep.org	United Nations Environment Programme
www.dow.com	producer of thermal insulation from extruded polystyrene and
	impact sound insulation
www.ibo.at	Austrian Institute for Healthy and Ecological buildings
www.kronospan.cz	OSB boards producer
www.knauf.cz	gypsum boards producer

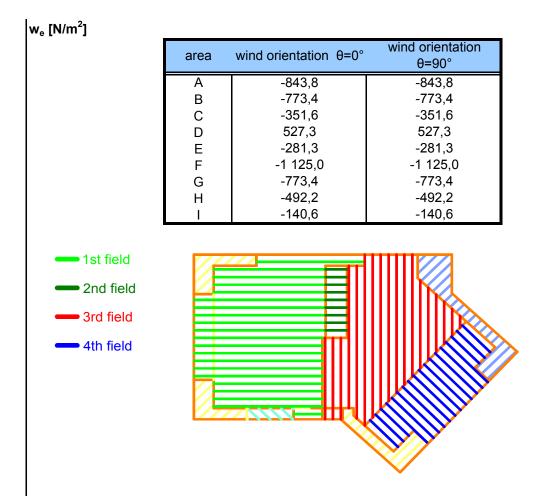

13 Appendix

- A Static evaluation of the timber structure variant
- B Static evaluation of the steel structure variant
- C Static evaluation of the Light-weight concrete variant
- D Energy consumption of fans used for mechanical ventilation
- E Evaluation of heat capacity of indoor mass for all alternatives
- F Amounts of materials
- G Basic drawings of the original building

A

Static evaluation of the timber structure variant

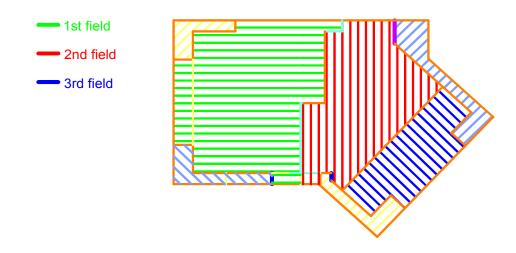

terrain cathegory - III (areas equally covered by vegetation or buildings) $q_p = \frac{703,125}{N/m^2}$


wind pressure on the surface of the construction

w _e =q _p (z)*C	pe		(-)	suction
<u>q_p=</u>	<u>703,125</u>	<u>N/m²</u>	()	pressure

 C_{pe}

area	wind orientation $\theta=0^{\circ}$	wind orientation $\theta=90^{\circ}$
A	-1,2	-1,2
В	-1,1	-1,1
С	-0,5	-0,5
D	0,75	0,75
Е	-0,4	-0,4
F	-1,6	-1,6
G	-1,1	-1,1
Н	-0,7	-0,7
I	-0,2	-0,2



conversion of the wind load from square load to linear one for roof joists (θ =0°)

purlin	distance	We	q/2 [kN/m']	q [kN/m´]
1st field 1-29 F	0,575	-1125,000	-0,323	-0,647
1st field 9 - 21 G	0,630	-773,438	-0,244	-0,487
1st field 1-29 H	0,630	-492,188	-0,155	-0,310
2nd 4-15 l	0,610	-140,625	-0,043	-0,086
3rd field 1-33 I	0,450	-140,625	-0,032	-0,063
4th field 1-25 I	0,630	-140,625	-0,044	-0,089

conversion of the wind load from square load to linear one for terrace joists (θ =0°)

purlin	distance	We	q/2 [kN/m´]	q [kN/m´]
F area	1,385	-1125,000	-0,779	-1,558
H area	1,385	-492,188	-0,341	-0,682
l area	1,385	-140,625	-0,097	-0,195
I area turned	0,945	-140,625	-0,066	-0,133

conversion of the wind load from square load to linear one for roof joists (θ =90°)

purlin	distance	We	q/2 [kN/m´]	q [kN/m´]
1st field 1-11 F	0,610	-1125,000	-0,343	-0,686
1st field 12-23 H	0,630	-492,188	-0,155	-0,310
1st field 24-29 I	0,575	-140,625	-0,040	-0,081
2nd field 6-33 F	0,450	-1125,000	-0,253	-0,506
2nd field 1-33 H	0,450	-492,188	-0,111	-0,221
2nd field 1-5 I	0,500	-140,625	-0,035	-0,070
3rd field 1-5 F	0,575	-1125,000	-0,323	-0,647
3rd field 6-25 H	0,630	-492,188	-0,155	-0,310

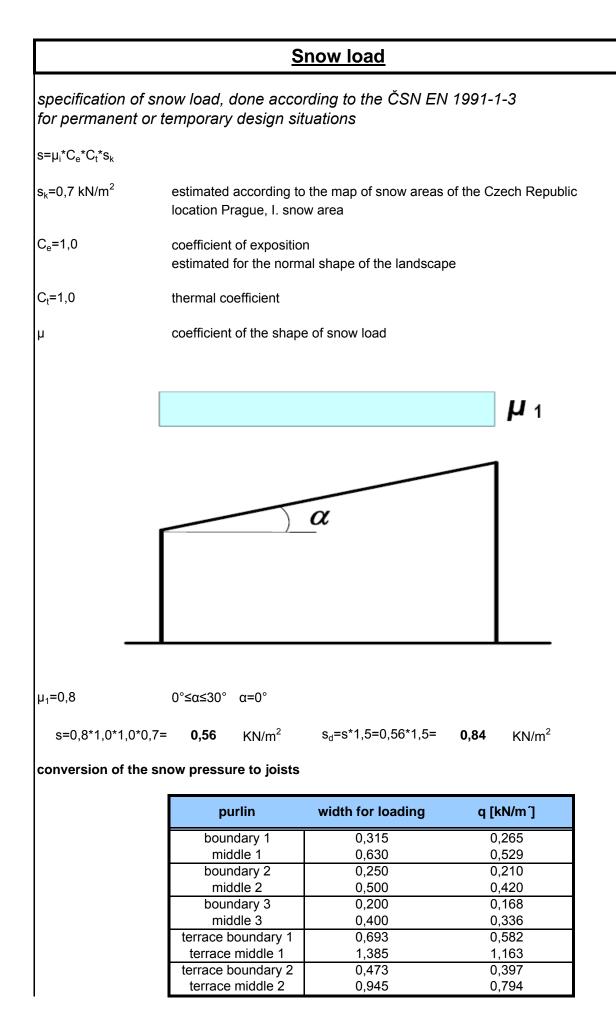
conversion of the wind load from square load to linear one for terrace joists (θ =90°)

purlin	distance	We	q/2 [kN/m']	q [kN/m´]
F area	1,150	-1125,000	-0,647	-1,294
l area	1,150	-140,625	-0,081	-0,162
F area turned	0,630	-1125,000	-0,354	-0,709

conversion of the wind load from square load to linear one for wall girders (θ =0°)

beam	distance 1	distance 2	W _e	q [kN/m´]
1st - 2nd floor D	1,750	1,500	527,344	1,714
2nd - 3rd floor D	1,500	1,525	527,344	1,595
3rd - 4th floor D	1,525	1,600	527,344	1,648
4th floor D	1,600	0,000	527,344	0,844
1st - 2nd floor A	1,750	1,500	-843,750	-2,742
2nd - 3rd floor A	1,500	1,525	-843,750	-2,552
3rd floor A	0,000	1,525	-843,750	-1,287
4th floor A	1,600	0,000	-843,750	-1,350
1st - 2nd floor B	1,750	1,500	-773,438	-2,514
2nd - 3rd floor B	1,500	1,525	-773,438	-2,340
3rd - 4th floor B	1,525	1,600	-773,438	-2,417
3rd floor B	0,000	1,525	-773,438	-1,179
4th floor B	1,600	0,000	-773,438	-1,238
1st - 2nd floor E	1,750	1,500	-281,250	-0,914
2nd - 3rd floor E	1,500	1,525	-281,250	-0,851
3rd - 4th floor E	1,525	1,600	-281,250	-0,879
3rd floor E	0,000	1,525	-281,250	-0,429
4th floor E	1,600	0,000	-281,250	-0,450

conversion of the wind load from square load to linear one for wall columns (6	θ=0°))
conversion of the wind four four square four to inter one for wan columns (•••	/


column	distance	We	q/2 [kN/m´]	q [kN/m´]
A area	0,625	-843,750	-0,264	-0,527
B area	0,625	-773,438	-0,242	-0,483
D area	0,625	527,344	0,165	0,330
E area	0,625	-281,250	-0,088	-0,176

conversion of the wind load from square load to linear one for wall girders (heta=90°)

beam	distance 1	distance 2	W _e	q [kN/m´]
1st - 2nd floor D	1,750	1,500	527,344	1,714
2nd - 3rd floor D	1,500	1,525	527,344	1,595
3rd - 4th floor D	1,525	1,600	527,344	1,648
4th floor D	1,600	0,000	527,344	0,844
1st - 2nd floor A	1,750	1,500	-843,750	-2,742
2nd - 3rd floor A	1,500	1,525	-843,750	-2,552
3rd floor A	0,000	1,525	-843,750	-1,287
4th floor A	1,600	0,000	-843,750	-1,350
1st - 2nd floor B	1,750	1,500	-773,438	-2,514
2nd - 3rd floor B	1,500	1,525	-773,438	-2,340
3rd - 4th floor B	1,525	1,600	-773,438	-2,417
3rd floor B	0,000	1,525	-773,438	-1,179
4th floor B	1,600	0,000	-773,438	-1,238
1st - 2nd floor E	1,750	1,500	-281,250	-0,914
2nd - 3rd floor E	1,500	1,525	-281,250	-0,851
3rd - 4th floor E	1,525	1,600	-281,250	-0,879
3rd floor E	0,000	1,525	-281,250	-0,429
4th floor E	1,600	0,000	-281,250	-0,450

conversion of the wind load from square load to linear one for wall columns (θ =90°)

column	distance	We	q/2 [kN/m']	q [kN/m´]
A area	0,625	-843,750	-0,264	-0,527
B area	0,625	-773,438	-0,242	-0,483
D area	0,625	527,344	0,165	0,330
E area	0,625	-281,250	-0,088	-0,176

Self-weight load + imposed load for each composition

Construction of the floor

(There is concidered floor in the bathroom - ceramic tiles and waterproofing) (There will be used wooden floor in the other rooms - the composition is lighter)

			Self weigh	nt of the co	mposition			
La	ayers of the	compositi	on	Thicknes s [mm]	Density [kg/m³]	g _k [kN/m²]	γF	q _d [kN/m²]
	Final layer	- ceramic til Rako Tans		10,00	2000,00	0,200	1,35	0,270
		Sarnafil G		2,40	3200,00	0,077	1,35	0,104
		Dow Ethafo		20,00	35,00	0,007	1,35	0,009
		Superfinish	ECO	15,00	550,00	0,083	1,35	0,111
		Superfinish	ECO	15,00	550,00	0,083	1,35	0,111
		Rockwool I	Rocknroll	100,00	100,00	0,100	1,35	0,135
	OSB board Plasterboar	Superfinish	ECO	15,00	550,00	0,083	1,35	0,111
				12,50	750,00	0,094	1,35	0,127
	Summary					0,725		0,979
	S	elf weight	of timber j	oists includ	ed in the	composition		
Profile	Height of profile [mm]	Width of profile [mm]	Lenght of element [mm]	Number of elements	Density [kg/m ³]	g _k [kN/m]	γ⊧	g _d [kN/m]
40 x 60	40	60	1000	3	470	0,034	1,35	0,046
	Summary	1				0,034		0,046
		I	mposed loa	ad for the c	ompositio	n		
						q _k [kN/m ²]	γ⊧	g ₀ [kN/m²]
						1,500	1,500	2,250
	Summary					1,500		2,250
			Width fo	r loading		g _d		q _d
	Joist			n]		9a I/m´]	[k	ча N/m´]
	boundary 1			693		709		,558
	mido			385		419		,116
	boundary 2 mido			173 945		484 968		,063 ,126

Construction of the roof

		Self weigh	nt of the co	mposition			
L	ayers of the composit	ion	Thicknes s [mm]	Density [kg/m³]	g _k [kN/m²]	γF	q _d [kN/m²]
	Gravel						
	Waterproofing		50,00	1650,00	0,825	1,35	1,114
	Sarnafil G Thermal insulation	441-24EL	2,40	3200,00	0,077	1,35	0,104
	Dow Roofr Waterproofing	nate SL	120,00	35,00	0,042	1,35	0,057
	Sikaplan D Thermal insulation)	1,20	1300,00	0,016	1,35	0,021
	Dow Roofi OSB board	nate SL	60,00	35,00	0,021	1,35	0,028
	Superfinisl OSB board	n ECO	15,00	550,00	0,083	1,35	0,111
	Superfinisl Thermal insulation	n ECO	15,00	550,00	0,083	1,35	0,111
	Rockwool	Fasrock	200,00	183,00	0,366	1,35	0,494
	OSB board Superfinisl Vapour barrier	n ECO	15,00	550,00	0,083	1,35	0,111
	-	40 Special	0,25	560,00	0,001	1,35	0,002
			12,50	750,00	0,094	1,35	0,127
	Summary				1,689		2,280
	Self weig	ht of timber	r joists inclu	uded in co	omposition		
Profile	Height of Width of profile profile [mm] [mm]	element [mm]	Number of elements	Density [kg/m³]	g _k [kN/m]	γF	g _d [kN/m]
40 x 60	40 60 Summary	1000	3	470	0,034	1,35	0,046
					0,034		0,046
		Imposed loa	ad for the c	ompositio	n		
					q _k [kN/m²]	γ _F	g _d [kN/m²]
	Summary				1,500 1,500	1,500	2,250 2,250
	Summary				1,500		<i>2</i> ,2JU
	Joist	[r	r loading n]			q _d [kN/m´]	
	boundary 1		815 820		733 465		,709
	middle 1 boundary 2		330 250		465 581		,418 ,563
	middle 2	0,5	500	1,	163	1	,125
	boundary 3		195		454		,439 979
	middle 3	0,3	390	Ο,	907	0	,878

Construction of the terrace

s (mm) [kg/m²] mail layer - walking coat Parador outdoor classic 7020 waterproofing Sarnafil G 441-24EL 50,00 1650,00 0,825 1,35 1,1 Thermal insulation Dow Roofmate SL Waterproofing Sikaplan D 100,00 35,00 0,035 1,35 0,1 OSB board Superfinish ECO 15,00 550,00 0,083 1,35 0,1 Impact sound insulation Dow Ethafoam 20,00 35,00 0,007 1,35 0,1 Thermal insulation Dow Ethafoam 20,00 35,00 0,083 1,35 0,1 Thermal insulation Dow Ethafoam 20,00 35,00 0,007 1,35 0,2 OSB board Superfinish ECO 15,00 550,00 0,083 1,35 0,7 Thermal insulation Rockwool Rocknroll 180,00 100,00 0,180 1,35 0,7 Thermal insulation Rockwool Rocknroll 15,00 550,00 0,083 1,35 0,7 OSB board Superfinish ECO 15,00 550,00 0,083 1,35 0,7 Vapour barrier Jutafol N 140 Special 0,25 560,				Self weigh	nt of the co	mposition			
Parador outdoor classic 7020 50,00 1650,00 0,825 1,35 1,1 Samafil G 441-24EL 2,40 3200,00 0,077 1,35 0,7 Thermal insulation Dow Roofmate SL 100,00 35,00 0,035 1,35 0,7 Waterproofing Sikaplan D 1,20 1300,00 0,016 1,35 0,7 OSB board Superfinish ECO 15,00 550,00 0,083 1,35 0,7 OSB board Superfinish ECO 15,00 550,00 0,083 1,35 0,7 Impact sound insulation Dow Ethafoam 20,00 35,00 0,007 1,35 0,0 OSB board Superfinish ECO 15,00 550,00 0,083 1,35 0,7 Thermal insulation Rockwool Rocknroll 180,00 100,00 0,180 1,35 0,7 OSB board Superfinish ECO 15,00 550,00 0,083 1,35 0,7 OSB board Ithermal insulation Ithermal insulation Itherma	La	yers of the	composit	ion		-	g _k [kN/m²]	γ⊧	q _d [kN/m²]
waterproofing Sarnafil G 441-24EL Thermal insulation Dow Roofmate SL Waterproofing Sikaplan D 100,00 35,00 0,077 1,35 0,1 Waterproofing Sikaplan D 1,20 1300,00 0,016 1,35 0,0 OSB board Superfinish ECO 15,00 550,00 0,083 1,35 0,1 OSB board Superfinish ECO 15,00 550,00 0,083 1,35 0,1 Thermal insulation Dow Ethafoam 20,00 35,00 0,007 1,35 0,0 Rockwool Rocknroll Superfinish ECO 15,00 550,00 0,083 1,35 0,2 OSB board Superfinish ECO 15,00 550,00 0,083 1,35 0,2 OSB board Superfinish ECO 15,00 550,00 0,083 1,35 0,2 OSB board Superfinish ECO 15,00 550,00 0,083 1,35 0,7 Vapour barrier Jutafol N 140 Special 0,25 560,00 0,001 1,35 0,0 Profile Profile profile profile lement of self weight of timber joists included in the composition yr gd [k 40 x 60 40 60 <td></td> <td></td> <td></td> <td></td> <td>50.00</td> <td>4050.00</td> <td>0.005</td> <td>4.05</td> <td>4 4 4 4</td>					50.00	4050.00	0.005	4.05	4 4 4 4
Thermal insulation Dow Roofmate SL 100,00 35,00 0,035 1,35 0,000 Waterproofing Superfinish ECO 15,00 550,00 0,083 1,35 0,000 OSB board Superfinish ECO 15,00 550,00 0,083 1,35 0,000 Superfinish ECO 15,00 550,00 0,083 1,35 0,000 Impact sound insulation Dow Ethafoarm 20,00 35,00 0,007 1,35 0,007 Thermal insulation Dow Ethafoarm 20,00 35,00 0,007 1,35 0,007 Thermal insulation Rockwool Rocknroll 180,00 100,00 0,180 1,35 0,7 OSB board Superfinish ECO 15,00 550,00 0,083 1,35 0,7 Thermal insulation Rockwool Rocknroll 180,00 100,00 0,180 1,35 0,7 OSB board Superfinish ECO 15,00 550,00 0,083 1,35 0,7 Vapour barrier Jutafol N 140 Special 0,25 560,00 0,001 1,35 0,7 Vapo				IC 7020	50,00	1650,00	0,825	1,35	1,114
Dow Roofmate SL Waterproofing Sikaplan D 100,00 35,00 0,035 1,35 0,0 CSB board Superfinish ECO 15,00 550,00 0,083 1,35 0,0 CSB board Superfinish ECO 15,00 550,00 0,083 1,35 0,0 Impact sound insulation Dow Ethafoam 20,00 35,00 0,007 1,35 0,0 Thermal insulation Rockwool Rocknroll 180,00 100,00 0,180 1,35 0,2 OSB board Superfinish ECO 15,00 550,00 0,083 1,35 0,7 Vapour barrier Jutafol N 140 Special 0,25 560,00 0,001 1,35 0,7 Vapour barrier fmm] profile Profile Profile Profile Profile Profile Number of elements P				441-24EL	2,40	3200,00	0,077	1,35	0,104
Sikaplan D 1,20 1300,00 0,016 1,35 0,0 OSB board Superfinish ECO 15,00 550,00 0,083 1,35 0,7 OSB board Superfinish ECO 15,00 550,00 0,083 1,35 0,7 Impact sound insulation Dow Ethafoam 20,00 35,00 0,007 1,35 0,6 Thermal insulation Rockwool Rocknroll 180,00 100,00 0,180 1,35 0,7 OSB board Superfinish ECO 15,00 550,00 0,083 1,35 0,7 OSB board Superfinish ECO 15,00 550,00 0,083 1,35 0,7 OSB board Superfinish ECO 15,00 550,00 0,083 1,35 0,7 OSB board Superfinish ECO 15,00 550,00 0,083 1,35 0,7 OSB board 12,50 750,00 0,083 1,35 0,7 Jutafol N 140 Special 0,25 560,00 0,001 1,35 0,7 <			Dow Roofr	nate SL	100,00	35,00	0,035	1,35	0,047
OSB board Superfinish ECO 15,00 550,00 0,083 1,35 0,7 OSB board Superfinish ECO 15,00 550,00 0,083 1,35 0,7 Impact sound insulation Dow Ethafoam 20,00 35,00 0,007 1,35 0,7 Thermal insulation Rockwool Rocknroll 180,00 100,00 0,180 1,35 0,7 OSB board Superfinish ECO 15,00 550,00 0,083 1,35 0,7 OSB board Superfinish ECO 15,00 550,00 0,180 1,35 0,7 OSB board Superfinish ECO 15,00 550,00 0,083 1,35 0,7 OSB board Superfinish ECO 15,00 550,00 0,083 1,35 0,7 OSB board Superfinish ECO 15,00 550,00 0,083 1,35 0,7 OSB board Jutafol N 140 Special 0,25 560,00 0,001 1,35 0,7 Uapour barrier Jutafol N 140 Special 0,25 750,00 0,094 1,35 0,7 Profile		•	-)	1.20	1300.00	0.016	1.35	0,021
OSB board Superfinish ECO 15,00 550,00 0,083 1,35 0,7 Impact sound insulation Dow Ethafoam 20,00 35,00 0,007 1,35 0,0 Thermal insulation Rockwool Rocknroll 180,00 100,00 0,180 1,35 0,7 OSB board Superfinish ECO 15,00 550,00 0,083 1,35 0,7 Thermal insulation Rockwool Rocknroll 180,00 100,00 0,180 1,35 0,7 Thermal insulation Rockwool Rocknroll 180,00 100,00 0,180 1,35 0,7 OSB board Superfinish ECO 15,00 550,00 0,083 1,35 0,7 OSB board Superfinish ECO 15,00 550,00 0,083 1,35 0,7 Vapour barrier Jutafol N 140 Special 0,25 560,00 0,001 1,35 0,7 Jutafol N 140 Special 0,25 560,00 0,094 1,35 0,7 Profile profile profile element of lements gk [kN/m] γ_F gd [k <		OSB board	·						
$\begin{tabular}{ c c c c c c c } \line & \begin{tabular}{ c c c c c } \line & \begin{tabular}{ c c c c c } \line & \begin{tabular}{ c c c c c } \line & \begin{tabular}{ c c c c c c } \line & \begin{tabular}{ c c c c c c c } \line & \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			•	n ECO	15,00	550,00	0,083	1,35	0,111
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					15,00	550,00	0,083	1,35	0,111
$\begin{tabular}{ c c c c c c } \hline Rockwool Rocknroll 0SB board Superfinish ECO 15,00 550,00 0,083 1,35 0,7 0,7 0,083 0,80 0,083 0,7 0,7 0,083 0,80 0,083 0,7 0,083 0,80 0,083 0,7 0,083 0,9 0,083 0,7 0,083 0,7 0,083 0,9 0,083 0,7 0,083 0,7 0,083 0,7 0,083 0,7 0,083 0,7 0,083 0,7 0,083 0,7 0,083 0,7 0,083 0,7 0,083 0,7 0,083 0,7 0,094 0,9 0,9 0,9 0,9 0,9 0,9 0,9 0,9 0,9 0,9$					20,00	35,00	0,007	1,35	0,009
OSB board Superfinish ECO 15,00 550,00 0,083 1,35 0,7 Thermal insulation Rockwool Rocknroll 180,00 100,00 0,180 1,35 0,7 OSB board Superfinish ECO 15,00 550,00 0,083 1,35 0,7 OSB board Superfinish ECO 15,00 550,00 0,083 1,35 0,7 OSB board Superfinish ECO 15,00 550,00 0,083 1,35 0,7 Vapour barrier Jutafol N 140 Special 0,25 560,00 0,001 1,35 0,7 Plasterboard 12,50 750,00 0,094 1,35 0,7 Tiggr of Width of Lenght of Number joists included in the composition Tiggr of Width of Lenght of Number of elements of elements Density [kg/m³] γ_F g_d [k 40 x 60 40 60 1000 3 470 0,034 1,35 0,0 Imposed load for the composition Renormalization Timposed load for the composition				Rocknroll	180.00	100.00	0 180	1 35	0,243
$\begin{tabular}{ c c c c c } \hline Thermal insulation & Rockwool Rocknroll & 180,00 & 100,00 & 0,180 & 1,35 & 0,2 & 0.05B board & Superfinish ECO & 15,00 & 550,00 & 0,083 & 1,35 & 0,7 & 0.05B board & Superfinish ECO & 15,00 & 550,00 & 0,083 & 1,35 & 0,7 & 0.05B board & Superfinish ECO & 15,00 & 550,00 & 0,001 & 1,35 & 0,7 & 0.25 & 560,00 & 0,001 & 1,35 & 0,7 & 0,034 & 1,35 & 0,7 & 0,034 & 1,35 & 0,7 & 0,034 & 1,35 & 0,7 & 0,034 & 0,0$		OSB board					-		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			•	n ECO	15,00	550,00	0,083	1,35	0,111
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				Rocknroll	180,00	100,00	0,180	1,35	0,243
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Superfinish	n ECO	15,00	550,00	0,083	1,35	0,111
Vapour barrier Jutafol N 140 Special 0,25 560,00 0,001 1,35 0,001 Plasterboard 12,50 750,00 0,094 1,35 0,7 Summary 12,50 750,00 0,094 1,35 0,7 Self weight of timber joists included in the composition 1,827 2,4 Profile Height of Width of Lenght of Mumber profile element [mm] Density elements gk [kN/m] γ_F gd [k 40 x 60 40 60 1000 3 470 0,034 1,35 0,0 40 x 60 40 60 1000 3 470 0,034 1,35 0,0 40 x 60 40 60 1000 3 470 0,034 1,35 0,0 40 x 60 40 60 1000 3 470 0,034 1,35 0,0 40 x 60 40 60 1000 3 470 0,034 1,35 0,0 40 x 60 40 60 1000 3 470 0,034 0,0 40 x 60 40			Suparfinish	ECO	15.00	550.00	0.083	1 35	0,111
Plasterboard12,50750,000,0941,350,7Summary12,50750,000,0941,350,7ProfileWeight of timber joists included in the compositionDensity g_k [kN/m] γ_F g_d [kProfileHeight of profile [mm]Width of elements [mm]Lenght of elementsNumber of elementsDensity [kg/m3] g_k [kN/m] γ_F g_d [k 40×60 4060100034700,0341,350,0 40×60 4060100034700,0341,350,0Imposed load for the compositionImposed load for the composition		Vapour bar	rier						
12,50750,000,0941,350,1Summary1,8272,4Self weight of timber joists included in the compositionProfileHeight of profile [mm]Width of element [mm]Lenght of elementsNumber of elementsDensity [kg/m³] g_k [kN/m] γ_F g_d [k 40×60 4060100034700,0341,350,0 40×60 4060100034700,0341,350,0Imposed load for the compositionImposed load for the composition				40 Special	0,25	560,00	0,001	1,35	0,002
Self weight of timber joists included in the composition Profile Height of profile profile [mm] Lenght of element of element of [kg/m ³] Density [kg/m ³] g_k [kN/m] γ_F g_d [k 40×60 40 60 1000 3 470 0,034 1,35 0,0 40×60 40 60 1000 3 470 0,034 1,35 0,0 40×60 40 60 1000 3 470 0,034 1,35 0,0 40×60 40 60 1000 3 470 0,034 1,35 0,0 40×60 40 60 1000 3 470 0,034 1,35 0,0 Umposed load for the composition Imposed load for the composition			-		12,50	750,00		1,35	0,127
Profile profile [mm]Width of profile [mm]Lenght of element elementsDensity (kg/m³) g_k [kN/m] γ_F g_d [k 40×60 4060100034700,0341,350,0 40×60 4060100034700,0341,350,0UnderstandImposed load for the composition q_k [kN/m²] γ_F g_d [k									2,467
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		5	elf weight	of timber j	oists includ	led in the	composition		
Summary 0,034 0,0 Imposed load for the composition q _k [kN/m²] γ _F g _d [k	Profile	profile	profile	element	of	-	g _k [kN/m]	γF	g _d [kN/m]
Imposed load for the composition q _k [kN/m²] γ _F g _d [k	40 x 60			1000	3	470		1,35	0,046
q _k [kN/m²] γ _F g _d [k		Summary		mnacadla	ad for the o	omnooitio			0,046
				inposed io		ompositio			
									g _d [kN/m²]
		Summary	,				2,500 2 500	1,500	3,750 3,750
Width for loading g_d q_d		••••••••••••••••••••••••••••••••••••••			-		9 _d		q _d
[m] [kN/m ²] [kN/m ²] boundary 1 0,693 1,740 2,597									
middle 1 1,385 3,479 5,194		mido		1,3	385	3,	479	5	,194
boundary 2 0,473 1,187 1,772 middle 2 0,945 2,374 3,544									

Construction of the floor on the air

	Self weigh	nt of the co	mposition			
Layers of the compositi	on	Thicknes s [mm]	Density [kg/m ³]	g _k [kN/m²]	γ⊧	q _d [kN/m²]
Final layer - wooden flo Efloor	oor	20.00	470,00	0,094	1.05	0 107
OSB board		20,00	470,00	0,094	1,35	0,127
Superfinish	ECO	15,00	550,00	0,083	1,35	0,111
	Impact sound insulation					
	Dow Ethafoam OSB board			0,007	1,35	0,009
Superfinish	ECO	15,00	550,00	0,083	1,35	0,111
Thermal insulation		10,00	000,00	0,000	1,00	0,111
Rockwool F	Rocknroll	160,00	100,00	0,160	1,35	0,216
OSB board		15.00	FF0 00	0.000	4.05	0 1 1 1
Superfinish Thermal insulation	ECO	15,00	550,00	0,083	1,35	0,111
Rockwool F	Rocknroll	100,00	100,00	0,100	1,35	0,135
OSB board						
Superfinish Thermal insulation	ECO	15,00	550,00	0,083	1,35	0,111
Rockwool F	asrock	80,00	183,00	0,146	1,35	0,198
Wooden fibre board	abrook	00,00	100,00	0,140	1,00	0,100
Hofatex Th	erm DK	80,00	150,00	0,120	1,35	0,162
External plaster	ämmnutz	40.00	005.00	0.000	4.05	0.004
Tubag Mineralischer D Summary	ammputz	10,00	625,00	0,063 1,020	1,35	0,084 1,377
						1,577
	mposed lo	ad for the c	ompositio	n T		
				q _k [kN/m²]	γ⊧	g _d [kN/m²]
				1,500	1,500	2,250
Summary				1,500		2,250
	Width fo	r loading		9 _d		q _d
Joist	[r	n]		l/m´]		N/m´]
boundary		473		165		,772
middle	0,9	945	2,	331	3	,544

Construction of the main wall

			Self weigh	t of the co	nposition			
La	iyers of the	compositi	on	Thicknes s [mm]	Density [kg/m ³]	g _k [kN/m²]	γ⊧	q _d [kN/m²
	External pla Tubag Mine	eralischer D)ämmputz	10,00	625,00	0,063	1,35	0,084
		Hofatex Th	erm DK	80,00	150,00	0,120	1,35	0,162
	Thermal ins	Rockwool I	Fasrock	80,00	128,00	0,102	1,35	0,138
		Rockwool I	Fasrock	100,00	128,00	0,128	1,35	0,173
	OSB board	Rockwool I	Fasrock	100,00	128,00	0,128	1,35	0,173
	Vapour bar	Superfinish rier	n ECO	15,00	550,00	0,083	1,35	0,111
	Platerboard	Jutafol N 1	40 Special	0,25	560,00	0,001	1,35	0,002
				12,50	750,00	0,094	1,35	0,127
	Summary	,				0,719		0,970
S	elf weight o	f timber jo	ists and co	lumns inclu	uded in the	e main wall	composi	tion
Profile	Height of profile [mm]	Width of profile [mm]	Lenght of element [mm]	Number of elements	Density [kg/m³]	g _k [kN/m]	γ⊧	g _d [kN/m]
40 x 80	40	80	1000	12	470	0,180	1,35	0,244
100 x 60	100	60	3100	3	470	0,262	1,35	0,354
	Summary	1				0,443		0,598
Bc	oundary gire	der	Width fo [n	-		ers g _d I/m´]	Layers+Profiles q _d [kN/m´]	
	1st-2nd floo				,	910	3,508	
	2nd-3rd floo	or	1 30	3,000 2 3,050 2		959	3,556	

Construction of the 4th floor main wall

			Self weigh	nt of the cou	nposition			
La	ayers of the	compositi	on	Thicknes s [mm]	Density [kg/m ³]	g _k [kN/m²]	γ۶	q _d [kN/m²]
	External pla Tubag Mine Wooden fib	eralischer D	Jämmputz	10,00	625,00	0,063	1,35	0,084
	Thermal ins	Hofatex Th	erm DK	80,00	150,00	0,120	1,35	0,162
		Rockwool I	Fasrock	80,00	128,00	0,102	1,35	0,138
		Rockwool I	asrock	160,00	128,00	0,205	1,35	0,276
		Superfinish	ECO	15,00	550,00	0,083	1,35	0,111
	Vapour bar Plasterboar	Jutafol N 1	40 Special	0,25	560,00	0,001	1,35	0,002
	Plasterboal	a		12,50	750,00	0,094	1,35	0,127
	Summary	1				0,667		0,901
S	elf weight o	f timber jo	ists and co	lumns inclu	uded in the	e main wall o	composit	tion
Profile	Height of profile [mm]	Width of profile [mm]	Lenght of element [mm]	Number of elements	Density [kg/m³]	g _k [kN/m]	γF	g _d [kN/m]
40 x 80	40	80	1000	12	0	0,000	1,35	0,000
	Summary	r				0,000		0,000
Вс	oundary giro	der		r loading n]	-	ers g _d I/m´]	Layers+Profiles q _d [kN/m ²]	
	3rd-4th floo	r	3,0	000	6,	841	6	,841

Load combinations

 ${\textstyle\sum_{j\geq 1}}\gamma_{Gj}G_{kj}\text{+}\gamma_{Q1}Q_{k1}\text{+}{\textstyle\sum_{i\geq 1}}\gamma_{Qi}\psi_{0i}Q_{ki}$

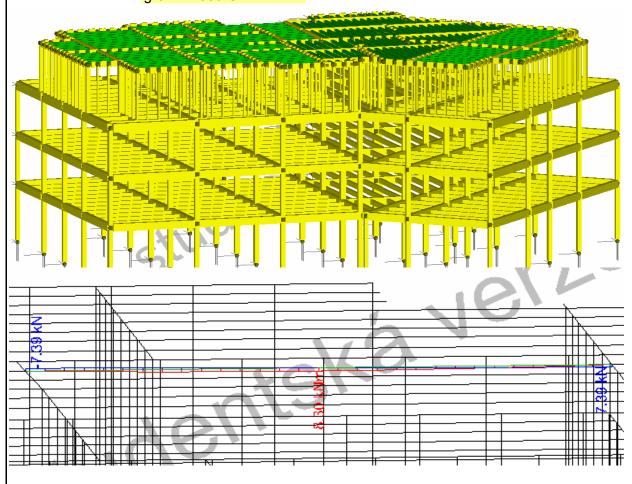
1. self weight load + imposed load

1,35*G_k+1,5*Q_N

2. self weight load + imposed load + snow load

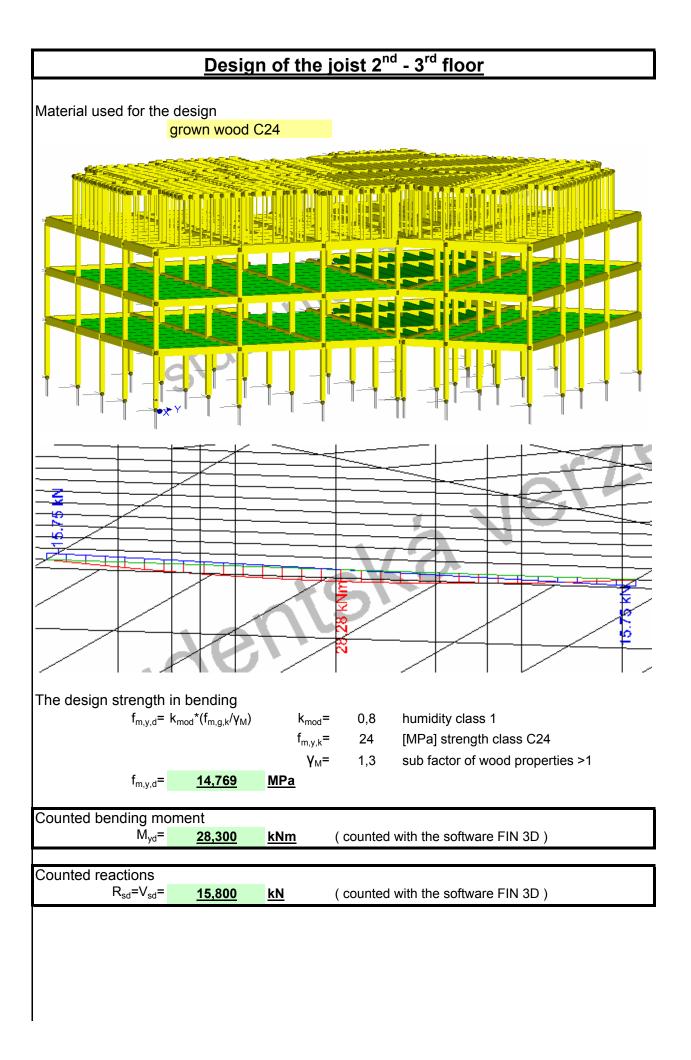
1,35*G_k+1,5*Q_N+0,6*1,5*Q_S

3. self weight load + wind load θ=0°

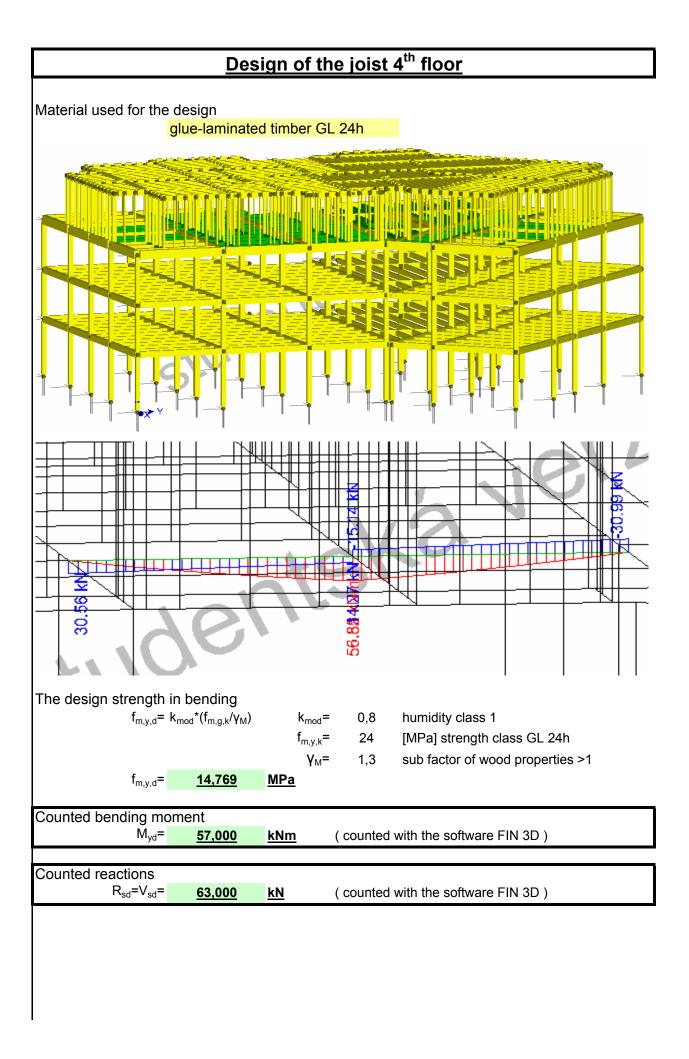

1,0*G_k+1,5*Q_V

4. self weight load + wind load θ=90°

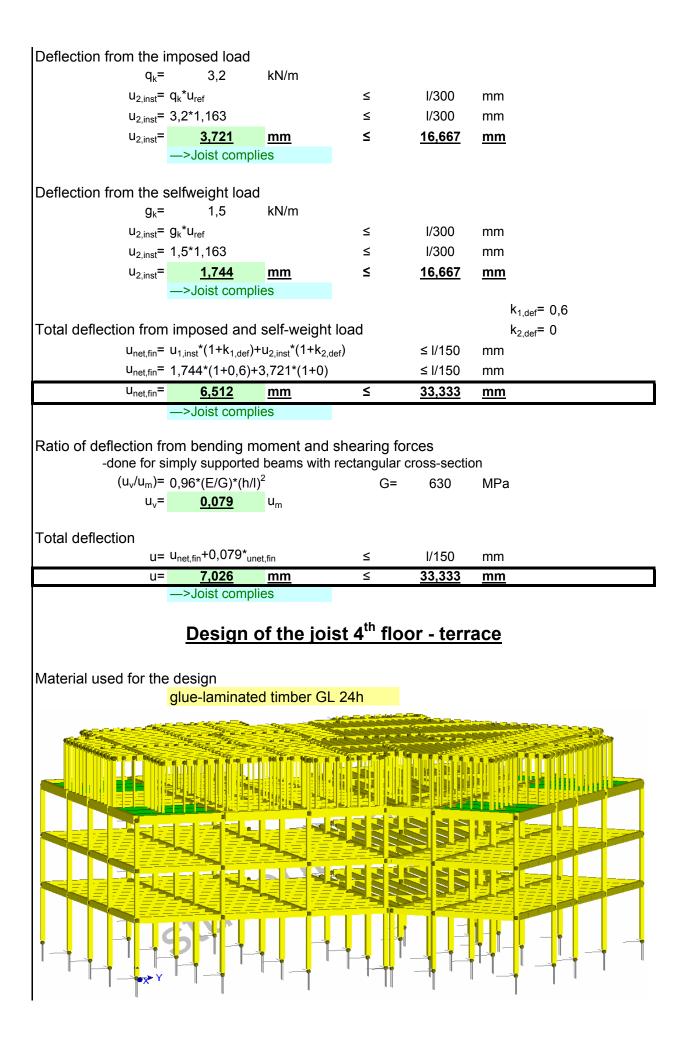
1,0*G_k+1,5*Q_V

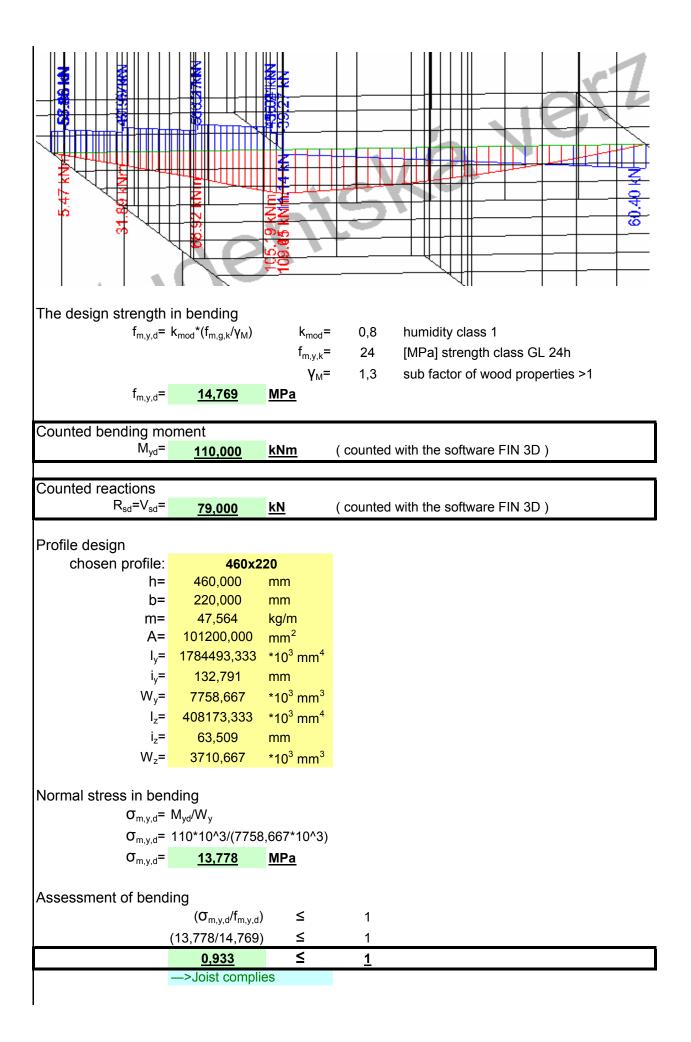

Design of the roof joist

Material used for the design grown wood C24

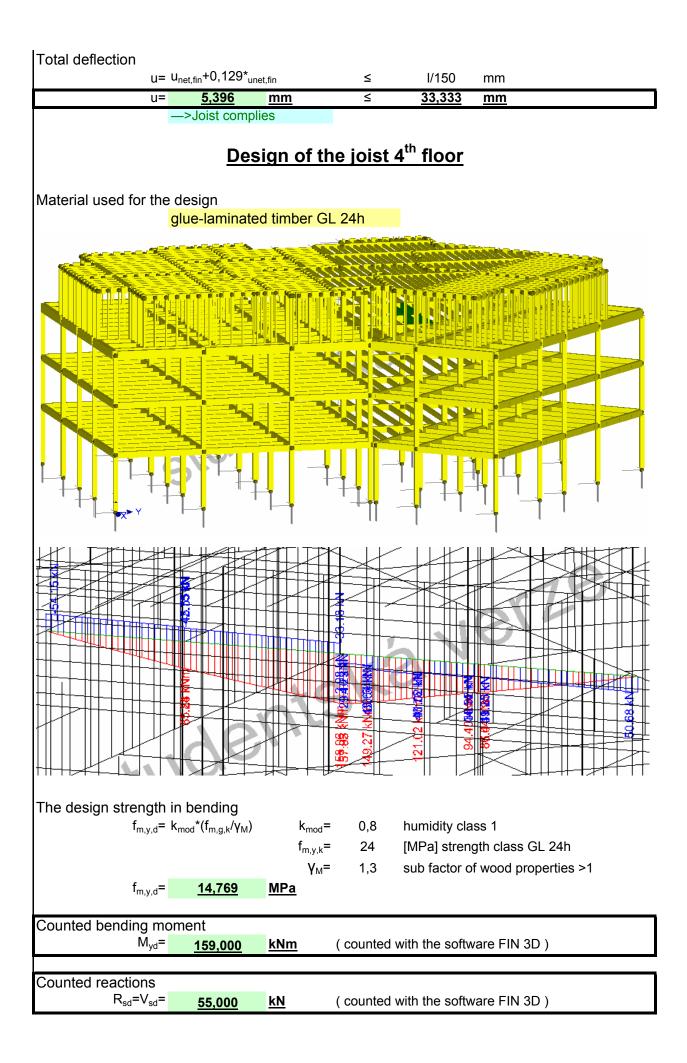

	f _{m,y,d} =	$k_{mod}^*(f_{m,g,k}/\gamma_M)$	k _{mod} = f _{m,y,k} =		humidity class 1 [MPa] strength class C24
			γ _M =		
	f _{m,y,d} =	<u>14,769</u>	<u>MPa</u>		
Counted bendi					
	M _{yd} =	<u>8,300</u>	<u>kNm</u>	(counted	with the software FIN 3D)
Counted reacti					
R _{sd}	=V _{sd} =	<u>7,400</u>	<u>kN</u>	(counted	with the software FIN 3D)
Profile design					
chosen pr		200x1			
	h=	200,000	mm		
	b= m-	100,000 9,400	mm ka/m		
	m= A=	9,400 20000,000	kg/m mm²		
	I _v =	66666,667	*10 ³ mm ⁴		
	i _y =	57,735	mm		
	Ŵ _y =	666,667	*10 ³ mm ³		
	l _z =	16666,667	*10 ³ mm ⁴		
	i _z =	28,868	mm		
	W _z =	333,333	*10 ³ mm ³		
Normal stress	in ben	ding			
		-			
		M _{yd} /W _y			
		8,3*10^3/(666,6			
C	∇ _{m,y,d} =	<u>12,450</u>	<u>MPa</u>		
Assessment of	bendi	ng			
		$(\sigma_{m,y,d}/f_{m,y,d})$) ≤	1	
		(12,45/14,769	,	1	
		<u>0,843</u>	≤	<u>1</u>	
		—>Roof joist co	omplies		
Assessment to	flexur	al shear			
The design stre	ength i	in shear			
	f _{v,y,d} =	k _{mod} *(f _{v,y,k} /γ _M)	k _{mod} =	0,8	humidity class 1
		· · · ·	f _{v,y,k} =		[MPa] strength class C24

	3*10^-3*7,4/(2*	*20000)				
T _{v,d} =	<u>0,555</u>	≤	<u>1</u>			
	->Roof joist c	omplies				
Accompant of the i	aiata an tha du	floation				
Assessment of the j		enection		l:	= 4400	mm
Deflection from a ur	nit uniform load	t		E		MPa
u _{ref} =	• (5/384)*(q _{ref} *l ⁴)	/(EI)		ŀ	= 66,667	*10^ ³ mm
u _{ref} =	(5/384)*(1*440	0^4)/(11000	*66,667*10^3)			
u _{ref} =	<u>6,655</u>	mm				
Deflection from the	imposed load					
q _k =	-	kN/m				
u _{2,inst} =	q _k *u _{ref}		≤	I/300	mm	
u _{2,inst} =	1,95*6,655		≤	I/300	mm	
u _{2,inst} =	<u>12,977</u>	<u>mm</u>	≤	<u>14,667</u>	<u>mm</u>	
		omplies				
Deflection from the	a life waight lage	4				
Deflection from the g _k =	-	kN/m				
-	• g _k *u _{ref}		≤	I/300	mm	
,	1,44*6,655		_ ≤	1/300	mm	
,	<u>9,583</u>	mm	≤	14,667	mm	
_,				<u> </u>		
					k _{1,def} =	
Total deflection from		-			k _{2,def} =	0
,	• u _{1,inst} *(1+k _{1,def})•	,	,	≤ I/150	mm	
	9,583*(1+0,6)+		,	≤ I/150	mm	
U _{net,fin} =		mm	≤	<u>29,333</u>	<u>mm</u>	
	—>Roof joist c	omplies				
	rom bending m	noment and	l shaaring for	ces		
	simply supported	d beams wit	h rectangular c			
-done for s (u _v /u _m)=	simply supported 0,96*(E/G)*(h/l	d beams with) ²		ross-sectio 690	on MPa	
-done for s	simply supported 0,96*(E/G)*(h/l	d beams wit	h rectangular c			
-done for s (u _v /u _m)=	simply supported 0,96*(E/G)*(h/l	d beams with) ²	h rectangular c			
-done for s (u _v /u _m)= u _v = Total deflection	simply supported 0,96*(E/G)*(h/l	d beams with) ² u _m	h rectangular c			
-done for s (u _v /u _m)= u _v = Total deflection	simply supported 0,96*(E/G)*(h/l 0,032 u _{net,fin} +0,032* _{un}	d beams with) ² u _m net,fin <u>mm</u>	h rectangular c G=	690	MPa	

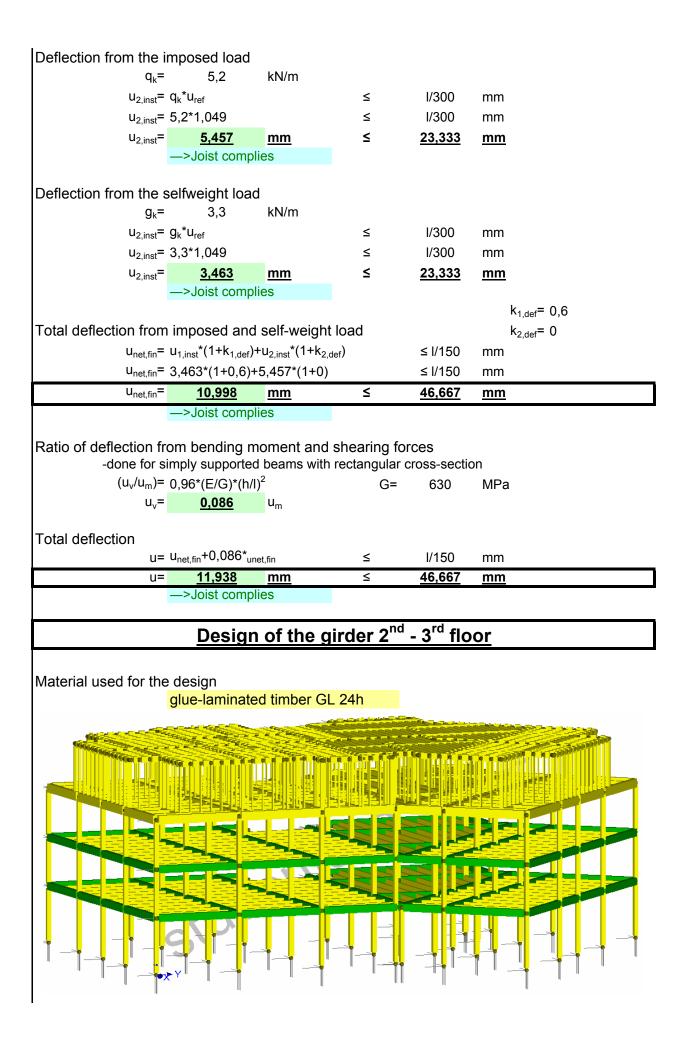


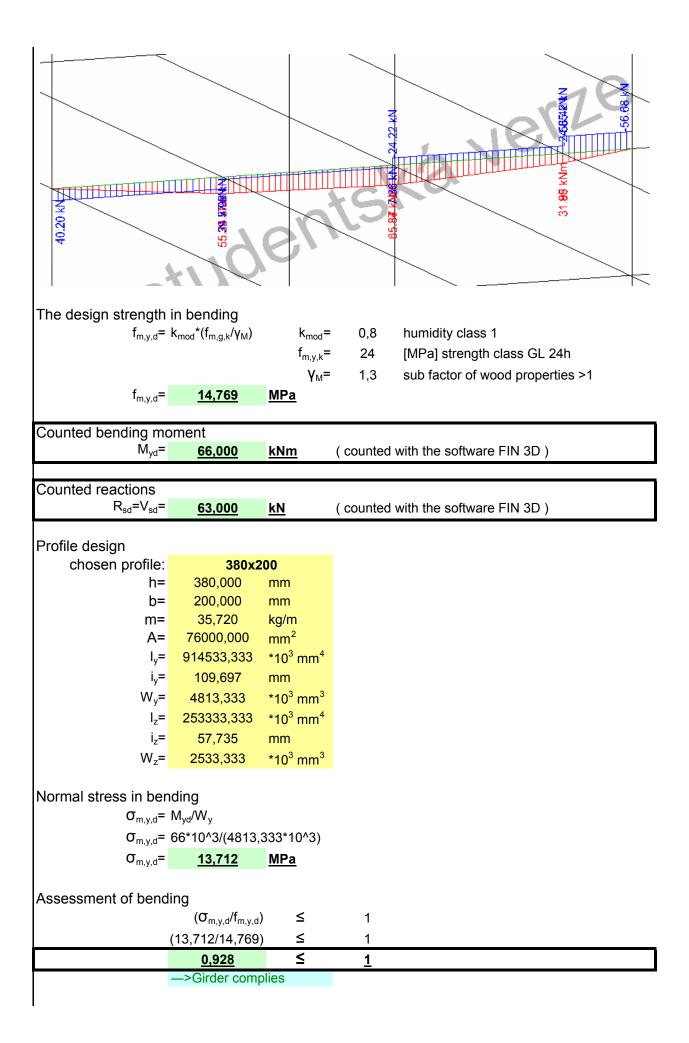

Profile design chosen profile:					
h = 280,000 mm b = 160,000 mm A = 44800,000 mm ² l _y = 292693,333 *10 ³ mm ⁴ k _j = 80,829 mm W _y = 2090,667 *10 ³ mm ³ l _z = 46,188 mm W _z = 1194,667 *10 ³ mm ³ Normal stress in bending $\sigma_{m,y,d} = M_{yd}W_{y}$ $\sigma_{m,y,d} = 28,3^{*1}0^{*3}/(2090,667^{*1}0^{*3})$ $\sigma_{m,y,d} = 3,536$ MPa Assessment of the bending $(\sigma_{m,y,d}f_{m,y,d}) \leq 1$ (13,536/14,769) ≤ 1 (13,536/14,769) ≤ 1 -> Joist complies Assessment to flexural shear The design strength in shear $f_{v,y,d} = k_{mod}^{*}(f_{v,y,l}/V_{M})$ $k_{mod} = 0.8$ humidity class 1 $f_{v,y,d} = 1,3$ sub factor of wood properties >1 $f_{v,y,d} = \frac{1,538}{1,538}$ MPa Shear stress $T_{v,d} = 3V_{d}/2A$ $T_{v,d} = 3V_{d}/2A$ $T_{v,d} = 3V_{d}/2A$ $T_{v,d} = 3^{*1}0^{-3^{*1}5,8/(2^{*4}4800)}$ $T_{v,d} = 0,529$ $(T_{v,d}f_{v,y,d}) \leq 1$	-	280x1	60		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c cccc} A = & 44800,000 & mm^2 \\ I_y = & 292693,333 & *10^3 mm^4 \\ i_y = & 80,829 & mm \\ W_y = & 2090,667 & *10^3 mm^3 \\ I_y = & 95573,333 & *10^3 mm^4 \\ i_y = & 46,188 & mm \\ W_2 = & 1194,667 & *10^3 mm^3 \end{array}$ Normal stress in bending $\begin{array}{c ccccc} \sigma_{m,y,d} = & M_{yd} W_y \\ \sigma_{m,y,d} = & 28,3*10^{A}3/(2090,667*10^{A}3) \\ \sigma_{m,y,d} = & 13,536 & MPa \\ \end{array}$ Assessment of the bending $\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
	m=	21,056	kg/m		
	A=	44800,000	mm ²		
	l _v =	292693,333			
$\begin{array}{rcl} W_{y} = & 2090,667 & *10^{3} \text{mm}^{3} \\ l_{z} = & 95573,333 & *10^{3} \text{mm}^{4} \\ i_{z} = & 46,188 & \text{mm} \\ W_{z} = & 1194,667 & *10^{3} \text{mm}^{3} \end{array}$ Normal stress in bending $\begin{array}{rcl} & \sigma_{m,y,a} = & M_{ya} W_{y} \\ \sigma_{m,y,a} = & 28,3*10^{3} (2090,667*10^{3}) \\ \sigma_{m,y,a} = & 13,536 & \text{MPa} \end{array}$ Assessment of the bending $\begin{array}{rcl} & (\sigma_{m,y,d} f_{m,y,a}) & \leq & 1 \\ & (13,536/14,769) & \leq & 1 \\ \hline & 0.917 & \leq & 1 \\ \hline & -> \text{Joist complies} \end{array}$ Assessment to flexural shear The design strength in shear $f_{v,y,a} = & k_{mod} * (f_{v,y,k}/\gamma_{M}) & k_{mod} = & 0.8 & humidity class 1 \\ f_{v,y,k} = & 2.5 & [\text{MPa}] \text{ strength class C24} \\ \gamma_{M} = & 1,3 & \text{sub factor of wood properties >1} \\ f_{v,y,a} = & \frac{1,538 & \text{MPa}}{1,538 & \text{MPa}} \end{array}$ Shear stress $\begin{array}{c} & T_{v,a} = & 3V_{d}/2A \\ T_{v,a} = & 3^{*}10^{-3}^{*}15,8/(2^{*}44800) \\ T_{v,a} = & 0.529 \\ & (T_{v,a} f_{v,y,a}) & \leq & 1 \\ & (0,529/1,538) & \leq & 1 \end{array}$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-				
$\begin{split} & \mathbb{W}_{z} = 1194,667 *10^{3} \text{mm}^{3} \\ & \text{Normal stress in bending} \\ & \mathbb{G}_{m,y,d} = M_{yd}/\mathbb{W}_{y} \\ & \mathbb{G}_{m,y,d} = 28,3^{\pm}10^{*}3/(2090,667^{*}10^{*}3) \\ & \mathbb{G}_{m,y,d} = 13,536 \ \text{MPa} \\ & \text{Assessment of the bending} \\ & (\mathbb{G}_{m,y,d}f_{m,y,d}) \leq 1 \\ & (13,536/14,769) \leq 1 \\ \hline & \mathbb{Q}.917 \leq 2 \\ \hline & \mathbb{Q}.917 = 2 \\ \hline $					
Normal stress in bending $\begin{array}{c} \sigma_{m,y,d} = & M_{yd}W_{y} \\ \sigma_{m,y,d} = & 28,3^{*10^{*3}/(2090,667^{*10^{*3}}) \\ \sigma_{m,y,d} = & 13,536 & MPa \end{array}$ Assessment of the bending $\begin{array}{c} (\sigma_{m,y,d}f_{m,y,d}) \leq & 1 \\ (13,536/14,769) \leq & 1 \\ \hline & 0.917 \leq & 1 \\ \hline & - > \text{Joist complies} \end{array}$ Assessment to flexural shear The design strength in shear The design strength in shear $\begin{array}{c} f_{v,y,d} = & k_{mod}^{*}(f_{v,y,k}/Y_{M}) & k_{mod} = & 0,8 & humidity class 1 \\ f_{v,y,k} = & 2,5 & [MPa] \text{ strength class C24} \\ Y_{M} = & 1,3 & \text{ sub factor of wood properties >1} \\ f_{v,y,d} = & 1.538 & MPa \end{array}$ Shear stress $\begin{array}{c} T_{v,d} = & 3V_{d}/2A \\ T_{v,d} = & 3^{*10^{*},3^{*1}15,8/(2^{*4}4800)} \\ T_{v,d} = & 0.529 \\ \hline & (T_{v,d}f_{v,y,d}) & \leq & 1 \\ (0,529/1,538) & \leq & 1 \end{array}$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	vv _z -	- 1194,007	*10° mm*		
$\begin{aligned} \sigma_{m,y,d}^{-} &= 29,3^{*1}0^{*3}/(2090,667^{*}10^{*3}) \\ \sigma_{m,y,d}^{-} &= 13,536 MPa \end{aligned}$ Assessment of the bending $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Normal stress in be	nding			
$\begin{aligned} \sigma_{m,y,d}^{-} &= 29,3^{*1}0^{*3}/(2090,667^{*}10^{*3}) \\ \sigma_{m,y,d}^{-} &= \frac{13,536}{13,536} \underline{MPa} \end{aligned}$ Assessment of the bending $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\sigma_{m v d}$	= M _{vd} /W _v			
$\begin{split} \sigma_{m,y,d} = \underbrace{13,536}_{(3,536)} \underline{MPa} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$			0.667*10^3)		
Assessment of the bending $\begin{array}{c cccc} (G_{m,y,d}f_{m,y,d}) &\leq & 1 \\ (13,536/14,769) &\leq & 1 \\ \hline $					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	♥m,y,d [−]	15,550			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Assessment of the	bending			
$(13,536/14,769) \leq 1$ $0.917 \leq 1$ $-> Joist complies$ Assessment to flexural shear The design strength in shear $f_{v,y,d} = k_{mod}^*(f_{v,y,k}/\gamma_M) \qquad k_{mod} = 0.8 humidity class 1$ $f_{v,y,k} = 2,5 [MPa] \text{ strength class C24}$ $\gamma_M = 1,3 \text{sub factor of wood properties >1}$ $f_{v,y,d} = \frac{1,538}{MPa} \qquad MPa$ Shear stress $T_{v,d} = 3V_d/2A$ $T_{v,d} = \frac{0,529}{(T_{v,d}/f_{v,y,d})} \leq 1$ $(T_{v,d}/f_{v,y,d}) \leq 1$ $(0,529/1,538) \leq 1$		Soliding			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$(\sigma_{m,y,d}/f_{m,y,d})$	≤	1	
$\begin{array}{c c c c c c c c c } \hline 0,917 & \leq & 1 \\ \hline \hline$				1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				1	
The design strength in shear $f_{v,y,d} = k_{mod}^{*}(f_{v,y,k}/\gamma_{M}) \qquad k_{mod} = 0.8 \qquad \text{humidity class 1} \\ f_{v,y,k} = 2.5 \qquad [MPa] \text{ strength class C24} \\ \gamma_{M} = 1.3 \qquad \text{sub factor of wood properties >1} \\ f_{v,y,d} = \underbrace{1,538}_{f_{v,y,d}} \underline{MPa}$ Shear stress $T_{v,d} = 3V_{d}/2A \\ T_{v,d} = 3^{*}10^{A} - 3^{*}15.8/(2^{*}44800) \\ T_{v,d} = \underbrace{0,529}_{(T_{v,d}/f_{v,y,d})} \leq 1 \\ (0,529/1,538) \leq 1$			es		
The design strength in shear $f_{v,y,d} = k_{mod}^{*}(f_{v,y,k}/\gamma_{M}) \qquad k_{mod} = 0.8 \qquad \text{humidity class 1} \\ f_{v,y,k} = 2.5 \qquad [MPa] \text{ strength class C24} \\ \gamma_{M} = 1.3 \qquad \text{sub factor of wood properties >1} \\ f_{v,y,d} = \underbrace{1,538}_{f_{v,y,d}} \underline{MPa}$ Shear stress $T_{v,d} = 3V_{d}/2A \\ T_{v,d} = 3^{*}10^{A} - 3^{*}15.8/(2^{*}44800) \\ T_{v,d} = \underbrace{0,529}_{(T_{v,d}/f_{v,y,d})} \leq 1 \\ (0,529/1,538) \leq 1$					
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Assessment to next	urai shear			
$\begin{array}{ccccc} f_{v,y,k} = & 2,5 & [MPa] \mbox{ strength class C24} \\ \gamma_M = & 1,3 & \mbox{ sub factor of wood properties >1} \\ f_{v,y,d} = & \underline{1,538} & \underline{MPa} \\ \end{array}$ Shear stress $\begin{array}{cccccccccccccccccccccccccccccccccccc$	The design strength	n in shear			
$\begin{array}{rcl} f_{v,y,k} = & 2,5 & [MPa] \mbox{ strength class C24} \\ \gamma_M = & 1,3 & \mbox{ sub factor of wood properties >1} \\ f_{v,y,d} = & \begin{tabular}{lllllllllllllllllllllllllllllllllll$	6	- 1. */f ()	I		
$\begin{array}{c ccccc} & & & & & & & & & \\ & & f_{v,y,d} = & & & & & & \\ f_{v,y,d} = & & & & & & \\ & & & & & & \\ & & & & &$	T _{v,y,d} =	= κ _{mod} ~(τ _{v,y,k} /γ _M)			
$f_{v,y,d} = \underbrace{1,538}_{V_{v,d}} MPa$ Shear stress $T_{v,d} = \frac{3V_{d}/2A}{T_{v,d}} = \frac{3^{*}10^{A}-3^{*}15,8/(2^{*}44800)}{0,529}$ $(T_{v,d}/f_{v,y,d}) \leq 1$ $(0,529/1,538) \leq 1$					
Shear stress $T_{v,d} = 3V_d/2A$ $T_{v,d} = 3*10^{-}3*15,8/(2*44800)$ $T_{v,d} = 0,529$ $(T_{v,d}/f_{v,y,d}) \leq 1$ $(0,529/1,538) \leq 1$			γ _M =	1,3	sub factor of wood properties >1
$T_{v,d} = 3V_d/2A$ $T_{v,d} = 3*10^{-}3*15,8/(2*44800)$ $T_{v,d} = 0,529$ $(T_{v,d}/f_{v,y,d}) \leq 1$ $(0,529/1,538) \leq 1$	f _{v,y,d} =	= <u>1,538</u>	<u>MPa</u>		
$T_{v,d} = 3V_d/2A$ $T_{v,d} = 3*10^{-}3*15,8/(2*44800)$ $T_{v,d} = 0,529$ $(T_{v,d}/f_{v,y,d}) \leq 1$ $(0,529/1,538) \leq 1$	Chaor atraca				
$T_{v,d} = \frac{3*10^{-}3*15,8/(2*44800)}{0,529}$ $(T_{v,d}/f_{v,y,d}) \leq 1$ $(0,529/1,538) \leq 1$		- 21/ /24			
$T_{v,d} = \underbrace{0,529}_{(T_{v,d}/f_{v,y,d})} \leq 1$ $(0,529/1,538) \leq 1$,-				
$(T_{v,d}/f_{v,y,d}) \le 1$ (0,529/1,538) ≤ 1			*44800)		
(0,529/1,538) ≤ 1	T _{v,d} =	<u>0,529</u>			
$(0,529/1,538) \leq 1$					
(0,529/1,538) ≤ 1		$(T_{v,d}/f_{v,y,d})$	≤	1	
			≤	1	
<u>0,344</u> ≤ <u>1</u>		<u>0,344</u>	≤	<u>1</u>	
—>Joist complies					
		>Joist compli	es		

Deflection from a un	it uniform loca	4		: 	= 7000 = 11 000	mm MPa
	$(5/384)^*(q_{ref}^* ^4)$			E: :		MPa 3 *10^ ³ mm ⁴
	(5/384)*(1*700		202 603*10^3		- 202,00	
u _{ref} =		<u>mm</u>	202,000 10 0	,		
- 161	<u></u>	<u></u>				
Deflection from the i	mposed load					
q _k =	2,13	kN/m				
u _{2,inst} =	q _k *u _{ref}		≤	I/300	mm	
u _{2,inst} =	2,13*9,71		≤	I/300	mm	
u _{2,inst} =	<u>20,683</u>	<u>mm</u>	≤	<u>23,333</u>	<u>mm</u>	
	—>Joist compl	lies				
Deflection from the s	selfweight load	lina				
g _k =	•	kN/m				
U _{2,inst} =			≤	I/300	mm	
	0,97*9,71		- ≤	I/300	mm	
	<u>9,419</u>	mm	5	<u>23,333</u>	mm	
2,030	->Joist compl					
					k _{1,det}	= 0,6
Total deflection from	i imposed and	self-weight	load		k _{2,det}	= 0
	u _{1,inst} *(1+k _{1,def})-	עבע */1⊥ע		≤ I/150	mm	
U _{net,fin} =	u1,inst (1,1,def)	$\mathbf{u}_{2,\text{inst}}$ ($\mathbf{I} + \mathbf{k}_{2,\text{c}}$	let/	= 1/100		
,	9,419*(1+0,6)+			≤ I/150 ≤ I/150	mm	
,	9,419*(1+0,6)+ <u>35,753</u>	-20,683*(1+0 <u>mm</u>				
U _{net,fin} =	9,419*(1+0,6)+	-20,683*(1+0 <u>mm</u>)	≤ I/150	mm	
U _{net,fin} = U _{net,fin} =	9,419*(1+0,6)+ <u>35,753</u> —>Joist compl	20,683*(1+0 <u>mm</u> lies) ≤	≤ I/150 <u>46,667</u>	mm	
u _{net,fin} = u _{net,fin} = Ratio of deflection fr	9,419*(1+0,6)+ <u>35,753</u> —>Joist compl om bending m	-20,683*(1+0 <u>mm</u> lies) ≤ shearing for	≤ I/150 <u>46,667</u> ces	mm <u>mm</u>	
u _{net,fin} = u _{net,fin} = Ratio of deflection fr -done for s	9,419*(1+0,6)+ <u>35,753</u> —>Joist compl om bending m imply supported	20,683*(1+0 <u>mm</u> lies noment and d beams with) ≤ shearing for rectangular c	≤ I/150 <u>46,667</u> cces rross-sectio	mm <u>mm</u>	
u _{net,fin} = u _{net,fin} = Ratio of deflection fr -done for s (u _v /u _m)=	9,419*(1+0,6)+ <u>35,753</u> —>Joist compl om bending m imply supported 0,96*(E/G)*(h/l	20,683*(1+0) mm homent and d beams with $)^2$) ≤ shearing for	≤ I/150 <u>46,667</u> ces	mm <u>mm</u>	
u _{net,fin} = u _{net,fin} = Ratio of deflection fr -done for s	9,419*(1+0,6)+ <u>35,753</u> —>Joist compl om bending m imply supported	20,683*(1+0 <u>mm</u> lies noment and d beams with) ≤ shearing for rectangular c	≤ I/150 <u>46,667</u> cces rross-sectio	mm <u>mm</u>	
$u_{net,fin} = u_{net,fin}$ Ratio of deflection fr -done for s $(u_v/u_m) = u_v =$ Total deflection	9,419*(1+0,6)+ <u>35,753</u> —>Joist compl om bending m imply supported 0,96*(E/G)*(h/l <u>0,024</u>	20,683*(1+0 <u>mm</u> lies noment and d beams with) ² u _m) ≤ shearing for rectangular c	≤ I/150 <u>46,667</u> cces rross-sectio	mm <u>mm</u>	
$u_{net,fin} = u_{net,fin}$ Ratio of deflection fr -done for s $(u_v/u_m) = u_v =$ Total deflection	9,419*(1+0,6)+ <u>35,753</u> >Joist compl om bending m imply supported 0,96*(E/G)*(h/l <u>0,024</u> u _{net,fin} +0,024* _{un}	20,683*(1+0 <u>mm</u> lies noment and d beams with) ² u _m) shearing for rectangular c G= ≤	≤ I/150 <u>46,667</u> ces tross-section 690 I/150	mm <u>mm</u> MPa mm	
$u_{net,fin} = u_{net,fin}$ Ratio of deflection fr -done for s $(u_v/u_m) = u_v =$ Total deflection	9,419*(1+0,6)+ <u>35,753</u> >Joist compl om bending m imply supported 0,96*(E/G)*(h/l <u>0,024</u> u _{net,fin} +0,024* _{un} <u>36,628</u>	20,683*(1+0 <u>mm</u> lies noment and d beams with) ² u _m) ≤ shearing for rectangular c G=	≤ I/150 <u>46,667</u> cces cross-section 690	mm <u>mm</u> MPa mm	
$u_{net,fin} =$ $u_{net,fin} =$ Ratio of deflection fr -done for s $(u_v/u_m) =$ $u_v =$ Total deflection u =	9,419*(1+0,6)+ <u>35,753</u> >Joist compl om bending m imply supported 0,96*(E/G)*(h/l <u>0,024</u> u _{net,fin} +0,024* _{un}	20,683*(1+0 <u>mm</u> lies noment and d beams with) ² u _m) shearing for rectangular c G= ≤	≤ I/150 <u>46,667</u> ces tross-section 690 I/150	mm <u>mm</u> MPa mm	
$u_{net,fin} =$ $u_{net,fin} =$ Ratio of deflection fr -done for s $(u_v/u_m) =$ $u_v =$ Total deflection u =	9,419*(1+0,6)+ <u>35,753</u> >Joist compl om bending m imply supported 0,96*(E/G)*(h/l <u>0,024</u> u _{net,fin} +0,024* _{un} <u>36,628</u>	20,683*(1+0 <u>mm</u> lies noment and d beams with) ² u _m) shearing for rectangular c G= ≤	≤ I/150 <u>46,667</u> ces tross-section 690 I/150	mm <u>mm</u> MPa mm	
$u_{net,fin} =$ $u_{net,fin} =$ Ratio of deflection fr -done for s $(u_v/u_m) =$ $u_v =$ Total deflection u =	9,419*(1+0,6)+ <u>35,753</u> >Joist compl om bending m imply supported 0,96*(E/G)*(h/l <u>0,024</u> u _{net,fin} +0,024* _{un} <u>36,628</u>	20,683*(1+0 <u>mm</u> lies noment and d beams with) ² u _m) shearing for rectangular c G= ≤	≤ I/150 <u>46,667</u> ces tross-section 690 I/150	mm <u>mm</u> MPa mm	
$u_{net,fin} =$ $u_{net,fin} =$ Ratio of deflection fr -done for s $(u_v/u_m) =$ $u_v =$ Total deflection u =	9,419*(1+0,6)+ <u>35,753</u> >Joist compl om bending m imply supported 0,96*(E/G)*(h/l <u>0,024</u> u _{net,fin} +0,024* _{un} <u>36,628</u>	20,683*(1+0 <u>mm</u> lies noment and d beams with) ² u _m) shearing for rectangular c G= ≤	≤ I/150 <u>46,667</u> ces tross-section 690 I/150	mm <u>mm</u> MPa mm	
$u_{net,fin} =$ $u_{net,fin} =$ Ratio of deflection fr -done for s $(u_v/u_m) =$ $u_v =$ Total deflection u =	9,419*(1+0,6)+ <u>35,753</u> >Joist compl om bending m imply supported 0,96*(E/G)*(h/l <u>0,024</u> u _{net,fin} +0,024* _{un} <u>36,628</u>	20,683*(1+0 <u>mm</u> lies noment and d beams with) ² u _m) shearing for rectangular c G= ≤	≤ I/150 <u>46,667</u> ces tross-section 690 I/150	mm <u>mm</u> MPa mm	
$u_{net,fin} =$ $u_{net,fin} =$ Ratio of deflection fr -done for s $(u_v/u_m) =$ $u_v =$ Total deflection u =	9,419*(1+0,6)+ <u>35,753</u> >Joist compl om bending m imply supported 0,96*(E/G)*(h/l <u>0,024</u> u _{net,fin} +0,024* _{un} <u>36,628</u>	20,683*(1+0 <u>mm</u> lies noment and d beams with) ² u _m) shearing for rectangular c G= ≤	≤ I/150 <u>46,667</u> ces tross-section 690 I/150	mm <u>mm</u> MPa mm	
$u_{net,fin} =$ $u_{net,fin} =$ Ratio of deflection fr -done for s $(u_v/u_m) =$ $u_v =$ Total deflection u =	9,419*(1+0,6)+ <u>35,753</u> >Joist compl om bending m imply supported 0,96*(E/G)*(h/l <u>0,024</u> u _{net,fin} +0,024* _{un} <u>36,628</u>	20,683*(1+0 <u>mm</u> lies noment and d beams with) ² u _m) shearing for rectangular c G= ≤	≤ I/150 <u>46,667</u> ces tross-section 690 I/150	mm <u>mm</u> MPa mm	
$u_{net,fin} =$ $u_{net,fin} =$ Ratio of deflection fr -done for s $(u_v/u_m) =$ $u_v =$ Total deflection u =	9,419*(1+0,6)+ <u>35,753</u> >Joist compl om bending m imply supported 0,96*(E/G)*(h/l <u>0,024</u> u _{net,fin} +0,024* _{un} <u>36,628</u>	20,683*(1+0 <u>mm</u> lies noment and d beams with) ² u _m) shearing for rectangular c G= ≤	≤ I/150 <u>46,667</u> ces tross-section 690 I/150	mm <u>mm</u> MPa mm	
$u_{net,fin} =$ $u_{net,fin} =$ Ratio of deflection fr -done for s $(u_v/u_m) =$ $u_v =$ Total deflection u =	9,419*(1+0,6)+ <u>35,753</u> >Joist compl om bending m imply supported 0,96*(E/G)*(h/l <u>0,024</u> u _{net,fin} +0,024* _{un} <u>36,628</u>	20,683*(1+0 <u>mm</u> lies noment and d beams with) ² u _m) shearing for rectangular c G= ≤	≤ I/150 <u>46,667</u> ces tross-section 690 I/150	mm <u>mm</u> MPa mm	
$u_{net,fin} =$ $u_{net,fin} =$ Ratio of deflection fr -done for s $(u_v/u_m) =$ $u_v =$ Total deflection u =	9,419*(1+0,6)+ <u>35,753</u> >Joist compl om bending m imply supported 0,96*(E/G)*(h/l <u>0,024</u> u _{net,fin} +0,024* _{un} <u>36,628</u>	20,683*(1+0 <u>mm</u> lies noment and d beams with) ² u _m) shearing for rectangular c G= ≤	≤ I/150 <u>46,667</u> ces tross-section 690 I/150	mm <u>mm</u> MPa mm	
$u_{net,fin} = u_{net,fin}$ Ratio of deflection fr -done for s $(u_v/u_m) = u_v =$ Total deflection u=	9,419*(1+0,6)+ <u>35,753</u> >Joist compl om bending m imply supported 0,96*(E/G)*(h/l <u>0,024</u> u _{net,fin} +0,024* _{un} <u>36,628</u>	20,683*(1+0 <u>mm</u> lies noment and d beams with) ² u _m) shearing for rectangular c G= ≤	≤ I/150 <u>46,667</u> ces tross-section 690 I/150	mm <u>mm</u> MPa mm	
$u_{net,fin} = u_{net,fin}$ Ratio of deflection fr -done for s $(u_v/u_m) = u_v =$ Total deflection u=	9,419*(1+0,6)+ <u>35,753</u> >Joist compl om bending m imply supported 0,96*(E/G)*(h/l <u>0,024</u> u _{net,fin} +0,024* _{un} <u>36,628</u>	20,683*(1+0 <u>mm</u> lies noment and d beams with) ² u _m) shearing for rectangular c G= ≤	≤ I/150 <u>46,667</u> ces tross-section 690 I/150	mm <u>mm</u> MPa mm	

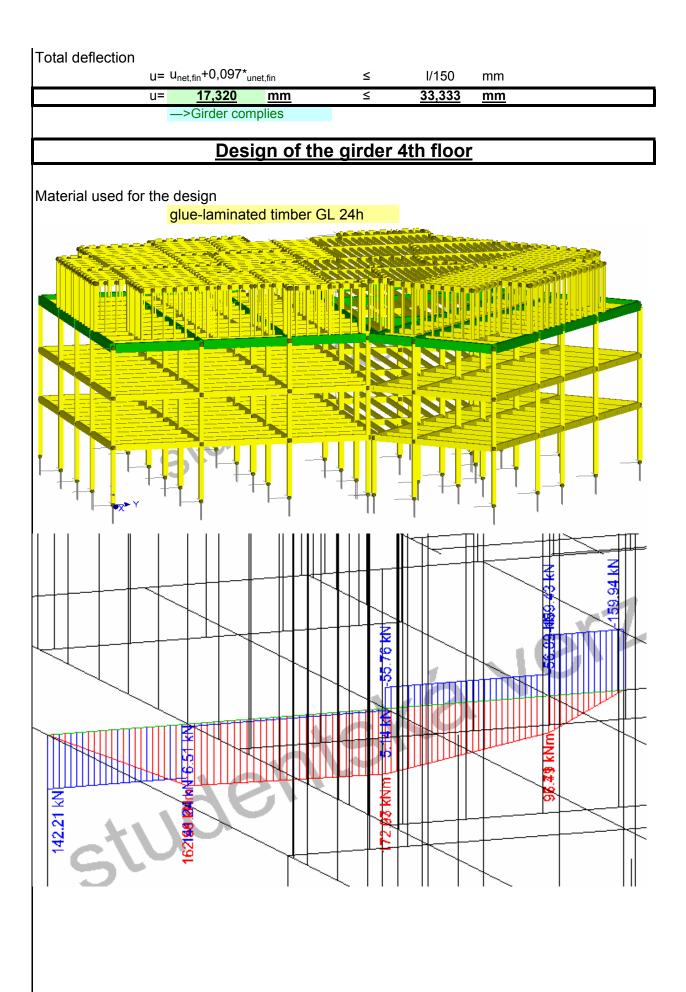


Profile design				
chosen profile:	360x1	80		
h=	360,000	mm		
b=	180,000	mm		
m=	30,456	kg/m		
A=		mm ²		
I _v =		*10 ³ mm ⁴		
i _y =		mm		
		*10 ³ mm ³		
W _y =				
_z =		*10 ³ mm ⁴		
i _z =		mm		
W _z =	1944,000	*10 ³ mm ³		
Normal stress in ber	ndina			
	M _{vd} /W _v			
		10421		
	57*10^3/(3888*			
σ _{m,y,d} =	<u>13,860</u>	<u>MPa</u>		
Assessment of benc	lina			
	$(\sigma_{m,y,d}/f_{m,y,d})$) ≤	1	
	(13,86/14,769)		1	
) =		
	<u>0,938</u>		<u>1</u>	
	->Joist compli	65		
Assessment to flexu The design strength				
	$k_{mod}^{*}(f_{v,v,k}/\gamma_M)$	k _{mod} =	0,8	humidity class 1
•,9,9		f _{v,y,k} =		[MPa] strength class GL 24h
		γ _M =		sub factor of wood properties >1
f -	4 000		1,5	sub factor of wood properties >1
f _{v,y,d} =	<u>1,662</u>	<u>MPa</u>		
Shear stress				
	3V _d /2A			
,-	3*10^-3*63/(2*6	34800)		
		, 1000)		
T _{v,d} =	<u>1,458</u>			
	(τ / f)	,	4	
	$(T_{v,d}/f_{v,y,d})$	≤	1	
	(1,458/1,662)		1	
	<u>0,878</u>	<u>≤</u>	<u>1</u>	
	—>Joist compli	69		
Assessment of the jo	oists on the de	flection		l= 5000 mm
Deflection from a un	it uniform load			E= 10 000 MPa
	(5/384)*(q _{ref} *l ⁴)/			l= 699,840 *10 ^{^3} mm ⁴
	(5/384)*(1*5000		699 84*10	-
u _{ref} =	<u>1,163</u>			- /
		<u>mm</u>		

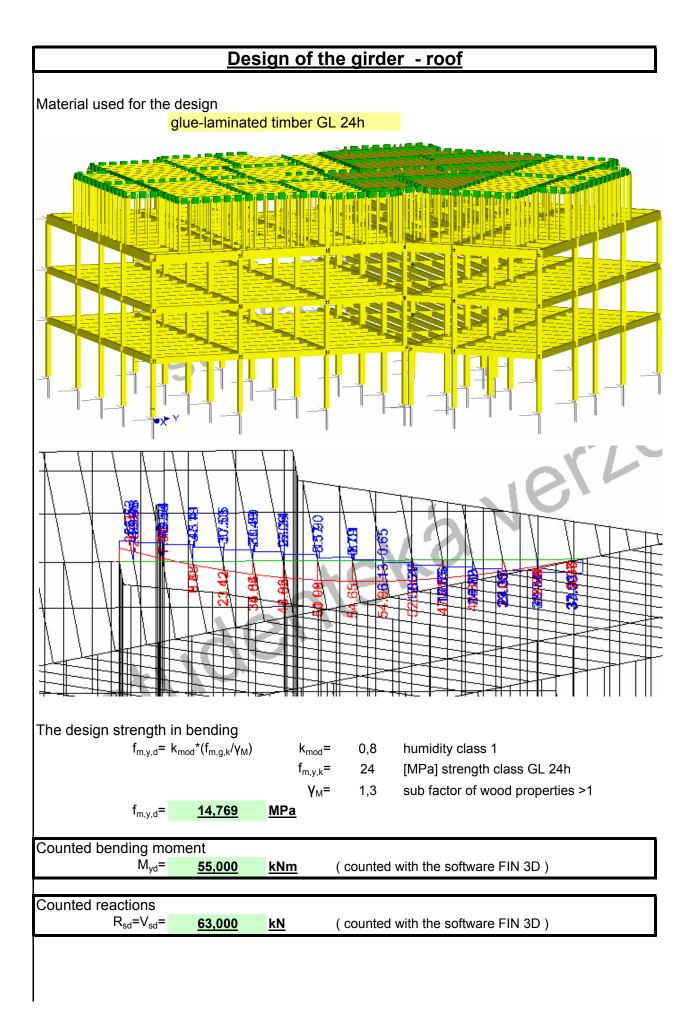




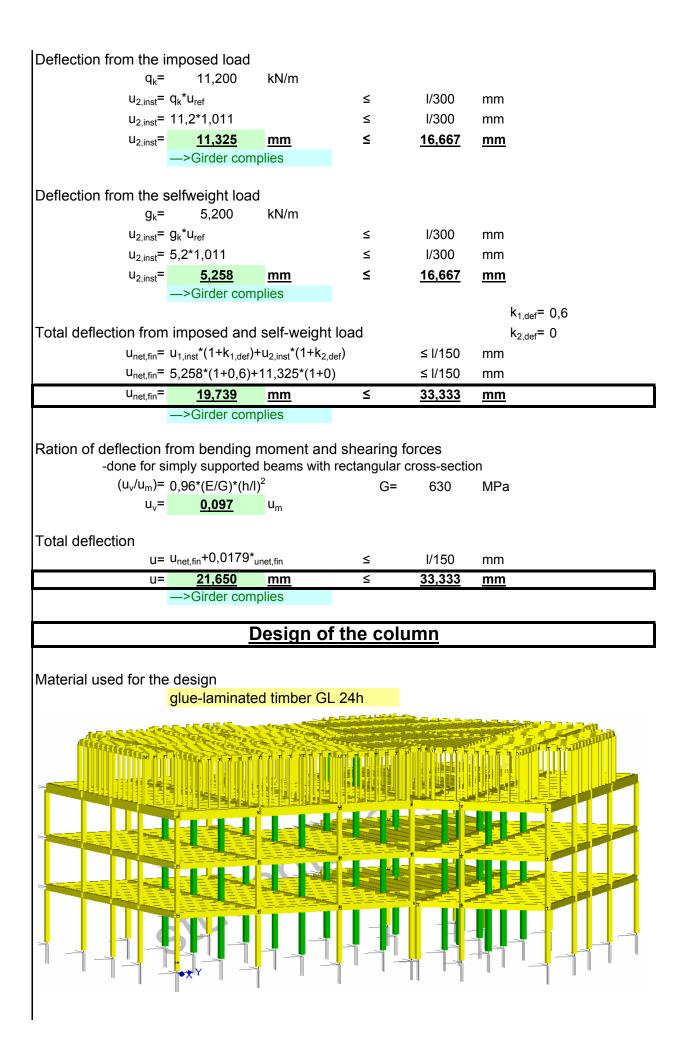
The design stre	-					
1	t _{v,y,d} =	$k_{mod}^*(f_{v,y,k}/\gamma_M)$	k _{mod} =		humidity cla	
			-	2,7		gth class GL 24h
	f _{v,y,d} =	<u>1,662</u>	γ _M = <u>MPa</u>	1,3	SUD TACIONO	f wood properties >1
Shear stress						
	T _{v,d} =	3V _d /2A				
	T _{v,d} =	3*10^-3*79/(2*1	01200)			
	T _{v,d} =	<u>1,171</u>				
		$(T_{v,d}/f_{v,y,d})$	≤	1		
		(1,171/1,662)		1		
		<u>0,705</u>	≤	<u>1</u>		
		—>Joist compli	es			
Assessment of	tho ic	viete on the de	floction			
Assessment of	uie jo		nection		:	= 5000 mm
Deflection from	a uni	it uniform load				= 10 000 MPa
		(5/384)*(q _{ref} *l ⁴)/	(EI)		_	$= 1784,493 \times 10^3 \mathrm{mm}^3$
		(5/384)*(1*5000		1784,493*	10^3)	
	u _{ref} =	0,456	mm		,	
Deflection from		-	L.N.I./ma			
	q _k =	5,2	kN/m		1/200	
	·	q _k *u _{ref} 5,2*0,456		≤ ≤	I/300 I/300	mm
	_,	<u>2,371</u>	mm	≤ ≤	<u>16,667</u>	mm
u	'2,inst [—]	—>Joist compli		2	10,007	<u>mm</u>
Deflection from		-				
	g _k =	3,3	kN/m			
	2,inst	g _k *u _{ref}		≤	I/300	mm
		0.0+0.450		-		
u		3,3*0,456		≤	I/300	mm
u	I _{2,inst} =	<u>1,505</u>	mm	≤ ≤	l/300 <u>16,667</u>	mm <u>mm</u>
u	I _{2,inst} =					<u>mm</u>
u u	I _{2,inst} =	<u>1,505</u> —>Joist compli	es	≤		<u>mm</u> k _{1,def} = 0,6
u u Total deflection	I _{2,inst} =	<u>1,505</u> —>Joist compli imposed and	es self-weight	≤ Ioad	<u>16,667</u>	<u>mm</u> k _{1,def} = 0,6 k _{2,def} = 0
u u Total deflection u _r	I _{2,inst} = from _{net,fin} =	<u>1,505</u> —>Joist compli imposed and $u_{1,inst}^{*}(1+k_{1,def})+$	es self-weight u _{2,inst} *(1+k _{2,c}	≤ Ioad	<u>16,667</u> ≤ I/150	<u>mm</u> k _{1,def} = 0,6 k _{2,def} = 0 mm
u u Total deflection u _r u _r	I _{2,inst} = from _{net,fin} =	<u>1,505</u> —>Joist compli imposed and	es self-weight u _{2,inst} *(1+k _{2,c}	≤ Ioad	<u>16,667</u>	<u>mm</u> k _{1,def} = 0,6 k _{2,def} = 0
u u Total deflection u _r u _r	I _{2,inst} = from net,fin= net,fin= net,fin=	<u>1,505</u> —>Joist compli imposed and u _{1,inst} *(1+k _{1,def})+ 1,505*(1+0,6)+2	es self-weight u _{2,inst} *(1+k _{2,c} 2,371*(1+0) <u>mm</u>	≤ ∶load _{def})	<u>16,667</u> ≤ I/150 ≤ I/150	<u>mm</u> k _{1,def} = 0,6 k _{2,def} = 0 mm mm
u u Total deflection u _r u _r	I _{2,inst} = from net,fin= net,fin= net,fin=	<u>1,505</u> >Joist compli imposed and u _{1,inst} *(1+k _{1,def})+ 1,505*(1+0,6)+2 <u>4,779</u> >Joist compli	es self-weight u _{2,inst} *(1+k _{2,c} 2,371*(1+0) <u>mm</u> es	≤ : load _{def}) ≤	<u>16,667</u> ≤ I/150 ≤ I/150 <u>33,333</u>	<u>mm</u> k _{1,def} = 0,6 k _{2,def} = 0 mm mm
u Total deflection u _r u _r Ratio of deflecti	from net,fin= net,fin= net,fin= net,fin=	<u>1,505</u> >Joist compli imposed and $u_{1,inst}^*(1+k_{1,def})+$ 1,505*(1+0,6)+2 <u>4,779</u> >Joist compli com bending matrix	es self-weight u _{2,inst} *(1+k _{2,c} 2,371*(1+0) <u>mm</u> es oment and	≤ load _{def}) ≤ shearing	<u>16,667</u> ≤ I/150 ≤ I/150 <u>33,333</u> forces	<u>mm</u> k _{1,def} = 0,6 k _{2,def} = 0 mm mm
u Total deflection u _r u _r Ratio of deflecti -done	int from int,fin= int,fin= int,fin= ion from ion from ion sint	<u>1,505</u> >Joist compli imposed and u _{1,inst} *(1+k _{1,def})+ 1,505*(1+0,6)+2 <u>4,779</u> >Joist compli	es self-weight u _{2,inst} *(1+k _{2,c} 2,371*(1+0) <u>mm</u> es oment and beams with	≤ load _{def}) ≤ shearing	<u>16,667</u> ≤ I/150 ≤ I/150 <u>33,333</u> forces	<u>mm</u> k _{1,def} = 0,6 k _{2,def} = 0 mm mm

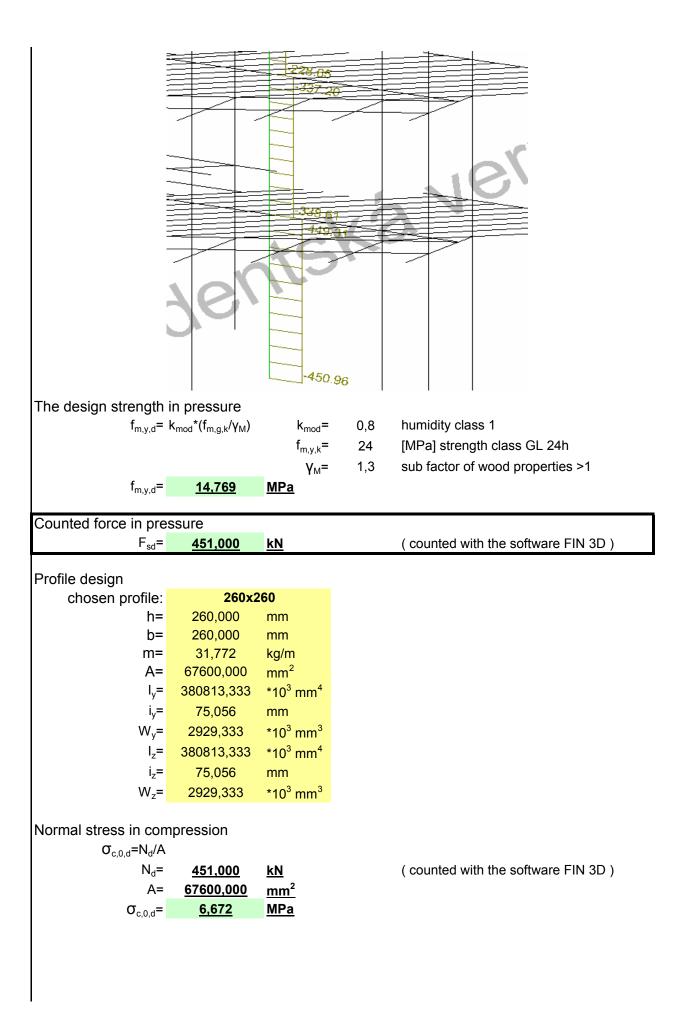


Profile design				
chosen profile:	500x2	60		
h=	500,000	mm		
b=	260,000	mm		
m=	61,100	kg/m		
A=	130000,000	mm ²		
I _v =		*10 ³ mm ⁴		
i _v =	144,338	mm		
		*10 ³ mm ³		
W _y =				
l _z =		*10 ³ mm ⁴		
i _z =		mm		
W _z =	5633,333	*10 ³ mm ³		
Normal stress in ber	ndina			
	M _{vd} /W _v			
	, ,	0.000*4040	,	
	159*10^3/(1083)	
σ _{m,y,d} =	<u>13,877</u>	<u>MPa</u>		
Assessment of bend	ina			
	$(\sigma_{m,y,d}/f_{m,y,d})$	≤	1	
	(13,877/14,769)		1	
		, <u> </u>		
	<u>0,940</u>		<u>1</u>	
	—>Joist compli	es		
Assessment to flexu The design strength		k .=	0.8	humidity class 1
۲ _{v,y,d} –	rmod (¹ v,y,k [/] YM)	k _{mod} =		humidity class 1
		f _{v,y,k} =		[MPa] strength class GL 24h
		γ _м =	1,3	sub factor of wood properties >1
f _{v,y,d} =	<u>1,662</u>	<u>MPa</u>		
Shear stress				
	3V _d /2A			
,-	3*10^-3*55/(2*1	30000)		
,	•			
T _{v,d} =	<u>0,635</u>			
	$(T_{v,d}/f_{v,y,d})$	≤	1	
			1	
	(0,635/1,662) 0,382) ≤ ≤	1	
	—>Joist compli		<u>_</u>	
	nists on the de	flection		
Assessment of the jo				
				I= 7000 mm
Deflection from a un	it uniform load			E= 11 000 MPa
Deflection from a un u _{ref} =	it uniform load (5/384)*(q _{ref} *l ⁴)/	(EI)		E= 11 000 MPa I= 2708,333 *10 ³ mm ³
Deflection from a un u _{ref} =	it uniform load (5/384)*(q _{ref} *l ⁴)/ (5/384)*(1*7000	(EI)	2708,333*	E= 11 000 MPa I= 2708,333 *10 ³ mm ³
Deflection from a un u _{ref} =	it uniform load (5/384)*(q _{ref} *l ⁴)/	(EI)	2708,333*	E= 11 000 MPa I= 2708,333 *10 ³ mm ³

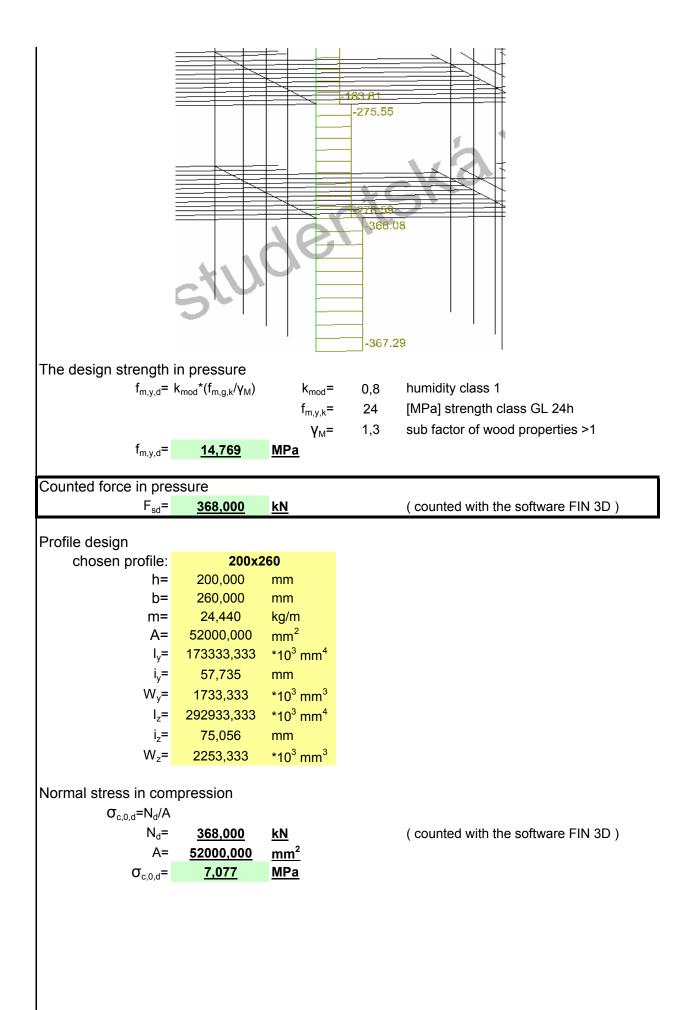


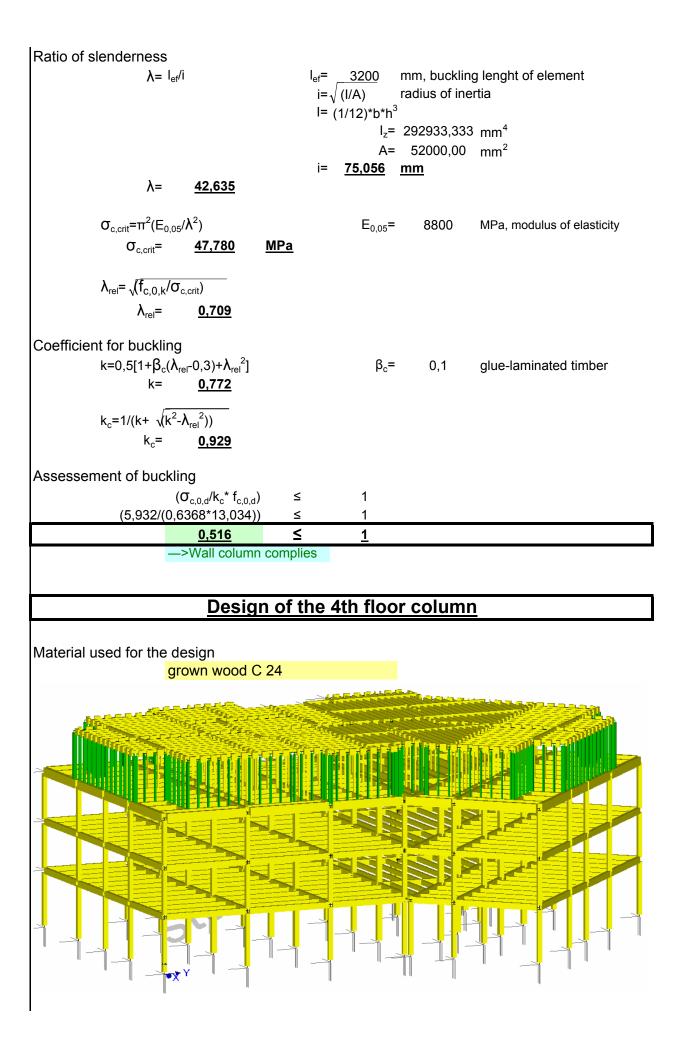
The design stre	-	in Shoul				
	v.v.d	$k_{mod}^{*}(f_{v,y,k}/\gamma_M)$	k _{mod} =	0,8	humidity cla	h class GL 24h wood properties >1 5000 mm 11 000 MPa 914,533 *10 ^{^3} mm ⁴ mm mm
	•, y ,u				•	gth class GL 24h
			Υ _M =	1,3		f wood properties >1
	f _{v,y,d} =	<u>1,662</u>	MPa			
Shear stress						
	T _{v,d} =	3V _d /2A				
	T _{v,d} =	3*10^-3*63/(2*7	6000)			
	T _{v,d} =	<u>1,243</u>				
		$(T_{v,d}/f_{v,y,d})$	≤	1		
		(1,243/1,662)	≤	1		
		0,748	<u> </u>	<u>1</u>		
		—>Girder comp	lies			
			6 (1)			
Assessment of	the g	irders on the d	eflection			5000
Deflection from	מון כי נ	it uniform load			: 	
Defiection from		(5/384)*(q _{ref} *l ⁴)/(EI)		۔ ا:	
		(5/384)*(1*5000		14.533*10		
	u _{ref} =	<u>0,809</u>	mm	1,000 10	,	
	- 161	<u>-,</u>				
Deflection from	n the i	mposed load				
	q _k =	11,200	kN/m			
ι	u _{2,inst} =	q _k *u _{ref}		≤	I/300	mm
		11,2*0,809		≤	I/300	mm
ι	u _{2,inst} =	<u>9,060</u>	<u>mm</u>	≤	<u>16,667</u>	<u>mm</u>
		—>Girder comp	lies			
Deflection from	n the s	elfweight load				
Deficction from	g _k =	5,200	kN/m			
I		g _k *u _{ref}		≤	I/300	mm
		5,2*0,809		≤	I/300	mm
	u _{2,inst} =		mm	≤	<u>16,667</u>	<u>mm</u>
	ŗ	—>Girder comp	lies			
						k _{1,def} = 0,6
Total deflection	n from	imposed and s	self-weight l	oad		k _{2,def} = 0
U	I _{net,fin} =	$u_{1,inst}^{*}(1+k_{1,def})+i$	$\mu_{2,inst}$ *(1+ $k_{2,de}$	_f)	≤ I/150	mm
u	I _{net,fin} =	4,207*(1+0,6)+9	9,06*(1+0)		≤ I/150	mm
u	I _{net,fin} =	<u>15,791</u>	<u>mm</u>	≤	<u>33,333</u>	<u>mm</u>
		—>Girder comp	lies			
Ratio of dofloo	tion fr	om hending ma	ment and a	hoaring	orces	
Ratio of deflect -done		imply supported				on
		0,96*(E/G)*(h/l) ²		G=		MPa

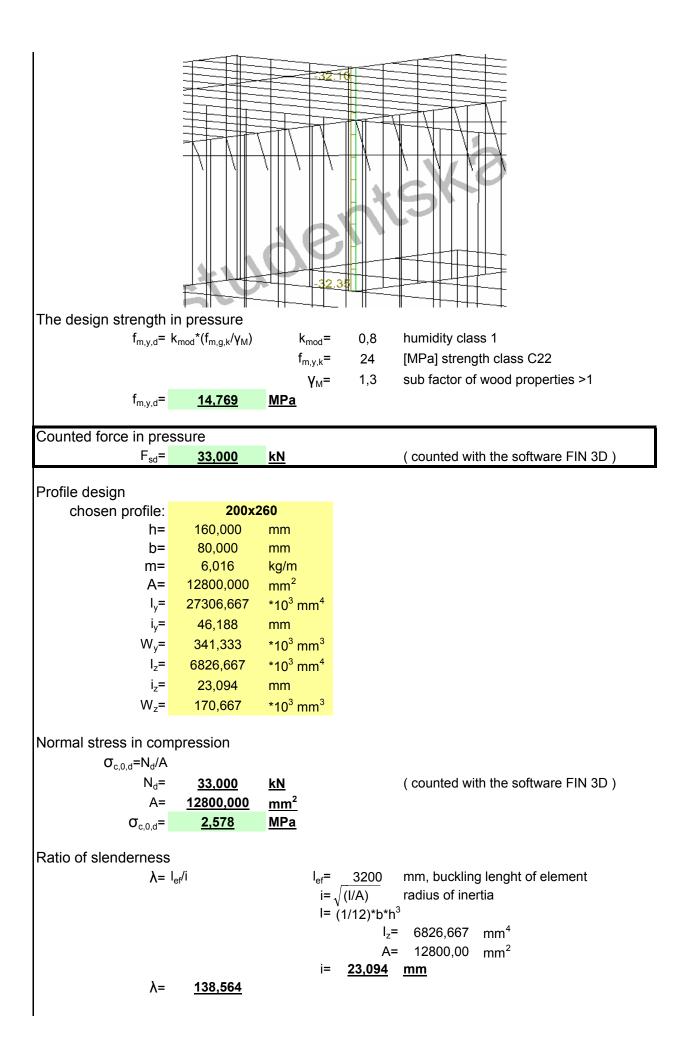



nı,y,ü	= $k_{mod}^*(f_{m,g,k}/\gamma_M)$	k _{mod} = f _{m,y,k} = γ _M =	24	humidity class 1 [MPa] strength class GL 24h sub factor of wood properties >1
f _{m,y,d}	= <u>14,769</u>	<u>MPa</u>		
Counted bending n				
M _{yd}	= <u>173,000</u>	<u>kNm</u>	(counted	with the software FIN 3D)
Counted reactions				
R _{sd} =V _{sd}	= <u>168,000</u>	<u>kN</u>	(counted	with the software FIN 3D)
Profile design				
chosen profile	e: 520x2	60		
h:		mm		
b	= 260,000	mm		
m		kg/m		
A				
l _y :		$*10^{3} \text{ mm}^{4}$		
i _y		mm		
Wy				
	= 761626,667	*10 ³ mm ⁴		
-	= 75,056	mm		
Wz	= <u>5858,667</u>	*10 ³ mm ³		
Normal stress in be	endina			
	$= M_{yd}/W_y$			
	= 173*10^3/(1171	7,333*10^3))	
$\sigma_{m,y,d}$		<u>MPa</u>		
Assessment of ber	•			
Assessment of ber	$(\sigma_{m,y,d}/f_{m,y,d})$		1	
Assessment of ber	($\sigma_{m,y,d}/f_{m,y,d}$) (13,964/14,769)	≤	1	
Assessment of ber	($\sigma_{m,y,d}/f_{m,y,d}$) (13,964/14,769) <u>0,946</u>	≤ ≤		
Assessment of ber	($\sigma_{m,y,d}/f_{m,y,d}$) (13,964/14,769)	≤ ≤	1	
	(σ _{m,y,d} /f _{m,y,d}) (13,964/14,769) <u>0,946</u> —>Girder comp	≤ ≤	1	
Assessment to flex	(σ _{m,y,d} /f _{m,y,d}) (13,964/14,769) <u>0,946</u> —>Girder comp	≤ ≤	1	
Assessment to flex The design strengt	$(\sigma_{m,y,d}/f_{m,y,d})$ (13,964/14,769) <u>0,946</u> —>Girder comp tural shear h in shear	≤ ≤ Nies	1 <u>1</u>	humidity class 1
Assessment to flex The design strengt	(σ _{m,y,d} /f _{m,y,d}) (13,964/14,769) <u>0,946</u> —>Girder comp	≤ ≤ lies k _{mod} =	1 <u>1</u> 0,8	humidity class 1
Assessment to flex The design strengt	$(\sigma_{m,y,d}/f_{m,y,d})$ (13,964/14,769) <u>0,946</u> —>Girder comp tural shear h in shear	≤ ≤ lies k _{mod} = f _{v,y,k} =	1 <u>1</u> 0,8 2,7	[MPa] strength class GL 24h
Assessment to flex The design strengt f _{v,y,d}	$(\sigma_{m,y,d}/f_{m,y,d})$ (13,964/14,769) 0,946 —>Girder comp tural shear h in shear = $k_{mod}^*(f_{v,y,k}/\gamma_M)$	$\leq \\ \leq \\ lies \\ k_{mod} = \\ f_{v,y,k} = \\ \gamma_{M} = \\ \end{cases}$	1 <u>1</u> 0,8	[MPa] strength class GL 24h
Assessment to flex The design strengt	$(\sigma_{m,y,d}/f_{m,y,d})$ (13,964/14,769) 0,946 —>Girder comp tural shear h in shear = $k_{mod}^*(f_{v,y,k}/\gamma_M)$	≤ ≤ lies k _{mod} = f _{v,y,k} =	1 <u>1</u> 0,8 2,7	[MPa] strength class GL 24h
Assessment to flex The design strengt f _{v,y,d}	$(\sigma_{m,y,d}/f_{m,y,d})$ (13,964/14,769) 0,946 —>Girder comp tural shear h in shear = $k_{mod}^*(f_{v,y,k}/\gamma_M)$	$\leq \\ \leq \\ lies \\ k_{mod} = \\ f_{v,y,k} = \\ \gamma_{M} = \\ \end{cases}$	1 <u>1</u> 0,8 2,7	[MPa] strength class GL 24h
Assessment to flex The design strengt f _{v,y,d} f _{v,y,d}	$(\sigma_{m,y,d}/f_{m,y,d})$ (13,964/14,769) 0,946 —>Girder comp tural shear h in shear = $k_{mod}^*(f_{v,y,k}/\gamma_M)$	$\leq \\ \leq \\ lies \\ k_{mod} = \\ f_{v,y,k} = \\ \gamma_{M} = \\ \end{cases}$	1 <u>1</u> 0,8 2,7	[MPa] strength class GL 24h
Assessment to flex The design strengt f _{v,y,d} f _{v,y,d} Shear stress T _{v,d}	$(\sigma_{m,y,d}/f_{m,y,d})$ (13,964/14,769) <u>0,946</u> —>Girder comp trural shear h in shear = $k_{mod}*(f_{v,y,k}/\gamma_M)$ = <u>1,662</u> = $3V_d/2A$	\leq Nies $k_{mod} = f_{v,y,k} = \gamma_{M} =$ MPa	1 <u>1</u> 0,8 2,7	[MPa] strength class GL 24h
Assessment to flex The design strengt f _{v,y,d} f _{v,y,d} Shear stress T _{v,d}	$(\sigma_{m,y,d}/f_{m,y,d})$ (13,964/14,769) <u>0,946</u> —>Girder comp tural shear h in shear = $k_{mod}^*(f_{v,y,k}/\gamma_M)$ = <u>1,662</u> = $3V_d/2A$ = $3V_d/2A$ = $3^10^-3^168/(2^+)$	\leq Nies $k_{mod} = f_{v,y,k} = \gamma_{M} =$ MPa	1 <u>1</u> 0,8 2,7	[MPa] strength class GL 24h

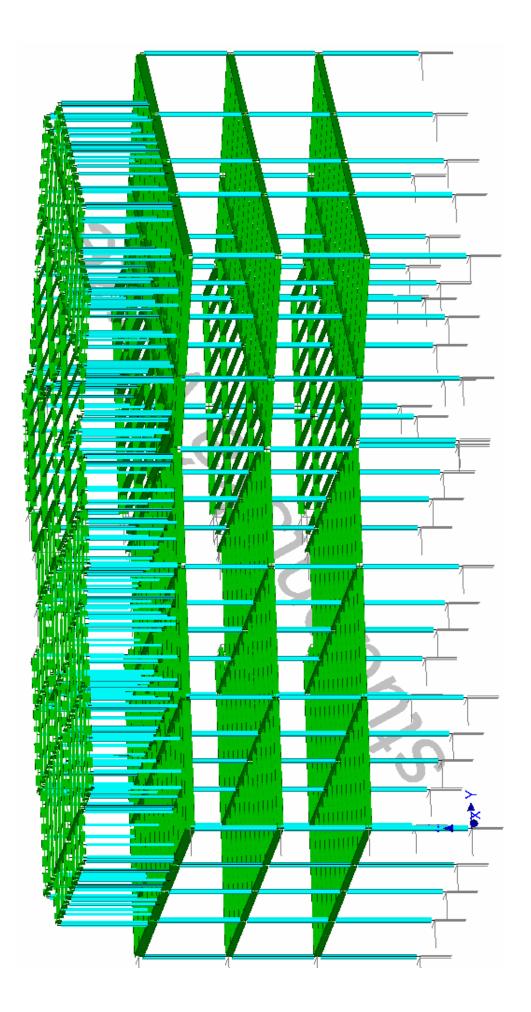
	$(T_{v,d}/f_{v,y,d})$	≤	1			
	(1,514/1,662)		1			
	<u>0,911</u>	≤	1			
	—>Girder comp	lies	_			
Assessment of the g	irders on the d	eflection				
Deflection from a un	:t				= 5000 mm	
Deflection from a un	(5/384)*(q _{ref} *l ⁴)/			_	= 11 000 MPa = 3046,507 *10^ ³ mm ⁴	
	(5/384)*(1*5000	. ,	*2016 507*10		- 3040,507 *10 ² mm	
u _{ref} =	, , ,	<u>mm</u>	3040,307 10	3)		
u _{ref}	0,245	<u></u>				
Deflection from the i	mposed load					
q _k =	11,200	kN/m				
u _{2,inst} =	q _k *u _{ref}		≤	I/300	mm	
u _{2,inst} =	11,2*0,243		≤	I/300	mm	
u _{2,inst} =	<u>2,720</u>	<u>mm</u>	≤	<u>16,667</u>	<u>mm</u>	
	—>Girder comp	lies				
Deflection from the s	-					
g _k =	5,200	kN/m				
u _{2,inst} =			≤	I/300	mm	
	5,2*0,243		≤	I/300	mm	
u _{2,inst} =		<u>mm</u>	≤	<u>16,667</u>	<u>mm</u>	
	—>Girder comp	nes			k _{1,def} = 0,6	
Total deflection from	imposed and	self-weight	t load		$k_{2,def} = 0$	
	u _{1.inst} *(1+k _{1.def})+	•		≤ I/150	mm	
,	1,263*(1+0,6)+2	, ,		≤ I/150	mm	
U _{net,fin} =	<u>4,740</u>	mm	≤	33,333	mm	
	—>Girder comp	_	_	<u>,</u>		
Ration of deflection t						
	imply supported		-			
	0,96*(E/G)*(h/l)		G=	630	MPa	
u _v =	<u>0,181</u>	u _m				
Total deflection						
	u _{net,fin} +0,0179* _{ur}	iet.fin	≤	I/150	mm	
u=	<u>5,600</u>	mm	≤	33,333	mm	
3	->Girder comp	lies				

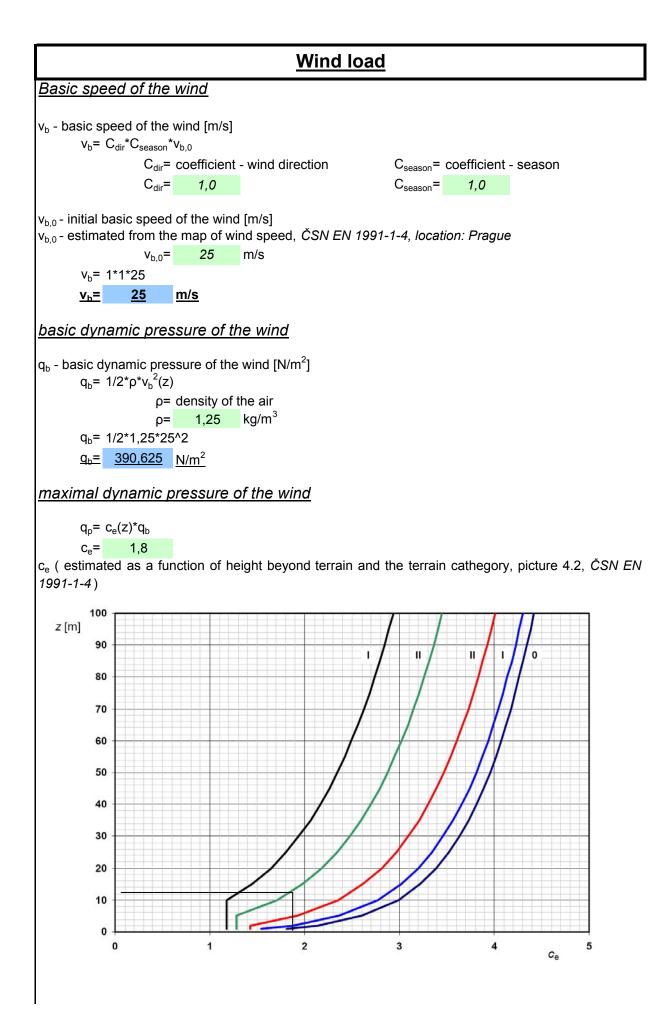



129706,667 46,188 1621,333 ng _{rd} /W _y ;*10^3/(3850,6 <u>14,283</u> g ($\sigma_{m,y,d}/f_{m,y,d}$) 4,283/14,769)	mm kg/m mm ² *10 ³ mm ⁴ *10 ³ mm ³ *10 ³ mm ⁴ *10 ³ mm ³		
$\begin{array}{c} 160,000\\ 28,576\\ 60800,000\\ 731626,667\\ 109,697\\ 3850,667\\ 129706,667\\ 46,188\\ 1621,333\\ ng\\ _{rd}/W_y\\ 5*10^3/(3850,66)\\ \hline 14,283\\ 0\\ (\sigma_{m,y,d}/f_{m,y,d})\\ 4,283/14,769) \end{array}$	mm kg/m *10 ³ mm ⁴ *10 ³ mm ³ *10 ³ mm ⁴ *10 ³ mm ³		
$\begin{array}{c} 28,576\\ 60800,000\\ 731626,667\\ 109,697\\ 3850,667\\ 129706,667\\ 46,188\\ 1621,333\\ ng\\ _{rd}/W_y\\ s^*10^3/(3850,66)\\ \underline{14,283}\\ 0\\ (\sigma_{m,y,d}/f_{m,y,d})\\ 4,283/14,769)\end{array}$	kg/m mm ² *10 ³ mm ⁴ *10 ³ mm ³ *10 ³ mm ⁴ *10 ³ mm ³		
$\begin{array}{c} 60800,000\\ 731626,667\\ 109,697\\ 3850,667\\ 129706,667\\ 46,188\\ 1621,333\\ ng\\ _{rd}/W_y\\ \mathfrak{i}^*10^3/(3850,66)\\ \underline{14,283}\\ 0\\ (\sigma_{m,y,d}/f_{m,y,d})\\ \mathfrak{4,283/14,769) \end{array}$	mm ² *10 ³ mm ⁴ *10 ³ mm ³ *10 ³ mm ⁴ mm *10 ³ mm ³		
731626,667 109,697 3850,667 129706,667 46,188 1621,333 ng $_{rd}$ /W _y i*10^3/(3850,6 <u>14,283</u> 9 ($\sigma_{m,y,d}/f_{m,y,d}$) 4,283/14,769)	*10 ³ mm ⁴ mm *10 ³ mm ³ *10 ³ mm ⁴ *10 ³ mm ³		
109,697 3850,667 129706,667 46,188 1621,333 ng ,d/Wy i*10^3/(3850,6 <u>14,283</u> g ($\sigma_{m,y,d}/f_{m,y,d}$) 4,283/14,769)	mm *10 ³ mm ³ *10 ³ mm ⁴ mm *10 ³ mm ³		
3850,667 129706,667 46,188 1621,333 ng /d/Wy i*10^3/(3850,6 <u>14,283</u> 9 (σ _{m,y,d} /f _{m,y,d}) 4,283/14,769)	*10 ³ mm ³ *10 ³ mm ⁴ mm *10 ³ mm ³ 667*10^3) MPa		
129706,667 46,188 1621,333 ng _{rd} /W _y ;*10^3/(3850,6 <u>14,283</u> g ($\sigma_{m,y,d}/f_{m,y,d}$) 4,283/14,769)	*10 ³ mm ⁴ mm *10 ³ mm ³ 667*10^3) MPa		
46,188 1621,333 ng _{/d} /W _y ;*10^3/(3850,6 <u>14,283</u> 9 (σ _{m,y,d} /f _{m,y,d}) 4,283/14,769)	mm *10 ³ mm ³ 667*10^3) MPa		
1621,333 ng /d/Wy 5*10^3/(3850,6 <u>14,283</u> g (σ _{m,y,d} /f _{m,y,d}) 4,283/14,769)	*10 ³ mm ³ 667*10^3) <u>MPa</u>		
ng _{/d} /W _y ;*10^3/(3850,6 <u>14,283</u> 9 (σ _{m,y,d} /f _{m,y,d}) 4,283/14,769)	667*10^3) <u>MPa</u>		
/d [/] W _y i*10^3/(3850,6 <u>14,283</u> g (σ _{m,y,d} /f _{m,y,d}) 4,283/14,769)	<u>MPa</u>		
/d [/] W _y i*10^3/(3850,6 <u>14,283</u> g (σ _{m,y,d} /f _{m,y,d}) 4,283/14,769)	<u>MPa</u>		
*10 [^] 3/(3850,6 <u>14,283</u> 9 (σ _{m,y,d} /f _{m,y,d}) 4,283/14,769)	<u>MPa</u>		
<u>14,283</u> 9 (σ _{m,y,d} /f _{m,y,d}) 4,283/14,769)	<u>MPa</u>		
g (ơ _{m,y,d} /f _{m,y,d}) 4,283/14,769)			
(σ _{m,y,d} /f _{m,y,d}) 4,283/14,769)			
(σ _{m,y,d} /f _{m,y,d}) 4,283/14,769)			
4,283/14,769)	≤	1	
· · ·		1	
<u>0,967</u>	_ ≤	<u>1</u>	
>Girder comp		-	
shear _{lod} *(f _{v,y,k} /γ _M)			humidity class 1 [MPa] strength class SA
		1,3	sub factor of wood properties >1
<u>1,662</u>	MPa		
	_		
 / _d /2A			
/ _d /2A	0800)		
/ _d /2A 10^-3*63/(2*6	0800)		
/ _d /2A	0800)		
/ _d /2A 10^-3*63/(2*6 <u>1,554</u>	0800) ≤	1	
/ _d /2A 10^-3*63/(2*6 <u>1,554</u> (T _{v,d} /f _{v,y,d})	≤	1	
/ _d /2A 10^-3*63/(2*6 <u>1,554</u>	≤		
ç	shear shear ^{d*(f_{v,y,k}/Y_M)}	shear shear $_{M}^{M}(f_{v,y,k}/\gamma_{M})$ $k_{mod} = f_{v,y,k} = \gamma_{M} =$	shear shear $_{\text{bd}}^{\text{shear}}(f_{\text{v},\text{y},\text{k}}/\gamma_{\text{M}})$ k_{mod} = 0,8 $f_{\text{v},\text{y},\text{k}}$ = 2,7 γ_{M} = 1,3



Ratio of slenderness λ=	l _{ef} /i		i=√	(I/A) =(1/12)*b* I _z = A=	radius of iner	mm ⁴
λ= $\sigma_{c,crit}=\pi^2(E_c)$ $\sigma_{c,crit}=$		<u>MPa</u>		E _{0,05} =	8800	MPa, modulus of elasticity
$\lambda_{rel} = \sqrt{f_{c,0,kr}}$ $\lambda_{rel} =$ Coefficient for buckling	<u>0,709</u> ng			0 -	0.4	
-	$\frac{(\lambda_{rel} - 0, 3) + \lambda_{rel}^{2}]}{0,772}$ $\frac{1}{(\lambda_{rel}^{2} - \lambda_{rel}^{2}))}$ $\frac{0,929}{(\lambda_{rel}^{2} - \lambda_{rel}^{2})}$			β _c =	0,1	glue-laminated timber
Assessement of buc	-					
(5,932/($(\sigma_{c,0,d}/k_c^* f_{c,0,d})$ 0,6368*13,034))	≤ ≤		1 1		
	<u>0,486</u>	≤		<u>1</u>		
	<u>0,486</u> —>Column comp	≤		<u>1</u>		
	>Column com	≥ olies	f th		column	
Material used for the	—>Column comp	≤ olies gn o		e wall o	<u>column</u>	
Material used for the	—>Column comp <u>Desi</u> design	≤ olies gn o		e wall o	<u>column</u>	
Material used for the	—>Column comp <u>Desi</u> design	≤ olies gn o		e wall o	<u>column</u>	
Material used for the	—>Column comp <u>Desi</u> design	≤ olies gn o		e wall o	column	

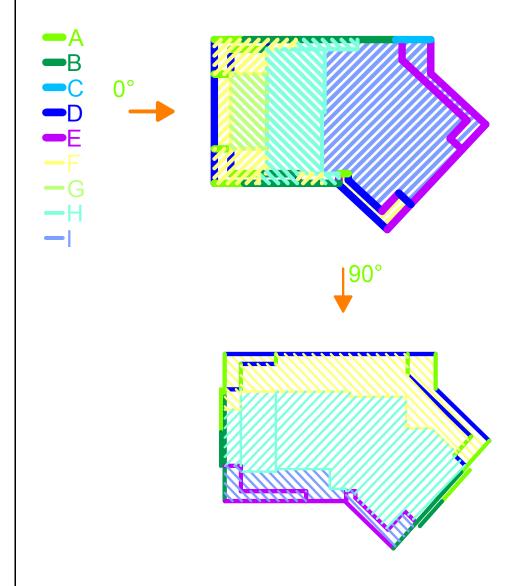


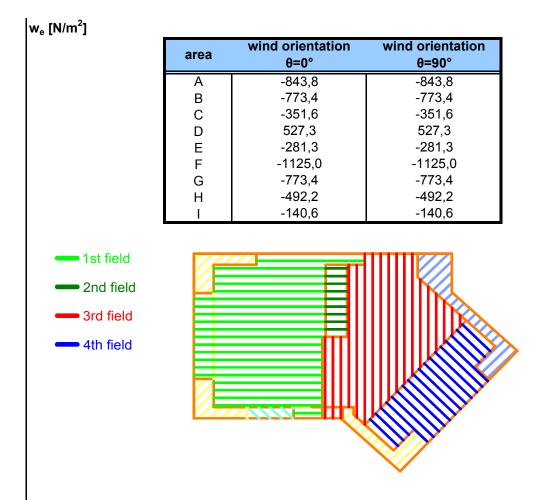

$\sigma_{c,crit}=\pi^2(E_{0,05}/\lambda^2)$		E _{0,05} =	8800	MPa, modulus of elasticity
σ _{c,crit} = <u>4,524</u>	<u>MPa</u>			
$\lambda_{rel} = \sqrt{f_{c,0,k}/\sigma_{c,crit}}$				
λ _{rel} = <u>2,303</u>				
Coefficient for buckling				
$k=0,5[1+\beta_{c}(\lambda_{rel}-0,3)+\lambda_{rel}^{2}]$		β _c =	0,1	grown wood
k= <u>3,253</u>				
$k_c = 1/(k + \sqrt{k^2 - \lambda_{rel}^2}))$				
k _c = <u>0,180</u>				
Assessement of buckling				
($\sigma_{\rm c,0,d}/k_{\rm c}^{*}$ f _{c.0,d})	≤	1		
(5,932/(0,6368*13,034))		1		
<u>0,969</u>	≤	<u>1</u>		
—>Wall column	complies			

List of elements designed for the timberl structure				
	Element	Profile		
	roof	200x100		
	2nd, 3rd floor	280x160		
purlin	4th floor	360x180		
	4th floor terrace	460x220		
	4th floor large	500x260		
	2nd, 3rd floor	380x200		
beam	4th floor	520x260		
	roof	380x160		
	2nd, 3rd floor	260x260		
column	2nd, 3rd floor wall	200x260		
	4th floor	160x80		

B

Static evaluation of the steel structure variant

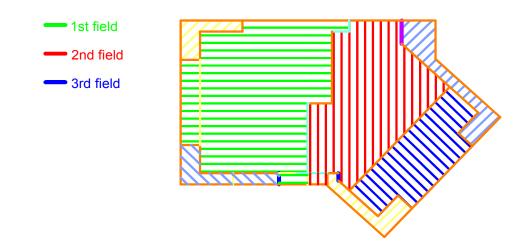

terrain cathegory - III (areas equally covered by vegetation or buildings) $q_p = \frac{703,125}{N/m^2}$


	wind	pressure	on th	he surfa	ace of	the co
--	------	----------	-------	----------	--------	--------

w _e =q _p (z)*C _{pe}		(-)	suction
<u>q_p= <u>703,125</u></u>	<u>N/m²</u>	()	pressure

 \mathbf{C}_{pe}

area	wind orientation θ=0°	wind orientation θ=90°
А	-1,2	-1,2
В	-1,1	-1,1
С	-0,5	-0,5
D	0,75	0,75
Е	-0,4	-0,4
F	-1,6	-1,6
G	-1,1	-1,1
Н	-0,7	-0,7
	-0,2	-0,2



conversion of the wind load from square load to linear one for roof joists (θ =0°)

purlin	distance	W _e	q/2 [kN/m´]	q [kN/m´]
1st field 1-15 F	1,150	-1125,000	-0,647	-1,294
1st field 5-11 G	1,260	-773,438	-0,487	-0,975
1st field 1-15 H	1,260	-492,188	-0,310	-0,620
2nd 3-8 I	1,220	-140,625	-0,086	-0,172
3rd field 1-17 I	0,900	-140,625	-0,063	-0,127
4th field 1-13 I	1,260	-140,625	-0,089	-0,177

conversion of the wind load from square load to linear one for terrace joists (θ =0°)

purlin	distance	We	q/2 [kN/m´]	q [kN/m´]
F area	1,385	-1125,000	-0,779	-1,558
H area	1,385	-492,188	-0,341	-0,682
l area	1,385	-140,625	-0,097	-0,195
I area turned	0,945	-140,625	-0,066	-0,133

conversion of the wind load from square load to linear one for roof joists (θ =90°)

purlin	distance	We	q/2 [kN/m´]	q [kN/m´]
1st field 1-6 F	1,220	-1125,000	-0,686	-1,373
1st field 7-12 H	1,260	-492,188	-0,310	-0,620
1st field 13-15 I	1,150	-140,625	-0,081	-0,162
2nd field 4-17 F	0,900	-1125,000	-0,506	-1,013
2nd field 1-17 H	0,900	-492,188	-0,221	-0,443
2nd field 1-3 I	1,000	-140,625	-0,070	-0,141
3rd field 1-3 F	1,150	-1125,000	-0,647	-1,294
3rd field 4-13 H	1,260	-492,188	-0,310	-0,620

conversion of the wind load from square load to linear one for terrace joists (θ =90°)

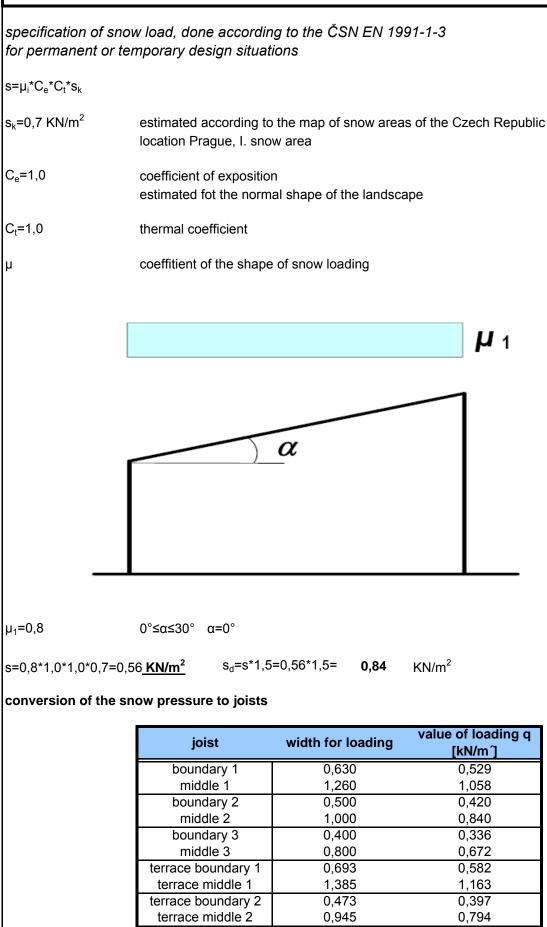
purlin	distance	W _e	q/2 [kN/m´]	q [kN/m´]
F area	1,385	-1125,000	-0,779	-1,558
H area	1,385	-492,188	-0,341	-0,682
l area	1,385	-140,625	-0,097	-0,195
F area turned	0,945	-1125,000	-0,532	-1,063

conversion of the wind load from square load to linear one for wall girders (θ =0°)

beam	distance '	I distance 2	W _e	q [kN/m´]
1st - 2nd floor D	1,750	1,500	527,344	1,714
2nd - 3rd floor D	1,500	1,525	527,344	1,595
3rd - 4th floor D	1,525	1,600	527,344	1,648
4th floor D	1,600	0,000	527,344	0,844
1st - 2nd floor A	1,750	1,500	-843,750	-2,742
2nd - 3rd floor A	1,500	1,525	-843,750	-2,552
3rd floor A	0,000	1,525	-843,750	-1,287
4th floor A	1,600	0,000	-843,750	-1,350
1st - 2nd floor B	1,750	1,500	-773,438	-2,514
2nd - 3rd floor B	1,500	1,525	-773,438	-2,340
3rd - 4th floor B	1,525	1,600	-773,438	-2,417
3rd floor B	0,000	1,525	-773,438	-1,179
4th floor B	1,600	0,000	-773,438	-1,238
1st - 2nd floor E	1,750	1,500	-281,250	-0,914
2nd - 3rd floor E	1,500	1,525	-281,250	-0,851
3rd - 4th floor E	1,525	1,600	-281,250	-0,879
3rd floor E	0,000	1,525	-281,250	-0,429
4th floor E	1,600	0,000	-281,250	-0,450

conversion of the wind load from square load to linear one for wall columns ($\theta {=} 0^\circ$)

column	distance	W _e	q/2 [kN/m´]	q [kN/m´]
A area	1,250	-843,750	-0,527	-1,055
B area	1,250	-773,438	-0,483	-0,967
D area	1,250	527,344	0,330	0,659
E area	1,250	-281,250	-0,176	-0,352


I	conversion of the wind load from square load to linear one for wall girders ($\theta\text{=}90^\circ$)

beam	distance	1 distance 2	We	q [kN/m´]
1st - 2nd floor D	1,750	1,500	527,344	1,714
2nd - 3rd floor D	1,500	1,525	527,344	1,595
3rd - 4th floor D	1,525	1,600	527,344	1,648
4th floor D	1,600	0,000	527,344	0,844
1st - 2nd floor A	1,750	1,500	-843,750	-2,742
2nd - 3rd floor A	1,500	1,525	-843,750	-2,552
3rd floor A	0,000	1,525	-843,750	-1,287
4th floor A	1,600	0,000	-843,750	-1,350
1st - 2nd floor B	1,750	1,500	-773,438	-2,514
2nd - 3rd floor B	1,500	1,525	-773,438	-2,340
3rd - 4th floor B	1,525	1,600	-773,438	-2,417
3rd floor B	0,000	1,525	-773,438	-1,179
4th floor B	1,600	0,000	-773,438	-1,238
1st - 2nd floor E	1,750	1,500	-281,250	-0,914
2nd - 3rd floor E	1,500	1,525	-281,250	-0,851
3rd - 4th floor E	1,525	1,600	-281,250	-0,879
3rd floor E	0,000	1,525	-281,250	-0,429
4th floor E	1,600	0,000	-281,250	-0,450

conversion of the wind load from square load to linear one for wall columns (θ =90°)

column	distance	W _e	q/2 [kN/m´]	q [kN/m´]
A area	1,250	-843,750	-0,527	-1,055
B area	1,250	-773,438	-0,483	-0,967
D area	1,250	527,344	0,330	0,659
E area	1,250	-281,250	-0,176	-0,352

Snow load

Self-weight load + imposed load for each composition

Construction of the floor

(There is concidered floor in the bathroom - ceramic tiles and waterproofing) (There will be used wooden floor in the other rooms - the composition is lighter)

	Self weight of the composition										
L	ayers of the	e compositi	ion	Thicknes s [mm]	Density [kg/m ³]	g _k [kN/m²]	γf	q _d [kN/m²]			
		- ceramic ti Rako Tans		10,00	2000,00	0,200	1,35	0,270			
	Waterproofing Sarnafil G 441-24EL				3200,00	0,077	1,35	0,104			
	Anhydrite	Anhyment		50,00	2100,00	1,050	1,35	1,418			
	Impact sound insulation Dow Ethafoam Concrete slab Trapezoidal sheets Lindab LLP 20				35,00	0,007	1,35	0,009			
					2400,00	1,200	1,35	1,620			
								0,070			
	OSB board	Superfinish	n ECO	15,00	550,00	0,083	1,35	0,111			
	Plasterboa			12,50	750,00	0,094	1,35	0,127			
	Summary	/				2,710		3,729			
		Self weigh	t of steel jo	ists include	ed in the c	omposition					
Profile	Height of profile [mm]	Self weigh Width of profile [mm]		Number of elements	ed in the c Weight [kg/m]	composition g _k [kN/m]	γғ	g _d [kN/m]			
Profile CW 60	Height of profile	Width of profile	Lenght of element	Number of	Weight		γ⊧ 1,35	g d [kN/m] 0,137			
	Height of profile [mm]	Width of profile [mm] 40	Lenght of element [mm]	Number of elements	Weight [kg/m]	g _k [kN/m]					
	Height of profile [mm] 60	Width of profile [mm] 40	Lenght of element [mm] 1000	Number of elements	Weight [kg/m] 3,38	g _k [kN/m] 0,101 0,101		0,137			
	Height of profile [mm] 60	Width of profile [mm] 40	Lenght of element [mm] 1000	Number of elements 3	Weight [kg/m] 3,38	g _k [kN/m] 0,101 0,101		0,137			
	Height of profile [mm] 60	Width of profile [mm] 40	Lenght of element [mm] 1000	Number of elements 3	Weight [kg/m] 3,38	g _k [kN/m] 0,101 0,101 on	1,35	0,137 0,137			
	Height of profile [mm] 60	Width of profile [mm] 40	Lenght of element [mm] 1000	Number of elements 3	Weight [kg/m] 3,38	g _k [kN/m] 0,101 0,101 on q _k [kN/m ²]	1,35 γ _F	0,137 0,137 g _d [kN/m²]			
	Height of profile [mm] 60 Summary	Width of profile [mm] 40	Lenght of element [mm] 1000	Number of elements 3	Weight [kg/m] 3,38 ompositic	g _k [kN/m] 0,101 0,101 on q _k [kN/m ²] 1,500 1,500	1,35 γ⊧ 1,500	0,137 0,137 g d [kN/m²] 2,250 2,250			
	Height of profile [mm] 60 Summary Summary	Width of profile [mm] 40	Lenght of element [mm] 1000 mposed loa	Number of elements 3 ad for the c	Weight [kg/m] 3,38 ompositic	g _k [kN/m] 0,101 0,100 0,000000	1,35 γ⊧ 1,500 [kl	0,137 0,137 gd [kN/m²] 2,250 2,250 2,250			
	Height of profile [mm] 60 Summary Summary Joist	Width of profile [mm] 40 /	Lenght of element [mm] 1000 mposed loa Width for 0,6	Number of elements 3 ad for the c	Weight [kg/m] 3,38 ompositic	g _k [kN/m] 0,101 0,100 0,000000	1,35 γ⊧ 1,500 [[k] 1	0,137 0,137 gd [kN/m²] 2,250 2,250 2,250 qd y/m²] ,558			
	Height of profile [mm] 60 Summary Summary Joist	Width of profile [mm] 40 /	Lenght of element [mm] 1000 mposed loa Width for 0,6 1,3	Number of elements 3 ad for the c	Weight [kg/m] 3,38 ompositic 	g _k [kN/m] 0,101 0,100 0,00000000	1,35 γ⊧ 1,500 [kl 1 3	0,137 0,137 g d [kN/m²] 2,250 2,250 2,250 4 4 7 7 7 7 7 7 7 7 7 7			
	Height of profile [mm] 60 Summary Summary Joist boundary 1 mide boundary 2	Width of profile [mm] 40 /	Lenght of element [mm] 1000 mposed loa Width for 0,6 1,3 0,4	Number of elements 3 ad for the c	Weight [kg/m] 3,38 ompositic 	g _k [kN/m] 0,101 0,100 0,000000	1,35 γ⊧ 1,500 [kl 3 1 3	0,137 0,137 gd [kN/m²] 2,250 2,250 2,250 qd y/m²] ,558			

Construction of the roof

			Self weigh	nt of the co	mposition			
L	ayers of the	compositi	on	Thicknes s [mm]	Density [kg/m ³]	g _k [kN/m²]	γF	q _d [kN/m²]
	Greening					1,000	1,35	1,350
	Waterproof	ing				·	-	
	Thermal ins	Sarnafil G	441-24EL	2,40	3200,00	0,077	1,35	0,104
	Waterproof	nate SL	160,00	35,00	0,056	1,35	0,076	
		Sikaplan D	1	1,20	1300,00	0,016	1,35	0,021
		Dow Roofn	nate SL	80,00	35,00	0,028	1,35	0,038
	Concrete slab				2400,00	1,200	1,35	1,620
	Trapezoidal sheets Lindab LLP 20							0,070
	Thermal ins	sulation Rockwool I	Rocknroll	100,00	100,00	0,100	1,35	0,135
	OSB board					·	-	
	Vapour bar	Superfinish rier	n ECO	15,00	550,00	0,083	1,35	0,111
	Plasterboar	Jutafol N 1 d	40 Special	0,25	560,00	0,001	1,35	0,002
				12,50	750,00	0,094	1,35	0,127
	Summary					2,654		3,653
	9	Self weight	t of steel jo	ists includ	ed in the c	omposition		
Profile	Height of profile [mm]	Width of profile [mm]	Lenght of element [mm]	Number of elements	Weight [kg/m]	g _k [kN/m]	γ⊧	g _d [kN/m]
CW 60	60	40	1000	3	3,38	0,101	1,35	0,137
	Summary					0,101		0,137
		I	mposed loa	ad for the c	ompositio	on		
						q _k [kN/m²]	γ⊧	g _d [kN/m²]
						1,500	1,500	2,250
	Summary					1,500		2,250
	Joist		Width for	load [m]		9 _d I/m´]	[k	q _d N/m´]
	boundary 1		0.6	630	2.	388	1	,418
	•	lle 1				775	2	.835
	midd boundary 2		1,2 0,5	260 500	4, 1,	775 895 700	1	,835 ,125
	midd	lle 2	1,2 0,5	260 500 500 500 500	4, 1, 3, 1,		1 2 0	

Construction of the terrace

Self weight of the composition											
La	ayers of the	compositi	on	Thicknes s [mm]	Density [kg/m³]	g _k [kN/m²]	γf	q _d [kN/m²]			
	Final layer Parador ou Waterproof	tdoor class		50,00	1650,00	0,825	1,35	1,114			
		Sarnafil G	441-24EL	2,40	3200,00	0,077	1,35	0,104			
		Dow Roofn	nate SL	100,00	35,00	0,035	1,35	0,047			
		Sikaplan D		1,20	1300,00	0,016	1,35	0,021			
		Dow Roofn	nate SL	80,00	35,00	0,028	1,35	0,038			
	Trapezoida			50,00	2400,00	1,200	1,35	1,620			
		Lindab LLF	° 20					0,070			
		Rockwool I	Rocknroll	220,00	100,00	0,220	1,35	0,297			
		Superfinish	ECO	15,00	550,00	0,083	1,35	0,111			
		Jutafol N 1	40 Special	0,25	560,00	0,001	1,35	0,002			
				12,50	750,00	0,094	1,35	0,127			
	Summary	,				2,578		3,550			
	:	Self weight	t of steel jo	ists include	ed in the c	omposition					
Profile	Height of profile [mm]	Width of profile [mm]	Lenght of element [mm]	Number of elements	Weight [kg/m]	g _k [kN/m]	γ⊧	g _d [kN/m]			
CW 60	60	40	1000	3	3,38	0,101	1,35	0,137			
	Summary	1				0,101		0,137			
		I	mposed loa	ad for the c	ompositio	n					
						q _k [kN/m ²]	γF	g _d [kN/m²]			
						2,500	1,500	3,750			
	Summary					2,500 2,500		3,750			
	Joist		Width for		[kN	2,500 2,500 2,500 9d	[kl	3,750 q _d V/m´]			
	Joist boundary 1		0,6	i93	[kN 2,	2,500 2,500 9a I/m [^]] 553	[kl 2	3,750 q₄ V/m´] ,597			
	Joist	die 1	0,6 1,3		[kN 2,5 5,	2,500 2,500 2,500 9d	[kl 2 5	3,750 q _d V/m´]			

Construction of the floor on the air

			Self weigh	nt of the co	mposition			
La	yers of the	compositi	on	Thicknes s [mm]	Density [kg/m³]	g _k [kN/m²]	γ⊧	q _d [kN/m²]
	Final layer Anhydrite	- wooden flo Efloor	oor	20,00	470,00	0,094	1,35	0,127
		Anhyment		50,00	2100,00	1,050	1,35	1,418
		nd insulatio Dow Ethafo		20,00	35,00	0,007	1,35	0,009
	Concrete s			50,00	2400,00	1,200	1,35	1,620
	Trapezoida	Lindab LLF	° 20					0,070
	Thermal ins	Rockwool F	Rocknroll	160,00	100,00	0,160	1,35	0,216
	OSB board	Superfinish	ECO	15,00	550,00	0,083	1,35	0,111
	Thermal ins	Rockwool F	asrock	80,00	100,00	0,080	1,35	0,108
	OSB board	Superfinish	ECO	15,00	550,00	0,083	1,35	0,111
		Rockwool F	asrock	80,00	183,00	0,146	1,35	0,198
	External pla Tubag Mine	eralischer D	ämmputz	10,00	625,00	0,063	1,35	0,084
	Summary	1				2,965		4,073
	S	Self weight	of timber je	oists includ	led in the	composition		
Profile	Height of profile [mm]	Width of profile [mm]	Lenght of element [mm]	Number of elements	Density [kg/m³]	g _k [kN/m]	Ŷ۴	g _d [kN/m]
CW 80	80	40	1000	3	3,38	0,101	1,35	0,137
	Summary	/				0,101		0,137
		Imp	osed load	for the roo	f composi	tion		
						q _k [kN/m²]	Ŷ۶	g _d [kN/m²]
						1,500	1,500	2,250
	Summary	1				1,500		2,250
	Joist		Width for	load [m]		9 _d I/m´]	[kl	q _d N/m´]
	boundary mic	ldle	0,4 0,9	73 945		989 978		,063 ,126

Construction of the main wall

			Self weigh	nt of the co	mposition			
La	ayers of the	compositi	on	Thicknes s [mm]	Density [kg/m ³]	g _k [kN/m²]	γF	q _d [kN/m²]
	External pla Tubag Mine	eralischer D	ämmputz	10,00	625,00	0,063	1,35	0,084
		Rockwool I	asrock	160,00	128,00	0,205	1,35	0,276
		Superfinish	ECO	15,00	550,00	0,083	1,35	0,111
	Thermal insulation Rockwool Fasrock Thermal insulation				128,00	0,102	1,35	0,138
	Rockwool Fasrock			80,00	128,00	0,102	1,35	0,138
	Superfinish ECO Vapour barrier				550,00	0,083	1,35	0,111
		Jutafol N 1	40 Special	0,25	560,00	0,001	1,35	0,002
				12,50	750,00	0,094	1,35	0,127
	Summary					0,732		0,989
S	elf weight o	f timber joi	ists and co	lumns inclu	uded in the	e main wall	composi	tion
Profile	Height of profile [mm]	Width of profile [mm]	Lenght of element [mm]	Number of elements	Weight [kg/m]	g _k [kN/m]	γ۶	g _d [kN/m]
CW 60	60	40	3100	7	3,38	0,733	1,35	0,990
	Summary					0,733		0,990
					1			Drefiles
Вс	oundary gird	der	Width for	load [m]	Laye	ers g _d	Layers+	Profiles q _d

Boundary girder	Width for load [m]	Layers g _d [kN/m´]	Layers+Profiles q _d [kN/m´]
1st-2nd floor	3,000	2,966	3,956
2nd-3rd floor	3,050	3,015	4,005
	0,000	0,010	.,

Construction of the 4th floor wall

Self weight of the composition											
Layers of the composition	Thicknes s [mm]	Density [kg/m ³]	g _k [kN/m²]	ŶF	q _d [kN/m²						
External plaster Tubag Mineralischer Dämmputz Thermal insulation	10,00	625,00	0,063	1,35	0,084						
Rockwool Fasrock Thermal insulation	120,00	128,00	0,154	1,35	0,207						
Rockwool Fasrock	100,00	128,00	0,128	1,35	0,173						
Superfinish ECO Vapour barrier	15,00	550,00	0,083	1,35	0,111						
Jutafol N 140 Special Plasterboard	0,25	560,00	0,001	1,35	0,002						
Summary	12,50	750,00	0,094 0,522	1,35	0,127 0,704						

Boundary girder	Width for load [m]	Layers g _d [kN/m´]	Layers+Profiles q _d [kN/m´]
3rd-4th floor	3,000	2,113	2,113

Note: Self weight of load bearing steel profiles is set in the program FIN3D itself. This programe was used for overall evaluation of the structure

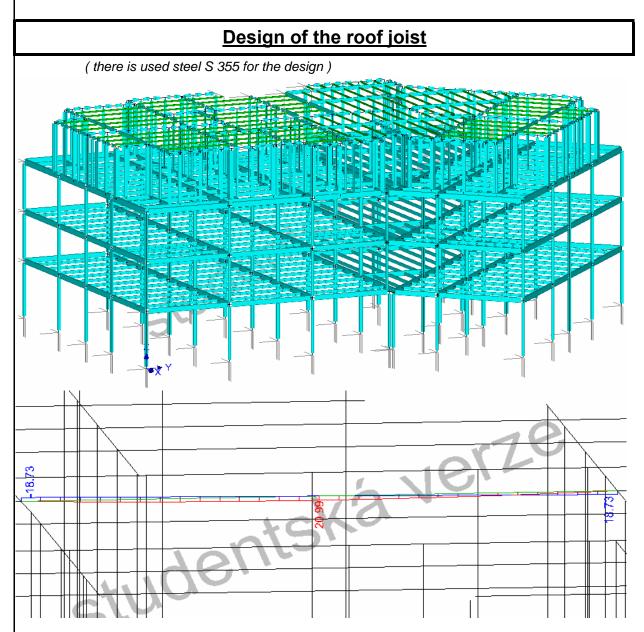
Load combinations

 ${\textstyle\sum_{j\geq 1}} \gamma_{Gj} G_{kj} + \gamma_{Q1} Q_{k1} + {\textstyle\sum_{i\geq 1}} \gamma_{Qi} \psi_{0i} Q_{ki}$

1. self weight load + imposed load

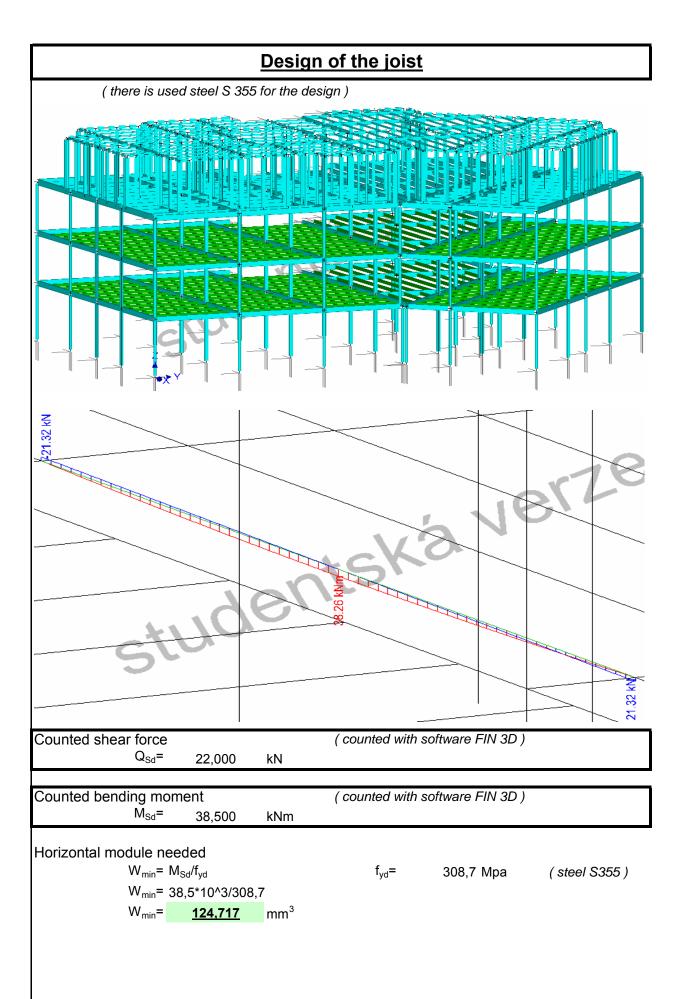
1,35*G_k+1,5*Q_N

2. self weight load + imposed load + snow load

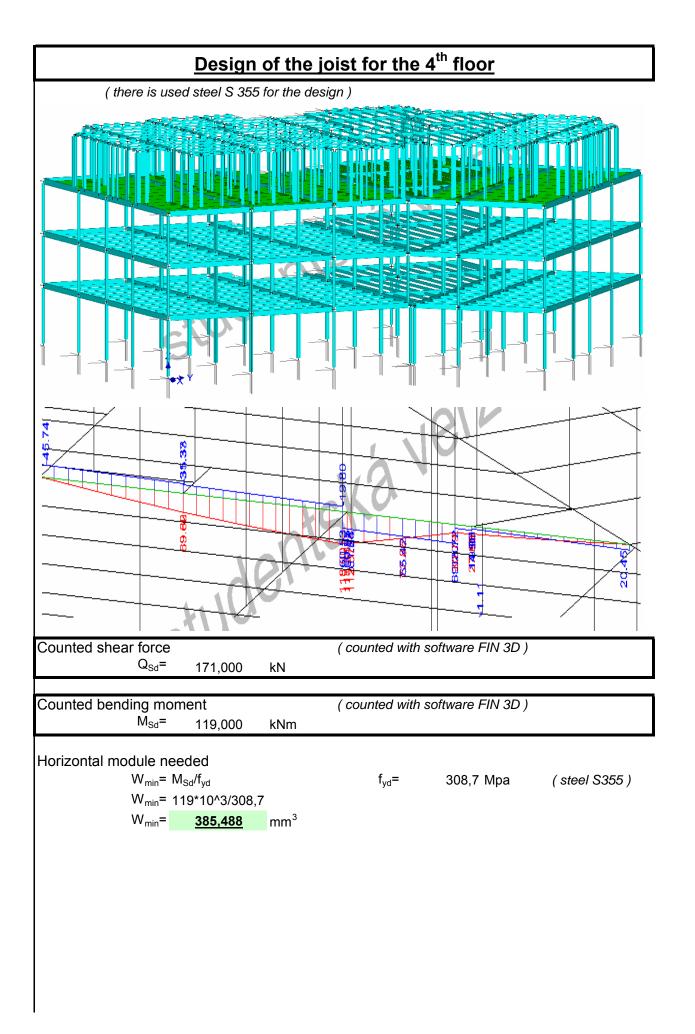

1,35*G_k+1,5*Q_N+0,6*1,5*Q_S

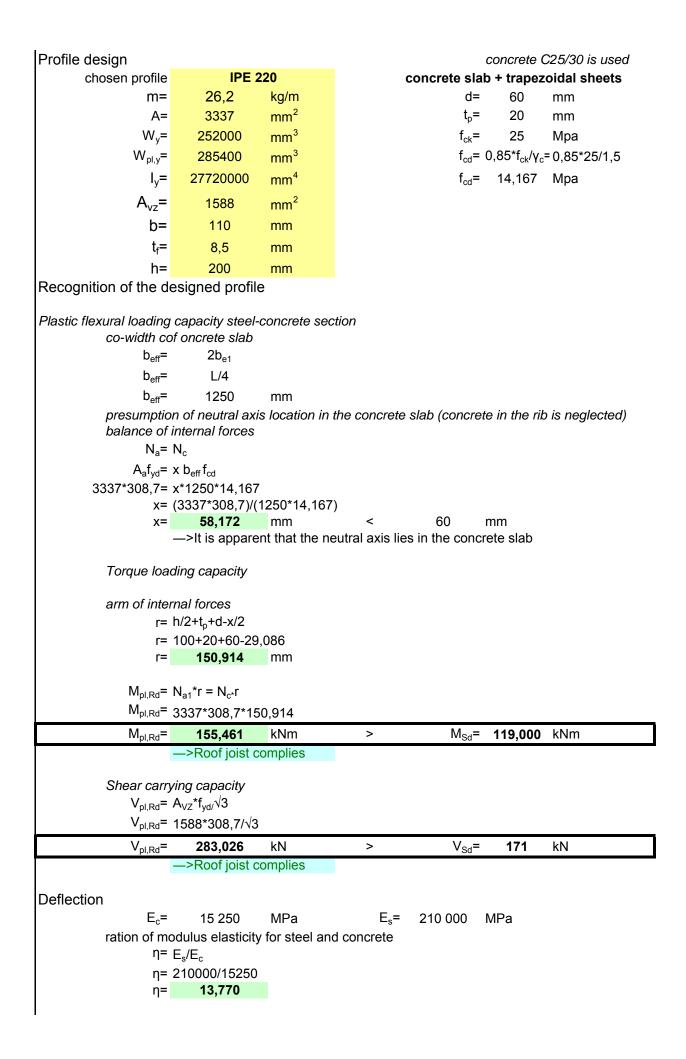
3. self weight load + wind load $\theta=0^{\circ}$

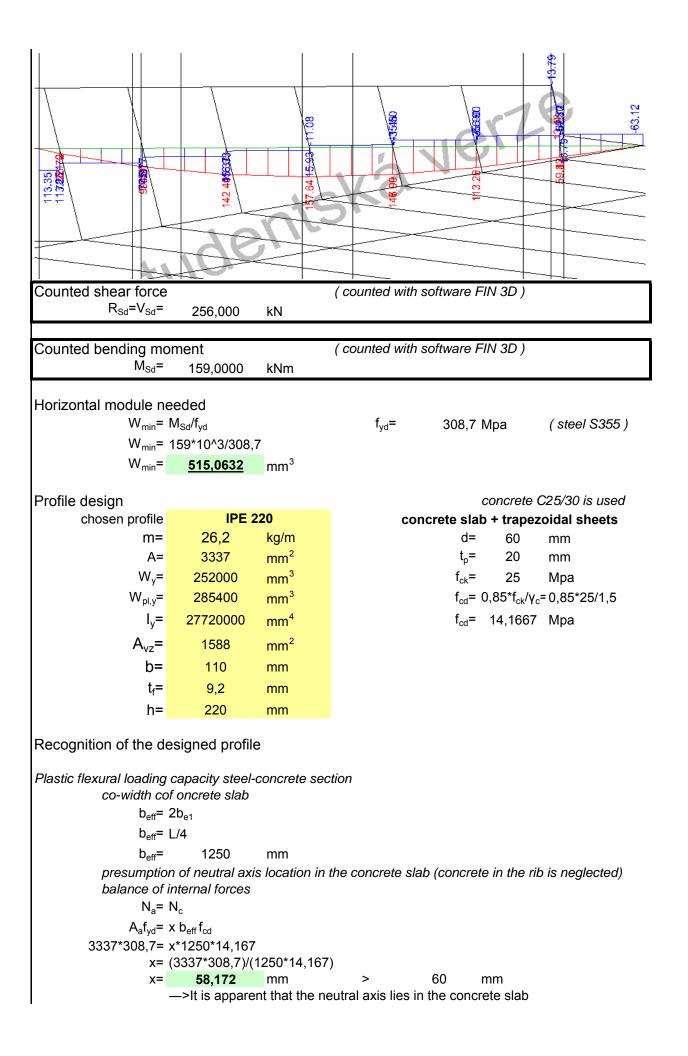
1,0*G_k+1,5*Q_V


4. self weight load + wind load θ=90°

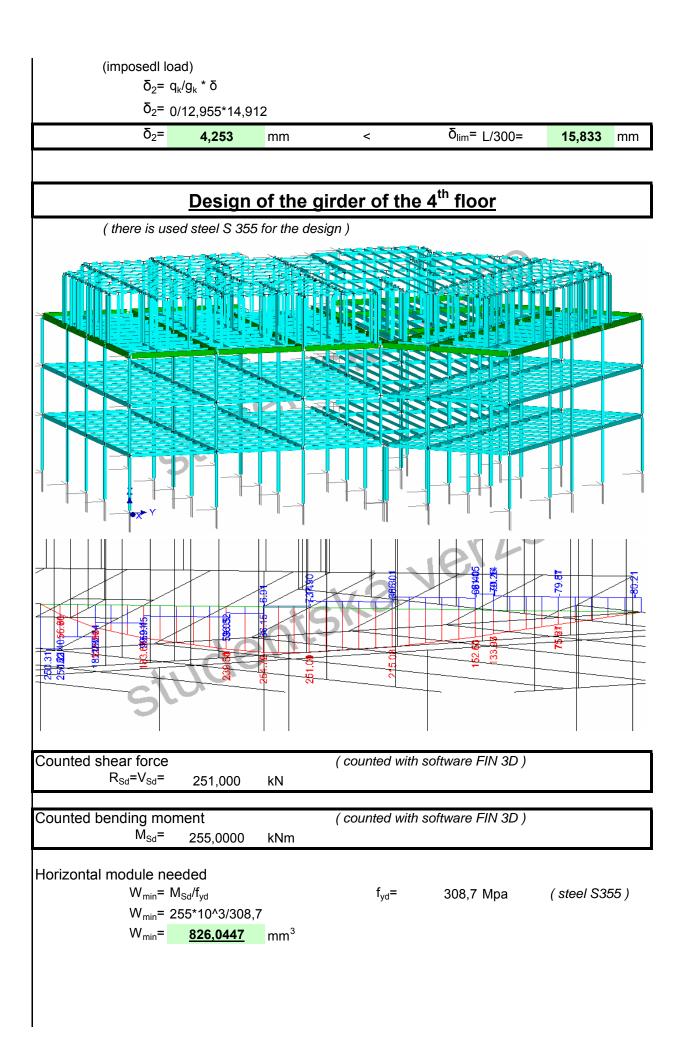
1,0*G_k+1,5*Q_V

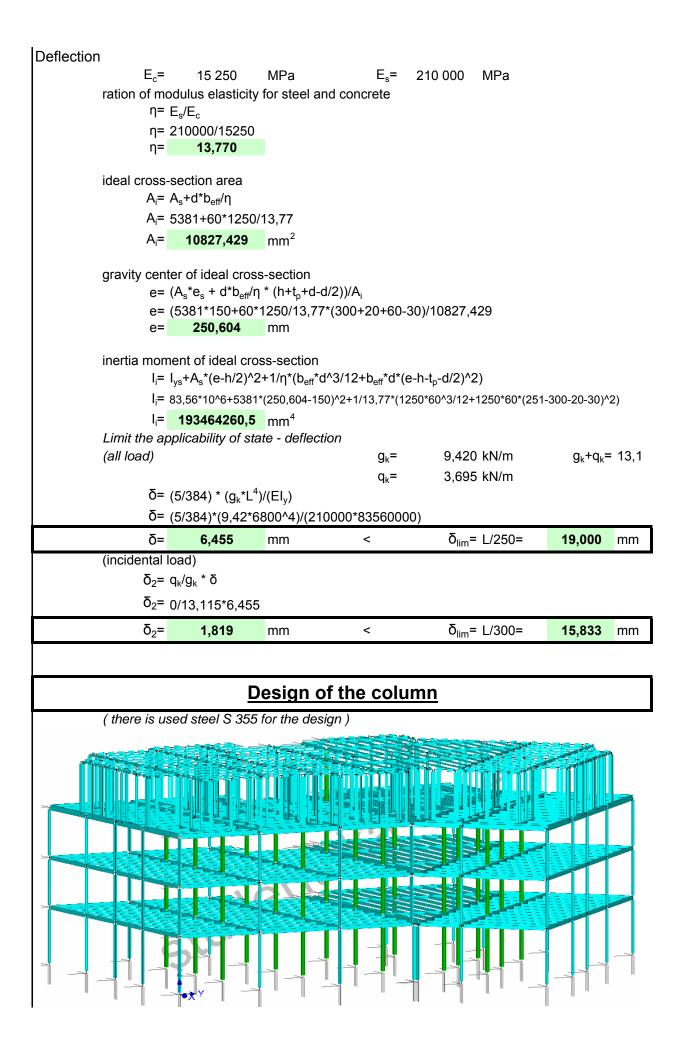

Counted shear force			(counted with software FIN 3D)
Q _{Sd} =	19,000	kN	
Counted bonding ma	mont		(accurate divisity and tware FINI 2D)
Counted bending mo M _{sd} =		l Nime	(counted with software FIN 3D)
WSd ⁻	21,000	kNm	
Horizontal module ne	eeded		
W _{min} =			f _{yd} = 308,7 Mpa <i>(steel S355)</i>
	21*10^3/308,7		
W _{min} =	68,0272	mm ³	
Profile design			concrete C25/30 is used
chosen profile	IPE '	100	concrete slab + trapezoidal sheets
m=	8,1	kg/m	d= 60 mm
A=	1032	mm ²	t _p = 20 mm
W _y =	34200	mm ³	f _{ck} = 25 Mpa
W _{pl,y} =	39410	mm ³	f_{cd} = 0,85* f_{ck}/γ_c = 0,85*25/1,5
I _y =	1710000	mm⁴	f _{cd} = _{14,167} Mpa
A _{vz} =	508	mm ²	
b=	55	mm	
t _f =	5,7	mm	
h=	100	mm	
Recognition of the de			
	5 - 1 -	-	
Plastic flexural loading		concrete se	ection
	of oncrete slab		
b _{eff} =	2b _{e1}		
	L/4		
b _{eff} =		mm via lagation i	in the concrete electronic in the rip is neglected)
	n or neutrarax internal forces	is location i	in the concrete slab (concrete in the rib is neglected)
N _a =			
	x b _{eff} f _{cd}		
	x*1125*14,167	,	
x=	(1032*308,7)/(1125*14,16	37)
x=	19,989	mm	< 60 mm
	—>It is appare	ent that the r	neutral axis lies in the concrete slab
Torque load	ding capacity		
arm of inter	rnal faraaa		
	h/2+t _p +d-x/2		
	50+20+60-9,9	95	
r=	120,005	mm	
1.7	N_{a1} *r = N_{c*} r		
	1032*308,7*12		
M _{pl,Rd} =	38,231	kNm	> M _{Sd} = 21,000 kNm
P. 7			

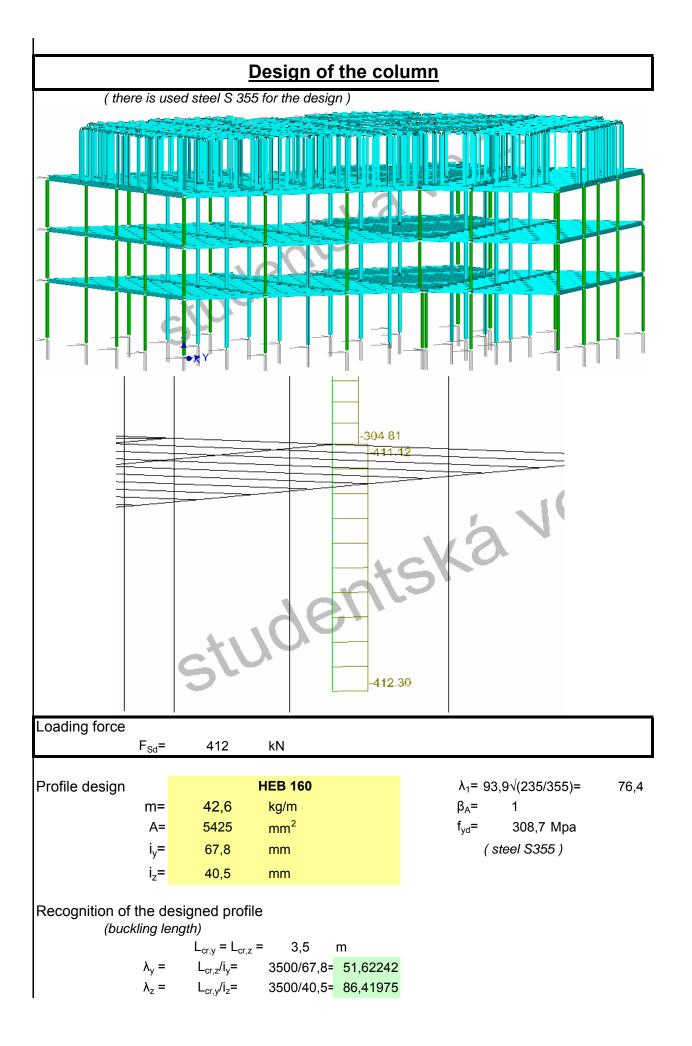

	V _{pl,Rd} =	508*308,7/√3 90,540	kN	>	V _{Sd} = 19	kN	
	-	->Roof joist of		ŕ	· Su		
		,					
Deflectio		45050		F –			
	E _c =	15250 dulus elasticit	MPa	E _s =	210000 MPa		
		E _s /E _c	y ior steer an				
		210000/15250)				
	η=	13,770					
	ideal cross-s	section area					
		A _s +d*b _{eff} /η					
	A _i = 1	1032+60*1125	5/13,77				
	A _i =	5933,786	mm ²				
	arovity cont	er of ideal cros	a costion				
		A _s *e _s + d*b _{eff} /		/2))/A;			
				100+20+60-30)	/5933,786		
	e=	132,608	mm				
	inertia mom	ent of ideal cr	oss-section				
				^3/12+b _{eff} *d*(e-l	h-t _p -d/2)^2)		
	l _i = 1	,71*10^6+1032	2*(132,608-50))^2+1/13,77*(112	5*60^3/12+1125*60*(1	133-100-20-	
	l _i =	11705688,29	mm ⁴				
	Limit the ap	plicability of st	tate - deflecti		(= 00 / 11/		
	/ - II I IN						h
	(all load)			$g_k =$		g _k +q	
		5/384) * (a _v *L	. ⁴)/(El _i)	g _k = q _k =	4,796 kN/m 2,835 kN/m	yk'y	
	δ= (5/384) * (g _k *L 5/384)*(4,796		q _k =	2,835 kN/m	g _k ' c	
	δ= (2,835 kN/m	9k'4 18	
	δ= (δ= (δ=	5/384)*(4,796 16,575	6*4500^4)/(21	q _k =	2,835 kN/m 8,291)		
	δ= (δ= (δ= (imposed loa	5/384)*(4,796 16,575 ad)	6*4500^4)/(21	q _k =	2,835 kN/m 8,291)		
	δ = (δ = ($\delta =$ (imposed log $\delta_2 = 0$	5/384)*(4,796 16,575 ad) g _k /g _k * δ	*4500^4)/(21 mm	q _k =	2,835 kN/m 8,291)		
	δ = (δ = ($\delta =$ (imposed log $\delta_2 = 0$	5/384)*(4,796 16,575 ad)	*4500^4)/(21 mm	q _k =	2,835 kN/m 8,291)		

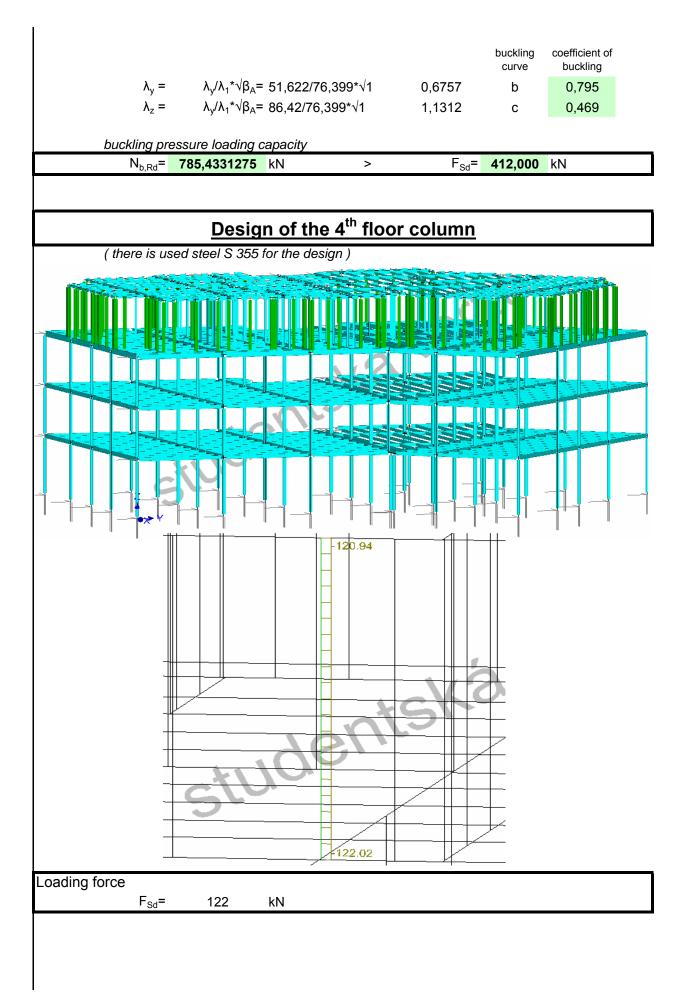

Profile design				C	concrete	C25/30 is used
chosen profile	IPE 1	60	co			oidal sheets
m=	15,8	kg/m		d=	60	mm
A=	2009	mm ²		t _p =	20	mm
W _v =	109000	mm ³		f _{ck} =	25	Мра
W _{pl,y} =	123900	mm ³		f _{cd} = 0),85*f _{ck} /γ _c	= 0,85*25/1,5
I _y =		mm ⁴			14,1667	
A _{vz} =		mm ²			·	·
b=	82	mm				
t _f =	7,4					
		mm				
h= Recognition of the d	160 osignod profik	mm				
	esigned promo	5				
Plastic flexural loading	capacity steel- of oncrete slab	concrete sec	tion			
b _{eff} =						
b _{eff} =	• •					
b _{eff} =	945	mm				
	on of neutral axi	s location in	the concrete sla	ab (concrete	e in the ril	b is neglected)
balance of N _a =	internal forces					
	x b _{eff} f _{cd}					
,	x*945*14,167					
x=	(2009*308,7)/(945*14,167)				
x=	46,325	mm	<		nm	
	—>It is appare	nt that the ne	eutral axis lies i	n the concre	ete slab	
Torque loa	ding capacity					
,	5, , ,					
arm of inte						
	h/2+t _p +d-x/2					
	80+20+60-23,7					
r=	136,837	mm				
M _{pl Pd} =	N _{a1} *r = N _{c*} r					
1. 7	2009*308,7*13	6 837				
M _{pl,Rd} =	84,864	kNm	>	M _{Sd} =	38,500	kNm
pi,ru	—>Roof joist c		-	30	30,300	KINITI
		omplied				
	ying capacity					
	A _{VZ} *f _{yd/} √3					
V _{pl,Rd} =	965*308,7/√3					
V _{pl,Rd} =	171,990	kN	>	V _{Sd} =	22	kN
	>Roof joist c	omplies				

Deflection E_c= 15 250 MPa Es= 210 000 MPa ration of modulus elasticity for steel and concrete $\eta = E_s / E_c$ η= 210000/15250 η= 13,770 ideal cross-section area $A_i = A_s + d^* b_{eff} / \eta$ A_i= 2009+60*945/13,77 A_i= **6126,500** mm² gravity center of ideal cross-section $e = (A_s * e_s + d * b_{eff} / \eta * (h + t_p + d - d / 2)) / A_i$ e= (2009*80+60*945/13,77*(160+20+60-30)/6126,5 e= 167,370 mm inertia moment of ideal cross-section $I_{i} = I_{vs} + A_{s}^{*}(e-h/2)^{2} + 1/\eta^{*}(b_{eff}^{*}d^{3}/12 + b_{eff}^{*}d^{*}(e-h-t_{p}-d/2)^{2})$ I_i= 8,693*10^6+2009*(167,37-80)^2+1/13,77*(945*60^3/12+945*60*(167-160-20-30)^2) l_i= **32746787,79** mm⁴ Limit the applicability of state - deflection (all load) 3,653 kN/m $g_k + q_k = 5.8$ g_k= q_k= 2,126 kN/m $\delta = (5/384) * (g_k * L^4) / (EI_i)$ $\delta = (5/384)^{*}(3,653^{*}7000^{4})/(210000^{*}32746787,787)$ δ= δ_{lim} = L/250= 17,237 18 mm < mm (imposed load) $\delta_2 = q_k/g_k * \delta$ δ₂= 2,126/5,779*17,237 δ₂= 6,341 < $\delta_{\text{lim}} = L/300 =$ 15,833 mm mm




	-section area A _s +d*b _{eff} /η					
A _i =	3337+60*125	0/13,77				
A _i =	8783,429	mm ²				
e=		/ŋ * (h+t _p +d-d	/2))/A _i *(200+20+60-30)/8783,429		
l _i = l _i =	27,72*10^6+333	[\] 2+1/η*(b _{eff} *d 37*(193,012-10	^3/12+b _{eff} *d*(e-ł 0)^2+1/13,77*(125	n-t _p -d/2)^2) :0*60^3/12+1250*60*(19	93-200-20-30))^2)
l _i =	75911086,7: oplicability of s		on			
(all load)	ophoability of 3		g _k =	3,653 kN/m	g _k +q _k =	= 5,8
			q _k =			,
δ=	(5/384) * (g _k *L	_4)/(El _i)				
δ=	(5/384)*(3,653	3*7000^4)/(21	10000*75911086	6,735)		
δ=	7,436	mm	<	δ _{lim} = L/250=	18	mm
_	q _k /g _k * δ 2,126/5,779*7 2,736					
0 ₂ =	2 7 3 6			5		
	2,700	mm	<	δ _{lim} = L/300=	15,833	mm
	2,100				15,833	mm
	sed steel S 35	Design (of the bean		15,833	mm


Te	orque loa	ding capacity						
aı		rnal forces						
		h/2+t _p +d-x/2						
		110+20+60-29						
	r=	160,914	mm					
	M _{pl,Rd} =	N _{a1} *r = N _{c*} r						
	M _{pl,Rd} =	3337*308,7*16	60,914					
	M _{pl,Rd} =		kNm	>	M _{Sd} =	159,000	kNm	
		—>Girder com	plies					
S	hear carr	ying capacity						
•		A _{VZ} *f _{yd/} √3						
		1588*/√3						
	V _{pl,Rd} =		kN	>	V _{ed} =	256,000	kN	
	∙ pi,Ra	—>Girder com			• 50	200,000		
			ipiloo					
S		ying capacity						
	-	A _{VZ} *f _{yd/} √3						
		1588*308,7/√3						
	V _{pl,Rd} =		kN	>	V _{Sd} =	256	kN	
		—>Girder com	plies					
Deflection								
Jellection	E _c =	15250	MPa	E _s =	210000	MPa		
ra	•	odulus elasticity		-	210000			
		E _s /E _c	,					
		210000/15250						
	, η=	13,770						
id		-section area						
	-	A _s +d*b _{eff} /η						
	-	3337+60*1250						
	A _i =	8783,429	mm ²					
ar	ovity con	ter of ideal cros	e coction					
gi	2	$(A_s * e_s + d * b_{eff}/l)$		/2))/Δ.				
				*(220+20+60-30	1)/8783 /20	`		
	e=	209,213	mm	(220+20+00-30	5)/0700,423			
in		nent of ideal cro		AQ /4 Q + 1 + 1+/ - 1				
		,		^3/12+b _{eff} *d*(e-	•			
				^2+1/13,77*(1250*6	60^3/12+1250 [°]	*60*(209-220)-20-30)^2)	
		82325628,53		· · ·				
		oplicability of st	ate - deflecti		0.060	kNI/m	a ±a -	_ 44444
(a	ll load)			g _k =	9,260 2,605		g _k +q _k =	- ###
	δ=	(5/384) * (g _k *L'		q _k =	3,695	KIN/III		
	0-	(J) J (9k L						
		(5/384)*(0 26*	6800^4\//ว10)000*27720000)			
		(5/384)*(9,26*(14,912	6800^4)/(210 mm	0000*27720000 <		L/250=	19,000	mm



V _{pl,Rd} =	2568*308,7/√3 457,690	kN	>	V _{Sd} =	251	_	kN
V _{pl,Rd} =	A _{VZ} *f _{yd/} √3						
Shear carr	ing capacity						
M _{pl,Rd} =	256,429 —>Girder com	kNm plies	>	M _{Sd} =	255,0	00	kNm
	1062,5*(150+8				255.0	00	kNm
	$N_{c}^{*}r_{c} + N_{a1}^{*}r_{a1}$		775*/450 0	000			
•	ding capacity						
			ca in the up	por nange u		Sine	
x=	6,464 —>The neutra	mm Lavis is locat	< ed in the un	10,7 per flance of	mm steel pr	ofile	
	299,307*1000/	. ,					
• •	$N_{a1}/(f_{yd}*b)$			5			
presumptio	on of a neutral a	axis position	in the upper	flange of ste	el profile	е	
N _{a1} =	$(N_{a}-N_{c})/2=$	(1661,1147	' -1062,5)/2=	299,307	kN		
N _c =	d * b _{eff} * f _{cd} =	60*1250*14	4,167=	1062,5	kN		
N _a =	$A_s f_{yd} =$	5381*308,7	7=	1661,1147	kN		
	$N_c + 2N_{a1}$						
	n of a neutral a internal forces	ixis location il	n a steel pro	otile			
	—>It is appare				concre	ete s	lab
	(5381*308,7)/(93,804	mm) >	60	mm		
	x*1250*14,167		N				
,	${\sf x} {\sf b}_{\sf eff} {\sf f}_{\sf cd}$						
N _a =	N _c						
	n of neutral axi internal forces	รายเวลแบก เกา		ราสม (CONCIE		J IID	is neglected)
b _{eff} =		mm is location in a	the concrete	slah (conora	to in the	a rih	is nealected)
b _{eff} =							
b _{eff} =							
co-width co	of oncrete slab						
Plastic flexural loading	capacity steel-	concrete sec	tion				
Recognition of the d	esigned profil	e					
h=	300	mm					
t _f =	10,7	mm					
b=	150	mm					
A _{vz} =	2568	mm ²					
l _y =	83560000	mm ⁴		f _{cd} =	14,16	67	Мра
W _{pl,y} =	628400	mm ³					0,85*25/1,5
W _y =	557000	mm ³			25		Мра
A=	5381			•	20		mm
m=	42,2	kg/m		d=	60		mm
chosen profile	IPE (concrete sla	-		oidal sheets

SU	JGG	-693.73		e	Z	
Loading force F _{Sd} =	694	kN				
Profile design m= A= $i_y=$ $i_z=$ Recognition of the de <i>(buckling le</i> $\lambda_y =$	42,6 5425 67,8 40,5 esigned profile ngth $L_{cr,y} = L_{cr,z} = L_{cr,z}/i_y =$	3,5 m 3500/67,8= 51,62242	β _A = f _{yd} =	93,9√(235/ 1 308,7 (steel S35	′ Мра	76,4
		3500/40,5= 86,41975		buckling curve	coefficient of buckling	
		51,622/76,399*√1 86,42/76,399*√1	0,6757	b	0,795	
buckling pre	essure loading o	capacity	1,1312	С	0,469	
N _{b,Rd} =	785,4331275	kN >	F _{Sd} =	694,000	kN	

N _{b,Rd} =	186,494	kN	>	F _{Sd} =	122,000	kN	
buckling pre	essure loading	g capacity					
$\lambda_z =$	λ _y /λ ₁ *√β	_A = 138,34/76,39	99*√1	1,8108	С	0,232	
$\lambda_y =$	λ _y /λ ₁ *√β	_A = 84,337/76,39	99*√1	1,1039	b	0,535	
					buckling curve	coefficient of buckling	
$\lambda_z =$	L _{cr,y} /i _z =	3500/25,3=	138,340				
		3500/41,5=					
(1997)	•	<u>,</u> = 3,5 m	า				
Recognition of the de (buckling le	•	le					
i _z =	25,3	mm					
i _y =	41,5	mm			(steel S35	55)	
A=	2604	mm ²		f _{yd} =	308,7	Мра	
m=	20,4	kg/m		β _A =	1		
Profile design		HEB 100		λ ₁ =	93,9√(235/	/355)=	76,4

List	List of elements designed for the steel structure								
	Element	Profile							
	roof	IPE 100							
purlin	2nd, 3rd floor	IPE 160							
_	4th floor	IPE 220							
haam	2nd, 3rd floor	IPE 220							
beam	4th floor	IPE 300							
aalumn	2nd, 3rd floor	HEB 160							
column	4th floor	HEB 100							

C

Static evaluation of the light-weight concrete structure variant

Self-weight load + imposed load for each composition

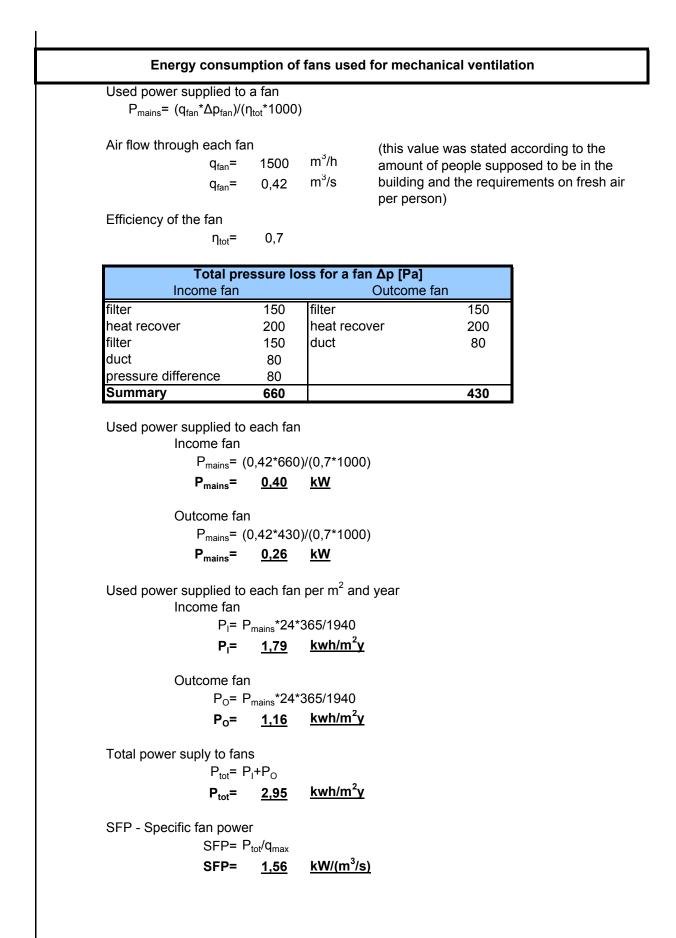
Construction of the floor

(There is concidered floor in the bathroom - ceramic tiles and waterproofing) (There will be used wooden floor in the other rooms - the composition is lighter)

Self weig	ght of the co	mposition					
Layers of the composition	Thicknes s [mm]	Density [kg/m ³]	g _k [kN/m²]	γ⊧	q _d [kN/m²		
Final layer - ceramic tiles							
Rako Tanse	10,00	2000,00	0,200	1,35	0,270		
Waterproofing Sarnafil G 441-24EL	2,40	3200,00	0,077	1,35	0,104		
Anhydrite	2,40	3200,00	0,077	1,55	0,104		
Anhyment AE 20	400,00	2100,00	8,400	1,35	11,340		
Impact sound insulation	,	,	0,.00	.,	,		
. Dow Ethafoam	20,00	35,00	0,007	1,35	0,009		
Poriment							
	240,00	420,00	1,008	1,35	1,361		
Concrete slab							
Internal plactor	250,00	2400,00	6,000	1,35	8,100		
Internal plaster	12,50	750,00	0,094	1,35	0,127		
Summary	12,00	100,00	15,786	1,00	21,310		
Imposed I	oad for the c	ompositio	•				
			q _k [kN/m ²]	γ⊧	g _d [kN/m		
			1,500	1,500	2,250		
Summary			1,500		2,250		
JOIST	or loading		9 _d		q _d		
	[m]	[kN/m´]			[kN/m´]		
middle 2 2	,500	53	,276	5	,625		

Construction of the roof

L


l

	O al fana i al		•••										
	Self weigi	ht of the co	mposition										
Layers of the compos	ition	Thicknes s [mm]	Density [kg/m ³]	g _k [kN/m²]	γF	q _d [kN/m²]							
Greening				1,000	1,35	1,350							
Waterproofing				1,000	1,55	1,550							
Sarnafil C Thermal insulation	6 441-24EL	2,40	3200,00	0,077	1,35	0,104							
Dow Roo Waterproofing	fmate SL	140,00	35,00	0,049	1,35	0,066							
Sikaplan Thermal insulation	D	1,20	1300,00	0,016	1,35	0,021							
Dow Roo	fmate SL	120,00	35,00	0,042	1,35	0,057							
Concrete slab		200,00	2300,00	4,600	1,35	6,210							
Internal plaster		12,50	750,00	0,094	1,35	0,127							
Summary				5,877		7,934							
Imposed and snow load for the roof composition													
				q _k [kN/m²]	γ⊧	g _d [kN/m²]							
imposed load				1,500	1,500	2,250							
snow load				0,560	1,500	0,840							
Summary				2,060		3,090							
	Width fo	r loading		g _d		q _d							
Chosen wall		n]		I/m´]		N/m′]							
middle 3	3,5	500	27	,770	10),815							
Evaluati	on of the c	arrying c	apacity o	of the wall									
material used for the wall design			YTONG P	4 500									
load bearing capacity			4	MPa									
density			650	kg/m ³									
wall thickness			250	mm									
	Self	weigt of the	wall										
height	Thicknes	self weigh	ht [kg/m³] q _k [kN/m		γF	g _d [kN/m²]							
Floor [m]	s [m]	Sen weigi	n [ng/m]										
4th floor 3,200	0,250	520,	000	5,200	1,350	7,020							
Floor [m] 4th floor 3,200 3rd floor 3,050	0,250 0,250	520, 495,	000 625	4,956	1,350 1,350	6,691							
4th floor 3,200	0,250	520,	000 625 500		1,350								

Statement of loading no load from ro		1			g _d [kN/m²
	elf weight of con	npositions			27,770
in	nposed load				10,815
load of each					
	elf weight of con posed load	npositions			53,276
111	iposeu loau				5,625
Fotal load on the wall i	n 1 st floor - no	mal force in the	e heel		
	N _{Ed} = 242,	886 kN/m´			
	$N_{Ed} < N_{Rd}$				
	N _{Rd} = Φ*t*f _d				
Assessment of the des		the pressure			
	$f_b = 4$				
	$f_{k} = K^{*} f_{b}^{0,8}$		K=	0,8	
	$f_k = 0.8*4'$				
	f _k = 2,5	99 MPa			
	$f_d = f_k / \gamma_M$		γ _M =	2,2	
	f _d = 2,599	12.2	1 101	_,_	
	<u>f_d</u> = <u>1,1</u>				
	<u>.a,.</u>				
Decreasing coefficient	expressing the	e effect of slend	lerness and lo	ad eccentric	ity
	Φ= 1-2*(ε	e _i /t)	h=	3200 mm	
			ρ _n =	0,75	
	0- 0		h – o *	h	
	$e_i = e_{init}$	0	h _{ef} = ρ _n *		
	e _i = h _{ef} /45		h _{ef} = 0,7		
	e _i = 2400/		h _{ef} =	2400	
	e _i = 5,3	33 mm			
	Φ= 1-2*(e	e:/t)			
		5,333/250)			
	Φ= 0,9				
Assessment for the pre					
Assessment for the pre	533010				
	$N_{Rd} = \Phi^* t^* f_d$				
	N _{Rd} = 0,957	*250*1,181			
	<u>N_{Rd}= 282,</u>	762 <u>kN/m´</u>			
	N 1	N 1			
_	N _{Rd} >	Eũ			
	<u>282,762</u> >	all complies			

D

Energy consumption of fans used for mechanical ventilation

E

Evaluation of heat capacity of indoor mass for all alternatives

Evaluation of internal heat mass capacity

Internal heat mass capacity c c= $\Sigma \rho^* c * d * A$

 ρ - density of material [kg/m 3]

- c- specific heat mass capacity of the layer [J/kgK]
- d- thickness of the layer [m]
- A- area of the element [m²]

The evaluation is done for all of the structures in contact with the internal air. The maximal thicknss of the elemet taken in account is 100 mm.

		Compositons	A [m ²]	ρ [kg/m³]	d[m]	c[J/kgK]	C _{int} [kJ/K]
		Ceiling al	bove the b	asement			
	1.	final layer - ceramic tiles	496,5	2000	0,010	840	8341,20
	2.	anhydrite	496,5	2100	0,050	840	43791,30
	3.	impact sound insulation Ethafoam	496,5	35	0,020	1000	347,55
	4.	concrete slab	496,5	2400	0,020	1020	24308,64
		Circumfere				-	
	1.	internal plaster (gypsum based)	701,42	1300	0,010		9118,46
	2.	reinforced concrete	701,42 Roof	2400	0,090	1020	154536,85
é	1.	internal plaster (gypsum based)	430,75	1300	0,010	1000	5599,75
ativ	2.	concrete slab	430,75	2400	0,090	1020	94902,84
Concrete structure alternative		Wi	ndows/do	or			
Ite	1.	glass	342,3	2600	0,008	840	5980,67
a a	2.	frame	60,41	600	0,020	2520	1826,80
ur.		Partitio	on betwee	n flats			
rct	1.	internal plaster (gypsum based)	427,6	1300	0,010	1000	5558,80
Ľ,	2.	reinforced concrete	427,6	2400	0,040	1020	41870,59
о О	2.	reinforced concrete	427,6	2400	0,040	1020	41870,59
ret	1.	internal plaster (gypsum based)	427,6	1300	0,010	1000	5558,80
DC L			Ceiling				
ō	1.	final layer - ceramic tiles	1442,85	2000	0,010	840	24239,88
Ŭ	2.	anhydrite	1442,85	2100	0,040	840	101807,50
	3.	concerete slab	1442,85	2400	0,040	1000	138513,60
	4.	internal plaster (gypsum based)	1442,85	1300	0,010	1000	18757,05
			Partitions				
	1.	internal plaster (gypsum based)	1250,7	1300	0,010	1000	16259,10
	2.	reinforced concrete	1250,7	2400	0,040	1020	122468,54
	2.	reinforced concrete	1250,7	2400	0,040	1020	122468,54
	1.	internal plaster (gypsum based)	1250,7	1300	0,010	1000	16259,10
		Internal heat mass cap	acity		5 [,]	17,72	kJ/(Km²)

	Compositons	A [m ²]	ρ [kg/m³]	d[m]	c[J/kgK]	C _{int} [kJ/K]						
		Stairway										
	1. final layer - ceramic tiles	92	2000	0,010	2520	4636,80						
	2. concrete siab	92	2400	0,090	1020	20269,44						
>	Stairwa	y - Wall to	exterior									
va	1. inenal plaster (gypsum based)	155,47	2000	0,010	2520	7835,69						
i,	2. concrete	155,47	2400	0,090	1020	34253,15						
Stairway	Stairway - Wall to interior											
	1. inenal plaster (gypsum based)	103,4	2000	0,010	2520	5211,36						
	2. concrete	103,4	2400	0,090	1020	22781,09						
	Internal heat mass cap	acity		5	64,49	kJ/(Km²)						

		Compositons	A [m ⁻]	ρ [kg/m°]	d[m]	c[J/kgK]	C _{int} [kJ/K]
		Ceilin	g above ga	arages			
	1.	final layer - ceramic tiles	496,5	2000	0,010	840	8341,20
	2.	anhydrite	496,5	2100	0,050	840	43791,30
	3.	impact sound insulation Ethafoam	496,5	35	0,020	1000	347,55
	4.	concrete slab	496,5	2400	0,020	1020	24308,64
		Circumfe	rence wal -	main wall			
	1.	internal plaster (gypsum based)	701,42	1300	0,010	1000	9118,46
	2.	YTONG - P-4-500	701,42	500	0,090	1000	31563,90
			Roof				
e	1.	internal plaster (gypsum based)	430,75	1300	0,010	1000	5599,75
Light-weight concrete alternative	2.	concrete slab	430,75 /indows/do	2400	0,090	1020	94902,84
na		W					
ter	1.	glass	342,3	2600	0,008	840	5980,67
alt	2.	frame	60,41	600	0,020	2520	1826,80
ete			ons betwee			-	
Cre	1.	plasterboard	427,6	750	0,013	1000	4008,75
ŭ	2.	insulation - Orsil N	427,6	100	0,037	1150	1831,73
ö	5.	insulation - Orsil N	427,6	100	0,037	1150	1831,73
ht	6.	gypsumboard	427,6	750	0,013	1000	4008,75
eig			Ceiling				
Š	1.	final layer - ceramic tiles	1442,85	2000	0,010	840	24239,88
ht	2.	anhydrite	1442,85	2100	0,040	840	101807,50
<u>-i</u> 9	3.	concerete slab	1442,85	2400	0,040	1000	138513,60
_	4.	internal plaster (gypsum based)	1442,85	1300	0,010	1000	18757,05
			Partitions		0.040	1000	
	1.	internal plaster (gypsum based)	1250,7	1000	0,010	1000	12507,00
	2.	YTONG-P-4-500	1250,7	500	0,040	1000	25014,00
	3. 4.	YTONG-P-4-500	1250,7 1250,7	500 1000	0,040	1000 1000	25014,00
	4.	internal plaster (gypsum based)	ncrete colu		0,010	1000	12507,00
	1			2000	0.010	2520	7024 74
	2	inenal plaster (gypsum based) concrete	145,53 145,53	2000	0,010	1020	7334,71
	۷.		140,00	2400	0,090	1020	32063,17
		Internal heat mass ca	pacity		32	27,43	kJ/(Km²)

	Compositons	A [m²]	ρ [kg/m³]	d[m]	c[J/kgK]	C _{int} [kJ/K]
	Ceiling	above the	garages			-
1	final layer - ceramic tiles	496,5	2000	0,010	840	8341,20
2	anhydrite	496,5	2100	0,050	840	43791,30
3	impact sound insulation Ethafoam	496,5	35	0,020	1000	347,55
4	. concrete slab	496,5	2400	0,020	1020	24308,64
			- main wall	-		1
1	plasterboard	701,42	750	0,013	1060	6970,36
2	air gap	701,42	1,2	0,050	1010	42,51
2	OSB board	701,42	650	0,015	1700	11626,04
3	mineral wool	701,42	138,4	0,023	1053,8	2301,73
		Roof				
1	plasterboard	430,75	750	0,013	1060	4280,58
2	- 3-1	430,75	1,2	0,050	1010	26,10
1 2	OSB board	430,75	650	0,015	1700	7139,68
3		430,75	138,4	0,023	1053,8	1413,52
Steel structure alterntive		indows/do				
v 1	3	342,3	2600	0,008	840	5980,67
2		60,41	600	0,020	2520	1826,80
	Partitio	on betwee	n floors			
1	plasterboard	427,6	750	0,013	1060	4249,28
2		427,6	100	0,037	1150	1831,73
ğ 3		427,6	100	0,037	1150	1831,73
ເ 4	plasterboard	427,6	750	0,013	1060	4249,28
		Ceiling				
1	final layer - ceramic tiles	1442,85	2000	0,010	840	24239,88
2		1442,85	2100	0,040	840	101807,50
3		1442,85	1,2	0,038	1010	65,58
1	plasterboard	1442,85	750	0,013	1060	14338,32
		Partitions				
1		1250,7	750	0,013	1060	12428,83
2		1250,7	67,2	0,038	950	2994,18
2		1250,7	67,2	0,038	950	2994,18
1	plasterboard	1250,7	750	0,013	1060	12428,83
-	Internal heat mass ca	pacity		15	55,60	kJ/(Km ²)

		Compositons	A [m²]	ρ [kg/m³]	d[m]	c[J/kgK]	C _{int} [kJ/K]									
		Ceiling	above the	garages												
	1.	final layer - ceramic tiles	496,5	2000	0,010	840	8341,20									
	2.	anhydrite	496,5	2100	0,050	840	43791,30									
	3.	impact sound insulation Ethafoam	496,5	35	0,020	1000	347,55									
	4.	concrete slab	496,5	2400	0,020	1020	24308,64									
		Circumfer	ence wall ·	- main wall												
	1.	plasterboard	701,42	750	0,013	1060	6970,36									
	2.	air gap	701,42	1,2	0,050	1010	42,51									
	2.	OSB board	701,42	650	0,015	1700	11626,04									
	3.	mineral wool	701,42	138,4	0,023	1053,8	2301,73									
			Roof													
	1.	plasterboard	430,75	750	0,013	1060	4280,58									
a	2.	air gap	430,75	1,2	0,050	1010	26,10									
<u>š</u>	2.	OSB board	430,75	650	0,015	1700	7139,68									
Jat	3.	mineral wool	430,75	138,4	0,023	1053,8	1413,52									
Timber structure alternative		W	indows/do	or												
alt	1.	glass	342,3	2600	0,008	840	5980,67									
ē	2.	frame	60,41	600	0,020	2520	1826,80									
ti l		Partition between flats														
ž	1.	gypsumboard	427,6	750	0,013	1060	4249,28									
st	2.	insulation Orsil N	427,6	100	0,037	1150	1831,73									
er	3.	insulation Orsil N	427,6	100	0,037	1150	1831,73									
dr dr	4.	plasterboard	427,6	750	0,013	1060	4249,28									
i≓			Ceiling													
	1.	final layer - ceramic tiles	1442,85	2000	0,010	840	24239,88									
	2.	OSB board	1442,85	650	0,015	1700	23915,24									
	3.	impact sound insulation - Ethafoam	1442,85	30	0,020	840	727,20									
	2.	OSB board	1442,85	650	0,005	1700	7971,75									
	3.	air gap	1442,85	1,2	0,038	1010	65,58									
	1.	gypsumboard	1442,85	750	0,013	1060	14338,32									
			Partitions													
	1.	gypsumboard	1250,7	750	0,013	1060	12428,83									
	2.	mineral wool	1250,7	67,2	0,038	950	2994,18									
	2.	mineral wool	1250,7	67,2	0,038	950	2994,18									
	1.	gypsumboard	1250,7	750	0,013	1060	12428,83									
					_											
		Internal heat mass cap	acity		1'	19,93	kJ/(Km²)									

F

Amounts of materials

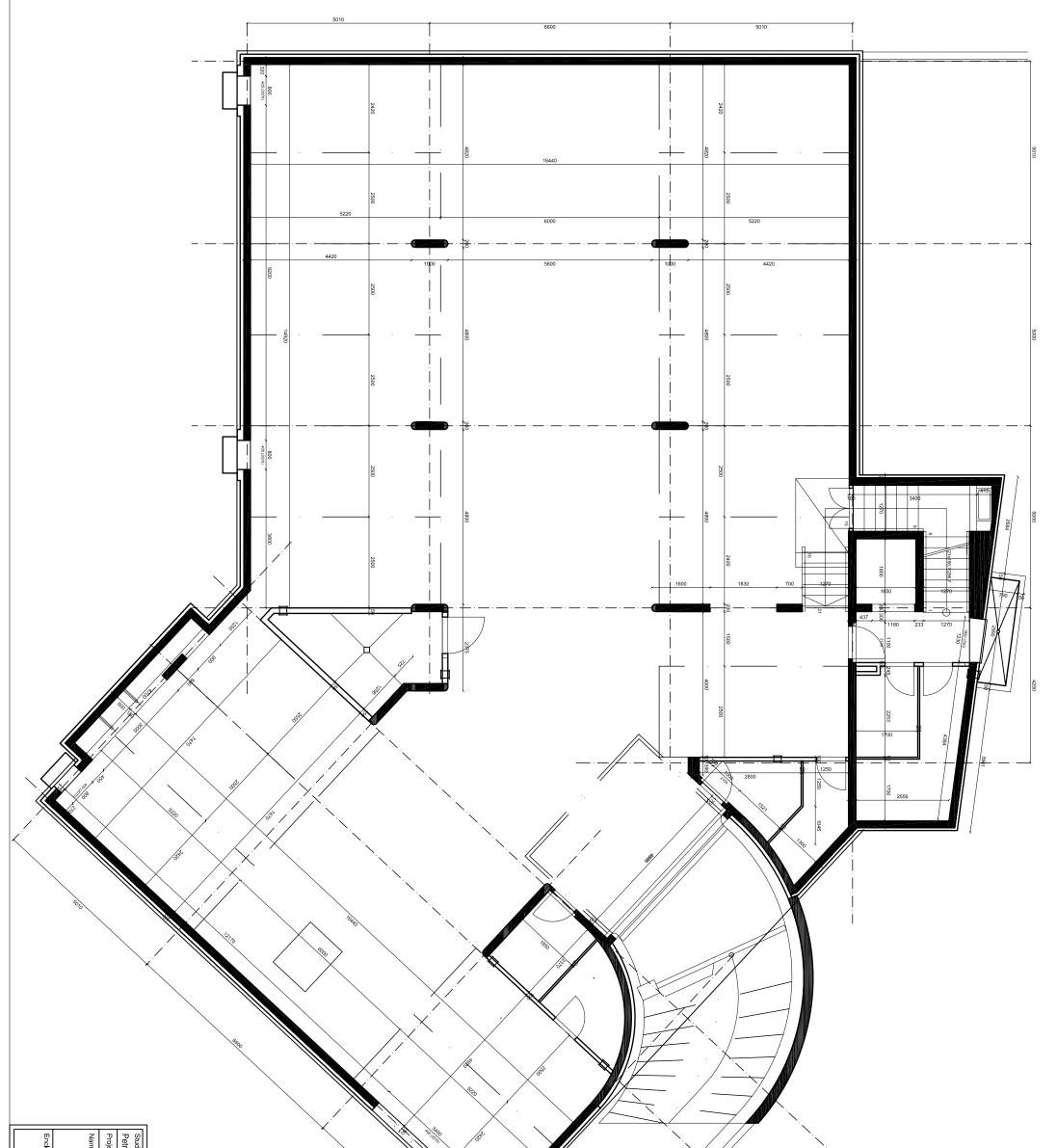
						Rei	nforced	concre	ete varia	nt									
Type of structure Used material	Weight [kg]	Embodied energy [MJ/kg]	Embodied energy total [MJ]	Embodied CO ₂ emissions [kg/kg]	Embodied CO ₂ emissions total [kg]	mbodied SO ₂ missions [kg/kg]	Embodied SO ₂ emissions total [kg]	Renewab	le materials	Recycled materials		Raw	materials	Fully r	ecycleable	Partly r	ecycleable	Waste	
		ш	шē	ЦО	ш ет	ω	т ет												
Foundations																			
concrete reinforcing steel	524 058,150 279 502,080	0,690 22,700	361 600,124 6 344 697,216	0,103 0.935	53 977,989 261 334,445	0,00024 0,00567	125,774 1 584,777	0	0	0	0	100 100	524058,15 279502,08	3,148 3,148	16497,35056 8798,725478	96,852 96,852	507560,7994 270703,3545	0	0
waterproofing	4 913,568	77.000	378 344,736	2.020	261 334,445 9 925,407	0.02100	103,185	0	0	0	0	100	4913,568	3,148	8/98,/254/8 0	96,852	270703,3545	100	4913.568
Garages	,	,		_,		-,	,	-			-				-				
Garages																			
concrete	396 369,346	0,690	273 494,849	0,103	40 826,043	0,00024	95,129	0	0	0	0	100	396369,346	3,148	12477,70701	96,852	383891,639	0	0
reinforcing steel	234 733,524	22,700	5 328 451,006	0,935	219 475,845	0,00567	1 330,939	0	0	0	0	100	234733,5245	3,148	7389,411351	96,852	227344,1131	0	0
extruded polystyren	301,080	102,000	30 710,160	3,440	1 035,715	0,02110	6,353	0	0	0	0	100	301,08	0	0	0	0	100 0	301,08
poriment impact sound insulation	9 729,090 324,303	3,400 102,000	33 078,906 33 078,906	0,300 3,440	2 918,727 1 115,602	0,00230 0,02110	22,377 6,843	0	0	0	0	100 100	9729,09 324,303	0	0	100 0	9729,09 0	0 100	0 324,303
anhydrite	48 645,450	1,600	77 832,720	0.090	4 378,091	0,02110	38,916	0	0	0	0	100	324,303 48645,45	0	0	0	0	100	48645,45
vapour barrier	1 779,034	93,400	166 161,738	2,550	4 536,536	0,02530	45,010	0	õ	0	0	100	1779,0336	0	õ	0	0	100	1779,0336
ceramic tiles	9 265,800	13,900	128 794,620	0.717	6 643,579	0,00298	27,612	0	0	0	0	100	9265,8	0	0	50	4632,9	50	4632,9
mineral wool	1 260,149	23,300	29 361,467	1,640	2 066,644	0,01050	13,232	0	0	20	252,02976	80	1008,11904	0	0	100	1260,1488	0	0
Load bearing structure																			
concrete	1 368 980,327	0,690	944 596,426	0,103	141 004,974	0,00024	328,555	0	0	0	0	100	1368980,327	3,148	43095,50071	96,852	1325884,827	0	0
reinforcing steel	811 462,749	22,700	18 420 204,395	0,935	758 717,670	0,00567	4 600,994	0	0	0	0	100	811462,7487	3,148	25544,84733	96,852	785917,9014	0	0
Ceilings								0											
poriment	28 717,080	3,400	97 638,072	0,300	8 615,124	0,00230	66,049	0	0	0	0	100	28717,08	0	0	100	28717,08	0	0
impact sound insulation	957,236	102,000	97 638,072	3,440	3 292,892	0,02110	20,198	0	0	0	0	100	957,236	0	0	0	0	100	957,236
anhydrite	143 585,400	1,600	229 736,640	0,090	12 922,686	0,00080	114,868	0	0	0	0	100	143585,4	0	0	0	0	100	143585,4
vapour barrier	5 251,123	93,400	490 454,907	2,550	13 390,364	0,02530	132,853	0	0	0	0	100	5251,1232	0	0	0	0	100	5251,1232
ceramic tiles	27 349,600	13,900	380 159,440	0,717	19 609,663	0,00298	81,502	0	0	0	0	100	27349,6	0	0	0	0	100	27349,6
Facade																			
external plaster	4 628,290	1,400	6 479,606	0,140	647,961	0,00130	6,017	0	0	0	0	100	4628,29	0	0	0	0	100	4628,29
thermal insulation	3 342,578	98,500	329 243,887	3,350	11 197,635	0,02160	72,200	0	0	0	0	100	3342,577536	0	0	0	0	100	3342,577536
internal plaster	3 832,554	1,400	5 365,575	0,140	536,558	0,00130	4,982	0	0	0	0	100	3832,55375	0	0	0	0	100	3832,55375
Roof structure																			
gravel	35 345,700	0,080	2 827,656	0,004	141,383	0,00005	1,767	0	0	0	0	100	35345,7	100	35345,7	0	0	0	0
extruded polystyren	4 259,073	102,000	434 425,446	3,440	14 651,211	0,02110	89,866	0	0	0	0	100	4259,073	0	0	0	0	100	4259,073
waterproofing	3 257,489	77,000	250 826,638	2,020	6 580,127	0,02100	68,407	0	0	0	0	100	3257,4888	0	0	0	0	100	3257,4888
wooden walking coat	7 530,000	2,720	20 481,600	-1,490	-11 219,700	0,00161	12,123	90	6777	0	0	10	753	0	0	100	7530	0	0
Separation walls																			
Liapor blocks	192 050,640	2,480	476 285,587	0,260	49 933,166	0,00144	275,785	0	0	0	0	100	192050,64	0	0	100	192050,64	0	0
internal plaster	30 890,356	1,400	43 246,499	0,140	4 324,650	0,00130	40,157	0	0	0	0	100	30890,35625	0	0	0	0	100	30890,35625
Windows																			
Wooden with double glazing	388,130	626,700	243 241,071	35,9	13 933,867	0,46560	180,713	25,77	100,021101	68,88	267,343944	5,36	20,803768	53,57	207,921241	43,37	168,331981	3,06	11,876778
Total	4 182 321,769	35 65	8 457,964	1 656	514,853	9 49	7,184	6 87	77,021	51	9,374	4 175	313,543	149	357,164	3 745	390,825	287	961,910
Floor area [m ²]	2 363,770	2 3	63,770	2 3	63,770	2 36	3,770	2 36	63,770	2 36	53,770	23	63,770	23	63,770	2 3	63,770	2 3	63,770
Total per m ²	1 769,344	15	085,418	70	0,794	4,	D18	2.	,909	0	,220	17	66,379	6	3,186	1 5	84,499	12	21,823
[%]									164		,012		9,832		3,571		9,553		6,885

					Rei	nforced	concrete	e varian	t without l	baseme	nt								
Type of structure Used material	Weight [kg]	Embodied energy [MJ/kg]	Embodied energy total [MJ]	Embodied CO ₂ emissions [kg/kg]	Embodied CO ₂ emissions total [kg]	Embodied SO ₂ emissions [kg/kg]	Embodied SO ₂ emissions total [kg]	Renewab	le materials	Recyclee	d materials	Raw	materials	Fully re	ecycleable	Partly r	ecycleable	v	Vaste
Load bearing structure																			
concrete	1 230 635,309	0,690	849 138,363	0,103	126 755,437	0,00024	295,352	0	0	0	0	100	1230635,309	3,148	38740,39953	96,852	1191894,909	0	0
reinforcing steel	731 348,984	22,700	16 601 621,928	0,935	683 811,300	0,00567	4 146,749	0	0	0	0	100	731348,9836	3,148	23022,866	96,852	708326,1176	0	0
Ceilings								0											
poriment	27 845,160	3,400	94 673,544	0,300	8 353,548	0,00230	64,044	0	0	0	0	100	27845,16	0	0	100	27845,16	0	0
impact sound insulation	928,172	102,000	94 673,544	3,440	3 192,912	0,02110	19,584	0	0	0	0	100	928,172	0	0	0	0	100	928,172
anhydrite	139 225,800	1,600	222 761,280	0,090	12 530,322	0,00080	111,381	0	0	0	0	100	139225,8	0	0	0	0	100	139225,8
vapour barrier	5 091,686	93,400	475 563,510	2,550	12 983,800	0,02530	128,820	0	0	0	0	100	5091,6864	0	0	0	0	100	5091,6864
ceramic tiles	26 519,200	13,900	368 616,880	0,717	19 014,266	0,00298	79,027	0	0	0	0	100	26519,2	0	0	0	0	100	26519,2
Facade																			
external plaster	4 628,290	1,400	6 479,606	0,140	647,961	0,00130	6,017	0	0	0	0	100	4628,29	0	0	0	0	100	4628,29
thermal insulation	3 342,578	98,500	329 243,887	3,350	11 197,635	0,02160	72,200	0	0	Ö	0	100	3342,577536	0	0	0	0	100	3342,577536
internal plaster	3 832,554	1,400	5 365,575	0,140	536,558	0,00130	4,982	0	0	0	0	100	3832,55375	0	0	0	0	100	3832,55375
Roof structure																			
gravel	35 345,700	0,080	2 827,656	0,004	141,383	0,00005	1,767	0	Ö	0	0	100	35345,7	100	35345,7	0	0	0	0
extruded polystyren	4 259,073	102,000	434 425,446	3,440	14 651,211	0,02110	89,866	0	0	0	0	100	4259,073	0	0	0	0	100	4259,073
waterproofing	3 257,489	77,000	250 826,638	2.020	6 580,127	0,02100	68,407	0	0	0	0	100	3257,4888	0	0	0	0	100	3257,4888
wooden walking coat	7 530,000	2,720	20 481,600	-1,490	-11 219,700	0,00161	12,123	90	6777	0	0	10	753	0	0	100	7530	0	0
Separation walls																			
Liapor blocks	192 050,640	2,480	476 285,587	0,260	49 933,166	0,00144	275,785	0	Ö	ō	0	100	192050,64	0	0	100	192050,64	0	0
internal plaster	30 890,356	1,400	43 246,499	0,140	4 324,650	0,00130	40,157	0	0	0	0	100	30890,35625	0	0	0	0	100	30890,35625
Windows																			
Wooden with double glazing	388,130	626,700	243 241,071	35,9	13 933,867	0,46560	180,713	25,77	100,021101	68,88	267,343944	5,36	20,803768	53,57	207,921241	43,37	168,331981	3,06	11,876778
Total Total floor area Total per m2	2 446 730,990 2 363,770 1 035,097	2 :	19 472,614 363,770 680,825	2 3	368,442 63,770 95,018	2 36	6,976 3,770 368	2 30 2	77,021 63,770 ,909 ,281	2 36 0,	7,344 63,770 113 011	23 10	974,794 63,770 32,239 9,724	2 3 41	816,887 63,770 1,170 5,977	2 3 90	815,159 63,770 0,179 5,966	2 3 9	987,075 63,770 3,912 9,073

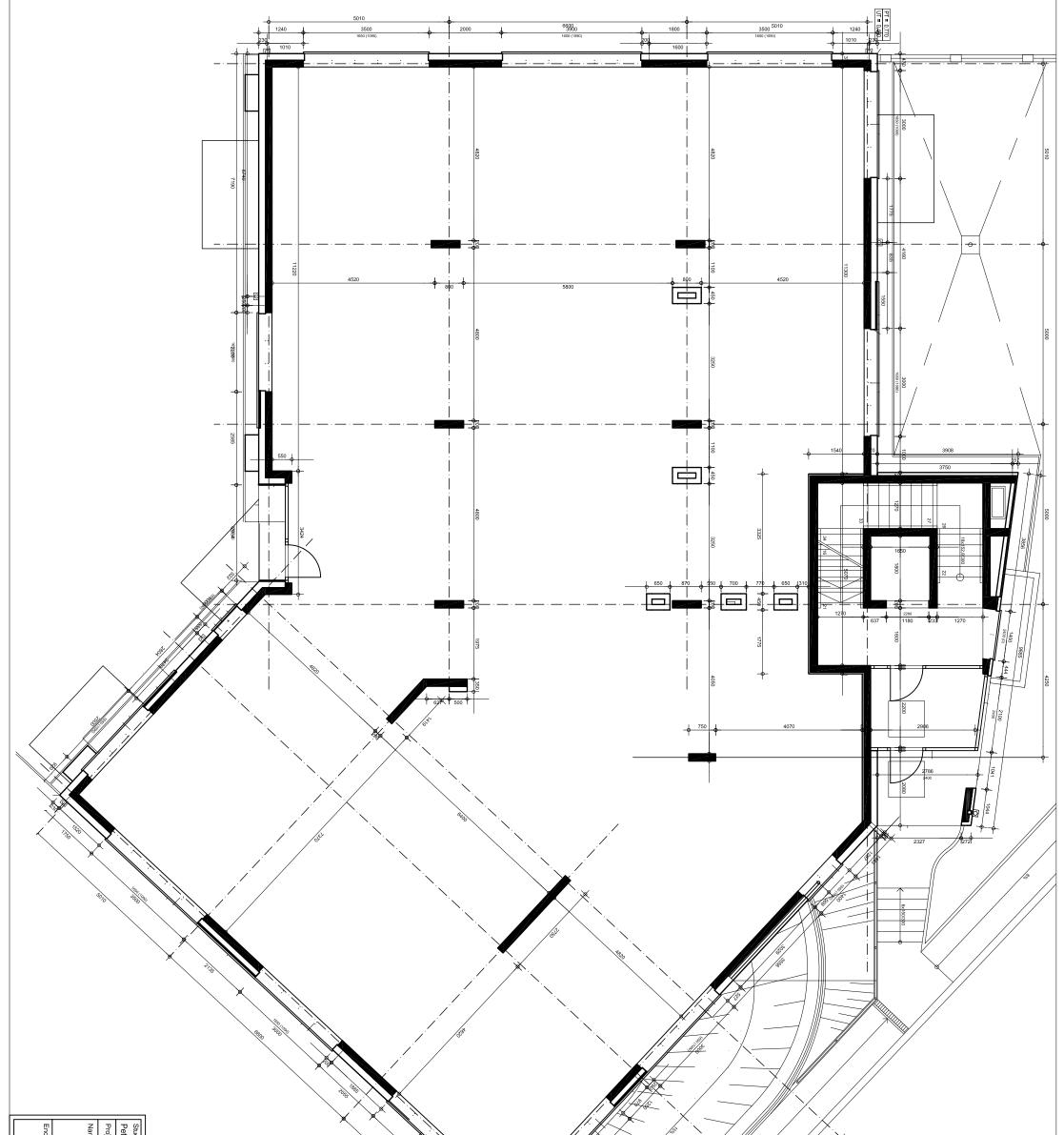
						Ligh	nt-weigh	t concr	ete varia	nt									
Type of structure	Weight [kg]	Embodied energy [MJ/kg]	Embodied nergy total [MJ]	Embodied CO ₂ emissions [kg/kg]	Embodied CO ₂ emissions total [kg]	Embodied SO ₂ emissions [kg/kg]	Embodied SO ₂ emissions total [kg]	Renewab	le materials	Recycle	d materials	Raw	materials	Fully r	ecycleable	Partly r	ecycleable	v	/aste
Used material		ше П	En	em En	te E	En er	te E												
Foundations																			
concrete	524 058,150	0,690	361 600,124	0,103	53 977,989	0,00024	125,774	0	0	0	0	100	524058,15	3,148	16497,35056	96,852	507560,7994	0	0
reinforcing steel	279 502,080	22,700	6 344 697,216	0,935	261 334,445	0,00567	1 584,777	0	0	0	0	100	279502,08	3,148	8798,725478	96,852	270703,3545	0	0
waterproofing	4 913,568	77,000	378 344,736	2,020	9 925,407	0,02100	103,185	0	0	0	0	100	4913,568	0	0	0	0	100	4913,568
Garages																			
concrete	396 369,346	0,690	273 494,849	0,103	40 826,043	0,00024	95,129	0	0	0	0	100	396369,346	3,148	12477,70701	96,852	383891,639	0	0
reinforcing steel	234 733,524	22,700	5 328 451,006	0,935	219 475,845	0,00567	1 330,939	0	0	0	0	100	234733,5245	3,148	7389,411351	96,852	227344,1131	0	0
extruded polystyren	301,080	102,000	30 710,160	3,440	1 035,715	0,02110	6,353	0	0	0	0	100	301,08	0	0	0	0	100	301,08
poriment	9 729,090	3,400	33 078,906	0,300	2 918,727	0,00230	22,377	0	0	0	0	100	9729,09	0	0	100	9729,09	0	0
impact sound insulation	324,303	102,000	33 078,906	3,440	1 115,602	0,02110	6,843	0	0	0	0	100	324,303	0	0	0	0	100	324,303
anhydrite	48 645,450	1,600	77 832,720	0,090	4 378,091	0,00080	38,916	0	0	0	0	100	48645,45	0	0	0	0	100	48645,45
vapour barrier	1 779,034	93,400	166 161,738	2,550	4 536,536	0,02530	45,010	0	0	ő	0 0	100	1779,0336	ő	0	ő	0 0	100	1779,0336
ceramic tiles	9 265,800	13,900	128 794,620	0,717	6 643,579	0,00298	27,612	0	0	0	0	100	9265.8	0	0	50	4632,9	50	4632,9
mineral wool	3 706,320	23,300	86 357,256	1,640	6 078,365	0,01050	38,916	0	0	20	741,264	80	2965,056	0	0	100	3706,32	0	0
Load bearing structure				.,		-,	,		-		,			-					-
, , , , , , , , , , , , , , , , , , ,										_								_	
concrete	923 581,003	0,690	637 270,892	0,103	95 128,843	0,00024	221,659	0	0	0	0	100	923581,0034	3,148	29074,32999	96,852	894506,6734	0	0
reinforcing steel	543 538,722	22,700	12 338 328,986	0,935	508 208,705	0,00567	3 081,865	0	0	0	0	100	543538,7219	3,148	17110,59896	96,852	526428,1229	0	0
Ytong blocks	143 629,301	4,200	603 243,065	0,500	71 814,651	0,00140	201,081	0	0	0	0	100	143629,3013	0	0	100	143629,3013	0	0
Ceilings								0											
poriment	28 717,080	3,400	97 638,072	0,300	8 615,124	0,00230	66,049	0	0	0	0	100	28717,08	0	0	100	28717,08	0	0
impact sound insulation - Ethafoam	957,236	102,000	97 638,072	3,440	3 292,892	0,02110	20,198	0	0	0	0	100	957,236	0	0	0	0	100	957,236
anhydrite	143 585,400	1,600	229 736,640	0,090	12 922,686	0,00080	114,868	0	0	0	0	100	143585,4	0	0	0	0	100	143585,4
vapour barrier	668,605	93,400	62 447,748	2,550	1 704,944	0,02530	16,916	0	0	0	0	100	668,60544	0	0	0	0	100	668,60544
ceramic tiles	27 349,600	13,900	380 159,440	0,717	19 609,663	0,00298	81,502	0	0	0 0	0	100	27349,6	0 0	0	50	13674,8	50	13674,8
Facade	,			•,• •		-,	.,,		-						-				
external plaster	4 628,290	1,400	6 479,606	0,140	647,961	0,00130	6,017	0	0	0	0	100	4628,29	0	0	0	0	100	4628,29
thermal insulation - mineral wool	18 805,163	23,300	438 160,293	1,640	30 840,467	0,01050	197,454	0	0	20	3761,03256	80	15044,13024	0	0	100	18805,1628	0	0
internal plaster	3 832,554	1,400	5 365,575	0,140	536,558	0,00130	4,982	0	0	0	0	100	3832,55375	0	0	0	0	100	3832,55375
Roof structure																			
gravel	35 345,700	0,080	2 827,656	0,004	141,383	0,00005	1,767	0	0	0	0	100	35345,7	100	35345,7	0	0	0	0
extruded polystyren	4 259,073	102.000	434 425,446	3,440	14 651,211	0,02110	89,866	0	0	0	0	100	4259,073	0	0	0	0	100	4259,073
waterproofing	3 257,489	77,000	250 826,638	2,020	6 580,127	0,02110	68,407	0	0	0	0	100	3257,4888	0	0	0	0	100	3257,4888
wooden walking coat	7 530,000	2,720	20 481,600	-1,490	-11 219,700	0,00161	12,123	90	6777	ő	0	10	753	ő	0	100	7530	0	0
Separation walls	,	_,		.,		-,	,			-									-
-	74 070 005	4										400	7 4070 077				74070.077		
Ytong blocks	74 872,625	4,200	314 465,025	0,500	37 436,313	0,00140	104,822	0	0	0	0	100	74872,625	0	0	100	74872,625	0	0
sound insulation - mineral wool	7 618,374	23,300	177 508,124	1,640	12 494,134	0,01050	79,993	0	0	20	1523,67488	80	6094,69952	0	0	100	7618,3744	0	0
gypsumboard	10 253,177	4,440	45 524,104	0,209	2 142,914	0,00070	7,177	0	0	0	0	100	10253,17656	0	0	100	10253,17656	0	0
internal plaster	23 819,200	1,400	33 346,880	0,140	3 334,688	0,00130	30,965	0	0	0	0	100	23819,2	0	0	0	0	100	23819,2
Windows																			
Wooden with double glazing	388,130	626,700	243 241,071	35,9	13 933,867	0,46560	180,713	25,77	100,021101	68,88	267,343944	5,36	20,803768	53,57	207,921241	43,37	168,331981	3,06	11,876778
Total	3 519 576,337		1 717,170		063,773		4,256		7,021		93,315		794,170		901,745		771,864		290,858
Total floor area [m ²]	2 363,770	2 3	63,770	2 3	63,770	2 36	3,770	2 36	3,770	2 36	63,770	23	63,770	23	63,770	2 3	63,770	2 3	63,770
Total per m ²	1 488,967	12	548,479	61	1,339	3.3	390	2.	909	2.	,662	14	83,560	53	3,686	1 3	25,752	10	9,694
[%]			,			-,-			195		.179		9,637		.606		9.038		.367
[/~]								υ,			,	J.	,		,	0.	,		,

					Li	ght-wei	ght con	crete w	ithout ba	isemen	it								
Type of structure Used material	Weight [kg]	Embodied energy [MJ/kg]	Embodied energy total [MJ]	Embodied CO ₂ emissions [kg/kg]	Embodied CO ₂ emissions total [kg]	Embodied SO ₂ emissions [kg/kg]	Embodied SO ₂ emissions total [kg]	Renewab	le materials	Recycle	d materials	Raw	materials	Fully r	ecycleable	Partly r	ecycleable	v	Vaste
Load bearing structure																			
concrete	785 765,298	0,690	542 178,055	0,103	80 933,826	0,00024	188,584	0	0	0	0	100	785765,2975	3,148	24735,89157	96,852	761029,406	0	0
reinforcing steel	463 424,957	22,700	10 519 746,519	0,935	433 302,335	0,00567	2 627,620	0	0	0	0	100	463424,9568	3,148	14588,61764	96,852	448836,3392	0	0
Ytong blocks	143 629,301	4,200	603 243,065	0,500	71 814,651	0,00140	201,081	0	0	0	0	100	143629,3013	0	0	100	143629,3013	0	0
Ceilings								0											
poriment	27 845,160	3,400	94 673,544	0,300	8 353,548	0,00230	64,044	0	0	0	0	100	27845,16	0	0	100	27845,16	0	0
impact sound insulation - Ethafoam	928,172	102,000	94 673,544	3,440	3 192,912	0,02110	19,584	0	0	0	0	100	928,172	0	0	0	0	100	928,172
anhydrite	139 225,800	1,600	222 761,280	0,090	12 530,322	0,00080	111,381	0	0	0	0	100	139225,8	0	0	0	0	100	139225,8
vapour barrier	5 091,686	93,400	475 563,510	2,550	12 983,800	0,02530	128,820	0	0	0	0	100	5091,6864	0	0	0	0	100	5091,6864
ceramic tiles	26 519,200	13,900	368 616,880	0,717	19 014,266	0,00298	79,027	0	0	0	0	100	26519,2	0	0	50	13259,6	50	13259,6
Facade																			
external plaster	4 628,290	1,400	6 479,606	0,140	647,961	0,00130	6,017	0	0	0	0	100	4628,29	0	0	0	0	100	4628,29
thermal insulation - mineral wool	18 805,163	23,300	438 160,293	1,640	30 840,467	0,01050	197,454	0	0	20	3761,03256	80	15044,13024	Ō	0	100	18805,1628	0	0
internal plaster	3 832,554	1,400	5 365,575	0,140	536,558	0,00130	4,982	0	0	0	0	100	3832,55375	0	0	0	0	100	3832,55375
Roof structure																			
gravel	35 345,700	0.080	2 827,656	0,004	141,383	0,00005	1,767	0	0	0	0	100	35345,7	100	35345,7	0	0	0	0
extruded polystyren	4 259,073	102,000	434 425,446	3,440	14 651,211	0,02110	89,866	0	0	0	0	100	4259,073	0	0	0	0	100	4259,073
waterproofing	3 257,489	77,000	250 826,638	2,020	6 580,127	0,02100	68,407	0	0	0	0	100	3257,4888	0	0	0	0	100	3257,4888
wooden walking coat	7 530,000	2,720	20 481,600	-1,490	-11 219,700	0,00161	12,123	90	6777	0	0	10	753	0	0	100	7530	0	0
Separation walls																			
Ytong blocks	74 872,625	4,200	314 465,025	0,500	37 436,313	0,00140	104,822	0	0	0	0	100	74872,625	0	0	100	74872,625	0	0
sound insulation - mineral wool	7 618,374	23,300	177 508,124	1,640	12 494,134	0,01050	79,993	0	0	20	1523,67488	80	6094,69952	0	0	100	7618,3744	0	0
gypsumboard	10 253,177	4,440	45 524,104	0,209	2 142,914	0,00070	7,177	0	0	0	0	100	10253,17656	0	0	100	10253,17656	0	0
internal plaster	23 819,200	1,400	33 346,880	0,140	3 334,688	0,00130	30,965	0	0	0	0	100	23819,2	0	0	0	0	100	23819,2
Windows																			
Wooden with double glazing	388,130	626,700	243 241,071	35,9	13 933,867	0,46560	180,713	25,77	100,021101	68,88	267,343944	5,36	20,803768	53,57	207,921241	43,37	168,331981	3,06	11,876778
Total Total floor area [m [~]]	1 786 651,218		4 108,415	753	645,581	4 20	4,428		77,021	5 5	52,051		610,315		378,130		847,477		313,741
	2 363,770		63,770		63,770	2 36			63,770		63,770		63,770		63,770		63,770		63,770
Total per m ²	755,848	63	800,997	31	8,832	1,	779		,909		,349		0,754		1,677		0,438		3,897
[%]								0,	,385	0	,311	9	9,326	4	,191	84	4,731	1	1,100

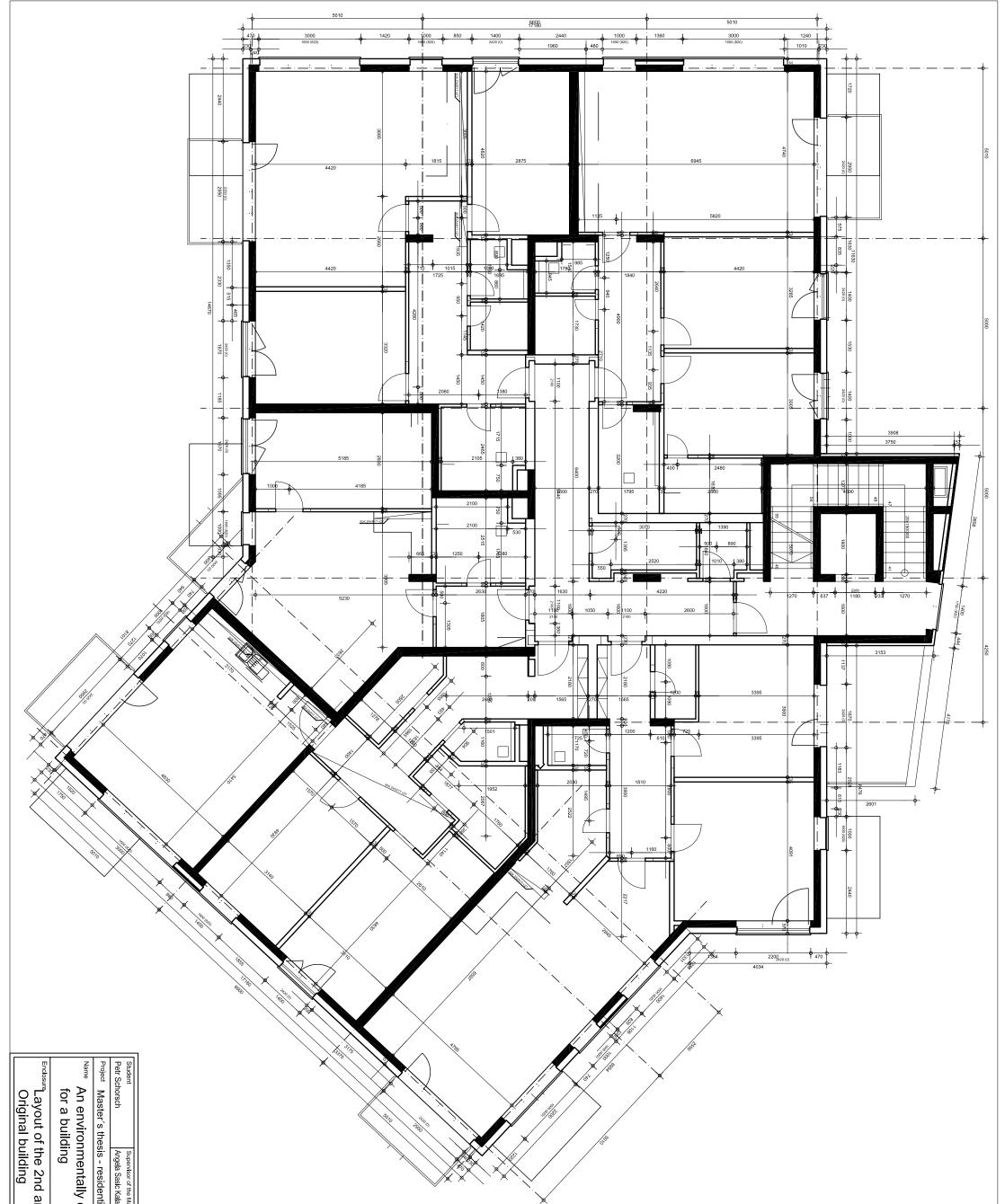
						;	Steel stru	icture v	variant										
Type of structure Used material	Weight [kg]	Embodied energy [MJ/kg]	Embodied energy total [MJ]	Embodied CO ₂ emissions [kg/kg]	Embodied CO ₂ emissions total [kg]	Embodied SO ₂ emissions [kg/kg]	Embodied SO ₂ emissions total [kg]	Renewab	le materials	Recycle	d materials	Raw	materials	Fully re	ecycleable	Partly r	ecycleable	v	Vaste
Foundations		-	- 0	- •	_ •	- •													
concrete	524 058,150	0,690	361 600,124	0,103	53 977,989	0,00024	125,774	0	0	0	0	100	524058,15	3,148	16497,35056	96,852	507560,7994	0	0
reinforcing steel waterproofing	279 502,080 4 913,568	22,700 77,000	6 344 697,216 378 344,736	0,935 2,020	261 334,445 9 925,407	0,00567 0,02100	1 584,777 103,185	0	0	0	0	100 100	279502,08 4913,568	3,148 0	8798,725478 0	96,852 0	270703,3545 0	0 100	0 4913,568
	4 313,300	11,000	578 544,750	2,020	3 323,407	0,02100	103,103	0	0	0	0	100	4913,300	0	0	0	0	100	4913,300
Garages	000 000 040							_		_								_	
concrete reinforcing steel	396 369,346 234 733,524	0,690 22,700	273 494,849 5 328 451.006	0,103 0,935	40 826,043 219 475,845	0,00024 0,00567	95,129 1 330,939	0	0	0	0	100 100	396369,346 234733,5245	3,148 3,148	12477,70701 7389,411351	96,852 96,852	383891,639 227344,1131	0	0
extruded polystyren	301,080	102,000	30 710,160	3,440	1 035,715	0,02110	6,353	0	0	0	0	100	301,08	0	0	0	0	100	301,08
poriment	9 729,090	3,400	33 078,906	0,300	2 918,727	0,00230	22,377	0	0	0	0	100	9729,09	0	0	100	9729,09	0	0
impact sound insulation	324,303	102,000	33 078,906	3,440	1 115,602	0,02110	6,843	0	0	0	0	100	324,303	0	0	0	0	100	324,303
anhydrite	48 645,450	1,600	77 832,720	0,090	4 378,091	0,00080	38,916	0	0	0	0	100	48645,45	0	0	0	0	100	48645,45
vapour barrier ceramic tiles	177,903 9 265,800	93,400 13,900	16 616,174 128 794,620	2,550 0,717	453,654 6 643,579	0,02530 0,00298	4,501 27,612	0	0	0	0	100 100	177,90336 9265,8	0	0	0 50	0 4632,9	100 50	177,90336 4632,9
mineral wool	3 706,320	23.300	86 357,256	1,640	6 078,365	0,01050	38,916	0	0 0	20	741,264	80	2965,056	0	0	100	3706,32	0	0
Load bearing structure			,		,						, -		,				, .		
concrete	315 643,492	0,690	217 794,009	0,103	32 511,280	0,00024	75,754	0	0	0	0	100	315643,492	3,148	9936,457129	96,852	305707,0349	0	0
reinforcing steel	80 113,765	22,700	1 818 582,467	0,935	74 906,370	0,00567	454,245	0	0	0	0	100	80113,76506	3,148	2521,981324	96,852	77591,78373	0	ō
Steel profiles	75 121,940	125,000	9 390 242,500	8,910	669 336,485	0,04280	3 215,219	0	0	80	60097,552	20	15024,388	100	75121,94	0	0	0	0
Ceilings																			
ceramic tiles	27 349,600	13,900	380 159,440	0,717	19 609,663	0,00298	81,502	0	0	0	0	100	27349,6	0	0	50	13674,8	50	13674,8
poriment	871,920	3,400	2 964,528	0,300	261,576	0,00230	2,005	0	0	0	0	100	871,92	0	0	100	871,92	0	0
waterproofing	509,169	93,400	47 556,351	2,550	1 298,380	0,02530	12,882	0	0	0	0	100	509,16864	0	0	0	0	100	509,16864
anhydrite	143 585,400	1,600	229 736,640	0,090	12 922,686	0,00080	114,868	0	0	0	0	100	143585,4	0	0	0	0	100	143585,4
Ethafoam	957,236	102,000	97 638,072	3,440	3 292,892	0,02110	20,198	0	0	0	0	100	957,236	0	0	0	0	100	957,236
trapezoidal sheets	9 281,720	125,000	1 160 215,000	8,910	82 700,125	0,04280	397,258	0	0	80	7425,376	20	1856,344	0	0	100	9281,72	0	0
OSB boards thin walled CW 50 profiles	12 602,909 5 240,194	9,320 125,000	117 459,110 655 024,240	-1,168 8,910	-14 720,197 46 690,128	0,00603 0,04280	75,996 224,280	80 0	10082,327 0	0 80	0 4192,155136	20 20	2520,58175 1048,038784	0	0	100 100	12602,90875 5240,19392	0	0
gypsumboard	12 016,513	4,440	53 353,316	0,209	2 511,451	0,00070	8,412	0	0	100	12016,5125	0	0	0	0	100	12016,5125	0	ő
Facade																			
external plaster	4 914,589	1,400	6 880,425	0,140	688,043	0,00130	6,389	0	0	0	0	100	4914,589375	0	0	0	0	100	4914,589375
thermal insulation - mineral wool	21 992,008	23,300	512 413,777	1,640	36 066,892	0,01050	230,916	0	0	20	4398,40152	80	17593,60608	0	0	100	21992,0076	0	0
OSB boards	15 537,097	9,320	144 805,743	-1,168	-18 147,329	0,00603	93,689	80	12429,67752	0	0	20	3107,41938	0	0	100	15537,0969	0	0
vapour barrier	1 010,217	93,400	94 354,223	2,550	2 576,052	0,02530	25,558	0	0	0	0	100	1010,216525	0	0	0	0	100	1010,216525
thin walled CW 80 profiles	10 879,482	125,000	1 359 935,200	8,910	96 936,181	0,04280	465,642	0	0	80	8703,58528	20	2175,89632	0	0	100	10879,4816	0	0
gypsumboard Roof structure	5 842,577	4,440	25 941,040	0,209	1 221,098	0,00070	4,090	0	0	100	5842,576531	0	0	0	0	100	5842,576531	0	0
	00.070.000																	_	
greening extruded polystyren	39 273,000 3 831,836	0,020 102,000	785,460 390 847,272	0,001 3,440	39,273 13 181,516	0,00001 0,02110	0,393 80,852	50 0	19636,5 0	50 0	19636,5 0	0 100	0 3831,836	0	0	100 0	39273 0	0 100	0 3831,836
waterproofing	3 257,489	77,000	250 826,638	2,020	6 580,127	0,02110	80,852 68,407	0	0	0	0	100	3257,4888	0	0	0	0	100	3831,836
wooden walking coat	7 530,000	2,720	20 481,600	-1,490	-11 219,700	0,00161	12,123	90	6777	0	0	10	753	0	0	100	7530	0	0
trapezoidal sheets	3 276,210	125,000	409 526,250	8,910	29 191,031	0,04280	140,222	0	0	80	2620,968	20	655,242	0	0	100	3276,21	0	0
OSB boards	4 563,293	9,320	42 529,886	-1,168	-5 329,926	0,00603	27,517	80	3650,634	0	0	20	912,6585	0	0	100	4563,2925	0	0
thin walled CW 50 profiles gypsumboard	1 849,655 4 241,522	125,000 4,440	231 206,820 18 832,357	8,910 0,209	16 480,422 886,478	0,04280 0,00070	79,165 2,969	0	0	80 100	1479,723648 4241,521875	20 0	369,930912 0	0	0	100 100	1849,65456 4241,521875	0	0
Separation walls	,	.,		-,		-,	_,					-		-				-	
thin walled CW profiles	15 677,854	125,000	1 959 731,800	8,910	139 689,683	0,04280	671,012	0	0	80	12542,28352	20	3135,57088	0	0	100	15677,8544	0	0
sound insulation - mineral wool	23 614,520	23,300	550 218,309	1,640	38 727,812	0,04200	247,952	0	0	20	4722,90394	80	18891,61576	0	0	100	23614,5197	0	0
OSB boards	10 981,269	9,320	102 345,427	-1,168	-12 826,122	0,00603	66,217	80	8785,0152	0	0	20	2196,2538	0	0	100	10981,269	0	0
gypsumboard	26 118,591	4,440	115 966,543	0,209	5 458,785	0,00070	18,283	0	0	100	26118,59088	0	0	0	0	100	26118,59088	0	0
Windows	200 120	606 700	243 241,071	25.0	12 022 007	0.46500	100 740	05 77	100 001401	60.00	067 0 400 4 4	E 00	20 000700	E0 E7	207 004044	40.07	169 004004	2.00	11 070770
Wooden with double glazing	388,130	626,700		35,9	13 933,867	0,46560	180,713	25,77	100,021101	68,88	267,343944	5,36	20,803768	53,57	207,921241	43,37	168,331981	3,06	11,876778
Total	2 399 799,808		4 652,186		618,486		0,050		61,175		047,259		291,413		951,494		100,497		747,816
Total floor area [m ²]	2 363,770		363,770		63,770		3,770		63,770		63,770		63,770		63,770		63,770		63,770
Total per m ²	1 015,243	14	275,776	80	01,101	4,4	438		6,001		4,054		5,187		6,246		1,378		7,619
[%]								2	,561	7	,294	9	0,145	5	,540	84	1,845	9	,615


					St	eel stru	cture va	riant w	vithout ba	semer	nt								
Type of structure Used material	Weight [kg]	Embodied energy [MJ/kg]	Embodied energy total [MJ]	Embodied CO ₂ emissions [kg/kg]	Embodied CO ₂ emissions total [kg]	Embodied SO ₂ emissions [kg/kg]	Embodied SO ₂ emissions total [kg]	Renewab	ole materials	Recycle	ed materials	Raw	materials	Fully r	ecycleable	Partly r	ecycleable	v	Naste
Load bearing structure																			
concrete	177 298.474	0.690	122 335.947	0,103	18 261,743	0.00024	42.552	0	0	0	0	100	177298,4736	3.148	5581.355949	96.852	171717.1177	0	0
reinforcing steel	28 367,756	22,700	643 948,056	0.935	26 523,852	0.00567	160,845	0	0	0	0	100	28367,75578	3,148	893,0169518	96,852	27474,73882	0	0
Steel profiles	75 121,940	125,000	9 390 242,500	8,910	669 336,485	0,04280	3 215,219	0	0	80	60097,552	20	15024,388	100	75121,94	0	0	0	0
Ceilings																			
ceramic tiles	26 519,200	13,900	368 616,880	0,717	19 014,266	0,00298	79,027	0	0	0	0	100	26519,2	0	0	50	13259,6	50	13259,6
		3,400	0,000	0,300	0,000	0,00230	0,000	0	ő	0	ő	100	0	0 0	0	100	0	0	0
waterproofing	5 091,686	93,400	475 563,510	2,550	12 983,800	0,02530	128,820	0	0	0	0	100	5091,6864	0	0	0	0	100	5091,6864
anhydrite	139 225,800	1,600	222 761,280	0,090	12 530,322	0,00080	111,381	0	0	0	0	100	139225,8	0	0	0	0	100	139225,8
Ethafoam	928,172	102,000	94 673,544	3,440	3 192,912	0,02110	19,584	0	0	0	0	100	928,172	0	0	0	0	100	928,172
trapezoidal sheets	9 281,720	125,000	1 160 215,000	8,910	82 700,125	0,04280	397,258	0	0	80	7425,376	20	1856,344	0	0	100	9281,72	0	0
OSB boards	12 602,909	9,320	117 459,110	-1,168	-14 720,197	0,00603	75,996	80	10082,327	0	0	20	2520,58175	0	0	100	12602,90875	0	0
thin walled CW 50 profiles	5 240,194	125,000	655 024,240	8,910	46 690,128	0,04280	224,280	0	0	80	4192,155136	20	1048,038784	0	0	100	5240,19392	0	0
gypsumboard	12 016,513	4,440	53 353,316	0,209	2 511,451	0,00070	8,412	0	0	100	12016,5125	0	0	0	0	100	12016,5125	0	0
Facade																			
external plaster	4 914,589	1,400	6 880,425	0,140	688,043	0,00130	6,389	0	0	0	0	100	4914,589375	0	0	0	0	100	4914,589375
thermal insulation - mineral wool	21 992,008	23,300	512 413,777	1,640	36 066,892	0,01050	230,916	0	0	20	4398,40152	80	17593,60608	0	0	100	21992,0076	0	0
OSB boards	15 537,097	9,320	144 805,743	-1,168	-18 147,329	0,00603	93,689	80	12429,67752	0	0	20	3107,41938	0	0	100	15537,0969	0	0
vapour barrier	1 010,217	93,400	94 354,223	2,550	2 576,052	0,02530	25,558	0	0	0	0	100	1010,216525	0	0	0	0	100	1010,216525
thin walled CW 80 profiles	10 879,482	125,000	1 359 935,200	8,910	96 936,181	0,04280	465,642	0	0	80	8703,58528	20	2175,89632	0	0	100	10879,4816	0	0
gypsumboard	5 842,577	4,440	25 941,040	0,209	1 221,098	0,00070	4,090	0	0	100	5842,576531	0	0	0	0	100	5842,576531	0	0
Roof structure																			
greening	39 273,000	0,020	785,460	0,001	39,273	0,00001	0,393	50	19636,5	50	19636,5	0	0	0	0	100	39273	0	0
extruded polystyren	3 831,836	102,000	390 847,272	3,440	13 181,516	0,02110	80,852	0	0	0	0	100	3831,836	0	0	0	0	100	3831,836
waterproofing	3 257,489	77,000	250 826,638	2,020	6 580,127	0,02100	68,407	0	0	0	0	100	3257,4888	0	0	0	0	100	3257,4888
wooden walking coat	7 530,000	2,720	20 481,600	-1,490	-11 219,700	0,00161	12,123	90	6777	0	0	10	753	0	0	100	7530	0	0
trapezoidal sheets	3 276,210	125,000	409 526,250	8,910	29 191,031	0,04280	140,222	0	0	80	2620,968	20	655,242	0	0	100	3276,21	0	0
OSB boards	4 563,293	9,320	42 529,886	-1,168	-5 329,926	0,00603	27,517	80	3650,634	0	0	20	912,6585	0	0	100	4563,2925	0	0
thin walled CW 50 profiles	1 849,655	125,000	231 206,820	8,910	16 480,422	0,04280	79,165	0	0	80	1479,723648	20	369,930912	0	0	100	1849,65456	0	0
gypsumboard	4 241,522	4,440	18 832,357	0,209	886,478	0,00070	2,969	0	0	100	4241,521875	0	0	0	0	100	4241,521875	0	0
Separation walls																			
thin walled CW profiles	15 677,854	125,000	1 959 731,800	8,910	139 689,683	0,04280	671,012	0	Ō	80	12542,28352	20	3135,57088	0	0	100	15677,8544	0	0
sound insulation - mineral wool	23 614,520	23,300	550 218,309	1,640	38 727,812	0,01050	247,952	0	0	20	4722,90394	80	18891,61576	0	0	100	23614,5197	0	0
OSB boards	10 981,269	9,320	102 345,427	-1,168	-12 826,122	0,00603	66,217	80	8785,0152	0	0	20	2196,2538	0	0	100	10981,269	0	0
gypsumboard	26 118,591	4,440	115 966,543	0,209	5 458,785	0,00070	18,283	0	0	100	26118,59088	0	0	0	0	100	26118,59088	0	0
Windows																			
Wooden with double glazing	388,130	626,700	243 241,071	35,9	13 933,867	0,46560	180,713	25,77	100,021101	68,88	267,343944	5,36	20,803768	53,57	207,921241	43,37	168,331981	3,06	11,876778
Total	696 473,699	19 78	5 063.224	1 233	159.072	6 88	5,482	61.4	61,175	174	305,995	460	706,568	81.9	304.234	443	138,199	171	531,266
Total floor area [m ²]	2 363,770		63,770		63,770		3,770		63,770		63,770		63,770		63,770		63,770		63,770
Total per m ²	294,645		70,130		1,692		913		5,001		3,741		03,770 94,903		4,608		7,471		2,567
[%]	294,045	0.3	10,130	52	1,092	2,5	515		,825		5,741 5,027				4,608 1,745				2,567 4,629
[/0]								8	,020	2:	5,027	6	6,148		1,740	0.	3,626	2	4,029

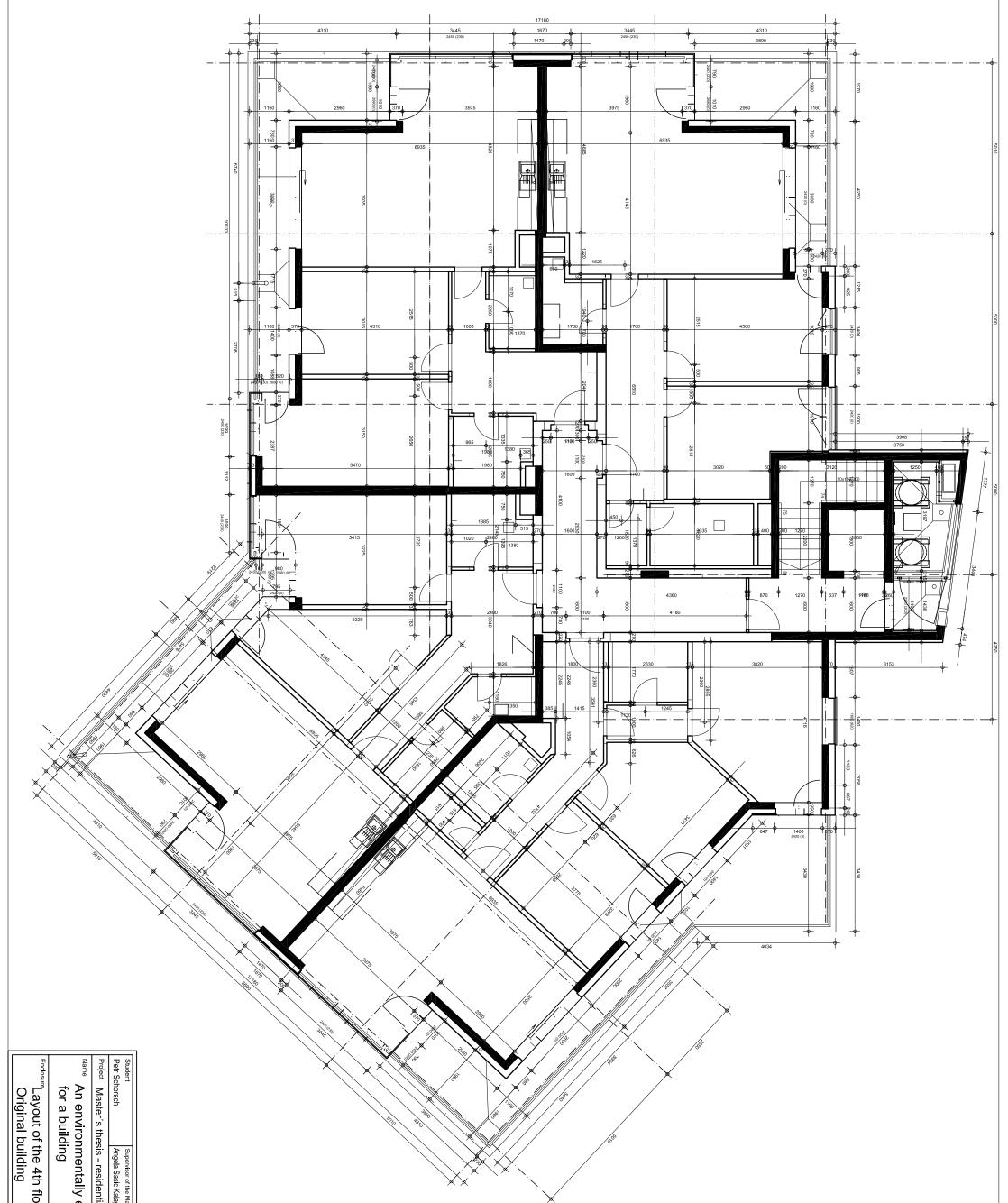
						٦	Timber S	tructur	e variant										
Type of structure Used material	Weight [kg]	Embodied energy [MJ/kg]	Embodied energy total [MJ]	Embodied CO ₂ emissions [kg/kg]	Embodied CO ₂ emissions total [kg]	Embodied SO ₂ emissions [kg/kg]	Embodied SO ₂ emissions total [kg]	Renewat	ble materials	Recycled	d materials	Raw	materials	Fully re	ecycleable	Partly	ecycleable	١	Vaste
Foundations		-																	
concrete	524 058,150	0,690	361 600,124	0,103	53 977,989	0,00024	125,774	0	0	0	0	100	524058,15	3,148	16497,35056	96,852	507560,7994	0	0
reinforcing steel waterproofing	218 361,000 4 913,568	22,700 77,000	4 956 794,700 378 344,736	0,935 2,020	204 167,535 9 925,407	0,00567 0,02100	1 238,107 103,185	0	0	0	0	100 100	218361 4913,568	3,148 0	6874,00428 0	96,852 0	211486,9957 0	0 100	0 4913,568
Garages	4 3 13,300	77,000	370 344,730	2,020	3 323,407	0,02100	105,105	0	0	0	0	100	4913,300	0	0	0	0	100	4913,300
-	396 369,346	0.000	273 494,849	0.400	40 826,043	0.00004	05 400	0	0	0	0	400	000000 040	0.440	12477,70701	00.050	000004 000	0	0
concrete reinforcing steel	183 385,566	0,690 22,700	4 162 852,348	0,103 0,935	40 826,043	0,00024 0,00567	95,129 1 039,796	0	0	Ö	0	100 100	396369,346 183385,566	3,148 3,148	5772,977618	96,852 96,852	383891,639 177612,5884	0	0
extruded polystyren	301,080	102,000	30 710,160	3,440	1 035,715	0,02110	6,353	0	0	0	0	100	301,08	0	0	0	0	100	301,08
poriment	9 729,090	3,400	33 078,906	0,300	2 918,727	0,00230	22,377	0	0	0	0	100	9729,09	0	0	100	9729,09	0	0
impact sound insulation	324,303	102,000	33 078,906	3,440	1 115,602	0,02110	6,843	0	0	0	0	100	324,303	0	0	0	0	100	324,303
anhydrite vapour barrier	48 645,450 0,000	1,600 93,400	77 832,720 0,000	0,090 2,550	4 378,091 0,000	0,00080 0,02530	38,916 0,000	0	0	0	0	100 100	48645,45 0	0	0	0	0	100 100	48645,45 0
ceramic tiles	9 265,800	13,900	128 794,620	0,717	6 643,579	0,00298	27,612	0	0	0	0	100	9265,8	0	0	50	4632,9	50	4632,9
mineral wool	3 706,320	23,300	86 357,256	1,640	6 078,365	0,01050	38,916	0	0	20	741,264	80	2965,056	0	0	100	3706,32	0	0
Load bearing structure																			
concrete	138 345,018	0,690	95 458,063	0,103	14 249,537	0,00024	33,203	0	0	0	0	100	138345,0184	3,148	4355,10118	96,852	133989,9172	0	0
reinforcing steel	62 588,879	22,700	1 420 767,552	0,935	58 520,602	0,00567	354,879	0	0	0	0	100	62588,87895	3,148	1970,297909	96,852	60618,58104	0	0
Timber profiles	22 330,612	2,720	60 739,266	-1,490	-33 272,612	0,00161	35,952	100	22330,6124	Ö	0	0	0	0	0	100	22330,6124	0	0
Glue-laminated timber profiles	51 693,510	8,040	415 615,824	-1,259	-65 082,130	0,00341	176,275	90	46524,15936	0	0	10	5169,35104	0	0	100	51693,5104	0	0
Ceilings																			
ceramic tiles	27 349,600	13,900	380 159,440	0,717	19 609,663	0,00298	81,502	0	0	0	0	100	27349,6	0	0	50	13674,8	50	13674,8
poriment	871,920	3,400	2 964,528	0,300	261,576	0,00230	2,005	0	0	Ö	0	100	871,92	0	0	100	871,92	0	0
waterproofing	509,169	93,400	47 556,351	2,550	1 298,380	0,02530	12,882	0	0	0	0	100	509,16864	0	0	0	0	100	509,16864
anhydrite	4 359,600	1,600	6 975,360	0,090	392,364	0,00080	3,488	0	0	0	0	100	4359,6	0	0	0	0	100	4359,6
Ethafoam OSB boards	957,236 51 712,440	102,000 9,320	97 638,072 481 959,941	3,440	3 292,892 -60 400,130	0,02110 0,00603	20,198	0 80	0 41369,952	0	0	100	957,236 10342,488	0	0	0 100	0 51712,44	100 0	957,236 0
timber joists 60 x 40	2 394,606	2,720	6 513,329	-1,168 -1,490	-3 567,963	0,00803	311,826 3,855	100	2394,606272	0	0	20 0	0	0	0	100	2394,606272	0	0
gypsumboard	12 016,513	4,440	53 353,316	0,209	2 511,451	0,00070	8,412	0	0	100	12016,5125	0	0	0	0	100	12016,5125	0	0
Facade																			
external plaster	4 914,589	1,400	6 880,425	0,140	688,043	0,00130	6,389	0	0	0	0	100	4914,589375	0	0	0	0	100	4914,589375
thermal insulation - mineral wool	17 654,277	23,300	411 344,665	1,640	28 953,015	0,01050	185,370	0	0	20	3530,855496	80	14123,42198	0	0	100	17654,27748	0	0
OSB boards	9 512,872	9,320	88 659,969	-1,168	-11 111,035	0,00603	57,363	80	7610,29776	Ö	0	20	1902,57444	0	0	100	9512,8722	0	0
woodenfibre boards	9 288,660	13,700	127 254,642	-0,183	-1 699,825	0,00688	63,906	60	5573,196	40	3715,464	0	0	100	9288,66	0	0	0	0
vapour barrier	975,299	93,400	91 092,964	2,550	2 487,013	0,02530	24,675	0	0	0	0	100	975,2994048	0	0	0	0	100	975,2994048
timber profiles 100 x 60 + joists	10 101,702	2,720	27 476,631	-1,490	-15 051,537	0,00161	16,264	100 0	10101,70248	0	0	0	0	0	0	100	10101,70248	0	0
gypsumboard	5 842,577	4,440	25 941,040	0,209	1 221,098	0,00070	4,090	0	0	100	5842,576531	0	0	0	0	100	5842,576531	U	0
Roof structure																			
gravel	35 345,700	0,080	2 827,656	0,004	141,383	0,00005	1,767	50	17672,85	50	17672,85	0	0	0	0	100	35345,7	0	0
extruded polystyren waterproofing	2 796,263 3 257,489	102,000 77,000	285 218,826 250 826,638	3,440 2,020	9 619,145 6 580,127	0,02110 0,02100	59,001 68,407	0	0	0	0	100 100	2796,263 3257,4888	0	0	0	0	100 100	2796,263 3257,4888
wooden walking coat	7 530,000	2,720	20 481,600	-1,490	-11 219,700	0,02100	12,123	90	6777	0	0	100	753	0	0	100	7530	0	0
thermal insulation - mineral wool	11 520,796	23,300	268 434,557	1,640	18 894,106	0,01050	120,968	0	0	80	9216,637164	20	2304,159291	0	0	100	11520,79646	0	0
OSB boards	15 158,228	9,320	141 274,680	-1,168	-17 704,810	0,00603	91,404	80	12126,582	0	0	20	3031,6455	0	0	100	15158,2275	0	0
timber profiles 60 x 40 gypsumboard	1 796,011 4 241,522	2,720 4,440	4 885,149 18 832,357	-1,490 0,209	-2 676,056 886,478	0,00161 0,00070	2,892 2,969	100 0	1796,010624 0	0 100	0 4241,521875	0	0	0	0	100 100	1796,010624 4241,521875	0	0
Separation walls	4 241,322	4,440	10 032,337	0,209	000,470	0,00070	2,969	0	0	100	4241,521675	0	0	0	0	100	4241,521675	0	0
	8 734,871	2,720	23 758,849	-1,490	-13 014,958	0,00161	14,063	100	8734,87104	0	0	0	0	0	0	100	8734,87104	0	0
timber profiles sound insulation - mineral wool	22 904,816	2,720	23 758,849 533 682,219	-1,490 1,640	-13 014,958 37 563,899	0,00161	240,501	0	8734,87104 0	20	0 4580,963254	-	0 18323,85301	0	0	100	22904,81627	0	0
gypsumfibre boards	28 314,347	4,440	125 715,698	0,209	5 917,698	0,00070	19,820	Ő	0	100	28314,3465	0	0	0	0	100	28314,3465	Ő	0
gypsumboard	27 316,280	4,440	121 284,283	0,209	5 709,103	0,00070	19,121	0	0	100	27316,28	0	0	0	0	100	27316,28	0	0
Windows																			
Wooden with double glazing	388,130	626,700	243 241,071	35,9	13 933,867	0,46560	180,713	25,77	100,021101	68,88	267,343944	5,36	20,803768	53,57	207,921241	43,37	168,331981	3,06	11,876778
Total	1 950 089,696		1 754,286		463,242	4 97			111,861		56,615		214,769		44,020		065,563		273,623
Total floor area[m ²]	2 416,280		16,280		16,280		6,280		16,280		6,280		16,280		16,280		16,280		16,280
Total per m ²	807,063	67	792,157	20	7,121	2,0	061		5,783		,611		4,064		3,774		7,322		7,361
[%]								9	,390	6,	023	87	7,238	2	,946	9	5,076	4	1,629

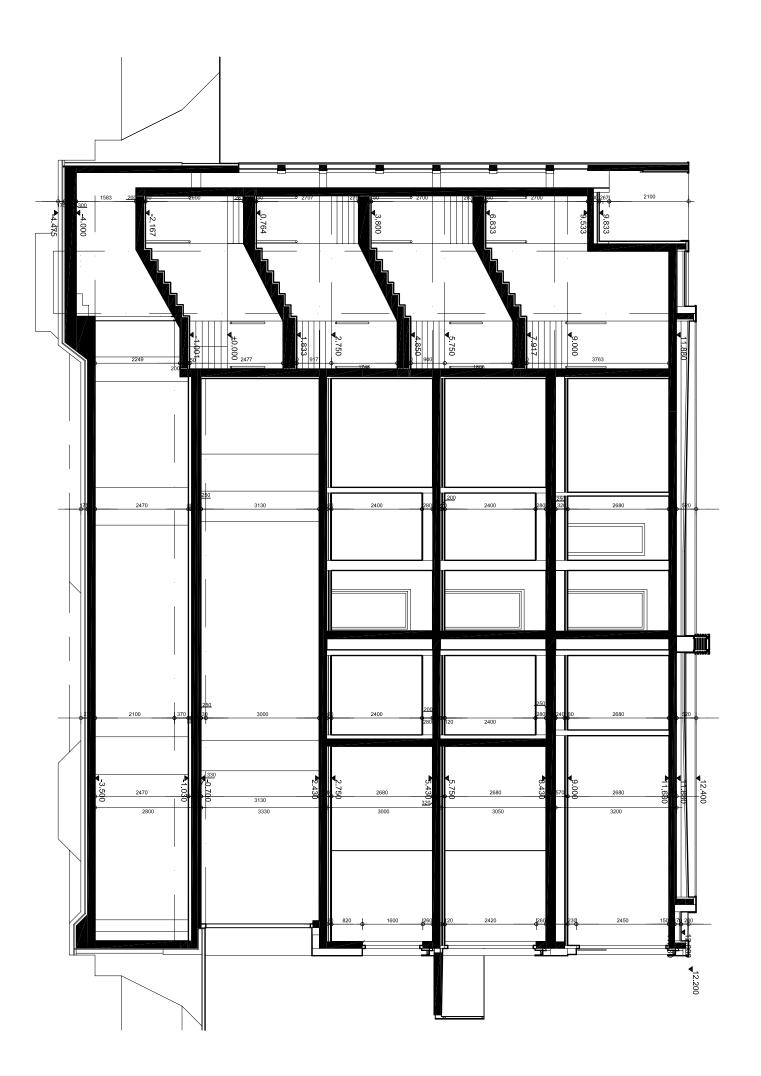

						Timber	structu	re with	out base	ment									
Type of structure Used material	Weight [kg]	Embodied energy [MJ/kg]	Embodied energy total [MJ]	Embodied CO ₂ emissions [kg/ka]	Embodied CO ₂ emissions total [kg]	Embodied SO ₂ emissions [kg/kg]	Embodied SO ₂ emissions total [kg]	Renewat	ble materials	Recycle	ed materials	Raw	materials	Fully re	ecycleable	Partly r	ecycleable	v	Vaste
Load bearing structure																			
_		0,690	0,000	0,103	0.000	0,00024	0,000	0	0	0	0	100	0	3,148	0	96,852	0	0	0
		22,700	0,000	0,935	0,000	0,00567	0,000	0	0	0	0	100	0	3,148	0	96,852	0	0	0
Timber profiles	74 024,123	2,720	201 345,614	-1,490	-110 295,943	0,00161	119,179	100	74024,1228	0	0	0	0	0	0	100	74024,1228	0	0
Ceilings																			
0																			
ceramic tiles	26 519,200	13,900 3,400	368 616,880 0,000	0,717 0,300	19 014,266 0,000	0,00298 0,00230	79,027 0,000	0	0	0	0	100 100	26519,2 0	0	0	50 100	13259,6 0	50 0	13259,6
waterproofing	5 091,686	3,400 93,400	475 563,510	2,550	12 983,800	0,00230	128,820	0	0	0	0	100	0 5091,6864	0	0	0	0	100	0 5091,6864
		1,600	0,000	0,090	0,000	0,00080	0,000	0	0	0	0	100	0	0	0	0	0	100	0
Ethafoam	928,172	102,000	94 673,544	3,440	3 192,912	0,02110	19,584	0	0	0	0	100	928,172	0	0	0	0	100	928,172
OSB boards	51 712,440	9,320	481 959,941	-1,168	-60 400,130	0,00603	311,826	80	41369,952	0	0	20	10342,488	0	0	100	51712,44	0	0
timber joists 60 x 40	2 394,606	2,720	6 513,329	-1,490	-3 567,963	0,00161	3,855	100	2394,606272	0	0	0	0	0	0	100	2394,606272	0	0
gypsumboard	12 016,513	4,440	53 353,316	0,209	2 511,451	0,00070	8,412	0	0	100	12016,5125	0	0	0	0	100	12016,5125	0	0
Facade																			
external plaster	4 914,589	1,400	6 880,425	0,140	688,043	0,00130	6,389	0	0	0	0	100	4914,589375	0	0	0	0	100	4914,589375
thermal insulation - mineral wool	17 654,277	23,300	411 344,665	1,640	28 953,015	0,01050	185,370	0	0	20	3530,855496	80	14123,42198	0	0	100	17654,27748	0	0
OSB boards	9 512,872	9,320	88 659,969	-1,168	-11 111,035	0,00603	57,363	80	7610,29776	0	0	20	1902,57444	0	0	100	9512,8722	0	0
woodenfibre boards	9 288,660	13,700	127 254,642	-0,183	-1 699,825	0,00688	63,906	60	5573,196	40	3715,464	40	3715,464	100	9288,66	0	0	0	0
vapour barrier timber profiles 100 x 60 + joists	975,299 10 101,702	93,400 2,720	91 092,964 27 476,631	2,550 -1,490	2 487,013 -15 051,537	0,02530 0,00161	24,675 16,264	0 100	0 10101,70248	0	0	100 0	975,2994048 0	0	0	0 100	0 10101,70248	100 0	975,2994048 0
gypsumboard	5 842,577	4,440	25 941,040	0,209	1 221,098	0,00070	4,090	0	0	100	5842,576531	0	0	0	0	100	5842,576531	0	0
		1,110	20 0 11,0 10	0,200	1 22 1,000	0,0007.0	1,000	0	0	100	0012,010001	Ū	0		0	100	0012,010001	Ŭ	
Roof structure																			
gravel	35 345,700	0,080	2 827,656	0,004	141,383	0,00005	1,767	50	17672,85	50	17672,85	0	0	0	0	100	35345,7	0	0
extruded polystyren	2 796,263	102,000	285 218,826	3,440	9 619,145	0,02110	59,001	0	0	0	0	100	2796,263	0	0	0	0	100	2796,263
waterproofing	3 257,489	77,000	250 826,638	2,020	6 580,127	0,02100	68,407	0	0	0	0	100	3257,4888	0	0	0	0	100	3257,4888
wooden walking coat	7 530,000	2,720	20 481,600	-1,490	-11 219,700	0,00161	12,123	90	6777	0	0	10	753	0	0	100	7530	0	0
thermal insulation - mineral wool	11 520,796	23,300	268 434,557	1,640	18 894,106	0,01050	120,968	0	0	80	9216,637164	20	2304,159291	0	0	100	11520,79646	0	0
OSB boards	15 158,228	9,320	141 274,680	-1,168	-17 704,810	0,00603	91,404	80	12126,582	0	0	20	3031,6455	0	0	100	15158,2275	0	0
timber profiles 60 x 40	1 796,011	2,720	4 885,149	-1,490	-2 676,056	0,00161	2,892	100	1796,010624	0	0	0	0	0	0	100	1796,010624	0	0
gypsumboard	4 241,522	4,440	18 832,357	0,209	886,478	0,00070	2,969	0	0	100	4241,521875	0	0	0	0	100	4241,521875	0	0
Separation walls																			
timber profiles	8 734,871	2,720	23 758,849	-1,490	-13 014,958	0,00161	14,063	100	8734,87104	0	0	0	0	0	0	100	8734,87104	0	0
sound insulation - mineral wool	22 904,816	23,300	533 682,219	1,640	37 563,899	0,01050	240,501	0	0	20	4580,963254	80	18323,85301	0	0	100	22904,81627	0	0
gypsumfibre boards	28 314,347	4,440	125 715,698	0,209	5 917,698	0,00070	19,820	0	0	100	28314,3465	0	0	0	0	100	28314,3465	0	0
gypsumboard	27 316,280	4,440	121 284,283	0,209	5 709,103	0,00070	19,121	0	0	100	27316,28	0	0	0	0	100	27316,28	0	0
Windows																			
Wooden with double glazing	388,130	626,700	243 241,071	35,9	13 933,867	0,46560	180,713	25,77	100,021101	68,88	267,343944	5,36	20,803768	53,57	207,921241	43,37	168,331981	3,06	11,876778
Total	400 281,170	4 501	1 140,054	-76	444,551	1 86	2,510	188	281,212	116	715,351	99 (000,109	9 49	96,581	359	549,613	31 2	234,976
Total floor area [m ²]	2 363,770	2 3	63,770	2 3	63,770	2 36	3,770	2 3	63,770	2 3	63,770	2 3	63,770	2 3	63,770	2 3	63,770	23	63,770
Total per m ²	169,340	1 9	04,221	-3	2,340	0,	788	79	9,653	4	9,377	4	1,882	4	,018	15	2,109	1:	3,214
[%]									7,037		9,158		4,733		,372		9,824		,803

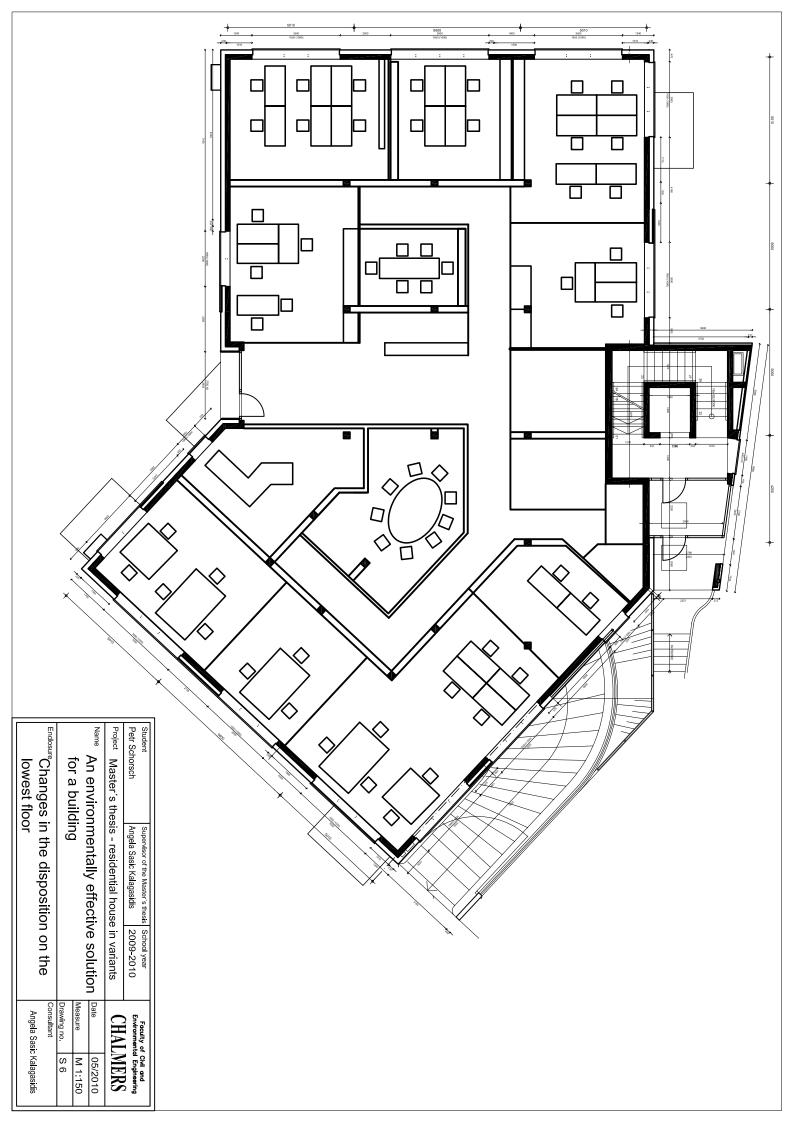
G


Basic drawings of the original building

Endosur [®] Layout of the flo Original building	Student Supe Petr Schorsch Ange Project Master's thesis - Name An environme for a building	
ayout of the floor with garages. Driginal building	Student Supervisor of the Master's thesis School year Petr Schorsch Angela Sasic Kalagasidis 2009-2010 Project Master's thesis - residential house in variants Name An environmentally effective solution for a building For a building	
<u> </u>		
nsultant Angela Sasic Kalagasidis	Environmental Engineering CHALMERS e 05/2010 asure M 1:100 wing no. S 1	




Endosure Original building		
the 1st floor uilding	Supervisor of the Master's thesis School year Angela Sasic Kalagasidis 2009-2010 Master's thesis - residential house in variants An environmentally effective solution for a building	
) N	
as.	Foculty of CMI and Environmental Engineering CHALMERS Date 05/2010 Measure M 1:100 Drawing no. S 2	


Aligeta Sasic Natagasiuls	uilding	Original building
Consultant	^{indosur} Layout of the 2nd and 3rd floor	indosure Layout of t
Drawing no. S 3		
Measure M 1:100	na	for a huilding
Date 05/2010	An environmentally effective solution	An environ
CHALMERS	^{roject} Master's thesis - residential house in variants	^{roject} Master's thes
Environmental Engineering	Angela Sasic Kalagasidis 2009-2010	⁹ etr Schorsch
Faculty of Civil and	Supervisor of the Master's thesis School year	Student

Itudent Supervisor of the Master's thesis School year Faculty of Cut and Environment Engineering 'roject Master's thesis - residential house in variants 2009-2010 CHALMERS 'ame An environmentally effective solution for a building Date 05/2010 Indosure M 1:100 Drawing no. S 5 Section of the original building Consultant Angela Sasic Kalagasidis					
Dn Date Drawing no.	Kalagasidis	Angela Sasic	lding	f the original bui	Section o
Dn Date Drawing no.		Consultant			inclosure
DN Date	S 5			9	וסי מ סמוומ
on ₽	M 1:100	Measure			for a huild
	05/2010	Date		imentally effectiv	ame An enviror
Supervisor of the Master's thesis School year Angela Sasic Kalagasidis 2009-2010	MERS	CHAL	in variants	sis - residential house	^{ject} Master's the
	I Engineering	Environmento	2009-2010		⁹ etr Schorsch
	Civil and	Faculty of	School year	Supervisor of the Master's thesis	student

