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Simulating quantum error correction in a small stabilizer code
Simulating the [[5, 1, 3]] stabilizer code, the smallest possible capable of correcting single
qubit errors, under physical device limitations and noise
ALEXANDER ANDERSSON AND SEBASTIAN HOLMIN
Department of physics
Chalmers University of Technology

Abstract
Quantum error correction is an essential precondition for scaling up the current noisy
intermediate-scale quantum (NISQ) computing of today. However, only rudimen-
tary parts of quantum error correction have so far been experimentally demonstrated.
Specifically, active correction of errors in distance-3 or above error correcting codes,
capable of identifying arbitrary single qubit errors, has so far not been realized. In
this work, we simulate repeated rounds of error correction with incoherent noise using
the [[5, 1, 3]] error-correcting code, which is the smallest possible fulfilling this require-
ment, with the aim of determining its viability on a 7-qubit device being designed at
the Wallenberg Center for Quantum Technology (WACQT) at Chalmers University of
Technology.

We find that the error-correcting code suffers from a large number of incorrectly de-
coded errors caused by noise during the detection step, which we identify as the pri-
mary bottleneck. The lifetime of the logical qubit can be improved by introducing a
delay between the cycles of error correction, and by splitting the error measurements
over two ancillary qubits. Using the lifetime parameters T1 = 40 µs and T2 = 60
µs, representing the decay of the |1〉 and |+〉 states for the constituent single qubits
respectively, we reach a logical qubit lifetime of TL = 39 µs, which is narrowly below
the break-even point. For cases where T2 � T1 (including T1 = 40 µs and T2 = 70
µs), we find that the lifetime of the logical qubit may exceed the single qubits when
comparing the worst case initial conditions. The stronger condition of TL > T1, T2 is
reached at T1 = T2 = 120 µs. A more robust error-decoding scheme, perhaps from
improved parallelism or fault-tolerant stabilizer circuits, would significantly lower the
barrier to the error-correction break-even point and make the code more effective.

Keywords: Quantum computing, QEC, Quantum error correction, Stabilizer code,
[[5,1,3]], 5-qubit code, distance-3, Qiskit, Simulation, Quantum mechanics.
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1
Introduction

Quantum computers have the potential to significantly outperform classical computers
in many cases such as Shor’s algorithm for integer factorization [1] and computational
chemistry problems [2][3]. These quantum algorithms would offer exponential speedup
to their classical counterpart, presenting new opportunities in their respective fields.
However, despite the many theoretical applications, there are currently practical hur-
dles preventing quantum computers of sufficient size from being realized. One key
obstacle is the very large susceptibility to noise due to the fragility of the quantum bits
(qubits). Future large-scale quantum computers will employ quantum error correction
(QEC) to suppress the influence of noise to allow for scalable controlled computation.
Quantum error correcting codes (QECC) employ multiple physical qubits to encode
the data of fewer, logical qubits. Such a system could be more tolerant to noise, and
will usually have both the ability to detect the occurrence of certain classes of errors
and even correct them. QECCs are typically very sensitive to the quality of the con-
stituent qubits, as the errors produced during the detection and correction routines
must be less frequent than those being corrected to gain any net benefit. As of now,
in the current noisy intermediate-scale quantum (NISQ) era where qubits are both
noisy and limited in number [4], only the most rudimentary aspects of QEC have been
experimentally demonstrated [5][6][7][8][9].

Currently, Wallenberg Center for Quantum Technology (WACQT) at Chalmers Uni-
versity of Technology, is making preparations to build a chip of seven transmon qubits.
It is planned to feature high connectivity and high-quality qubits, which introduces
the opportunity to experimentally examine more sophisticated QECCs than what has
been achieved so far.

In this master thesis project, we will investigate the feasibility of one such QECC, the
[[5, 1, 3]] code, in relation to different architectures and qubit fidelities of a seven-qubit
chip. The [[5, 1, 3]] stabilizer code is the smallest known QECC with the ability to
not only detect the presence of any single-qubit error but to uniquely identify them,
such that they can be corrected. Previous experiments [5][6], using codes lacking this
feature, have demonstrated logically encoded qubits with higher stability than their
constituent qubits through post-selecting out runs where errors were detected.

We propose circuits compatible with the device limitations of the planned transmon
architecture, and compare the performance of coupling the qubits in a square lattice
to a triangular one, as well as the usage of one or two ancillary qubits. The simulation
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1. Introduction

is done using the quantum computing development platform Qiskit [10], developed by
IBM. We extract the noise parameters required to reach the “break-even” threshold,
where the QECC extends the lifetime of the logical qubit above that of a single physical
qubit.

1.1 Outline of report
We begin this thesis by briefly explaining the core concepts of quantum computing
(QC), followed by an overview of general stabilizer QECCs and how they relate to
the [[5, 1, 3]] code. We then proceed with a description of how to model errors using
quantum channels, including a summary of the ones we employ for our simulations.

In chapter 3, we give an overview of the physical limitations of present-day quantum
computers and how these can be overcome to practically realize the [[5, 1, 3]] code. We
also specify the procedures employed for the simulations, and what device parameters
are used to mimic realistic conditions.

In chapter 4, we present the compiled circuits and overview their efficiency. We simu-
late the encoding of logical states, as well as repeated rounds of QEC. We investigate
the device parameters needed to reach the QEC break-even point, and whether the
triangular chip architecture is better suited to implement the [[5, 1, 3]] code than others
with lesser connectivity.

We conclude the thesis with a recap of the core obstacles for experimentally realizing
the code, and present prospects for how these could be circumvented to make the
scheme viable for experimental demonstration of error correction in future works.

1.2 Limitations
In this work, we have limited ourselves to the toolbox provided by the Qiskit software.
This includes assuming perfect two-level qubits that neglect the higher energy levels
present in the transmon qubits [11][12] we are emulating. We are thus not able to model
certain classes of quantum errors, such as leakage into these higher levels. We also
neglect the underlying implementation of the qubit gates, which often utilizes these
energy levels temporarily to achieve the desired transitions [13][14]. In addition to this,
we will neglect the modeling of so-called coherent noise, which includes systematically
faulty operations on the qubits.

For the [[5, 1, 3]] code to be practical, the issue of performing logical operations on the
encoded state needs to be investigated. This has been done in previous work, both
theoretically [15] and experimentally [9]. As such, we focus on the issue of preserving
the information of one qubit through error correction.

A number of additional QEC schemes exist which could be possible to run on other
future chips featuring just a few more qubits. In particular larger stabilizer codes, such
as [[7, 1, 3]] which has a fault-tolerant version proposed by [16] using 9 qubits in total,
[[8, 3, 3]] which can be made fault-tolerant with 10 qubits [17] or the [[9, 1, 3]] which can

2
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be run without fault tolerance also using 10 qubits. A probably more realistic type
of QECC is the surface code, which naturally scales with qubit numbers to enhance
its error-protecting properties [18]. The surface codes feature a greater parallelization
and can measure the presence of multiple errors simultaneously. A common small
surface code with the ability to correct any single-qubit error while retaining high
performance is the so-called surface-17 [19], which requires 17 qubits in total arranged
in a custom tailored layout. While these alternate paradigms offer many advantages
over the [[5, 1, 3]] code, we will focus on studying the simplest model.
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2
Theory

Quantum computers store and manipulate information embedded into the combined
quantum state of qubits to perform calculations. The goal of QECCs is to redun-
dantly encode these qubit states into a larger Hilbert space of more physical qubits
than necessary in such a way that a particular class of errors, typically single-qubit
errors, leaves the logical information unaffected. The space of “valid” quantum states
is referred to as the codespace C, and the states outside this set are identified as
invalid information which can only be reached when errors occur. A QEC scheme
will continuously measure the state in such a way as to, without affecting the logical
information, identify if it lies in the codespace.

To explain this in greater detail, we begin with a brief overview of the necessary
theory for quantum computing in the circuit model, followed by the error-correcting
properties of stabilizer QECCs. For a more thorough treatment of these topics, we
refer to [20, Ch. 4] and [20, Sec. 10.5.5][21][22] respectively. In section 2.3, a more
realistic (albeit still rather simplistic) representation of quantum noise and how this
can be modeled in a QC simulation is presented. We refer to [20, Sec. 8][23][24] for a
more in-depth explanation on this.

2.1 Quantum computing
Quantum computers generalize the concept of classical computing to utilize quantum
effects for more efficient data storage and processing. The basic building block of a
quantum computer is therefore the qubit, a quantum analog to the classical two-level
system called bit. A qubit is simply any sufficiently stable and controllable two-level
quantum system, which can assume superpositions of these states given by

|ψ〉 = α |0〉+ β |1〉 , α, β ∈ C, |α|2 + |β|2 = 1.

Quantum states are always normalized, 〈ψ|ψ〉 = 1, and hence the time evolution is
given by unitary operators

|ψ〉 = UN · UN−1 · ... · U1 |ψ0〉 ,

which are by definition the set of operators that preserves the complex norm. In the
context of quantum computing, the unitary time evolution operators are called gates.
A quantum computer will be capable of performing any unitary evolution in its gate
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set, which ideally can be combined to form any desired unitary. The vector space of
qubits is finite dimensional and we can thus represent the operators as matrices, with
the basis given by

|0〉 ≡
[
1
0

]
, |1〉 ≡

[
0
1

]
.

The most basic quantum gates are the Pauli operators, defined by the matrices

X ≡
[
0 1
1 0

]
Y ≡

[
0 −i
i 0

]
Z ≡

[
1 0
0 −1

]
. (2.1)

If applied to the state of a qubit, they will transform it as

X |0〉 = |1〉 X |1〉 = |0〉 ,
Y |0〉 = i |1〉 Y |1〉 = −i |0〉 ,
Z |0〉 = |0〉 Z |1〉 = − |1〉 .

The X gate can thus be applied on a qubit to “flip” its state between |0〉 and |1〉,
similarly to a classical NOT gate. The Z gate will apply a phase1 to the |1〉 state and
the Y gate is a combination of Z followed by X with an extra global phase factor of
“i”.

The most common way to represent quantum gates, however, is using the circuit model,
where one represents the time evolution in the form of a diagram read from left to
right. For example, in this way of expressing a quantum program

ZY X |0〉 is equivalent to |0〉 X Y Z .

The state |ψ〉 of a quantum system can however not be directly observed. Instead,
one is limited to measuring so-called observables, which are represented by Hermi-
tian operators. When an observable is measured, the outcomes correspond to the
eigenvalues of the associated matrix, and the quantum state is effectively projected to
the corresponding eigenspace. The Pauli operators are both unitary and Hermitian,
and so they can be applied as gates on a qubit, but also correspond to measurable
properties. The Z operator will then effectively measure whether the qubit is in the
|0〉 or |1〉 state, corresponding to eigenvalues 1 and −1 respectively. For simplicity,
these outcomes are usually relabeled 0 and 1. The Z observable is in practice usually
the only form of measurement that a quantum computer can directly perform, but as
we will see later, other observables can effectively be measured using clever quantum
circuits.

Since measurable states correspond to eigenvectors, the global phase of a quantum sys-
tem is physically unobservable. Because of this and the requirement of normalization,
a general single qubit state can be written as

|ψ〉 = cos(θ/2) |0〉+ eiϕ sin(θ/2) |1〉 , (2.2)
1Here, a “phase” refers to the phase of the complex amplitude for the |1〉 state. Specifically

multiplying it by a factor −1 = eiπ.
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using only two parameters. Here we have defined the amplitude for the |0〉 state as
real.

The single qubit state can then be represented as a
vector lying on the so-called Bloch sphere [20, p. 15],
shown in fig. 2.1. Here, the |0〉 state corresponds to
the north pole, while the |1〉 state corresponds to
the south. The states on the x and y axes simi-
larly correspond to the eigenvectors of the X and Y
operators.

The computational power of quantum computers,
however, comes from the dynamics of multiple
qubits. A system of N qubits is described by a su-
perposition of the 2N possible combinations of their
states, written as

ϕ

θ

x̂

ŷ

ẑ = |0〉

−ẑ = |1〉

|ψ〉

Figure 2.1: Representation of a single
qubit state using the Bloch sphere. Ev-
ery point on the sphere, defined by its
Euler angles, corresponds to one of the
possible superpositions of |0〉 and |1〉 us-
ing eq. (2.2).

|ψ〉 = c0 |0...00〉+ c1 |0...01〉+ c2 |0...10〉+ ...+ c2N |1...11〉 , cn ∈ C,
∑
n

|cn|2 = 1.

As an example of how this could allow for more efficient computation, consider the
quantum Fourier transform, which is a quantum circuit that performs the discrete
Fourier transform on the amplitudes cn, using O(n2) gates, compared to the fastest
known classical algorithm, FFT, which needs O(n2n) gates [25][20, Sec. 5.1].

Single qubit states and gates within multi-qubit systems can be represented using
tensor products, which are usually omitted for brevity. For example, if three qubits
are initialized in the zero state, and the X gate is applied to the first qubit, the Y
gate on the second and the identity gate I, equivalent to doing nothing, is applied to
the third, then this would be written as

XY I |000〉 ≡ (X ⊗ Y ⊗ I)(|0〉 ⊗ |0〉 ⊗ |0〉) = (X |0〉)⊗ (Y |0〉)⊗ (I |0〉) = i |110〉 .

More general multi-qubit gates are represented by unitary matrices with dimensions
determined by the number of qubits they operate on. An example is the controlled-X
gate, simply called the CNOT gate, which acts on a two-qubit state as

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .
Note that the basis states are ordered as |00〉 , |01〉 , |10〉 followed by |11〉. The gate
swaps the amplitudes for the |10〉 and the |11〉 state, which can be interpreted as
applying an X gate on qubit 1 only if qubit 0 is in the |1〉 state.

Using the circuit model, we can draw multi-qubit gates as connecting the “wires” of
specific qubits. A basic two-qubit circuit may look like this:
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|0〉

|0〉

H

This circuit first applies a Hadamard gate, which is defined as

H = 1√
2

(
1 1
1 −1

)
= X + Z√

2
,

and hence it maps the |0〉 state to the |0〉+|1〉√
2 state2. And then proceeds to a CNOT

where the first (highest) qubit acts as the control for whether X is applied to the
second. The total action of the circuit will thus be

CNOT · (H ⊗ I) |00〉 = CNOT ·
(
|0〉+ |1〉√

2
⊗ |0〉

)
= CNOT |00〉+ |10〉√

2
= |00〉+ |11〉√

2
.

We have thus produced what is called a “cat state” (after Schrödinger’s cat), which is a
superposition of two “opposite” composite states. The subsequent measurements will
always produce the outcomes 11 or 00, which is an example of quantum entanglement.

A full list of the gates used in this work and their corresponding matrix representations
and circuit symbols can be found in appendix A.

2.2 Stabilizer codes
Stabilizer codes are a natural quantum extension of certain classical codes and even
allow for some binary and quaternary codes to be reused. As such, they are inherently
suited for dealing with bit and phase flip errors, i.e., erroneous applications of the Pauli
operators X, Y , or Z on some qubits. In a quantum computer, an infinite amount
of possible single-qubit errors, corresponding to any rotation on the Bloch sphere,
could in principle happen, making such a translation seem inappropriate. It turns
out, however, that when measuring the presence of one of these errors, one essentially
“projects” the continuous error into discrete ones. In general, if a QECC can correct
against a set of errors, then it can also protect against any linear combination of these
[20, Th. 10.2]. The Pauli matrices, together with the identity I, form a basis for the
space of complex 2× 2 matrices, and are thus sufficient to represent all unitary single
qubit errors.

Stabilizer codes are uniquely determined by their so-called stabilizer S, which is the
group of operators that leave the elements of the codespace unaffected. The code-
pace C(S) is then defined as the eigenspace of S with eigenvalue +1, i.e. C(S) =
{ | ψ〉 : ∀g ∈ S, g | ψ〉 = | ψ〉 }. Every QECC has stabilizers, but for the ones referred
to as stabilizer codes, valid ones are abelian subgroups of the n-fold Pauli group Gn

2This state is the +1 eigenvector to the X operator, which lies on the “x̂” basis vector of the Bloch
sphere in fig. 2.1. Together with the −1 eigenvector |0〉−|1〉√

2 they form an alternative orthonormal basis
and are commonly labeled |+〉 and |−〉 respectively. The Hadamard is the corresponding basis change
matrix.
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and cannot contain −(I⊗n). The n-fold Pauli group is defined as the group generated
by tensor products of n Pauli operators. For example,

G1 ≡ 〈X, Y, Z〉 = {±I,±iI,±X,±iX,±Y,±iY,±Z,±iZ } .

One can choose a basis which generates the stabilizer. For a code with n physical qubits
encoding k logical ones, there will be n−k elements. That is, S = 〈g1 . . . , gn−k〉. Errors
are identified by measuring the eigenvalues gl |ψ〉 = βl |ψ〉 where βl = ±1, which gives
a corresponding ’syndrome’ {βl}n−kl=0 . A trivial syndrome, βl = 1 for all l, means that
the state is still stabilized by S and thus has no errors.

Let us look at how the errors relate to the stabilizers. If an error E (or indeed any
unitary operation acting on |ψ〉) commutes with a stabilizer g then it will not affect
the eigenvalue since gE |ψ〉 = Eg |ψ〉 = E |ψ〉. This set of operators is called the
centralizer Z(S), and errors in it will be undetectable. For the S defined above, the
centralizer coincides with the normalizer N(S) = {E : ESE† = S}, which we will
henceforth use3. If, however, the error lies within S itself, it will leave the codespace
unaffected by definition, hence the following condition for error detection.

Theorem 1. A set of errors {E } ⊂ Gn is detectable for the stabilizer code C(S) if
∀E,E /∈ N(S)\S.

While theorem 1 describes which errors are detectable, it imposes no constraint that
their syndromes are unique. For an error to be correctable one needs to be able to
identify a correction procedure for each syndrome which maps the state back to the
initial codeword. If the error E is applied, it may flip the eigenvalue of one or more of
the stabilizers, glE |ψ〉 = βlEgl |ψ〉 ,∀ |ψ〉, or more compactly

E†glE = βlgl, l = 0, ..., n− k. (2.3)

Thus, if two errors cause the same syndrome, E†i glEi = E†jglEj = βlgl for l = 0, ..., n,
we have

EiE
†
jg = gEiE

†
j ,

hence4 E†iEj ∈ N(S). Again, there is a trivial case where E†iEj ∈ S, where the errors
perform the same operations on codewords since

E†iEj|ψ〉 = |ψ〉 ⇐⇒ Ej|ψ〉 = Ei|ψ〉.

The full error correction condition [20, Th. 10.8] thus reads:

Theorem 2. A set of errors {Ei} ⊂ Gn is correctable for the stabilizer code C(S)
if, ∀i, j, : E†iEj /∈ N(S)\S.

3The definition of the normalizer is weaker and implies that errors that map elements in the
stabilizer to other elements, as EgiE† = gj , are allowed. However, when S is a subgroup of Gn and
does not contain −I, the normalizer and centralizer are the same.

4Where we have used the fact that β = 1/β to flip the order of the Hermitian conjugation.
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Analogous to the Hamming distance for classical error correcting/detecting codes, one
usually defines the distance n as the minimum number of single-qubit errors needed
to go from one valid codeword to another, which corresponds to the smallest amount
of (non-trivial) Pauli operators in the tensor product of elements (called weight) in
N(S)\S. By theorem 1, to detect any t single-qubit errors a code needs distance
d ≥ t+1, and by theorem 2 that to correct any t single-qubit error it needs d ≥ 2t+1.
One can classify stabilizer codes with the label [[n, k, d]], which implies that the code
uses n physical qubits to encode k logical ones, and has distance d.

2.2.1 The [[5, 1, 3]] stabilizer code
The [[5, 1, 3]] is the stabilizer code defined by the generators (where we omit the tensor
products)

g1 = XZZXI

g2 = IXZZX

g3 = XIXZZ

g4 = ZXIXZ. (2.4)

It is the smallest code possible with distance 3, which is required to correct any one
single-qubit error. That the code has this ability can be directly verified using theo-
rem 2.

Proof. The set of single qubit errors {Ei} consists of {I,X1, ..., X5, Y1, ..., Y5, Z1, ..., Z5}.
We have to show that, for any i and j, either E†iEj lies in the stabilizer, or there
is an element in the stabilizer that does not commute with it. We first note that
i = j ⇒ E†iEj = I. I stabilizes every vector and so it has to be in S.

We then note that the product of errors acting on the same qubit results in another
single-qubit error, i.e., E†jEi = Ek for some k. Two Pauli operators of the same type
commute (of course) and two of different types do not. One can thus easily see that
Ek would fail to commute with at least one generator since every ’column’ in eq. (2.4)
contains both an X and a Z and no Pauli operator can commute with both.

For all E†iEj consisting of Pauli operators on two different qubits, we can construct
two elements in S such that E†iEj has to not commute with one of them. Simply
choose one of the qubits affected by E†iEj and look up the corresponding stabilizers in
table 2.1, they will have an identity operator acting on that qubit and different Pauli
operators on every other. E†iEj will commute with the ’I’ component but must fail
to commute with a Pauli operator of one of the stabilizers since, as before, they are
different.

As mentioned above, the codespace is defined as the +1 eigenspace of the stabilizer
generators in eq. (2.4). By defining the logical Z operator to be ZL = ZZZZZ5

(similarly XL = XXXXX and YL = Y Y Y Y Y ), which commutes with the generators,
5This can be put into the alternative form g2 ZL = ZY IIY , showing that it is a weight-3 operator,

which is required for any distance-3 code.
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Table 2.1: Stabilizers in S with an identity operator in the tensor product acting on the
qubit corresponding to the column, and different Pauli operators acting on every other
qubit.

g2 = IXZZX g3 = XIXZZ g4 = ZXIXZ g1g4 ∝ Y Y ZIZ g1 = XZZXI
g1g3 ∝ IZY Y Z g2g4 ∝ ZIZY Y g1g2 ∝ XY IY X g2g3 ∝ XXY IY g3g4 ∝ Y XXY I

we can further define the logical basis states |0L〉 and |1L〉 as the ±1 eigenspaces of
this operator within the code space6. They turn out to be

|0L〉 = 1
4[|00000〉+ |10010〉+ |01001〉+ |10100〉

+ |01010〉 − |11011〉 − |00110〉 − |11000〉
− |11101〉 − |00011〉 − |11110〉 − |01111〉
− |10001〉 − |01100〉 − |10111〉+ |00101〉]

(2.5)

and

|1L〉 = 1
4[|11111〉+ |01101〉+ |10110〉+ |01011〉

+ |10101〉 − |00100〉 − |11001〉 − |00111〉
− |00010〉 − |11100〉 − |00001〉 − |10000〉
− |01110〉 − |10011〉 − |01000〉+ |11010〉].

(2.6)

Note how ZL = ZZZZZ measures the parity of the states. That is, the eigenvalue is
+1 for an even amount of ones and −1 for an odd amount. Hence the |0L〉 states only
have even parity components and |1L〉 only has odd parity components.

2.3 Noise and errors in quantum computers
In practice, errors in the form of erroneous unitary single-qubit operations are a fairly
unrealistic idealization. Quantum errors can roughly be divided into two groups, co-
herent and incoherent noise [26][23]. Coherent errors roughly correspond to incorrectly
applied quantum operations, or incomplete knowledge of how these function. This typ-
ically involves systematic over- or under-rotations. Coherent noise has been shown not
to significantly influence the break-even error thresholds of surface codes [27], therefore
we focus on modeling the incoherent noise.

Incoherent errors instead describe the perpetual influence of the environment on the
quantum state, such as thermal relaxation. To model such interactions, the qubits
have to be described as an open system. Closed quantum systems evolve with the
reversible operations of unitary operators. Open quantum systems, however, can be
affected by a broader range of transformations described by quantum channels E .

6Note here that ZL can be seen as having “undefined” behavior on states outside the codespace,
and may be considered not actually to be the true ”logical” Z operator, which is given by Ztrue

L =
|0L〉〈0L|−|1L〉〈1L|. They are related by Ztrue

L = ZLIL, where IL = |0L〉〈0L|+|1L〉〈1L| is the projector
on the codespace. However, ZL is more feasible to experimentally measure.
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These are completely positive, trace-preserving maps on the space of density matrices
ρ.

A quantum operation can be broken down into its operator-sum representation

E(ρ) =
∑
k

EkρE
†
k

where E(ρ) is the final state and Ek are called the Kraus operators, which must fulfill∑
k E
†
kEk = 1.

2.3.1 Amplitude damping
One naturally occurring source of error in qubits is the tendency of a quantum state to
undergo thermal relaxation from |1〉 to |0〉, since |1〉 represents a higher energy state
in most superconducting qubits7. This can be modeled using the quantum channel

EAD(ρ) = E0ρE
†
0 + E1ρE

†
1

where E0, E1 are the Kraus operators given by

E0 =
(

1 0
0
√

1− γ

)
, E1 =

(
0 √

γ
0 0

)
.

Here, γ represents the probability of |1〉 → |0〉 decay. The action of the channel is
thus given by

EAD

[(
ρ00 ρ01
ρ10 ρ11

)]
=
(
ρ00 + γρ11 ρ01

√
1− γ

ρ10
√

1− γ (1− γ)ρ11

)
.

We can see that amplitude damping reduces the components of the density matrix
corresponding to superpositions, thus making the state “more classical”.

2.3.2 Phase damping
Phase damping is an entirely quantum mechanical form of noise, and describes the
loss of information about the relative phase of the eigenstates. Its Kraus operators are
given by

E0 =
(

1 0
0
√

1− λ

)
, E1 =

(
0 0
0
√
λ

)
.

The action on a single qubit state is thus

EPD

[(
ρ00 ρ01
ρ10 ρ11

)]
=
(

ρ00 ρ01
√

1− λ
ρ10
√

1− λ ρ11

)
.

7At finite temperatures, there is also a small contribution in the other direction |0〉 → |1〉. However,
at the operating temperatures and frequencies of superconducting qubits this rate is exponentially
suppressed [23, p. 14] and thus the normal amplitude damping channel forms a good approximation.
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2.3.3 Continuous errors
The combined operation of the amplitude and phase damping channels is given by

EPD ◦ EAD(ρ) =
(

1− (1− γ) ρ11 ρ01
√

1− γ
√

1− λ
ρ10
√

1− γ
√

1− λ (1− γ) ρ11

)
,

where we have used that ρ00 = 1− ρ11.

However, this model assumes discrete noise events where the errors occur with a given
probability. In reality, the errors are applied continuously over time, which converts
the constant factors to exponential decays

1− γ = e−t/T1
√

1− γ
√

1− λ = e−t/T2 ,
(2.7)

where t is the timed passed, and T1 and T2 are the so-called relaxation and dephasing
times, which can be experimentally measured [28]. The continuous amplitude and
phase damping channel then acts on a single qubit as

ρ→ ED(ρ) =
(

1− ρ11e
−t/T1 ρ01e

−t/T2

ρ10e
−t/T2 ρ11e

−t/T1

)
. (2.8)

We can see that T1 parameterises the rate of the process |1〉 → |0〉, while T2 parame-
terises the decay of the off-diagonal components. From eq. (2.7), we can see that with
pure amplitude damping, the T1 and T2 times are related by T2 = 2T1. However, when
phase damping is introduced, this causes additional decay of the off-diagonal compo-
nents8 which instead results in the relation T2 ≤ 2T1. For typical systems, T2 > T1,
and so the excited state decay is the most limiting component of thermal decay.

Using eq. (2.8), the evolution of a pure single qubit |ψ〉 = α |0〉+ β |1〉 is given by

ED(|ψ〉 〈ψ|) =
(

1− (|α|2 − 1)e−t/T1 αβ∗e−t/T2

α∗βe−t/T2 |β|2e−t/T1

)
.

After a time t, the probability of remaining in the same state is given by the state
fidelity

〈ψ| ED(|ψ〉 〈ψ|) |ψ〉 = |α|2 + e−
t

T1 |β|4 − e−
t

T1 |α|2|β|2 + 2 e−
t

T2 |α|2|β|2.

For the special cases of a qubit initiated in the |1〉, |+〉 and |0〉 states the expression
reduces to

〈1| ED(|1〉 〈1|) |1〉 = e−
t

T1

〈+| ED(|+〉 〈+|) |+〉 = 1
2 + 1

2e−
t

T2 (2.9)

〈0| ED(|0〉 〈0|) |0〉 = 1.

In the first two cases, the probabilities reduce to exponential decays with lifetimes
given by T1 and T2 respectively. For the |0〉 state, the fidelity never decreases, as we
expect from our interpretation of thermal decay.

8The specific contribution of phase damping to T2 can be isolated by 1
T2

= 1
2T1

+ Γϕ, where Γϕ is
called the pure dephasing rate.
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3
Methods

All simulations of the [[5, 1, 3]] code were done using Qiskit [10] (version 0.25.0), an
open-source framework for creating and simulating quantum programs founded by
IBM Research. Qiskit provides the ability to perform density matrix simulations with
noisy quantum channels defined by Kraus operators, including channels for amplitude
and phase damping described in section 2.3. We have also utilized Qiskit’s transpila-
tion functionality, along with manual adjustments, to adapt the circuits to the device
limitations.

In this chapter, we start by illustrating the circuits that realize the [[5, 1, 3]] code, and
proceed to outline the specific device limitations and how the circuits were adapted
to them. We then detail how the simulation and associated data processing were
performed. We have extended the base Qiskit framework for applying noise, transpiling
circuits and analyzing results, which will be explained in the rest of this chapter.

3.1 The [[5, 1, 3]] circuit
The procedure for realizing repeated error correction using the [[5, 1, 3]] code, as out-
lined in multiple places [17][29], goes as follows:

1. Encode the desired single qubit state

2. Measure the four stabilizers

3. Decode the error syndrome using classical processing

4. Perform corrections to reverse any detected error

5. Repeat from 2.

To perform error detection by post-selection instead of error correction, replace step 4
by “discarding the run when errors are detected”. When performing actual computa-
tion using error correction, one would also perform logical operations on the encoded
state, in between step 4 and 5.

The circuit to encode an arbitrary state is depicted in fig. 3.1. It maps the single qubit
state |ψ〉 = α |0〉 + β |1〉 into |ψL〉 = α |0L〉 + β |1L〉, with |0L〉 and |1L〉 as defined in
eq. (2.5) and eq. (2.6). This encoding circuit was adapted from [15] and is, to the best
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of our knowledge, the shortest known encoding circuit capable of encoding an arbitrary
state in the [[5, 1, 3]] code to date. Shorter circuits capable of producing specific logical
states have been shown [30].

To measure the stabilizer, the logical states are entangled with an ancilla qubit, which
is then projectively measured1. The general scheme for measuring an observable M
with eigenvalues ±1 on the multi-qubit state |ψ〉, is shown in fig. 3.2. Applying this
scheme to the stabilizer generators in eq. (2.4) produces the full stabilizer measurement
shown in fig. 3.3. The ancilla is reset after each measurement and reused. Once the full
syndrome is measured, the appropriate correction is applied to |ψL〉, following a simple
lookup table detailed in appendix B. As the stabilizer generators commute, measuring
them consecutively will project the state to one of their simultaneous eigenvectors.
Thus, any continuous error can be “discretized”. After error correction, the state will
effectively be projected to the codespace.

|ψ〉

|0〉

|0〉

|0〉

|0〉

Z H

H

H

H

H

H

Figure 3.1: Encoding circuit for the [[5, 1, 3]]
code. The single qubit state |ψ〉 in the first
qubit will be encoded into all five qubits to
form the logical state.

|0〉

|ψ〉

H

M

H

Figure 3.2: Projective measurement of the
observable M with eigenvalues ±1 utilizing
an ancilla qubit. Here |ψ〉 may represent a
multi-qubit state.

In principle, the ancilla qubit does not need to be reset after measurement. The effect of
the circuit in fig. 3.2 is more specifically to “flip” the ancilla qubits state from the initial
value (which would be |0〉 or |1〉 depending on the previous measurement outcome)
when the measurement of observable M results in −1. However, if the last stabilizer
measurement results in −1, this will effectively “flip” all syndromes retrieved in the
next cycle. When neglecting the reset step, the alternate correction operations shown
in appendix B should be used instead. Because of the very limited functionality for
conditioning gates on measurement outcomes in Qiskit, this turns out to be unfeasible
to implement. As the ancilla is more stable in its |0〉 state, not resetting the ancilla
may in principle slightly influence the correctness of the error measurements. However,
as we demonstrate in appendix D.1, the impact is negligible and it can be disregarded
in experimental setups.

1The need for this comes from the fact that, as mentioned earlier, quantum computers lack the
ability to directly measure arbitrary observables. Commonly, they are only capable of measuring the
Pauli Z operator, i.e. determining the |0〉 or |1〉 states of the individual qubits. Another limitation
of quantum computers is that direct measurements destroy the quantum state.

16



3. Methods

D1

D2

D3

D4

D5

A0 |0〉 H H |0〉 H H |0〉

.....

.....

.....

.....

.....

.....

D1

D2

D3

D4

D5

A0 |0〉 H H |0〉 H H |0〉

Figure 3.3: Full stabilizer cycle of the [[5, 1, 3]] code with full connectivity. Qubits D1−5
denotes the data qubits encoding our logical state |ψL〉 and A0 the ancilla qubit.

3.2 Device limitations
Real quantum hardware is limited in what operations can be performed, something
which has to be carefully considered when constructing quantum programs on current
small scale devices. For example, only certain qubits have the physical connection
required to allow two-qubit gates between them to be performed. In this project,
we have adapted the [[5, 1, 3]] circuits for the two 7-qubit device connectives shown
in fig. 3.4, where the left is a common square architecture utilized in previous QEC
experiments [6][5], and the middle is the triangular lattice investigated by WACQT.
From hereon we instead refer to the triangular grid as hexagonal layout, corresponding
to the shape formed by its constituent qubits. We will also compare the devices to the
ideal case of full connectivity, shown to the right.

6 0

5

4 3

2

1

0

1 2

36

45

0

1

2

34

5

6

Figure 3.4: Connectivity of explored devices. The vertices represent qubits and the edges
which pairs of qubits two-qubit gates can operate on.

In addition to limited connectivity, only a subset of gates is typically implemented in
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hardware. In this work, we consider the gate set2

G = {CZ, iSWAP, X, Y, Z(θ),
√
X,
√
Y }

which is the set experimentally demonstrated at WACQT [31] excluding iSWAP. It is
therefore relevant to explore the option of limiting circuits to CZ as the only two-qubit
gate, that is G \ {iSWAP}. However, using both CZ and iSWAP in the same circuit
has been experimentally shown in similar hardware [32]. Therefore we still utilize the
full gate set G unless otherwise specified. For further details regarding specific gates,
the reader is referred to appendix A.

3.2.1 Transpilation of a quantum program
The process of modifying (quantum) programs for compatibility with device limita-
tions without altering their behavior is called transpilation3. To adapt the necessary
connectivity, the assignment of theoretical circuit qubits to the physical qubits is first
considered. Ideally, all two-qubit gates can be performed within the limited connec-
tivity with an adequate placement. If not, SWAP gates, defined as

SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 ,
must be added. As the name suggests, the SWAP gate is a two-qubit gate which
effectively swaps the quantum states of the two qubits involved, allowing the qubit
states to be ”moved” into a position where the desired two-qubit gate can be performed.
For this purpose, the Qiskit transpiler was used as an initial step, followed by further
manual optimization. The built-in transpiler implements the SABRE [33] algorithm
for assigning qubits and introducing SWAPs, which we found consistently performed
the best compared to other available algorithms.

Thereafter, the gates are decomposed into those of the required set based on pre-
set equivalences. While several such decompositions are already defined within the
qiskit.circuit.EquivalenceLibrary, it offers no native translation of SWAP gates
into iSWAP gates, the most favorable option for our gate set. As such, we added a
decomposition of the SWAP gate into an iSWAP, CZ and two single qubit Z-rotations,
which is shown in Figure 3.5.

Finally, the Qiskit transpiler attempts to optimize the circuit based on a performance
metric. Optimization level 1 (from 0-3) was used which combines adjacent gates
when possible. Higher levels offer further gate cancellation by stochastic reordering of
commuting gates, but were not used due to incompatibility with the iSWAP gate. As
the optimization and qubit layout is stochastic, the transpilation was repeated multiple
times, and the circuit of the shortest duration was chosen. Further optimization was
performed manually through inspection.

2The Z(θ) gate is also commonly labeled U1(θ) or RZ(θ)
3Some authors simply prefer the term ”compilation”, we chose to adopt the language used in the

Qiskit API.
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iSWAP
Z(-π2 )

Z(-π2 )

Figure 3.5: Equivalent gates used in transpilation. The left circuit represents the SWAP
gate the right its breakdown into the available gate set.

Table 3.1: Our choice for default operation, T1 and T2 times used across simulations,
unless otherwise stated. Note that the Z-gate is excepted from single qubit gates, as it is
instant.

Parameter Standard times [ns]
Single qubit gate 20
Two-qubit gate 100
Measurement 300
Feedback 350
T1 40000
T2 60000

We have also investigated the use of the transpilation tool t|ket〉 [34], a quantum devel-
opment platform produced by Cambridge Quantum Computing Ltd, which includes
state-of-the-art quantum transpilation. We found, however, that it was heavily opti-
mized for specific NISQ devices and was unable to efficiently decompose the SWAP
gates into an equivalent iSWAP dependent circuit such as in fig. 3.5. This could poten-
tially be achieved through the customization available in their API, but as the circuits
we consider in this project are fairly small it was considered outside the scope of this
project in favor of hand made optimizations.

3.3 Noise model
In this work, we limit ourselves to incoherent noise based on the continuous amplitude
and phase damping channels, as defined in eq. (2.8). Qiskit implements this error
channel directly in the qiskit.providers.aer.noise.thermal_relaxation_error
module. This error channel is entirely time dependent. Realistic values for the nec-
essary parameters vary greatly between experimental setups, ranging between 20 µs
to 200 µs for T1,2 [35][5][6][7][9][36][37][38]. The same goes for gate times provided by
several sources [5][9][36][13]. Therefore, we choose to run simulations with T1 = 40 µs,
T2 = 60 µs along with gate times close to experimental values, detailed in table 3.1
as base values unless otherwise specified. Operation times are split into single-qubit
gate, two-qubit gate, measurement and feedback delay. Feedback delay refers to the
time from measurement of the error syndrome to the application of a correction gate,
corresponding to step 3 and 4 of the list in section 3.1. The exception to this is the
Z(θ) gate, which can be implemented with zero duration by adjusting the underlying
pulses of adjacent gates [39].

Qiskit does not natively support applying noise to qubits during idle periods, it is
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limited to noise applied in conjunction with gates. We have extended this by imple-
menting code for analyzing the time dependence of circuits given specific gate times.
We calculate the duration qubits need to stay idle in between gates and directly insert
error channels in the circuit proportional to the length of these periods.

3.4 Extraction of logical qubit fidelities
To quantify the efficiency of QEC, we will investigate how well the state of an encoded
logical qubit is preserved compared to the state of a single qubit. As we saw in eq. (2.9)
using quantum state fidelity, the probability of a single qubit remaining in its initial
state over time depends greatly on the initial condition. For simplicity, we will compare
to the worst-case scenario, which for a single qubit is an exponential decay with time
constant being the smallest of T1 and T2.

During the simulations, we have access to the full density matrix of the seven-qubit
state at all times. We can remove the states of the ancilla qubits through the partial
trace operation. The probability of measuring the encoded state ρ as equal to its
initial pure state |ψL〉 is similarly given by the state fidelity

F (|ψL〉 , ρ) = 〈ψL| ρ |ψL〉 . (3.1)

If ρ also describes a pure state ρ = |ψρ〉〈ψρ|, this reduces to the familiar |〈ψL|ψρ〉|2.

Using the default T1 = 40 µs, T2 = 60 µs, we simulate the decay of the (non-error
corrected) encoded logical qubit, shown in the left side of fig. 3.6. We can see that
it does not show any dependence on its initial conditions. The decays of the fidelity
for each cardinal state are equal until they all start to approach thee |00000〉 state.
This has a 1/16 overlap with the |0L〉 state and 0 overlap with |1L〉 as can be seen in
eq. (2.5) and eq. (2.6).

One can further project ρ onto the codespace using

ρL,ij = 〈j|ρ|i〉 /PL, |i〉 , |j〉 ∈ { | 0L〉, | 1L〉 } , (3.2)

where PL = ∑
i 〈i|ρ|i〉 is the probability of ρ residing in the codespace [6]. The “logical”

fidelity to the single qubit state |ψ〉 is then simply given by

FL(|ψ〉 , ρ) = 〈ψ| ρL |ψ〉 ,

which corresponds to the probability of matching |ψL〉 conditioned on ρ lying in the
codespace. Or, equivalently, the probability of matching the initial state after an ideal
stabilization to the codespace. This is related to eq. (3.1) by F = FLPL. In the right
side of fig. 3.6 we can see the logical fidelity of the cardinal logical states to their
initial conditions over time. The encoded state shows inherent protection against
logical errors from the amplitude and phase damping channels. Only after roughly
30 µs, when they all approach |00000〉, does the underlying logical information get
corrupted.
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Figure 3.6: Probability of matching initial state (fidelity) of logically encoded cardinal
states without error correction over time. The left plot shows just the state fidelity. The
right plot shows the fidelity where the extracted density matrix has been projected to
the codespace (in post-processing outside of the simulation). Note how the encoded state
decays far quicker than its constituent qubits, but the logical information is still preserved
for a longer time.
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4
Results

There are a plethora of different key elements that determine the performance of the
[[5, 1, 3]] code, for which the quantum state fidelity of the encoded state to its target is
our primary metric. We aim to investigate how different factors influence the fidelity
and whether a break-even is reachable, where the logical and single-qubit lifetimes
are equal. The chapter begins by first showcasing the transpiled circuits, followed by
encoding fidelities. Afterwards, we turn to active error-correction and noise parameters
are varied to search for a possible break-even threshold. Finally, we investigate how
the code’s performance is impacted by different layouts and strategies.

4.1 Circuit transpilations
Following the procedures in section 3.2.1, encoding and stabilizer cycles were transpiled
both together and separately. The resulting encoding circuits are shown in fig. 4.1 for
both connectivities along with circuit times and depth in table 4.1, yielding a depth of.
The most notable difference is the number of swaps necessary; two and three for the
hexagonal and square layout respectively. In both cases, qubits are assigned to put the
initial state in the central qubit (denoted 0 in fig. 3.4 and fig. 4.1), and repositioning
the ancilla into the center as the final step after encoding.

While it remains unproven that these are the shortest possible circuits under our
constraints, it is most likely the optimal transpilation of the initial scheme. The same
unitary circuit can be composed in several different ways, but the transpiler only seeks
to optimize and adapt the specific gates involved. For shorter circuits with identical
device limitations, one might need to design an encoding from scratch with the specific
gates and connectivity in mind.

As for the stabilizer cycles, there is not as much optimization to be done. CNOT
gates in the projective measurements can be decomposed into CZ without adding
circuit time1, and for the hexagonal layout, no iSWAP is necessary at all. Only the
square layout benefits from optimization, as it requires four iSWAPs for each cycle.
These can, however, be neatly run in parallel with the actual stabilizer measurements,
resulting in only 120 ns of additional time (Compared to the 800 ns of time to perform
four swaps), as seen in table 4.1. Decomposing SWAPs into only CZ gates instead,

1While the decomposition of CNOT into CZ adds two Hadamard gates on the target qubit, these
do not increase circuit time as these are performed in parallel with existing operations.
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Figure 4.1: Encoding circuits following the square (top) and hexagonal (bottom) layout.
D represents data qubits set to encode the logical state and A the ancilla qubit, with
numbers representing their position in fig. 3.4. Note that qubit 6 represents the ancilla
during encoding, but is swapped into the central 0 position at the end. While H is not
within our gate set, its decomposition is equivalent to a single qubit gate, omitted in the
figure for clarity. For full details, refer to appendix A.

does not see such benefits, resulting in a total of 400 ns extra time per stabilizer cycle,
compared to the hexagonal counterpart. The full circuits are detailed in appendix C.

Table 4.1: Circuit times and depth for the encoding and a stabilizer cycles using the
default gate times in table 3.1, along with the general time formulas decomposed into sums
of constituent parts. In these formulas, t1 denote single-qubit gate time, t2 the two-qubit
gate time, tm measurement time and tf feedback time. Note that circuit times may differ
from these formulas in some rare cases as, for example, two-qubit gates and measurements
are run in parallel. Circuit depth is calculated as the number of steps in the circuit, with
a step corresponding to any set of gates which can be run in parallel. Here we omit the
Z gate as it can be made instant [39]. The full circuits for all these layouts are found in
appendix C.

Device layout Encoding Stabilizer cycle
Time [ns] Time formula Depth Time [ns] Time formula Depth

Full Connectivity 640 2t1 + 6t2 8 3310 8t1 + 16t2 + 4tm + tf 28
Hexagonal 1140 2t1 + 11t2 13 3310 8t1 + 16t2 + 4tm + tf 28
Hex., no iSWAP 1460 8t1 + 13t2 21 3310 8t1 + 16t2 + 4tm + tf 28
Square 1220 t1 + 12t2 13 3430 9t1 + 17t2 + 4tm + tf 30
Square, no iSWAP 1700 10t1 + 15t2 25 3710 13t1 + 19t2 + 4tm + tf 44

4.2 Encoding
With all circuits defined, the first step of utilizing QEC is to encode the logical state.
Using our default device parameters, the probability of matching the target 5-qubit
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encoded state was determined using the state fidelity of eq. (3.1) and is shown in
table 4.2. The fidelities range from 0.884 for the square layout without iSWAP gates
to 0.970 for full connectivity. The fidelity is directly dependent on the duration of
the encoding circuit, and thus follows the circuit times in table 4.1. We see the best
fidelity when encoding the |−L〉 state for each architecture.

Table 4.2: Success probabilities (state fidelity F and logical state fidelity FL) of encoding
four cardinal states for the different transpiled circuits in table 4.1 using T1 = 40 µs, T2 = 60
µs and the gate times in table 3.1.

Device layout Encoding success prob. F Projected encoding suc. prob. FL
|0L〉 |1L〉 |+L〉 |−L〉 |0L〉 |1L〉 |+L〉 |−L〉

Full Connectivity 0.959 0.959 0.959 0.970 0.994 0.994 0.999 1.0
Hexagonal 0.919 0.919 0.925 0.935 0.987 0.987 0.999 1.0
Hex. no iSWAP 0.901 0.901 0.906 0.923 0.986 0.986 0.999 1.0
Square 0.911 0.911 0.916 0.929 0.988 0.988 0.999 1.0
Square, no iSWAP 0.890 0.890 0.884 0.919 0.987 0.987 0.999 1.0
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61

93

124
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219

250

T 2
 [
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0.88 0.90 0.92 0.94 0.96 0.98
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Figure 4.2: Success probabilities of encoding the |1L〉 state (fidelity of the states F ) with
the hexagonal layout for a range of T1 and T2 times, using the gate times in table 3.1.
Empty tiles represent the invalid T2 > 2T1 region.

We also projected the density matrix onto the logical codespace, using eq. (3.2), before
measuring the fidelity. This logical fidelity FL corresponds to the probability of cor-
rectly encoding the desired state conditioned on measuring ρ to be in the codespace,
which happens with a probability PL. This is related to the physical fidelity F through
F = FLPL. We can see significantly improved fidelities after projection, indicating that
the logical information itself is not scrambled to a high degree. When performing er-
ror correction, the state will ideally be projected to the codespace, increasing F to, at
most, the level of FL.
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We also investigate the impact of a range of T1 and T2 times for the |1L〉 state using
the hexagonal layout, which is shown in fig. 4.2. Values of T1 = 80 µs and T2 = 95 µs
are sufficient to reach a fidelity of F = 0.95, while almost T1 = 200 µs and T2 = 250
µs is needed to reach F = 0.98.

Note that our noise model is invariant to the scaling of the T1, T2 and gate time
parameters in proportion to one another. Moreover, the impact of single and two-
qubit gate times can almost entirely be described by total duration of the encoding
circuit, thus one can determine the encoding success probability for other gate times
using

P (T1, T2, t1, t2) = Pdef

(
T1

1140 ns
2 t1 + 11 t2

, T2
1140 ns

2 t1 + 11 t2

)
,

where Pdef(T1, T2) is the success probability using the default gate times in table 3.1,
which is read from fig. 4.2, and t1 and t2 are alternate single and two-qubit gate times
in ns, respectively.

4.3 Active error correction
Having explored the transpilation of circuits and the encoding of the logical states, it
is time to evaluate the correction of errors. The decay of the state fidelity F and the
logical state fidelity FL of a repeatedly error-corrected logical qubit is shown in fig. 4.3.
Ideally, the encoded state is continuously projected to the codespace from the error
correction, and should therefore approach the mixed state ρ = (|0L〉〈0L|+ |1L〉〈1L|)/2
after complete loss of information at t → ∞, which corresponds to a fidelity of 0.5.
We find, however, that the overlap with the codespace, given by PL = F/FL, takes on
the constant value of 0.81 throughout the entire simulation, except at the beginning
when the qubit is perfectly initialized in the pure |0L〉 state. Excluding the initial data
point2, the logical fidelity, nonetheless, with good approximation decays exponentially
as

FL(t) = 0.5 e−t/TL + 0.5,

where t is the time passed and TL is the logical lifetime3, and thus approaches FL = 0.5
for t→∞. The physical fidelity therefore also decays with the same lifetime TL µs as

F (t) = FL(t)PL = 0.5PL (e−t/TL + 1).

Hence, the parameters TL and PL are sufficient to specify the fidelity of the encoded
state over time. We perform a curve fit using scipy.optimize and find TL = 26
µs, which is shorter than that of the single qubit, indicating that we are below the
break-even threshold.

The probability of the error-corrected qubit retaining its initial state surpasses the
single qubit after roughly 20 µs. However, this is a consequence of the asymmetry

2In the formulas, as opposed to the plot, we redefine t = 0 as being after the first error correction
cycle for clarity.

3Other works have used the exponential decay of other metrics to define the logical lifetime, we
elaborate on this and make comparisons in appendix D.2.
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Figure 4.3: Repeated quantum error correction and detection. We initialize the simulator
in the |0L〉 state (|1〉 for single qubit) perfectly for every simulation, and measure the fidelity
F to that state over time, which corresponds to the probability of remaining in the initial
state. The quantum error-corrected qubit (blue N) drops steeply after the first stabilizer
cycle, and afterwards decays exponentially (blue dotted line). Its lifetime is improved
over the uncorrected logically encoded qubit (red dashed line), but lower than that of the
uncorrected single qubit (green dashed line). The logical fidelity FL, corresponding to the
fidelity after projecting the extracted density matrix to the codespace, is also shown (orange
H). It shows no initial drop and actually remains roughly at 1 after the first correction step,
but then decays exponentially with a lifetime of TL = 26 µs. The fraction PL = F/FL,
corresponding to the probability of the logical qubit residing in the codespace, remains
constant after the first correction step at PL = 0.81. Post-selection is also shown (purple
I), which also exhibits a dip after the first cycle followed by an almost constant fidelity.
The logical fidelity of the post-selection (brown J) shows no dip, and in fact stays above
0.999 during the entire simulation. The PL probability for the post-selection is thus also
constant at PL = 0.92. The percentage of states not post-selected away (for both projected
and non-projected) is also shown as numbers and decays exponentially with lifetimes 14 µs.

of the amplitude damping channel; the single qubit decays towards the |0〉 state as
opposed to an equal mixed state of |0〉 and |1〉. The symmetric decay of the logical
qubit may be considered an advantage, but does not reflect the distinguishability of the
|0L〉 and |1L〉 states. The error-corrected qubit does show an improved lifetime over the
non-error-corrected logically encoded qubit, demonstrating that the error-correction
itself improves the stability of the logical qubit.

Figure 4.3 also shows the fidelity and logical fidelity of the encoded qubit using post-
selection of errors from repeated error-detection. The cycles for these circuits are
shorter as the recovery step is omitted. Here we see PL = 0.92, also constant for
the entire simulation. The projected logical qubit shows perfect retention of logical
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information, indicating that the noise is always detected and post-selected before errors
can congregate to undetectable ones. This is consistent with fig. 3.6, where the physical
fidelity F decays quickly but the logical FL stays constant for a while. The detection
of errors is delayed for long enough that small errors, which only affect F , occur but
not for FL to decay. The percentage of runs not terminated because of detected errors
is printed in black at intervals, and decays exponentially with a lifetime of 14 µs, which
is roughly the same as the decay rate of the non-error-corrected logical qubit.

The high fidelity of the post-selected states has been demonstrated experimentally
[6][5], but with a more pronounced (albeit still very slight) slope than present in our
simulations. This is likely caused by our idealized error model, which lacks modeling
of significant error modes, such as leakage, that may cause high weight errors that
stabilizer codes are not adept at preventing.

The performance of the error correction is significantly hampered by faulty error de-
coding caused by errors occurring in between the measurements of the stabilizer gen-
erators. Specifically, if an error that would trigger a −1 measurement outcome on one
of the stabilizer generators occurs after that generator has been measured, but before
the end of the cycle, it will be identified as a different error or be missed entirely.
This may cause the recovery scheme to apply a faulty correction procedure, which
can result in a weight-2 error. If the error is missed, it may still be caught in the
next cycle as long as another error does not occur before detection. This flaw is not
very surprising as the circuit contains no operations other than repeated stabilization,
so the probability of errors occurring during this process is more likely than outside
it. In a future application of quantum error correction, logical calculations may take
up a significant portion of the computing time and errors during these could still be
detected.

The impact of faulty error decoding is demonstrated in fig. 4.4, which compares the
basic QEC to a version with perfect error decoding. Here, we let the system idle
for the duration of a stabilizer cycle, and then perform instant error-free detection
and correction. In this way, the same amount of noise is applied, but never during
the detection step. We see that the “dip” disappears. The logical lifetime is also
significantly improved, above that of the single qubit, reaching the breaking-even point
of the error-correction.

Figure 4.4 also shows post-selection of errors. The perfect decoding version almost
flawlessly isolates error-free runs, resulting in maximum fidelity. The fact that the
perfect decoding post-selection outperforms the perfect decoding error-correction is
probably a result of weight-2 errors being detectable, as there is no need to uniquely
identify every error. Normal post-selection is for this reason also not as hampered by
incorrect error decoding. While the active error-correction suffers from faulty correc-
tive operations, post-selected runs will only contain errors when the error syndrome
incorrectly indicates no errors whatsoever. This can be seen from the reduces “dip”
after the first cycle, compared to the active error-correction.

28



4. Results

0 10 20 30 40 50
Time [ s]

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Pr

ob
ab

ilit
y 

of
 re

m
ai

ni
ng

 in
 in

iti
al

 st
at

e 
F

TL = 26 s

PL = 0.81

TL = 118 s

53% 26% 13% 6% 3%

PL = 0.92

100% 52% 28% 15% 8% 4%

QEC
QEC perfect decoding
Post-selection
Post-selection perfect decoding

Figure 4.4: Influence of decoding errors on error correction and detection. The same
normal repeatedly error corrected and post-selected runs as in fig. 4.3 are shown as blue N
and green I. A simulation with perfect decoding, where the state is left idle for the duration
of a cycle followed by instant noiseless error correction (orange H), shows a significantly
improved lifetime and no initial dip, surpassing the single qubit by a large margin. A similar
perfect decoding version of post-selection also shows no dip (red J), and in fact flawlessly
selects error free runs. We can see that post-selection is less hampered by incorrect decoding,
as the errors do not need to be uniquely identified to post-selected the run. The fraction of
states not post-selected away is also shown and decays exponentially with lifetimes 14 µs
for both the normal post-selection and the perfect decoding post-selection.

4.3.1 Dependence on device parameters
We now move on to investigate how the QEC depends on the device characteristics,
and whether the error-correction break-even point can be reached with higher quality
components. In terms of qubit decoherence and our noise model, the parameters to
consider are operation times, T1 and T2. Here we further split the operation times
into the four different categories used across simulations; single-qubit gates, two-qubit
gates, measurements and feedback time. We limit ourselves to the hexagonal layout
in this subsection.

Initially, we compare the impact of different operation times. This was done by vary-
ing the time of specific operations one at a time, while keeping the others at their
standard duration specified in table 3.1, two-qubit gates, measurement and feedback
times separately, as well as scaling all gates proportionally4. We have also included a
fifth category; a time delay between cycles. This cycle delay is added directly after
the correction procedure (and our snapshot of the density matrix). During this time

4Scaling single qubit gates separately was omitted due to their short gate time.
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qubits are idle, but it can be interpreted as the possibility of performing logical opera-
tions on the encoded state. Results are given in fig. 4.5 with both logical lifetime and
probability of remaining in code space as a function of the total resulting stabilizer
cycle duration.
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Figure 4.5: The logical lifetime (left) and probability of remaining in code space (right)
of the error-corrected qubit using a range of operation times, plotted against the resulting
total duration of the stabilizer cycle. The blue circles describes the scaling of all operations
in proportion to one another. The remaining colors/symbols describe varying the duration
of one operation type, from t = 0 ns to the value specified at the rightmost data point, while
keeping the remaining operations at their standard durations. The point of convergence
for all plots around the cycle time tcyc = 3 µs corresponds to standard gate times used.
Durations are evenly spaced, but their specific values can also be obtained using table 4.1
for the hexagonal layout.

There are several noteworthy results from fig. 4.5. When scaling all operation times
proportionally, there is very little improvement in the logical lifetime with TL ranging
from 28 µs for tcyc = 1 µs to 24 µs at tcyc = 10 µs. While this suggests that cycle
time has minimal impact, the probability of remaining in the code space PL is almost
entirely dependent on the total cycle time, and decreases roughly in proportion to it.

Despite this, an improvement of only the two-qubit gate times increases the lifetime
far beyond their impact on the cycle durations. TL increases almost exponentially,
peaking at TL = 32.5 µs with instant CZ5 and other operations unchanged. While
instant gates are impossible, a 40 ns CZ gate has been shown experimentally [13]
(compared to standard time of 100 ns used here). This is likely a result of two-qubit
gates having a particularly large impact on the accuracy of the decoding. Thus, they
are a possible point of focus when realizing the [[5, 1, 3]] code.

Feedback time and idle delay after correction, however, act in the opposite way; longer
durations increase the logical lifetime TL. This effect peaks at cycle durations of 8
µs for both idle delay and feedback, which corresponds to an idle-time of 5 µs. A
simulation of error correction at these peak values compared to the standard ones is

5While all two-qubit gates are sped up, only CZ is used in the stabilizer cycle.
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shown in fig. 4.6. We can see that any improvement of the fidelity from the increased
lifetime when using a longer feedback delay is negated by the decreased PL. However,
the insertion of an idle-time in between the stabilizer cycles does show a real improve-
ment in the preservation of the logical qubit, increasing the lifetime to TL = 37 µs,
narrowly missing the break-even point.

The increased lifetime from inserting a delay in between cycles can likely be explained
by the inherent protection of the underlying logical state, as shown in fig. 3.6. The
logical fidelity FL shows the upper limit of how much physical fidelity can be recov-
ered by error correction, which is almost constant for 20 µs, far longer than the 3.3 µs
duration of one cycle. Performing correction cycles too often is thus not only unnec-
essary, but may cause more harm than good by letting errors propagate throughout
the circuit. We therefore conclude that, for our default operation times, T1 and T2,
optimal performance is given when idling for ∼ 5 µs after each error-correction cycle.
In theory this idle time could instead be used for computations on the logical qubit.
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Figure 4.6: Demonstration of the improvement from including an idle-time in between
stabilizer cycles. Repeated quantum error correction using the standard operation times
(which includes no delay) is shown as blue •, along with error correction where the feedback
time is increased to 5 µs (orange N) and where 5 µs of idle-time is inserted between cycles
(green H). While the two methods of adding delay yields roughly equal lifetimes, a longer
feedback time drastically lowers the probability PL of remaining in the code space, thereby
resulting in a net loss of fidelity. However, an idle-time before initializing the next round
of error correction shows the same increase in lifetime, with no decline in PL, resulting in
a real gain of logical state preservation. This shows a large improvement but still narrowly
missed the error-correction break-even threshold.

We now move on to investigate the impact of the T1 and T2 parameters. We perform
simulations for a range of values including the idle delay, with and without perfect
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decoding, which is shown in fig. 4.7. As our noise model is invariant to scaling T1,
T2 and all operation times proportionally we should see that the optimal idle-time is
dependent on T1 and T2. For simplicity, we have chosen to assume that it scales as
td(T1, T2) = 5 µs · (T1 + T2)/(100 µs), where “100 µs” represents T1 + T2 for the default
noise parameters.

For the normal simulation, we find that both TL and PL increase steadily with T1 and
T2. For biased choices of parameters, in particular when T2 � T1, we find that the
logical lifetime may exceed one of the decay parameters. This technically qualifies as
a breaking of the threshold compared to the worst case for the single qubit, which
is the definition we use for this thesis. Using the minimum lifetime of a single qubit
can be considered to give an unjustified advantage to the logical encoding. Other
works have used the mean fidelity over the cardinal states of the Bloch sphere for
the single qubit [40]. This will result in a decay that is not quite exponential and so
we have chosen the minimum to more easily determine the break-even point. For a
more in-depth discussion on the definition of the logical lifetime, see appendix D.2. A
stronger version of the condition for breaking even, where TL surpasses both T1 and
T2, is reached when both parameters are at 120 µs (where we find TL = 122 µs) or
above.

The break-even threshold is, however, reached for every simulation when using perfect
error decoding, corroborating the result that this is the dominant bottleneck for the
[[5, 1, 3]] code. We also found that PL = 1 for every choice of parameters in the perfect
decoding simulations, and is thus omitted from the figure.

4.3.2 Comparing connectivity graphs
Finally, we compare the performance of the [[5, 1, 3]] code on the connectivity graphs
presented in fig. 3.4. Much like the previous section, this was done while initializing
the simulator perfectly in the |0L〉 state, as the quality of the encoding has already
been compared in section 4.2. Simulations were carried out for both the square and
hexagonal architecture. The circuit for full connectivity is equal to that of the hexag-
onal as all data qubits have direct connection to the ancilla. These connectivities only
differ when encoding, which is not considered here. Two different setups are compared
for the hexagonal chip; a standard and a pipelined approach. The pipeline utilizes
the seventh qubit by swapping with the ancilla after the stabilizer but before ancilla
readout (circuit is found in appendix C). This allows for a time save of 300 ns per cycle
with our default times, as the subsequent stabilizers can be performed while measuring
the previous one. Such a setup was not considered for the square grid as the seventh
ancilla is two nodes away from the central qubit and would require two swaps instead
of one, offering no speedup.

Fidelities and lifetimes from these simulations are presented in fig. 4.8 both with and
without a 5 µs delay between cycles as discussed in section 4.3.1. We see a slight
difference in logical lifetimes; 26.2, 21.9 and 26.1 µs without delay for the hexagonal,
square and pipeline configuration respectively. With idle time, lifetime is increased to
37.6, 33.7 and 38.8 µs. As expected, the square grid falls short in both cases with a
significantly lower lifetime. The pipeline approach however, improves drastically with
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Figure 4.7: Logical lifetime TL and overlap with logical codespace PL for different values
of T1 and T2 using standard gate times. The left and middle picture corresponds to regular
QEC. The orange border marks parameter values where TL surpasses T1 or T2, marking the
break-even threshold when comparing the worst-case decays to that of the single qubits.
Note how the threshold is reached for a large span of values where the single qubits are
heavily T1 limited. The dark purple border similarly marks where TL surpasses both T1
and T2. The right plot shows perfect-decoding simulations with an idle-time matching the
full stabilizer cycle time, followed by instant (noiseless) measurements. This version broke
the threshold and maintained PL = 1 for every choice of parameters and thus these where
omitted from the figure. The blank area in top left corners of each plot corresponds to the
invalid parameter space T2 > 2T1.

added delay, slightly outperforming the regular approach giving the best results of all
configurations.

Similar to results in section 4.3, this could be explained by faulty error decoding.
Despite only a small increase of 120 ns cycle time between hexagonal and square
layouts, the latter shows worse results than scaling of gate times in fig. 4.5 suggests.
This added time however, is by the fourth stabilizer. As such, there is a larger time
frame for errors to arise at the end. If these errors would yield syndromes with −1
eigenvalues on any of the first three stabilizers, they are incorrectly identified and
a erroneous correction step may cause an uncorrectable weight two error. Another
explanation is that the introduction of four iSWAPs into the cycle gives additional
paths for errors to propagate; ultimately decreasing the state fidelity.

The increased lifetime with pipeline shows promise as the best performer, although
its strongly dependent on the underlying gate times. Time saving comes from the
difference in operation times between a measurement and double two qubit gates6 i.e.
the time it takes to measure or completely swap the ancilla. Therefore speeding up
measurement time while keeping two-qubit gates constant lessens the time gain and
(most likely) the lifetime increase. The opposite also applies; speeding up CZ and

6The difference is multiplied by 3 as it can be done for the first three stabilizers. The fourth must
wait for feedback time regardless and offers no such benefit.
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Figure 4.8: Repeated quantum error correction on |0L〉 for different setups: Standard
procedure on a hexagonal layout (blue �), square layout (orange I) and pipelined approach
for hexagonal layout (green N). The same layouts were also tested with a 5 µs delay between
cycles plotted as red �, purple J and brown H for the hexagonal, square, and pipeline
approach respectively. Shapes represent data points and dotted lines fitted exponential
decays. All simulations were carried out using noise parameters detailed in table 3.1 and
the best setup falls just short of the break-even point of TL = 40 µs, corresponding to the
worst-case decay of a single qubit.

iSWAP should enhance the improvement instead.

Despite this, we still fall just short of the break-even of 40 µs. While we have presented
several areas of possible improvement, it is critical to remember that this break-even
point is for the worst-case single qubit. Throughout simulations we used T1 = 40 µs
and T2 = 60 µs yet fail to reach TL = min(T1, T2). To improve upon this, focus should
be at minimizing decoding errors. Both errors propagating due to faulty extraction
during stabilizer measurements and possibly the classical processing of the resulting
bit string.
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5
Conclusions

To summarize, we have investigated the feasibility of the [[5, 1, 3]] error-correcting code
in terms of the coherent noise limit for a variety of setups and parameters. Circuits
were transpiled to match a scalable square and hexagonal grid with gates native to
WACQT devices. Encoding fidelity was determined for these layouts, and the logical
lifetime for repeated stabilization and correction was estimated. We showed that the
best performance was given when idling between each error-correction cycle for 5 µs,
which resulted in a lifetime of TL = 38.8 µs compared to the single qubit limited by
T1 = 40 µs with the considered parameters. Decreasing gate times, specifically two
qubit gates, showed the most promise in increasing logical lifetime. Aside from that,
the threshold could be reached by increasing T2 while keeping T1 constant. Since we
defined a threshold as the worst case of a single qubit (in this case, T1), improving T2
leaves the threshold unaffected while benefiting the encoded state.

We pinpointed the cause of most errors by testing the limits of perfect syndrome ex-
traction and perfect error correction, realized through error-free measurements and
post-selection respectively. This gave the unexpected results that our scheme is not
limited by qubit decoherence but the correct identification of such errors. The men-
tioned idle time thus reduced the frequency of error detection and correction, de-
creasing the number of decoding errors. Another possible solution to decoding is to
parallelize stabilizers. However, such approach requires four ancillas, and the [[5, 1, 3]]
code offers no obvious way to do this due to its need of high connectivity.

However, we do not ultimately rule out the usefulness of experimental implementations
of the [[5, 1, 3]] code despite frequent decoding errors, as some crucial aspects of QEC
could still be demonstrated. Repeated QEC showed significantly higher fidelity than
decay of the logical state |ψL〉. As such, it can still successfully correct errors in
the majority of cases, even if this does not show an improvement over the constituent
qubits. The [[5, 1, 3]] code also remains the smallest distance-3 code and can thus act as
a stepping stone in the experimental realization of QEC. It acts as a natural extension
of the [[4, 1, 2]] experiments [6][5] without requiring more qubits, the clear difference
being the classical feedback in correction steps. The delay time of this step has little
negative impact on the performance, so there is no need to implement fast classical
feedback to realize the [[5, 1, 3]] code.
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5. Conclusions

5.1 Outlooks
Our results also open up for further exploration of implementations of the [[5, 1, 3]] code.
The poor performance mostly arises from incorrectly identified error syndromes, which
is a result of the basic decoding using only a simple lookup table to match syndromes.
It may be possible to more accurately estimate the probability of different errors given
specific syndromes, in particular when also taking into consideration syndromes from
previous cycles. An improved decoder of these bit strings would provide performance
in between the basic and perfectly decoded simulation presented in fig. 4.4.

Modifications to the [[5, 1, 3]] code that introduce redundancy in the detection of er-
ror, such as including a fifth stabilizer generator g1 g2 g3 g4 = ZZXIX, could prove
more robust against decoding errors. Other small stabilizer codes with a higher de-
gree of parallelism may also exist, which would be inherently more resistant to this
phenomenon. Potentially, a combination of QEC and post-selection would be benefi-
cial, correcting errors with a high probability of matching the given syndrome while
post-selecting others. While such procedures would require more classical processing
we have shown that an increased feedback time is not a major concern to lifetime.

An entirely alternate method of investigating error correcting codes could be possible
utilizing post-processing. In such an implementation, errors would only be tracked and
not corrected, and their effects would be reversed in processing of the experimental
data. In appendix B.1 we show that, as for active error correction, every error can
be uniquely identified even when the state is not actively stabilized provided that no
more than one error occurs for every stabilizer cycle. This is true even if the final state
contains errors of weight-2 or above. In appendix D.1, we demonstrate the equivalence
to active error correction. Post-processing has the benefit of posing no restrictions on
the possible decoding procedure, and could thus possess the capability of reaching the
error threshold within our noise model. Although it may improve the logical lifetime,
not actively correcting errors does have the downside of being unable to correctly
perform two qubit gates between logical states.

However, to assess the implementation of a more sophisticated decoder a much more
realistic model of noise needs to be considered. We have only modeled the coherent
limit of noise using amplitude- and phase damping. Except for the time passed during
gates, these operations function perfectly, unlike physical implementations. Multiple
sources of noise, including flux noise, SPAM errors, ZZ crosstalk and in particular
leakage have been shown to be particularly impactful [5]. Correlated errors may arise
from the large number of CZ gates and leakage could give unidentifiable syndrome
measurements. Both might result in weight-2 or greater errors decreasing the logical
lifetime. Therefore such noise needs to be properly investigated, possibly by simulating
the circuit at Hamiltonian level instead; simulating the physical system rather than
the circuit it represents.
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A
Gate operations

This Appendix contains full descriptions of all quantum gates used in the report,
following the notations of Nielsen & Chuang [20]. The most basic ones are the Pauli
operators, already defined in eq. (2.1) as

X ≡
[
0 1
1 0

]
≡ X

Y ≡
[
0 −i
i 0

]
≡ Y

Z ≡
[
1 0
0 −1

]
≡ Z

which all rotate the qubit state around their respective axis of the Bloch sphere by an
angle π. Similarly the

√
X and

√
Y gates rotate by π/2 instead

√
X ≡ 1

2

[
1 + i 1− i
1− i 1 + i

]
≡ √

X

√
Y ≡ 1

2

[
1 + i −1− i
1 + i 1 + i

]
≡ √

Y

with, of course,
√
X

2 = X and
√
Y

2 = Y . Additionally the Z can be generalized to
an arbitary rotation around the Z-axis

Z(θ) ≡
[
1 0
0 eiθ

]
≡ Z(θ) ≡ RZ(θ) ≡ U1(θ)

also referred to as U1(θ), RZ(θ). The final gate used is the Hadamard gate

H ≡ X + Z√
2
≡ 1√

2

[
1 1
1 −1

]
≡ H

which notably moves |0〉 (|1〉) to |+〉 (|−〉).

Along these single qubit gates, we also use a number of two-qubit gates. The most
common ones are the controlled-X (controlled NOT) and controlled-Z gate

CX ≡


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ≡

I



A. Gate operations

CZ ≡


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 ≡
applying the X or Z gate on the target qubit (bottom) if the control qubit (top) is in
|1〉. Note that these are not completely equivalent to the classical CNOT counterpart,
as even the control qubits state can change by it.

The final gates we consider are the SWAP and iSWAP. Their most notable feature is
effectively swapping the quantum states of the involved qubits. Its represented as

SWAP ≡


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 ≡

iSWAP ≡


1 0 0 0
0 0 i 0
0 i 0 0
0 0 0 1

 ≡ iSWAP

which can be interpreted as replacing |10〉 with |01〉 and vice versa, leaving |00〉 and
|11〉 unaffected. The main difference between the gates is that iSWAP adds a phase i
when states are swapped.

A.1 Gate equivalences
This section shows all gate decompositions utilized in transpilation of our circuits.
These compositions are all equivalent, as in they give the same unitary matrix. As
such the decompositions works both ways if necessary. The following ones were already
included in Qiskit’s equivalence library by default.

H Z(π2 )
√
X Z(π2 )

H H

For replacing SWAP gates, there was no default equivalence well suited for our gate
set. Instead the decomposition present used a two step process of turning SWAP into
CX and then further into CZ and Hadamard gates.

H

H

H

H

H

H
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A. Gate operations

While this allows circuits to run with CZ as the only two-qubit gate, a more efficient
decomposition was implemented.

iSWAP
Z(-π2 )

Z(-π2 )
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B
Error syndromes

This Appendix contains a list of correction procedures corresponding to specific out-
comes when measuring the stabilizer generators for the [[5, 1, 3]] code. We will follow
the convention of labeling the measurement outcomes with a binary number, where
“0” corresponds to the eigenvalue +1 and “1” corresponds to the eigenvalue −1. We
measure the generators in the order shown in eq. (2.4), and produce a 4-digit binary
number from right to left. For the case of not resetting the ancilla between measure-
ments, an error causes the state of the ancilla qubit to “flip”. E.g., the syndrome
“1100” without resets is becomes “0100” with resets. This carries over to the following
cycle of measurements and so there are two different cases; whether the ancilla ended
the previous cycle in the |0〉 or |1〉 state. If the ancilla starts in the |1〉 state at the
start of cycle (instead of |0〉), the entire syndrome is flipped.

Error syndrome Corrective operation
Reset No reset, start in |0〉 No reset, start in |1〉

0000 IIIII IIIII IXIII
0001 IXIII IIXII IIIIZ
0010 IIIIZ IIIXI IIY II
0011 IIXII ZIIII IIZII
0100 IIZII IIIIX Y IIII
0101 ZIIII IIIY I IIIIY
0110 IIIXI IZIII IY III
0111 IIY II IIIZI XIIII
1000 XIIII XIIII IIIZI
1001 IIIZI IY III IZIII
1010 IZIII IIIIY IIIY I
1011 IY III Y IIII IIIIX
1100 IIIIX IIZII ZIIII
1101 Y IIII IIY II IIIXI
1110 IIIIY IIIIZ IIXII
1111 IIIY I IXIII IIIII
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B. Error syndromes

B.1 Post-processing
It is possible to identify multiple single qubit errors given that they occur no more
than once per stabilizer cycle. This can be done as any generator can be dynamically
redefined with a −1 phase to switch its eigenvalues so that the post-error state lies
within a new codespace. This will update the above table to identify deviations from
the new logical subspace.

Given that one error Ei with syndrome βi = {βl}nl=0 has occurred. What is the
syndrome measured if another error Ej with βj = {β′l}nl=0 occurs? By applying eq. (2.3)
twice we get

glEiEj = βlEiglEj = βlβ
′
lEiEjgl,

hence, we simply get the element wise multiple of βi and βj, or if they are stored as
strings of bits, the bit-wise XOR.

A demonstration of the equivalence to active error correction can be found in ap-
pendix D.1.
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C
Circuits

Here we show all different circuits used throughout simulations and results presented
in the report. Circuits already shown as part of the main text are still included here
for full clarity. In general, D denotes data qubits encoding the logical state |ψL〉 and A
the ancilla used for measurements. Indexes represent the vertices the position of qubits
on the layouts in fig. 3.4. Note that figures here still use the Hadamard gate, despite
it not being native to our gate set. This is due to visual clarity. Its decomposition in
appendix A still has identical gate time due to the virtual Z-gate[39].

C.1 Encoding circuits

This section details the circuits used for encoding and are in the following order: Full
connectivity, hexagonal layout (with and without iSWAP) and square layout (with
and without iSWAP). While the ancilla generally is in node 6 in these circuits, the
final step of encoding swaps it into the central node (denoted 0). This is not needed
in the full connectivity case, as all qubits can interact with each other.

D0 |ψ〉

D1 |0〉

D2 |0〉

D3 |0〉

D4 |0〉

Z H

H

H

H

H

H

Figure C.1: Encoding circuit with full connectivity
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C. Circuits

D0 |ψ〉

D1 |0〉
D2 |0〉

D3 |0〉

D4 |0〉

A5 |0〉

Z H

H

H

H

H

H iSWAP

iSWAP

Z(-π2 )

Z(-π2 )

iSWAP

iSWAP

Z(-π2 )

Z(-π2 )

Figure C.2: Encoding, hexagonal connectivity

D0 |ψ〉

D1 |0〉
D2 |0〉
D3 |0〉
D4 |0〉
A5 |0〉

Z H

H

H

H

H

H H

H

H

H

H

H

H

H

H

H

H

H

Figure C.3: Encoding without iSWAP, hexagonal connectivity

D0 |ψ〉
D1 |0〉
D2 |0〉
D3 |0〉
D4 |0〉
A5 |0〉

Z H

H

H

H

H

iSWAP
Z(-π2 )
Z(-π2 )

iSWAP

iSWAP

Z(-π2 )

Z(-π2 )

H

iSWAP

iSWAP

Z(-π2 )

Z(-π2 )

Figure C.4: Encoding, square connectivity.

D0 |ψ〉
D1 |0〉
D2 |0〉
D3 |0〉
D4 |0〉
A5 |0〉

Z H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

Figure C.5: Encoding without iSWAP, square connectivity.

C.2 Stabilizer circuits
Following the previous section, we list all different circuits used for stabilizer mea-
surements. They are listed in the following order: Standard, transpiled hexagonal,
pipelined and transpiled square grid.
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D1

D2

D3

D4

D5

A0 |0〉 H H |0〉 H H |0〉

.....

.....

.....

.....

.....

.....

D1

D2

D3

D4

D5

A0 |0〉 H H |0〉 H H |0〉

Figure C.6: Full stabilizer cycle before any transpilation.
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H

H

H H

H |0〉

H

H

H

H H

H |0〉
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.....

.....

.....

.....

.....

D1

D2

D3

D4

D5

A0 |0〉

H

H

H

H H

H |0〉 H

H H

H H

H |0〉

Figure C.7: Transpiled stabilizer cycle, full or hexagonal connectivity.
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D1 |ψ〉

D2 |0〉

D3 |0〉

D4 |0〉

D5 |0〉

A0 |0〉

A6 |0〉

H

H

H

H H

H
iSWAP

Z(-π2 )

Z(-π2 ) |0〉

H

H

H

H H

H
iSWAP

Z(-π2 )

Z(-π2 )
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.....

.....

.....

.....

.....

.....

D1 |ψ〉

D2 |0〉

D3 |0〉

D4 |0〉

D5 |0〉

A0 |0〉

A6 |0〉

H

H

H

H H

H
iSWAP

Z(-π2 )

Z(-π2 ) |0〉

H

H H

H H

H |0〉

Figure C.8: Pipelined stabilizer cycle following hexagonal connectivity. No swapping is
needed for the final stabilizer as it must wait for classical feedback regardless.
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Figure C.9: Transpiled stabilizer cycle, square connectivity. Note the permutations of
data qubits to match the necessary connectivity.
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D
Supplemental data

This appendix contains further details regarding ancilla resetting, lifetime of different
logical states and full data from figures used in the main text. While not necessary for
the conclusions reached, they support some assumptions made throughout simulations.

D.1 Ancilla strategy and post-processing
Due to limitations in Qiskit, there are difficulties in implementing the QEC procedure
without resetting the ancilla between stabilizer measurements. As such, we have lim-
ited ourselves to perfectly resetting after each measurement for our main results. Here
we will show that this has no significant impact on the results, using post-processing.
Instead of performing real-time error correction, the errors are instead tracked across
stabilizer cycles and a full correction for all errors detected is applied at the end. The
details of this procedure is given in appendix B.1, and its results are shown in fig. D.1
comparing real-time QEC and post-processing both with and without resets. Across
all runs the standard gate times and parameters in section 3.3 were used giving a log-
ical lifetime of 26± 1, 26± 1 and 27± 1 µs respectively. By this, we see that resetting
does not significantly alter our results in the main report, and can be omitted. It also
verifies the equivalence of post-processing to active error correction.

D.2 Alternate definitions of logical lifetime
Other works have used the exponential decay of varying metrics to determine the
logical lifetime. As the full density matrix is challenging to determine in experimental
setups1, an alternative sometimes used is to measure the expectation value of the
logical operators ZL = ZZZZZ or XL = XXXXX [6][5]. These can be directly
calculated by measuring the qubits individually (after applying a Hadamard in the
case of XL).

1In physical experiments one can never measure two non-commuting observables without one
measurement influencing the other. The full density matrix can still be retrieved through a process
called state tomography, in which you measure a complete set of observables multiple times on a
set of identically prepared systems, from which you can reconstruct the density matrix describing
the ensemble of their states. This process is usually destructive however, and thus it can only be
performed at the end of the experiment. This is still is a common way of validating the fidelity of
QEC in experimental setups [6][5][41].
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Figure D.1: Comparison of state fidelity across stabilizer cycles using either real-time QEC
(blue circles), post-processing with ancilla reset after each measurement (orange squares)
and post-processing without ancilla resets (green triangles). All simulations were performed
using standard gate times definer in section 3.3 along with T1 = 40 µs and T2 = 60 µs.
Dotted lines represent exponential fits, with logical lifetime TL defined as the decay.

In fig. D.2, a comparison of using state fidelity and 〈ZL〉 is made. The resulting
logical lifetimes are identical, this is true also for the expectation value of the XL

observable for the |+L〉 and |−L〉 states although that is not shown here. Looking at
the difference in expectation values for the |0L〉 and |1L〉, we can directly observe how
distinguishable these codewords become over time. We see that the distinguishability
roughly corresponds to the fidelity of the |0L〉 state over time, which corroborate the
use of state fidelity.

An approach more general than looking at the fidelity of the quantum state after
correction is to model the QEC procedure as a quantum channel using quantum process
tomography [20, Sec. 8.4.2], and compare its fidelity to the identity channel. This
definition is entirely independent of initial conditions and has been favored in other
works [41]. We determined it to be unnecessarily costly to implement in our simulations
as we anticipate that it will give a very similar result to our simpler formula.

XII



D. Supplemental data

0 20 40 60 80 100
Time [ s]

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

. o
f r

em
ai

ni
ng

 in
 in

iti
al

 st
at

e 
F

|0L , T=23 s, A=0.82, c=0.358 1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Z L

|0L , T=23 s, A=0.82, c=0.358
|1L , T=23 s, A=0.87, c=-0.002

Figure D.2: Comparison of state fidelity and expectation value of the ZL operator as
metrics for logical qubit lifetime. We perform repeated rounds of error correction and fit
the curve (A− c)e−t/T + c to the different metrics for state preservation. Blue • shows the
fidelity of the |0L〉 state to its initial condition over time on the left y-axis, The orange N
and green H show the expectation value of the ZL observable for the |0L〉 and |1L〉 states
over time respectively on the right y-axis. We find the same logical lifetime.
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