
Video-Based Sleepiness Prediction
in Naturalistic Driving Environments
Master’s thesis in Data Science and AI

Casper Lindberg and Anton Claesson

DEPARTMENT OF ELECTRICAL ENGINEERING

CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2021
www.chalmers.se

www.chalmers.se




Master’s thesis 2021

Video-Based Sleepiness Prediction
in Naturalistic Driving Environments

Casper Lindberg and Anton Claesson

Department of Electrical Engineering
Signal processing and Biomedical Engineering
Computer vision and medical image analysis
Chalmers University of Technology

Gothenburg, Sweden 2021



Video-Based Sleepiness Prediction
in Naturalistic Driving Environments
Casper Lindberg and Anton Claesson

© Casper Lindberg and Anton Claesson, 2021.

Supervisor: Tomas Björklund, Volvo Cars
Supervisor: Che-Tsung Lin, Electrical Engineering
Examiner: Christopher Zach, Electrical Engineering

Master’s Thesis 2021
Department of Electrical Engineering
Signal processing and Biomedical engineering
Computer vision and medical image analysis
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX, template by Magnus Gustaver
Printed by Chalmers Reproservice
Gothenburg, Sweden 2021

iv



Video-Based Sleepiness Prediction
in Naturalistic Driving Environments
Casper Lindberg, Anton Claesson
Department of Electrical Engineering
Chalmers University of Technology

Abstract
Driver sleepiness is the cause of many road accidents. This project explores two ma-
chine learning approaches for predicting a driver’s sleepiness level based on infrared
video data collected in a naturalistic driving environment.

The first approach fits a Random Forest sleepiness classifier on 36 handcrafted fea-
tures based on eyelid movements, such as percentage of eyelid closure over time
(PERCLOS). To obtain these features, a Random Forest eye state classifier was
built to predict open, partially closed, or closed eyes. With this approach, the
Observer Rated Sleepiness (ORS) level (0-4) of a driver could be classified with a
Mean Squared Error (MSE) of 1.21 averaged over eight separate predictors fitted in
a nested Leave-One-Out Cross Validation (LOOCV) study. Furthermore, we show
that the number of training drivers significantly affects the ability to predict sleepi-
ness.

The second sleepiness prediction approach is based on intensities of facial movements
and micro-expressions over time, fed into a Long Short-Term Memory (LSTM) neu-
ral network. This model was unable to learn to predict sleepiness on unseen drivers,
although only a few hyperparameter configurations were investigated due to long
training times.

Keywords: driver sleepiness, drowsiness detection, blink detection, sleepiness pre-
diction, naturalistic driving, driver monitoring system (DMS).
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1
Introduction

This section covers a brief introduction and the main goals of the project. A short
introduction to the area of driver sleepiness prediction and related works is also
given. Finally, limitations and a detailed specification of issues under investigation
are presented.

1.1 Background
Every year, 1.35 million people die in road traffic crashes [8]. According to statistics
from the U.S. Department of Transportation [9], 2.4 percent of these fatalities in the
U.S. can be attributed to driver sleepiness. Another study from AAA Foundation
For Traffic Safety [10] reported that in 8.8 to 9.5 percent of the crashes, observable
driver drowsiness assessed based on eyelid closures was present. Detecting sleepiness
makes it possible to implement in-vehicle countermeasures that could avoid crashes
and save lives. In this project, the goal is to research, develop, and evaluate a driver
sleepiness prediction model based on video data for Volvo Cars.

1.2 Related Works
There is no agreed-upon golden standard for measuring driver sleepiness. Thus,
many previous works to detect driver drowsiness utilize different evaluation methods,
metrics, data collection environments, and datasets.

Driver alertness is dependent on many different factors such as circadian rhythm,
sleep quality and quantity, accumulated lack of sleep, motivation, stress, and monotony [11].
As an example, in a study by E. Vural et al. [12], they allowed the driver to fall
asleep and crash multiple times during a three-hour driving simulation. They de-
fined a drowsy state to be the minute before instances of the driver either crashing
or falling asleep, while non-drowsy states were picked from the beginning of the
driving simulation. To predict drowsiness, E. Vural et al. [12] utilized standardized
actions of facial movements. This indicates that facial action movements could be
a useful predictor in the setting of this project as well, even though data collection
environments, experimental setup, and evaluation methods may differ.

Other work assess sleepiness by using physiological measurements such as elec-
troencephalography (EEG), which measures electrical activity in the brain [13, 14].
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Self-reported or observer-reported sleepiness is also common when evaluating driver
drowsiness in naturalistic driving due to the simplicity of such techniques [15].

1.3 Aim

The main goal of this project is to develop and evaluate a method to assess driver
drowsiness based on IR video data. In turn, this method can be applied to larger
datasets to refine the detection of severe driver drowsiness further. Consequently,
this method can guide the development of future advanced driver assistance systems
that can reduce accidents related to severe sleepiness.

Apart from classifying the level of sleepiness, it is also of interest to determine
whether the driver’s eyes are closed or not. By knowing the state of the eyes, it is
possible to detect microsleeps and handcrafted features related to blinks and long
eye closures, which have shown to be important sleepiness indicators. Therefore,
another goal is to build and evaluate a different model capable of determining the
state of the driver’s eyes in each video frame. With such a classifier, microsleeps
and instances of sleeping could be detected even if the sleepiness level prediction is
less precise. Additionally, successful results from this model could be utilized for
sleepiness level prediction in a second step.

This work is not meant to result in a finished ready-to-implement sleepiness detec-
tion system. Instead, the focus lies within exploring the feasibility of the task at
hand. Thus, there are a few questions which this project aims to answer to guide
future work. These questions include finding a suitable video sequence duration for
predicting a driver’s sleepiness and estimating the amount and variation of addi-
tional data required for a generalized sleepiness prediction system. These questions
are further specified in Section 1.5, Specific Research Questions.

1.4 Limitations

• The available video data is captured by a SmartEye IR camera facing the
driver and another side-facing IR camera. This work will only make use of the
camera facing the driver.

• The developed model is limited to consider nighttime video only, as no data
was collected during daylight hours.

• Since the available data only includes eight test drivers, a generalized system
for driver sleepiness prediction or eye state classification is not expected. How-
ever, the estimated generalization abilities of the systems are still of interest
to estimate the amount of additional data that must be collected to generalize
the model.
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1.5 Specific Research Questions
This project aims to provide answers to the following research questions:

I. Can a machine learning system learn to classify the driver’s sleepiness level
from videos using an IR video camera facing the driver?

II. Is it possible to determine the state of the driver’s eyes (opened or closed)
using the same camera? Can this information be used to determine the driver’s
sleepiness level?

III. What duration of a video segment is required to predict the driver’s level of
sleepiness?

IV. How well does the sleepiness prediction models trained on video data generalize
to other persons?

V. What is the estimated amount and variation of data required to build gen-
eralized versions of the eye opening/closure state and sleepiness prediction
models?

VI. What are the most important visual facial movement actions when it comes
to detecting sleepiness using a machine learning model regarding the dataset
at hand?
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2
Theory

In this chapter, measures and sleepiness indicators are defined based on existing
standards. Next, the theory behind the facial feature detection methods is cov-
ered. Furthermore, to classify the eye state and driver sleepiness level, a few super-
vised machine learning prediction algorithms evaluated in this work are introduced.
This section is followed by the principles behind training and evaluating machine
learning classifiers. Finally, two data management formats used in the project are
described.

2.1 Measuring Sleepiness
Sleepiness is defined as the transitional state between wakefulness and sleep and is
challenging to measure [15]. Sleepiness reporting based on self-reported or physiolog-
ical data can be too intrusive and affect the experiment. Other unobtrusive methods
include eye- and head tracking or reporting of the Observer Rated Sleepiness (ORS),
where an observer rates the sleepiness of the subject. Karolinska Sleepiness Scale
(KSS) is an example of a self-reported sleepiness scale where subjects indicate which
level best reflects their experience during the last ten minutes [16] or another interval
suitable for the test set-up.

For the dataset used in this project, ORS is defined as the driver’s sleepiness during
the last five minutes, rated by an observer in the backseat of the car. The KSS level
of the driver is also present in the dataset. These scales are shown in further detail
in Table 2.1, where the different levels are described.

2.1.1 Common Indicators of Sleepiness
Many features based on eyelid movement has shown to be correlated with sleepiness.
As an example, percentage of eyelid closure over time (PERCLOS) has previously
been considered such a superior measurement that it has been used as the actual
target for which some drowsiness detection systems are evaluated on [11]. However,
U. Trutschel et al. [11] also argue that caution should be taken when estimating
driver alertness based on PERCLOS only, as it was found that other physiological
measurements such as EEG contain more accurate fatigue information. Neverthe-
less, features based on eyelid movement are arguably the most common to use for
sleepiness detection, and in many cases, these approaches have shown promising
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Table 2.1: The Karolinska Sleepiness Scale (KSS), which is estimated by the driver,
and the Observer Rated Sleepiness (ORS), which is the driver’s sleepiness estimated
by an observer in the backseat. KSS is updated every ten minutes of driving, ORS
is updated every five minutes.

Karolinska Sleepiness Scale (KSS)
Value Description

1 Extremely alert
2 Very alert
3 Alert
4 Rather alert
5 Neither alert nor sleepy
6 Some signs of sleepiness

7 Sleepy, but no effort
to keep awake

8 Sleepy, but some effort
to keep awake

9 Very sleepy, great effort
to keep awake, fight sleepy

10 Extremely sleepy,
can’t keep awake

Observer Rated Sleepiness (ORS)
Value Description

0 No signs of sleepiness,
normal wakefulness

1
No microsleep, light sleepiness,
fighting sleep slightly,
driving ability OK

2
Single/very few microsleeps,
fighting sleep heavily,
impaired driving ability

3
Microsleep, cannot manage to
fight sleep, heavily impaired
driving ability

4
Obviously falling asleep,
crossing the border line,
”intervention"

results.

In this section, we first define three different states of the eyes. Using these defini-
tions, we can calculate several different features based on eyelid movement.

2.1.1.1 Eye State Definitions

Three different eye states are defined based on the International Organization for
Standardization (ISO) standard [1]: open eyes (’0’), partially closed eyes (’1’) and
closed eyes (’2’). These are illustrated in Figure 2.1. Since the eyes can open and
close individually, we choose to define the eye state of the driver in a single frame
depending on the most closed eye. For example, if one eye is open and the other
is partially open, the eye state of that particular image assumes a partially closed
value.

2.1.1.2 Eye Blink Features

This section presents the eyelid movement-based features for detecting driver drowsi-
ness evaluated in this project. Each feature is derived from the definition of the eye
states in Section 2.1.1.1.

Based on the ISO standard [1], we define three different types of blinks which can
occur at any time in a video sequence; normal blinks, long blinks, and microsleeps.
The type of any occurring blink is determined based on the duration of the eyelid
closure. The duration consists of two phases, the closing and opening phase. In the
closing frame, the state of the eye goes from open to closed and vice versa for the
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Figure 2.1: Phases of a blink, according to the ISO standard. The image has been
modified to fit the terminology used in this report. Additionally, the closing and
opening phases have been shortened to not include the open state.
Source: Adapted from [1].

Table 2.2: Different types of blinks defined based on the ISO standard [1]. The
number of frames corresponding to the specified duration is calculated with the
assumption of capturing video at 30 FPS.

Blink Type Duration No. of frames
Normal blinks <=300 ms 3-9
Long blinks 300 ms to 500 ms 10-15
Microsleeps > 500 ms > 15

opening phase. Note that in this project, we have defined the closing phase as the
duration between the open and closed eye state. The opening phase is defined as the
duration between the closed and open eye state. As a result, the duration of the blink
is slightly shorter than in the ISO standard [1]. In Table 2.2, the defining duration
for each blink type is shown, along with the corresponding number of frames in a
video sampled at 30 FPS.

We choose to distinguish between frames where the eyes close entirely and where
the eyes only close partially. Therefore, the types normal blink, long blink, and
microsleep are defined as blinks containing at least one closed eye state. On the
other hand, a half blink is any blink that only contains partially closed eye states,
such that the eyes never close completely. By making this separation, we also obtain
the types half normal blink, half long blink, and half microsleep.

The count and duration can be measured for each of these blink types. As an
example, there might be two microsleeps with a total duration of 10 seconds for a 30-
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Table 2.3: Additional eye blink feature definitions which can be extracted given
the eye state in a video sequence.

Eye blink feature Definition Unit
Max blink duration The maximal duration of a blink Time (ms)

Eyes closed duration Accumulated time of the eyes
being closed, state 2 Time (ms)

Eyes half-closed duration Accumulated time of the eyes
being partially closed, state 1 Time (ms)

PERCLOS Percentage of eyelid closure,
state 2, over time Percent (%)

Half PERCLOS Percentage of partial eyelid
closure, state 1, over time Percent (%)

Eyes closing duration Time of closing the eye Time (ms)
Eyes opening duration Time of opening the eye Time (ms)

second video sequence where the driver is tired. Thus, we can construct the features
’microsleep count’ and ’microsleep duration’ related to the sequence. Similarly,
’normal blink count’, ’normal blink duration’,’long blink count’, and ’long blink
duration’ can be calculated. We call these types of features eye blink features, as
they are related to the blinking pattern of the driver. The features can serve as
input to a machine learning model for classifying sleepiness.

Additional eye blink features acquired from the eye states are defined in Table 2.3.
These are inspired by a paper by M. Dreissig et al. [17] called "Driver Drowsiness
Classification Based on Eye Blink and Head Movement Features Using the k-NN Al-
gorithm." Finally, for features measured with a duration, more eye blink features can
be obtained by calculating the average, median, and variance of the blink durations
in the sequence.

Doing all of these calculations for the different blink types and additional eye blink
features defined in Table 2.2 and Table 2.3 results in 36 different eye blink fea-
tures.

2.2 Infrared Imaging
The cameras used in the driver sleepiness study were of near-infrared type to work
well in low light conditions. According to a technical specification of a SmartEye
camera, the wavelength is 850 nm [18]. Moreover, SmartEye’s near infrared cameras
“see through” glasses and sunglasses of non-IR type [19].

2.3 Facial Behavior Analysis
In order to detect sleepiness using video sequences, facial movement and behav-
ior of the driver must be analyzed. The OpenFace 2.0: Facial Behavior Analysis
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Figure 2.2: OpenFace 2.0 facial behavior analysis pipeline, including: landmark
detection, head pose and eye gaze estimation, facial action unit recognition. The
outputs from all of these systems (indicated in green) can be saved to disk or sent
via network in real-time. Source: [2].

Toolkit [2] can be used for this purpose. It is capable of face detection, facial land-
mark detection, head pose estimation, facial action unit recognition, and eye-gaze
estimation, see Figure 2.2. The toolkit is able to cope with non-frontal faces, oc-
cluded faces, and low illumination conditions through the use of a new Convolutional
Neural Network-based face detector and a new and optimized facial landmark de-
tection algorithm [2]. Since it is stated to work well in low illumination conditions,
its potential on grey-scale near-infrared images during the night is promising.

2.3.1 Face Detection
The 3D Facial Landmark Detection model is initialized with a bounding box of the
face given by the Multi-Task Convolutional Neural Network (MTCNN) model [20].
It works well in various poses, illuminations, and occlusions and is built on a deep
cascaded multi-task framework. The deep cascaded multi-task framework exploits
the inherent correlation between face detection and alignment. The cascaded struc-
ture consists of three stages of deep convolutional networks that predict face and
landmark locations in a coarse-to-fine manner. Stage 1 produces candidate windows
of faces quickly through a shallow Convolutional Neural Network (CNN) called a fast
Proposal Network (P-Net). In stage 2, the candidate windows of faces are refined
through a more complex CNN called a Refinement Network (R-Net). The R-Net
rejects a large number of non-face windows. In the third stage, the Output Network
(O-Net), which is also a CNN, produces a final bounding box [20].

2.3.2 3D Facial Landmark Detection and Tracking
OpenFace 2.0 uses an implementation of the state-of-the-art Convolutional Experts
Constrained Local Model (CE-CLM) for facial landmark detection, and tracking op-
timized to enable real-time performance [2]. Before the CE-CLMmodel, Constrained
Local Models (CLMs) were popular for facial landmark detection [3]. CLMs model
the appearance of each facial landmark individually using local detectors and use
a 3D shape model to perform constrained optimization. The local detectors make
CLMs robust to occlusion. Moreover, the 3D shape model allows CLMs to handle
different poses and landmark self-occlusion [3], e.g., when the person is looking to
the side.

The CLMs consist of three important parts: a Point Distribution Model (PDM),
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patch experts (or local detectors), and the fitting approach. The PDM determines
the location of facial feature points in the image. The patch experts model the
appearance of local patches around facial landmarks. An example fitting approach
is the Regularised Landmark Mean Shift (RLMS). The fitting approach is used to
estimate the rigid and non-rigid parameters p, which fit the underlying image best.
The fitting approach can be described by

p∗ = arg min
p

[R(p) +
n∑

i=1
Di(xi; I)] , (2.1)

where R represents the regularisation term that penalizes overly complex or unlikely
face shapes. D represents the misalignment of landmark i at xi in the image I [21].
The 2D location of the ith feature in the image can be described through the PDM
as

xi = s ·R2D · (x̄i + Φiq) + t , (2.2)
where x̄i = [x̄i, ȳi, z̄i]T represents the mean value of the ith element of the PDM.
Φi is a 3 × m principal component matrix that describes the linear variations of
non-rigid shape of this feature point together with the m dimensional vector q. The
rigid shape parameters are parametrised with the scaling term s, a 2D translation
t = [tx, ty]T , and an orientation w = [wx, wy, wz]T which controls the rotation matrix
R2D consisting of the first two rows of a 3 × 3 rotation matrix R. The whole face
model shape can be described as p = [s, t,w,q] [21].

The patch expert (local detector) πxi
determines the probability of the ith landmark

being aligned at a particular image location xi according to

πxi
= Ci(x; I) ∈ [0, 1] . (2.3)

The patch expert can be modeled as the output of regressor Ci where 1 is perfect
alignment and 0 is no alignment [21].

In CLMs, the goal is to estimate the maximum a posteriori (MAP) probability of
the face model parameters p given the initial estimation p0 [22]. The face model
parameters p are initialized by a face detection step. In the fitting procedure, a
parameter update ∆p is required to get closer to the optimal solution p∗. The
fitting objective can be described, similarly to Equation 2.1, by [21],

p∗ = arg min
p0+∆p

[N (p0 + ∆p) +
n∑

i=1
Di(xi; I)] . (2.4)

With Regularised Landmark Mean Shift, a least-squares solution can be found with
the expression in [21],

arg min
∆p

(‖p0 + ∆p‖2
Λ−1 + ‖J∆p0 − v‖2) . (2.5)

In Equation 2.5 above, J is the Jacobian of the landmark locations with respect
to the parameter vector p evaluated at p0. Λ−1 is a matrix describing the prior
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on parameter p. A uniform distribution is used for rigid shape parameters while
a Gaussian distribution prior p(p) ∝ N (q; 0,Λ) is used for non-rigid shapes. v =
[v1, ...,vn]T represents the mean-shift vector over the patch responses that approx-
imate the response map using a Gaussian Kernel Density Estimator described by

vi =
∑

yi∈Ψi

πyi
N (xc

i ; yi, ρI)∑
zi∈Ψi πzi

N (xc
i ; zi, ρI) − xc

i , (2.6)

where ρ is an empirically determined parameter [21].

The update rule can be derived using Tikhonov regularized Gauss-Newton method:

∆p = −(JTJ + rΛ−1)−1(rΛ−1p− JT v) , (2.7)

where r is a regularization term. The mean-shifts and the update are computed
iteratively until convergence [21].

Despite the benefits of CLM-based methods, they have been outperformed recently.
The reason why they have been outperformed is probably because of the local detec-
tors that cannot model the complex variation of local landmark appearances, such
as facial hair, expressions, and makeup. In a paper by Zadeh et al. [3], a new local
detector called Convolutional Experts Network (CEN) was introduced. The CEN
local detector is illustrated in Figure 2.3. CEN consists of a mixture of expert clas-
sifiers, each capturing different appearance prototypes without the need of explicit
attribute labeling.

The Convolutional Experts Constrained Local Model (CE-CLM) combines the Con-
strained Local Model (CLM) with the Convolutional Experts Network (CEN) as a
local detector [3]. The CE-CLM algorithm consists of two parts. In the first part,
a response map is computed using the Convolutional Experts Network (CEN). The
individual landmark alignments are estimated independently of the position of other
landmarks. The landmark localization is done by evaluating the landmark alignment
probability at individual pixel locations, see Equation 2.3. In the second part of the
CE-CLM algorithm, the shape parameter is updated using a Point Distribution
Model (PDM), see Equation 2.2.

When tracking the facial landmarks in videos, the CE-CLM is initialized based on
the MTCNN landmark detection in the previous frame. Tracking drift is prevented
with a CNN that reports if the tracking has failed based on currently detected
landmarks. In the case of tracking failure, the CE-CLM is reinitialized with the
MTCNN face detector [2].

The resulting 68 3D Facial Landmarks from the OpenFace 2.0 CE-CLM are illus-
trated in Figure 2.4. Two examples of the 3D Facial Landmark detection system in
action on the test subject HPG487 specified in Table 3.2 are presented in Figure 2.5
and 2.6. Note that the landmark detection model does not lose tracking when the
driver looks to the side.
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Figure 2.3: The appearance of a facial landmark naturally clusters around a set
of appearance prototypes (such as facial hair, expressions, make-up etc.). In or-
der to model such appearance variations effectively Zadeh et al. [3] introduce the
Convolutional Experts Network (CEN). CEN combines the advantages of neural ar-
chitectures and mixtures of experts to model landmark alignment probability. The
image is taken from the article by Zadeh et al. [3].

Figure 2.4: Facial landmark scheme from the OpenFace 2.0 CE-CLM. Source: [4].
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Figure 2.5: OpenFace 2.0 in action on driver HPG487.

Figure 2.6: OpenFace 2.0 in action on driver HPG487.
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Figure 2.7: 3D eye region landmarks from the OpenFace 2.0 CLNF landmark
detector. Source: [4].

2.3.3 Eye Gaze Estimation
OpenFace 2.0 eye gaze estimation is based on a Constrained Local Neural Field
(CLNF) landmark detector able to detect eyelids, iris, and the pupil. The 3D eye
region landmarks are illustrated in Figure 2.7 and can also be seen in action in
Figure 2.5 and 2.6.

The CLNF landmark detector is an extension of the Constrained Local Models
(CLMs) explained in Section 2.3.2 that uses more advanced landmark detectors and
a more advanced fitting technique [22]. The more advanced landmark detectors
are called Local Neural Field patch experts. These patch experts learn the non-
linear and spatial relationships between pixel values and the probability of landmark
alignment. Additionally, CLNF uses a Non-uniform Regularised Landmark Mean
Shift, instead of the ordinary RLMS in Equation 2.5. This fitting technique also
takes the patch reliabilities into consideration [21].

Based on the detected pupil and eye location landmarks, eye gaze vectors are com-
puted for each eye individually [2]. A line is calculated from the camera origin
through the center of the pupil in the image plane. By computing the line intersec-
tion with the eye-ball sphere, the pupil location in 3D camera coordinates is given.
The estimated gaze vector is the vector from the 3D eye-ball center to the pupil
location.

Based on the gaze direction vector, OpenFace calculates two gaze angles: x for
horizontal gaze and y for vertical gaze [4]. The eye gaze angle vectors are the eye
gaze directions in radians in world coordinates averaged for both eyes, with the
camera being the origin. If a person is looking straight, both the x and y angles will
be close to 0.

2.3.4 Facial Action Unit Recognition
The Facial Action Coding System (FACS) [23] is a commonly used method for coding
facial behavior. It is an anatomically based system for measuring visually identifiable
facial movements. The system defines 46 different Action Units (AUs). Although
the FACS is anatomically based, there is not a 1:1 correspondence between AUs and
muscle groups since a muscle may produce visually different actions depending on
how it is contracted.
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OpenFace 2.0 recognizes human facial movements by detecting FACS intensity and
presence [2]. The action units that are recognized are presented in Table 2.4. Ac-
cording to [22] the performance of AU classifiers used in OpenFace 2.0 depends
heavily on the training data and the ability to estimate facial expressions of a neu-
tral face.

Table 2.4: Facial Action Unit numbers and the corresponding name in the Facial
Action Coding System recognized by OpenFace 2.0. Carnegie Mellon University
presents example images for each facial AU which can be found here: [5]. **For
Lip Suck, the intensity value is not predicted by OpenFace 2.0 and hence cannot be
used.

AU Number FACS Name
1 Inner Brow Raiser
2 Outer Brow Raiser
4 Brow Lowerer
5 Upper Lid Raiser
6 Cheek Raiser
7 Lid Tightener
9 Nose Wrinkler
10 Upper Lip Raiser
12 Lip Corner Puller
14 Dimpler
15 Lip Corner Depressor
17 Chin Raiser
20 Lip stretcher
23 Lip Tightener
25 Lips part
26 Jaw Drop
28 Lip Suck**
45 Blink

OpenFace’s AU detection system is based on the work of T. Baltrusaitis et al. [22],
with slight modifications [2]. The system utilizes what is called appearance features
and geometry features for detection of AUs. These features are person-normalized
since the person’s neutral facial expression must be known to determine the presence
of AUs.

The appearance features are obtained by performing face alignment and calculat-
ing the Histogram of Oriented Gradients (HOG), after which Principal Component
Analysis (PCA) dimensionality reduction is used. For the face alignment, the most
stable facial landmark points are used (0 - 3, 13 - 16, 31 - 39, and 42 - 45 in Fig-
ure 2.4). These are similarity transformed to a representation of landmarks from a
neutral facial expression, a mean shape from a 3D PDM. The similarity transfor-
mation is computed using Procrustes superimposition, which minimizes the Mean
Squared Error (MSE) between aligned pixels. The resulting image is of 112 × 112
pixels where the distance between the centers of the two eyes is 45 pixels. Masking
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is also done to remove non-facial information by computing a convex hull surround-
ing the aligned feature points. The HOG is then extracted from the 112 × 112
pixel image and dimensionality reduced with PCA keeping 95 % of the explained
variability.

For the extraction of geometry features, a Constrained Local Neural Field (CLNF)
model is used, which is already explained in further detail in Section 2.3.3. The
geometry features are the landmark locations and the non-rigid shape parameters
Φiq in Equation 2.2.

Next, to perform person-normalization of the appearance and geometry features,
the person’s neutral facial expression must be known. To do this, OpenFace 2.0
computes the median value of face descriptors in a video sequence of a person, which
is then subtracted from the observed facial feature descriptors. Finally, AU presence
and AU intensity are determined by using linear kernel SVM classification and SVR
regression respectively. The use of linear kernels allows for real-time classification
and regression.

2.4 Machine Learning
In this section, we first describe the theory behind the machine learning classifiers
used in this project. Then, the theory behind training and evaluating the classifica-
tion algorithms are covered.

2.4.1 Random Forest Classifier
A Random Forest classifier is a supervised machine learning model using ensem-
ble learning. The Random Forest model fits several decision tree classifiers on
the dataset. The three main components of a decision tree are internal nodes,
edges/branches, and leaf nodes. Each internal node is labeled with an input feature.
Its outgoing edges/branches lead to the possible values of the target or another in-
ternal node on a different input feature. The leaf nodes are terminal nodes that
predict the target values, in the classification case, as class labels.

In the decision tree algorithm, one starts at the root node and split the data accord-
ing to a criterion. In this project, the Gini impurity criterion is used. Gini impurity
helps to quantitatively evaluate how good a split is by calculating the probability
of incorrect classifications 2.8. The Gini impurity with C classes where p(i) is the
probability of classifying a datapoint as class i is calculated according to

G =
C∑

i=1
p(i) · (1− p(i)) . (2.8)

As can be seen in Equation 2.8 above, a Gini impurity of G = 0 is the best possible
value. G = 0 is achieved when the split is perfect. The best split is chosen in the
decision tree algorithm by maximizing the Gini Gain. The Gini Gain is calculated
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by subtracting the weighted impurities of the edges/branches from the original im-
purity [24]. When looking for the best split, a hyperparameter called max features
can control the number of features to consider, for example, only looking at the
square root of the total number of features. Another essential hyperparameter for
the splitting process is the minimum number of samples required to split an internal
node. Similarly, the minimum number of samples required to be at a leaf node can
also be tuned as a hyperparameter [6].

In the Random Forest model, each decision tree gives a classification, and the result
is averaged. The ensemble technique results in improved predictive accuracy and
reduced variance [6].

If bootstrap is used in the Random Forest model, the decision tree classifiers only
see a subset of the train dataset. Otherwise, the whole training dataset is used to
build each tree. Another important hyperparameter is the number of estimators, the
number of decision trees in the model. More decision trees lead to a more complex
model, which might lead to overfitting. To prevent overfitting, one can limit the
maximum depth of the decision tree [6].

2.4.2 Long Short-Term Memory (LSTM) Recurrent Neural
Network (RNN)

Artificial neural networks (ANNs) are structures of simple processing units called
neurons [25]. The design is inspired by the structure of a real brain. Although
there are many different types of neural networks, the fundamental properties re-
main the same. Every neuron in the network can receive multiple input signals,
process them, and propagate an output signal to other neurons since each neuron is
connected to at least one other neuron. The connection between two neurons has a
weight, and in conjunction with an activation function, it determines the strength of
any propagated signal. Thereby the weights reflect the importance of the different
connections in the network. There is also a bias term which allows you to shift the
activation function by adding a constant to the input signal. For supervised learning
tasks, where the desired output is known, the back-propagation algorithm is used
for training the neural network by iteratively adjusting the weight coefficients until
the network output matches the target. The back-propagation algorithm utilizes
the gradient descent optimization method to minimize the output error.

Adam optimization algorithm is an extension to regular stochastic gradient descent.
It is well-suited for many different machine learning applications since it is compu-
tationally efficient for stochastic objective functions, problems with large datasets,
and high-dimensional parameter spaces [26].

Recurrent neural networks (RNNs) are designed to learn sequential or time-varying
patterns [27]. In RNNs, cyclic connections exist such that the signal from previously
activated neurons are stored in the internal state of the network, which provides
theoretically indefinite temporal contextual information [28]. This property differs
from a regular Feed Forward Neural Network (FFNN), in which the signal can only
propagate forward. However, standard RNNs fail to learn when the input data
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consists of time lags greater than 5–10 discrete time steps between relevant input
events and target signals [29]. This inability to learn is a consequence of the back-
propagation through time (BPTT) technique used for training RNNs, which leads
to vanishing and exploding gradients [28].

To solve this issue, the Long Short-Term Memory (LSTM) RNN was introduced,
which includes special units called memory blocks [28]. These blocks in turn contain
memory cells with self-connections that store the temporal state of the network, as
well as input-, output-, forget gates which control the flow of neuron activations into
and out of the cells.

Pytorch implements functionality for using a multi-layer LSTM RNN [30]. The
implementation is based upon the works of Sak et al. [28] who defines a standard
LSTM network that computes a mapping from an input sequence x = (x1, . . . , xT )
to an output sequence y = (y1, . . . , yT ) by calculating the network activations using
the following equations iteratively from t = 1 to T :

it = σ(Wixxt +Wimmt−1 +Wicct−1 + bi) (2.9)
ft = σ(Wfxxt +Wmfmt−1 +Wcfct−1 + bf ) (2.10)
ct = ft � ct−1 + it � tanh(Wcxxt +Wcmmt−1 + bc) (2.11)
ot = σ(Woxxt +Wommt−1 +Wocct−1 + bo) (2.12)
mt = ot � tanh(ct) (2.13)
yt = Wymmt + by , (2.14)

where the W terms denote the weight matrices specifying neuron connections (e.g.
Wix specifies the weights from the input gate to the input), the b terms denote
bias vector (eg. bi is the bias vector for the input gate), σ is the logistic sigmoid
activation function while it, ft, ot, ct are the input gate, forget gate, output gate and
cell state at time t respectively, mt is the cell output activation vector and � is the
element-wise product. Often, mt is referred to as the hidden state of the LSTM at
time t.

Additionally, in Pytorch’s multi-layer LSTM implementation the input x(l)
t of the

l-th layer (where l >= 2) is the hidden state m(l−1)
t of the previous layer multiplied

with a dropout factor δ(l−1)
t , i.e. each δ(l−1)

t is a Bernoulli random variable which is
0 with a specified probability [30]. Dropout is an adaptive regularization technique
used to control overfitting by artificially corrupting the training data [31].

Although the recurrent architectures of LSTMs give the theoretical ability to retain
information through sequences of indefinite length, it has been shown that this is
not the case in practice. As an example, Bai et al. [32] found that an LSTM can
fail to retain memory even for short sequences (< 100 time steps) when testing
against a particular benchmark problem. The same report shows that Temporal
Convolutional Network (TCN) architectures outperform LSTMs in many sequence
modeling tasks and can maintain a much longer effective history than their recurrent
counterparts.
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2.4.3 Training and Evaluation
This section covers the general theory behind training and evaluation of machine
learning classifiers and an introduction to a hyperparameter optimization framework
used in the project.

2.4.3.1 Cross Validation

There are two primary steps for building a supervised machine learning model: train-
ing and evaluation. To circumvent overestimating the model performance, one must
avoid using training data during evaluation. Instead, the available samples should be
split into two clearly defined datasets for training and evaluation, respectively.

When the true distribution of samples in a dataset is unknown and the number of
samples is limited, any possible split of the dataset into a training and evaluation
set might not represent the underlying distribution. Therefore, when training and
evaluating a model on such a split, the model’s true performance might be greatly
under- or overestimated, especially when the number of samples for the training and
evaluation sets are small.

Cross Validation (CV) is a method for validating the performance of a machine
learning model in a less biased fashion. The purpose is to encourage selecting a
model that yields a trustworthy fit from the available samples [33]. In Leave-One-
Out Cross Validation (LOOCV), one splits the data such that the model is trained
on all available samples except one that is held out. The held-out sample is used
as a single validation instance. Next, one performs a new split, where the following
sample is held out for validation, and the previous held-out sample is included in the
training data. By repeating this process until each sample has been validated once,
the validation results can then be averaged to estimate the model performance.

In cases where computational resources are limited, and especially when the sample
size is considerable, LOOCV can be infeasible to perform because of the long train-
ing times. Instead, it is common to use a k-fold CV approach in which multiple
validation samples are grouped for each split. For example, 5-fold CV holds out
20% of samples for evaluation and 80% for training in each split, thereby resulting
in 5 different trained models.

It is essential to realize that if the CV score is used for model selection, one needs
to utilize a separate, withdrawn testing set for unbiased validation of the results.
Otherwise, performance will be overestimated.

2.4.3.2 Early stopping for iterative optimization algorithms

Early stopping is commonly used in many iterative optimization algorithms to reduce
the risk of overfitting [34]. Overfitting occurs when a machine learning model is
trained to be highly accurate on the training data it is exposed to but is too sensitive
to handle new and unseen data. With early stopping in neural networks, training is
stopped once the performance measured on a held-out validation set stops increasing,
rather than when the iterations are finished or when the performance measured on
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the training set is optimal.

2.4.3.3 Metrics

In classification tasks, some important metrics are: accuracy, precision, recall, F1-
score. These metrics are based on the concept of True Positives (TP), True Negatives
(TN), False Negatives (FN), and False Positives (FP). Accuracy, recall, precision,
and F1-Score can be defined as

Accuracy = TP + TN

TP + TN + FP + FN
, (2.15)

Recall = TP

TP + FN
, (2.16)

Precision = TP

TP + FP
, and (2.17)

F1-Score = 2 · Precision · RecallPrecision + Recall . (2.18)

In the case of multi-class classification accuracy with scikit-learn, the predicted
class must match the corresponding ground truth class to be considered a correct
classification [35]. For multi-class recall, precision, and F1-score with scikit-learn,
an average weighted by the support (the number of true instances for each label) is
a suitable option for imbalanced data [36, 37, 38].

It can also be insightful to study a confusion matrix. A confusion matrix C is
constructed such that Ci,j is equal to the number of observations known to be in
the group i and predicted to be in the group j.

Another useful metric that is most commonly used for regression tasks is the Mean
Squared Error (MSE) [39]. The MSE can be applied to some multi-class classification
problems, like classifying the sleepiness level (such as the ORS scale) from 0 - 4, as

MSE = 1
n

n∑
i=1

(
ORSi

predicted −ORSi
true

)2
. (2.19)

The MSE metric considers how close the prediction was to the actual sleepiness
value and penalizes large errors more.

When training neural networks for multi-class classification problems, the cross-
entropy loss is commonly used as a loss function. It is useful since it probabilisti-
cally minimizes the classification error. The cross-entropy loss used in Pytorch [30]
combines a log softmax and negative log-likelihood loss and is described by

loss(x, class) = − log
(

exp(x[class])∑
j exp(x[j])

)
= −x[class] + log

∑
j

exp(x[j])
 . (2.20)
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2.4.3.4 Model optimization using Optuna

Most sophisticated machine learning models define several different hyperparame-
ters, which require optimization to achieve desirable performance. The number of
hyperparameters varies significantly from model to model. To reduce the number of
tunable hyperparameters, the experimenter commonly chooses to fix some hyperpa-
rameters at a reasonable default. It is not unusual to have somewhere in the range
of ten to fifty different hyperparameters for certain models [40].

In essence, hyperparameter optimization means searching for hyperparameter com-
binations resulting in optimal model performance. Hyperparameters can assume
both discrete, categorical or continuous values depending on their corresponding
usage in the underlying model. In many cases, the search space of hyperparameter
combinations is enormous, which motivates a need for efficient algorithms with the
capability of finding good combinations in a reasonable amount of time.

Optuna is an open-source hyperparameter optimization framework [7] which sup-
ports Python. The framework allows users to dynamically construct the parameter
search space and implement efficient searching and pruning algorithms. See Listing 1
for a code example. More specifically, rather than conducting a random search for
hyperparameter combinations, at each evaluation, one can instead sample a combi-
nation depending on the performance of previous combinations. If the evaluation
seems unpromising, it can be pruned/terminated early on to free up resources for
conducting another evaluation. In many other hyperparameter optimization frame-
works, pruning is often overlooked. However, it is also an essential methodology
under limited resource availability conditions. By optimizing the sampling and im-
plementing efficient pruning strategies, the search time required for finding good
hyperparameters combinations can therefore be decreased.

Optuna’s default sampler for choosing hyperparameter combinations in each new
evaluation is based upon the Tree-Structured Parzen Estimator (TPE) approach, [40].
The approach conducts independent sampling which samples each parameter inde-
pendently of each other, rather than relational sampling, which also considers and
exploits correlations among the parameters. Although it might seem naive to as-
sume that parameters have an independent relationship with each other, TPE is
known to perform well even without using the parameter correlations [7]. The cost-
effectiveness of the method should also be considered when computation resources
are limited, making it a good choice in many cases.

In order to prune an unpromising evaluation early, an intermediate objective value
can be reported to Optuna in every update step. Needless to say, pruning is only
effective for iterative optimization algorithms for which an intermediate score can be
computed. By default, pruning is determined according to the median stopping rule;
prune the evaluation run if the best intermediate result is worse than the median of
intermediate results of previous evaluations at the same step.
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1 import optuna
2 import ...
3

4 def objective(trial):
5 n_layers = trial.suggest_int('n_layers', 1, 4)
6

7 layers = []
8 for i in range(n_layers):
9 layers.append(

10 trial.suggest_int('n_units_l{}'.format(i),1, 128))
11

12 clf = MLPClassifier(tuple(layers))
13

14 mnist = fetch_mldata('MNIST original')
15 x_train, x_test, y_train, ytest = train_test_split(
16 mnist.data, mnist.target)
17

18 clf.fit(x_train , y_train)
19

20 return 1.0 - clf.score(x_test , y_test)
21

22 study = optuna.create_study()
23 study.optimize(objective , n_trials=100)

Listing 1: Example of Optuna’s define-by-run style API, which allows users to con-
struct the search space of hyperparameters dynamically. Here, the hyperparameters
are the number of layers and the number of hidden units at each layer for a Multi-
layer Perceptron (MLP) classifier trained on the MNIST dataset. The example is
taken from [7].

2.5 Data Management
To handle the large dataset, the HDF5 (Hierarchical Data Format) high-performance
data software library and file format can be used to manage, process, and store the
images of the drivers. HDF5 is built for fast I/O processing and storage [41]. Another
convenient storage format is JSON (JavaScript Object Notation), which consists of
key/value pairs. See an example in Listing 2.
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This chapter describes the methodology from data collection to sleepiness predic-
tion. The data collection section briefly explains how the dataset was collected
by Volvo Cars. The data processing section explains how the drivers’ dataset is
processed into shorter video clips for training and evaluation. Next, the eye state
classification process is covered. It describes the annotation process, as well as model
and feature selection. Given the eye state classification model, it is possible to ex-
tract eye blink features such as the average blink duration. Sleepiness prediction
from handcrafted eye blink features is the first approach to sleepiness prediction.
Then, another sleepiness prediction approach based on temporal features of the face
(such as gaze direction and micro-expressions) is described. Moreover, the method-
ology to evaluate the generalization ability of the sleepiness prediction models is
covered.

3.1 Data Collection

Volvo Cars had acquired a dataset before the start of the project. The dataset
consists of infrared (IR) video of drivers driving at night time. The IR illuminator
on the SmartEye camera (facing the driver) has a wavelength of 850 nm [18] which
lets the camera “see through” glasses and sunglasses of non-IR type [19].

In general, the drivers drive for two hours or until they fall asleep and are too tired
to keep driving. The video data is collected in a real, naturalistic driving experiment
and is manually annotated with sleepiness level logs of the driver. Data has been
collected with ten different drivers, although only data from eight of them were
possible to use for this project.

3.2 Data Preprocessing

The objective with the data preprocessing was to store all images in HDF5 files [41],
and all relating metadata in JSON files [42] to manipulate the data efficiently. Then,
the goal was to create video clips (i.e., sequences of images) from this data to simulate
short driving sequences.
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3.2.1 Data Cleaning
Before creating the HDF5 files containing the images and the JSON files containing
the metadata, the dataset was processed to handle missing data, misaligned data
and to trim the start- and end of the driving videos. This data cleaning was done
using MATLAB. The following information was extracted for the drivers that had all
the necessary data:

• image_dir - The directory the image is stored in

• file_name - The image file name of the frame

• frame_number - The number of the frame

• frame_time - The timestamp of the frame

• KSS - The KSS value of the frame

• ORS - The ORS value of the frame

The Swedish Institute of Computer Science (SICS) had pre-processed some of the
data related to the Autoliv camera (side-facing) and the sleepiness logs containing
the KSS and ORS value for each timestamp. Note that the sleepiness value for
each timestamp is assumed to be equal to the next reported sleepiness level. The
KSS and ORS updates for all drivers can be observed in Figure 3.1 and Figure 3.2.
Note that some drivers do not experience all sleepiness levels during the driving
session.

Figure 3.1: ORS level updates of all drivers during their driving sessions. Note
that HPG486 and HPG490 were not included in the project.

However, since the SmartEye camera (facing the driver) was used in this report,
some preprocessing steps were required to map the sleepiness annotations to the
SmartEye images and their corresponding timestamps. First, the SmartEye images
(.PGM or .JPG) were mapped to a file containing the frame number and timestamp
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Figure 3.2: KSS level updates of all drivers during their driving sessions. Note
that HPG486 and HPG490 were not included in the project.

for each image file. However, some image files did not have a corresponding frame
number and timestamp, often a sequence of a few hundred consecutive images. The
missing timestamps were imputed using linear interpolation [43]. Moreover, some
drivers did not have any images at all. For these drivers, some additional data
processing was required to extract the the SmartEye images (.PGM or .JPG) from
files with .sma and .smb file extensions. However, two of the ten drivers had multiple
.sma and .smb files and missing information about how to merge these. Hence, these
two drivers were excluded from the dataset to avoid potentially incorrect sleepiness
data. In total, this resulted in eight available drivers.

Another issue that arose with the timestamps is that they are relative to when the
SmartEye camera started recording and not when the experiment started. Therefore,
the SmartEye time axis was aligned with the Autoliv time axis since the Autoliv time
axis already contained sleepiness annotations processed by SICS. To align the time
axes, the images were converted to videos with their true frames per second (FPS)
found by dividing the number of images by the total time duration. Matching points
in the SmartEye and Autoliv videos were found by manual inspection. With the
matching points, the SmartEye images and timestamps could be aligned correctly
with the sleepiness logs (Observer Rated Sleepiness (ORS) and Karolinska Sleepiness
Scale (KSS) values).

Next, the video was trimmed to remove undesired parts. The start trimming point
was when the driver started driving, and the end trimming point was approximately
30 seconds after the last microsleep occurrence and close to the end of the driving
session. These trimming points were determined by manual inspection of the videos.
Finally, the images and timestamps were mapped to their corresponding sleepiness
logs (ORS and KSS values).
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3.2.2 Data Transformation and Storage
After processing the dataset in MATLAB, it was processed in Python. The images for
a specific driver were stored in a HDF5 file, each with a unique image id. For each
image id, metadata is stored in a JSON file, see Listing 2. Note that the timestamps
are given in seconds.

1 [{
2 "image_id": 0,
3 "internal_order": 0,
4 "image_name": "20140403_000132_11149_1.PGM",
5 "timestamp": 30.021362400000015,
6 "driver_id": "HPG488",
7 "kss": 4,
8 "ors": 0
9 },

10 ...
11 {
12 "image_id": 396173,
13 "internal_order": 396173,
14 "image_name": "20140403_000132_414424_1.PGM",
15 "timestamp": 6823.026557,
16 "driver_id": "HPG488",
17 "kss": 9,
18 "ors": 4
19 }
20 ]

Listing 2: Image metadata JSON example for driver HPG488.

From the image metadata, sequences of images were formed with a sequence dura-
tion of 30 seconds. Initially, these sequences contained the metadata described in
Listing 3. The images were sampled at 30 FPS. However, the recording was recorded
at close to 60 FPS for most drivers in the dataset. Sometimes, the frame rate in
the camera dropped, and the time difference between two consecutive frames was
larger than the sampling time. In this case, the previous image id was repeated. Se-
quences with more than 25 % duplicate images were removed. Moreover, sequences
with images occurring four times or more in a row were removed.
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1 [{
2 "sequence_id": 0,
3 "driver_sequence_id": 0
4 "timestamps": [30.021362400000015, 30.05469573333335,
5 30.08802906666668, ..., 59.95469573333335,
6 59.988029066666684]
7 "image_ids": [0, 1, 3, ..., 1427, 1429],
8 "n_images": 900,
9 "driver_id": "HPG488",

10 "kss": 4,
11 "ors": 0
12 },
13 ...
14 {
15 "sequence_id": 225,
16 "driver_sequence_id": 225
17 "timestamps": [6779.777616, 6779.810949333334,
18 6779.844282666667, ..., 6809.710949333334,
19 6809.744282666667]
20 "image_ids": [393633, 393634, 393636, ..., 395387, 395389],
21 "n_images": 900,
22 "driver_id": "HPG488",
23 "kss": 9,
24 "ors": 4
25 }
26 ]

Listing 3: Sequence metadata JSON example for driver HPG488.

3.3 Eye State Classification
One approach of classifying sleepiness was based on spatial blink features such as
blink count and average blink duration. In order to extract these blink features, an
eye state classification method was required to determine whether the eyes are open,
partially closed, or closed in a particular frame. However, annotated image data
was necessary to build an eye state classifier. This section describes the annotation
process and the eye state classifier. The results are presented in Section 4.1.

3.3.1 Eye State Annotation
The definition of eye state described in Section 2.1.1.1 was used for the annotation
process. An example of the different eye states for one of the drivers is presented in
Figure 3.3.

Table 3.1 presents which drivers were annotated, the number of sequences, images
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Figure 3.3: Examples of the three eye states for driver HPG487. Left: open eyes.
Center: partially closed eyes. Right: closed eyes.

per driver, the distribution of open/partially closed/closed eye states. Since the se-
quences chosen for annotation were picked at different intervals for different drivers,
this information is also provided. Moreover, Table 3.2 presents metadata about the
annotated drivers in the dataset.

Table 3.1: Annotated data per driver including statistics about the eye state
distribution for each driver.

Driver Annotated
Sequences

Total
Sequences

Annotated
Frames

Eye State
Percentage

0/1/2

Annotated
30 seconds
every X
minutes

HPG485 15 144 13500 84.5/9.7/5.8 ∼ 5
HPG487 37 177 33300 94.9/1.7/ 3.4 ∼ 2.5
HPG488 23 226 20700 90.8/6.3/2.9 ∼ 5
HPG489 7 65 6300 89.7/7.5/2.8 ∼ 5
HPG491 12 234 10800 92.4/5.5/2.2 ∼ 10
HPG492 8 146 7200 78.9/13.4/7.7 ∼ 10
HPG493 11 201 9900 83.4/10.9/5.8 ∼ 10
HPG494 11 201 9900 81.1/7.8/11.0 ∼ 10
Total 124 1394 111600 89.1/6.3/4.6 -

The sequences of frames were converted to .AVI video files with the image id printed
in the upper left corner. The videos were played at low speed using Windows Media
Player. When blinks occurred, the playback speed was set to around one FPS to
analyze each frame individually. The eye states were annotated for each image id
in an Excel sheet for each sequence. To streamline this process, a Python script
generated these Excel sheets with two columns: image id and eye state. A default
eye state was set to open (0).

3.3.1.1 Inter-Annotator Agreement

The upper limit on a machine learning system performance is often the agreement
between annotators. If annotators cannot agree with each other about the classi-
fication more than to some percentage, one cannot expect a computer to do any
better [44]. Hence, the inter-annotator agreement was measured between the au-
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Table 3.2: Metadata about the drivers in the dataset.

Driver Gender Glasses
HPG485 Male No
HPG487 Male No
HPG488 Male Yes
HPG489 Male No
HPG491 Male Yes
HPG492 Male No
HPG493 Male Yes
HPG494 Female No

thors of this report. Two drivers were selected as subjects for the study: HPG491
and HPG494. For both drivers, two 30-second driving sequences were annotated by
both annotators. The results are presented in Section 4.1.1.

3.3.2 Classifying Eye State From aMovingWindow of Frames
In order to classify the eye state for a current frame, it was expected that a classifier
could utilize both the current and some previous frames. Three major design choices
had to be addressed: the input features, the number of previous frames to consider,
and the hyperparameters of the machine learning classifier. All these design choices
were analyzed in an optimization study with Optuna. The most suitable model was
selected from the study, considering performance and favoring simplicity rather than
complexity. The results of this comparison are presented in Section 4.1.2.

3.3.2.1 Data Preparation

Given the annotated eye state data, a moving window ofW (to be determined later)
consecutive images is extracted with a step size of one image. Features extracted
from the W images are used to predict the eye state of the last image in the moving
window. In order to keep a fixed window size W , the first W − 1 images in a
sequence are initialized with a closed eye state (0). See the part regarding eye state
classification in Figure 3.7 in Section 3.4.2 for an illustration of this process.

Since the driver is not blinking most of the time, the distribution of the three
different eye state targets is imbalanced, see Figure 3.4 for an example usingW = 6.
The class imbalance is handled by undersampling and oversampling according to
Algorithm 1.

After balancing the distribution of eye states, the distribution of different moving
window patterns was investigated. Using W = 6 again, in Figure 3.5, the eye
state patterns for driver HPG487 for all manually annotated 30-second sequences
are presented. Note that the most common pattern was [0, 0, 0, 0, 0, 0], which is a
moving window of images where the driver has open eyes in all images. The second
most common pattern was a window of images with closed eyes, [2, 2, 2, 2, 2, 2],
which could be a long blink or a microsleep.
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Algorithm 1: Balanced sampling of eye state classes.
Data:
L0: List of eyes open windows
L1: List of eyes partially closed windows
L2: List of eyes closed windows
begin

n1←− number of elements in L1;
n2←− number of elements in L2;
if n2 > n1 then

randomly draw n2− n1 samples from L1 and add to L1;
else if n2 < n1 then

randomly draw n1− n2 samples from L2 and add to L2;
end
assert that n1 == n2;
L0←− randomly draw n1 samples from L0;
n0←− number of elements in L0;
assert that n0 == n1 == n2;

end

Figure 3.4: The distribution for a moving window of size W = 6 frames for
the manually annotated 30-second sequences for driver HPG487. Note that the
distribution between the three eye state classes is highly imbalanced since the driver
mostly has his or her eyes open.

3.3.2.2 Choosing the Size of the Moving Window

The impact of W , the moving window size, was subject to analysis. The hypoth-
esis was that if only one frame is used, the classifier might lose crucial historical
information. However, using too many historical frames may introduce redundant

30



3. Methods

Figure 3.5: The eye state pattern distribution for a moving window of size W = 6
frames for the manually annotated 30-second sequences for driver HPG487. Note
that the distribution between the different types of eye state patterns is highly
imbalanced.

information. Therefore, different window sizes were evaluated, ranging from one up
to ten frames.

3.3.2.3 Feature Selection

To predict whether the eye state is open, partially closed, or closed for a given frame
the following four features were investigated based on OpenFace 2.0: Eye Aspect
Ratio (EAR), blink regression intensity, gaze angle x and gaze angle y. The Eye
Aspect Ratio was calculated using the face landmarks around the eyes in Figure 2.4
with Equation 3.3 based on Equation 3.2 and 3.1 below:

EARright = ‖LM37 − LM41‖+ ‖LM38 − LM40‖
2 · ‖LM36 − LM39‖

, (3.1)

EARleft = ‖LM43 − LM47‖+ ‖LM44 − LM46‖
2 · ‖LM42 − LM45‖

, (3.2)

EAR = EARright + EARleft

2 . (3.3)

Note that LM37 = landmark no. 37. The blink regression value is the facial Action
Unit (AU) from OpenFace 2.0 with AU number 45 defined in Section 2.3.4. The
gaze angle x and gaze angle y from OpenFace 2.0 are defined in Section 2.3.3.
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Table 3.3: Search space used during hyperparameter tuning of the random forest
classifier. Note that the hyperparameter explanations are copied from [6].

Hyperparameter Possible Values Explanation
n_estimators Z ∈ [1, 1000] The number of trees in the forest.
max_depth Z ∈ [1, 100] The maximum depth of the tree.

min_samples_split Z ∈ [2, 20] The minimum number of samples
required to split an internal node.

min_samples_leaf Z ∈ [1, 10]

The minimum number of samples
required to be at a leaf node.
A split point at any depth will
only be considered if it leaves
at least min_samples_leaf
training samples in each of the
left and right branches.

max_features auto, sqrt, or log2
The number of features to
consider when looking for
the best split.

bootstrap True or False

Whether bootstrap samples
are used when building trees.
If False, the whole dataset is
used to build each tree.

3.3.2.4 Choosing a Classifier

Initial studies indicated that tree-based classifiers seemed to work well for the eye
state classification problem. Hence, a Random Forest Classifier from scikit-learn [6]
was used and hyperparameter tuned. The parameter grid investigated are presented
in Table 3.3.

3.3.2.5 Eye State Classification Optimization Study

An optuna parameter optimization study was performed. The parameters to deter-
mine were the moving window size W, the features, and the Random Forest Clas-
sifier hyperparameters. LOOCV was performed for the eight drivers to maximize
the weighted average F1-score of the eye state classifications. Hence, the model was
trained on seven drivers and tested on the remaining one in every split.

One of the best performing hyperparameter combinations, which also resulted in low
model complexity, was then selected. Moreover, a LOOCV test with the selected
hyperparameter setup was done using only 80 %, 60 %, 40 %, 20 %, 10 %, and
5 % of the available data. This data reduction test gave some clues about how
much data is necessary to build an eye state classification model. Since the data
was imbalanced between the different drivers, X % of each of the drivers’ data was
sampled randomly to maintain the same proportions.

With the selected hyperparameters, a model was fitted with all available data. Since
the model was trained on all available data, it was trained on different amounts of
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data from each driver, which should be considered when evaluating any results.
Moreover, this model had an unknown performance since there was no validation
or test set. Therefore, an ordinary train-test split was done with the test size being
1/8:th of the data to get around this issue. In this case, the same drivers were used
in both the training and test set. Therefore, the train-test split on all drivers was
more of a sanity check to see that the performance would not drop when adding the
final driver to the data.

Additionally, the hyperparameters found during the optimization study were used
to train one classifier for each driver. Each model was trained on 70 % of the
driver’s data and tested on 30 % of the data. The performance was compared to the
performance of the LOOCV model to get a sense of the generalization ability.

The chosen eye state classifier was then used to predict the eye state of the sequences
that were not manually annotated in an unsupervised fashion. The unsupervised
annotation led to several incorrect annotations. However, manually annotating all
video sequences would take too much time.
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3.4 Sleepiness Prediction
Taking a step back, recall that the main objective was to classify a driver’s ORS or
KSS level given an image sequence of a certain length. Each blink feature as defined
in Section 2.1.1.2 was calculated in relation to this image sequence. For example,
PERCLOS is the percentage of the sequence for which the driver has a closed eye
state. In contrast, average eyes opening duration refers to the average time it takes
the driver to open his or her eyes, calculated over all the occurring blinks in the
sequence.

Notably, using such blink features for classifying the driver’s sleepiness level means
that temporal time-series features are squeezed into single spatial values. In essence,
the time series of different features computed from the video sequences are condensed
into a few spatial data points for a video sequence of a specific length. We refer
to this method of using the extracted blink features for sleepiness prediction as the
sleepiness from handcrafted eye blink features approach, and it is further explained
in Section 3.4.2.

Similar approaches seem to be the norm for classifying sleepiness from video data.
However, it does not seem unlikely that another approach could be to predict sleepi-
ness directly from the time-series data, rather than heuristically choosing spatial
features beforehand. RNN-based models, such as the LSTM, are designed to han-
dle sequential data. Thus, it might be possible for such models to learn to classify
sleepiness on the raw time series. We call this method of performing predictions
directly on time-series data the sleepiness from temporal features approach, and it is
explained further in Section 3.4.3. Both approaches have a lot in common, which is
why this section first covers a general description of the experimental setup.

Except for the two sleepiness prediction models, two baseline predictors were im-
plemented: a constant predictor and a random (uniform) predictor. Reporting the
baseline of a constant predictor tells us how much the system can learn. The base-
line predictors were generated using 120-second sequence durations. The sleepiness
prediction results are presented in Section4.2.

3.4.1 Experimental Setup
As explained in Section 2.1, even with clear and distinct sleepiness definitions, it
is difficult to determine the real sleepiness level of a person both for an external
observer and for the subject whose sleepiness is being evaluated. Therefore, one
can suspect that the data’s sleepiness labels might be slightly incorrect. Additional
reasoning strengthening this assumption is further explained in Section 3.4.1.3. If
this is the case, it would be hard, if not impossible, for any machine learning model
to predict the exact target label correctly every time. Thus, having many different
targets for sleepiness prediction is reasonably not any better. One can expect the
error rate of the underlying annotated data to increase with the resolution of the
sleepiness scale used.

In addition to this fact, performing multi-objective optimization (both ORS and
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KSS) is harder and more time-consuming, and there was no justification found as
to why such an approach would result in a fairer estimation of the drivers level of
sleepiness. Therefore, it was decided to perform sleepiness prediction towards the
ORS scale only, thereby disregarding the KSS labels entirely. Another reason for
choosing ORS over KSS, was that the update frequency of ORS was double that of
KSS.

Furthermore, in addition to choosing an optimization target, there are also many
different possible metrics one can choose to optimize, as explained in Section 2.4.3.3.
We choose to evaluate models based on the Mean Squared Error (MSE), where high
performance means a low MSE. This metric has interpretable results in this case, as
one gets to see how far off the model is when classifying the sleepiness targets. For
example, with an MSE of 1.0, a model classifies within a ±1 target accuracy, which
should be considered in regards to the five different ORS targets.

Next, the experiment had to be designed such that an unbiased estimation of the
system performance could be calculated. The data was limited to eight drivers.
Therefore, the only reasonable way to obtain an unbiased estimate was to utilize
Leave-One-Out Cross Validation (LOOCV) by validating on one held-out driver
and training on the rest in every split. By averaging the MSE results from each
split, the estimated performance of classifying sleepiness on a completely new and
unseen driver can be calculated. However, model selection and hyperparameter
tuning are also crucial to ensure one obtains a working model. The model selection
and hyperparameter tuning also need to utilize LOOCV, due to the across-driver
variance in appearances, sleepiness behavior, and other such varying patterns.

Crucially, choosing the best model/hyperparameter setup with respect to the cor-
responding LOOCV score means that a bias is introduced. The performance would
be overestimated in regards to the general population. The overestimation happens
because the data used for model evaluation (the held-out testing drivers) is also used
for model selection by following this approach. A simple and straightforward ap-
proach for obtaining an unbiased estimation of model performance could be used if
more data were available. For example, if 100 drivers were available, one could ran-
domly select 70 drivers for model selection. The found model’s performance could
be evaluated on the remaining 30 drivers, which probably would approximate the
underlying population quite well. Instead, when only eight drivers are available, one
driver needs to be held out entirely from the model selection and hyperparameter
optimization process using nested LOOCV.

Following the nested LOOCV approach means that for each outer LOOCV split,
seven drivers are used for model selection/hyperparameter optimization (by carrying
out an inner LOOCV procedure on the seven drivers), and the remaining driver is
used for testing. As the inner procedure never gets to access the test driver, the
evaluation would be unbiased for that particular driver. However, any individual test
driver does likely not approximate the general population’s distribution. Therefore,
a significant variance would be introduced in the results.

Note that the outer LOOCV loop yields eight different models. They will each have
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a significant variance present in the test result, although the result is unbiased. In
order to obtain a fair estimation, one could imagine constructing an ensemble clas-
sifier. For example, this classifier could employ majority voting to decide a driver’s
level of sleepiness among the eight models. An approximate but fair estimate of
the performance of the ensemble classifier can be obtained by averaging the perfor-
mances of the eight individual models.

However, in addition to estimating the performance of such an ensemble classifier,
we also wished to obtain the best single Random Forest classifier we could find. A
single Random Forest would be less complex and easier to work with when it comes
to estimating the effect of adding or removing drivers from the dataset.

3.4.1.1 Implementation of Experimental Setup

Our experimental approach first utilized regular nested LOOCV to find a set of
promising hyperparameter setups. Then, a validation score of the system perfor-
mance for each setup was calculated through what we define as Method A. Next,
Method B was used for finding an unbiased test performance of the system for the
same set of hyperparameters. The results of Method B could also be used to estimate
what the performance of an ensemble classifier would be for a general driver.

These methods are summarized by Table 3.4 and Figure 3.6. In the table, each
driver is coded by the numbers [1, . . . , 8]. Eight different hyperparameter setups,
which were obtained by nested LOOCV, are denoted by [S1, . . . , S8]. These setups
were obtained by running an Optuna hyperparameter optimization study of 250
trials (1 trial = 1 evaluated hyperparameter combination) for each outer LOOCV
split. Each trial consisted of an inner LOOCV process, for which an average MSE
was calculated. Picking the best trials for the respective studies resulted in the
hyperparameter setups [S1, . . . , S8].

Note that this procedure in total required 8× 250 = 2000 inner LOOCV processes
on 7 drivers, resulting in 14000 different model fits. With large hyperparameter
search spaces, the problem is quite intractable for models that generally require a
long training process. A simpler way to think about it is that for each additional
hyperparameter combination that we wish to evaluate, 7 × 8 = 56 more fits are
required. That is because the number of trials for each respective outer fold should
be the same.
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Table 3.4: Experiment setup for obtaining a model with appropriate hyperparam-
eters and unbiased performance estimations.

Driver→
Setup↓

1
(HPG485)

2
(HPG487)

3
(HPG488)

4
(HPG489)

5
(HPG491)

6
(HPG492)

7
(HPG493)

8
(HPG494)

S1 Test Train Train Train Train Train Train Train
S2 Train Test Train Train Train Train Train Train
S3 Train Train Test Train Train Train Train Train
S4 Train Train Train Test Train Train Train Train
S5 Train Train Train Train Test Train Train Train
S6 Train Train Train Train Train Test Train Train
S7 Train Train Train Train Train Train Test Train
S8 Train Train Train Train Train Train Train Test

Method A: Going into this method, [S1, . . . , S8] were known to be promising hy-
perparameters. However, the estimated performance was subject to some
randomness introduced when balancing training data. Thus, we re-ran the 8
trials corresponding to the selected hyperparameter setups 10 times to obtain
an average LOOCV MSE. As an example, let us walk through the calculation
of the LOOCV MSE for setup S1, shown in Figure 3.6.
First, examine the row spanned by S1 and the 1st outer loop fold. Here,
driver 1 is considered the test driver and is excluded entirely. A LOOCV
procedure on the remaining drivers [2, . . . , 8] is carried out 10 times, using
parameter setup S1. Therefore, the resulting average MSE is calculated on
training drivers only. We refer to it as the setup loss of parameter setup S1
to differentiate it from scores obtained by evaluating on test drivers. This
process is then repeated to calculate the setup loss of S2. For S2, the training
drivers are 1 ∪ [3, . . . , 8] and so on.

Method B: To perform a test on the held-out testing driver from the outer loop, a
final fit would be required. We choose to make this fit over all of the 7 training
drivers for each respective outer LOOCV fold. Again, let us consider S1 as an
example and walk through the calculation of its unbiased testing score. With
S1, a model is fitted on the first fold containing all drivers except driver 1.
Then, the MSE is calculated by predicting on driver 1. Just as in Method A,
this fit and evaluation are performed ten times to reduce the impact of the
random sampling used to balance the training data. Thus, an average testing
MSE of S1 on driver 1 is obtained.
Since driver 1 was never used to optimize the hyperparameters or fit the
model, this score is completely unbiased. Continuing with the same pattern,
this approach results in eight different unbiased testing scores. However, the
scores are all obtained by testing on single drivers, and thus a large variance is
included. Recall that one could consider the scores as if individual classifiers
of an ensemble model obtained them. Then, one could calculate the average
to obtain an approximate system performance for an ensemble classifier that
is not skewed towards any particular driver.
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Driver
Setup

1
(HPG485)

2
(HPG487)

3
(HPG488)

4
(HPG489)

5
(HPG491)

6
(HPG492)

7
(HPG493)

8
(HPG494)

S1 Test Train Train Train Train Train Train Train

S2 Train Test Train Train Train Train Train Train

S3 Train Train Test Train Train Train Train Train

S4 Train Train Train Test Train Train Train Train

S5 Train Train Train Train Test Train Train Train

S6 Train Train Train Train Train Test Train Train

S7 Train Train Train Train Train Train Test Train

S8 Train Train Train Train Train Train Train Test

2
(HPG487)

3
(HPG488)

4
(HPG489)

5
(HPG491)

6
(HPG492)

7
(HPG493)

8
(HPG494)

Test Train Train Train Train Train Train

Train Test Train Train Train Train Train

Train Train Test Train Train Train Train

Train Train Train Test Train Train Train

Train Train Train Train Test Train Train

Train Train Train Train Train Test Train

Train Train Train Train Train Train Test

Outer Loop

Inner Loop

Run inner loop 250
times for

hyperparameter
tuning  S1

S1?

Method A
Run inner loop 10 times

with S1  Average
LOOCV results for S1

False

True

Method B
Use S1 on 1st fold in
outer loop  test
score for HPG485

Figure 3.6: Nested leave-one-out cross-validation experiment for obtaining se-
tups [S1, . . . , S8] and the resulting performance estimations from Method A and
Method B. The figure only illustrates how S1 is obtained and its performance es-
timated with Method A and Method B. However, the process is similar for the
remaining setups [S2, . . . , S8], with the difference being the outer loop split.
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Next, the effect of adding or removing drivers from the training data was of interest
to evaluate. For example, what might happen to performance if training occurs
on five drivers instead of seven, or maybe even when training on just one driver?
To investigate this effect, we opted to select a single hyperparameter setup out
of [S1, . . . , S8] rather than using the method of ensemble classifiers. This choice
was made in order to reduce the complexity of the experiment and the number of
necessary fits. Thus, we define Method C, which explains how a particular setup
was selected from [S1, . . . , S8], which was later used in the generalization experiment
explained in Section 3.4.1.2.

Method C: As previously mentioned, Method B yielded unbiased estimations of
the performance for each setup, but with a high degree of variance since the
test results are influenced by the current testing driver. In order to compare
[S1, . . . , S8] against each other, they had to be evaluated on more than one
driver to reduce the variance. Therefore, it is clear that we had to base the
selection of setup according to the setup loss obtained in Method A.
Again, let us consider an example to explain this method. Assume the best
scoring setup according to the setup loss is S1. The problem remains that S1
has only been evaluated on driver 1. Thus, there is a large degree of variance.
However, one can imagine a simple solution; use S1 and fit a model according
to the data split of the other setups, then calculate and average the scores
over the respective test drivers. For example, using S1 on S2’s data split, we
fit a model with S1 on drivers 1 ∪ [3, . . . , 8] while testing on driver 2. The
variance is reduced by also doing the same for the other data splits and av-
eraging the results.
However, it is important to realize that a slight bias is then introduced. The
performance while testing S1 on S2’s dataset split is slightly overestimated
since the hyperparameter optimization process for selecting S1 included driver
2. Therefore, the hyperparameters of S1 work better than expected when
testing a model with S1’s parameters on driver 2, even though that model is
only shown the other drivers.
Nonetheless, we assume the benefits of reducing the variance outweigh the
downsides of a slightly increased bias, but it is necessary to recall this as-
sumption when evaluating the results. Note that the results here were also
averaged by running the Method ten times to reduce the impact of balanced
random sampling applied to the training data in each split.

3.4.1.2 Effect of Adding Additional Training Data

One can compare how a sleepiness prediction model and parameter setup are affected
by adding or removing one or more drivers from the training data. We call this the
generalization ability of the model. The generalization ability could give an indica-
tion (a biased estimation) of how many drivers would be needed for a generalized
model capable of accurately classifying sleepiness on the average person.

In Method C, the average test MSE per driver is obtained by calculating the MSE in
each LOOCV split. Notice that this estimates the hyperparameter setup’s average
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Table 3.5: Cross validation split combinations used to evaluate the generalization
ability of the sleepiness prediction model.

Name of
Test

Test set size
(No. of drivers)

Train set size
(No. of drivers) No. of Combinations

LOOCV 1 7 8
L2OCV 2 6 28
L3OCV 3 5 56
L4OCV 4 4 70
L5OCV 5 3 56
L6OCV 6 2 28
L7OCV 7 1 8
Total - - 254

performance when training with seven drivers and testing with the remaining one.
Instead, one could also imagine obtaining an estimate of the average performance
when training with six drivers and testing with two and so on. The complete opposite
case is also possible; training with one driver and testing with seven. Note that this
procedure is very similar to Method C, where the only differing property is the
changing number of test drivers.

Therefore, we carried out Leave-X-Out Cross-Validation (LXOCV), meaning that X
drivers were used for testing and the remaining ones for training in each split. Then,
the impact of decreasing the number of training drivers could be evaluated.

When using one test driver, there are only eight possible combinations one could
pick, but as soon as more drivers are used for testing, the number of possible com-
binations grows. Table 3.5 lists the number of combinations given the number of
test drivers. As an example, if there are three drivers in the test set, there are(

8
3

)
= 8!

(8−3)!·3! = 8·7·6
6 = 56 train/test split combinations for L3OCV.

In total, there are 254 possible combinations. For each combination, the best hy-
perparameter setup (according to the setup loss obtained in Method A) was fitted
to the training data, and the MSE was calculated from the predictions on the test
data. This procedure was repeated ten times just as in Method C to reduce the
impact of the random sampling used to balance the training data, and an average
MSE was calculated for each combination. The results indicate the performance
difference for varying the number of training drivers. However, note that the testing
sets are slightly different when varying the number of held-out drivers, meaning that
the results should be interpreted with caution.

3.4.1.3 Finding a Suitable Sequence Duration

It was assumed that the sleepiness prediction performance would rely on the cho-
sen sequence duration. Earlier works in driver sleepiness prediction use different
sequence durations, ranging from a few frames up to ten minutes. Nevertheless,
some fundamental limitations on the sequence durations to be evaluated can be de-
termined. First, the ORS level was noted every five minutes during data collection.
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Hence, it would not make sense to use longer sequences. Using longer sequences
could lead to overlapping sleepiness levels within sequences when the ORS level
change.

Moreover, the extracted features from the handcrafted eye blink features approach
(explained later in Section 3.4.2) have a high variability for short sequences. For
example, consider a five-minute sequence when the driver is very sleepy. In the
first four minutes, the driver struggles to keep awake, but the microsleeps only
occur during the last minute. If we divide this sequence into one-minute segments,
each corresponding to the same ORS level, any feature such as microsleep_count or
PERCLOS would be low for the first four segments. In contrast, the fifth segment
contains extremely sleepy behavior instances. Therefore, increasing the sequence
duration makes these types of features more robust.

Another potential hazard of using sequence durations much shorter than the ORS
update interval (five minutes) is that the accuracy of the annotated labels is re-
duced. The label quality is likely to decrease with a decreasing sequence duration,
which leads to outliers and incorrectly annotated data points. With this in mind,
it was decided that sequence durations of 30, 60, 120, 180, and 240 seconds were
appropriate values to be evaluated. Thereby, the sequence duration could be treated
as a tunable hyperparameter. Further reasons for choosing these sequence durations
are given in Section 3.4.1.4.

3.4.1.4 Data augmentation

As previously mentioned, each driving experiment was conducted for a maximum
of two hours per driver, and the ORS level was annotated every five minutes during
the data collection process. Therefore, assuming that the two hours are split into
segments at each five-minute interval, one would obtain a total of only 24 observa-
tions per driver. Having 24 observations per driver is far from enough training data
for many different models, considering only eight drivers are available.

However, it is possible to augment the data by shifting a moving window over the
driving sequence. Each new shift is unique, as at least one new frame is added
and one old frame is removed in every shift. The number of frames added and
removed depends on the step size of the shifting window. Shifting a moving window
is similar to data that would be available during a real-world scenario, in which a
camera would capture a new image with a specific frequency.

In order to augment the data by shifting, the moving window size needed to be
shorter than five minutes since otherwise, targets could be overlapping whenever the
ORS level would change. That is also why in Section 3.4.1.3, the chosen sequence
durations were specified to be 30, 60, 120, 180 and 240 seconds. Notice that these
sequences are shorter than five minutes (300 seconds). Having sequences shorter
than five minutes meant that the moving window for all the different sequence
durations could be shifted.

Moreover, the larger the moving window size, the fewer shifts are possible if the
step size is held constant. For example, using a step size of one second for a moving
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window of 240 seconds, only 60 shifts can be performed until the five-minute mark
is reached. If a moving window of 30 seconds is used, 270 shifts can be performed
instead.

Furthermore, an equal amount of augmented samples for all moving window sizes
is favorable to obtain a less biased estimation (towards the amount of data) of
the optimal sequence duration. To guarantee an equal amount of samples, one
must reduce the step size proportionally to increased window size. However, this
comes with a trade-off; as step size decreases for each increasing window size, the
duplicated data in each step also increases. As an example, with a step size of one
frame, there will only be a one-frame difference between two sequential steps of the
moving window. These two observations would be almost identical and would not
provide much additional value to the training process. On the other hand, if the
step size would be equal to half the length of the moving window, each new step
would contain 50 % previously seen frames and 50 % new ones, although then not as
many steps are possible to take. The moving window step size / shifts are presented
in Table 3.6.
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Table 3.6: Data augmentation details with different sequence durations and moving
window step sizes. There are always 31 training instances and 12 test instances for
each data augmentation combination of sequence duration and moving window step
size.

Sequence
Length
[seconds]

Moving
Window
Step Size
[seconds]

Percentage
Data
Repeated
[%]

Training
Instances
(31)

Test
Instances
(12)

240 2 99.17

00:00 - 04:00
00:02 - 04:02
...
00:58 - 04:58
01:00 - 05:00

00:05 - 04:05
00:10 - 04:10
...
00:55 - 04:55
01:00 - 05:00

180 4 97.77

00:00 - 03:00
00:04 - 03:04
...
01:56 - 04:56
02:00 - 05:00

01:05 - 04:05
01:10 - 04:10
...
01:55 - 04:55
02:00 - 05:00

120 6 95.00

00:00 - 02:00
00:06 - 02:06
...
02:54 - 04:54
03:00 - 05:00

02:05 - 04:05
02:10 - 04:10
...
02:55 - 04:55
03:00 - 05:00

60 8 86.66

00:00 - 01:00
00:08 - 01:38
...
03:52 - 04:52
04:00 - 05:00

03:05 - 04:05
03:10 - 04:10
...
03:55 - 04:55
04:00 - 05:00

30 9 70

00:00 - 00:30
00:09 - 00:39
...
04:21 - 04:51
04:30 - 05:00

03:35 - 04:05
03:40 - 04:10
...
04:25 - 04:55
04:30 - 05:00
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3.4.2 Sleepiness From Handcrafted Eye Blink Features
As explained in Section 2.1.1, common indicators of sleepiness such as a high PER-
CLOS and similar features based upon movements of the eyelids have previously
been utilized to detect driver drowsiness. In order to assess such an approach for
the given dataset, the best eye state classifier obtained from the study described in
Section 3.3.2.5 was used to classify whether the driver’s eyes were open, closed, or
partially closed for all images in each sequence.

Given the eye state of each sequence and each driver, the 36 different eyes blink
features introduced in Section 2.1.1.2 were calculated and standardized by removing
the mean and scaling to unit variance. Note that the two initializing zeros for the
window size W = 3 were included in the eye state sequence when calculating the
blink features for the sequence. A better approach would be to drop these zeros and
only work with fully visible sequences. However, the consequences of this choice
have a minimal impact on performance, as it leads to ∼0.22% of the eye state values
for each frame obtaining a ∼10% risk of being classified wrong on average (since for
a 30-second sequence of 30 FPS, the initial 2 out of 900 total frames are assumed
to be open, and the eyes are fully open in ∼90% of the images according to our
annotated material).

The calculated eye blink features were then used as input to a sleepiness classifier.
An overview of the complete sleepiness prediction pipeline using this approach is
presented in Figure 3.7.

Note that the eye state classifier was trained on all available annotated data from
all drivers. Thus, when classifying the sleepiness on a driver, the eye state model
had already been trained on that driver. Hence, one could argue that any sleepiness
prediction results obtained might be slightly overestimated relative to what could
be achieved for a completely new driver. However, the eye state classifier and the
sleepiness classifier are in reality unrelated to each other, which means the actual
performance of the eye state classifier is the only parameter affecting the sleepiness
prediction performance. Towards the goal of classifying sleepiness, it does not matter
what data was used for training the eye state model as long as the extracted eye
blink features contain sufficient sleepiness information. The results of this approach
are presented in Section 4.2.1.
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Facial feature vectors

Image frames

Time

Moving window
of 3 frames

Eyes states
(open, partially closed, closed)

Blink features extraction

Predicted ORS

Eyes state classification
(per moving window)

OpenFace 2.0
feature extraction

Video sequence

Sleepiness Prediction

0 0

Figure 3.7: High-level illustration depicting how the temporal image sequences are
first processed by OpenFace 2.0, after which the eye states in each frame is detected
as explained in Section 3.3.2. Then, blink features from Section 2.1.1.2 are used to
classify sleepiness.
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The next task was to find a suitable classifier capable of determining driver sleepiness
based on the extracted eye blink features. Generally, initial results indicated that
tree-based methods performed quite well for the task at hand. Specifically, it was
decided to proceed with a Random Forest as a sleepiness classifier. Note that the
initial results that motivated this choice were based on biased performance scores.
It would be too time-consuming to evaluate many different models as rigorously as
required to make an unbiased model selection choice. Additionally, there were a few
other reasons as to why a Random Forest classifier was deemed as an appropriate
model in this case:

I. Out of the 36 handcrafted eye blink features, only a few are likely important
predictors of sleepiness. Random Forest models have built-in feature selection;
there would therefore be no need to perform a study for picking out a handful
of features as the performance would not be highly affected for this type of
model.

II. Random Forests are easy and fast to train. Given a large number of re-
quired fits to evaluate the model as specified in the experimental setup (see
Section 3.4.1), it would be impossible to test a model that requires a very
time-consuming training process.

III. With a Random Forests, it is easy to adjust the bias-variance trade-off. A large
depth and many estimators yield a highly complex model, which can reduce
bias but increase variance. With a small depth and a few base estimators,
variance can be reduced at the cost of increasing bias.

After choosing the classifier type to be a Random Forest, hyperparameter tuning
and performance estimations were obtained by following the experiment setup out-
lined in Section 3.4.1. After conducting the experiments of Method A, Method B
and Method C, a final experiment Method was defined for exploring the feature
importances. We refer to this as Method D.

Method D: This method did not utilize nested cross-validation but instead used
regular LOOCV in which each split consisted of seven training drivers and
one test driver. With Optuna, 1000 trials with different hyperparameter
combinations chosen dynamically with TPE-sampling was carried out. The
hyperparameter search space used for the Random Forest classifier is specified
in Table 3.3. The optimization study aimed to minimize the Mean Squared
Error (MSE) of the predicted ORS level. For each LOOCV split in each trial,
an average validation performance of the current hyperparameter setup was
evaluated by fitting the model on the seven training drivers and testing on
the remaining one. Hence, the study was optimized on the test data, which
must be considered when reviewing the results.

The hyperparameter setup that achieved the lowest MSE on the ORS pre-
diction was obtained. With this setup, the average impurity-based feature
importance (Gini importance) could be calculated since the classifier was a
Random Forest. The importance of a spatial eye blink feature was computed
as the normalized total reduction of the criterion brought by that feature [6].
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It is important to keep in mind that the result could not indicate the most
important features for all different classifier types, hyperparameter setups,
and sequence durations. Rather, it could merely indicate which of the 36 eye
blink features contain the most information regarding the driver’s sleepiness
level with this specific setup.

47



3. Methods

3.4.3 Sleepiness from Temporal features

As noted in Section 1.2, AUs from the Facial Action Coding System (FACS) (see
Section 2.3.4) have previously been utilized with success when it comes to classifying
sleepiness in a study performed by Vural et al. [12]. The study utilized simulated
driver scenarios for data collection and entirely different target labels rather than
conducting a naturalistic driving experiment as in this case. Nevertheless, it is
of high interest to research whether similar features are viable in this project for
classifying sleepiness towards the ORS target labels. Moreover, in the introduction
of Section 3.4, it was further explained that RNN-based models such as the LSTM
might be able to classify sleepiness directly upon temporal data in the form of
time-series, instead of squeezing the time-series into spatial handcrafted features as
explained in Section 3.4.2.

Thus, from the different video sequences of each driver, 20 different temporal features
were extracted using OpenFace 2.0. These included 17 different AUs defined in
Table 2.4, as well as the eye gaze angles for each eye which could all be obtained
directly from OpenFace 2.0. Additionally, the Eye Aspect Ratio (EAR) defined
in Section 3.3.2.3 was calculated from eye landmark positions. In total, the video
sequences are encoded as 20-dimensional time-series vectors of length equal to the
number of frames for any chosen sequence duration.

The basic prediction model is implemented in Pytorch and consists of a number of
stacked LSTM layers. From the topmost LSTM layer’s last hidden state, there is
a fully connected feed-forward layer with an output size equal to five (the number
of ORS targets). A softmax layer has been added from the fully connected layer to
calculate the probabilities of each target. Finally, the cross-entropy loss is computed
by adding a final negative log likelihood loss (NLLL) layer. The Adam optimizer
was used for training.

In Figure 3.8 an overview of the pipeline for this approach is illustrated.

The sequences were augmented as specified in Section 3.4.1.4. The data of the
training drivers in each CV split were fed to the LSTM model with a batch size
of 16. Gradient clipping of the optimizer was introduced with a max norm of ±1
(calculated over all gradients) to avoid the explosion of gradients.

Unfortunately, the long training times of the model made it impossible to set up
the experiment as specified in Section 3.4.1. Therefore, no unbiased estimations
regarding the performance or generalization ability were obtained for this approach.
Instead, we focused on determining whether the approach could even be viable. Was
it possible for an LSTM model to classify sleepiness at all? If the model could not
overfit and classify sleepiness on previously seen drivers, there would be no reason
to classify sleepiness on unseen drivers, which is a more challenging task. There
would also be no point in conducting the time-consuming experiment of finding
the unbiased performance score and generalization ability of a model that would
never work. Therefore, LOOCV for all eight drivers in the dataset was used for
hyperparameter optimization.
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Figure 3.8: High-level illustration of pipeline for the sleepiness from temporal fea-
tures approach using a stacked LSTM RNN. Note the difference from the sleepiness
from handcrafted eye blink features approach illustrated in Figure 3.7.

Early stopping was utilized, as explained in Section 2.4.3.2. It was implemented by
randomly splitting the data of the training drivers in each LOOCV split into two
parts, 75 percent for training and 25 percent for validation. To make a distinction
between the validation set used for early stopping and the held-out driver obtained
in each LOOCV split, we refer to the held-out driver as the testing driver even
though there was no nested cross-validation for this approach.

The cross-entropy loss was used as a validation score for the early stopping, with a
patience of five epochs to determine when to terminate the training process. Addi-
tionally, during training and validation, the respective dataset splits were balanced
using weighted random sampling such that the target labels were approximately
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equally distributed.

Initial results indicated that the different models seemed to be overfitting on the
training drivers. Therefore, additional runs were carried out to introduce dropout
regularization with varying dropout probabilities. Dropout layers were added be-
tween stacked LSTM layers and before the fully connected layer. However, no in-
dication of improved performance was observed, so the dropout probabilities were
put to zero. Instead, the focus was placed within varying the LSTM architecture in
the hopes of finding a model that would produce more promising results with less
overfitting.

The training time seemed to increase approximately linearly with increased sequence
duration. At this stage, the simplest evaluated model, a 1-layer LSTM with a hidden
dimension of 64 for 30-second sequences, took approximately one hour to train and
evaluate using an NVIDIA RTX 2060 Super GPU. Evaluating the same model with
a sequence duration of 120 seconds instead took approximately 3.5 hours. One
run using a 240-second sequence duration and 512 hidden dimensions for a 3-layer
LSTM was conducted. However, it was terminated early after more than 8 hours
of training. It also appeared to be overfitting and predicting randomly on testing
drivers in the LOOCV loop. The time-consuming training and evaluation process
severely limited exploring a large search space of hyperparameter combinations and
larger network architectures, especially at longer sequence durations. In order to
obtain interpretable results within the given timeframe, it was apparent that the
experiment had to be downscaled.

As described in Section 2.4.2, LSTMs have been shown to possess limited ability in
retaining a memory over sequences of magnitudes larger than 100 time steps in prac-
tice, even though they have unlimited memory in theory. The shortest sequence of
our choosing at this point, 30 seconds sampled at 30 FPS, results in input sequences
of 900 discrete time steps. Therefore, it was decided that it would be enough to test
the 30-second sequence duration against the 120-second one to obtain initial results
and indications of performance of varying sequence durations. Preferably, shorter
sequence durations would have been interesting to consider, but as explained in Sec-
tion 3.4.1.3 shorter sequence durations were problematic due to the uncertainty of
labels in such cases. Therefore, to obtain results in a reasonable amount of time, a
small hyperparameter search space of 16 combinations was constructed for which an
exhaustive grid search was conducted. The search space is presented in Table 3.7.
The results from these runs are presented in Section 4.2.2.
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Table 3.7: LSTM hyperparameter search space of 16 different combinations.

Hyperparameter Possible Values Explanation

sequence_length k ∈ {30, 120}

Input sequence duration
in seconds. Multiply
by 30 FPS for actual
length of LSTM input.

hidden_dim k ∈ {64, 512}
The number of
features in the
LSTM’s hidden state.

stacked_layers k ∈ {1, 2}

The number of
recurrent layers.
If k > 1 a
stacked LSTM is
obtained.

learning_rate k ∈ {0.001, 0.01}
Controls the size
of each gradient
descent step.
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4
Results

This chapter describes the results from the eye state and sleepiness prediction. The
inter-annotator agreement results are presented in Section 4.1, Eye State Classi-
fication Results. Furthermore, Section 4.2, Sleepiness Prediction Results, is split
into two parts: sleepiness from handcrafted eye blink features and sleepiness from
temporal features.

4.1 Eye State Classification Results
This section starts with the inter-annotator agreement results presenting how the
annotators differ in their annotation technique. Next, the optimization study results
are presented, leading to an optimal eye state classification model. Finally, the eye
state classification results with decreasing percentages of the data are presented to
learn how much annotated data is required.

4.1.1 Inter-Annotator Agreement Results
The inter-annotator agreement study results are presented in Figure 4.1. The diag-
onal elements represent annotations where both Casper and Anton annotated the
same target. Off-diagonal elements are annotations where Casper and Anton dis-
agreed. For example, for the frames where Anton annotates partially closed eye
states, Casper disagrees and annotates 17 of these as closed and 10 as open.

Table 4.1 presents the precision, recall, F1-score, and support for each eye state
class, where Casper’s annotations are seen as true, and Anton’s values are seen as
predicted values. Note that there is a significant imbalance between the classes. The
inter-annotation differs noticeably, especially on the partially closed eye states.

4.1.2 Optimization Study Results
The Optuna optimization study aimed to help determine the optimal size of the
moving window W , which feature to choose, and the hyperparameters of the classi-
fier.

In Figure 4.2, a slice plot of the trials run with different moving window sizes is
presented. It is important to note that the F1-score also depends on many other
hyperparameters, but this figure indicates how the moving window size affects the
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Figure 4.1: Inter-annotator agreement study between the authors Casper Lindberg
and Anton Claesson on drivers HPG491 and HPG494. To the left, the normalized
confusion matrix is presented.

Table 4.1: Classification report of the inter-annotator agreement study between the
authors Casper and Anton on drivers HPG491 and HPG494. Casper’s annotation
is in this study considered as the true values and Anton’s annotation is considered
as the predicted values. The support is the total number of eye state annotations
annotated by Casper of each class (0, 1, or 2).

Eye State Precision Recall F1-Score Support
0 (open) 0.96 1.00 0.98 3023

1 (partially closed) 0.89 0.67 0.77 340
2 (closed) 1.00 0.93 0.96 237

performance. The trials that achieved the highest weighted F1-score had a moving
window size W = 7 frames. However, there is no significant difference in weighted
F1-score using between 3 - 10 frames. By using fewer frames, the complexity of the
model decreases. Hence, following Occam’s razor principle, a suitable choice of the
moving window size would be W = 3 frames.

Additionally to selecting a suitable moving window size, feature selection was per-
formed by inference based on the results. Figure 4.3 shows that the highest weighted
F1-scores seem to have been obtained by trials utilizing all four of the available fea-
tures. Thus, each feature might be significant, and they were all selected for usage
in the final eye state classification model.

Next, in Figure 4.4, the parallel coordinate plot for the eye state classification opti-
mization study is presented. Note that the moving window and the features (EAR,
blink intensity, and gaze angles) are excluded from this plot for easier interpretabil-
ity. In this plot, the lines represent different trials, in total 150. Starting from
left to right, the vertical axis on the left is the weighted F1-score for the eye state
classification.

The bootstrap hyperparameter is considered next. The majority of the trials with
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Figure 4.2: Slice plot for the Random Forest classifier from the Optuna study
with the goal of maximizing the weighted F1-score for eye state classifications. The
moving window size varies from 1 to 10.

a high weighted F1-score seem to disable the use of bootstrap. The max_depth
parameter seems to give good results in the whole span from 2 - 100. Moreover,
the max_features hyperparameter seems to have about equal performance with the
auto and sqrt setting. For the min_samples_leaf hyperparameter, values of 1 or 2
seem to give good results. The min_samples_split parameter gives good results in
the whole range from 2 - 20. Finally, the n_trees hyperparameter (the number of
estimators) seems to give the best results in the interval 10 - 300.

By following the Occam’s razor principle of prioritizing a simple model, which is
also faster, the following parameter setup was used:

moving window size: 3, all features used (EAR, blink intensity, gaze angle x, and
gaze angle y), ’n_trees’: 20, ’max_depth’: 17, ’bootstrap’: false, ’max_features’:
auto, ’min_samples_leaf’: 1, ’min_samples_split’: 2

This resulted in the confusion matrices presented in Figure 4.5 and the classification
report presented in Table 4.2. Note that the average weighted F1-score is slightly
less than the best model in the F1-score optimization study presented in Figure 4.4
which had an average weighted F1-score of 0.9594 compared to 0.9496. However, the
performance of the model is highly affected by the annotation, as seen in the inter-
annotator agreement presented in Figure 4.1. Hence, the simpler model is selected.
The LOOCV weighted average F1-score per driver is presented in Figure 4.6. Note
that the weighted average F1-score varies slightly between the different drivers,
with the worst performance on HPG489 and the best performance on HPG488.
In Figure 4.6 one can also see the performance for each within-subject eye state
classification model. Note that these models are of the same type as the LOOCV
model but fitted on data only from one driver. The models are trained on each
driver individually with 70/30 train/test splits. On average, the performance of
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Figure 4.3: Slice plot for the Random Forest classifier from the Optuna study
with the goal of maximizing the weighted F1-score for eye state classifications. The
features investigated are EAR, blink intensity, gaze angle x and gaze angle y.

Figure 4.4: Parallel coordinate plot of 150 trials of Random Forest classifiers. The
objective value on the vertical axis to the left is the average weighted F1-score. One
line represents one trial.
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Figure 4.5: LOOCV eye state classification results. To the left, the normalized
confusion matrix is presented.

Table 4.2: Classification report of the LOOCV eye state classification. The support
is the total number of eye state instances of each class (0, 1, or 2).

Eye State Precision Recall F1-Score Support
0 (open) 0.96 0.96 0.96 21969

1 (partially closed) 0.93 0.93 0.93 21926
2 (closed) 0.96 0.97 0.96 21881

weighted average 0.950 0.950 0.9496 -

the within-subject models is about 1 % higher than the general LOOCV model.
However, for 3 out of 8 drivers, the performance is better when using the general
LOOCV model.

This simpler model was fitted to all available data. However, to sanity check that
the performance did not drop by adding the final driver, 1/8:th of the data was
randomly sampled as a test set. The performance of the sanity check is presented
in Table 4.3. The performance is slightly higher than in the LOOCV study as
expected.

Next, the selected eye state classification model was trained on parts of the original
data. The results are presented in Figure 4.7. Using all data leads to the best overall

Table 4.3: Classification report of the train-test split sanity check of the eye state
classification model with a moving window size W = 3 frames, all features and the
hyperparameters specified in the list above. The support is the total number of eye
state instances of each class (0, 1, or 2).

Eye State Precision Recall F1-Score Support
0 (open) 0.96 0.96 0.96 1308

1 (partially closed) 0.94 0.93 0.93 1305
2 (closed) 0.96 0.97 0.97 1302

weighted average 0.954 0.954 0.9539 -
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Figure 4.6: LOOCV and within-subject eye state classification weighted aver-
age F1-score per driver. The figure also shows the average across all drivers for
both the LOOCV model (dashed line) and the within-subject models (dotted line).
The within-subject models are trained and tested on the same driver with a 70/30
train/test split.
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Figure 4.7: Average weighted F1-score per driver with different amounts of the
annotated data (see Table 3.1), from 100 % to the left to 1 % to the right. The thin
crosses represents the average across all drivers using the specified percentage of the
data.

weighted average F1-score. The figure shows how much the performance drops when
the amount of data is decreased. The most significant drop happens from 5 % to 1
% of the data, especially for HPG489 who has the least amount of annotated data.
1 % of HPG489’s annotated data corresponds to 63 frames.
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4.2 Sleepiness Prediction Results
This section presents the results of classifying the driver ORS level using two different
approaches. The first approach is based upon handcrafted eye blink features with a
Random Forest classifier, and the second one upon temporal features with a Long
Short-Term Memory (LSTM) classifier. The results of the baseline predictors are
presented in Figure 4.8. The constant baseline predictor classifies the median ORS
level (2) with an average MSE of 1.72. The uniform random baseline model gets an
average MSE of 3.70.

Figure 4.8: Results from the baseline predictors.

4.2.1 Sleepiness from Handcrafted Eye Blink Features Re-
sults

This section presents the results from the sleepiness prediction task using handcrafted
eye blink features with a Random Forest model. The results are based upon the
methodology presented in Section 3.4.1 and 3.4.2. Recalling the four evaluation
methods defined, the results from Method A, Method B, Method C, and Method D
are presented in chronological order.

4.2.1.1 Method A Results

Table 4.4 presents the parameter setups [S1, . . . , S8] for the Random Forest classifier.
Recall that these setups were obtained from the eight different Optuna optimization
studies of 250 trials each. As specified in the table caption and further explained
in Section 3.4.1, the setup loss is the average LOOCV MSE using the specified
parameter setup for the classifier, when excluding the driver noted column-wise
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from the dataset. The results from Method A is also presented in Figure 4.9. The
results are presented as boxplots to illustrate the variance of the ten different runs
performed to reduce the impact of the random balanced sampling.

Parameter set S5, calculated when driver HPG491 was excluded, had the small-
est setup loss, 0.901, and the lowest variance, see Figure 4.9. The largest loss was
obtained when excluding driver HPG493 for setup S7, which also had the highest
variance. Note that having the smallest setup loss does not guarantee that the
corresponding setup is the most suitable since two primary reasons cause a low
loss. Either, the parameter setup works exceedingly well for sleepiness prediction
on the drivers, but it is also possible that the excluded driver is particularly chal-
lenging. If the latter is true, the average LOOCV MSE on the remaining (easier)
drivers decreases compared to when the difficult driver is included in the LOOCV
procedure.

Finally, also note that all setups [S1, . . . , S8] results in quite complex Random Forest
models with many estimators and/or a high maximum depth.

Table 4.4: Parameter setups [S1, . . . , S8] with the sequence duration in seconds
and the hyperparameters for the Random Forest classifiers. The setup loss is the
average LOOCV MSE for fitting a Random Forest classifier with the specified pa-
rameter setups S1 - S8, when excluding the driver in parenthesis (HPGXXX) from
the dataset.

Setup→
Params↓

S1
(HPG485)

S2
(HPG487)

S3
(HPG488)

S4
(HPG489)

S5
(HPG491)

S6
(HPG492)

S7
(HPG493)

S8
(HPG494)

sequence
length (s) 180 180 180 180 120 180 180 180

n_
estimators 809 251 996 723 993 654 665 379

max_
depth 83 78 7 16 65 98 46 49

min_
samples
_split

20 15 11 4 13 6 9 15

min_
samples
_leaf

9 10 3 5 5 6 3 8

max_
features log2 auto sqrt auto auto log2 auto log2

bootstrap True False False True False True True True
Setup
Loss 1.684 1.262 1.268 1.409 0.901 0.982 1.861 1.010
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Figure 4.9: Results fromMethod A: the average LOOCVMSE of all drivers exclud-
ing the driver on the x-axis with the hyperparameter setup [S1, . . . , S8] respectively,
read more in Section 3.4.1.
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4.2.1.2 Method B Results

Recall that for this method, eight different Random Forest classifiers, one for each
setup [S1, . . . , S8], were fitted on all drivers except the excluded test driver. Then, a
test MSE was calculated on the excluded driver corresponding to each setup.

The results are presented in Figure 4.10 for the legend name Method B with an
average MSE of 1.21. As mentioned in Section 3.4.2, this would correspond to a fair
approximation of the general performance of an ensemble classifier consisting of the
eight different Random Forest models.

Moreover, in the figure, the results are presented as boxplots to illustrate the variance
of the ten different runs performed to reduce the impact of the random balanced
sampling. In particular, note that the MSE differs significantly between different
test drivers: from ∼0.5 on HPG485 to ∼2.8 on HPG494. As assumed, the test
variance is indeed significant. Additionally, similar difficulties arise as in Method A
Results when analyzing the models; the MSE can either obtain a low value because
the corresponding model is good, or because the ORS of the testing driver is easy
to classify. Conversely, the MSE can be high because the model is inadequate at
classifying sleepiness or because the sleepiness level of the testing driver is hard to
classify.

This is also why Method A Results should be used for picking out the best hyperpa-
rameter setup, as the scores from this method are obtained from an average of seven
drivers instead of just one. However, these scores are slightly overestimated from
the hyperparameter optimization process, so it is also important to consider the test
results obtained here in Method B Results to see the complete picture.

4.2.1.3 Method C Results

Since parameter setup S5 achieved the lowest setup loss, it was considered the best
setup. A new LOOCV procedure across all drivers was carried out with S5, where
seven drivers were used for fitting the model and the remaining one for testing in
each split. The resulting MSE per driver and an average across all drivers of 1.32 is
presented in Figure 4.10 with legend name Method C. The results are presented as
boxplots to illustrate the variance of the ten different runs performed to reduce the
impact of the random balanced sampling. Note that the MSE differs greatly between
different drivers: from ∼0.25 on HPG489 to ∼3.2 on HPG488. Also note that the
performance on HPG491 should be approximately the same for both Method B and
Method C which seems to be the case according to Figure 4.10.

4.2.1.4 Method D Results

As explained in Section 3.4.2, a hyperparameter optimization study using LOOCV
for all eight drivers was conducted in order to explore the feature importances and
upper limit performance. As this meant there were no excluded drivers for which
an unbiased testing score could be calculated for the fitted models, the results can
merely indicate feature importance and performance.
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Figure 4.10: ORS prediction MSE test results per driver and per evaluation
method Method B, Method C, and Method D read more in Section 3.4.1. Method
B: unbiased test MSE on the driver specified on the x-axis fitted on the rest of the
drivers with the best hyperparameter setups [S1, . . . , S8] per driver. Method C: the
hyperparameter setup that achieved the lowest average LOOCV MSE from Method
A, in this case from excluding HPG491, was considered as the final prediction model.
This model was fitted on all drivers except the driver specified on the x-axis which
it was tested on. Method C presents these test results. Method D: test MSE on the
driver specified on the x-axis fitted on the rest of the drivers using a model that has
been hyperparameter tuned on the test data.

The results of the sleepiness prediction Optuna hyperparameter study with 1000
trials using a Random Forest classifier is presented in Figure 4.11 and Figure 4.12.
The model with best performance across all drivers, with an average MSE of 1.0532
during the Optuna study, had the following parameter setup (where sequence length
is the sequence duration):

’sequence length’: 180, ’n_estimators’: 630, ’max_depth’: 23, ’min_samples_split’:
7, ’min_samples_leaf’: 2, ’max_features’: ’sqrt’, ’bootstrap’: False.

Note that the low MSE is partly affected by the randomness of balanced random
sampling performed to obtain an equal distribution of targets in the training set
for each LOOCV split, as in this case, each of the 1000 trials was only run once.
Recall that the other methods repeated the evaluation 10 times to compute an
average and reduce the effect of the balanced sampling of the training data. A better
approximation of the true average MSE for Method D is presented in Figure 4.10
which is equal to 1.25. The results are presented as boxplots to illustrate the variance
of the ten different runs performed to reduce the impact of the random balanced
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Figure 4.11: Parallel coordinate plot of 1000 trials of Random Forest classifiers.
The objective value on the vertical axis to the left is the MSE. One line represents
one trial.

sampling. Note that the average MSE for Method D is larger than for Method B
but smaller than for Method C. Also, note that the worst performance is obtained
when validating on HPG491 and HPG494.

From Figure 4.11 and Figure 4.12, observe that trials using longer sequence durations
in general obtained a lower average MSE. As previously mentioned, TPE sampling
chooses promising hyperparameter combinations depending on the result of previous
trials, which is also why the Optuna study ran more trials with longer sequence
durations. The best trials seem to be the ones with a sequence duration of 180
seconds.

The result of the model with the smallest MSE is presented as a confusion matrix in
Figure 4.13 with a corresponding classification report in Table 4.5. From the confu-
sion matrix it is clear that most observations are within a margin of ±1 sleepiness
levels with some exceptions.

Finally, the confusion matrices for each driver can be observed in Figure 4.14. Fo-
cusing on driver HPG494, one can see that the classifier seems to classify the median
ORS level. On the other hand, for drivers HPG485, HPG487, HPG488, HPG489,
HPG492, and HPG493, the model is moderately accurate within a tolerance of ap-
proximately ±1 ORS levels. Recall that with an average MSE of 1.0532, this is
expected.
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Figure 4.12: Slice plot for the from the Optuna study for the Random Forest
classifier with the goal of minimizing the MSE for ORS sleepiness prediction.

Figure 4.13: Confusion matrices (normalized and non-normalized) of the perfor-
mance of the best (in terms of lowest MSE) Random Forest classifier found in the
Optuna optimization study.
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Table 4.5: ORS sleepiness classification report for the best Random Forest classifier
showing the value per class and the weighted average of the precision, recall, F1-
score, and the support for each ORS level.

ORS Sleepiness Level Precision Recall F1-Score Support
0 0.49 0.47 0.48 300
1 0.36 0.33 0.35 336
2 0.38 0.38 0.38 408
3 0.44 0.58 0.50 408
4 0.00 0.00 0.00 126

weighted average 0.384 0.410 0.394 -

Figure 4.14: Confusion matrices for all drivers based on the best Random Forest
classifier.

67



4. Results

4.2.1.5 Feature Importance Results

Using the best hyperparameter setup from Method D, another LOOCV procedure
was performed to evaluate the average feature importance of all eight fits. The
result of the feature importance test with the Random Forest sleepiness classifier is
presented in Figure 4.15. Note that this is a LOOCV test with all drivers. The top
ten handcrafted eye blink features include:

1. The variance and average eyes opening and closing duration,
(var_eyes_opening_duration, avg_eyes_closing_duration,
var_eyes_closing_duration, avg_eyes_opening_duration).

2. The percentage of eyelid closure over time, where the eyes are partially closed
(perclos).

3. The duration for which the eyes are fully closed (eyes_closed_duration).

4. The duration for which the eyes are partially closed (eyes_half_closed_duration).

5. The percentage of eyelid closure over time, where the eyes are partially closed
(perclos_half_closed).

6. The longest duration of any eye closure in the sequence (max_blink_duration).

7. The number of blinks in the sequence, where the eyes are fully closed at least
once (normal_blink_count).

For exact definitions, refer to Section 2.1.1.2. Note that the features perclos and
eyes_closed_duration as well as perclos_half_closed and eyes_half_closed_duration
are 100% correlated. Therefore, it would have been preferable to exclude one of each
pair in the study.
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Figure 4.15: Feature importance results from the best trial with the Random
Forest classifier.

4.2.1.6 Generalization Results

The effect of adding or removing training drivers (generalization ability) is measured
based on parameter setup S5, the same setup used in Method C. Recall that this
setup was chosen based on the smallest setup loss obtained in Method A, for which
the results can be seen in Table 4.4.

The results are presented in Figure 4.16. The graph shows how the average MSE
decreases as the number of drivers in the training set increases. The lowest average
MSE is achieved from the LOOCV with seven drivers in the training set and one
driver in the test set. The worst average MSE is achieved from the L70CV (Leave-7-
Out Cross-Validation) with one training driver and seven test drivers. It is important
to keep in mind that the size of the test set decreases as the number of training
drivers increases. In summary, this figure indicates that having more drivers in the
training set increases the general ORS prediction performance.
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Figure 4.16: Average ORS prediction MSE per number of training drivers. The
average MSE is the average over all possible LXOCV combinations where X indicates
the number of test drivers (eight minus the number of training drivers).
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4.2.2 Sleepiness From Temporal Features Results
The long-drawn training times required for this approach made it impossible to
conduct the experiment like in the sleepiness from handcrafted features approach
presented in Section 3.4.2. Instead, the objective was to determine whether the
approach showed promising initial results or not. This is described in further detail
in Section 3.4.3.

Recall that an optimization study using Optuna was conducted with one trial for
each of the 16 different hyperparameter combinations. Each trial used a LOOCV
procedure across all eight drivers in order to calculate an average MSE.

Unfortunately, none of the trials obtained a test performance close to what would be
deemed acceptable in a real-world application. In fact, no parameter setup showed
clear indications of outperforming any other. The model predicted quite randomly
for all trials, but only when it was presented with unseen drivers. Judging by the
results, it seems as the model quite accurately manages to learn how to predict the
sleepiness of drivers it has previously seen. Unfortunately, such a model is unusable
for actual real-world implementation as it would require annotated data for every
new Volvo Cars end customer. However, it remains a crucial step towards obtaining
a generalized model.

Nevertheless, the aforementioned result can be observed by inspection of the curves
in Figure 4.17 and Figure 4.20. The former figure illustrates a trial with a sequence
duration of 30 seconds, and the latter a trial with a sequence duration of 120 sec-
onds. Each line corresponds to one LOOCV split and LSTM training process where
one driver (indicated by legend color and name) was held out for testing and the
other drivers were used to train the model. The filled lines show the validation MSE
obtained on the validation set (25% of the training data) per epoch and split. Each
model was evaluated based on the cross-entropy loss on the validation set. Conse-
quently, the MSE validation curves are not strictly decreasing, since when a model
finishes an epoch, it might obtain a lower cross-entropy validation loss, even if the
validation MSE increases. The dotted colored lines point to the test score obtained
on the specific held-out driver for the respective splits once training was finished.
Also, note that each LSTM training procedure was terminated at different points
since early stopping with a patience of five trials was utilized. Since the validation
set was built from 25% of mixed training data in each split, it included the same
drivers as in the training set.

The validation MSE curves are steadily decreasing down to an average slightly larger
than one. The decreasing validation MSE indicates that the model learns to classify
the sleepiness level when presented with new sequences from previously seen drivers,
with an error slightly larger than±1 targets. The error should be observed in relation
to the fact that there are five different ORS levels.

However, once the model is tested on new drivers, it fails miserably, indicated by
the large jumps in the graphs. Inspection of the confusion matrices yields the same
conclusion.
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Figure 4.17: Valdiation and test MSE for an LSTM model with sequence duration
30 seconds, 1 LSTM layer with 64 in hidden dimension size and a learning rate
of 0.001. The filled lines correspond to validation MSE for the best so-far model
instance according to the cross-entropy loss, which is connected with a dotted line
to the corresponding test MSE for The corresponding confusion matrix for total
predictions is presented in Figure 4.18, and confusion matrices per driver are found
in Figure 4.19.

Figure 4.18: Confusion matrix of total test predictions for the evaluation presented
in Figure 4.17.
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Figure 4.19: Confusion matrices of test predictions per driver for the evaluation
presented in Figure 4.17.
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Figure 4.20: Valdiation and test MSE for an LSTM model with sequence duration
120 seconds, 1 LSTM layer with 64 in hidden dimension size and a learning rate
of 0.001. The filled lines correspond to validation MSE for the best so-far model
instance according to the cross-entropy loss, which is connected with a dotted line
to the corresponding test MSE for each held-out driver in every CV split. The
corresponding confusion matrix for total predictions is presented in Figure 4.21,
and confusion matrices per driver are found in Figure 4.22.

Figure 4.21: Confusion matrix of total test predictions for the evaluation presented
in Figure 4.20.
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Figure 4.22: Confusion matrices of test predictions per driver for the evaluation
presented in Figure 4.20.

75



4. Results

4.2.3 Summary of Most Important Sleepiness Prediction
Results

Table 4.6 presents a summary of the most important sleepiness prediction results
in terms of average MSE across the test drivers in a LOOCV test. Note that both
LSTM models perform worse than the baseline model that predicts a constant ORS
level, 2, on the scale from 0 - 4. The MSE from the handcrafted eye blink features
methods are lower than the constant median prediction.

Table 4.6: Summary of the most important sleepiness prediction results in terms
of average MSE across the test drivers in a LOOCV test.

Method Average MSE
Baseline Model

Constant Prediction, ORS = 2 1.72

Baseline Model
Random (Uniform) Prediction 3.70

Handcrafted Eye Blink Features - Method B 1.21
Handcrafted Eye Blink Features - Method C 1.32
Handcrafted Eye Blink Features - Method D 1.25

Temporal Features - LSTM 30 s 4.00
Temporal Features - LSTM 120 s 3.54
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This chapter presents the discussion based on the eye state and sleepiness prediction
results. The inter-annotator agreement discussion is presented in Section 5.1.1,
Eye State Classification Discussion. Furthermore, Section 5.2, Sleepiness Prediction
Discussion, is split into two parts: sleepiness from handcrafted eye blink features and
sleepiness from temporal features.

5.1 Eye State Classification Discussion
This section starts with the inter-annotator agreement results presenting how the
annotators differ in their annotation technique. Next, the optimization study discus-
sion is presented. Finally, the eye state classification results with decreasing percent-
ages of the data are discussed to learn how much annotated data is required.

5.1.1 Inter-Annotator Agreement Discussion
From the inter-annotator agreement in Section 4.1.1, it is clear that Casper and
Anton annotate slightly different, especially on the partially closed eye states. Since
the inter-annotated data is not balanced, no general conclusions can be drawn from
the metrics. Nevertheless, it is important to acknowledge that manually annotating
the eye state is open for different interpretations of the annotation scheme by differ-
ent individuals. More robust and clear annotation schemes are required to achieve
more consistent annotations.

Additionally, the performance of the eye state classification model is highly depen-
dent on the annotations. If the model does not achieve 100 % accuracy, a significant
part of the errors might be caused by individual variations when performing the
annotations.

5.1.2 Optimization Study Discussion
Based on the argument in the previous discussion section, Section 5.1.1, the best
eye state classification model might just be overfitting to the annotations. The best
model got an average weighted F1-score of 95.94 %. In contrast, the simplified model
got an average weighted F1-score of 94.96 %. Since the decrease in performance is
small, the simpler model was selected over the best but more complex model. It is
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important to keep in mind that this performance is the average across all drivers
from the LOOCV procedure optimized to maximize the average weighted F1-score.
A new eye state classification model is fitted to the data for each cross-validation
split. After having selected the hyperparameters, the features, and the moving
window size W = 3, one must keep in mind that the test performance of the eye
state classification model is unknown. There is a compromise between utilizing the
available data for training the model and testing the model on the data. As a trade-
off, the final model was selected based on the hyperparameters found in the Optuna
optimization study and then trained on all data. To sanity-check its performance,
a train/test-split of proportions 7:1 across all drivers was done which is presented
in Table 4.3. The performance increased slightly as expected since the test driver
is now included in the training set. By knowing this, it is reasonable to assume
that fitting the model with all available data results in the best possible model
overall.

Furthermore, it is also important to study the misclassifications in the confusion
matrices in Figure 4.5. There are very few misclassifications of 2s as 0s (0.48 %) and
0s as 2s (0.35 %). This is important because it can be difficult, even for a human
annotator, to determine the difference between partially closed (1) and closed (2)
or between open (0) and partially closed (1). Especially if the eyes are on the
borderline between the two states. Moreover, it is recommended to further study
the model systematically in real-time across different drivers to get a better sense of
its performance and at what occasions it misclassifies the eye states. For example,
sometimes, the model might incorrectly classify two consecutive eye states as non-
open. However, the blink rules described in Table 2.2 requires a blink to have at
least three consecutive blink rules to be considered as a valid blink. Therefore,
the model is robust against single occurrences of false instances of partially closed
(1) and closed (2) eye states. On the other hand, the model is not robust against
false instances of open eye state during a blink. For example, for the eye state series
011220221100, where 0 is a false instance of open eye state, this would be considered
as two separate blinks by the model.

The project aimed to provide an answer to the question "Is it possible to determine
the state of the driver’s eyes using an IR video camera facing the driver?". By
summarizing the discussion above, it is possible up to an average weighted F1-score
of about 95 %. However, the performance depends heavily on the dataset and the
inter-annotator agreement. Moreover, some errors are more significant than others.
For example, classifying open eyes as closed is worse than classifying open eyes as
partially closed. Although the loss function used does not consider this, the results
show that the model seemed to handle these errors well. Furthermore, suppose the
eye state model is used to classify blinks. In that case, it is possible to make it
robust against single incorrect classifications with rules like: a blink must contain
at least three consecutive frames of non-open eye state.

Another question in Section 1.5, Specification of Issue Under Investigation, is to
research the eye state classification model’s generalization ability and determine the
amount of data required. Figure 4.6 and Figure 4.7 are helpful for this discussion. In
Figure 4.6, the within-subject classifiers (trained and tested on the same driver) are
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slightly better on average than the model from the LOOCV optimization (train on
all except one driver which is the test subject) as expected. However, the difference
is quite small. Hence, one could consider the model to have a good generalization
ability.

On the other hand, these LOOCV F1-scores do not reflect the actual test scores since
the model is hyperparameter tuned in the LOOCV procedure. To get a fair estimate
of its test performance, one could do LOOCV on all except a few drivers and test
the unbiased performance on these drivers. However, the test performance would
be heavily influenced by the choice of drivers in the test set. A possible reason why
the generalization ability is good could be that the features from OpenFace 2.0 used
to classify the eye states (blink intensity, gaze direction, and the facial landmarks
used to calculate EAR) are person normalized. OpenFace 2.0 is already trained on
a wide variety of faces and is a generalized system.

Regarding the data required, Figure 4.7 shows that the performance drops when
less data is used. It is not easy to judge what performance is enough. How-
ever, the performance drop from only using 40 % of the data from each driver
is small. The driver with the least amount of annotated data is HPG489. As-
suming that 40 % of the data is enough, this would require ∼70 moving win-
dows ending with a closed eye state (2), ∼189 moving windows ending with a
partially closed eye state (1), and ∼ 2260 moving windows ending with an open
eye state (0). These calculations are based on the number of annotated images
and the eye state percentages of 0s, 1s, and 2s in Table 3.1. As an example,
6300 images · 0.40 · 0.028 moving windows with closed eyes (2) / images ≈ 70.56
moving windows with closed eyes (2). Nevertheless, it is important to note that
these moving windows should be from as many different blinks as possible. If the
driver microsleeps for 100 frames and all moving windows are collected from this
microsleep, the results will probably not be satisfactory.

To further improve and validate the eye state classification model, it could be helpful
to add more drivers to the dataset. Moreover, it could be helpful to benchmark the
performance against another dataset, for example, the ability to detect blinks.

5.2 Sleepiness Prediction Discussion
After evaluating the results, it seems as the dataset is difficult to handle regardless
of method of choice. Multiple issues have been encountered. First of all, the ORS
level is only updated every five minutes. When evaluating sequences shorter than
five minutes, one must assume that the actual ORS level is constant within the
five-minute sequences. Moreover, obtaining an unbiased and general estimation
of performance (ability to classify sleepiness of an arbitrary/average person) of a
particular model is something we claim to be impossible for a sample of eight drivers
for two main reasons:

I. A sample size of eight persons is unlikely to approximate the general population
well.
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II. Any fitted model can at most be trained and tuned with seven drivers and
be tested on the remaining one if a fully unbiased score should be obtained.
Depending on which driver is the test driver, performance will be influenced
by the personal characteristics of that driver.

Any results obtained can only be seen as estimations of performance for this partic-
ular group of eight drivers, which one could hope might indicate performance in the
general case. Although, it is not possible to say anything for sure regarding a model’s
performance for a general person without adding more drivers to the dataset.

5.2.1 Sleepiness from Handcrafted Eye Blink Features Dis-
cussion

In the Section 1.5, Specific Research Questions, the main research question to answer
is: "Can a machine learning system learn to classify the driver’s sleepiness level from
videos using an IR video camera facing the driver?". To answer, let us consider that
the sleepiness level annotations are subjective. Moreover, let us assume that a
tolerance of ±1 sleepiness levels is accepted due to the subjectivity of the labels.
Using the MSE metric, a system that is able to achieve an average MSE ≤ 1 could
therefore be considered a successful system. Although, the rate of predictions falling
outside the tolerance boundary would also require analysis, for example, if one wishes
to minimize false positives of sleepy behavior.

From studying the summary of the sleepiness prediction results in Table 4.6 or the
generalization results in Figure 4.16, it is clear that the average MSE is above 1
when using 1 - 7 training drivers. However, by studying Figure 4.10 presenting
the test results of Method C, observe that the variance between different drivers
is large. For drivers HPG485, HPG487, HPG489, and HPG493, the MSE is less
than 1. Because of the limited data set, we cannot confidently say anything from
this result. Nevertheless, the results indicate that it might be possible to learn to
classify sleepiness from Handcrafted Eye Blink Features on some drivers. On the
other hand, let us study the confusion matrices per driver in Figure 4.14. These
results are overestimated validation results from Method D since the model is tuned
on test data. Still, the confusion matrix from, for example, driver HPG494 (interest-
ingly, the only woman in the dataset) does not indicate that the model has learned
anything useful except predicting the median ORS level.

Moreover, assuming an ensemble of eight Random Forest classifiers can be used,
an approximate MSE of 1.21 ORS levels was obtained. This score corresponds to
Method B, and is calculated based on the average performance achieved by the
individual classifiers in such an ensemble. However, this conclusion disregards the
fact that consensus among the eight classifiers must somehow be reached, and the
average score does not consider this. For example, one could use the majority vote,
but as there are eight classifiers there might not be a majority vote for any class.
Adding an additional driver (and additional classifier to the ensemble) is probably
the best way of resolving this. Otherwise, one could also be removed. Nonetheless,
it is unclear whether the average score reflects the real performance that would be
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achieved by an ensemble classifier for new drivers, so caution should be taken when
considering this method.

Another research question to answer from Section 1.5, Specific Research QUestions,
is: "What is a suitable length (in seconds) of a sequence of images required to clas-
sify the driver’s level of sleepiness?". From Method A, the eight best performing
Random Forest classifier hyperparameter setups tuned on all except one driver are
presented in Table 4.4. According to these results, the hyperparameter setup that
achieved the highest performance used a sequence duration of 120 seconds. All other
hyperparameter setups used a sequence duration of 180 seconds. Similar observa-
tions can be seen in Figure 4.12 from Method D. By studying the sequence duration
in the slice plot, it is clear that most trials with low average MSE use a sequence
duration of 180 seconds. 120 seconds seems to be the second-best choice, followed
by 240 seconds, 60 seconds, and finally 30 seconds.

It is expected that longer sequences lead to better results using handcrafted eye
blink features since these features are more robust during longer sequences. In con-
trast, the 240-second sequences seem to fall behind 180- and 120-second sequences
in average model performances. A possible explanation for this could be the large
percentage of repeated data. In Table 3.6, one can see that by using 240 second
sequences, 99.17 % of the data is repeated between two consecutive training in-
stances.

For shorter sequences to work better, we hypothesize that the ORS update interval
must be more frequent than five minutes. There is no guarantee that the driver is
experiencing the specified sleepiness level at any given part within the complete five-
minute sequence. However, the fact that the eye blink features used in this approach
become less robust with shorter sequence durations also points out that an entirely
different method might be preferable if one wishes to use very short sequences.

Another important research question from Section 1.5, Specific Research Questions
is "How well does the sleepiness prediction models trained on video data generalize
to other persons?". Figure 4.16 illustrates the generalization ability of a Random
Forest classifier with tuned hyperparameters. The performance increases with more
drivers in the training set. The graph also indicates that a lower MSE could be
obtained by adding more drivers to the dataset. Although this assumption might
be correct, note that the evaluated model’s hyperparameters are tuned based on
having six drivers in the training set and one driver in the test set, see Method A.
Hence, the model might be biased to work better than expected when six drivers
are in the training set. However, it is clear that using seven drivers in the training
set still results in a better performance.

Unfortunately, even with these results, it is difficult to answer the research question
"What is the estimated amount and variation of data required in order to build
generalized versions of the sleepiness prediction models?" from Section 1.5, Specific
Research Questions. Although the trend indicates that adding more drivers results
in better performance, it is impossible to extrapolate this result. Therefore, the
unfortunate conclusion is that more data is required to determine the estimated
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amount and variation of data required for a generalized model.

5.2.2 Sleepiness From Temporal Features Discussion
As presented in Section 4.2.2, the LSTM model fails the sleepiness prediction task
when presented with new unseen drivers. However, it appears to be learning to
predict the sleepiness level of previously seen drivers, as the models seems to be
overfitting towards the training and validation set drivers. The overfitting indicates
that a LSTM-based model, given the time-series features suggested in this report
(see Section 3.4.3), might be able to learn to classify sleepiness on unseen drivers.
However, without a large amount of computational resources capable of evaluating
many different model setups, it seems unlikely that such a combination could be
found. Especially since the experiment also needs to be repeated as specified in
Section 3.4.1 to obtain a fair, unbiased estimate. One could also try re-introducing
methods such as dropout regularization to the network to prevent overfitting. How-
ever, this will further increase the hyperparameter search space as suitable values
for dropout probabilities are unknown.

Previously, it was mentioned that LSTMs in practice often fail to retain memory
over sequences larger than 1̃00 time-steps and that the shortest sequences evalu-
ated in this project are compromised of 900 discrete time steps. Perhaps, this is
another problem that results in the sub-par test performance observed; maybe the
sequences are too long for the LSTM to handle. However, the poor results cannot
be fully explained this way. The model managed to overfit on the previously seen
drivers in the validation set, which implies that memory might be contained over
the sequence.

A potential solution regarding this uncertainty is downsampling longer time series
into shorter ones. For example, the 900 steps long sequence, with one value for each
image and feature, could be downsampled into a time series of 100 discrete values
per feature by averaging nine sequential values together. However, such an approach
could also cause aliasing and loss of important information.

Nevertheless, assuming that accurate target labels could be provided for shorter se-
quences, it would be highly beneficial to find a model with lower sequence duration
requirements for classifying sleepiness. The handcrafted eye blink features presented
in Section 3.4.2 are notably non-invariant to sequence duration changes. The best
models found using these features require sequences of 180 seconds, meaning the
start-up time is three minutes. It can be speculated that the raw time-series data
from OpenFace 2.0 contains more sleepiness information for shorter sequence dura-
tions compared to the handcrafted eye blink features. Thus, a model using the raw
time-series data as input could allow for shorter sequence durations and start-up
times.

We found no evidence that using longer sequence durations for the LSTM would
improve performance compared to using 30-second sequences. However, many un-
known variables might affect these results, such as the impact on target label dis-
tributions when reducing sequence durations. In order to obtain conclusive results
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with eliminated bias when it comes to analyzing the sequence duration impact,
the frequency of ORS level updates needs to be increased while still providing a
high-quality assessment of the actual sleepiness level of the driver.

Another point in favor of the sleepiness from temporal features approach is that
an eye state model such as the one presented in Section 3.3 might not be strictly
necessary. However, the results from the sleepiness from handcrafted eye blink fea-
tures approach indicate that the eye state contains meaningful information about
the sleepiness level. Therefore, it might be of interest to include the predicted eye
state vector as an input to the LSTM model.

There are many different variants to the sleepiness from temporal features approach
that could be explored, given enough computing resources. For example, it could
be of interest to switch the LSTM RNN for a Temporal Convolutional Network
(TCN) architecture, which have been shown to outperform LSTM models in many
tasks. One could also imagine an end-to-end approach utilizing a deep 3D CNN for
classifying sleepiness directly on the images, rather than a pipeline extracting spatial
input features. However, this would certainly require more data and computational
resources.

5.2.3 Feature Importance Discussion
In Section 1.5, Specific Research Questions, two research questions answer are: "How
can the information about the state of the driver’s eyes be used to determine the
driver’s sleepiness level?" and "What are the most important visual facial movement
actions when it comes to detecting sleepiness using a machine learning model, in
regards to the dataset at hand?".

Previous research has suggested PERCLOS and features related to the eyes opening
and closing phase to be indicative of the sleepiness level, see Section 2.1.1. Hence,
it is interesting to observe that our feature importance evaluation results in Sec-
tion 4.2.1.5 also ranks these features high. The top four most important features
are related to the eyes opening and closing duration. The next four most important
features are related to PERCLOS.

As mentioned, features based on FACS have previously been successfully used for
sleepiness prediction tasks in other settings. Unfortunately, the results from the
sleepiness from temporal features approach in Section 4.2.2 indicate that these fea-
tures might not be good predictors to use for classifying sleepiness on unseen drivers
in this case. However, these types of features should not be rejected as they cannot
be determined for sure. There are many other possible explanations as to why the
LSTM model failed to produce any accurate results for unseen drivers.
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The project’s main goal was to construct and evaluate a system for classifying a
driver’s sleepiness level based on the available IR video dataset. In order to achieve
this goal, a sub-goal was to build and evaluate an eye state classification model for
determining the driver’s eye state (open, partially closed, or closed) in the most
recent image captured by the camera. Moreover, it was of interest to estimate the
required length of a video sequence for determining the sleepiness level. Additionally,
since the dataset was limited to eight drivers only, it was necessary to research
how the sleepiness prediction model generalizes to other persons. Relevant to this,
estimating the amount and variation of additional data required for an accurate
generalized sleepiness prediction system was also of interest.

The constructed Random Forest eye state classifier achieved an average weighted F1-
score of 94.96% averaged over a LOOCV study. This performance is partly limited
by inter-annotator disagreement, and it is not expected that the score could be
considerably improved. However, even though the obtained F1-score is comparable
to the performance of a human annotator, the model might classify the wrong label
in obvious cases. Nonetheless, the eye state classifier was considered good enough
for extracting handcrafted eye blink features for usage in the sleepiness prediction
task.

Using the handcrafted eye blink features extracted from 120-second sequences, a
single Random Forest model trained on seven drivers seems capable of learning to
predict sleepiness on the ORS scale with an average MSE of ∼1.32. However, the
performance per test driver differs a lot, from an MSE of ∼0.25 on HPG489 to
∼3.2 on HPG488, and is highly affected by inter-individual variability in sleepiness
signs and behavior. Nevertheless, it was found that important eye blink features for
classifying sleepiness are mainly related to the eye’s opening and closing duration
and the duration of closed and partially closed eyes during a sequence.

Assuming an ensemble of eight Random Forest classifiers can be used instead, which
are all trained on seven drivers, an approximate MSE of 1.21 ORS targets was
obtained based on the average performance achieved by the individual classifiers in
the ensemble. However, it is unknown what the actual performance would be, as it
is expected to differ depending on the chosen method for reaching consensus among
the classifiers.

An LSTM fed with time-series features of facial movements and micro-expressions
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obtained from OpenFace 2.0 seemed capable of overfitting and predicting sleepiness
on previously seen drivers. However, it failed to learn any generalized patterns as it
could not predict the sleepiness of unseen drivers. It could be interesting to replace
the LSTM with other deep neural networks such as a TCN or 3D CNN. However, a
larger dataset containing more drivers is preferable to avoid the necessity of nested
cross-validation when evaluating algorithms with heavy computational requirements
for training.

In order to classify ORS with shorter sequences than 120 seconds, which might be
beneficial for the LSTM model, it is expected that a higher frequency of sleepiness
level updates is required during data collection. Using sequence durations shorter
than 300 seconds (the ORS update interval in this dataset) reduces the performance
as label quality likely decreases. Therefore, the results obtained in this project are
likely biased positively toward the longer sequence durations.

Moreover, estimating the number of training drivers required to build a generalized
model is impossible, although the results indicate that more drivers in the training
data lead to better sleepiness prediction performance. Therefore, it is also essen-
tial that more data is collected using additional drivers. Provided enough drivers
are added, this action will also eliminate the need for nested leave-one-out cross-
validation, consequently simplifying the model selection process.

Our work is based on previous research on sleepiness prediction using video data,
mainly in simulated driving environments. To summarize, the results from this
work indicate that sleepiness classification from video data could also be possible
in a naturalistic driving environment. Therefore, this sleepiness prediction system’s
continued development could help Volvo Cars in its safety vision; that no one should
be killed or seriously injured in a new Volvo. However, adding more drivers to the
dataset is of utmost importance to obtain a functional system.
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