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Abstract
In the past decade, deep learning algorithms have gained increased popularity due
to their ability to detect and represent abstract features in complex data sets. One
of the most prominent deep learning algorithms is the deep neural network, having
managed to outperform many state-of-the-art machine learning techniques. While
its success can largely be attributes to its depth, this feature also causes it to be
difficult to train. One of the main obstacles is the vanishing gradient problem; a
phenomenon causing updates to the network to exponentially vanish with depth.
The problem is severe enough to have been referred to as a fundamental problem
of deep learning [18]. However, simulations reveal that DNNs are able to escape
the vanishing gradient problem after having been trained for some time, but the
dynamics of this escape are still not understood.

In this work, the underlying dynamics of the escape from the vanishing gradient
problem in deep neural networks is explored by means of dynamical systems theory.
In particular, the concept of Lyapunov exponents is used to analyse how signals
propagating through the network evolve, and whether this has a connection to the
vanishing gradient problem. The study is based on results by [16] and [19]. Further-
more, a method to circumvent the vanishing gradient problem, developed in [14] for
very wide neural networks, is explored for narrow networks.

The results of this thesis suggest the escape from the vanishing gradient problem
is unrelated to what data set the deep neural network is trained on, but is rather
a consequence of the training algorithm. Furthermore, it is found that the escape
is characterised by the maximal Lyapunov exponent of the network growing from a
negative value to a value close to 0. To further explore the underlying dynamics, it
is suggested to study the training algorithms in the absence of data. The method of
avoiding the vanishing gradient problem, presented by [14], is found to work poorly
for narrow neural networks.

Keywords: Vanishing gradient, dynamical system, Lyapunov exponent, dynamical
isometry
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1
Introduction

1.1 Background

In the past decade, deep learning has gained an increasing popularity in science and
engineering due to the upswing in available computer power in recent years (e.g.
cheap and powerful GPUs) [6][13][21], and its ability to find and represent highly
abstract features in complex data sets, unaided by pre-engineered feature extrac-
tion methods necessary for standard machine-learning algorithms [11][6][10][2][21].
Furthermore, deep learning methods have proven to be good at generalisation; the
ability for a statistical model to perform well when presented with data not used
during training [22]. Due to the ability to handle complex data sets, deep learning
methods have found applications in a vast number of fields, including speech recog-
nition, object detection, drug discovery, genomics, sensors, stock market prediction,
health care, and remote sensing [23][4][13][17][10]. The backbone of many deep
learning methods is the artificial neural network (ANN); a computational structure
inspired by biological neuronal networks, consisting of a network of interconnected
“neurons” (i.e. simple computational units). By adjusting the connections between
the neurons, and altering each neuron’s intrinsic bias, an artificial neural network
can be trained to complete complex tasks by giving desired output responses to
some given inputs. These inputs could, for example, be images of animals, and the
output would identify which animal is being portrayed. While a large variety of
network architectures exist, by far the most common type is the fully connected,
feed-forward architecture. This is because it is present in other architectures, such
as convolutional neural networks (CNN) and recurrent neural networks (RNN). The
fully connected, feed-forward network consists of a number of layers of neurons, each
layer’s neurons being connected with the consecutive layer’s neurons. If such a net-
work contains more than one intermediate (hidden) layer between the input layer
and output layer, it is referred to as a deep neural network (DNN). The terminology
reflects the network’s ability to identify more abstract (deep) features in a data set
than their shallow counterpart.

A problem with DNNs that has been recognised ever since the proposal of such
computational structures, is that when more layers are added, the more difficult
training becomes [10][11]. The standard procedure of training a neural network is
to define an error function which reaches its global minimum once each input yields
the correct output. Hence, minimising the error function is tantamount to training
the network. Most commonly, a gradient descent algorithm is employed for this
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1. Introduction

task, as it is efficient and computationally cheap. For each training step, the pa-
rameters in each layer is updated such that the point mapped by the error function
in parameter space moves in the direction of steepest descent. The updates begin
in the final layer and propagate backwards. However, for every layer, the updates
become exponentially smaller. This phenomenon is referred to as the vanishing gra-
dient problem (VGP), and it has been referred to as a fundamental problem in deep
learning [18].

The success of deep machine learning lies in that DNNs may escape the VGP phase
after some training steps. The dynamics of this escape are not fully understood and
are being extensively researched [7][16][14][19][9]. By understanding the dynamics,
algorithms may be designed to speed up the escape, making training DNNs faster.
Training a network through gradient descent amounts to calculating the Jacobian of
the network’s output with respect to each layer. An approach to studying the VGP
and its dynamics is, therefore, to focus on the properties of the Jacobian. In this
work, numerical simulations of DNNs are performed to understand the dynamics of
how DNNs escape the VGP phase, by means of dynamical systems theory.

1.2 Purpose
To investigate, through numerical simulations, the dynamics of how deep neural
networks may escape the vanishing gradient problem, by means of dynamical systems
theory.

1.3 Scope
The DNNs considered in this work are randomly initialised and are restricted to
the fully connected, feed-forward architecture. Furthermore, the hidden layers will
contain the same number of neurons to make the dynamics of data vectors prop-
agating through the network easier to interpret. The thesis will be restricted to
treating the vanishing gradient problem, and will not consider its counterpart, the
exploding gradient problem, where the updates become exponentially larger per
layer. Additionally, only the tanh activation function is considered.

1.4 Layout
Here, the structure of the thesis is presented. The first section will cover the theory
of DNNs, the vanishing gradient problem, and dynamical systems theory. Then,
results from previous works which this thesis’s result builds on is summarised. This
is followed by a method section, where the experiments conducted are detailed,
where the concept of normalised average directionality is introduced. The results
are then presented together with a toy model derived from the updating rules for
training a DNN, which displays dynamics similar to the escape mechanism. This is
followed by a discussion and a conclusion, where further studies are suggested.
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2
Theory

2.1 Deep neural networks

An artificial neural network (ANN) is a computational structure inspired by biologi-
cal neuronal networks. It consists of a collection of connected, simple computational
units called neurons, after their biological counterparts. The neurons take inputs
from surrounding neurons and fires off a signal if the accumulated input exceeds an
intrinsic threshold. Among the most common realisations of ANNs is the fully con-
nected, feedforward architecture, which will be the only architecture considered in
this thesis. Here, the neurons are arranged in consecutive layers, where each neuron
in layer l is connected to the neurons in layer l+ 1 (see Figure 2.1). The number of
neurons in layer l is denoted as Nl. The strength of the connections is determined
by real numbers called weights. A signal enters the network through the input layer
and propagates forward through the hidden layers until it reaches the output layer.
A network consisting of more than one hidden layer is referred to as a deep neural
network (DNN). Mathematically, a DNN is a highly nonlinear function which takes
an N0-dimensional input vector x0 and feeds it through L > 1 layers following the
dynamics

hl = Wlxl−1 + bl, xl = g(hl), l = 1, 2 . . . , L, (2.1)

to the final NL-dimensional output layer L. Here, Wl is an Nl×Nl−1 weight matrix,
where the entryW l

ij ∈ R models the strength of the connection from the j:th neuron
in layer l− 1 to the i:th neuron in layer l. bl is an Nl-dimensional bias vector which

Figure 2.1: Schematic of a fully connected, feedforward neural network.
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Figure 2.2: Activation functions used in ANNs.

biases the input to the neuron to be either positive or negative. From Equation 2.1,
each neuron can be seen as a linear regressor, and from this perspective, the Wl

is the slope and bl is the intercept. Finally, g(·) is called the activation function
and models the response of a neuron given the inputs from the neurons in the pre-
ceding layer. The activation function of a DNN is crucially nonlinear, as setting it
to a linear function would effectively reduce its depth to unity. This can be shown
using the properties of linearity on Equation 2.1 (see Appendix A). The choice of
activation function is important for the learning of a DNN, and a lot of research has
been dedicated to the design of these [8][20][1]. Activation functions that have fre-
quently been employed are the hyperbolic tangent (tanh) and the rectified linear unit
(ReLU), see Figure 2.2. The width of a layer is the number of neurons it contains,
whereas the depth of a neural network is its number of computational layers. As
no computation occurs in the input layer, it is excluded from the definition of depth.

When initialising a DNN, the weight matrices and biases must be chosen. This
is often done randomly, drawing weights and biases from a normal distribution with
a mean of 0 and a variance σ2

W/Nl and σ2
b , respectively. The division by Nl is in-

troduced as a way to normalise the input from the previous layer, which is a sum of
Nl numbers multiplied by Nl random weights. Hence, the division ensures the input
has a variance of σ2

W . The initialisation of weights and biases can have a major
impact on the training performance of a DNN and, as will be explained further, is
connected to the VGP.

2.2 Supervised learning and gradient descent
A neural network can be trained to complete a task by using training examples
where a particular input has been assigned a desired output. An example of such
supervised learning is the recognition of written digits. Sending an image of a writ-
ten digit into the network, the desired output is for the network to identify which
digit the image depicts.

When training a neural network, its weights and biases are adjusted until the net-
work can perform a desired task. The most common approach is to introduce an
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2. Theory

error function H which takes the actual output of the network and the desired out-
put, and computes an error based on the average discrepancy between them, such
that its global minimum is reached when the error vanishes. Thus, the network
learns by minimising the energy function with respect to weights and biases. While
the choice of energy function can be important for training a neural network, it is
not directly related to the main issue investigated in this thesis, and the results
presented are expected to be valid for any choice of error function.

The error function is minimised using some minimisation algorithm, where the most
common is the stochastic gradient descent (SGD) algorithm. In this algorithm, the
weights and biases are adjusted such that the point mapped by the error function
in parameter space travels in the direction of greatest descent:

Wl →Wl − η∇l
WH, bl → bl − η∇l

bH. (2.2)

Here, η is the learning rate and determines the step size of the weight and bias
updates. Calculating the gradients for a generic energy function for L > 1 yields

∇l
WH = εL

(
l+1∏
k=L

DkWk

)
Dl ⊗ xl−1, ∇l

bH = εL

(
l+1∏
k=L

DkWk

)
Dl, l < L− 1

(2.3)

where Dl is a diagonal matrix with entries Dl
ij = g′(hli)δij. Furthermore, εL = ∂H

∂xL

will be referred to as the error vector. For l = L, the same equations hold with the
product in the paranetheses removed. The product in parentheses present in both
expressions in Equation 2.3 is equivalent to the Jacobian of the output layer with
respect to the output of layer l, and will be referred to as the input-output Jacobian

Jm,n = ∂xm

∂xn
=

n+1∏
k=m

DkWk, m > n. (2.4)

Clearly, the input-output Jacobian is closely related to the learning dynamics of a
DNN. Additionally, the Jacobian is a linear approximation of how a vector changes
as is passes from layer n to m, and therefore describes how small perturbations to
an input vector grows or shrinks. Finally, multiplying JL,l from the left with ∂H

∂xL

describes how the error vector evolves as it propagates through the network.

2.3 Vanishing gradient problem
The VGP arises in DNNs as a consequence of the depth of the network. As the
error vector propagates backwards through the network, it may shrink exponentially,
causing the gradients in Equation 2.3 to vanish as it approaches the early layers of
the network. To see how a vanishing gradient could occur, consider a unit vector v
measured with the L2-norm and introduce the induced matrix 2-norm,

‖A‖2 ≡ max
‖v‖2=1

‖Av‖2

5



2. Theory

5 10 15 20 25

Epochs

10
0

10
2

|
bl
H

|

Layer 1

Layer 2

Layer 3

Layer 4

Figure 2.3: Training dynamics of a DNN with 4 hidden layers using tanh activation
functions, η = 0.003 and σW = 0.005, trained on the MNIST data set with a batch
size of 10.

It can be shown that this norm is equivalent to the maximal singular value of the
matrix. Hence, the following inequality can be obtained [5]

‖v
l+1∏
k=L

DkWk‖2 ≤ ‖v‖2

l+1∏
k=L

∥∥∥Dk
∥∥∥

2

∥∥∥Wk
∥∥∥

2
=

l+1∏
k=L

σmax
(
Dk
)
σmax

(
Wk

)
where σmax is the maximal singular value of the given matrix. Consider a DNN
employing the sigmoid activation function. As the maximal derivative of the sigmoid
function is 0.25, the maximal singular value obtained from the Dk matrices is 0.25
as well. Furthermore, if the variance of the weight matrices has been normalised,
the probability of its maximal singular value exceeding unity is small. Thus, the
norm of the input vector is expected to decrease exponentially per layer. While
other activation functions, such as tanh or ReLU, has a maximal derivative of 1,
the VGP can still be observed. In Figure 2.3, the effect of the vanishing gradient
can be observed in the first 10 training epochs of training a DNN with a depth of
5, using a tanh activation function. In the figure, the norm of the updating step to
each layer has been plotted. A low weight variance has deliberately been chosen to
showcase the effect of the VGP. Ultimately, the aim of the thesis is not to find a
solution to the problem, but to understand its dynamics.

2.4 Finite time Lyapunov exponents
The dynamics of the forward propagation of an input vector through the network
in Equation 2.1 is naturally interpreted as a dynamical system. Furthermore, the
gradient shown in Equation 2.3 can be interpreted as a dynamical system, where
the error vector εL propagates backwards from the final layer through the dynamics

εl−1 = εlDlWl,

6



2. Theory

starting from the initial state l0 = L. Thus, it makes sense to study the VGP
using the finite time Lyapunov exponents (FTLE); a quantity frequently employed
in dynamical systems theory. Given an initial state vector x and an infinitesimally
perturbed state vector x + δx, the FTLE describes how the perturbation changes
in magnitude as the dynamical system evolves. Assuming the states evolve through
the function f l(x), where the superscript l denotes how many steps the system has
taken, one may write

δxl = f l(x + δx)− f l(x) = df l(x)
dx

δx0 +O(‖δx0‖2)

To put the equation in the context of neural networks, we may take the derivative
in the above equation to be the input-output Jacobian in Equation 2.4. As the
perturbation is infinitesimal, the second order term can be ignored, and the L2-
norm of the perturbation is found to be

‖δxl‖2 =
√
〈Jl,0δx0,Jl,0δx0〉 =

√
〈δx0,JTl,0Jl,0δx0〉.

Here, JTl,0Jl,0 is known as the right Cauchy-Green tensor and describes how a per-
turbation stretches or shrinks as the system evolves. To find the largest change
imposed by the system, one may choose the perturbation δx0 to be the maximal
eigenvector of the tensor. This yields

max ‖δxl‖2 =
√
〈δx0, λmaxδx0〉 =

√
λmax‖δx0‖2.

From this, the maximal FTLE is defined as

Λ = 1
l

ln
√
λmax,

such that the above equation may be rewritten as

max ‖δxl‖2 = eΛl‖δx0‖2.

From this expression, the interpretation of the FTLE becomes clear: a positive
exponent results in an exponential growth of the separation, whereas a negative
exponent causes exponential convergence.

To calculate the FTLE of the DNNs considered in this work, the method of QR
decomposition, as presented in [3], will be employed. Here, the product in Equa-
tion 2.4 is calculated as follows: The first matrix in the product from the right is
QR decomposed,

Q1R1 = W1.

Here, Q1 is an orthogonal matrix, and R1 is an upper triangular matrix. Then, the
second matrix in the product is multiplied with the Q matrix, and the product is
QR decomposed so that the new product forms

Q2R2R1 = D1W1.

7



2. Theory

This procedure continues until the entire product JL−1,1 is formed. The reason the
0:th and L:th layers are not included is because this choice makes J quadratic, which
is easier to interpret. In the end, one obtains

JL−1,1 = QL−1RL−1RL−2 . . .R1.

From [3], it is found that the FTLEs are found from

Λi = 1
L− 1

L−1∑
j=1

log(Rj)ii, i = 1, . . . , N.

2.5 Previous work
The experiments performed in this work build on the works in [16], [14], and [19].
A summary of their results is provided in this section. Common for the articles is
to study DNNs in the limit of N →∞.

2.5.1 Poole et al.
Amean field approximation for the dynamics of a DNN is developed in [16]. Consider
an input vector x0,a and define the normalised square length as

qlaa = 1
Nl

Nl∑
i=1

(hli)2,

where the subscript of qlaa will be explained shortly. It is found that in the limit of
Nl →∞, the normalised square length will develop as

qlaa = σ2
w

∫
Dy g

(√
ql−1
aa y

)2
+ σ2

b , for l = 2, . . . , L (2.5)

where Dy = dy√
2πe
− y2

2 so that the result is averaged over the standard Gaussian
measure, and q0

aa = 1
N0

x0,a · x0,a. For different parameters σw and σb, the iterative
map in Equation 2.5 will approach some fixed point q∗ such that

q∗ = σ2
w

∫
Dy g

(√
q∗y

)2
+ σ2

b .

Furthermore, it is found that if two random input vectors x0,a and x0,b are sent
through the network, the covariance between them will develop according to

qlab = σ2
w

∫
DyaDyb g (ua) g (ub) + σ2

b (2.6)

where ua =
√
ql−1
aa ya and ub =

√
ql−1
bb

[
cl−1
ab ya +

√
1− (cl−1

ab )2yb

]
, and clab = qlab/

√
qlaaq

l
bb

is the correlation between the vectors. Assuming the normalised square length of
xl,a and xl,b has converged (i.e. qlaa = qlbb = q∗), we may write clab = qlab(q∗)−1. This

8



2. Theory

correlation map has a fixed point at c∗ = 1, but to determine whether it is stable or
not, one must compute the derivative of the map at the fixed point,

χ = ∂clab
∂cl−1

ab

∣∣∣∣∣∣
c=1

= σ2
w

∫
Dy

[
g′
(√

q∗y
)]2

.

if χ < 1, the fixed point is stable, making two input vectors converge and become
fully correlated after some layers. If χ > 1, the point is unstable and the input
vectors diverge to become completely de-correlated. As it turns out, χ is closely
related to the Jacobian in Equation 2.4. By averaging ‖Jl+1,lu‖2/‖u‖2 over random
perturbations u and random initialisations of weights and biases, where u is some
small perturbation to hli, χ is obtained. The quantity is also closely related to the
FTLE of the DNN. Essentially, χ reflects how much a random vector shrinks or
grows as it passes from layer to layer, meaning that χ < 1 is a direct representation
of the VGP. Finally, the case where χ = 1 represents a phase transition between
vanishing and exploding gradients and is characterised by that the average singular
value of the input-output Jacobian is equal to unity. This idea is explored further
in [14].

2.5.2 Pennington et al.
The work in [14] builds on the results of [16]. Here, the goal is to find a way to
initialise a DNN so that χ = 1. However, rather than only finding an initialisation
such that the average singular value of the input-output Jacobian is equal to unity,
they employ random matrix theory to try to constrain the entire singular value
distribution around unity. Doing so would ensure that an input vector maintains
its magnitude as is passes through the network. This condition is termed dynamical
isometry. To constrain the singular values around unity, the spectral eigenvalue
density of a matrix is defined as

ρ(λ) ≡
〈

1
N

N∑
i=1

δ(λ− λi)
〉

where the brackets denote an average over randomly initialised matrices. The Stielt-
jes transform of a spectral density is

G(z) ≡
∫
R

ρ(y)
z − y

dy, z ∈ C\R,

and to retrieve the original density, the inverse operation is

ρ(λ)− 1
π

lim
ε→0+

Im G(λ+ iε).

It was found that for a DNN with a width N → ∞ and weight matrices initialised
from a Gaussian distribution, the Stieltjes transform of JTL,0JL,0 obeys the relation

σ2L
w G(Gz + p(q∗)− 1)L − (Gz − 1) = 0

9



2. Theory

where G = G(z), and p(q∗) is the probability that g′(hli) = 1. For the ReLU
activation function, p(q∗) = 1/2, whereas for the hard-tanh activation function
(i.e. a linear approximation of tanh), (q∗) = erf(1/

√
2q∗). Using this equation,

Pennington et al. found that the maximal eigenvalue of the density spectrum is

λmax =
(
σ2
wp(q∗)

)L ( e

p(q∗)L+O(1)
)

It should be noted that the maximal eigenvalue of JTL,0JL,0 is the square of the
maximal singular value of JL,0. From the expression above, we see that the maximal
singular value grows linearly with each added layer, thus making it impossible to
constrain the singular value spectrum around unity and attain dynamical isometry.
When the same calculations are performed for a DNN where the weight matrices
are instead orthogonal, such that (Wl)TWl = σ2

wI, the following result is obtained
for the maximal eigenvalue

λmax =
(
σ2
wp(q∗)

)L 1− p(q∗)
p(q∗)

LL

(L− 1)L−1 .

In this case, the maximal eigenvalue will grow for every added layer when em-
ploying the ReLU activation function. However, by using the hard-tanh activation
function, it is found that the effect can be cancelled by choosing σw and σb so that
(1− p(q∗))/p(q∗) becomes sufficiently small, thereby achieving dynamical isometry.
Finally, it is shown that a network operating under dynamical isometry is able to
avoid the VGP.

2.5.3 Schoenholz et al.
The results in [19] are mainly based on [16]. Using the same framework, they
discover a length scale determining how deep information of an input vector may
travel before it disappears. The length scales are defined from |qlaa−q∗| ∼ e−l/ξq and
|clab − c∗| ∼ e−l/ξc , i.e. the rate at which the normalised square length of an input
vector and the correlation between two input vectors converge to a fixed point. This
rate is calculated by using the iterative map in Equation 2.5 and expanding the
equation around q∗ given a small perturbation εl. This yields

εl+1 = εl
[
χ+ σ2

w

∫
Dy g′′(

√
q∗y)g(

√
q∗y)

]
+O((εl)2),

where the term enclosed in brackets is a constant. Hence, the length scale for a
single input vector becomes

ξ−1
q = − log

[
χ+ σ2

w

∫
Dy g′′(

√
q∗y)g(

√
q∗y)

]
.

Similarly, for the correlation between two input vectors, the same procedure is done
to obtain

ξ−1
c = − log

[
σ2
w

∫
DyaDyb g′(u∗a)g′(u∗b)

]
.

In the case of χ < 1 (i.e. vanishing gradient phase), the length scale becomes
ξ−1
c = − logχ. Additionally, when χ = 1, the length scale diverges to infinity,
meaning information can propagate unhindered.
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3
Methods

The experiments presented in this section are divided into two parts. Firstly, sim-
ulations concerning the initialisation of DNNs are presented. Their purpose is to
test whether dynamical isometry, as presented in [14] for N →∞, can be applied to
narrow neural networks. The second part focuses on how DNNs manage to escape
the vanishing gradient phase. All training is performed on either the MNIST data set
of handwritten digits or the CIFAR-10 data set. As such, all input layers will contain
784 or 1024 neurons respectively to accommodate for the 28× 28 or 32× 32 pixels
of the MNIST and CIFAR-10 images, and all output layers will have 10 neurons, as
each data set has 10 training targets. All computation is done using Python and
the NumPy library.

3.1 Dynamical isometry in narrow DNNs

Following the procedure of [14], a DNN with hard-tanh activation functions is ini-
tialised with orthogonal weight matrices with elements drawn from a uniform dis-
tribution such that (Wl)TWl = σ2

wI. The neuron biases are drawn from a Gaussian
distribution with variance σ2

b . The depth of the network is arbitrarily chosen to
L = 10, as it is deep enough to exhibit the vanishing gradient phase and is not
too computationally demanding. Based on this depth, values for σw and σb are
chosen according to the theory established in [14] to obtain dynamical isometry for
infinitely wide networks. These values are set to be σ2

w = 1.05 and σ2
b = 2.01×10−5.

The networks are trained using SGD with a batch size of 10 and a learning rate of
η = 0.003.

3.1.1 Width dependence of singular value distribution

As a leading assumption, Pennington et al. assume a large network width when
exploring the possibility for dynamical isometry in DNNs. As the singular value
distribution of a random matrix is dependent on its dimension, the results in [14]
may be different if networks of small widths are considered. To observe this change,
the singular value distribution of DNNs is simulated for N = 10, 30, 50, and 70
using the parameters given above. The simulation is carried out enough times to
obtain 1000 samples of each choice of dimension.

11



3. Methods

3.1.2 Width dependence of learning rate
To see the effect the width has on how fast the network can be trained, the average
number of training steps required to reach a 25% test accuracy is calculated for the
same dimensions as above. The result is averaged over 100 iterations.

3.2 Escape from vanishing gradient phase
In this section, numerical simulations for understanding the dynamics of how a DNN
escapes the vanishing gradient phase are presented. As the aim of the experiments
is to analyse the dynamics of a DNN when it is able to escape the VGP, the initial
variances of the weights and biases are selected to generate the escape within a train-
ing time of 100 epochs. As such, the initialisation is deliberately chosen to display
the VGP instead of an initialisation which could have largely avoided the problem.
This is done to so that relatively small and computationally cheap networks can be
used, saving simulation time. The networks are trained using SGD with a learning
rate of η = 0.003 and a batch size of 100. All networks utilise the tanh activation
function.

3.2.1 Evolution of Lyapunov exponent
As described in section 2.5, the VGP phase is characterised by the input-output
Jacobian having a negative maximal FTLE. In this experiment, the FTLE is moni-
tored in a network starting in the VGP phase and which manages to escape it. The
test is run on a network with depth L = 5 and widths N = 10, 30, and 50. The
weights and biases were drawn from a Gaussian distribution with variances set to
σ2
W = 0.015 and σ2

b = 0 for the MNIST data set, and σ2
W = 0.030 and σ2

b = 0 for
the CIFAR-10 data set. The maximal FTLE is calculated using QR decomposition
as presented in section 2.4.

3.2.2 Normalised average directionality
In [19], the hypothesis that a DNN in the VGP phase only allows information to
travel a finite depth was presented. If this is the case, information about the input
may not reach the output, and the updates to the network become meaningless.
To measure this, the directionality of the training parameters of the network is
monitored. Here, directionality refers to a tendency for the training parameters
to move in a preferred direction in parameter space during one training epoch. If
information about the data set passes through the network, the SGD algorithm will
change the parameters in a way that moves the error function towards a minimum,
giving rise to some preferred direction of movement during a training epoch. If
the updates are random, no preferred direction of movement should be present and
the directionality is low. To quantify the concept, the update vectors added to the
biases in a layer ∇l

bH (see Equation 2.2) are added up during one training epoch.
In the case of the MNIST data set with 60000 images, using a batch size of 100, this
means adding 600 updating vectors. As only the direction of the updating vector is

12



3. Methods

of interest, each updating vector is normalised to unity before being added. Finally,
the length of the resulting vector is divided by the number of terms in the sum. The
norm of this vector is referred to as the normalised average directionality (NAD) of
the training epoch and is a number in the range [0, 1]. If NAD = 1, each updating
vector pointed in the same direction, whereas a 0 indicates that no direction is
preferred. In equation form, this becomes

NAD =
∥∥∥∥∥ 1
T

T∑
t=1

vt
∥∥∥∥∥

2

where vt is the normalised version of the updating vector to the biases in a given
layer during time step t in a training epoch. T is the total number of training steps,
which in the case of SGD is the number of samples in a data set divided by the batch
size. In the experiment, only the NAD of each layer is calculated over the number
of training epochs required for the DNN to escape the VGP. The same parameters
used for the maximal FTLE are chosen for this experiment.
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4
Results

4.1 Initialisation of singular values
The results in this section explore how well the methods of dynamical isometry in
[14] can be transferred to DNNs of finite width.

4.1.1 Impact of width on singular value distribution
In Figure 4.1 the singular value distributions of four DNNs with different widths
are shown, initialised to display dynamical isometry. As is clear from the figure, a
smaller width leads to a distribution of singular values with larger tails, and a more
significant portion of the singular values reside close to 0. Thus, narrow DNNs are
expected to display a worse training performance than wider networks, due to a
greater probability for the singular values to be far away from unity.

Figure 4.1: Singular value distribution for 4 DNNs with different widths. The
histogram is plotted with a logarithmic vertical axis to better see the tails of the
distribution. The networks have 10 hidden layers and the weight matrices are ini-
tialised to be orthogonal with a variance σ2

w = 1.05. The biases are initialised from a
Gaussian distribution with mean 0 and variance σ2

b = 2.05×10−5. A tanh activation
function is being used.
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4.1.2 Impact of width on training speed
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Figure 4.2: Average training steps required to reach an accuracy greater than 25%
for different depths and widths. The vertical axis is logarithmic. The initialisation
is the same as in Figure 4.1 and details about the training are found in section 3.1.

Using the same set-up, the average amount of training steps to reach 25% testing
accuracy is simulated for different network depths. Figure 4.2 shows that an in-
creased width decreases the average training time. This, in conjunction with the
previous result, implies that dynamical isometry becomes more difficult to achieve
for narrow DNNs.

4.2 Escape from the VGP phase

4.2.1 Dynamics of the maximal FTLE
The dynamics of the maximal FTLE is plotted in Figure 4.3 for the MNIST and
CIFAR-10 data sets. For each case, 100 runs are plotted, together with the median
of every training epoch. The median is chosen to represent the general behaviour
rather than the mean value, as averaging the runs would have hidden the steep
incline present in almost all instances. In all cases, the maximal FTLE is initially
negative, indicating that the VGP is present. After an initial phase where the
maximal FTLE increases very slightly, a rapid growth is observed. It is further
observed, for both data sets, that the distribution of when the rapid growth occurs
becomes more narrow for larger network widths. After the rapid increase, the growth
saturates to some value closer 0. In other words, the process causes the network to
become more dynamically isometric. In Figure 4.4a, the maximal FTLE in one run
has been plotted together with the accuracy of the network during the same run.
The plot shows that an increase in accuracy only begins once the maximal FTLE
has begun to grow.
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(a) N = 10, L = 5, MNIST.
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(b) N = 10, L = 5, CIFAR-10.
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(c) N = 30, L = 5, MNIST.
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(d) N = 30, L = 5, CIFAR-10.
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(e) N = 50, L = 5, MNIST.
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(f) N = 50, L = 5, CIFAR-10.

Figure 4.3: The dynamics of the maximal FTLE is plotted for 3 networks with
different widths, trained on the MNIST and CIFAR-10 data sets. 100 iterations are
plotted together with the median of each training epoch. The training parameters
are given in section 3.2.

4.2.2 Directionality of training updates
In Figure 4.4b and Figure 4.4c, the NAD of the training epochs is plotted together
with the maximal FTLE and accuracy during one training run. Only the direc-
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tionality for the first layer has been plotted, as its dynamics are most prominent,
although later layers display the same qualitative behaviour. In the initial training
phase, the directionality is low, meaning the direction the bias vector of the first
layer moves is mainly random. Around the same time the maximal FTLE experi-
ences a rapid growth, an increase in directionality occurs, followed by a slightly less
rapid decrease. The directionality returns back to a low value around the same time
the accuracy of the network approaches 100%.
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(a) Maximal FTLE and accuracy.
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(b) Maximal FTLE and NAD.
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(c) Accuracy and NAD.

Figure 4.4: In the three plots, the maximal FTLE, accuracy, and NAD are com-
pared for one training run. The arrows indicate which axis refers to which quantity.
The training parameters are given in section 3.2.

4.2.3 Toy model
In this section, a toy model is derived which displays similar characteristics to the
maximal FTLE in Figure 4.3. The model is derived for a 1-dimensional network
to make interpretations of the dynamics more easily interpretable. In the case of
a DNN with a constant width of 1, the updating rule for the weights in each layer
becomes

wl → wl + η
∂H

∂wl
, bl → bl + η

∂H

∂bl
,

18



4. Results

where

∂H

∂wl
= ε

(
l+1∏
k=L

g′(hk)wk
)
g′(hl)xl−1,

∂H

∂bl
= ε

(
l+1∏
k=L

g′(hk)wk
)
g′(hl). (4.1)

A significantly simplified version of the updating rule is derived by ignoring the
contribution of the activation function, the error ε, and the signal x. This yields the
recurrence relation

wl → wl + η(wl)L−1, bl → bl + η(bl)L−1.

Further simplifying the expression such that all weights and biases are equal at all
times, the relation becomes

w → w + ηwL−1, b→ b+ ηbL−1. (4.2)

Letting η = 1, arbitrarily setting the initial value of w to 0.09 and L = 6, the
evolution of the logarithm of w becomes similar to the growth of the maximal FTLE,
as seen in Figure 4.5. However, the model can only display this behaviour if L− 1
is either an odd number or even but with an initial value w > 0. This is found by
calculating the stability of the recurrence by taking the derivative of the right-hand
expression of Equation 4.2 and finding whether it is larger or smaller than unity at
the initial value of w.
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Figure 4.5: The evolution of the logarithm of w. The logarithm is chosen as
the maximal FTLE calculated for the real DNN is related to the logarithm of the
singular values of the weight matrices.
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Discussion

5.1 Initialisation of singular values
The exploration of how DNNs can escape the VGP is interesting as an understand-
ing of the dynamics may allow the development of methods to shorten the training
time of the networks. However, if it is possible to entirely avoid the VGP, such
insights may be redundant. The results of [14] suggest that an appropriately ini-
tialised network may display dynamical isometry, and thus allow signals to propagate
through the network unhindered. However, the results were derived for wide net-
works and a similar initialisation for narrow networks may not be possible. The
results in this work show that by decreasing the width of the network, the tails of
the singular value distribution grow, taking the network further away from dynam-
ical isometry by increasing the probability of having singular values far away from
unity. Furthermore, it is shown that the growth of the tails leads to worse training
performance, indicating that the vanishing gradient problem cannot be avoided as
efficiently. As some networks, such as convolutional neural networks (CNNs), are
often implemented with layers with a width of 5 (i.e. convolution layers), and are
trained through backpropagation, these results are significant.

It should be noted that the increase in training time may not be solely due to
tail growth of the singular value distribution. Instead, the training could be slower
because there are fewer training parameters, making it more difficult to fit the net-
work to the data set. However, a DNN with 10 layers and a constant width of 30
trained on the MNIST data set contains 31300 training parameters, which is very
large amount. Thus, the decreased training rate is not expected to be caused by
having too few training parameters.

5.2 Escape from the VGP phase
The dynamics of how a DNN escapes the VGP is revealed by computing how the
maximal FTLE evolves as the network is updated. From Figure 4.3, we see that a
rapid growth from a negative value to a value closer to 0 occurs after some training
epochs. The transition coincides with that the network begins to learning, as shown
in Figure 4.4a. Based on the results of [16] and [19], this results suggest that the net-
work goes from a state where information about the input vectors disappears with
every layer, to a state where the network is closer to dynamical isometry. Given that
no increase in accuracy occurs prior to the rapid growth of the FTLE, it may be
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that no information about the input reaches the output. Hence, the network cannot
adjust its parameters to improve the accuracy. This hypothesis is further strength-
ened by the result in Figure 4.4b, where the average normalised direction the biases
in the first layer of the network move has been plotted together with the maximal
FTLE. If no information about the input vector reaches the output, the error vector
ε becomes a random vector. Therefore, the direction in which the parameters of the
network move in parameter space should also be random. Indeed, this is shown to
be the case in the figure, and only when the maximal FTLE becomes large enough
do the updates display any directionality. The reason the directionality decreases
after the initial increase is explained by Figure 4.4c; once the network has achieved
a high level of accuracy, the parameters are close to a minimum and the absence of
a strong gradient causes the updating direction to appear more random.

If no information can reach the output of the network, the VGP is not solely caused
by a vanishing gradient, but also a lack of information reaching the output. More-
over, the growth of the maximal FTLE should not be caused by the structure of the
data set, as no information about it can propagate through the network, but rather
be an effect of the training algorithm itself. In Figure 4.3, we can see that a similar
growth occurs for two different data sets. The dynamics of the maximal FTLE can
be divided into three phases: the initial phase, the growth phase, and the saturation
phase. The initial phase is controlled by the initialisation of the weights and biases,
and if the network is successfully initialised in dynamical isometry, the initial value
of the maximal FTLE would be close to 0. The saturation phase can be explained
by the presence of εL in Equation 2.3. As the maximal FTLE grows, information
can propagate through the network and the training algorithm can minimise the
error vector. As the error is minimised, εL becomes smaller, decreasing the sizes of
the weight and bias updates until they are close to zero. Ultimately, this stumps the
growth of the maximal FTLE. Finally, while the dynamics of the growth phase are
less obvious, an illustration of how such a rapid increase could occur is made with
the toy model in subsection 4.2.3. As the weights are all assumed to be the same in
the toy model, the result may be closer related to RNNs, which also suffer from the
VGP but the backpropagation is done through time in the same layer. Moreover,
the toy model neglects all random components found in the updating rule for a real
DNN, which could greatly alter the dynamics. However, if the weights become large
enough for the rapid growth to occur in the toy model, the contribution of the ran-
dom components may become negligible. More research must be done to determine
whether this hypothesis has any grounds.

An interesting phenomenon is seen in Figure 4.3, where the distribution of when
the growth occurs becomes more narrow as the width of the network increases. The
narrowing of the distribution may be attributed to that the distribution of the initial
value of the maximal FTLE becomes more narrow as well. This, in turn, is caused
by an averaging effect of having more random parameters in the W and D matri-
ces. Interestingly, the narrowing occurs despite the randomness introduced by SGD.
This, again, suggests that the rapid growth of the maximal FTLE is not related to
which data set is being used.
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data set

5.3 Continued research
This work was restricted to only analyse fully connected, feedforward architectures
with constant widths. Furthermore, only the tanh activation function was being
employed. To see whether the dynamics of the maximal FTLE generally occur in
DNNs, more testing on other architectures must be performed. For instance, the
VGP may behave differently if the width of the network does not remain the same
[15]. Additionally, networks utilising the ReLU activation function may display
different dynamics, as the ReLU activation function only saturates in one direction.
A network architecture that has proven to greatly reduce the VGP is the residual
neural network (ResNet) [12], and it could be interesting to analyse how the maximal
FTLE evolves in such networks.
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6
Conclusion

In this work, the ability of a DNN to escape the VGP when trained using the SGD
algorithm is investigated using dynamical systems theory. Furthermore, the method
introduced by Pennington et al. to initialising a network in dynamical isometry to
avoid the VGP is evaluated for narrow DNNs.

The maximal FTLE found using the input-output Jacobian of a DNN describes
how two adjacent inputs either converge or diverge as they propagate through the
network. For negative Lyapunov exponents, the inputs converge and as they reach
the output they become indistinguishable. Hence, information is unable to prop-
agate through the network, making the network unable to learn. The results of
this work show that after some training epochs, the maximal FLTE begins to grow
rapidly, moving the DNN closer to dynamical isometry. As a result, the network is
able to learn. Furthermore, the results suggest the growth is not related to the data
set the DNN is being trained on, but that it is caused by the training algorithm.
Hence, to further understand the underlying dynamics of the escape from the VGP,
research should be focused on how the updating algorithm behaves in the absence
of training data.

The dynamical isometry initialisation is shown to work poorly for narrow networks.
As the width of the network becomes smaller, the tails of the singular value distribu-
tion become wider, and the probability of having either high or low singular values
will increase, making the average learning time for a network slower for smaller
networks.
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A
Appendix 1

Here, a calculation showing how a DNN with a linear activation function loses its
depth is presented. The calculation makes use of the properties of linearity.

g(WLg(WL−1g(. . . g(W1x0 + b1) . . . ) + bL−1) + bL) =( 1∏
k=L

Wk

)
g(L)(x0) +

L−1∑
l=1

(
l+1∏
k=L

Wk

)
g(L−l+1)(bl) + g(bL) =

W̃g(L)(x0) + b̃

Here, g(l) indicates that the function g has been applied l times and

W̃ =
1∏

k=L
Wk, b̃ =

L−1∑
l=1

(
l+1∏
k=L

Wk

)
g(L−l+1)(bl) + g(bL), L > 1.
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