{ CHALMERS |

UNIVERSITY OF TECHNOLOGY

Reengineering Java Game Variants into
a Compositional Product Line

An empirical case study identifying activities and effort involved
in a reengineering process

Master’s thesis in Computer science and engineering

JAMEL DEBBICHE
OSKAR LIGNELL

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG

Gothenburg, Sweden 2019

MASTER’S THESIS 2019

Reengineering Java game variants into
a Compositional Product Line

An empirical case study identifying
activities and effort involved in a reengineering process

Jamel Debbiche, Oskar Lignell

UNIVERSITY OF
GOTHENBURG

CHALMERS

UNIVERSITY OF TECHNOLOGY

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2019

Reengineering Java game variants into a Compositional Product Line

An empirical case study identifying activities and effort involved in a reengineering
process

JAMEL DEBBICHE, OSKAR LIGNELL

© Jamel Debbiche, Oskar Lignell, 2019.

Supervisor: Thorsten Berger, Department of Computer Science and Engineering
Examiner: Jennifer Horkoff, Department of Computer Science and Engineering

Master’s Thesis 2019

Department of Computer Science and Engineering

Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg

Telephone +46 31 772 1000

Typeset in KTEX
Gothenburg, Sweden 2019

v

Reengineering Java game variants into a Compositional Product Line

An empirical case study identifying activities and effort involved in a reengineering
process

JAMEL DEBBICHE, OSKAR LIGNELL

Department of Computer Science and Engineering

Chalmers University of Technology and University of Gothenburg

Abstract

Compositional Software Product Line Engineering is known to be tidious but pow-
erful approach to migrate existing systems into SPL. This paper analyses the pros
and cons of compositional SPLE strategies and also attempts to migrate five re-
lated Java games into an SPL while outlining the necessary activities to perform
such migration. This paper also presents how to measure migration efforts of each
activity. Lastly, the results of the migration process is compared to the result of
another Master thesis that also conducts an SPL migration but using the annotative
approach.

Keywords: Software Product Line, Reengineering, Migration.

Acknowledgements
The researchers would like to extend their gratitude towards supervisor Thorsten
Berger and Jacob Kruger whom provided assistance with direction of the research,

as well as contributing to valuable discussions. The researchers would also like to
thank ApoGames for providing the dataset used in this research.

Jamel Debbiche, Oskar Lignell, Gothenburg, May 2019

vii

Contents

List of Figures xiii
List of Tables XV
1 Introduction 1
1.1 Problem Statement 1
1.2 Purpose of the Study 2
1.2.1 Research Questions 2

1.3 Reading Instructions 3

2 Background 5
2.1 Software Product Lines, 5)
2.1.1 Domain and Application Engineering)

2.1.2 Different Approaches of SPL Adoption 7

2.1.2.1 Previous Attempts in SPL Reengineering 7

2.1.3 Compositional Software Product Line 8

2.1.3.1 FeatureHouse 8

2.1.3.2 Differences of Annotative and Compositional Approach 10

2.2 Clarification of Important Terms 11
221 Activity 12

2.2.2 Activity Types 12

2.2.3 Category and Strategy 13

2.3 Pre-study: Migration strategies 13
23.1 Phases 13

2.3.2 Top-down vs. Bottom-up approach 14

2.3.3 Strategieso 14

2.3.3.1 Static Analysis 15

2.3.3.2 Dynamic Analysis 15

2.3.3.3 Expert Driven, 16

2.3.3.4 Information Retrieval 16

2.3.3.5 Search-based 17

2.4 Cost Models 17
2.4.1 SIMPLE 17

2.4.2 COPLIMO e 18

243 InCoME 18

3 Methods 21

ix

Contents

3.1 Collaboration 21
3.2 Dataset 22
3.2.1 Selection Process of the Five Java Game Variants 22

3.3 Selection of a Migration Strategy 23
3.3.1 Applicability of Existing Strategies 23
3.3.2 Choosing an appropriate migration strategy 26

3.4 Design of the Measurement Approach 26
3.5 The Reengineering Process 28
3.5.1 Detection phase L 28
3.5.1.1 Running games L. 28

3.5.1.2 Mapping features to domain 29

3.5.1.3 Creating a feature model 29

3.5.1.4 Reverse engineering class diagrams 29

3.5.2 Analysis phase oo 30
3.5.2.1 Pairwise Comparison of Variants 30

3522 Code Cleansing 31

3.5.2.3 Systematic Source Code Reading 32

3.5.3 Transformation phase 33
3.5.3.1 Setting up a Product Line 33

3.5.3.2 Extracting Features 34

3.5.3.3 Feature Refactoring 36

4 Results 39
4.1 Advantages and Drawbacks of Strategies 39
4.2 Measurement designo 40
4.3 Migration Process oL 41
4.3.1 Activities 41
4.3.1.1 Running the Games 41

4.3.1.2 Creating the Feature Model 42

4.3.1.3 Reverse Engineering Class Diagrams 42

4314 Diffing 43

4.3.2 Overview of the Migration Process 43

4.4 Activity Efforts oo 45
4.5 Thesis Comparison 46
5 Discussion 49
5.1 Discussion 49
5.1.1 Level of Completion 49
5.1.2 RQ.1 Pros and Cons of Different Strategies 50
5.1.2.1 Data Available 50

5.1.2.2 Resources 50

5.1.23 Tools 51

5.1.3 RQ.2 Migration Effort Measurement 51
5.1.4 RQ.3 Activities in a Compositional Reegineering 51
5.1.5 RQ.4 Different Efforts of Activities 52
5.1.6 Top-Down vs. Bottom-up 53
5.1.7 Thesis comparison 53

Contents

5.1.8 Challenges 54
6 Conclusion 59
6.1 Migration 59
6.2 Threats to Validity 59
6.2.1 Internal Validity, 60
6.2.2 External Validity 60
6.3 Future Work Lo 61
Bibliography 63
A Appendix 1 I
A.1 The Logging Template for Reengineering Activities I
A.2 An Example of the Logging Artifact for each Activity IT
A.3 Performed activities Lo 111
A.4 Notes After Running Games XII
A.4.0.0.1 ApoCheating XII
A.4.0.02 Apolcarus XIII
A.4.0.0.3 ApoNotSoSimple XIII
A.4.0.04 ApoSnake XIV
A.4.0.05 ApoStarz XV
A.5 Early Bottom-up Feature Model XVII
A.6 Finalized Feature Model XVII
A.7 Class Diagrams of Java variants XXIII
A.7.1 Class Diagram for ApoCheating XXIII
A.7.2 Class Diagram for Apolcarus XXV
A.7.3 Class Diagram for ApoNotSoSimple XXVII
A.7.4 Class Diagram for ApoSnake XXIX
A.7.5 Class Diagram for ApoStarz XXXI

X1

Contents

xii

2.1
2.2
2.3
24

3.1
3.2
3.3
3.4
3.5

3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18

4.1
4.2

4.3
4.4

0.1
0.2

Al
A2

List of Figures

Overview of an engineering process for software product lines [1] . . . 6
Example of a Feature Structure Tree (FST) [2] 9
Example of Superimposition of a Java method [2] 10
Activity and strategy relationships 11
[lustration of Reengineering Process 21
Output of running one example variant via But4Reuse tool 24
Output during Formal Concept Analysis on two variants 25
Feature identification where no variant uses the same feature (color) . 25

Example pairwise comparison. Blue: Same name different content,
White: Identical, Red and Green: Different file names unknown content 31

Notes in an excel sheet from the pairwise comparison 31
Example of how UCDetector indicates dead code in its .html file . . . 31
Notes from feature location for the Menu feature 32
Example of how a detailed pairwise comparison could look 33
Parts of the project and its feature folders 34
Parts of ApoButton.java in variant V3 35
Parts of ApoButton.java in variant V4 35
Package structure for a SPL generated game 36
Package structure for an original game 36
Original code for storing buttons 36
Refactored code for storing buttons 36
Original method to show buttons 37
Refactored method to show buttons 37
Logging Template 40
Overview of what activity and what variant was considered each week

of the migration process L. 44
Duration of every activity in hours 45
Comparison of percentage of each activity type in both migration

process approacheso 48
[lustration of the Result of Distributing Code Blocks Between Features 57

Example of Poor Readability in the Generated Java Files 58
Feature Model Extracted From Bottom-up Approach XVIII
End-result of the Feature Model XIX

List of Figures

Xiv

A3
A4
A5
A6
AT
A8

Modified final Feature Model to generate 56 products XXII
ApoCheating Class Diagram XXIV
Apolcarus Class Diagram XXVI
ApoNotSoSimple Class Diagram XXVIII
ApoSnake Class Diagram XXX
ApoStarz Class Diagram XXXII

4.1
4.2

4.3
4.4
4.5
4.6
4.7
4.8
4.9

List of Tables

Table summarizing advantages and disadvantages of the categories. . 39
Table showing cost model factors and their mapping to the designed

measurement template Lo 41
All activities performed during the migration process 42
Comparison of files between variants 43
Detailed comparison of files between variants - after code cleansing . 43
All activities and LOC added/modified/removed 45
All activities and files added/modified/removed 46
Comparison of total person hours per activity type 46
Comparison of performed activities per activity type 47

XV

List of Tables

Xvi

1

Introduction

Software product line engineering (SPLE) is a set of methods, tools and practices
that takes several related software products and to engineer them under their com-
mon assets [1]. This is to take advantage and reuse these common assets instead
of the need to re-create them for every product. A software product line (SPL) is
most often made from a family of related software systems that has went through a
process of reengineering [3].

Already since 1990s, SPLs has gained popularity in the industry [1]. This is to
combat the need to rewrite common parts for every new product, and to enable
high customization while maintaining mass production. It is done by separating the
software into different features where the customer can choose a set of features and
generate their own product based on their unique requirements. This means that
SPLs enables individualism while still retaining the ability to mass produce [1].

These advantages of SPLs makes it worthwhile for organizations to reengineer their
already-developed products into SPLs, not only to take advantage of the common-
alities, but also to provide customers a wider range of configuration options. In this
thesis, we explore the activities, resources and methodologies that are necessary to
perform such reengineering.

1.1 Problem Statement

Commonly, reusing software artifacts is done in an ad-hoc manner, also known as
“clone-and-own methodology” [4]. This cloning results in a large amount of du-
plicated code that is ultimately expensive to maintain. When, for example, a bug
is found in one of the clones it has to be maintained in all of the cloned versions.
Similarly, when optimizing a portion of the duplicate code, you need to make sure
to evolve all the variants that has that portion of code.

Since it is mostly already existing systems that is reengineered into SPLs [5] and
because of the problems that come with clone-and-own, we believe that this calls
for a strategy where a set of activities that dictates how to transform a family of
related software into a product line to be established. In addition to identifying the
activities, it is important to measure the efforts of each activity in order to estimate
the resources necessary for this migration.

1. Introduction

Currently, not that much empirical data is available on different efforts and costs
evolving around migrating existing systems to an SPL. It is stated in literature that
the integration part during a reengineering process needs further research, in order
to bring SPL results to a broader practice [6]. This means that a company cannot
identify whether or not it can or even how to extend to an SPL. Therefore, there
is a need to understand all the efforts and costs involved. With this study, detailed
qualitative (such as activities involved) and quantitative (using certain metrics such
as number of hours to perform each activity) empirical data are provided that is
gathered from logging activities and efforts of the migration process.

1.2 Purpose of the Study

The purpose of this study is to migrate an existing family of software into a soft-
ware product line and also to identify different costs, in terms of effort, related to
a reengineering process. This is achieved by using a dataset of five Java games
publicly available on BitBucket!. After reviewing existing literature within the area
it was discovered that there is a need for further research. Studies have identified
open issues such as the need for new metrics and measures in terms of efforts, as
well as other challenges such as feature location, migration to software product line
and more [3] [7].

The goal is to understand what kind of activities are involved in the migration
process, from start to finish and what are the efforts necessary to accomplish the
identified activities. By doing this, a detailed dataset is provided that contains the
different phases of a migration and its efforts that can help companies measure the
feasibility of such migration. The strategy that is provided can also be beneficial
for researchers as they can test its applicability on different domains. Hence, both
researchers and companies can benefit our findings, where a researcher will have
more reliable data, in terms of activities and their efforts. And an organization will
have more indicators on whether or not it is worthwhile to reengineer their existing
systems into an SPL.

1.2.1 Research Questions

As mentioned before, this study attempts to identify the efforts and activities nec-
essary for migrating Java games into a software product line. This is done by
thoroughly logging the entire reengineering process.

From this, one main objective is defined: Identify the activities and their related
efforts needed for migrating clones of Java games into a compositional software prod-
uct line. The following research questions can be derived from the objective:

RQ.1 What are pros and cons of current migration strategies based on
literature? A migration process can be made in different ways. In order to be able

!Source code: https://bitbucket.org/Jacob_ Krueger/apogamessrc/src/7b8¢7973b595%at=master

1. Introduction

to achieve a good result when making a migration, it is necessary to know what
is better and worse with using different strategies. This can be understood by a
literature review before deciding on which strategy to use.

RQ.2 How to measure migration effort? Efforts necessary for the migration
process is an important factor to consider for companies before implementing the
reengineering. Measuring efforts helps organizations decide whether or not the mi-
gration process is worth the investment. It can be solved by designing a logging
template based on relevant cost models for each activity in the migration process.

RQ.3 What are the activities involved in a compositional SPL reegineer-
ing? It can be unclear what the migration process explicitly entail. To get a detailed
understanding on compositional reengineering, it is necessary to identify the per-
formed activities for this type of migration. These activities will provide all steps
that has to be done in order to migrate the existing software.

RQ.4 What are different efforts of the activities? After understanding how
to measure effort, an activity needs to be mapped to the relevant efforts. By doing
this, it is possible to see what activities and which part of the reengineering process
that is resource intensive.

1.3 Reading Instructions

This thesis involves many concepts regarding SPL:s and the reengineering process
that can be confusing given their overlapping definitions. Section 3.5 contains a
detailed description concerning the reengineering process in practice. Headings of
each subsection corresponds to a performed activity whose efforts can be read in
appendix A.3. Section 2.2 provides a more theoretical understanding of the reengi-
neering process, with detailed descriptions of relevant terminologies that are of high
importance in the SPL migration field.

1. Introduction

2

Background

This chapter is divided into four main sections. The first section introduces SPL and
SPLE implementations, more specifically compositional SPLs and the tool used in
this thesis. Secondly, it clarifies and defines important terms. The third section gives
an introduction to the various SPL migration strategies used in previous literature
and the last section describes cost models that were used as the foundation for the
logging artifact.

2.1 Software Product Lines

Software Product Line is defined by Clements and Northrop as “a set of software-
intensive systems that share a common, managed set of features satisfying the specific
needs of a particular market segment or mission and that are developed from a com-
mon set of core assets in a prescribed way” [8]. SPLE encourages the extraction
of common software artifacts in order to take advantage of reusing these software
components and hence maximizing the possible configuration of a software system.

Over the years, SPL has displayed several advantages in dimensions like, business,
architecture, process and organization [9]. Some of the most important advantages
are reduced costs, improved quality, reduced time to market and tailor-made soft-
ware. This is because of separating commonalities and variabilities into reusable
software components, which enables customization while still allowing mass produc-
tion. Individual configurations enables companies to provide a plethora of options
that can cover all the specific requirements given by their customers.

The adoption of SPLE extends to large-scale software systems. This is mainly
achieved by significantly lowering the costs of maintainance and creation of new
variants from the product line. This remedies the main drawback of the clone-and-
own methodology [1]. One of the main aspect of SPLE is the separation of the
domain level from the application level, this is further explained in the following
section.

2.1.1 Domain and Application Engineering

Developing a single software product means that the development only considers
the requirements of that system and its life-cycle[1]. This changes when it comes
to SPLE, since the product line is expected to accomodate a high number of con-

2. Background

figurations that increases overtime as features are added. This significantly extends
the life-cycle. In order to be able to continuously develop on top of an SPL, the
domain of the product must be clearly understood. Because of this, there is strong
focus on domain knowledge where the domain and the application engineering are
considered as separate aspects of SPLE [1].

In summary, domain engineering entails all the activities that assist in understanding
the domain in which the software system operates in. It is also identifying all
the common software artifacts that are to be reused by all the products[l]. In
other terms, all the features that exists in every variant. The application aspect
on the other hand, takes care of the product specific software artifacts that with
the common base, can create a specific product to satisfy a specific customer. To
summarize, SPLE is about dividing a software into reusable features, which some
belong to the domain level, and others to the application level [1]. Figure 2.1 provides
an overview of SPLE in context of Problem and Solution space.

Solution Space

Problem Space

[imel, walidation and verification)

I
i
o : . ! b .
E Domain analysis ! Domain implementation
= s ‘Winighe|
- R \ - AN
2 bomin | o5 E SRS . Al e
gi' knowledge P . R e Mudping —]l\.
— Corveses | [[P [28] [Fom] it 687 [Fraraeras] += [= s
L J LA TESR)). | \ ST =
? e g— jl_ i p—p—r
E _-...u [F=] [===] i I-:.---n:. primtfic].
o i
E {incl. scoping, I
QD wariability modeling] : [models, source code, ..
] l
Mew i Comman
o T T T T requirements | T Feafures - - — - - - - - Imommmmmmmmmmoos rimplementafion - —— - - -
= i artifacts
= L 1 |
E Requirements analysis | Product derivation
g 1 = ———rr— 1
o et I
E Custamer) Ut Fediure
= needs = selegtion Preduct
. o
2 ey -
T T
2 et
e 3=
(=N
<T

Figure 2.1: Overview of an engineering process for software product lines [1]

The idea is to collect all the common features in a common code base and separate
the variability from it. This way a company may configure any desired product using
the common base with a complimentary selection of compatible features [1]. This is
why SPLE often takes a feature oriented approach and Feature Oriented Software
Product Line is one of the well-established methodologies towards SPLE [10]. Like
all the other methodologies, it considers the distinction between the domain and
application engineering by focusing on four main areas of SPL:

o Domain Analysis

o Requirement Analysis

e Domain Implementation

2. Background

e Product Derivation

The term ’feature’ has several different definitions in the academic world [11], how-
ever, in the context of SPLE, the definition that best covers the commonality and
variability concepts is provided by Apel et al. [1], which is "A feature is a char-
acteristic or end-user-visible behavior of a software system. Features are used in
product-line engineering to specify and communicate commonalities and differences
of the products between stakeholders, and to guide structure, reuse, and variation
across all phases of the software life cycle.". In the next section, the different ap-
proaches of SPL Implementation are explored.

2.1.2 Different Approaches of SPL Adoption

The approach to adopt software product lines is very situational, meaning it depends
whether there is an already existing system to be migrated or if the system will be
created from scratch. If it is the former, this is known as an extractive approach[1].
It will also depend on the artifacts that exists, for instance what are the documen-
tation available etc.

This thesis concerns the migration of five related existing software products, hence
the use of the extractive approach, or in other terms, reengineering. However, the
extent of examining the four aforementioned areas depends largely on resources
available. For instance, in this research, the only resource present is the source code
of the five related products. Customers or the original developer of the five Java
games are not accessible, nor any high-level materials such as domain models or list
of requirements. This means that it is not possible to conduct any activity within
the Requirement Analysis phase. In the next section, some of previous attempts on
the adoption of an extractive approach in SPLE is provided.

2.1.2.1 Previous Attempts in SPL Reengineering

Studies have tried to reengineer applications by using different techniques to find
clones and migrate it into an SPL. For instance, one study migrated cloned product
variants into an SPL by using code clone detection [12]. This identifies commonali-
ties which afterwards are extracted into shared artifacts. Results showed that LOC
are reduced by approximately 15% overall. The authors also state that migration
tasks are challenging and at the moment not well supported.

Another study by Balazinska, et al. tried to measure reengineering opportunities
by having a clone classification scheme [13]. They mention that the research focus
has turned from investigating clone detection into trying to find actions for software
restructuring based on clone detection. The authors concluded that to decide if a
system is worth reengineering is more complex than just based on how much of the
code is cloned. In Alcatel-Lucent, an industrial case study was conducted where
they did a reengineering project towards an SPL. The project was performed with
agile principles. It was concluded that by taking on the project with an incremental
and iterative approach, SPL reengineering can be cost-effective and successful [14].

7

2. Background

Therefore, this study applies an iterative approach as well. The authors of this thesis
are also familiar with performing a project in an agile way, which helps in order to
have a good result.

2.1.3 Compositional Software Product Line

After having defined the SPL implementation as an extractive approach, we now
define our re-engineering methodology. In other terms, how to transform the ex-
isting systems into an SPL. There are several ways to transform a software system
into an SPL, all of them can be grouped under either a compositional or an an-
notative approach [15]. This study uses the compositional approach which breaks
down features into physically separated code units in accordance to a feature model
[16]. Once this is done, a variant can be generated by selecting a valid configuration.

The generation is resulted by superimposing code units responsible for the features
selected. The concept of superimposition is described in the section below. This
means that feature location and composition is a crucial step in compositional SPL.
Feature composition is usually done with the assistance of SPL tools [16]. In this
study, the tool FeatureHouse is used as it is one of the most recent tools for compo-
sitional SPLE and it is a continuation of the tool AHEAD|2].

2.1.3.1 FeatureHouse

The framework FeatureHouse works for several different programming languages
such as Java, C#, C among others. It is an asset for software composition and uses
the concept of superimposition [17]. FeatureHouse structures software fragments
as a general model called a feature structure tree (FST), which gives a hierarchical
structure for a fragment that represents packages and classes along with its methods
and fields [2]. It uses FSTs to achieve the superimposition concept. Figure 2.2 shows
the structure of an FST.

2. Background

BaseDB
package "~
class -----------

| state | [triggerList | | notify Triggers |

fiald method

Figure 2.2: Example of a Feature Structure Tree (FST) [2]

The following example describes superimposition: For a given class, the code in
that class can belong to feature-x and feature-y. During the reengineeing, the class
is divided into several files with identical file name where code fragments will be
inserted into its respective feature. If the developer generates a variant that includes
feature-x and feature-y, then the two files will merge to a single file. This can extent
to the method level. Meaning one method can be divided between two features.
This is done by having the same method definition in both files which is merged
when a variant is generated. An illustration of the process can be seen in Figure
2.3 where the method notifyTrigger() is merged using superimposition. It is done
by calling the FeatureHouse method original() carrying the same parameters as the
method notify Trigger().

2. Background

1 package com.sleepycat;

2 public class Database {

3 private void acquireReadLock() throws DatabaseException { ... }

4 private void releaseReadLaock() throws DatabaseException { ... }

5 protected void notifyTriggers(Locker locker, DatabaseEntry priKey,

6 DatabaseEntry oldData, DatabaseEntry newData) throws DatabaseException {
7 acquireReadLock();

8 original(locker,prikey,oldData,newData);

9 releaseReadLock();

10 Y} # 30 further lines of code...

package com.sleepycat;

1
2 public class Database {
3 private DbState state;
4 private List triggerList;
5 protected void notify Triggers(Locker locker, DatabaseEntry priKey,
6 DatabaseEntry oldData, DatabaseEntry newData) throws DatabaseException {
7 for(int i=0; i<ctriggerList.size(); i+=1) {
8 DatabaseTrigger trigger = (DatabaseTrigger)triggerList.get(i);
9 frigger.databaseUpdated this, locker, prikey, oldData, newData);
10
11 } # over 650 further lines of code...
12
1 package com.sleepycat;
2 public class Database {
3 private DbState state;
4 private List triggerList;
5 private void acquireReadLock() throws DatabaseException { ... }
6 private void releaseReadLock() throws DatabaseException { ... }
7 protected void notify Triggers(Locker locker, DatabaseEntry priKey,
8 DatabaseEntry oldData, DatabaseEntry newData) throws DatabaseException {

9 acquireReadLock();

10 for(int i=0; i<triggerList.size(); i+=1) {

11 DatabaseTrigger trigger = (DatabaseTrigger)triggerList.get(i);

12 trigger.databaseUpdated this, locker, prikey, oldData, newData);
13

14 releaseReadlLock();

15 + 4 over 700 further lines of code...

16 }

Figure 2.3: Example of Superimposition of a Java method [2]

2.1.3.2 Differences of Annotative and Compositional Approach

As oppose to compositional, the annotative approach does not actually break down
the code into features but it defines features in the source code itself. Features
are usually surrounded by #IFDEF and #FENDIF which are later recognized by a
language dependent pre-processor, so only the features selected at the configuration
state are executed [15].

This difference affect mainly three areas of SPLE: modularity, granularity and SPL
adoption[16]. Modularity is low with the annotative approach since the source code
is kept the same, while the compositional technique actually divides source code into

10

2. Background

feature modules. Hence, increasing the modularity. Granularity however is increased
for annotative as the use of #IFDEF and #ENDIF can be used at any level (classes,
methods or statement level). However, in a compositional approach the developer
must manually break down the code and divide each code fragment responsible for
each feature to its own feature module. Hence, it requires much more work than the
annotative method. Lastly, SPL adoption using a compositional approach can be
quite unnerving for companies. This is since the compositional approach necessitate
that the company changes its existing source code, and at time, that change can
be drastic [18]. An annotative approach only introduces annotation in the existing
code, but with reduced feature traceability and modularity [15]. Because of this,
even though the compositional approach is considered to be tedious and costly, it is
still considered superior in the academic community[16].

2.2 Clarification of Important Terms

This section describes in detail the differences and relationships between some of
the terms that this Master Thesis is based upon. It is important that the reader
can differentiate between these, otherwise many of the concepts and approaches
that later is described may be misinterpreted. Figure 2.4 describes the relationships
between the important terms with the help of UML.

Category Activity Types

¢ =\

has sorted with

1.°] ﬂ’

Strateqy 1—results in - Activity

Figure 2.4: Activity and strategy relationships

11

2. Background

2.2.1 Activity

The definition of an activity is something that is done in practice, necessary for a
successful reengineering process. It is logged using the logging template, which can
be read in section 3.4. The granularity of an activity has been discussed among
group members in two Master Theses and respective supervisors with knowledge
about this subject. An example of an activity can be found in Appendix A.2 where
a matching activity type (see 2.2.2) has been set in order to sort it accordingly.
It is also possible to get a better understanding of activity granularity by looking
through all performed activities in Appendix A.3.

An activity is rather high-level. This is because if low-level activities are logged, a
lot of documentation would be redundant. We assume that readers are familiar with
practicalities such as creating a class/method or refactoring and thereby understands
that these practices will occur during the reengineering process. Hence, activities
are described at a higher level. To avoid having too abstract activities, activity types
(see 2.2.2) exists to prevent this and also to sort the performed activities. These
rules provide some guidelines at what level of abstraction an activity should have.

2.2.2 Activity Types

In order to be able to classify performed activities into relevant reengineering areas
and also be able to compare results with another Master’s Thesis, different activity
types have been created. These are based on the SPLE process seen in Figure 2.1, as
well as discussions similar to the discussions that resulted in the activity granularity
(see Section 2.2.1). The different types can thereby be seen as different steps during
domain engineering and application engineering (Section 2.1.1). All activity types
can be seen below.

SPLE training - Any activity that involved researching specific literature of SPLE,
including different approaches of SPLE, such as strategies to apply compositional
or annotative approach to transform and existing software system into an SPL.

Data cleansing - Could be removing unused code or translating comments to en-
glish. Activities that are not of general character (should be filtered out during

comparison analysis)

Domain analysis - Identifying commonalities within variants and map it to the
domain level.

Feature identification - Finding functionality that could be classed as a feature.
Diffing - Activity that revolves around finding the differences between clones.
Architecture identification - Any activity that revolves around identifying the

architecture - i.e creating class diagrams.

12

2. Background

Feature location - Activities that relates to identifying which code unit represent
what feature.

Feature modeling - Mapping all identified feature into a feature model.

Transformation - Any activity that has to do with code modification to, for ex-
ample, separate features into separate code units.

Quality assurance - Activities such as running and testing games and game-
functionalities after each iteration are classified as quality assurance activities.

2.2.3 Category and Strategy

A category can have multiple strategies, as seen in Figure 2.4. This can be com-
parable to activity types, where it is stated at a higher level of abstraction. The
contained strategies are then a certain way you perform a category. These strategies
are more concrete things that you do. Section 2.3 describes different categories with
some of their strategies that were found during a literature review. The strategy
itself results in performed activities.

2.3 Pre-study: Migration strategies

Before starting the reengineering process, a pre-study with a literature review about
existing migration strategies is conducted. This is to contrast and compare the dif-
ferent strategies and decide which strategy, or perhaps a mixture of strategies, that
is best suited for our dataset. The current literature available does not show con-
sistent results in terms of strategies, and authors often provide different conclusions
as to how one should carry out the migration process. Some systematic mappings
of reengineering strategies has been performed [3]. This literature review will help
answering RQ.1.

2.3.1 Phases

It is claimed by Assuncao et al. that there is no established, or concrete strategy
when it comes to migrating existing systems to SPLs [3]. There are not even a set
of phases that are recognized and clearly defined. During their mapping study, they
could extract three steps that often occurred.

1. Identify features existing in a set of systems or map features to their imple-
mentation

2. Analyze available artefacts and information to propose a possible SPL repre-
sentation

3. Perform modifications in the artefacts to obtain the SPL

In contrast to Assuncao et al., Anwikar et al. states that there are three main phases
while performing a migration [19]. These phases are known as detection, analysis

13

2. Background

and transformation. In the first phase, they observe the source code and gets infor-
mation such as how functionality and architecture is structured. During analysis,
information from the detection phase is used to redesign feature functionality such
that features are separated and follows layered-code principles. The final phase,
transformation, is where the system is actually migrated to the new design from
previous phases.

From these descriptions provided by Assuncao et al. and Anwikar et al. [3] [19],
this study uses the following terms and definitions to refer to different phases of the
migration process:

1. Detection: Identify features and structure in the system variants
2. Analysis: Analyze variants and design a possible SPL
3. Transformation: Modify variants to obtain a SPL

2.3.2 Top-down vs. Bottom-up approach

It is possible to approach the migration process in different ways as well, and not
only focus on strategies. Top-down and bottom-up defines how one can identify
features. With the top-down approach features are first located at a coarse or
rough granularity, to continue downwards to make the feature more fine grained
[20]. Meaning that a feature in the beginning is not defined by certain methods or
LOC:s, but rather in what variant and what classes the feature is present. Later
in the process the feature is located in a lower level, such as which functions are
responsible for the said feature. A bottom-up approach, is simply put, where you
approach the problem the other way around. One specific variant is picked and
in detail finding features directly in the source code, to later on identify common
features when all variants have been searched through [5].

2.3.3 Strategies

When it comes to the reengineering strategies, literature classifies all the strategies
into five categories [3]. It is also important to mention that some papers uses a
combination of strategies, which is called a hybrid strategy [21]. The five categories
are listed below and are ranked in order of most used in research papers [3]:

Static Analysis
Expert Driven
Information Retrieval
Dynamic Analysis
Search-based

Gl W

Not all of these types consider all the three phases of migrations, which means if
such category is chosen, then there must be an assumption that some phases have
already been performed before the migration process.

14

2. Background

For instance, the categories Dynamic Analysis and Information Retrieval only con-
sider the first two phases; Detection and Analysis. Additionally, Information Re-
trieval is more focused on larger systems as it spends most of the resources on mining
all sort of data relevant to the system. Strategies within the Search-based category,
while being the least used strategies, focus on creating and optimizing variability
models and for existing systems|[3].

As each category focuses on different aspects of the migration process, it might be
necessary to create a hybrid strategy. For instance, by utilizing tools such as Objec-
tAid [22] to create class diagrams and reverse engineer the design of the Java games,
hence using a Dynamic approach [23]. Additionally, one may apply a search-based
strategy to extract variabilities of the system, hence using a hybrid strategy.

Different hybrid recommendations exists in papers, such as Dynamic Analysis com-
bined with Static Analysis [24][25]. Another combination could be Static Analysis
and Information Retrieval [26].

All the categories are described in further detail below.

2.3.3.1 Static Analysis

These types of strategies are the most used in literature [3], they are usually used
during early stages in development [27]. Given its widespread usage [3], many tools
are based on static analysis to automate the process of finding defects within the
code. These tools can handle large industrial applications [28]. Also, these strate-
gies can be applied to either a whole software system or a single file. Moreover, is
it not necessary that the software development process has been finalized [29], i.e.
Analysis can be performed during development.

During Static Analysis, the focus is on the source code while not executing the soft-
ware. This means that the purpose is to analyze the code structure. It could for
example be done with a strategy such as control flow analysis to determine what
paths that are possible for the software to take [27]. Hence, knowing how a feature
propagates in the system. Another strategy example is symbolic analysis, where the
program variables are the focus and can be the source for feature identification [29].

An advantage of static analysis strategies is that the software system does not need
to be executed. This is because the software system that is to be migrated to an SPL
may not always be in an executable state. Using these strategies, one can identify
the code structure of a system and infer its architecture. This information can aid
the development to identify the functionalities of the system as well as the quality
attributes that needs to be carried over in the SPL migration.

2.3.3.2 Dynamic Analysis

During Dynamic Analysis the software is executed, in contrast to Static Analysis
where it is not. It focuses on finding execution traces of the software for differ-

15

2. Background

ent features [30]. This is done by generating feature-specific scenarios. By running
these scenarios, it is possible to extract and analyze the code blocks that represent
a given feature. In order to generate scenarios, one must have domain and appli-
cation knowledge. They are also derived from relevant documents to the system
[31]. This technique helps both, in locating features in source code but also in in-
creasing software comprehension and the result depends on the test scenario quality
from which the execution traces are collected. It could lead to difficulties in indus-
trial projects because of non-existent execution environments for legacy systems [19].

This category tackle the migration process from a top-down approach where it gath-
ers information from running software as oppose to static analysis strategies that
uses a bottom-up approach which means the source of information comes from the
source code.

2.3.3.3 Expert Driven

An expert driven strategy means that persons involved possess a level of expertise,
mostly on the system and domain in focus of the reengineering process [32]. The
experts involvement is often to evaluate strategies and analyze results, this can
involve software engineers, software architects, developers, stakeholders, etc. Hence,
these types of strategies can be very resource intensive. The experts can also be
involved during any phase of the process to finish the migration quicker [33].

2.3.3.4 Information Retrieval

Similar to Static and Dynamic Analysis are these strategies concerning the detection
and retrieval of software features in an existing system. For Information Retrieval
is it usually done in four steps [34]:

1. Search for common artifacts

2. Group detected artifacts into configurable components

3. Identify the variabilities and the dependencies of features

4. Create feature model

All of these steps can be accomplished in various ways. This usually depends on
research preference, area of expertise, artifacts available (such as source code, doc-
umentation) and the tools in their disposal. For instance, commercial tools can
be used for information retrieval or it can be done manually if not tools are avail-
able. Various strategies under Information Retrieval are Latent Semantic Indexing
(LSI), Concept Analysis (CA), Execution Scenario (ES) and Trace Intersection (TT).

The main difference between this category and Dynamic and Static Analysis cate-
gories is that strategies within this category focuses on semantics. This means that
these strategies treats the source code as a document [35]. Such strategy will detect
commonly used words in textual artifacts and hence helps in identifying commonal-
ities. However, these strategies suffer from obvious drawbacks which are polysemy
(a word with several different meanings), synonymy and keywords that are either
misspelled or abbreviated [35].

16

2. Background

2.3.3.5 Search-based

Search-based Software Product Line Engineering (SBSPLE) is the intersection be-
tween Search Based Software Engineering (SBSE) and SPLE. This intersection is
especially useful when a software system contains a large amount of feature with
complex relationships [36].

Relating SBSPLE to Pohl’s SPLE framework [37], SBSE is mostly used during the
Domain Testing to test different feature combination derived from the feature model,
or during Application Requirement Engineering [36]. This is used to detect any dead
feature and / or test satisfiability of the feature model created.

2.4 Cost Models

One of the main issues with the implementation of a software product line is that it
requires a large upfront investment [38]. This makes organizations hesitant to mi-
grate their existing systems. For this reason, it is important to estimate the efforts
of the reengineering and more importantly to break down the migration process into
activities in order to pinpoint the most resource-intensive activities.

Estimations of monetary values are not measured in this study. However, we esti-
mate various effort metrics needed to accomplish the reengineering process. This can
be, for example, the duration of each activity. The estimation is given in how many
person hours it takes to finish an activity. To identify relevant effort metrics, the
logging metrics are based on previous, well-established cost models used in SPLE:
SIMPLE [39], COPLIMO [40] and InCoME [41]. Metrics from the cost models that
are most useful for our scenario is taken into consideration during the measurement
design process (see Section 3.4).

The following sub-sections gives a short introduction to each of the cost models and
their approach to estimating SPLE costs, while Section 3.4 and Table 4.2 describes
and shows how metrics are mapped to the measurement design.

2.4.1 SIMPLE

While most cost models offer calculation-based results, SIMPLE pinpoints the im-
portant tasks in migrating a system to a SPL [39]. It defines four development
costs:
e Coe: This entails organizational costs including the training and reorganiza-
tion necessary before the implementation of SPL.
o Ceap: Core Asset Base costs concern the initial phase of reengineering; includ-
ing commonality and variability analysis, architectural tasks etc. ..
e Cunique: This entails all product-specific requirements.
e Cieuse: This represents costs reusing assets, like testing and identifying assets
to be reused.

17

2. Background

Since the migration process is performed by the two authors, the organizational
costs are insignificant in this research. However, the measurement design must take
into account the three remaining costs when assessing the effort of the reengineering.

SIMPLE recognizes maintenance costs as the evolution costs of the SPL (Cey,). The
most notable consideration here is C,, which concerns the costs of updating the
asset base. These cost measures are emitted in this research as our purpose is to
reengineer an existing system into SPL, but no maintenance is done.

2.4.2 COPLIMO
COPLIMO is another cost model that is based on COCOMO II. While this model

has been developed around aircraft and spacecraft domains, it has also been imple-
mented and tested successfully on different domains [40]. COPLIMO focuses on two
main costs: Relative Cost of Writing for Reuse (RCWR) and Relative Cost of Reuse
(RCR). The former is concerned with the costs of developing software to be reused
and the latter with the cost of reusing the software in a new or different product line.

This cost model considers a plethora of metrics that can be used for the creation
of the logging artefact. Most notably, the Adaptation Adjustment Modifier (AAF)
which includes Software Understanding (SU) which is affected by the Domain Anal-
ysis phase, it also uses the lines of code modified, known as Percent Code Modified
(CM) and Percent Design Modified (DM).

2.4.3 InCoME

The Integrated Cost Model for Product Line Engineering (InCoME) is a cost model
that is possible to use for different estimation scenarios because of several input
parameters [41]. It has different layers that separates different kind of factors. There
are three layers: Cost Factors Layer, Viewpoint Layer and Investment Analysis
Layer. The first layer estimates costs that is forwarded to the next layers. Costs are
estimated on seven factors:

o Organizational: Upfront investments to establish SPL infrastructure

o Core Asset Base: Costs to build reusable assets for a certain domain

e Unique Parts: Costs for developing unique parts of a product in a SPL

* Reuse Level: Level of reuse when using reusable assets in a product

o Stand-Alone: Costs to build a product outside of the product line

e Product Evolution: Costs to evolve a standalone product

o Asset Evolution: Costs to evolve the core asset base

When all costs are forwarded to the Viewpoint Layer those are calculated to show
savings within the three PLE cycles, domain engineering, product engineering and
corporate engineering. The results are categorized by viewpoints and afterwards,
the third layer calculates for three economic functions Net Present Value, Return on
Investment and Payback Value.

18

2. Background

Results from the calculations are shown in Person Months or Person Hours. Impor-
tant parameters that is used are: an Investment Cycle (Y), a Start Date (SD) and
a Discount Rate (d) that reflects time value of money.

19

2. Background

20

3

Methods

This chapter describes the empirical case study with all steps involved. It also
explains the collaborative aspect of this thesis. Below is an illustration of the steps
performed during the methodology.

— Migration Process —
1
2
Pre-study Literature Design i Efforts of Activities
Review (RQ1) Measurement 5 (RQ4)
Choosing Approach (RQ2) 3
appropriate
reengineering
strategy Activity

Logging (RQ3)
Figure 3.1: Illustration of Reengineering Process

At the start, a literature review is conducted to contrast and compare different
strategies. Determining the pros and cons of different strategies helps selecting the
most optimal strategy for the migration process. Thereafter, a measurement ap-
proach is designed by using well-established cost models in order to build a logging
template. Once this is done, the migration process begins where the logging tem-
plate is used to identify activities and log their efforts. Lastly, efforts of the entire
migration process are presented based on the performed activities.

3.1 Collaboration

This empirical case study is performed in cooperation with another Master’s The-
sis. The other thesis is also conducting a reengineering of existing systems into an
SPL, but with a different approach (annotative instead of compositional) and on a
different dataset which means both studies will have a list of performed activities in
the end. Their dataset consists of five Android games provided by the same devel-
oper as in this study. The strategy chosen for the actual migration process might

21

3. Methods

differ, since that is done individually, but the measurement approach mentioned in
section 3.3 is designed together in order to have the same approach when estimating
different efforts. This helps in the end-process where the two studies compares their
results, since there is similar level of details in the measurements.

As the migration strategies of the two theses can differ, the activities making up
these strategies can differ too which may complicate the process of comparing the
results of both theses. To counter this, activity types are defined, where each team
will tag each activity with one or more activity types. Once the migration is finished,
activities with the same types are compared. The activity types are listed in Section
2.2.2.

3.2 Dataset

The dataset used in this study is a collection of Java games provided by ApoGames!.
There are 20 Java games and five Android games provided where each game consists
of 3000 to 10000 lines of code (LOC). To make our research comparable to the col-
laborators’ thesis, the size of our dataset is limited to their. Since their dataset only
contains five Android games, we select five Java games to facilitate the comparison
between the two theses.

The Java games serve as a valuable dataset for this migration process since all of
them have common software artifacts that can be found in most software systems.
For instance, all of the games have a user interface, persistent data and also a
complex logic layer that defines the game rules. Moreover, this dataset has been
used in previous SPL research [12]. To add, the complex logic layer adds another step
of complexity to this research since the layer further complicates the understanding
of the code which is usually the case in an industrial setting [42].

3.2.1 Selection Process of the Five Java Game Variants

The first step in selecting games was to reverse engineer Java code from Jar files.
This process failed for some of the game variants. In other variants the generated
files did not compile, hence these games were excluded.

The second step was to run and test the games. In this step, several games crashed
while performing some functions such as starting the game editor, or loading a game.
This reduced the number of variants to 12. Furthermore, games that exceeded the
10000 lines of code were eliminated since they were considered larger than the An-
droid games.

From the games that performed without error, they can be divided in two cate-
gories regarding their controls. Most of these games used a keyboard, hence these
commonalities were taken as an advantage. Additionally, games with high level of

L ApoGame website: http://apo-games.de/

22

3. Methods

variabilities were excluded, for instance games with no menu, or with no actual
player (such as ApoSuduko).

The selection process showed that many of the variants are very different. They also
contain technical problems appearing at compile-time and execution-time. Hence,
five games remained which had both common and different features, but also shared
a similar project structure. The games are the following (Variant ID - Variant name
(z LOC)):

e V1 - ApoCheating (3960 LOC)

e V2 - Apolcarus (5851 LOC)

« V3 - ApoNotSoSimple (7558 LOC)
V4 - ApoSnake (6557 LOC)
« V5 - ApoStarz (6454 LOC)

3.3 Selection of a Migration Strategy

Every researcher adopts their own approach to detect, analyze and transform an
existing system into an SPL. Hence, after conducting the pre-study (see Section 2.3),
one can see that there is no concrete strategy that is well-established or applicable
on all SPL migrations, this goes in line with the conclusion of Assuncao et al[3].
Table 4.1 summarizes pros and cons found during the pre-study.

3.3.1 Applicability of Existing Strategies

While there seems to be a plethora of strategies and previous attempts at SPL im-
plementations using an extractive approach, the applicability of these strategies is
low. This is because it is dependent on the available resources, where in this study;,
the only resource is the variants source code. When it comes to Expert Driven
strategies, none of the authors in this thesis is considered an expert in the domain
hence these strategies are not applicable. Additionally, these strategies consider a
large amount of experts in different area of the product lines, for instance, domain
experts, engineers, testers and so forth which are not present in this research.

For strategies that are described and applied in literature, they usually utilize tools
that are either discontinued or not possible to launch such as LEADT [43], CIDE
[44] and others are outdated or commercial such as BigLever Software Gears [45].
In addition, even with the availability of one tool But4dREUSE [46], which is a tool
focusing on bottom-up technologies that detects commonalities between variants, the
output given by the tool does not provide any useful information about our dataset.
This is because the tools infers variabilities and commonalities from several inputs;
in our case, the only input is the source code. Hence, the output is just a collection
of most used keywords which can range from class names to variables and function
names, the output of the tool is shown in 3.2.

23

3. Methods

achievement achievements apoanimation apobutton apodisplayconfiguration

apoentily apohelp apohighscore apoimage apoimagefromvalue apojumparrow apojumpbutton

apojumpcomponent apojumpenemy apojumpentity apojumpfeaturearrow amrow bhack

button buttons enemy font fos game getpoints gettime
init

makebackground max mousebuttonfunction

height help highscore jbackground keybuttonreleased load

mousebuttonreleaseq mousedragged mousemoved mousepressed

points render think e

update vec width x y

mousereleased

Figure 3.2: Output of running one example variant via But4Reuse tool

Moreover, But4REUSE was expected to provide accurate results according to previ-
ous literature [5]. Figure 3.3 and 3.4 shows outputs from tests with other strategies,
which gave nothing that could help during the migration process. It did just list
new features for each of the files and none of the variants were using the same feature.

24

3. Methods

Block | Block | Block | Block | Block | Block | Block | Block | Block | Block | Block | Block | Block | Block | Block | Block | Block | Block | Block | Bloc
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19

apoStarz%2Feditor%2FApoStarzEditor.java X
apoStarz%?2Fentity%2FApoStarzBlock.java X
apoStarz%?2Fentity%?2FApoStarzEntity.java X

apoStarz%?2Fentity%2FApoStarzFire.java X

apoStarz%?2Fentity%2FApoStarzGoal.java X

apoStarz%?2Fentity%2FApoStarzStar.java X

apoStarz%2Fgame%2FApoStarzGame.java X

apoStarz%2Fgame%2FApoStarzHighscore.java X

apoStarz%2Fgame%2FApoStarzHighscorelLevel.java X

apoStarz%2Fgame%2FApoStarzIO.java X

apoStarz%2Fgame%2FApoStarzTutorial.java X

apoStarz%?2Flevel%2FApoStarzLevel.java X

apoStarz%?2Flevel%2FApoStarzLevelLoad.java X

apoStarz%2Fsolver%2FApoStarzSolver.java X

apoStarz%2FApoStarzApplet.java X

apoStarz%?2FApoStarzConstants.java X

apoStarz%2FApoStarzimages.java X

apoStarz%2FApoStarzMain.java X

apoSnake%?2Fentity%2FApoLevelChooserButton.java X

apoSnake%2Fentity%2FApoSnakeEntity.java X

Figure 3.3: Output during Formal Concept Analysis on two variants

If the output seen in these figures would be correct, our dataset would not contain
any commonalities. Hence, it was safe to assume the tools did not function properly.
Figure 3.4 shows some commonalities (yellow color), but that does not reflect what
the tool is supposed to highlight.

m apoJump apoNotSeSimple m m

Figure 3.4: Feature identification where no variant uses the same feature (color)

After noticing commonalities, a word cloud representing the yellow feature was cre-
ated. It showed that the part with most commonality was a .gitignore file. This
showed once again, as previously stated, that the output was not helpful. Given
the poor results provided by the tools, the following Section 3.3.2 describes what
strategy and approach that is used for the migration process.

25

3. Methods

3.3.2 Choosing an appropriate migration strategy

As migration strategies depends on tools and resources available, the migration
process for this thesis depends on strategies that are solely dependent on source
code (only available resource from the existing variants), which is also the case for
50% of industrial SPL implementations [5]. Since the source code of the variants is
also executable, this means that both a top-down and a bottom-up approach can be
adopted. In literature, this is known as a sandwich approach [47]. This means that
some aspects of dynamic and static analysis can be tailored to better suit our data,
this hybrid strategy is also recommended by the literature[24],[25]. For instance,
to execute a top-down approach, the software can be executed to identify features
on the domain level. This means that each game is played and all the features are
explored, mapped and compared between variants to identify common features on
the domain level. This can be described as a dynamic analysis strategy. From this,
a preliminary feature model can be created.

An additional strategy to identify commonalities between variants is to conduct
pairwise comparison of the source code and code structure. This is a form of static
analysis strategy. Moreover, systematically reading the source code helps locating
the identified feature in the source code. This is combined with yet another dynamic
analysis strategy, where breakpoints are used at individual source code statements
responsible for each feature.

Furthermore, another static analysis strategy that helps in understanding the rela-
tionships and hierarchies among features, is to reverse engineer class diagrams from
the source code and analyze all the associations and nesting of different source code
artifacts.

3.4 Design of the Measurement Approach

This section has been collaboratively written by the two Master’s Thesis groups.
The measurement approach was designed together by having three joint meetings
and discussing how to log each activity. This is so that a triangulation between
acquired data from the two teams can be made. The actual strategy might be dif-
ferent, which means that activities involved might differ as well. The triangulation
of data is therefore only made for common parts, based on activity types. If no
similar data exists, a comparison of the outcome of the studies is the only thing
that is made to compare the SPLs.

The metrics that are used in the log are based on the previously described (see Sec-
tion 2.4) well-established cost models SIMPLE, COPLIMO and InCoME [39][40][41]
and their respective metrics. The designed approach and the data that is collected
helps in answering RQ.2.

A log entry contains information about an activity. Each activity that is written
down has a unique ID and a name in order to be able to identify it. Activity IDs

26

3. Methods

can be useful once the migration process is finished when presenting different data.
There is also a start and end date for when the activity was performed along with a
detailed description about the activity. The description explains the activity at such
level of detail so that a person can understand what has been done in that activity.
One should also know which tools has been used in the activity.

The COPLIMO and InCoME cost models estimates effort in terms of person month
[40][41], logging of activities is therefore made as a minimum each person day. Since
an activity can take longer than one person day to finish, the log for an activity will
not be complete until the activity is finished. This means that the log is updated in
an iterative process, where for example number of hours are incremented and other
fields are filled in when appropriate. Data that can be derived and logged from a
person day are: hours spent and in what environments those were spent in, e.g. in
an IDE. This logging of duration is also based on the InCoME cost model where it
takes into consideration the start and end date of the investment in its calculation
of SPL migration costs [41].

Other data in a log entry consists of number of LOC and files that has been added,
removed or edited. This is based on COPLIMO that uses parameters such as percent
of code that has been modified (CM) and portion of software that must be modified
to work well (AFRAC) [40]. Metrics such as number of LOC can help in trying
to describe how large an activity is, as well as its complexity. This data is taken
from commits, which means a log also contains number of commits and commit
IDs. Commit frequency follows common version control practices and thereby be of
small size and commits occur often [48]. Not only are the commits of a small size
as advocated by common practice, each commit also follows the Angular commit
message guidelines [49] to increase consistency. This means that there is a certain
format one should follow, it includes a heading, body and a footer where the heading
has a type, a scope and a subject. A template of how a commit message should be
written can be seen below.

<type>(<scope>): <subject>
<BLANK LINE>

<body>

<BLANK LINE>

<footer>

The logging template also includes information about what tools that have been
used during the activity, e.g. a plugin for the Eclipse IDE. It also shows input and
output artefacts for an activity, where an input could be the source code and output
is a class diagram. The artifacts show what have been used in order to perform the
activity, as well as what the activity produced.

Lastly, notes about an activity are written down. In this area, personal experience is
expressed about the importance and complexity of the activity as well as if there are
any dependencies to other activities that has been performed prior to the current.
This is served as qualitative data.

27

3. Methods

The final template for logging activities can be seen in the Result chapter 4.2 together
with an example activity in Appendix A.2. See Table 4.2 for all mappings between
cost models and the logging template.

3.5 The Reengineering Process

All necessary preparations are completed from the previous steps and the imple-
mentation part of the reengineering process can begin. During this part, activities
involved in a compositional SPL reengineering are identified, hence answering RQ.3
while logging each activity in parallel. Once this is done, the logging data is ana-
lyzed to answer RQ.4. As mentioned in Section 3.3.2, the reengineering process is
conducted with a hybrid strategy. The strategy includes:

e Running the Java games

o Mapping features to the domain level
o Creating feature model

o Reverse engineering class diagrams

o Pairwise comparison of variants

» Systematic source code reading

The strategy does not strictly follow the three phases as they are from top to bot-
tom. Activities from different phases are combined during different phases in the
reengineering process. This means there might be an activity categorized as the
detection phase that is combined iteratively with another activity from the trans-
formation phase. The phases are therefore conducted in an agile way, instead of a
waterfall approach.

3.5.1 Detection phase

Activities related to this phase mainly consists of the top-down approach. They try
to identify features on domain level, which in later phases are used in combination
with activities that takes a bottom-up approach.

3.5.1.1 Running games

In order to get an understanding of the games and their domain, all the five game
variants were played as a first activity. Notes were taken for any observations of
potential features. The notes were a description of each game and a bullet list of
features. Each feature got a description to show how that feature works in that
particular game, while the feature name was more abstract so that it potentially
could be used on domain level. An example of how notes could look is seen below.

28

3. Methods

GameName
description of the game

Features
o Character
— Move using arrow keys on keyboard
— Press and hold space bar to perform an action
o Enemy
— Some stand still, some travels left/right
— Game is lost if character touches enemy

3.5.1.2 Mapping features to domain

The data retrieved from running games was compared game by game in order to find
commonalities. By doing this, features that are common in many of the variants
can be mapped to domain level. Comparisons of feature names as well as feature
descriptions help when trying to understand what a possible domain feature could
be. This could be seen as a top-down approach, where the game information ex-
tracted is similar to documentation. This process resulted in a list of domain-level
features that can be seen in Section 4.3.1.1.

3.5.1.3 Creating a feature model

Creating the feature model was an iterative process, as it needed to satisfy the con-
figuration of the five variants and also cover all the features that were provided in
these variants. Additionally, the feature model must also be flexible to support the
creations of other products. The feature model was created using FeatureIDE which
is an Eclipse plugin for feature-oriented development [50].

The approach switches to bottom-up in later stages of the reengineering process.
Hence, the feature model might need to be redesigned. This makes it important to
be open for change and thereby have an iterative mindset as mentioned earlier. Even
though, at this stage, features in the feature model accurately shows what exists in
the games it might be difficult to extract source code to match these features. The
results of the feature model can be found in Appendix A.6.

3.5.1.4 Reverse engineering class diagrams

To have a better understanding of code artifacts such as classes, methods and vari-
ables and their relationship, class diagrams were generated from the source code
using Visual Paradigm [51]. This process helped in identifying commonalities and
variant specific parts for the games on the source code level by finding similar class
and method names in the variants. By reverse-engineering class diagrams it also
gave an overview of the variants’ architecture. Furthermore, inspecting dependen-
cies between Java classes can help in understanding how a feature can scatter across
different classes.

29

3. Methods

3.5.2 Analysis phase

With the help of the class diagrams, feature model and Eclipse IDE, the starting
point of every feature is identified. By using breakpoints, it is possible to map
features and how they spread in the source code. Every feature is appointed to a
starting class and starting statement, and all related classes where the feature is
also executed. All this information is logged and later used in the transformation
phase.

3.5.2.1 Pairwise Comparison of Variants

In order to further study commonalities between variants, tools were used to compare
class names and class contents of all variants against each other. The tool used was
Code Compare?, where it provided three types of outputs which can be seen in
Figure 3.5:

o Identical class names and contents - White color code

o Identical class names but different content - Blue color code

o Unique class names - Red&Green color code

By using the tool, multiple classes could immediately be classified as identical. More-
over, the five variants studied in this study come from a collection of over 20 Java
games with similar file structure. This means that a portion of the duplicated code
can be unused by these five variants and used in other Jave games which were not
selected in this study. For this reason, the source code is analyzed to detect any
dead code, this analysis is explained in Section 3.5.2.2.

Pairwise comparison was used in later stages in combination with other activities
as well, but with another focus. Initially, without any activity combination, the
comparison focused on a top-down approach where only the tool (Code Compare)
output was of importance. Meaning that if two variants had a class with the same
name but different content, the differences were not studied but only the class was
flagged as different. When combined with other activities, the pairwise comparison
took a bottom-up approach instead, where a file from each variant was compared in
detail to see at which LOCs were similar and which were different. More information
about this process can be read in the subsection 3.5.2.3. Figure 3.5 shows how
pairwise comparison could look during the first iteration. Hence, the tool output
during the first iteration was on a high level. Some notes taken from these outputs
can be seen in Figure 3.6

2Code Compare website: https://www.devart.com/codecompare/

30

3. Methods

Name Name ;
J ApoButton.java J'ApoButton.java .
J ApoCanvas.java J ApoCanvas.java
2 ApoNewTextfield.java 1 ApoNewTextfield.java
J ApoScreen.java J ApoScreen.java
2 ApoSubGame.java 2 ApoSubGame.java

J ApoJumpState.java
2 ApoJumpStateAchievements.java
J ApoJumpStateGame.java
1 ApoConstants.java
2 ApoDisplayConfiguration.java
21 ApoEntity.java
1 ApoHelp.java
2 ApoHighscore.java
1 Apolmage.java

Figure 3.5: Example pairwise comparison. Blue: Same name different content,
White: Identical, Red and Green: Different file names unknown content

Variant # Variant 1 Variant2 Variant 3 Variant4 Variant5 c¢(2,3) c(2,4) c(2,5)

Variant Name ApoCheating Apolcarus ApoNotSoSimple ApoSnake ApoStarz

Total Number of Classes 49 59 57 58 49

Number of Identical Classes 24 17 10
Number of Class with same Name 7 13 11

Figure 3.6: Notes in an excel sheet from the pairwise comparison

3.5.2.2 Code Cleansing

This part of the migration process was not planned, however, when inspecting the
code and running the game, it was clear that the source code contained a lot of dead
code. Failure to remove such code can be costly as we would have spent time and
effort transforming code blocks that would have no positive impact on the SPL.
An Eclipse plugin called UCDetector (Unnecessary Code Detector) was used to
detect dead code. This activity also made the pairwise comparison easier since all
the code that remains is used in at least one feature. Locating the dead code had to
be done in an iterative manner. UCDetector scans each variants’ source code where
it finds methods and classes that are never referenced. It creates a .html file with
all findings. An excerpt of the output can be seen in Figure 3.7.

Nr ker Description References** | Author Location*
1 © % ||Change visibility of Class "ApoJumpImages" to default - May cause compile errors! - apoJump.Ap d ation(Ap java:14)
2 e 5 |[Method "Ap getLogo(Buffered. " has 0 0 poJump.Ap getLogo(Ap java:40)
3| e % |[Method "ApoJumpl getl ‘MouseOver(BufferedI " has O refe 0 apoJump.Ap getl MouseOver(Apol

Figure 3.7: Example of how UCDetector indicates dead code in its .html file

This file is read manually and the code regarding e.g. a non-referenced method is

31

3. Methods

then removed manually as well. Every time a part has been removed, the variant
is compiled and ran to ensure nothing broke by removing the code part. When all
dead code had been removed, UCDetector was executed again on the same variant.
Some of the removed source code might have had references to other methods or
variables and when that code was removed, new dead code would emerge. This
process kept going until a scan by UCDetector showed that no dead code exists.
The steps performed to find and remove all dead code for each of the variants were:
e Scan variant with UCDetector
e Open generated .html
Identify class/method/variable with 0 references
e Go to relevant LOC and remove it
o Compile and run variant to make sure nothing stopped working

Another activity involving code cleansing was to translate code comments. All the
original comments in the source code were written in German, hence these were
translated into English to improve the software comprehension phase.

3.5.2.3 Systematic Source Code Reading

All the variants’ source code were systematically read. First, to get an overview
by going through all classes to try and understand what role they have. To get
a more detailed view afterwards, a low level approach were used with debugging
to understand algorithms. In order to try and understand what code is relevant
for a certain feature, the systematic reading was combined with other performed
activities. By doing this, the focus of systematic reading mainly was about mapping
features to source code. Relevant code for a feature was identified by first using the
feature model to choose what feature to find and then applying what could be seen
as Dynamic Analysis. A variant was put into debug-mode and breakpoints were
activated for all methods within a class. If the execution stopped at some point
while the game variant performed the previously chosen feature, notes were taken
about that breakpoint such as class and method name. Figure 3.8 shows parts of
the derived methods and classes in one of the variants for the Menu feature.

ApoNotSoSimple ApoNotSoSimpleMenu.java init(),render(Graphics2D),think(int)
ApoNotSoSimpleModel.java getGame(),mouseMoved(int,int), nousePressed(int,int,boolean)
ApoNotSoSimpleButtons.java init()
ApoNotSoSimplePanel.java init(),setMenu(),setButtonVisible(boolean[]),mousePressed(int,int,boole

ApoNotSoSimpleComponent.java renderButtons(Graphics2D),isShowFps(),load(),setShowFps(boolean),

ApoNotSoSimpleOptions.java init(),render(Graphics2D),mouseButtonFunction(String)
ApoNotSoSimpleOptionsButton.java |init(),render(Graphics2D,int,int)
ApoNotSoSimpleLevelChooser.java |init(),render(Graphics2D),mousePressed(int,int,boolean),mouseButton

ApoNotSoSimpleUserLevels.java loadHighscore()
ApoNotSoSimpleCredits.java init(),render(Graphics2D),mouseButtonFunction(String)

Figure 3.8: Notes from feature location for the Menu feature

As mentioned earlier, the pairwise comparison activity was used in combination with
source code reading. Figure 3.9 shows an example of two variants with a similar file
name and structure, but an nit() method with variant specific source code.

32

3. Methods

import org.apogames.ApoConstants; LF import org.apogames.entity.ApoButton;
import org.apogames.entity.ApoButton
import apoJump.ApoJumpConstants;
import apoNotSoSimple.ApoNotSoSimpleConstants; import apoJump.ApoJumpImageContainer;
import apoNotSoSimple.ApoNotSoSimpleImages
public class ApoJumpButton {
public class ApoNotSoSimpleButtons { —_—
private ApoJumpPanel game;
private ApoNotSoSimplePanel game;
public ApoJumpButton(ApoJumpPanel game) {
public ApoNotSoSimpleButtons(ApoNotSoSimplePanel game) { this.game = game
this.game = game; }

public void init() {
public void init() { if ((this.game != null) && (this.game.getButtons() == null)) {
if (this.game.getButtons() == null) { this.game.setButtons(new ApoButton[15]);
this.game.setButtons(new ApoButton([32]);
BufferedImage iButtonBackground = ApoJumpImageContainer.iButton
Font font = new Font(Font.SANS_SERIF, Font.BOLD, 30);
String text = "X"; Font font = ApoJumpConstants.FONT_BUTTON;
String function = ApoNotSoSimpleMenu.QUIT; String text = "quit";
int width = 45; String function = ApoJumpStateMenu.BUTTON_QUIT;
int height = 45; int width = iButtonBackground.getWidth();
int x = ApoConstants.GAME_WIDTH - 15 - width; int height = iButtonBackground.getHeight();
int y = ApoConstants.GAME_HEIGHT — 1 % height - 1 % 15; int x = ApoJumpConstants.GAME_WIDTH/2;
this.game.getButtons()[0] = new ApoButton(this.game.getImages! int y = ApoJumpConstants.GAME_HEIGHT - 1 x height - 2 % 5;
BufferedImage iButton = this.game.getImages().getButtonWithImag
text = "play"; this.game.getButtons() [@] = new ApoButton(iButton, x, y, width,

function = Apx’)NotSoSimpleMenu .START;

Figure 3.9: Example of how a detailed pairwise comparison could look

Additionally, Java classes were manually inspected where it was suspected that there
would be similarities that the tool Code Compare could not detect during the first it-
eration of pairwise comparison. For instance, Java classes called Variant!Panel.java
and Variant2Panel.java could serve the same purpose for different variants (initiat-
ing the panel). Hence, these files were compared and commonalities were extracted
as well. However, this is not always the case, since the developer did not always
use the same naming in all variants, hence VariantXPanel.java, might be called
VariantYModel.java in another variant, which further complicates the process.

3.5.3 Transformation phase

The process of transforming variants into a Compositional SPL was iterative. Focus
was mainly on one variant at a time, where code was refactored and extracted into
one feature at a time. Because of the process’ iterative focus, Sections 3.5.3.2 and
3.5.3.3 summarizes what was done repeatedly during the transformation phase.

3.5.3.1 Setting up a Product Line

The first step in the transformation phase was to set up the structure by generating
all the feature folders using the previously created feature model. Every folder
represents a feature and the top feature from the feature model represent the most
common feature. The top feature would be where files that are the same between
variants are stored. As one go down in the feature model, the commonality decreases.
Parts of the project structure and the feature folders can be seen in Figure 3.10.
The Product Line was implemented in Eclipse [52] with the plugin FeatureIDE [50]
and FeatureHouse [2].

33

3. Methods

v i—é > ApoGames [apogames-javaMasterT
> (3 src
P =\ JRE System Library [Java SE 8 [1.
P =4 configs
V /iy > features
ii=> Achievements
ii=> Action
> ﬁ > ApoGames
» 7 BottomEditor
ii=> Cloud
i~ Counter
> i Credits
= Decorative
i~ Dynamic
ii=» DynamicView
> [Editor
iy Enemy
» [GreyMenu

> [ZﬁGrid
P = Interactive
> [Zg LevelChooser

i=>Load
[2 ﬁ; Menu

Figure 3.10: Parts of the project and its feature folders

3.5.3.2 Extracting Features

The information gathered during diffing and systematic code reading was used when
features were going to be extracted from a variant into the SPL. With information
about similar files, one file at a time from different variants were opened again as they
were during the systematic source code reading. They supported the early process
of extracting common code into the top feature, called ApoGames (See Figure A.2
for feature model). Figures 3.11 and 3.12 shows parts from the combined diffing and
systematic code reading. As seen in the figures, a LOC that have grey highlighter
is identical and a non-grey LOC is not.

34

3. Methods

public ApoButton(BufferedImage iBackground, int x, int y, int width,
super(iBackground, x, y, width, height);

this.function = function;
this.bOver = false;
this.bPressed = false:
this.wait = 0;
this.maxWait = 0;
this.bWait = false;
this.bFirstWait = true;

¥

Figure 3.11: Parts of ApoButton.java in variant V3

public ApoButton(BufferedImage iBackground, int x, int y, int width,
super(iBackground, x, y, width, height);

this.function = function;
this.bOver = false;
this.bPressed = false;

super.setBOpaque(false);

this.wait = 0;
this.maxWait = 0;
this.bWait = false;
this.bFirstWait = true;

}

Figure 3.12: Parts of ApoButton.java in variant V4

All common code was extracted into a feature high up in the tree hierarchy, since
this would be a feature used by any feature-configuration. Because of how super-
imposition works, variant specific source code could then be extracted to correct
feature further down in the feature model in a class with the same name as in the
ApoGames feature. Source code in that feature would thereby be appended to the
same file in the generated source code. By doing this, a configured game from the
feature model would maintain same structure as an original variant with packages
and classes. Figures 3.13 and 3.14 show the package structure similarities between
a generated game from the SPL and one of the original game variants (V4). This
similarity can be justified as, while specific SPL architecture methodologies exist
[53], SPL can still carry the same architecture as that of a single-system [9].

35

3. Methods

Vlf; ApoSnake [apogames-javaM
P =\ JRE System Library [Java
» ii% apoSnake

v f—é ApoGames [apogames-javaMas
v [src
> i3 apoGame

> iJ2 apoGame.entity > i apoSnake.entity

> 7 apoGame.game > Hﬁ apoSnake.game

> H3 apoGame.game.level | 4 :ﬂ apoSnake.game.level
> H-?'__.,font > E%_font

» iz org.apogames > H org.apogames

> ifs org.apogames.entity » if} org.apogames.entity

> :-]E org.apogames.help
> :1'2 org.apogames.image
> H3 org.apogames.input

| 2 :-]% org.apogames.help
> 5% org.apogames.image
» Hﬁ org.apogames.input

Figure 3.13: Package structure for

a SPL generated game Figure 3.14: Package structure for

an original game

3.5.3.3 Feature Refactoring

Many parts of the original code were hard-coded. An example is an array repre-
senting what buttons were supposed to be visible. A certain position in the array
corresponded to a specific button, which led to NullpointerEzception when a feature-
configuration with other buttons than an original game variant was picked. This
meant that in order to be able to configure a game without a certain part, or switch
to a similar part from a different variant, refactoring had to be done. For this par-
ticular problem, data structures and types were changed. Figure 3.15 shows original
code where a button in the menu is added at index five.

text = "editor";

function = ApoNotSoSimpleMenu.EDITOR;

width = 250;

height = 60;

x = ApoConstants.GAME_WIDTH/2 - width/2;

y = ApoConstants.GAME_HEIGHT/2 + 70,

this.game.getButtons()[5] = new ApoButton(this.game.getImages().getButtonImageSimple(width * 3, height, text,

Figure 3.15: Original code for storing buttons

The variable storing buttons was turned into a HashMap<String, ApoButton>,
where the string is the button function. This changed instantiating of a button
to what can be seen in Figure 3.16.

text = "editor";

function = ApoGameMenu.EDITOR;

width = 250;

height = 60,

x = ApoGameConstants.GAME_WIDTH/2 - width/2Z;

y = ApoGameConstants . GAME_HEIGHT/2 + 70;

this.game.getButtons().put(ApoGameMenu.EDITOR, new ApoButton(this.game.getImages().getButtonImageSimple(width * 3, height,

Figure 3.16: Refactored code for storing buttons

36

3. Methods

When buttons were changed to be more dynamic, methods had to be refactored
as well. Figures 3.17 and 3.18 show changes for a method making buttons visible.
The original method takes a list of buttons that should be visible and sets them
visible. But because the HashMap now contains several extra buttons that were not
included in the hard-coded array, all buttons first needs to be set invisible in the
refactored version.

public void setButtonVisible(boolean[] bVisibile) {
for (int 1 = @; 1 < this.getButtons().length && i < bVisibile.length; i++) {
this.getButtons()[i].setBVisible(bVisibile[i]);
}

Figure 3.17: Original method to show buttons

bublic void setButtonVisible(ArraylList<String> bVisibile) {
for(ApoButton button : this.getButtons().values()) {
if(button.isBVisible()) {
button.setBVisible(false);

}

}

for(String button : bVisibile) {
this.getButtons().get(button).setBVisible(true);

}

Figure 3.18: Refactored method to show buttons

Moreover, code regarding different features had to be moved around as well. When
a new variant, sometimes even a new feature, was going to be integrated into the
SPL, parts of already implemented code could be necessary to move further down
the feature model. This was because what previously counted as common code was
no longer common, since the newly implemented had differences. This could be
reflected in the feature model as well, where a feature might have been split up into
two or a feature received sub-features.

37

3. Methods

38

Results

The chapter presents results gathered during the reengineering process, as well as
from the preparatory steps that were made before the migration.

4.1 Advantages and Drawbacks of Strategies

From reviewing literature, it is clear that there are a plethora of approaches to
implement SPLE. Each study takes a slightly different approach that is influenced
on several factors. However, all approaches can be gathered in five categories, Table
4.1 provides a summary of the advantages and drawbacks of these categories.

CATEGORY PROS CONS
rall lower rate of failure .
Expert driven me ower mt(‘. ot lanure Not applicable for non-experts.
since experts are involved.
. i Widely used technique, Tool dependent, otherwise time consuming.
Static analysis oy . . .
with established tools. Lack of research in transformation phase.
Dvnamic analvsis Identifies code execution traces, Results depend on quality of test scenarios,
yne I good to find scattered/tangled features. difficult to apply on legacy systems.
. . Ability to deal with large amount of data. | Requires high-level artefacts as input to
Information retrieval .
Result is often refactored source-code. perform well.
Search based Mostly used for creating variability models. Deals mostly with a‘nalyms phase, complex activity.
i Does not output a feature map.

Table 4.1: Table summarizing advantages and disadvantages of the categories.

From our migration experience and relating to previous studies [3], we conclude that
the most suitable strategy for any migration process is heavily dependent on several
factors, which are described in detail in the Discussion section.

39

4. Results

4.2 Measurement design

A template with the purpose of measuring activity efforts was designed by studying
metrics of different cost models (COPLIMO, InCoME and SIMPLE) and extracting
metrics that measure meaningful effort factors such as duration of activities, number
of commits and so forth. The logging template is shown in Figure 4.1.

INFORMATION
« Activity type:
« Activity:
e ActivityID:
+ VariantID:
+ Start Date:
« End Date:
» Description:
DATA
« Total Hours spent:
« Number of commits:
« LOC added:
« LOC removed:
« LOC modified:
+« Number of files added:
« Number of files removed:
« Number of files modified:
ARTEFACTS
« Input:
+« Output:
+ Tools Used:
ACTIVITY DESCRIPTION
« Complexity:
« Importance:
+« Dependencies on other activities:

Figure 4.1: Logging Template

Table 4.2 shows the mappings between cost model factors and the effort metrics
in the designed template. The third column represent what design measurement
is extracted from which cost model factor (second column), while the first column
states which cost model the cost model factor was taken from.

40

4. Results

Cost Model Cost Model factor Measurement design
LOC and files
/] _ 0 . .
COPLIMO DM - % of design modified added /removed /modified
COPLIMO CM - % of code modified LOC and files

added/removed /modified
LOC and files
added/removed /modified

COPLIMO | AFRAC - portion of sw modified to work well

COPLIMO PM - person month Logging every person day

COPLIMO AA - assessing reusable components Hours spent

COPLIMO SU - understandability of software Hours spent

COPLIMO UNFM - unfamiliarity with software Hours spent

COPLIMO PSIZE - effort, SPL development cost Hours spent/nr of commits/LOC
InCoME PM - person month Logging every person day
InCoME Y - investment cycle Start and End date
InCoME SD - start date Start and End date
InCoME D - discount rate, time value of money Start and End date
SIMPLE CSWdev - full cost of developing SPL Hours spent

Table 4.2: Table showing cost model factors and their mapping to the designed
measurement template

4.3 Migration Process

This section summarizes the findings from the process of reengineering Java game
variants into a compositional SPL. It is important to note that the migration process
did not reach total completion, where only three out of five varaints were migrated
(see Section 5.1.1 for more information). Additionally, no logging was done during
the preparatory steps. This means that neither experimentation with different tools,
nor all the effort spent while reading articles and preparing the measurement design
were logged.

4.3.1 Activities

The migration process resulted in 12 activities. It is possible that the activities
would differ if another migration strategy would have been taken. Table 4.3 shows
each activity ID, along with its name and types.

Some activities in Table 4.3 did not affect the migration process. Hence, these
are not considered as important nor an actual part of the migration process. It
is activities filtered with activity type SPLE Training (Read about Compositional
SPLs, FeatureHouse research and FeatureIDE research). Additionally, activities
such as translating comments and removing dead code did not have any impact on
the migration itself, however it did facilitate software comprehension and deleting
the unused code sped up the migration process.

4.3.1.1 Running the Games

All variants were executed in the beginning of the project as a domain analysis and to
identify features. This resulted in a list of features manually extracted from testing

41

4. Results

Activity ID Activity Name Activity Types
Al Running games Domain analysis, Feature identification
A2 Mapping game features Domain analysis, Feature identification
A3 Read about Compositional SPLs SPLE Training
A4 Creating a feature model Domain analysis, feature modeling
Ab Translating code comments to English Code cleansing, feature identification
A6 Reverse-engineer class diagrams Feature location, architecture identification
AT Finding features in source code Feature location
A8 FeatureHouse research SPLE Training
A9 Pairwise comparison of variants Diffing, feature location
A10 Removing unused code Code cleansing
All FeatureIDE Research SPLE Training
Al2 Transforming source code to feature Transformation, Quality assurance

Table 4.3: All activities performed during the migration process

the games. Features amongst variants were compared using this list. Appendix
A 4 lists all notes, with the format seen in Section 3.5.1.1, about identified features
along with a general description of each game. A mapping of game features (activity
A2) was made by comparing the game notes seen in A.4. This resulted in a list of
common features at domain level that can be seen below.

e Menu

« World

o Character

o Levels

o Highscore

» Editor

4.3.1.2 Creating the Feature Model

Creating the feature model was an iterative process, where features were added /removed
along the transformation process. It ended up including 47 features. The final fea-
ture model is shown in Appendix A.2 followed by a list defining every feature. Since
the migration process ended before all games were implemented, several features
remained empty. Hence, features had to be set as hidden and additional constraints
were added in order to generate products without errors. Appendix A.3 shows the
modified feature model. 22 out of 47 features were implemented and this generated

56 different products.

4.3.1.3 Reverse Engineering Class Diagrams

Class diagrams were extracted in order to have a better understanding about the
architecture used in different variants, and also to understand the relationships
between different software artifacts and potentially detect dependencies between
features. All five class diagrams are listed in Appendix A.7. It is clear that all
variants follow a similar architecture except for ApoCheating. This increased the
degree of variability in the SPL and ultimately, migrating this particular variant
became more challenging, but due to time constraint, we did not migrate this variant.

42

4. Results

4.3.1.4 Diffing

Results of the pairwise comparison show that around 30% of the source code is
duplicated using a clone-and-own approach and some files proves the existence of
evolution. Meaning that, for example, some methods have evolved in some variants,
while other variants still has outdated methods. Hence, it is needed to manually
update the identified methods. Results from the first round of diffing that took
place during the top-down approach can be seen in Table 4.4. Unique files refer to
file names that are different in each variant. Vx/Vy represents files for variant X
and variant Y.

Variant ID | Total files | Identical files | Same name, different content | Unique files
V2/V3 59/57 24 7 28/26
V3/V4 57/58 17 9 31/32
V4/V5 58/49 10 12 36/27
V2/V4 59/58 17 13 29/28
V2/V5 59/49 10 11 38/28
V3/V5 57/49 10 12 35/27

Table 4.4: Comparison of files between variants

During code cleansing, by using UCDetector, it was possible to remove 11670 LOC
from a total of 30380 LOC of all five variants. This means that almost 40% of
the source code was never used. Another round of diffing was made on some of the
variants after code cleansing, see Table 4.5. This was made in a bottom-up approach
which led to a more detailed comparison, where the files were examined which gave
another parameter: different name with similar content.

Variant ID | Total files | Identical files | Same name, different content | Different name, similar content | Unique files
V2/V3 43/38 7 8 12 16/11
V3/V4 38/32 0 13 14 11/5

Table 4.5: Detailed comparison of files between variants - after code cleansing

The amount of files necessary to examine reduced significantly by code cleansing,
as seen by examining Tables 4.4 and 4.5. This reduces necessary efforts for the
reengineering process.

4.3.2 Overview of the Migration Process

In Figure 4.2, one can clearly see that during the first few weeks of the reengineering
process, there is a focus on every single variant. This is mainly to study and de-
tect commonalities and variabilities. Furthermore, as we progress in the migration
process, the focus shifts to a small number of variants as those with considerable
variability (in our case, variant 1 (color blue)) are excluded. This was because V1
(ApoCheating) had a considerably different architecture, as previously mentioned in
Section 4.3.1.3, than all other games. Hence, the focus was all on the other variants.
Already in week 4, a common code base had been migrated from all four variants.

43

4. Results

Activity
QO
Al12 O @
(]
All ..
Q
Q
AlO)
(]
e 0 O
A9 [) o
° +%
o0 @
A8 [)
% 2%
o0
A7 ()
o
e 0
A6 [)
(]
o0
A5 [)
QO
0 L]
A4 [) o o o
o
N @ Variant 1
@] o ® Variant 2
A2 ... ® Variant 3
o Variant 4
arian
000
Al .. ® Variant 5

Week

Figure 4.2: Overview of what activity and what variant was considered each week
of the migration process

Later in week 5 till week 7, the diffing (A9) occurred where we examine which
pair of variants have most commonalities, as those are the easiest to migrate into
the SPL. This is where the transformation began between two variants, until week
10. When the two variants were successfully migrated, the third variant with most
commonality was the one planned to be migrated next.

44

4. Results

4.4 Activity Efforts

Reengineering three out of five variants into a compositional SPL took 371,5 person
hours. Figure 4.3 shows how the total amount of hours are spread across each
activity.

Duration By Activity in Hours

207

150
100
52
50
17 14 225 22 10 12
5 b 4 &
Al A2 A3 Aa A5 A AT A8 AS A10 ALl Al2

Figure 4.3: Duration of every activity in hours

In Figure 4.3, it is clear that the transformation was the most time-consuming (A12).
Possible changes to A12’s granularity are discussed in Section 5.1.4.

The following tables show what activities that were involved in the actual SPL
integration. Activities that resulted with 0 in each field have been omitted.

Activity ID | LOC added | LOC removed | LOC modified
A5 0 0 3 365
A10 0 11 670 0
Al12 17874 1492 N/A

Table 4.6: All activities and LOC added/modified /removed

As seen by Tables 4.6 and 4.7, most of the performed activities were not relevant for
the actual SPL integration. It is actually only activity A12 that adds to the SPL.
A5 and A10 changed the SPL LOCs but did not contribute to the migration of any
feature, only the removal of dead code and translation of comments.

45

4. Results

Activity ID | Files added | Files removed | Files modified
A5 0 0 128
A10 0 78 133
A12 184 80 4

Table 4.7: All activities and files added /modified /removed

Results seen in Tables 4.6 and 4.7 shows clearly that most of the activities during a
reengineering process does not affect the code. This means that other areas has to
be considered when measuring effort, see Section 5.1.5 for further discussion.

4.5 Thesis Comparison

This section lists activities from both the collaborating Master’s Theses. Activities
are sorted according to activity types and as aforementioned, only activities that
are of the same type is compared. If an activity has more than one type, hours for
that activity are divided by amount of types, for example: two types => type v =
activity hours/2 and type y = activity hours/2. Table 4.8 compares amount of hours
spent on every activity type.

Activity types Annotative approach | Compositional approach
SPLE Training 90 16
Data cleansing 0 23,25
Domain analysis 82 18
Feature identification 22 22,25
Diffing 40 26
Architecture identification 5 2
Feature location 7 50
Feature modeling 10 7
Transformation 210 103.,5
Quality assurance 30 103,5
Total amount of person hours: 496 371,5

Table 4.8: Comparison of total person hours per activity type

The data from Table 4.8 show that some activities have similar amount of person
hours. The big differences can be seen for SPLE Training which might be because
of different entry knowledge between the two groups that is the result of previously
taken courses within the SPL field. Other larger differences, such as for Transforma-
tion, Quality assurance and Domain analysis can be seen as well. The comparison
of hours is supplemented by Table 4.9 that shows what activities have been cate-
gorized with activity types. This data helps to comprehend the amount of person
hours since relying on only the Table 4.8 can be misleading.

46

4. Results

Activity types Annotative approach Compositional approach

- Installing and learning FeatureIDE - Reading about compositional SPL
SPLE Training - Code diffing - FeatureHouse research

- General SPLE learning - FeatureIDE research

- Translating code comments

Data cleansin .
s - Removing unused code

- Running and testing the games

- Architecture analysis - Running games
Domain analysis - Manually analysing code - Mapping game features
- Building and running games in Android Studio - Creating feature model

- Feature identification

- Running games
- Mapping game features
- Translating code comments

- Running and testing the games

Feature identification . e
- Feature identification

Diffing - Code diffing - Pairwise comparison of variants
Architecture identification | - Architecture analysis - Reverse engineering of class diagrams
- Reverse engineering of class diagrams

Feature location - Feature identification - Finding features in source code

- Pairwise comparison of variants

- Installing and learning FeatureIDE

- Transformation: ApoSnake and ApoDice
Feature modeling - Transformation: ApoSnake, ApoDice and ApoClock - Creating a feature model
- Transformation: ApoSnake, ApoDice, ApoClock and ApoMono.
- Transformation: All games.

- Transformation: ApoSnake and ApoDice

- Transformation: ApoSnake, ApoDice and ApoClock

- Transformation: ApoSnake, ApoDice, ApoClock and ApoMono
Transformation - Branding: Font - Transforming source code to feature
- Transformation: All games

- Branding: Menu- Annotating features
- Quality assurance

Quality assurance - Quality assurance -Transforming source code to feature

Table 4.9: Comparison of performed activities per activity type

To grasp a more accurate picture of the two migration processes, one can examine
the percentage of duration that each activity type takes in the entire migration pro-
cess. Looking at the red bars in Figure 4.4 making up the compositional migration
process, it is clear that testing the SPL (Quality Assurance) and transforming it
(Transformation) occurred in parallel and together cover over 50% of the migration
process. Another considerable activity type is Feature Location with 15.5%, with
diffing also constituting 7%.

Looking at the blue bars in Figure 4.4, representing the annotative approach, Qual-
ity Assurance activities occurs only at the end of the migration process. Naturally,
Transformation activities are making up the largest section of the migration process.
However, with the annotative approach, we see a larger focus on the domain analysis
and a smaller focus on feature location with only 1.4% as opposing to 13.5% to the
compositional counter part.

47

4. Results

Annotative % and Compositional%

B Annotative % [} Compositional®
20.0

40.0
30.0
20.0
10.0

0.0

Activity Types

Figure 4.4: Comparison of percentage of each activity type in both migration
process approaches

48

D

Discussion

The chapter discusses the results acquired from this study in relation to this thesis’
research questions. It also presents different challenges that were discovered during
this study.

5.1 Discussion

This study provided many interesting results but despite all empirical data on what
it actually is that you do during a reengineering process, things could have been done
differently. The following sections bring up different challenges and other discoveries
that can produce even better results for a similar study.

5.1.1 Level of Completion

During the migration process, it was not possible to migrate all the five variants into
one SPL, this was due to several challenges that were encountered (see Section 5.1.8).
The three games that were migrated into the SPL have different degrees of configura-
bility. The migration process began with reengineering ApoNotSoSimple (V2) and
ApoSnake (v4) since the perception after running all games combined with results
from the pairwise diffing showed that these two variants shared many commonali-
ties. The last variant (Apolcarus) that was migrated was not divided into as many
features, however, the purpose of its inclusion is to demonstrate that it is possible
to include games of different genre into the SPL (ApoSnake and ApoNotSoSimple
are level-based games, while Apolcarus is an endless-runner game). Ideally, the
reengineering should extent to satisfy the feature model, meaning every feature is
populated with its own respective code block. However, this is not always achievable
for several reasons.

First, given the uniqueness of the code and the high degree of coupling between
features within variants, it became quickly obvious that reengineering of all the
variants to satisfy the feature model is too ambitious and not possible for the given
time frame of the project. This is because each game, while architecturally similar,
varies greatly in the game-play features such as enemies, world, game rules and so
forth. Hence, even if time was spent satisfying every feature in the feature model,
this would not increase the SPL’s configurability. For instance, adding the ApoNot-
SoSimple enemy (an enemy which shifts all elements in the game world every time
the player move), will not function in ApoSnake since the player and the levels will

49

5. Discussion

not be winnable or playable even if one would have spent the time necessary to
decouple these features. In other words, the inclusion of a game rule from variant
A to variant B, usually breaks all the rules of variant B, which renders the game
unplayable.

To summarize, the focus in this migration process was to showcase useful config-
urability where the gameplay remains functional. For example, a client may find
it useful to be able to generate variants with and without the Game Editor (where
the user can create their own level) portion of the game depending on the customer
requirements.

5.1.2 RQ.1 Pros and Cons of Different Strategies

Examining the literature and studying the different strategies was a time consuming
task given the lack of concrete standardized, or at least agreed-upon, strategy or
approach to migrate an existing system to a software product line. While there are
several authors that attempted to present their experiences in such reengineering,
their papers either rely on different resources other than ours (for instance on com-
mit history rather than source code), or that depend on tools that are not available.
Additionally, some papers also report results of successful migrations but they do
not provide any repositories with their developed SPL nor do they provide sources
to the existing systems or any concrete list of activities on how they achieved it.

To summarize, we find the literature on SPL migration strategies to be fragmented
and most if not all papers provide a high-level or a brief summary of the authors
migration process. For this reason, we conclude that while strategies do have some
advantages and disadvantages, the more important factor is that the selection of the
most appropriate strategy, may not depend on pros and cons of the said strategy,
but on three factors which are described below.

5.1.2.1 Data Available

When it comes to transforming an existing software, the data available varies greatly.
And according to studies, in most industrial cases, the developers may not even be
able to run the software at all[19]. Since most of the approaches to migration
take data as an input to produce an output. Therefore, the availability of the
data will filter out several approach and limits the developer to only few applicable
strategies. However, one can produce more relevant data from already available
data. For example in this study, we were able to reverse engineer class diagrams
using existing tools with high accuracy which increases the number of applicable
strategies. Although reverse engineering other high level documentation such as
domain model may have reduced accuracy comparing to class diagrams.

5.1.2.2 Resources

Another factor that is a driver in choosing the appropriate strategy, is the resources
available. Reengineering existing software into a compositional product line is ex-

50

5. Discussion

tremely time consuming. One must estimate the time necessary to complete the
migration before starting, especially since the compositional approach is slower and
riskier than the annotative one [16].

Additionally, ideally, the team responsible for the migration should have at least
one domain expert if they need to carry any Expert-driven strategy. Moreover, the
team also need to allocate resources into SPL training and getting familiar with the
necessary tools such as FeaturelDE.

5.1.2.3 Tools

Tools available is also a decisive factor in choosing the strategy. Several approaches,
especially dynamic analysis approaches requires tools for feature location which
aren’t always readily available. Most of the tools were either outdated, commercial
or non-existing (discontinued). Moreover, several tools requires training to use,
for example search-based usually entails feeding data to statistical software such
as R studio or requires the need to write searching algorithms that optimized the
search for commonalities and variablities [36]. Finally, tools might provide unhelpful
output, for example in our case But4Reuse.

5.1.3 RQ.2 Migration Effort Measurement

The designed template have different factors that are similar to some cost models.
These factors help when trying to illustrate how much effort a certain activity takes.
Even though it is about effort and not costs in terms of monetary values, one will
get an estimation of what it might cost especially when comparing activities to each
other. But despite how accurate cost models might be and the mapping of those
metrics into our measurement design, the estimation might not correspond to the
amount of effort invested.

Discussions in Section 5.1.5 bring up difficulties with non-coding activities. This
is coming from missing measurements in the measurement design, which leads to
questions about how to show effort for these kinds of activities other than the amount
of hours spent. Another problem turned out to be edited LOC, where no tool to
identify if a line had been modified was found. Going through thousands of LOC
in git commits to identify what lines were edited instead of added/removed was not
possible. This led to missing data for the important activity A12.

5.1.4 RQ.3 Activities in a Compositional Reegineering

Previous literature describes the migration process in a waterfall fashion, as one
would start with the detection phase, followed by the analysis phase and finally
the transformation phase [3]. In our research, we find that in the beginning of the
reengineering process, the first two phases happen in parallel until enough infor-
mation about source code and features is gathered. In other words, we go back
and forth between detection and analysis phase. Once enough data is gathered, the
transformation phase can begin, but even in this phase, we always did revisit the

51

5. Discussion

two first phases. This is because as you transform certain features, one may discover
other features or wants to separate a feature into two or combine two existing ones.
For this reason, we say that developers will most likely go back and forth to different
activities during the reengineering process.

Early in the process, activity granularity was discussed. After defining activities,
it becomes clear that, throughout the reengineering process, the granularity is too
vague and it could be even more fine-grained. An activity should be language
independent and domain independent. It should also describe a performed activity
more detailed than what previously been determined. This is so it can be easily
transferable to other studies, as well as tested on migrations on different software
systems. The retrieved list of activities does not give an accurate picture of the
final phase, the transformation phase. Even though the granularity is at a similar
level throughout the process, one does not really see what has been going on during
the transformation. Activity A12 ends up being too holistic and lacks details, it
should have been broken down into several smaller activities. If this would have
been done, the transformation phase would have been easier to grasp, which is what
previous literature have been missing as mentioned earlier. A list with more detailed
activities from this study regarding transformation could consist of things such as:

o Make hard-coded parts dynamic

» Change data structures to allow for greater modularity

o Refactor similar methods into a generic method

o Unify duplicated code into general code
This list shows that these activities are out of scope in regards of the defined activity
granularity, where we assumed the reader understands that these things happen
during reengineering. But a more detailed activity definition would have provided
a better overview of the process.

5.1.5 RQ.4 Different Efforts of Activities

Even by basing effort metrics on well-established cost models, we found it chal-
lenging to track the migration process. This is because one might switch between
activities in a matter of seconds. For instance, pairwise comparison, feature location
and transformation often occur at the same time. However, it is clear that trans-
formation is by far the most time-consuming activity. The results also show that
many performed activities have empty, or non available data, in the log remaining
after mapping relevant efforts. This means that effort measuring can be even more
difficult for non-coding activities.

Commit history helps quantifying efforts of the migration process by keeping track
of lines of code migrated, files added and features implemented. However, tracking
lines of code modified from the original variants is challenging as migration to SPL
necessitate the developer to start a brand new SPL project, hence commit history
does not provide changes between the variants and the SPL. Moreover, even with
frequent commits with descriptive commit messages, we find it challenging to deter-
mine when a feature is fully migrated. This is because as the developer continue to

52

5. Discussion

migrate the rest of the system, they may end up changing previous features (break-
ing down a feature or merging two features) and hence source code from previously
migrated features need to be changed.

Furthermore, we identify additional factors that we learned (after the migration
process) to be of significance when it comes to measuring efforts of the migration
process. The quality of the code is a major factor in estimating the efforts. For
instance, if the original variants does not contain any comments, the migration
duration will increase as the developer need to spend additional resources on software
comprehension. Additionally, we believe that studying internal software quality
such as cyclomatic complexity and the amount of hard coded source code can be an
indicator on how long it will take the transform the variants into an SPL.

5.1.6 Top-Down vs. Bottom-up

Code belonging to a feature might be scattered or tangled. This turned out to
be problematic in different ways after trying both the top-down and bottom-up
approaches during this study. A top-down approach gave a less accurate SPL result
than a bottom-up, but the bottom-up approach ended with more bad features (in
our case, feature that only works for a specific variant) compared to top-down. A
good feature usually provide a distinct functionality to an SPL [54], where bottom-up
could have features such as Utils compared to top-down that described functionality
in a better way, e.g. Player. Because of this, a top-down approach gives a better
overall understanding compared to bottom-up. But it takes a longer time to achieve
the same level of configurability as for if a bottom-up approach would be used.

5.1.7 Thesis comparison

This section discusses the comparison of results found in the collaborating theses.
As aforementioned, the other thesis uses an annotative approach as oppose to our
compositional approach, and with a different dataset based on Android, yet the
same domain.

Many of the big differences in hours spent per activity type between the two the-
ses is most likely caused by the previously mentioned dividing of hours by amount
of types per activity. An example that reflect this misleading result is hours for
Transformation and Quality assurance in the Compositional approach. There is
only one activity that is categorized with these two which means the hours are split
in half over the two activity types. This misleading data also shows what have been
discussed earlier: activities needs to be more fine-grained. That would separate
activities between types more clearly, which in the end delivers a better result.

However, looking at the percentage of each activity type occupying both SPL mi-
gration approaches in Figure 4.4, we notice that all activity types represents similar
sizes in terms of percentage in both migration approaches, with the exception of
activities relating to Feature Location which are a much bigger part of the composi-

53

5. Discussion

tional approach than the annotative one. This can be because in the compositional
approach, there is a large focus on separating code blocks in each feature in the
feature model while in the annotative one it suffices to annotate each feature using
IFDEF techniques. In the same figure, we observe a difference between Transfor-
mation activity types and Quality Assurance, however, this can be misleading as
previously described and because of different logging processes between the two the-
ses. SPLE Training activities also differ considerably between the two migration
processes, however, this is insignificant since the duration of these activities are
solely dependent on the developers’ previous experiences in SPLE.

The last difference is that the annotative approach spent more efforts in Domain
Analysis as opposing to the compositional approach. As domain analysis and domain
knowledge is important in any SPL migration process, we suspect that this is the
result of poor or misleading logging of the other thesis when it comes to Domain
analysis activities.

5.1.8 Challenges

Many of the concepts within SPLE are good in theory. When it comes to applying
them in practice, and especially to a reengineering process, several challenges were
faced that hinder the process. This section summarizes obstacles that were discov-
ered during this Masters Thesis.

Challenge 1 - Features can be technical or domain-level: While the feature
model is seen as a communication tool between client and supplier, it may be bene-
ficial to add technical features in the feature model that may not mean anything to
the client such as “input”, “engine” and such. This is to increase the configurability,
hence increase the number of possible variants to be generated from the SPL.

Challenge 2 - Amount of Resources to Allocate to Refactoring: We learned
from the migration process that it is important to somehow quantify how long the
reengineering of each feature is. From this, one can define how many features a
developer can afford to migrate from the beginning of the project. From this infor-
mation, the developer will choose to break down the existing system in a defined
number of features in order to finish the project in time and within budget. In our
case, we broke down the system in a way that we believed would be optimal to
the client and end-user. In other words, the feature model contained enough config-
urability to satisfy any possible requirements given by the two types of stakeholders.

In addition, we find it equally important to identify feature dependencies prior the
transformation. This step requires an extensive analysis of the source code. This
is important because the number of dependencies of one feature will heavily impact
the effort required to transform the feature. Ideally, one would measure and com-
bine the size of the feature and its number of dependencies to control the scope of
the migration process. Moreover, another metric that is important to quantify is
the degree of entanglement and scattering a feature has. All of these measurements

o4

5. Discussion

combined can help the developer understand the effort needed to transform a fea-
ture, and perhaps even which feature the developer should migrate first.

Finally, another factor that is identified as important, is to study and compare the
dependencies between different code artifacts (more specifically classes) and the de-
pendencies between features. We find it easy to assume that these two dependencies
are similar, if not identical. However, technically, this is not the case at source code
level. For instance, in the beginning of the feature identification phase, we did not
consider or assume dependencies between Actor and Menu Button until the source
code was systematically read.

Challenge 3 - Quality of the Existing Source Code: Code clean-up extends
beyond finding dead code and duplication, the developer does not always use de-
scriptive naming and sometimes an artifact (e.g. variable or class name) with same
purpose can be named differently in different variants. Also, some pieces of code
can belong to two features, for instance, isVisible(),a function in all variants source
code, is used to toggle the visibility of both buttons (UI elements) and Enemies,
hence it will belong to two features (enemy and Ul element). This is because source
code dependencies are not the same as feature dependencies.

Code quality can be inconsistent and poor, for instance, most buttons in the game
are hardcoded into an array buttons. Since each button can represent a feature (for
example, Game Editor feature has a button in the Menu, and so does Options and
Credits and so forth), one needs to change the data structure into a more dynamic
one such as a HashMap to allow configurability (enabling and disabling) of these
buttons without resulting into any kind of exception.

Additionally, other buttons are not even included in the array, instead they are scat-
tered in different classes. This was discovered when migrating other features and
required us to go back to fix already-migrated features. Moreover, not all buttons
uses an image as asset, some are drawn using Java libraries, which makes the initial-
ization of buttons different from one another. This further complicated the migration
process and this can be avoided if all the buttons followed a consistent design choice.

Challenge 4 - Feature dependencies: Features depend on other features. In
order to extract one feature you have to use a lot of code that is not part of that fea-
ture, which means it is difficult to test if a feature is fully functioning by itself. We
find the identification of feature dependencies extends beyond domain knowledge,
and one must also analyze what features depend on the source code of the feature
that is being migrated.

Moreover, even though variants have been derived from the clone-and-own method-
ology, there is a high possibility that they are very different, especially in the way
it connect to the rest of the source code. This leads to a lot of effort to reengineer
and make “general” features. The few things that are commonalities could have
many dependencies to variabilities (related to feature dependencies challenge and
technical/domain challenge). E.g. “enemy-feature”.

95

5. Discussion

Challenge 5 - Superimposition becomes complex for larger projects: Su-
perimposition is great in theory and also works according to plan. When software
grows and the amount of features gets larger as well, same goes for superimposition
that might expand over new features. When the same class exists in several fea-
tures, this means that a large class (from the original source code) that belongs to
many features, say n number of features results in the division on the said class to n
number of classes with identical name. The presence of several classes with identical
names can get confusing and the maintenance of these classes becomes a complex
task..

Challenge 6 - Refactor complications: During refactoring different data struc-
tures may be modified. This leads to redundant workload when different features
need the same refactoring. E.g. array[] to ArrayList<>.

Challenge 7 - Feature model constraints: When trying to implement new
features one continuously recognizes new constraints for the feature model. It is
difficult to add these to the model during implementation since if the constraint is
there, the feature and other features that are involved in the constraint must be
fully functioning. This complicates the implementation process and possibility of
missing constraints. It raises the question as to when is the optimal time to add the
constraint to the feature model.

Challenge 8 - Difficulties to track evolution: Because of scattered and tangled
features, commit history will never tell the real story of what you actually did in
that commit. It might be that feature X and Y is edited in order to make feature Z
working.

Challenge 9 - Test-driven development: There might not exist a possibility to
test an implemented feature even if the feature has been successfully integrated. The
software might not be possible to build and test, despite a feature that is working.
This relates to the challenge of feature dependency, since the migrated feature may
depend on other feature and hence, even after successful migration, once can not
test the feature.

Challenge 10 - Involvement of Stakeholders: During the migration process,
we needed to make important decisions with low confidence given the absence of
important stakeholders such as the original developer, clients and end-users. Most
questions evolve around features and data available from the start (in our case the
source code). There were decisions such as:
 Is characteristic X of the system important enough to be a feature?
o Is the difference between two code blocks caused by evolution or is it feature
specific?
e Should this feature be broken down into more features to increase configura-
bility?

56

5. Discussion

These types of questions are important because the migration process can become
more time-consuming depending on the answer. For instance, if feature a, b and ¢
are not important to the client, the developer can save time by not separating the
concerning code blocks. Hence, to increase the quality and efficiency of a migration,
several stakeholders must be involved.

Challenge 11 - Poor Readability: The very nature of compositional SPL reengi-
neering is to break down the existing software system’s source code into code units
where each unit represent a certain feature. In practice, this results most of the
time in every feature sharing classes with the same names, that will later be super-
imposed when a variant is generated. For example, a feature Option, responsible
for letting the user access and change different options in the game (e.g. turn music
on and off), has a GUI part, logic part, buttons and rendering methods. In order
to implement this feature in an SPL, each part of the system (GUI, logic) will be
implemented in the Java class that is also shared by dozens of other features. For
instance, ApoGamePanel.java is the class that contains most of the GUI elements
and handles the button listeners and more. Hence, different feature folders will have
files named ApoGamePanel.java, each having a code fragment that defines a specific
feature. In fact, the SPL project contained 15 classes with the name ApoGamePanel
after the last commit. The challenge is illustrated in Figure 5.1.

Options Code Block
Game Code Block l
| UserLevels Code Block '— | Options | | Game | | UserlLevels | | Editor | | Credits
—‘ el java A el java * T
Editor Code Block |
Credits Code Block

ApoGamePanel.java el java rel.java

ApoGamePanel.java

Figure 5.1: Illustration of the Result of Distributing Code Blocks Between Features

When the system contains a lot features, the developer can lose track of how many
files in total that makes up the entire class. One possible solution is to look at
the generated code of a specific variant once all the code is superimposed in one
file, but it is not always possible to choose all features that represent a class since
that configuration might be invalid (because of feature constraints). However, even
readability there is difficult as each fragment is implemented as its own method.
This means that if a function, such as init(), contains code blocks from 10 features,
the function init() will be scattered in 10 different functions in the generated class.
This can be seen in Figure 5.2.

57

5. Discussion

private void
super.init();
super.setShowFPs (false);

}

if (this.
this.
this.

}

if (this.
.menu = new ApoGameMenu(this);

this
}

init wrappee WhiteMenu () {

buttons == null) {
buttons = new ApoGameButtons(this);
buttons.init();

menu == null) {

this.setMenu();

private void
init wrappee WhiteMenu();
if (this.game == null) {

this.game = new ApoGameGame(this);

}

}

private void
init wrappee World();
this.game.getUserLevels().loadHighscore();

}

private void
init wrappee UserLevels();
if (this.levelChooser == null) {

this.levelChooser = new ApoGamelLevelChooser(this);

init wrappee World () {

init wrappee UserlLevels () {

init wrappee LevelChooser () {

if (ApoGameConstants.B APPLET) {

S
t

}
}
}

tring load;
ry {
load = ApoHelp.loadData(new URL(ApoGameConstants.PROGRAM _URL), ApoGameConstants.COOKIE NAME);
int level = Integer.valueOf(load);
this.levelChooser.setMaxLevel (level);
catch (MalformedURLException e) {
e.printStackTrace();
catch (Exception e) {
e.printStackTrace();

Figure 5.2: Example of Poor Readability in the Generated Java Files

58

O

Conclusion

The chapter present the final conclusion of the research and also recognizes threats
to validity and what can be done as future work.

6.1 Migration

The reengineering process for a compositional SPL was more time consuming than
anticipated. In some situations where an annotative approach can be fairly simple,
the compositional approach on the other hand needs plenty of overhead and takes
longer to implement [16]. It might be more efficient to start from scratch with SPL
if a system is very large, instead of trying to reengineer the current system. Another
solution could be to use both approaches, where annotative is used in the beginning
since it usually goes faster and later cross over to a compositional approach. It is
also possible to improve superimposition by implementing annotation within the
compositional approach, as suggested by [16]. But all this is of course time consum-
ing and will further increase required efforts.

No matter what was tried during this study, we ended up with some bad features.
It could be because of the domain (games) that even though some variants might
seem to have many commonalities, they have extreme variability on source code
level. This leads to that much of the code base ends up in variant-specific features.
This decreases the overall configurability of the SPL.

Throughout the process, difficulties were encountered when trying to migrate one
feature at a time. It might be that the migration process can work more fluently, with
continuous working builds, if one applies "reverse featuring'. With this approach,
one complete variant is implemented in one feature. Afterwards, one feature at a
time is getting extracted from the complete variant into a separate feature. This
means you keep having a working game every time a new feature has been extracted.

6.2 Threats to Validity

This section brings up recognized internal threats and external threats to validity.
It also presents how the study tries to mitigate these threats.

59

6. Conclusion

6.2.1 Internal Validity

This study decides on a migration strategy after a literature review about exist-
ing strategies and their differences. There are limitations when choosing a specific
strategy, activities involved can differ depending on what strategy you choose. The
domain can matter as well, which means that the answers for RQ.2 might not be
applicable in general.

The qualitative data with activities involved has a risk of being incomplete, where
something that should be done is missed. Another internal threat is the consistency
and accuracy of the logging. To try and avoid these threats we thoroughly document
every step of our migration process and will conduct weekly meetings to discuss the
logging and its accuracy, and amend any inaccuracy found. In addition, to reduce
the risk to collect subjective data and to perform subjective tasks, all our measure-
ment and tasks are be based on processes that has been previously used in past
research of reengineering software systems into product lines. There is a possibility
that the measuring of time spent for activities are wrong. It can be that there are
inconsistencies when it comes to logging hours spent.

Another threat regarding activities is that it can be difficult to keep track of what
activities that has been performed. This is since activities can sometimes be per-
formed in parallel to each other. These threats are mitigated by continuously adding
hours to reduce mistakes if numbers were to be added at later stages. If any number
is wrong they most likely present less hours than what has really been spent on that
specific activity.

Moreover, there is always a risk that we can misunderstand features of the software.
To mitigate this, all the features are discussed with the supervisor. Another risk
is that the research is be conducted by students and not industry practitioners,
hence the applicability of our findings in an industrial context may be reduced. To
mitigate this risk, our measurements and reengineering strategy are be based on
well-established literature and common practices of SPL engineering. This means
that if an industry practitioner would perform a reengineering process, they would
apply the same methodology as in this case study.

6.2.2 External Validity

The dataset studied in this research is a collection of Java games with an average
of 6000 LOC per product. This can limit the applicability of our results (migration
strategy and efforts) to this domain and size of the software. The limitation is
reduced since the games have typical layers that are shared with other programs,
such as user interface and application logic such as game rules and game mechanics.
But in terms of scalability, we cannot generalize beyond the size of the software.

60

6. Conclusion

6.3 Future Work

This study could be produced again with the same dataset and strategy to try and
identify further reengineering activities, by applying the previously discussed revised
definition of activity granularity. A replication could also finish migrating all five
variants in order to have a more vigorous quantitative data on efforts needed, since
this study only implemented three out of five variants before time ran out.

We encountered several difficulties during this study. These are described to pinpoint
what different thresholds that exists for an easy migration process. Researchers
could further investigate the challenges this study mentions. By doing this, there is
a possibility to evolve SPLE so that it becomes less complex in practice. This could
in the end be of high value within the industry where SPLs could be the next step,
and companies become more confident in migrating their software systems using the
compositional SPL approach.

61

6. Conclusion

62

1]

2]

[3]

8]
[9]
[10]
[11]

[12]

Bibliography

S. Apel, D. Batory, C. Kastner, and G. Saake, Feature-Oriented Software
Product Lines, 2013. [Online]. Available: http://link.springer.com/10.1007/
978-3-642-37521-7

S. Apel, C. Kastner, and J. Liebig. Featurehouse: Language-independent,
automated software composition. Accessed: 2019-02-26. [Online|. Available:
http://www.fosd.de/featurehouse

W. Assuncao, R. Lopez-Herrejon, L. Linsbauer, S. Vergilio, and A. Egyed,
“Reengineering legacy applications into software product lines: a systematic
mapping,” Empirical Software FEngineering, vol. 22, mno. 6, dec 2017.
[Online|. Available: https://www.engineeringvillage.com/share/document.url?
mid=inspec{ }3e5bef5d161be2¢280dMb5ec41017816339{& }database=ins

J. Bosch, “Software product line engineering,” Systems and Software Variability
Management: Concepts, Tools and Fxperiences, pp. 3—24, 2013.

J. Martinez, T. Ziadi, T. F. Bissyandé, J. Klein, and Y. Le Traon, “Bottom-up
adoption of software product lines: A generic and extensible approach,” in
Proceedings of the 19th International Conference on Software Product Line,
ser. SPLC '15. New York, NY, USA: ACM, 2015, pp. 101-110. [Online].
Available: http://doi.acm.org/10.1145/2791060.2791086

M. Lillack, W. Hedman, and T. Berger, “Intention-Based Integration of
Software Variants.” [Online]. Available: http://www.cse.chalmers.se/~bergert/
paper/2019-icse-incline.pdf

J. Kriger, W. Fenske, T. Thiim, D. Aporius, G. Saake, and T. Leich,
“Apo-games: a case study for reverse engineering variability from cloned
Java variants,” Proceeedings of the 22nd International Systems and
Software Product Line Conference - Volume 1, {SPLC} 2018, Gothenburg,
Sweden, September 10-14, 2018, pp. 251-256, 2018. [Online]. Available:
https://doi.org/10.1145/3233027.3236403

P. Clements and L. Northrop, Software Product Lines: Practices and Patterns,
ser. SEI series in software engineering. Addison-Wesley, 2002.

F. van der Linden, K. Schmid, and E. Rommes, Software Product Lines in
Action, 2007, vol. 41, no. 6193.

M. Asadi, E. Bagheri, B. Mohabbati, and D. Gasevi¢, “Requirements engineer-
ing in feature oriented software product lines,” vol. 11, p. 36, 2012.

A. Classen, P. Heymans, and P. Y. Schobbens, “What’s in a feature: A require-
ments engineering perspective,” 03 2008, pp. 16-30.

W. Fenske, J. Meinicke, S. Schulze, S. Schulze, and G. Saake, “Variant-
preserving refactorings for migrating cloned products to a product

63

http://link.springer.com/10.1007/978-3-642-37521-7
http://link.springer.com/10.1007/978-3-642-37521-7
http://www.fosd.de/featurehouse
https://www.engineeringvillage.com/share/document.url?mid=inspec{_}3e5bef5d161be2c280dM5ec41017816339{&}database=ins
https://www.engineeringvillage.com/share/document.url?mid=inspec{_}3e5bef5d161be2c280dM5ec41017816339{&}database=ins
http://doi.acm.org/10.1145/2791060.2791086
http://www.cse.chalmers.se/~bergert/paper/2019-icse-incline.pdf
http://www.cse.chalmers.se/~bergert/paper/2019-icse-incline.pdf
https://doi.org/10.1145/3233027.3236403

Bibliography

[14]

[15]
[16]

[17]

[18]

[19]

[20]

[21]

64

line,” Piscataway, NJ, USA, 2017//, pp. 316 — 26, code identifica-
tion;clone detection;feature-oriented SPL;semiautomated process;step-wise pro-
cess;commonality extraction;commonality identification;SPLs;software prod-
uct lines;product variants;bug fixes;evolution;maintenance;clone-and-own;code
reusing;cloned product migration;variant-preserving refactorings;. [Online].
Available: http://dx.doi.org/10.1109/SANER.2017.7884632

M. Balazinska, E. Merlo, M. Dagenais, B. Lague, and K. Kon-
togiannis, “Measuring clone based reengineering opportunities,” in
Proceedings ~ Sixth International Software Metrics Symposium (Cat.
No.PR00403). IEEE Comput. Soc., Los Alamitos, CA, USA, 1999,
pp. 292-303. [Online]. Available: https://www.engineeringvillage.com/
share/document.url?mid=inspec{ _}base906441778{& }database=inshttp:
//ieeexplore.icee.org/document /809750/

G. Zhang, L. Shen, X. Peng, Z. Xing, and W. Zhao, “Incremen-
tal and iterative reengineering towards software product line: An
industrial case study,” in IEEE International Conference on Software
Maintenance, ICSM. 1EEE, Piscataway, NJ, USA, 2011, pp. 418-427.
[Online|. Available: https://www.engineeringvillage.com/share/document.url?
mid=inspec{_}10655dd1345c62be6fM621b2061377553{ & }database=ins

C. Kaéstner, S. Apel, and M. Kuhlemann, “Granularity in software product
lines,” 05 2008.

C. Késtner and S. Apel, “Integrating compositional and annotative approaches
for product line engineering,” 10 2008.

S. Apel and C. Kastner, “Language-independent and automated software com-
position: The featurehouse experience,” Software Engineering, IEEE Transac-
tions on, vol. 39, 01 2011.

C. Kastner, S. Apel, and M. Kuhlemann, “Granularity in software product
lines,” in Proceedings of the S30th International Conference on Software
Engineering, ser. ICSE ’08. New York, NY, USA: ACM, 2008, pp. 311-320.
[Online]. Available: http://doi.acm.org/10.1145/1368088.1368131

V. Anwikar, R. Naik, A. Contractor, and H. Makkapati, “Domain-driven tech-
nique for functionality identification in source code,” ACM Sigsoft Software
Engineering Notes, pp. 1-8, 05 2012.

Y. Tang and H. Leung, “Top-down feature mining framework for software prod-
uct line,” vol. 2, 01 2015, pp. 71-81.

J. Rubin, K. Czarnecki, and M. Chechik, “Managing Cloned Variants:
A Framework and Experience,” Proceedings of the 17th International
Software Product Line Conference - SPLC °13, p. 101, 2013. [On-
line]. Available: http://doi.acm.org/10.1145/2491627.2491644{ % }5Cnhttp:
//dl.acm.org/citation.cfm?doid=2491627.2491644{% } 5Cnhttp://dl.acm.org/
citation.cfm?doid=2491627.2491644

O. LLC. The objectaid uml explorer. Accessed: 2019-02-03. [Online]. Available:
https://www.objectaid.com/home

B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, and R. Koschke, “A
systematic survey of program comprehension through dynamic analysis,” IEFEFE
Transactions on Software Engineering, vol. 35, no. 5, pp. 684-702, Sep. 2009.

http://dx.doi.org/10.1109/SANER.2017.7884632
https://www.engineeringvillage.com/share/document.url?mid=inspec{_}base906441778{&}database=ins http://ieeexplore.ieee.org/document/809750/
https://www.engineeringvillage.com/share/document.url?mid=inspec{_}base906441778{&}database=ins http://ieeexplore.ieee.org/document/809750/
https://www.engineeringvillage.com/share/document.url?mid=inspec{_}base906441778{&}database=ins http://ieeexplore.ieee.org/document/809750/
https://www.engineeringvillage.com/share/document.url?mid=inspec{_}10655dd1345c62be6fM621b2061377553{&}database=ins
https://www.engineeringvillage.com/share/document.url?mid=inspec{_}10655dd1345c62be6fM621b2061377553{&}database=ins
http://doi.acm.org/10.1145/1368088.1368131
http://doi.acm.org/10.1145/2491627.2491644{%}5Cnhttp://dl.acm.org/citation.cfm?doid=2491627.2491644{%}5Cnhttp://dl.acm.org/citation.cfm?doid=2491627.2491644
http://doi.acm.org/10.1145/2491627.2491644{%}5Cnhttp://dl.acm.org/citation.cfm?doid=2491627.2491644{%}5Cnhttp://dl.acm.org/citation.cfm?doid=2491627.2491644
http://doi.acm.org/10.1145/2491627.2491644{%}5Cnhttp://dl.acm.org/citation.cfm?doid=2491627.2491644{%}5Cnhttp://dl.acm.org/citation.cfm?doid=2491627.2491644
https://www.objectaid.com/home

Bibliography

[24]

[25]

[26]

[29]

[30]
[31]
[32]

[33]

[38]

T. Eisenbarth, R. Koschke, and D. Simon, “Derivation of feature component
maps by means of concept analysis,” in Proceedings Fifth European Conference
on Software Maintenance and Reengineering, March 2001, pp. 176-179.

P. Frenzel, R. Koschke, A. P. J. Breu, and K. Angstmann, “Extending the
reflexion method for consolidating software variants into product lines,” in 14th
Working Conference on Reverse Engineering (WCRE 2007), Oct 2007, pp. 160—
169.

D. Romero, S. Urli, C. Quinton, M. Blay-Fornarino, P. Collet, L. Duchien,
and S. Mosser, “SPLEMMA: A Generic Framework for Controlled-Evolution
of Software Product Lines,” Proceedings of the 17th International Software
Product Line Conference co-located workshops (SPLC), vol. 2013, p. 59, 2013.
[Online]. Available: http://dl.acm.org/citation.cfm?doid=2499777.2500709

H. Prahofer, F. Angerer, R. Ramler, H. Lacheiner, and F. Grillenberger, “Op-
portunities and challenges of static code analysis of iec 61131-3 programs,” 09
2012, pp. 1-8.

P. Emanuelsson and U. Nilsson, “A comparative study of industrial
static analysis tools,” Flectronic Notes in Theoretical Computer Science,
vol. 217, pp. 5 — 21, 2008, proceedings of the 3rd International
Workshop on Systems Software Verication (SSV 2008). [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1571066108003824

7. Zhioua, S. Short, and Y. Roudier, “Static code analysis for software secu-
rity verification: Problems and approaches,” in 2014 IEEE 38th International
Computer Software and Applications Conference Workshops, July 2014, pp.
102-109.

L. Hu and K. Sartipi, “Dynamic analysis and design pattern detection in java
programs,” Skokie, 1L, USA, 2008//, pp. 842 — 6.

H. Safyallah and K. Sartipi, “Dynamic analysis of software systems using exe-
cution pattern mining,” vol. 2006, 07 2006, pp. 84— 88.

A. Santos, F. Nunes Gaia, E. Figueiredo, P. Neto, and J. Araujo, “Test-based
spl extraction: An exploratory study,” 03 2013.

H. Koziolek, T. Goldschmidt, T. de Gooijer, D. Domis, and S. Sehestedt, “Ex-
periences from identifying software reuse opportunities by domain analysis,” 08
2013, pp. 208-217.

U. Ryssel, J. Ploennigs, and K. Kabitzsch, “Extraction of feature models from
formal contexts,” in ACM International Conference Proceeding Series, 2011.
M. Eaddy, A. Aho, G. Antoniol, and Y.-G. Guéhéneuc, “Cerberus: Tracing
requirements to source code using information retrieval, dynamic analysis, and
program analysis,” 07 2008, pp. 53-62.

R. E. Lopez-Herrejon, L. Linsbauer, and A. Egyed, “A systematic mapping
study of search-based software engineering for software product lines,” Infor-
mation and Software Technology, vol. 61, pp. 33-51, 2015.

K. Pohl, G. Bockle, and F. J. v. d. Linden, Software Product Line Engineering:
Foundations, Principles and Techniques. Berlin, Heidelberg: Springer-Verlag,
2005.

K. Pohl and A. Metzger, Software Product Lines, 06 2018, pp. 185-201.

65

http://dl.acm.org/citation.cfm?doid=2499777.2500709
http://www.sciencedirect.com/science/article/pii/S1571066108003824

Bibliography

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]
[51]
[52]

[53]

[54]

66

P. Clements, J. McGregor, and S. Cohen, “The structured intuitive model for
product line economics (SIMPLE),” Technical Report CMU/SEI-2005-TR-003,
no. February, 2005. [Online|. Available: http://oai.dtic.mil/oai/oai?verb=
getRecord{ & }metadataPrefix=html{& }identifier=ADA441881

B. Boehm, A. Brown, R. Madachy, and Ye Yang, “A soft-

ware product line life cycle cost estimation model,” 2004 Inter-
national Symposium on Empirical Software Engineering, 2004. [On-
line]. Available: https://www.engineeringvillage.com /share/document.url?

mid=inspec{_}480457101c9d09{2eM69b919255120119{ & }database=ins

J. Nobrega, E. Santana de Almeida, and S. Meira, “Income: Integrated cost
model for product line engineering,” vol. 0, 09 2008, pp. 27-34.

I. Sommerville, “28. Software Re-engineering,” pp. 1-18, 2000. [Online].
Available: https://ifs.host.cs.st-andrews.ac.uk /Resources/Notes/Evolution/
SWReeng.pdf

A. Dreiling and C. Kaéstner. Variability mining with leadt. Accessed:
2019-02-10. [Online]. Available: https://github.com/ckaestne/LEADT

C. Kastner, S. Apel, M. Rosenthal, and A. Dreiling. Cide: Virtual separation
of concerns (preprocessor 2.0). Accessed: 2019-04-17. [Online]. Available:
http://ckaestne.github.io/ CIDE/#intro

B. S. Inc. Biglever software gears product line engineering tool lifecycle
framework. Accessed: 2019-02-19. [Online]. Available: https://biglever.com/
solution/gears/

S. U. of Luxembourg. Butdreuse. Accessed: 2019-04-17. [Online]. Available:
https://butdreuse.github.io/

Y. Xue, “Reengineering legacy software products into software product line
based on automatic variability analysis,” Piscataway, NJ, USA, 2011//, pp.
1114 — 17. [Online]. Available: http://dx.doi.org/10.1145/1985793.1986009
fournova Software GmbH. Version control best practices. Accessed: 2019-
02-08. [Online]. Available: https://www.git-tower.com/learn/git/ebook/en/
command-line/appendix/best-practices

Angular. Developing angularjs, git commit guidelines. Accessed: 2019-02-
08. [Online]. Available: https://github.com/angular/angular.js/blob/master/
DEVELOPERS.md#-git-commit-guidelines

M. GmbH. Featureide. Accessed: 2019-03-15. [Online]. Available: http:
//www.featureide.com/

V. Paradigm. Visual paradigm. Accessed: 2019-03-15. [Online]. Available:
https://www.visual-paradigm.com/

L. Eclipse Foundation. Desktop ides. Accessed: 2019-04-26. [Online|. Available:
https://www.eclipse.org/ide/

P. America, H. Obbink, R. van Ommering, and F. van der Linden, CoPAM:
A Component-Oriented Platform Architecting Method Family for Product
Family Engineering. Boston, MA: Springer US, 2000, pp. 167-180. [Online].
Available: https://doi.org/10.1007/978-1-4615-4339-8 9

T. Berger, D. Lettner, J. Rubin, P. Griunbacher, A. Silva, M. Becker,
M. Chechik, and K. Czarnecki, “What is a feature?: A qualitative
study of features in industrial software product lines,” in Proceedings of

http://oai.dtic.mil/oai/oai?verb=getRecord{&}metadataPrefix=html{&}identifier=ADA441881
http://oai.dtic.mil/oai/oai?verb=getRecord{&}metadataPrefix=html{&}identifier=ADA441881
https://www.engineeringvillage.com/share/document.url?mid=inspec{_}480457101c9d09f2eM69b919255120119{&}database=ins
https://www.engineeringvillage.com/share/document.url?mid=inspec{_}480457101c9d09f2eM69b919255120119{&}database=ins
https://ifs.host.cs.st-andrews.ac.uk/Resources/Notes/Evolution/SWReeng.pdf
https://ifs.host.cs.st-andrews.ac.uk/Resources/Notes/Evolution/SWReeng.pdf
https://github.com/ckaestne/LEADT
http://ckaestne.github.io/CIDE/#intro
https://biglever.com/solution/gears/
https://biglever.com/solution/gears/
https://but4reuse.github.io/
http://dx.doi.org/10.1145/1985793.1986009
https://www.git-tower.com/learn/git/ebook/en/command-line/appendix/best-practices
https://www.git-tower.com/learn/git/ebook/en/command-line/appendix/best-practices
https://github.com/angular/angular.js/blob/master/DEVELOPERS.md#-git-commit-guidelines
https://github.com/angular/angular.js/blob/master/DEVELOPERS.md#-git-commit-guidelines
http://www.featureide.com/
http://www.featureide.com/
https://www.visual-paradigm.com/
https://www.eclipse.org/ide/
https://doi.org/10.1007/978-1-4615-4339-8_9

Bibliography

the 19th International Conference on Software Product Line, ser. SPLC
'15. New York, NY, USA: ACM, 2015, pp. 16-25. [Online]. Available:
http://doi.acm.org/10.1145/2791060.2791108

67

http://doi.acm.org/10.1145/2791060.2791108

Bibliography

68

A

Appendix 1

A.1 The Logging Template for Reengineering Ac-
tivities

INFORMATION
o Activity type:
o Activity:
o ActivityID:
e VariantID:
e Start Date:
« End Date:
e Description:
DATA
o Total Hours spent:
e Number of commits:
« LOC added:
o« LOC removed:
« LOC modified:
e« Number of files added:
e« Number of files removed:
e« Number of files modified:
ARTEFACTS
e Input:
e Output:
e Tools Used:
ACTIVITY DESCRIPTION
o Complexity:
e Importance:
« Dependencies on other activities:

A. Appendix 1

A.2 An Example of the Logging Artifact for each

Activity

INFORMATION

Activity type: Domain analysis

Activity: Playing game variants

ActivityID: 1

Start Date: 2xxx-xx-xx

End Date: 2xxx-xx-xx

Description: Understanding of the application domain. Running the games
to find similar concepts, such as the world, player, enemies and such. This
helps in identifying features.

DATA

Total Hours spent: 100
— IDE Tracker: WakaTime (70 hours)
— Extracting jar files: 2 hours
Number of commits: 5 (#16, #17, #18, #19, #20)
LOC added: N/A
LOC removed: N/A
LOC modified: N/A
Number of files added: N/A
Number of files removed: N/A
Number of files modified: N/A

ARTEFACTS

Input: Source Code
Output: N/A
Tools Used: Eclipse IDE

ACTIVITY DESCRIPTION

IT

Complexity: Time consuming but not difficult.

Importance: A domain analysis is crucial to gain knowledge on the domain
that the games are in. To be able to find commonalities and features, there
has to be extensive domain knowledge.

Dependencies on other activities: None

A. Appendix 1

A.3 Performed activities

INFORMATION

o Activity type: Domain analysis, Feature identification

o Activity: Running games

o ActivityID: Al

e VariantlD: V1, V2, V3, V4, V5

o Start Date: 2019-02-22

o End Date: 2019-02-25

e Description: Running all the game variants in order to get an overview of
implemented functionality and features.

DATA

o Total Hours spent: 17

e Number of commits: 0

« LOC added: N/A

« LOC removed: N/A

« LOC modified: N/A

o Number of files added: N/A

« Number of files removed: N/A

o Number of files modified: N/A

ARTEFACTS

o Input: Source code

e Output: Runnable Java application

o Tools Used: Eclipse IDE

ACTIVITY DESCRIPTION

o Complexity: This activity is considered of low complexity since the source
code was either already executable, or we only needed to extract the source
code from a jar file.

o Importance: This activity is considered highly important for the domain
engineering. This activity gave us a high level look at what features exist at
runtime.

o Dependencies on other activities:

INFORMATION

o Activity type: Domain analysis, Feature identification

o Activity: Mapping game features

o ActivityID: A2

e VariantlD: V1, V2, V3, V4, V5

o Start Date: 2019-02-25

e End Date: 2019-02-25

e Description: Comparing features from all game variants in order to find

commonalities. These features can then be called domain level features.

DATA

« Total Hours spent: 5

e Number of commits: 0

ITT

. Appendix 1

« LOC added: N/A

« LOC removed: N/A

« LOC modified: N/A

o Number of files added: N/A

o Number of files removed: N/A
o Number of files modified: N/A

ARTEFACTS

o Input: List of features retrieved during Al
e Output: List of common features
o Tools Used: Google docs

ACTIVITY DESCRIPTION

o Complexity: This activity is considered of moderate complexity as it can
be difficult to decide whether two features from two different variants of large
similarities can be unified or not. For instance, two variants may have the
exact same menu but with different colors.

e Importance: This activity is very important because deciding on the com-
monalities and variabilities will affect the the entire migration process and can
be difficult to change mid-transformation.

» Dependencies on other activities: Domain analysis must be finished before
conducting this activity.

INFORMATION

o Activity type: SPL training

o Activity: Reading about compositional SPL

o ActivityID: A3

o VariantID: N/A

o Start Date: 2019-02-26

o End Date: 2019-03-05

e Description: In order to create a compositional SPL it is necessary to know
what is specific for a compositional approach.

DATA

» Total Hours spent: 6

e Number of commits: 0

« LOC added: N/A

« LOC removed: N/A

« LOC modified: N/A

o Number of files added: N/A

o Number of files removed: N/A
o Number of files modified: N/A

ARTEFACTS

o Input: Articles, web pages
e Output: Knowledge
« Tools Used: N/A

ACTIVITY DESCRIPTION

IV

o Complexity: The material available online about compositional SPL is very
high level and while there are few examples of compositional SPL, we found

A. Appendix 1

that the most effective way to learn was through trial and error using Feature-
House in FeaturelDE.

o Importance: It is fundamental to understand superimposition and how tools
such as FeatureHouse work.

» Dependencies on other activities: N/A

INFORMATION

o Activity type: Domain analysis, Feature modeling

o Activity: Creating a feature model

o ActivityID: A4

o VariantID: N/A

o Start Date: 2019-02-26

o End Date: 2019-04-09

e Description: In order to create a compositional SPL it is necessary to know
what is specific for a compositional approach.

DATA

o Total Hours spent: 14

e« Number of commits:

« LOC added: N/A

« LOC removed: N/A

« LOC modified: N/A

o Number of files added: N/A

o Number of files removed: N/A

o Number of files modified: N/A

ARTEFACTS

o Input: List of features from A1 and A2

e Output: .xml file of the feature model

e Tools Used: Eclipse IDE, FeaturelDE

ACTIVITY DESCRIPTION

o Complexity: Once the features has been identified, one only needs to know
how to use FeatureIDE to create the feature model.

o Importance: Creating the feature model is important because once the trans-
formation begins, changes made to the feature model can cause some feature
to lose its implementation.

» Dependencies on other activities: Al, A2, A3.

INFORMATION

o Activity type: Code cleansing, Feature identification

o Activity: Translating code comments to English

o ActivityID: A5

e VariantID: V1, V2, V3, V4, V5

o Start Date: 2019-02-26

o End Date: 2019-03-01

e Description: Translating comments in the code from German to English with

the help of google translate is a first step to understanding the code better.

DATA

A. Appendix 1

o Total Hours spent: 22.5
e Number of commits: 5
— 62f531371atd8b7e6d6b4dcc9aefd46fcebabtf4?
— 28fd5758cel133f7cd0690b35e49de276a5d32b44
— 620a1955bbch4ft568b6084e22734d43a883c¢82b
817f8¢3182b3c¢7eb1266b66e9b087cdbc60adadd
— a0154f2¢383a55205516¢c¢317c3b4b2f1ad68090

« LOC added: 0

e LOC removed: 0

« LOC modified: 3 365

e« Number of files added: 0

e« Number of files removed: 0

e« Number of files modified: 128

ARTEFACTS

o Input: Source code (comments in German)

« Output: Source code (comments in English)

e Tools Used: Eclipse IDE, Google translate

ACTIVITY DESCRIPTION

o Complexity: While this activity is simple, with the help of Google Translate,
it is time consuming to manually scan all the files. Additionally, once the
comments were translated, many of them proved not helpful.

o Importance: Since there were no documentation provided with the source
code, it was of great important to translate the comments to maximize software
comprehension as much as possible.

« Dependencies on other activities: N/A.

INFORMATION
o Activity type: Feature location, Architecture identification
o Activity: Reverse-engineering class diagrams
o ActivityID: A6
e VariantID: V1, V2, V3, V4, V5
o Start Date: 2019-02-28
o End Date: 2019-03-01
e Description:
DATA
e Total Hours spent: 4
e Number of commits: 0
« LOC added: N/A
« LOC removed: N/A
« LOC modified: N/A
o Number of files added: N/A
o Number of files removed: N/A
o Number of files modified: N/A
ARTEFACTS
o Input: Source code
e Output: UML diagrams

VI

A. Appendix 1

o Tools Used: Visual Paradigm
ACTIVITY DESCRIPTION

o Complexity: This activity is of low complexity as this is automated by Visual
Paradigm.

o Importance: Analyzing class diagram helped understand and find commonal-
ities between the variants’ architecture. Finding variability in the architectural
level impacts the transformation phase, hence this activity is important.

« Dependencies on other activities: N/A

INFORMATION
o Activity type: Feature location
o Activity: Finding features in source code
o ActivityID: A7
e VariantlD: V1, V2, V3, V4, V5
o Start Date: 2019-03-04
« End Date: 2019-03-20
e Description: Locating features in the variants’ source code with the help of
the extracted class diagrams from A6 and feature model from A4.
DATA
o Total Hours spent: 22
e Number of commits: 0
« LOC added: N/A
« LOC removed: N/A
o LOC modified: N/A
o Number of files added: N/A
o Number of files removed: N/A
e Number of files modified: N/A
ARTEFACTS
o Input: Source code, class diagrams, feature model
e Output: Excel sheets
o Tools Used: Eclipse IDE; Google sheets
ACTIVITY DESCRIPTION
o Complexity: This activity is considered of moderate complexity, as it re-
quires careful usage of breakpoints and careful tracking of variables in order
to detect where a feature starts and ends. This is further complicated by
feature scattering and tangling.
o Importance: This activity is mandatory before the transformation.
+ Dependencies on other activities: A2

INFORMATION
o Activity type: SPLE Training
o Activity: FeatureHouse research
o ActivityID: A8
o VariantID: N/A
o Start Date: 2019-03-05
e End Date: 2019-03-13

VII

A. Appendix 1

Description: There are tools to use when creating feature compositions. In
order to be able to make a compositional SPL. we need to know about this
recommended framework.

DATA

Total Hours spent: 10
Number of commits: 0

LOC added: N/A

LOC removed: N/A

LOC modified: N/A

Number of files added: N/A
Number of files removed: N/A
Number of files modified: N/A

ARTEFACTS

Input: Articles, web pages
Output: Knowledge
Tools Used: N/A

ACTIVITY DESCRIPTION

Complexity: This activity is of moderate complexity. This is mostly because
of the instability of FeatureHouse. The existing example projects are usually
too simple to showcase complex superimposition hence this tool was mostly
learned through trial and error. However, the concept of superimposition are
well-explained in literature.

Importance: This activity is of high importance as it is crucial to understand
FeatureHouse and how to generate variants and how to test them.
Dependencies on other activities: A4

INFORMATION

Activity type: Diffing, Feature location

Activity: Pairwise comparison of variants

ActivityID: A9

VariantID: V1, V2, V3, V4, V5

Start Date: 2019-03-05

End Date: 2019-05-02

Description: Pairwise comparison of all variants using Code Compare tool
to calculate the commonality between the variants. The tool highlights iden-
tical, same-class-name-but-different-content, and unique classes of variant A
comparing to Variant B.

DATA

VIII

Total Hours spent: 52
Number of commits: 0

LOC added: N/A

LOC removed: N/A

LOC modified: N/A

Number of files added: N/A
Number of files removed: N/A
Number of files modified: N/A

A. Appendix 1

ARTEFACTS

Input: Source code
Output: Excel sheet and documents describing the comparison
Tools Used: Code Compare by DevArt, FileMerge, IntelliJ, Eclipse

ACTIVITY DESCRIPTION

Complexity: This activity is of high complexity as there are no tools powerful
enough to detect commonalities in the source code. Tools such as CodeCom-
pare only flags classes with identical filenames. Otherwise, we must manually
detect which classes contain similarities and then CodeCompare highlights
identical code in the file, and if the identical methods are not in the same
lines of code in each respective source code files, they will not be flagged by
the software. This becomes more complicated when 2 methods in 2 variants
are written differently but serves the same purpose. NOw the developer must
know which implementation to use.

Importance: This activity is of crucial importance as the better it is done, the
most accurate the common code base and variability will be. Understanding
commonality in early stages also facilitates the transformation.
Dependencies on other activities: N/A

INFORMATION

Activity type: Code cleansing

Activity: Removing unused code

ActivityID: A10

VariantID: V2, V3, V4, V5

Start Date: 2019-03-11

End Date: 2019-03-12

Description: Identifying code that is not used for the variants. Unused code
is then removed to make it easier to analyze variants.

DATA

Total Hours spent: 12

Number of commits: 7
— 35351f7035e22907d30828cd82a475d6fd012d75

1397a2¢35632¢474e361da003d7¢8027f3d659¢e7
— a450d3e51¢183344f4¢33b27553d2eb5ab8ele40
— 18211d909a74260df11eacfe6fbec6a00c860ddb
— 02fef29fcb029135alfccfOdcad4762a4a64d9b7
— 5012572ac¢268c26736bd60ala0bfb7559d545ae5
— 3£5c¢63e01bd8f826a0c61820¢79fe3fd369851e2

LOC added: 0

LOC removed: 11670

LOC modified: 0

Number of files added: 0

Number of files removed: 78

Number of files modified: 133

ARTEFACTS

Input: Source code

IX

A. Appendix 1

e Output: Refactored source code
e Tools Used: Eclipse, UCDetector, IntelliJ
ACTIVITY DESCRIPTION

o Complexity: This activity is of relatively low complexity thanks to the avail-
able tools.

o Importance: This activity is very important because failure to detect unused
code means the developer will spend time transformation source code that is
never used.

« Dependencies on other activities: N/A

INFORMATION
o Activity type: SPLE Training
o Activity: FeatureIDE research
o ActivityID: All
e VariantID: N/A
o Start Date: 2019-03-12
e End Date: 2019-03-13
e Description: FeatureIDE is a tool to use when creating a SPL, hence it
is good to read about FeatureIDE. Both students involved have previously
worked with FeaturelDE.
DATA
« Total Hours spent: 6
e Number of commits: 0
« LOC added: N/A
« LOC removed: N/A
« LOC modified: N/A
o Number of files added: N/A
« Number of files removed: N/A
o Number of files modified: N/A
ARTEFACTS
e Input: Book: Mastering Software Variability with FeatureIDE
e Output: Knowledge
» Tools Used: N/A
ACTIVITY DESCRIPTION
o Complexity: Similar to FeatureHouse, the best way to learn FeatureIDE was
through trial and error however, FeatureIDE is better documented than Fea-
tureHouse, however the scope of FeatureIDE goes beyond SPL compositional
reengineering hence this activity is of low complexity.
o Importance: This has the same importance as AS8.
« Dependencies on other activities:

INFORMATION
o Activity type: Transformation, Quality assurance
o Activity: Transforming source code to feature
o ActivityID: A12

A. Appendix 1

e VariantID: V2, V3 V4
o Start Date: 2019-03-14
o End Date: 2019-05-02
e Description: With feature-oriented programming, from the feature model
and compositional SPL, we transform parts of the source code into different
features from the feature model. Every features functionality is manually
tested. continuously.
DATA
o Total Hours spent: 207
e« Number of commits: 10
— 47¢c01014a3b20506cb40a60dad6f77cf6f1b2d2
— 53361£57464568c09c¢2d1754b8248104c¢39b28c5
— 3192a8090ba75df16e28824ebf4deea250d6b712
— 12418fa6b2fele2d7¢900d491t3065f43deb981f
— 29d7267084446b746a1261cbel2b28363973f89
— 8062c¢850e2bdc0d1¢c7ac72046342650d120e2b76
— 4d4beaecfe695dd2chf3ae2ef22b1{85¢5e8516f
— e468b3ace02f8dchb0cd14561741e93939dadbdbe
— 4dfa44677907424c036390dbe7bc248ef998e648
— 1f83f2b640b3471722a938489d737d8035c6¢33¢
« LOC added: 17874
e LOC removed: 1492
« LOC modified: N/A
e« Number of files added: 184
e Number of files removed: 4
e Number of files modified: 80
ARTEFACTS
e Input: Source code
e Output: Separated features
o Tools Used: Eclipse, FeatureIDE
ACTIVITY DESCRIPTION
o Complexity: This activity is of high complexity and time consuming. This
resulted in the detection of several challenges in the migration process that
are listed in the discussion.
e Importance: This activity is mandatory and the the migration process can-
not procede without it.
« Dependencies on other activities: A4, A7, A9.

XI

A. Appendix 1

A.4 Notes After Running Games

Notes were taken during the process of running games to identify features. The
notes can be seen below.

A.4.0.0.1 ApoCheating Description:
2D game A student in a classroom full of students and teacher(s), where the player
(student) can move around the classroom to cheat (increase test score) avoiding the
teachers cone of vision.
Features
e Menu
— Description Area (how to play) overlayed on classroom
— Choose level with arrows (14 levels)
— Start option
— Load option
— Stop option
— Score board
* Cheated %
x Detected %
* Number of coins in the level
— Random Option
* Randomize location of students that you can cheat from
x Enable Detect highlights students you can cheat from
— Quit option
« In-game Menu (after finishing a round)
— Replay option
— Next option
— Scoreboard
« World
— Classroom full of tables
— Characters are presented in circles
Yellow circle (student cannot cheat from)
* Green circle (student can cheat from)
« Grey circle (student masked whether or not you can cheat from)
* Red circle (teacher) enemy
* Blue circle (main character)
o FEnemies

*

— Has green cone of vision (detection zone) that moves and changes in size
— Can move
— Speed of cone of vision changes
— Can be many teachers in one room
— Detection zone changes color if it is placed on player expect if player is
in his designated seat
o Player
— Can move using all 4 keyboard arrows

XII

A. Appendix 1

— Press and Hold space to cheat (when nearby a student you can cheat
from)
— Cheating process slows down on harder level and detection rate goes up
o End game score
— Losing or winning level gives you a scoresheet in form of exam and de-
scription (looser, very good, perfect and numerical score (increases the
more u are detected)

A.4.0.0.2 Apolcarus Description:
Character jumping on clouds. Automatically jumping, just movement with arrow
keys. Missing a cloud and fall out of screen leads to game ends.
Features
e Menu
— Start
— Achievements
— Help
— Highscore
— Options
— Quit
« World
— Clouds
* white/black /yellow
* White: normal
x Black: disappear after 1 jump
% Yellow: invisible after a while (timer)
— Clouds can move
— Trampoline to give extra jump
— Feather to fly (timer)
— Wings to fly (timer)
o Enemies
— Standing still / moving left&right
— Kills you if touching character
— Kill enemy by landing on top of it with character / shoot it with arrow
« Player
— Move left&right (a&d OR left&right arrow)
— Mousel to shoot arrows
— Aim arrow with mouse alignment
» Counting points (score), highscore list
o Counting elapsed time

A.4.0.0.3 ApoNotSoSimple Description:
Moving a character through different worlds/levels with the goal to reach a certain
point. The world consists of obstacles that if touched resets character to start
position.
Features

e Menu

XIIT

A. Appendix 1

— Play
* Redirects to Level chooser
— Userlevels
% Step through different levels / sort by solution, username, levelname
x Right side of screen choose levels
« Left side of screen (most part) shows level
— Editor
x Step through views a level can have
% Choose name / description / username
x Right side of screen choose view, choose figures to put in level
« Left side of screen (most part) shows level and name / description
— Options
% Checkboxes for sounds
Music
Effects
Level chooser
x Rows of circles with number inside to pick level
o Player
— Move with arrowkeys
« World
— “Goal/finish”
— Obstacles
« Circles (if stepped into makes character reset)
x Arrows (Moves vertically when you press up/down, if stepped into
character reset)
o Enemies
— See obstacles in World
» Counting moves/steps (NO HIGHSCORE)
« GUI
— Menu has game name in center and
— boxes vertically with e.g. options Level chooser / options has game name
and “location” in center
— Game has big box on left side, step counter + level indicator on right
side

A.4.0.0.4 ApoSnake Description:
Similar to classic snake, but several level has more than one snake to control. Ad-
ditionally, the bits that the snake consume are colored differently and the snake is
colored like the last bit consumed. Finally, the snake can traverse walls that are of
different color than the snake.
Features

e Menu

— Pugzzle option
« Display a grid of different levels (level chooser)
Levels are locked until the previous one is completed.
o Userlevels

XIV

A. Appendix 1

— Display user created level (this can crash the game, more specifically
when going through the level it crashes with string index out of range 1)

o FEditor

— Editor offer a customizable grid where the user can add the following
components:

* K K X X X X K K K X X X X K ¥

« World

Red snake

Blue snake

Green snake

Red block

Blue block

Green block

Red bit

Blue bit

Green bit

Increase height of grid
Decrease height of grid
Increase width of grid
Decrease width of grid
Clear cell (reverts it into empty cell)
Test option (to test level)
Back option

— Upper part of screen has:

*
*
*

Level number
Name of the game
Number of moves

— Middle part has:

*

*
*
*
*
*

* K ¥ X

Box where game occurs
Snake

Empty cells

Bits

Blocks

Box introducing new game mechanics (not always present)
— Lower part has:

Previous level button
Restart button

Next level button
Back button

A.4.0.0.5 ApoStarz Description:
A “star” should be moved from point A to point B, by rotating the “world”.

Features
¢ Menu

— Turorial
— Normal
— Time trial

XV

A. Appendix 1

— Highscore
Player
— A “star” that is moved by gravity when turning the “world” with arrow
keys
World
— Goal/finish
— Obstacles blocking character
— The world can move by using arrow keys “left /right”
Counting steps/moves
Highscore
Levels

XVI

A. Appendix 1

A.5 Early Bottom-up Feature Model

Figure A.1 shows what the Feature Model looked like after the final iteration.

A.6 Finalized Feature Model

Figure A.2 shows what the Feature Model looked like after the final iteration.

XVII

A. Appendix 1

i Ao | [AeaaESiraaiar| [desi

| o] B tbsone) Femicss) B s

Figure A.1: Feature Model Extracted From Bottom-up Approach

XVIII

A. Appendix 1

Figure A.2: End-result of the Feature Model

XIX

A. Appendix 1

1. ApoGames: This feature represent the common-base of all the variants. In
other words, this feature contain all the code shared by every single variant,
and none of the variants can be generated if this feature is disabled. This
feature contains code fragments responsible for things such as the game panel,
game engine and the main method that is the starting point for every variant.
This feature is mandatory.

2. Menu: This feature contains the common code that is responsible for ren-
dering the menu. This includes the common buttons such as Play, Quit and
so forth.

3. World: This feature instantiate the game level and logic depending on the
configuration selected.

4. Levels: This is an abstract feature, parent of game levels and user levels.

5. Level Chooser: This feature instantiate the level chooser depending on the
configuration (whether its grid of level of an endless runner game).

6. Score: This feature loads high score from an URL.

7. Editor: This contain the common code responsible for building the game
editor.

8. Save: This feature handles all the persistent saves done by the user.

9. Load: This feature handles all the loading of files done by the user.

10. Achievements: This loads achievements accomplished by the player.

11. Sound: This feature activates and deactivates the sound in games.

12. WhiteMenu: To establish a sense of branding in the SPL, we limited the
menu to white and grey menu. This feature is responsible on displaying menu
content in white colors.

13. GreyMenu: This feature is responsible on displaying menu content in grey
colors.

14. Credits: This enables the option to see the credits of the game.

15. Options: This toggles the Options of the games.

16. Components: This is an abstract feature that is a parent to objects, player
and enemies, this is because all the three entities share similarities in the code
level.

17. View: This is an abstract feature, parent of Dynamic and Static view.

18. NotSoSimpleLevel: This feature loads the level and level logic of the ApoNot-
SoSimple game.

19. SnakeLevel: This feature loads the level and level logic of the ApoSnake
game.

20. UserLevels: This feature loads the level created by the users.

21. Grid: This feature presents all the level in a grid.

22. Next: This feature only shows the next level (with a next button).

23. Counter: This feature sets a counter than the player must beat to win the
game.

24. Timer: This feature counts the game time spent by the player.

25. Moves: This feature tracks the number of moves done by the player.

26. BottomEditor: This loads the game editor panel at the bottom of the
screen.

27. SideEditor: This loads the game editor panel on the side of the screen.

XX

A. Appendix 1

28.
29.
30.
31.
32.
33.

34.
35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.
46.

47.

Objects: This is an abstract feature that is a parent to decorative and
interactive objects.

Enemy: All actions and logic of enemies are represented in this feature.
Player: The players action and resources are represented in this feature.
StaticView: Static view is the feature responsible for showing the world in
a

DynamicView: This feature is responsible for changing the background
(world) for endless runner types of games.

NotSoSimpleGrid: This dispalys the level grid in white style (ApoNoto-
Simple theme).

SnakeGrid: This dispalys the level grid in grey style (Snake theme).
Interactive: Interactive objects are objects that the player can interactive
with, for instance an enemy or a power-up.

Decorative: This feature displays object that the player can not interact
with (for instance a window).

Static: This enables enemies that do not move nor shoot any projectiles but
kills the player once they come in contact with them.

Dynamic: This enables enemies that can move and shoot projectiles (such
as arrows)

Control: This is an abstract feature parent for movement of the player and
player’s action

Star: This is a power-up star that the user can pick up.

Student: This feature represent a student that a student can interact with
NotSoSimplelnteractive: This feature loads all objects that a player can
interact with such as power-ups taken from ApoNotSoSimple variant.
Snakelnteractive: This feature loads all objects that a player can interact
with from ApoNotSoSimple variant.

IcarusInteractive: This feature loads all objects that a player can interact
with from ApoNotSoSimple variant.

Move: This feature represent the movement of an enemy.

Movement: This feature represent the implementation of the player move-
ment.

Action: This feature represent different interaction the player can have with
the world (eg. opening a door).

XXI

A. Appendix 1

L« GNEBITIHIS § SAERABIRSISION

a0sg + aEg

[BETRLE & BagoesENRUS.

Figure A.3: Modified final Feature Model to generate 56 products

XXII

A. Appendix 1

A.7 Class Diagrams of Java variants

A.7.1 Class Diagram for ApoCheating

XXIII

A. Appendix 1

Figure A.4: ApoCheating Class Diagram

XXIV

A. Appendix 1

A.7.2 Class Diagram for Apolcarus

XXV

A. Appendix 1

Figure A.5: Apolcarus Class Diagram

XXVI

A. Appendix 1

A.7.3 Class Diagram for ApoNotSoSimple

XXVII

A. Appendix 1

Figure A.6: ApoNotSoSimple Class Diagram

XXVIII

A. Appendix 1

A.7.4 Class Diagram for ApoSnake

XXIX

A. Appendix 1

Figure A.7: ApoSnake Class Diagram

XXX

A. Appendix 1

A.7.5 Class Diagram for ApoStarz

XXXI

A. Appendix 1

Figure A.8: ApoStarz Class Diagram

XXXII

	List of Figures
	List of Tables
	Introduction
	Problem Statement
	Purpose of the Study
	Research Questions

	Reading Instructions

	Background
	Software Product Lines
	Domain and Application Engineering
	Different Approaches of SPL Adoption
	Previous Attempts in SPL Reengineering

	Compositional Software Product Line
	FeatureHouse
	Differences of Annotative and Compositional Approach

	Clarification of Important Terms
	Activity
	Activity Types
	Category and Strategy

	Pre-study: Migration strategies
	Phases
	Top-down vs. Bottom-up approach
	Strategies
	Static Analysis
	Dynamic Analysis
	Expert Driven
	Information Retrieval
	Search-based

	Cost Models
	SIMPLE
	COPLIMO
	InCoME

	Methods
	Collaboration
	Dataset
	Selection Process of the Five Java Game Variants

	Selection of a Migration Strategy
	Applicability of Existing Strategies
	Choosing an appropriate migration strategy

	Design of the Measurement Approach
	The Reengineering Process
	Detection phase
	Running games
	Mapping features to domain
	Creating a feature model
	Reverse engineering class diagrams

	Analysis phase
	Pairwise Comparison of Variants
	Code Cleansing
	Systematic Source Code Reading

	Transformation phase
	Setting up a Product Line
	Extracting Features
	Feature Refactoring

	Results
	Advantages and Drawbacks of Strategies
	Measurement design
	Migration Process
	Activities
	Running the Games
	Creating the Feature Model
	Reverse Engineering Class Diagrams
	Diffing

	Overview of the Migration Process

	Activity Efforts
	Thesis Comparison

	Discussion
	Discussion
	Level of Completion
	RQ.1 Pros and Cons of Different Strategies
	Data Available
	Resources
	Tools

	RQ.2 Migration Effort Measurement
	RQ.3 Activities in a Compositional Reegineering
	RQ.4 Different Efforts of Activities
	Top-Down vs. Bottom-up
	Thesis comparison
	Challenges

	Conclusion
	Migration
	Threats to Validity
	Internal Validity
	External Validity

	Future Work

	Bibliography
	Appendix 1
	The Logging Template for Reengineering Activities
	An Example of the Logging Artifact for each Activity
	Performed activities
	Notes After Running Games
	ApoCheating
	ApoIcarus
	ApoNotSoSimple
	ApoSnake
	ApoStarz

	Early Bottom-up Feature Model
	Finalized Feature Model
	Class Diagrams of Java variants
	Class Diagram for ApoCheating
	Class Diagram for ApoIcarus
	Class Diagram for ApoNotSoSimple
	Class Diagram for ApoSnake
	Class Diagram for ApoStarz

