
Model Based Control of PMSM
using Field Oriented Control
Master’s thesis in Systems, Control and Mechatronics

MICHAEL MARNE

Department of Electrical Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2019





Master’s thesis 2019:06

Model Based Control of Permanent Magnet
Stepper Motors

using Field Oriented Control

MICHAEL MARNE

Department of Electrical Engineering
Systems and Control

Chalmers University of Technology
Gothenburg, Sweden 2019



Model Based Control of Permanent Magnet Stepper Motors
using Field Oriented Control
MICHAEL MARNE

© MICHAEL MARNE, 2019.

Supervisor: Mikael Bengtsson, Plejd and Jacob Andersson, Plejd
Examiner: Stefan Lundberg, Power Electronics

Master’s Thesis 2019:06
Department of Electrical Engineering
Systems and Control
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Model of the principal structure of the stator and rotor of a PMSM, designed
in Fusion360.

Typeset in LATEX
Printed by
Gothenburg, Sweden 2019

iv



Abstract

In this master’s thesis report the feasibility of using model based control paired with
field oriented control (FOC) for velocity and position control of permanent magnet
stepper motors (PMSM) was investigated. PMSMs with a large number of poles
(as most stepper motors are) are a challenging motor type for applying FOC due to
the reduction in electrical rotor angle accuracy from the fact that the angle sensor
measures mechanical angle which is divided into electrical angle. A FOC was first
implemented in simulation along with a model based controller (Linear Quadratic
Regulator, LQR) and a PID controller. After evaluation in simulation all controllers
were implemented on the target hardware using the programming language C where
their performance was compared to simulations. The FOC performed well at speeds
under 10π rad/s with performance degrading at higher speeds due to a combination
of implementation errors and lack of back-emf compensation. Both LQR and PID
performed well in conjunction with the FOC, with the LQR outperforming the PID
in both speed control and position control, despite speed limitations. The FOC was
able to achieve a current rise time of 10 ms. The PID and LQR achieved velocity
rise times of 0.06 s and 0.03 s respectively. For positional control the PID achieved
a rise time of 0.2 s while the LQR achieved 0.15 s. The most suitable regulator to
pair with the FOC is, if motor parameters are available, the LQR.



Acknowledgements

First I would like to thank my two supervisors, Mikael Bengtsson and Jacob Ander-
sson at Plejd AB. Both have been very helpful, especially concerning the hardware
implementation and changes to the hardware PCB to fit the needs of the project.
I would also like to thank Iman Habib for letting me do this thesis at Plejd AB.
Finally I would also like to thank Stefan Lundberg for being my examiner during
this project.

Michael Marne, Gothenburg June 2019

ii



Contents

List of Figures v

List of Tables vi

Abbreviations viii

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Ethical aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Theory 3
2.1 Permanent Magnet Stepper Motors . . . . . . . . . . . . . . . . . . . 3
2.2 Principle of operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3.1 Mechanical model . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3.2 Electrical model . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4.1 Traditional control . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4.1.1 Full stepping . . . . . . . . . . . . . . . . . . . . . . 7
2.4.1.2 Half stepping . . . . . . . . . . . . . . . . . . . . . . 8
2.4.1.3 Micro stepping / Wave stepping . . . . . . . . . . . . 9

2.4.2 Closed loop control . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.3 Field Oriented Control . . . . . . . . . . . . . . . . . . . . . . 10
2.4.4 Controlling direct and quadrature forces . . . . . . . . . . . . 11
2.4.5 PI - Current control . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.6 Model based motor control . . . . . . . . . . . . . . . . . . . . 14

3 Implementation 17
3.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Field Oriented Control . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Velocity and position control . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.1 PID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.2 LQR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

iii



Contents

3.4.1 ESP32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4.2 Angle sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4.3 H-bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.5 C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.5.1 Motor control . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.5.2 The Floating Point Unit . . . . . . . . . . . . . . . . . . . . . 26

4 Results & Discussion 29
4.1 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1.1 Current control . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.1.2 PID velocity control . . . . . . . . . . . . . . . . . . . . . . . 32
4.1.3 PID position control . . . . . . . . . . . . . . . . . . . . . . . 33
4.1.4 LQR velocity control . . . . . . . . . . . . . . . . . . . . . . . 34
4.1.5 LQR position control . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Measurement results . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2.1 Angle sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2.2 Current measurements . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Motor control results . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3.1 Current control . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3.2 PID velocity control . . . . . . . . . . . . . . . . . . . . . . . 41
4.3.3 Speed limiting . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.4 PID position control . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.5 LQR velocity control . . . . . . . . . . . . . . . . . . . . . . . 43
4.3.6 LQR position control . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4.1 Angle sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4.2 Phase current . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4.3 H-Bridge voltage . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4.4 Current control . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4.5 Velocity control . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4.6 Position control . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 Conclusion 49

6 Future Work 51
6.1 Speed limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.2 PI-controller decoupling and back-emf compensation . . . . . . . . . 51

Bibliography 53

iv



List of Figures

2.1 Principal model of the rotor and stator of a stepper motor . . . . . . 3
2.2 Ideal currents through the phases when driving the stepper motor

using the scheme described by (2.1) . . . . . . . . . . . . . . . . . . . 4
2.3 Simplified schematic of how the magnetic forces act on the rotor. In

this schematic Nstep = 4, as there are 2 phases, and one north-south
tooth pair. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.4 Equivalent circuit for one phase of a stepper motor. In the figure x
denotes the phase and can be either α or β . . . . . . . . . . . . . . . 6

2.5 Waveform and phase for full stepping . . . . . . . . . . . . . . . . . . 8
2.6 Waveform and phase for half stepping . . . . . . . . . . . . . . . . . . 9
2.7 Waveform and phase for 16th stepping . . . . . . . . . . . . . . . . . 10
2.8 The two coordinate systems superimposed on the stepper model,

showing the relation between the two reference frames. The black
lines (dq) rotates together with the rotor, while the blue lines (αβ)
are stationary and attached to the stator. . . . . . . . . . . . . . . . . 12

2.9 The back-emf E is subtracted from the input signal v before entering
the transfer function G(s) and becoming the output current i. . . . . 14

2.10 The LQR state feedback controller . . . . . . . . . . . . . . . . . . . 15

3.1 Overview of the stepper model in Simulink. The implementation is
divided into the electrical and mechanical dynamics . . . . . . . . . . 17

3.2 Streamlinging of the simulation process allowed for easy changes to
model and simulation settings, as well as having multiple copies of
the settings with slight variations . . . . . . . . . . . . . . . . . . . . 18

3.3 Field oriented control implementation in simulink. . . . . . . . . . . . 18
3.4 Implementation of PI-current controller in simulink. . . . . . . . . . . 19
3.5 Cascading of PID controllers in order to control both speed and position 19
3.6 The PID controller used to control the motor speed. The input to

the PID is the reference labeled ref and the measured state y with
the controller outputting a desired torque T . . . . . . . . . . . . . . 20

3.7 The final revision of the circuit board as of the completion of this
project. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.8 Resistances faced by the H-bridge. RDS is the drain-source resistance
of the MOSFETs, RS is the shunt resistance for current sensing and
Rm is the motor resistance. . . . . . . . . . . . . . . . . . . . . . . . . 24

v



List of Figures

3.9 This figure shows the two parallel controller for the motor. To the
right is the FOC controller which runs as 5 kHz and to the left is the
motor controller running at 1 kHz. The large arrows represent data
exchange. The top most is the exchange of angular information while
the lower is the setting of the torque target . . . . . . . . . . . . . . 26

3.10 Interrupt handling using TaskNotify in FreeRTOS. The hardware in-
terrupt handler sends a notification to the task containing the code
that should be executed. This allows for a context switch directly
from the ISR, and thus prevents the corruption of the FPU registers. 28

4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2 Step response for the PI controller in the FOC. In this case the motor

is attached to a load which is proportional to the velocity (TL = Bω).
The gains, Kp and Ki were chosen according to (2.26) . . . . . . . . . 30

4.3 The same step response as in 4.1a, except without a fixed rotor and
with ideal input (i.e. infinite source voltage amplitude). Here the
effect of the coupling can bee seen as the id current does not stay
at 0, however in this simulation the motor quickly reaches a speed
outside its specification. . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4 Step response for the speed PID controller . . . . . . . . . . . . . . . 32
4.5 Step response for the position PID controller . . . . . . . . . . . . . . 33
4.6 Step response for the speed LQR controller. The LQR outperforms

the PID shown in Figure 4.4 by a significant amount. . . . . . . . . . 34
4.7 Step response for the position LQR controller . . . . . . . . . . . . . 36
4.8 Result of the sensor calibration. The raw error (blue) is the measured

angle compared to the expected open-loop angle. The calibration
(red) is the lookup table used to compensate the error. The calibrated
(yellow) is the result of using the lookup table to compensate the error. 37

4.9 This figure depicts the measurement error calculated during the cal-
ibration test, the expected open-loop angle versus the compensated
measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.10 Plot showing the commanded voltage versus the measured phase cur-
rents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.11 Step response for the current controllers on the hardware. . . . . . . . 40
4.12 Step response for the speed PID controller given a constant step. . . 41
4.13 Step response for the position PID controller. The controller performs

the step in roughly 0.2 seconds while being limited to ±8π rad/s.
The speed reference was followed with only a minor overshoot when
viewing the ω estimation. . . . . . . . . . . . . . . . . . . . . . . . . 42

4.14 Step response for the LQR velocity controller. The simulated speed
estimation (ωsim) is very close to the actual estimation (ω) from the
hardware test. Some oscillations occur close to the reference after the
step has been given. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.15 Step response for the position LQR controller . . . . . . . . . . . . . 44

vi



List of Tables

3.1 Motor parameters used for the LQR . . . . . . . . . . . . . . . . . . . 21
3.2 Motor parameters of the motor used . . . . . . . . . . . . . . . . . . 22
3.3 Some relevant specifications of the ESP32 taken from the Technical

Reference Manual for the ESP32 [7] . . . . . . . . . . . . . . . . . . . 23
3.4 Some relevant specifications of the H-bridge DRV7786 taken from the

data sheet [5] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

vii



List of Tables

viii



Abbreviations

• AC - Alternating Current

• ADC - Analog Digital Converter

• CNC - Computer Numerical Control

• CPU - Central Processing Unit

• DAC - Digital to Analog Converter

• DC - Direct Current

• FOC - Field Oriented Control

• GMR - Giant Magneto Resistance

• HW - Hardware

• ISR - Interrupt Service Routine

• KCL - Kirchhoffs Current Law

• LQR - Linear Quadratic Regulator

• PI - Proportional Integral

• PID - Proportional Integral Derivative

• PMSM - Permanent Magnet Stepper Motor

• PWM - Pulse Width Modulation

• RTOS - Real Time Operating System

• SRAM - Static Random Access Memory

ix



1
Introduction

1.1 Background
Permanent Magnet Stepper Motors (PMSM) are an integral part of many industrial
and commercial products where precision movement is required. One of their biggest
advantages is that they can be driven to an exact position without the need for
positional feedback, as long as the speed, acceleration and load are low enough
[21]. Because the lack of feedback requirement the most common control method
of stepper motors is open-loop control where the phase currents of the motor are
driven in such a way that they produce sequential steps [2]. As there is no feedback
involved in open-loop control it is assumed that the motor always moves the specified
number of steps for a given input signal. In order to maintain accuracy, open-loop
control relies on low speed and torque requirements [21]. If a fault occurs, such as
an overshoot, the controller is not made aware of this and the motor will forever
be at the wrong position. The consequences of this can range from a non-event to
disastrous depending on the application.
With the rise in popularity of 3D printers the need for good stepper motor drivers has
increased. In 3D printing loosing steps is generally not acceptable as this results in
the printed object not meeting its specifications. Some widely used stepper motor
drivers used for 3D printing, A4982, DRV8825 and TMC2130 all lack positional
feedback and instead operate as open loop controllers [3][4][20]. Because 3D printing
can often take multiple hours (more than ten hours is not uncommon) a lot of time
can be saved if the motors could be driven faster, given that they retain their
accuracy. In a paper by Jeff Kordik it was shown that large gains in performance
can be achieved by using closed loop control instead of open loop when stepper
motors are used in servo-like applications [15]. Similarly in a paper by Jijo Paul
improvements to vibrations and torque fluctuations were observed when comparing
open loop control to vector control [12].

1.2 Aim
This master’s thesis involves the development of a model based Field Oriented Con-
troller (FOC) and Velocity/Position controllers for a Permanent Magnet Stepper
Motor. The FOC will be implemented using standard PI current control while the
Velocity/Position controllers will implemented both using PID and LQR in order
to compare the two and select the algorithm most suited for stepper motors. A
Simulink model of a stepper motor will be implemented and used to create and

1



1. Introduction

simulate the controllers before they are implemented and evaluated on the target
hardware.

1.3 Limitations
This master’s thesis will focus on the software side of the motor driver, and will
therefore not be addressing hardware development.

1.4 Ethical aspects
When producing any public document it is important to reflect over the uses to
which it can be put. Firstly it is important that all reported results are true and
not artificially fabricated, not only because this would be unethical, but also not to
give false or inaccurate information to any work that would continue to build upon
this.
Secondly one must consider to what this work could be used for and if this would
enable unethical uses. This seems very unlikely as this thesis aims to improve upon
methods already widely in use. However one possible outcome of making automation
better and more affordable is that many low-skill jobs can be replaced by automated
systems, which could lead to lost jobs.

2



2
Theory

2.1 Permanent Magnet Stepper Motors
A Permanent Magnet Stepper Motor (PMSM) is a type of motor which is similar to
a synchronous AC motor, but with an increased number of poles. The rotor of the
PMSM consists of a permanent magnet with a number of rotor teeth, see Figure 2.1,
surrounded by the stator coils. The rotor teeth allow the motor to move in discrete
increments, or steps, hence the name stepper motor.

Figure 2.1: Principal model of the rotor and stator of a stepper motor

2.2 Principle of operation
The simplest way to achieve rotation of a stepper motor is to send pulses of current
through the two stator phases in a specified pattern. For the bipolar stepper motor
the coils are energized in alternating order, with the sign of the current changing
after each step. Let the two phases of the motor be called A and B, then the phase
currents should follow the pattern

A+ → B+ → A− → B−, (2.1)

where A+ denotes a positive current through phase A and B− is a negative current
through phase B etc. The resulting (ideal) currents can be seen in Figure 2.2.

3



2. Theory

0 2.5 5 7.5 10

time

-1

0

1

s
ta

te

0 2.5 5 7.5 10

time

-1

0

1

s
ta

te

Figure 2.2: Ideal currents through the phases when driving the stepper motor
using the scheme described by (2.1)

The current pattern shown in Figure 2.2 would result in the motor moving four
discrete steps. The number of steps in a full rotation of the motor is determined by
the number of teeth pairs (also known as Nr) and the number of phases according
to

Nsteps = 2NphasesNteethpairs = 2NphasesNr. (2.2)
Nr represents the number of teeth pairs on the south and north poles of the rotor.

2.3 Modeling
The modeling of a stepper motor can be divided into two parts, mechanical and
electrical. The mechanical part of the model describes the dynamics of how the
rotor moves in the motor. The electrical part describes the behaviour of the voltages
and currents inside the motor windings.

2.3.1 Mechanical model
The mechanical model is based in Newtonian physics for rotating bodies:

T = J
dω

dt
⇐⇒ dω

dt
= T

J
, (2.3)

where J is the inertia of the rotor, T is the torque applied to the rotor, and ω is the
mechanical rotational speed of the rotor. The torque acting on the rotor is divided
into four separate terms as shown in detail in (2.5).

• Viscous friction
• Mechanical load
• Magnetic forces (two terms, as there are two phases)

4



2. Theory

The friction is modeled as proportional by some constant to the rotational speed
of the rotor (Tfriction = Bω). The mechanical load (τL) can be selected to what
ever the scenario requires and is applied as an external torque that is acting on the
rotor. The magnetic forces represents the link between the mechanical and electrical
dynamics. When current flows through the motor coils a magnetic field is created.
This magnetic fields interacts with the permanent magnets in the rotor resulting
in a force. The quadrature component (Fq) of this force produces torque on the
rotor (and stator) while the direct component (Fd) does not produce any torque, as
depicted in Figure 2.3. The magnitude of this force is determined by the currents
and the mechanical angle of the rotor (θ), scaled by the torque constant (Km) of
the motor [17],

Tquadrature = Km(−iα sin(Nrθ) + iβ cos(Nrθ)). (2.4)
Km can be found either directly in the data sheet of the motor, indirectly through
current and torque ratings of the motor or by experimentation using a known torque
load.

Figure 2.3: Simplified schematic of how the magnetic forces act on the rotor. In
this schematic Nstep = 4, as there are 2 phases, and one north-south tooth pair.

All this together gives the mechanical dynamics of the stepper motor as described
in (2.5).

5



2. Theory

dω

dt
= T

J
= 1
J

(Tquadrature − Tfriction − Tload)→
dω

dt
= 1
J

(−Kmiα sin(Nrθ) +Kmiβ cos(Nrθ)−Bω − τL)
dθ

dt
= ω

(2.5)

2.3.2 Electrical model
The equivalent circuit for one phase of the stepper motor can be seen in Figure 2.4
[17]. The subscript x stands for either phase α or phase β in this case.

Figure 2.4: Equivalent circuit for one phase of a stepper motor. In the figure x
denotes the phase and can be either α or β

By applying Kirchhoff’s voltage law to Figure 2.4 the total voltage sum becomes

is,xR + L
dis,x
dt

+ Ex − Vs,x = 0 (2.6)

where the voltage Ex represents the back-emf generated by the motor, which itself
can be expressed as

Eα = Kmω sin(Nrθ) (2.7)

and
Eβ = −Kmω cos(Nrθ) (2.8)

for their respective phases. Rearranging this and changing the names to suit the
phases results in the dynamics describing the current in the circuit,

diα
dt

= 1
L

[vα −Riα −Kmω sin(Nrθ)], (2.9)
diβ
dt

= 1
L

[vβ −Riβ +Kmω cos(Nrθ)], (2.10)

where vα and vβ are the phase voltages which are the inputs to the system.

6



2. Theory

2.4 Control

2.4.1 Traditional control
The traditional control method for stepper motors has usually been open loop, which
due to its simplicity has been a contributing factor to the popularity of stepper
motors [11][12]. There are several ways a stepper motor can be controlled in open
loop configuration each with its own advantages.

2.4.1.1 Full stepping

The simplest control method is full stepping. Full stepping a stepper motor involves
sending square waves through each of the motor phases in the correct order to
produce rotational motion. The pattern needed to rotate the motor is described by

A+ −→ B+ −→ A− −→ B− (2.11)

where A denotes the phase and the sign (+/−) denotes the direction of the current.
Another visualization of this can be viewed in Figures 2.5a and 2.5b. The direction
the motor turns can be reversed by switching the two phases. For a motor with 2
phases there are 4 full steps for each electrical revolution, each step separated by
90◦. The number of motor poles determines the number of electrical revolutions
for each mechanical revolution, as shown in (2.2). For the case with 2 phases (the
most common) a phasor diagram of the phase currents has be constructed, showing
these 4 full steps in each electrical revolution, and can be viewed in Figure 2.5b.
The advantages of using full stepping is that it is very simple and requires simple
hardware. There is no need for PWM as all signals are simply fully on or fully off.
This simplicity results in the drawback of less resolution and jerky movement of the
motor as it jumps between each step position.

7



2. Theory

0 2.5 5 7.5 10

time

-1

0

1

s
ta

te

0 2.5 5 7.5 10

time

-1

0

1

s
ta

te

(a) The phase currents in the two
stepper motor phases required in or-
der to achieve full stepping. Observe
that the y axis depicts state and not
actual current. This means that 1/-1
represents fully on and 0 is off.

-1 -0.5 0 0.5 1

Phase A current [A]

-1

-0.5

0

0.5

1

P
h
a
s
e
 B

 c
u
rr

e
n
t 
[A

]

(b) Phasor diagram of the phase cur-
rents during full stepping. Each step,
represented by an arrow is separated
by 90 electrical degrees.

Figure 2.5: Waveform and phase for full stepping

2.4.1.2 Half stepping

The resolution of the stepper motor can be doubled by applying half stepping instead
of full stepping. This method creates a new step position halfway between each full
step by applying current of equal amplitude to each phase simultaneously, as can be
seen in Figure 2.6a. This results in a phasor diagram with 8 distinct current vectors
instead of 4, as shown in Figure 2.6b. This gives the advantage of higher resolution
in the positioning and smoother operation, at the expense of more complicated
control signals as well as more fluctuating torque. The torque produced at each half
step position is

√
2 higher than the full step position, as is apparent in Figure 2.6b.

8



2. Theory

0 2.5 5 7.5 10

time

-1

0

1

s
ta

te

0 2.5 5 7.5 10

time

-1

0

1

s
ta

te

(a) Phase currents when driving a
stepper motor using half steps. Note
that there are overlaps where both
phases are active. These overlaps cor-
responds to the new halfstep positions

-1 -0.5 0 0.5 1

Phase A current [A]

-1

-0.5

0

0.5

1

P
h
a
s
e
 B

 c
u
rr

e
n
t 
[A

]

(b) Here the new half step positions
are the longer vectors on the diago-
nals, placed halfway between the pre-
vious full steps.

Figure 2.6: Waveform and phase for half stepping

2.4.1.3 Micro stepping / Wave stepping

In order to increase the resolution and smoothness of the motor further micro/wave
stepping can be applied. This method builds on half stepping, but increases the
number of step positions to an arbitrary amount, as well as keeping the torque
more stable throughout the revolution of the motor. The control signals now looks
more like sine waves and require more complicated hardware to create, such as an
inverter to create a PWM signal. Figure 2.7a shows the sine shaped currents which
corresponds to 16th-stepping, a commonly used step size for cheaper drivers, such
as A4982[3]. Modern drivers are now offering higher resolutions, 32-stepping for
DRV8825 [4] and even 256-stepping using the TMC2130 from Trinamic [20].
The biggest drawback with micro/wave stepping, as well as all previously mentioned
open loop methods, is that they are prone to losing steps. This means that the
commanded position does not match the actual position. Steps will be lost when
the angle between the stator field and the rotor position becomes larger than 180
electrical degrees, as this causes the quadrature force to change sign and the motor
to snap back to the previous position, without it being registered by the open loop
driver. If the cause of the large angle was transient the motor will continue operating
normally after the snap-back event, but with an offset of one or more steps.
Situations where this occur is when the load torque applied on the motor exceeds
the driving torque. This can be caused by a too heavy load, or when the motor is
accelerated to quickly resulting a too large torque generated by the load inertia.

9



2. Theory

0 2.5 5 7.5 10

time

-1

0

1

s
ta

te

0 2.5 5 7.5 10

time

-1

0

1

s
ta

te

(a) Phase currents used for mi-
cro/wave stepping at the 16th-step
resolution. The signals looks close to
a sine wave.

-1 -0.5 0 0.5 1

Phase A current [A]

-1

-0.5

0

0.5

1

P
h
a
s
e
 B

 c
u
rr

e
n
t 
[A

]

(b) In this figure 16 current vectors
are shown in every quadrant of the
electrical revolution. All of the vec-
tors are of equal length which gives
smoother operation due to the close
to constant torque.

Figure 2.7: Waveform and phase for 16th stepping

2.4.2 Closed loop control
Closed loop control can be achieved by adding positional feedback to any of the
previous open loop control methods discussed above. One type of feedback that can
be used is to add an encoder to the motor shaft. With an encoder the absolute
position of the motor will always be known, and any lost steps can be compensated
simply by taking additional steps until the positional error becomes small enough.
However using feedback in this manner is not optimal, as some energy is wasted on
creating magnetic forces that do not produce any torque. To make the control more
efficient the angle of the magnetic field inside the motor needs to be controlled more
precisely. With the correct magnetic flux angle the non torque producing component
can be eliminated.

2.4.3 Field Oriented Control
Controlling the direction of the magnetic flux, or the magnetic field, is the purpose
of Field Oriented Control, also known as vector control [9]. The optimal way of
controlling the field can be found by studying the simplified schematic in Figure 2.3.
This figure represents one electrical revolution of the motor, where the electrical
revolution relates to the mechanical revolution according to

θ = 4θe
Nsteps

= θe
Nr

. (2.12)

In Figure 2.3 the upper and lower coils of the stator are energized in such a way
as to produce an inward pointing magnetic north and south pole respectively. The
rotor, represented by a bar magnet, is not magnetically aligned with the generated
stator field. This misalignment will produce a force on the rotor, shown in the figure

10



2. Theory

as Ftot. This force can be divided into two components in the reference frame of the
rotor. These components are called the direct component (Fd) and the quadrature
component (Fq). As discussed previously in Section 2.3.1 it is only Fq that produces
any torque on the rotor, while Fd produces an outward facing , radial force. The ideal
situation is then apparent; Fd should be minimized and Fq should be maximized.
Given Ftot, the ideal situation can be summarized as

Fq = Ftot, Fd = 0. (2.13)

2.4.4 Controlling direct and quadrature forces
As discussed before, Fd and Fq are proportional to the magnetic field generated by
the stator. This magnetic field is in turn proportional to the current flowing through
the motor coils. This current can be controlled by the voltage applied to the motor
phases, thus resulting in a clear path from the control signal to the variable to
control.
However as Fd and Fq are located in a rotating reference frame (the dq-frame) they
represent time varying currents in the reference frame of the stator (the αβ-frame),
which also is the reference frame of the control signal. As the reference frame is
rotating from the perspective of the stator the required stator currents are sinusoidal
for a constant rotational speed. Instead of attempting to control the sinusoidal
currents in the stator frame they can be transformed into the rotating reference
frame, thus turning them into constants (for a constant speed), which are much
simpler to control. This transformation effectively transforms the stepper motor
into a DC motor, because there is now a current, iq, which is directly proportional
to the motor torque,

Te = Kmiq, (2.14)
just as with a DC motor.

The field oriented control algorithm for a stepper motor can thus be summarized
into the following steps:

1. Measure phase currents
The currents are measured in the reference frame of the stator as iα and iβ.

2. Transform current into the rotor coordinate frame
Transforming the phase currents into the rotating reference frame, or synchronous
coordinates, is called the Park transform and can be done through a simple matrix
multiplication, [

id
iq

]
=

[
cos(Nrθ) sin(Nrθ)
− sin(Nrθ) cos(Nrθ)

] [
iα
iβ

]
, (2.15)

where the matrix is a rotation matrix which projects the αβ-currents onto the dq-
axes [17]. The relation between the two coordinate frames can be seen in Figure 2.8.

11



2. Theory

Figure 2.8: The two coordinate systems superimposed on the stepper model, show-
ing the relation between the two reference frames. The black lines (dq) rotates to-
gether with the rotor, while the blue lines (αβ) are stationary and attached to the
stator.

12



2. Theory

3. Apply current control algorithm
Because the currents needs to be controlled to constant levels, id = 0 and iq = Te

Km
,

a PI-controller can be used for this task.

4. Transform the controller output into the stator coordinate frame
The PI-controller outputs two voltages, vd and vq, in synchronous coordinates that
needs to be applied to reach the current set points. As the control signal can only
be applied in stator coordinates the inverse to the transformation in (2.15) needs to
be performed, [

vα
vβ

]
=

[
cos(Nrθ) − sin(Nrθ)
sin(Nrθ) cos(Nrθ)

] [
vd
vq

]
, (2.16)

the inverse park transform. The resulting voltages, vα and vβ, can be applied to the
motor phases as the control signal.

The four steps described above will control the currents in the synchronous coordi-
nate to meet a given current target. This target is calculated according to (2.14)
from a desired torque. This algorithm will thus indirectly control the torque pro-
duced by the motor.

2.4.5 PI - Current control
The design of the PI current control is based on the dynamics of the current in the
motor as described by (2.9) and (2.10). The current dynamics in the stator frame
can then be seen as

L
di

dt
= V −Ri− E (2.17)

which becomes

L
d

dt

[
id
iq

]
=

[
vd
vq

]
−R

[
id
iq

]
+ L

[
ωiq
−ωid

]
−

[
Ed
Eq

]
(2.18)

when transformed into synchronous coordinates. The second to last term represents
the cross coupling between the two systems. However, by selecting the input as

v =
[
vd
vq

]
=

[
v′d
v′q

]
+ ωL

[
iq
id

]
(2.19)

the cross coupling can be cancelled [9].

Using the Laplace transformation the transfer function of (2.18), from the input
v to the output i becomes

G(s) = 1
sL+R

(2.20)

where the back-emf (E) has been modeled as a subtractive load disturbance on the
input signal, as depicted in Figure 2.9.

13



2. Theory

Figure 2.9: The back-emf E is subtracted from the input signal v before entering
the transfer function G(s) and becoming the output current i.

Because the system in (2.20) is of order one a PI controller,

F (s) = kp + ki
s
, (2.21)

is sufficient [9]. The closed loop transfer function then becomes

Gc(s) = F (s)G(s)
1 + F (s)G(s) . (2.22)

The preferred closed loop transfer function is chosen as a first order system, and
should therefore be on the form

Gc(s) = α

s+ α
= 1
sTe + 1 , α = 1

Te
. (2.23)

The constant Te in (2.23) is the closed loop electrical time constant, which is defined
in terms of the rise time,

tre = Te ln(9). (2.24)

By combining (2.22) and (2.23) the closed loop transfer function becomes

F (s)G(s) = α

s
, (2.25)

which in turn leads to the controller being formed by

F (s) = α

s
G(s)−1 = α

s
(sL+R) = αL+ α

R

s
(2.26)

In (2.26) kp and ki are identified as αL and αR respectively.

2.4.6 Model based motor control
Using the current control discussed in the previous section the motor input has be
changed from being the phase voltage to being the torque, under the assumption
that the current dynamics are fast enough. Because of this the electrical dynamics
of the motor can be ignored, as they are taken care of by the current controllers.
The motor can instead be considered from a purely mechanical standpoint,

ω̇ = T −Bω
J

(2.27)

14



2. Theory

In order to use a linear quadratic regulator (LQR) these dynamics must be converted
into a state space representation.
By picking the state as

x =
[
θ
ω

]
, u = T (2.28)

the system can be represented as

ẋ =
[

ω
T−Bω
J

]
(2.29)

which in turn can be rewritten to matrix form

ẋ = Ax+Bu (2.30)
y = Cx+Du, (2.31)

using the matrices A,B,C and D

A =
[

0 1
0 −B/J

]
, B =

[
0
1
J

]
, C = I2, D = 0. (2.32)

Given these matrices the LQR state feedback K is obtained by solving the algebraic
Riccati equation

PA+ ATP +Q = PBR−1BTP, (2.33)
for P , preferably using MATLAB. The state feedback coefficient K which minimizes
the quadratic cost function

J =
∫ ∞

0
(xTQx+ uTRu)dt (2.34)

is then given by
K = R−1(BTP ). (2.35)

The cost function is defined by the matrices R and Q which define the cost of the
input and state respectively. The LQR controller is shown in Figure 2.10 where x is
the current state, ref is the reference signal and u is the output from the controller.

Figure 2.10: The LQR state feedback controller

LQR can be augmented with an integrating state for reference following. This is
done by adding one or more states that integrates the error signals,[

ẋ
ż

]
=

[
Ax+Bu
Cx− r

]
, (2.36)

15



2. Theory

where r is the reference signal for the observed state (Cx) and z is the new integrating
state. The integrating portion is the second row of the matrix equation (Cx − r).
Here C is the same matrix as before (I2) which transforms x to y according to (2.31)
with D = 0. This means that the error being integrated is the observed error (Cx),
which in this case happens to coincide with the state error (due to C = I2).

16



3
Implementation

3.1 Model
The model of the stepper motor was implemented in MATLAB Simulink. The model
equations used were those presented in (2.5). This model was deemed sufficient
based on other projects using the same model, such as Kim [13] and Rusu [18].
In Figure 3.1 an overview of the model is displayed. The model was divided into
electrical and mechanical dynamics as can be seen in the figure.

Figure 3.1: Overview of the stepper model in Simulink. The implementation is
divided into the electrical and mechanical dynamics

The equations for the dynamics were implemented with fully customizable parame-
ters as in all parameters were initialized outside of the model definition, as displayed
in Figure 3.2. This gave the advantage of being able to change the motor specifica-
tions on the fly, without ever having to modify the model implementation. Because
of this the performance of the controller could later be easily and rapidly evaluated
for motors with different specifications.

17



3. Implementation

Figure 3.2: Streamlinging of the simulation process allowed for easy changes to
model and simulation settings, as well as having multiple copies of the settings with
slight variations

3.2 Field Oriented Control
The field oriented control implementation in simulink can be viewed in Figure 3.3.
The input to the controller is the desired torque Tdesired, which is transformed into
a desired current according to (2.14), as well as the measurements of the currents
(iα, iβ) and rotor angle (θ). The PI current controller (labeled Current Controller in
Figure 3.3) can be viewed in Figure 3.4 and as can be seen there are no decoupling
terms included. These were not implemented because they had a negligible effect
at the speeds used for the stepper motor (recall that the coupling in (2.18) contains
ω) and allowed the code on the hardware to be simplified.

Using (2.26) and a rise time of 10 ms the current control gains were calculated
to

kp = 0.7251, ki = 468.0. (3.1)

Figure 3.3: Field oriented control implementation in simulink.

18



3. Implementation

Figure 3.4: Implementation of PI-current controller in simulink.

3.3 Velocity and position control
Two separate control algorithms were implemented, PID and LQR. This allows for
comparison between these two common control laws as well as finding a control law
well suited for the task.

3.3.1 PID
Two different versions of PID were implemented. The first version controlled only
the speed of the motor, while completely disregarding the position. This PID con-
troller is presented in Figure 3.5, as the subsystem labeled "velocity controller". The
velocity controller takes the current speed and the target speed as inputs and out-
puts the torque required to reach the given target. The inner workings of the velocity
controller can be seen in Figure 3.6.
The second controller was a position-velocity controller. This controller was a cas-
caded controller, making use of the previously discussed velocity controller as well
as a new position controller. The controller, in its full, can be seen in Figure 3.5.
This controller takes a target position and the current position as input and outputs
the velocity required to reach the target. This velocity is then fed to the velocity
controller which outputs the required torque target.

Figure 3.5: Cascading of PID controllers in order to control both speed and posi-
tion

19



3. Implementation

Figure 3.6: The PID controller used to control the motor speed. The input to
the PID is the reference labeled ref and the measured state y with the controller
outputting a desired torque T

Both controllers were tuned using a manual tuning technique. The tuning technique
consisted of the following steps, as presented by [10]:

1. Set Kp, Ki and Kd to 0
2. Increase Kp until step response oscillates
3. Increase Kd until oscillations stops
4. Repeat 2-3 until oscillations cannot be stopped by Kd

5. Set Kp and Kd to the last stable values
6. Increase Ki until the steady state error disappears fast enough while avoiding

oscillation

The resulting gains from the above mentioned method were

kp = 0.01, ki = 0.05, kd = 0.0001 (3.2)

for the speed controller and

kp = 20.0, ki = 0.0, kd = 0.0 (3.3)

for the position controller.

3.3.2 LQR
Similarly to the PIDs, two LQR controllers were also implemented, one for speed and
one for position together with speed. The LQR, being a state feedback control law
is very simple to implement in simulink, as evident by Figure 2.10 in the previous
section.
The tuning of the LQR was done by adjusting the cost matrices, R and Q from
(2.34). R was chosen as

Rspeed = 500 (3.4)
Rposition = 1000, (3.5)

20



3. Implementation

as this resulted in the demanded control signals for the voltage staying within the
operating range. Q was selected using the mindset that when both position and
speed were regulated position was most important and therefore had a higher weight.
However it turned out that penalizing speed was more beneficial when combined with
actively selecting a speed reference, which is reflected by the higher weight of the
speed state.
When only speed was regulated it was selected as high as possible while ensuring
that the desired input voltages stayed below the maximum value of 24 V. The final
values of the Q matrices were chosen as

Qspeed =
[

0.1
]

(3.6)

Qposition =
[

1.0 0
0 0.1

]
. (3.7)

When using an integrating state the Q-matrix was augmented with the costs of the
integrated states as well,

Qspeed,i =
[

0.05 0
0 1

]
(3.8)

Qposition,i =


1.0 0 0 0
0 0.00001 0 0
0 0 0.1 0
0 0 0 0.001

 . (3.9)

The gains for the integrating states had to be selected as very small numbers in
comparison to the regular states in order for the system to remain controllable.

Table 3.1: Motor parameters used for the LQR

B 0.0008
J 4.5× 10−5

These choices of Q and R where used in combination with the matrices presented in
(2.32) with the parameter values shown in Table 3.1 to solve the Riccati equation
(2.33) in MATLAB using the lqr command and resulted in state feedbacks of

Kspeed = 0.0316 (3.10)
Kposition =

[
0.0992 0.0316

]
(3.11)

for the normal LQR and

Kspeed,i = [0.0226 − 0.1] (3.12)
Kposition,i =

[
0.0439 0.0181 2.2× 10−11 −0.0014

]
(3.13)

for the LQR with integrating states.

21



3. Implementation

3.4 Hardware
The hardware used for the project was a custom driver board called pmstep, devel-
oped by Plejd AB. The final circuit board for pmstep can be seen in Figure 3.7. The
board is based around the micro controller ESP32 [6] as the main processor with an
angle sensor (TLE5012B [19]) and an H-bridge (DRV8876 [5]). The motor current
is measured using a shunt resistor, an amplifier (LMP860 [16]) and the ADC of
the ESP32. The stepper motor used was a NEMA17 format motor with the motor
parameters shown in Table 3.2

Table 3.2: Motor parameters of the motor used

Phase resistance (R) 2.13 Ω
Phase inductance (L) 3.3 mH
Viscous friction (B) 0.0008 Nm/rad
Rotor Inertia (J) 4.5× 10−5 kgm2

Torque Constant (Km) 0.23 Nm/A
Rotor teeth pairs (Nr) 50
Motor Phases (Nphases) 2

Figure 3.7: The final revision of the circuit board as of the completion of this
project.

3.4.1 ESP32
The ESP32 is a fairly new micro controller produced by Espressif Systems and first
released in 2016. The micro controller runs the real time operating system FreeRTOS
[1] using a development framework called esp-idf [8] which in turn uses the CMake
[14] build structure. Some of the hardware features used in this project are shown
in Table 3.3. The CPU clock speed of 160 MHz is fairly high compared to other
cheap micro controllers, which combined with a 32-bit address space allows the use
of 32-bit number directly each clock cycle wastly improving speed compared to 8-bit
systems. The ADC is a 12-bit ADC of the SAR type. 12-bit resolution is will allow

22



3. Implementation

for accurate measurements of input voltage and motor currents. Finally the PWM
module is very flexible, allowing up to 40 MHz frequency, and more importantly
16-bit resolution at 20 kHz. 20 kHz is a desireable frequency to run the PWM at
as this moves the acoustic frequencies outside of human hearing range, while still
retaining high resolution. For the full specification of the ESP32, see [7].

Table 3.3: Some relevant specifications of the ESP32 taken from the Technical
Reference Manual for the ESP32 [7]

CPU clock up to 160 MHz
Address space 32-bit
ADC 12-bit SAR
PWM 40 MHz at 1 bit to 20 kHz at 16 bits (scaling)

3.4.2 Angle sensor
The angle sensor is a GMR- (Giant Magneto Resistance) based sensor. It measures
the rotation of an external magnetic field with an angular resolution of 0.01◦. The
sensor requires a magnet to be attached to the motor axle in order to generate a
magnetic field which rotates in accordance with the rotor. While the sensor had a
high resolution it was not completely linear over the revolution but had a varying
offset of up to around one degree. However, as this offset was constant for a given
orientation it could be compensated for by a lookup table. The lookup table was
generated by positioning the motor using open loop control and thereafter reading
the angle given by the sensor. This allowed an error term to be calculated, the error
being how far the measured angle deviated from the expected angle,

lookup[θ] = θe − θ. (3.14)

This error was then saved in a lookup table which was stored in the flash memory
of the micro controller. When the sensor is used after the calibration the correction
term is added to the reading according to

θc = θ + lookup[θ]→
θc = θ + θe − θ →
θc = θe,

(3.15)

where θ is the measured mechanical angle, θe is the expected angle and θc is the
calibrated angle. As the calibration is saved in the flash memory there is only need
to do the calibration once per driver/motor pair, though if either the motor or driver
is switched or modified the calibration has to be redone.

3.4.3 H-bridge
The H-bridge is able to supply ±3.5 A of drive current at a maximum voltage of
37 V. These maximum ratings are suspect to the thermal limits of the driver, which
enters overheat protection mode at around 150◦ C, potentially before the other limits

23



3. Implementation

are reached if the cooling of the chip is insufficient. Two of these chips are used, one
for each motor phase. Additional specifications can be viewed in Table 3.4. The
H-bridges were driven using PWM from the ESP32.

Table 3.4: Some relevant specifications of the H-bridge DRV7786 taken from the
data sheet [5]

Supply Voltage 4.5-37 V
Output current 3.5 A peak
RDS(on) 700 mΩ
Tj(max) 150◦ C

Because the MOSFETs in the H-bridge are not ideal and many stepper motors have
a low resistance the MOSFET drain-source resistance RDS had to be taken into
account. Figure 3.8 show a schematic of the H-bridge together with the motor (Rm)
and the shunt resistor (Rs).

Figure 3.8: Resistances faced by the H-bridge. RDS is the drain-source resistance
of the MOSFETs, RS is the shunt resistance for current sensing and Rm is the motor
resistance.

When a voltage V is commanded this voltage is created before all the resistances
in Figure 3.8, between the H and the L. The actual voltage over the motor is
lower because of the voltage drops over the other resistances. By using KCL the
voltage required between H and L in order to achieve the commanded voltage can
be calculated as

VHL = V
1 + α

α
(3.16)

where

α = RS +Rm

2RDS

(3.17)

This correction to the H-bridge voltage is applied immediately before the H-bridge
itself. V in (3.16) corresponds to the output from the current controllers after they
have been transformed into stator coordinates, while VHL is the voltage value sent
to the PWM driver which drives the H-bridge.

24



3. Implementation

It is important to note that these equations are based on the assumption that the
current is stationary and that there is no back-emf. This was however deemed a
justified simplification due to the low inductance and low speed of the motor. These
two in combination makes this effect negligible.

3.5 C implementation
The controller was implemented on the target hardware using the C programming
language. The project made use of the CMake build tool, as this is the same
build environment used by esp-idf, the framework used for ESP32. With CMake
code components can be defined, similar to classes in other high level programming
languages. Each physical component was implemented as a component, such as
the ADC driver and the H-bridge driver. Additionally, more abstract concepts were
implemented as components as well such as the FOC controller and motor controller.
The use of CMake components allowed multiple different code projects to be created,
all referencing the components instead of having individual copies. This made sure
that every test project had the newest version of the components at all times.

3.5.1 Motor control
The motor control was implemented as two parallel tasks running at different fre-
quencies. For the field oriented control the task was invoked by an interrupt at
5 kHz. This task can be viewed as the right portion of Figure 3.9. The FOC task
is responsible for ensuring that the motor produces the correct amount of torque
as efficiently as possible. This is achieved through the FOC algorithm, described
in detail in Section 2.4.5, which involves applying PI-control to the rotor synchro-
nized stator currents. One exception was that compensation for neither coupling nor
back-emf was implemented. The reason for this was that at the speeds the motor
could be operated neither of these had any observable effect on the performance.
Omission of this allowed the FOC loop to be shorter and more efficient. However it
is still desirable to implement this in the future, which is why this is left for future
work.
The other task, seen to the left in Figure 3.9 controls the speed and position of the
motor and is executed as a FreeRTOS task running at 1 kHz. The interactions of
these tasks are depicted by the large arrows in the same figure. The motor control
task retrieves the angle and speed estimations from the FOC task while the FOC task
is given its torque target from the motor control task. Both of these interactions are
performed by atomic operations in order to prevent data corruption,as these tasks
are running in parallel.

25



3. Implementation

Figure 3.9: This figure shows the two parallel controller for the motor. To the right
is the FOC controller which runs as 5 kHz and to the left is the motor controller
running at 1 kHz. The large arrows represent data exchange. The top most is the
exchange of angular information while the lower is the setting of the torque target

3.5.2 The Floating Point Unit
The code performing all calculations for the motor control made heavy use of float-
ing point numbers. These were chosen over fixed point because the ESP32 contains
a Floating Point Unit (FPU) in its hardware. Fixed Point Arithmetics is normally
much faster than floating point, as these calculations can be done directly in hard-
ware, while floating point is often computed in software. However, as the ESP32 has
access to a hardware FPU the floating point arithmetics are speed up significantly.
Due to the ESP32 being relatively new there are still some issues that has not been

26



3. Implementation

corrected when using the standard framework. One of these issues lies with the
FPU. Using the FPU in an interrupt context causes any calculations that were in
progress to be corrupted. This is caused by the FPU registers not being saved by
the interrupt handler which means that any calculations that are in progress while
an interrupt (which also has to use the FPU) fires will be corrupted and cause a
crash. There are three main workarounds to this issue:

1. Avoid using floating point in interrupts
2. Manually save the FPU registers in each interrupt
3. Move the code execution away from the interrupt context

Of these three alternatives option one was ruled out because this would require
large changes to already written code. Alternative two was briefly considered but
ultimately discarded as this resulted in too much overhead. It is likely that faster
operation of option two could be achieved by optimization, however option three
proved to be both fast and relatively simple to implement using FreeRTOS features.
A flowchart of how the interrupts were handled is show in Figure 3.10. The hardware
interrupt uses the TaskNotify feature of FreeRTOS. This feature sends a notification
to the selected task, potentially unblocking it immediately, or in this case, immedi-
ately after the ISR has yielded. The task which is being sent the notification has a
very high priority which causes the RTOS to initiate a context switch as soon as this
task is unblocked. As the task is waiting for the notification it will be in the blocked
state until the ISR sends the notification. This solution also had the advantage
of making the code virtually platform independent, with only the interrupt being
platform specific.

27



3. Implementation

Figure 3.10: Interrupt handling using TaskNotify in FreeRTOS. The hardware
interrupt handler sends a notification to the task containing the code that should be
executed. This allows for a context switch directly from the ISR, and thus prevents
the corruption of the FPU registers.

28



4
Results & Discussion

4.1 Simulation results

4.1.1 Current control
The current controllers were chosen as PI-controllers with gains according to (2.26),
with a desired rise time of 10 ms. When simulating the controllers three different
cases were simulated, fixed, loaded and free rotor. The fixed case shows the per-
formance of the controller when the dynamics match reality, as the speed is 0 and
therefore the coupling and back-emf are 0, as assumed. The loaded case shows how
the controller would perform in a more realistic setting when the speed is not 0 and
therefore the assumption of no coupling and back-emf is not true. Finally the free
rotor test shows an extreme case when the speed is allowed to increase dramatically
and therefore also the coupling and back-emf. In Figure 4.1a the simulation with
the fixed rotor can be seen, Figure 4.2 depicts the load test and Figure 4.1b shows
the free case.

In both the fixed case and the case with the load the controllers are able to keep
both iq and id at their setpoints, with a rise time of iq matching the desired 10 ms.
However when the motor is allowed to move freely this is not the case. The iq con-
troller initially follows the same trajectory as the fixed case, but starts to deviate
after only a few milliseconds and subsequently fails to reach the setpoint. This is
caused by the fact that the simulation takes into account that there isn’t infinite
source voltage. The point where the current starts to deviate coincides with the
time at which the commanded voltage amplitude exceeds the source voltage (in this
case 24 V).

Figure 4.3 displays what happens if there is infinite source voltage, the controller
eventually reaches the setpoint, but it does not do so in the specified rise time and
requires a voltage amplitude of almost 90 V. The increased time required to set-
tle is due to the fact that the calculation of the gains (2.26) does not include the
back-emf. Because of this the current dynamics does not match the actual motor
dynamics when the motor is moving. However as the normal use cases of stepper
motors involve relatively low speeds and even holding the rotor fixed this deviation
was not seen as a problem.

Finally in Figures 4.1b and 4.3 it can be seen that the direct component of the
current leaves its setpoint at 0. This is because the decoupling of the controllers

29



4. Results & Discussion

were not implemented, however when the speed of the motor is low this coupling is
negligible, as can be seen in Figure 4.2a.

0.1 0.11 0.12 0.13 0.14

Time [s]

0

0.1

0.2

0.3

0.4

0.5

C
u
rr

e
n
t 
[A

]

(a) Step response for the PI controller
in the FOC. In this case the motor
is simulated as stalled, meaning the
rotor is fixed. The gains, Kp and Ki

were chosen according to (2.26)

0.1 0.11 0.12 0.13 0.14

Time [s]

0

0.1

0.2

0.3

0.4

0.5

C
u
rr

e
n
t 
[A

]

(b) The same step response as in 4.1a,
except without a fixed rotor. The
high frequency oscillations are due
to the clipping of the control signal
which was limited to ±24 V.

Figure 4.1

0.1 0.11 0.12 0.13 0.14

Time [s]

0

0.1

0.2

0.3

0.4

C
u
rr

e
n
t 
[A

]

(a) Park currents

0.1 0.11 0.12 0.13 0.14

Time [s]

0

0.02

0.04

0.06

0.08

0.1

A
n
g
u
la

r 
v
e
lo

c
it
y
 [
ra

d
/s

]

(b) Angular velocity ω

Figure 4.2: Step response for the PI controller in the FOC. In this case the motor
is attached to a load which is proportional to the velocity (TL = Bω). The gains,
Kp and Ki were chosen according to (2.26)

30



4. Results & Discussion

0 0.1 0.2 0.3 0.4 0.5

Time [s]

0

0.1

0.2

0.3

0.4

0.5

C
u
rr

e
n
t 
[A

]

Figure 4.3: The same step response as in 4.1a, except without a fixed rotor and with
ideal input (i.e. infinite source voltage amplitude). Here the effect of the coupling
can bee seen as the id current does not stay at 0, however in this simulation the
motor quickly reaches a speed outside its specification.

31



4. Results & Discussion

4.1.2 PID velocity control
The tuning of the PID controllers was done using the method described in Section 3.3.1
which resulted in the gains presented in (3.2). In Figure 4.4a the result of a speed
step response can be seen. In this test and subsequent ones the motor was allowed to
move freely. Figure 4.4a shows that the speed controller reaches the speed setpoint
within 0.06 s and that the required voltages and currents are well within limits. In
Figure 4.4c there is an initial spike in quadrature current as the motor starts rota-
tion. The current then settles at a steady state value representative of the losses
in the motor. This figure also exemplifies the advantage of the park transform, the
quadrature current is controlled as a DC value for a constant torque while the actual
control signals and stator currents (Figures 4.4d and 4.4b) are sinusoidal.

0.08 0.1 0.12 0.14 0.16 0.18 0.2

Time [s]

0

1

2

3

4

5

6

A
n

g
u

la
r 

v
e

lo
c
it
y
 [

ra
d

/s
]

(a) Angular velocity (ω)

0.08 0.1 0.12 0.14 0.16 0.18 0.2

Time [s]

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

C
u

rr
e

n
t 

[A
]

(b) Phase currents (iα, iβ)

0.08 0.1 0.12 0.14 0.16 0.18 0.2

Time [s]

0

0.02

0.04

0.06

0.08

0.1

C
u

rr
e

n
t 

[A
]

(c) Park currents (id, iq)

0.08 0.1 0.12 0.14 0.16 0.18 0.2

Time [s]

-2

-1

0

1

2

V
o
lt
a
g
e
 [
V

]

(d) Phase voltage (vα, vβ)

Figure 4.4: Step response for the speed PID controller

32



4. Results & Discussion

4.1.3 PID position control
As with the speed PID controller of the previous section this controller was also
tuned using the method in Section 3.3.1 with the resulting gains presented in (3.3).
Figure 4.5a shows the step response for the position, where the controller is able
to move the motor from 0 to 3 radians in around 0.2 seconds. When using the
position controller the speed had to be limited due to hardware restrictions which
will be explained later in Section 4.3.3. In Figure 4.5b it can be seen that the
speed reference is selected proportionally to the error in position, as the position
approaches the target the reference speed decreases. It is also possible to see the
effect of the speed limitation as the reference signal is clipped at 8π rad/s.

0.1 0.2 0.3 0.4

Time [s]

0

0.5

1

1.5

2

2.5

3

A
n
g

le
 [
ra

d
]

(a) Rotor angle (θ)

0.1 0.2 0.3 0.4

Time [s]

0

5

10

15

20

25

A
n

g
u

la
r 

v
e

lo
c
it
y
 [

ra
d

/s
]

(b) Angular velocity (ω)

0.1 0.2 0.3 0.4

Time [s]

-0.2

-0.1

0

0.1

0.2

0.3

0.4

C
u

rr
e

n
t 

[A
]

(c) Phase current (iα, iβ)

0.1 0.2 0.3 0.4

Time [s]

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

C
u

rr
e

n
t 

[A
]

(d) Park currents (id, iq)

Figure 4.5: Step response for the position PID controller

33



4. Results & Discussion

4.1.4 LQR velocity control
The LQR velocity controller was tuned by modifying the state and input costs, Q
and R. When controlling the speed there is only one state (ω) and one input (T )
which directly affects that state, which means that the dimensions of R and Q are
both 1. R and Q where chosen by a trial and error process where R was used to limit
the input to stay within the limits and Q was used to influence the rise time of the
velocity state. Figure 4.6a shows the resulting step response, which outperforms the
PID step response shown previously in Figure 4.4a (0.03 s vs 0.06 s). This indicates
either that PID is not suitable for this task, or that it is not properly tuned. It is
also important to keep in mind that the LQR is only as good as the model. In the
simulations the LQR has access to a perfect model of the stepper motor that it is
controlling. In reality the model will likely not be as good as in simulations.

0.08 0.1 0.12 0.14 0.16 0.18 0.2

Time [s]

0

1

2

3

4

5

6

A
n

g
u

la
r 

v
e

lo
c
it
y
 [

ra
d

/s
]

(a) Angular velocity (ω)

0.08 0.1 0.12 0.14 0.16 0.18 0.2

Time [s]

-0.05

0

0.05

0.1

0.15

C
u

rr
e

n
t 

[A
]

(b) Phase currents (iα, iβ)

0.08 0.1 0.12 0.14 0.16 0.18 0.2

Time [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

C
u
rr

e
n
t 
[A

]

(c) Park currents (id, iq)

0.08 0.1 0.12 0.14 0.16 0.18 0.2

Time [s]

-1.5

-1

-0.5

0

0.5

1

1.5

V
o

lt
a

g
e

 [
V

]

(d) Phase voltage (vα, vβ)

Figure 4.6: Step response for the speed LQR controller. The LQR outperforms
the PID shown in Figure 4.4 by a significant amount.

34



4. Results & Discussion

4.1.5 LQR position control
For the LQR position control the state was expanded to include both speed and
position, while the input being the same and thus affecting the speed state directly
and the position indirectly. This results in a Q matrix with dimension 2 and an
R matrix of dimension 1. The purpose of this controller was to achieve a given
position setpoint as fast as possible, while keeping speed restrictions. Using this
mindset, the costs for the state (Q) was chosen to penalize the position state and
the velocity state roughly equally. This type of control requires a trajectory planner
to work properly, as the reference is only for one state. The trajectory planner
selected a setpoint speed at each point that was proportional to the positional state
error. This results in a control law that tries to keep both states at their references.
In Figure 4.7a the controller is able to reach the setpoint for theta in about the
same timespan as the PID controller in Figure 4.5, though the LQR is marginally
faster, taking roughly 0.15 s as opposed to 0.2 s for the PID. However the speed is
again limited to ±8π rad/s due to hardware restrictions which will be explained in
Section 4.3.3. The choice to limit the speed in simulation was made to enable easy
comparison to the hardware results later on. Figure 4.7b shows the tracking for the
velocity state, where the step response is similar to the LQR velocity controller in
terms of rise time, though with some overshoot in this case. It is also possible to
see how the trajectory planner picks the reference for the velocity state (ωref ) in
Figure 4.7b as the reference changes dynamically as the position error changes.

35



4. Results & Discussion

0.1 0.2 0.3 0.4

Time [s]

0

0.5

1

1.5

2

2.5

3

A
n
g
le

 [
ra

d
]

(a) Rotor angle (θ)

0.1 0.2 0.3 0.4

Time [s]

0

5

10

15

20

25

30

A
n
g
u
la

r 
v
e
lo

c
it
y
 [
ra

d
/s

]

(b) Angular velocity (ω)

0.1 0.2 0.3 0.4

Time [s]

-1

-0.5

0

0.5

1

1.5

C
u
rr

e
n
t 
[A

]

(c) Phase current (iα, iβ)

0.1 0.2 0.3 0.4

Time [s]

-1

0

1

2

3

4

5

C
u
rr

e
n
t 
[A

]

(d) Park currents (id, iq)

Figure 4.7: Step response for the position LQR controller

36



4. Results & Discussion

4.2 Measurement results

4.2.1 Angle sensor
The angle sensor is specified with an angular resolution of 0.01◦, however the sensor
is not completely linear over the revolution of the motor, as depicted in Figure 4.8.
The blue graph (which almost coincides with the red) represents the deviation of the
sensor measurement versus the expected angle based on the requested field orienta-
tion. This discrepancy had to be compensated, which was achieved by the lookup
table labeled as calibration in the same figure. The compensated measurement is
shown as the yellow graph labeled calibrated and shows a significant improvement
in the linearity of the angle (in the ideal case the yellow line would be constantly
0). Furthermore the perceived error, that is the difference between the calibrated
angle and the expected angle, can be viewed on its own in Figure 4.9. While there
is some error remaining over the revolution it is worth noting that the magnitude of
this error is approaching the resolution of the sensor.

0 90 180 270 360

rotor angle [DEG]

-1.5

-1

-0.5

0

0.5

1

E
rr

o
r 

[D
E

G
]

Figure 4.8: Result of the sensor calibration. The raw error (blue) is the measured
angle compared to the expected open-loop angle. The calibration (red) is the lookup
table used to compensate the error. The calibrated (yellow) is the result of using
the lookup table to compensate the error.

37



4. Results & Discussion

0 90 180 270 360

rotor angle [DEG]

-0.1

-0.05

0

0.05

E
rr

o
r 

[D
E

G
]

Figure 4.9: This figure depicts the measurement error calculated during the cali-
bration test, the expected open-loop angle versus the compensated measurement.

38



4. Results & Discussion

4.2.2 Current measurements
Current measurements were achieved by the use of a shunt resistor connected in
series with the load. The voltage over the resistor was monitored using a 20x-
amplifier. From this voltage the current through the resistor is calculated using
Ohm’s Law. The sensing resistance was selected as 40 mΩ, which amplified by 20
gives 0.8 V/A. In Figure 4.10 a plot of a voltage sweep over a motor can be viewed.
The plot shows the current through the motor with regards to the commanded
H-bridge voltage.

-6 -4 -2 0 2 4 6

Voltage [V]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

C
u

rr
e

n
t 

[A
]

Figure 4.10: Plot showing the commanded voltage versus the measured phase
currents

39



4. Results & Discussion

4.3 Motor control results

4.3.1 Current control
The current controllers in the C implementation performs in a similar way to the
simulated controllers. Figure 4.11a shows the step response for the current controller
when the rotor was fixed, the same scenario as was simulated in Figure 4.1a is also
shown in the same figure. The step response for the motor attached to a dynamic
load also shows similar behaviour to its simulation. The step response in hardware
was slightly slower than the simulation, which likely was caused by filtering of the
current which was done by the use of a lowpass filter. The lowpass filter adds a
slight delay to the signal which explains the delay present in the hardware plots in
both Figures 4.11c and 4.11b. Furthermore the step response for the freely rotating
motor, shown in Figure 4.11c, presents a similar behavior to the simulation of the
same case (Figure 4.1b). The controller is initially following the fixed case, but as
the motor starts rotating and generating back-emf the current curve starts deviating
from the fixed rotor case.

0.09 0.1 0.11 0.12 0.13 0.14

Time [s]

0

0.1

0.2

0.3

0.4

C
u
rr

e
n
t 
[A

]

(a) Step response when the rotor is
fixed during the step.

0.1 0.12 0.14 0.16 0.18

Time [s]

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

C
u
rr

e
n
t 
[A

]

(b) Step response when the rotor is
subjected to a load proportional to ro-
tation speed.

0 0.1 0.2 0.3 0.4 0.5 0.6

Time [s]

-0.5

0

0.5

1

C
u
rr

e
n
t 
[A

]

(c) Step response when the rotor is
free to rotate during the step

Figure 4.11: Step response for the current controllers on the hardware.

40



4. Results & Discussion

4.3.2 PID velocity control
The result of the step response for the velocity controller can be seen in Figure 4.12.
Here again the graph is slightly delayed compared to the simulations. This is caused
by the same reason as before, low pass filtering of the speed estimation. The oscil-
lations that can be seen in the estimated speed could be caused by the manner in
which the speed is estimated, numerical derivation. As there is no speed sensor the
speed is estimated from the angle sensor. This results in the speed spikes whenever
the sensor advances from one angle to the next, while resulting in 0 speed when the
sensor has not changed between measurements. On average this gives the correct
speed, however it requires filtering. The harder the filter the more accurate the
estimation becomes in the long run for a constant speed. The trade off is that this
adds a delay to the speed estimation. As can be seen in Figure 4.12, the filtering
was chosen in such a way to give a small delay and remove as much oscillations as
possible, meaning there is a small delay with some oscillations.

0 0.1 0.2 0.3 0.4 0.5

Time [s]

0

1

2

3

4

5

6

7

A
n

g
. 

v
e

lo
c
it
y
 [

ra
d

/s
]

Figure 4.12: Step response for the speed PID controller given a constant step.

41



4. Results & Discussion

4.3.3 Speed limiting
When using a position controller there is no direct control over what speed the motor
will run at after the tuning, unless you impose restrictions to the controller. In this
case, due to a combination of hardware and software issues the motor was not able
to run faster than about ±10π rad/s. Due to time limitation these issues and their
interactions were not fully identified. The hardware issues were probably the noise
in both current and angle sensors, while the software issues were likely the speed
estimation in combination with the sensor noise.
Exceeding this speed caused the FOC to apply the wrong torque to the motor
causing the system to become unstable. Because of this the speed was limited to
±8π rad/s during the tests to stay on the safe side.

4.3.4 PID position control
The PID position controller is a cascade controller that builds upon the velocity
controller from the previous section. The position PID outputs a desired velocity
to the velocity controller. The resulting step response for the rotor angle (θ) can be
seen in Figure 4.13a and the velocity (ω) is shown in Figure 4.13b. The controller is
able to perform a 3 radian step in roughly 0.2 seconds when the speed was limited
to ±8π rad/s. The controller follows the speed reference well with only a minor
overshoot at the first step when viewing the ω estimation. When comparing to the
simulation (yellow in Figure 4.13b) the low pass delay is apparent again, otherwise
the simulation and the hardware are very similar for the velocity. The same can be
said for the rotor angle (θ), with the exception that the delay here is not caused by
a low pass filter on the angle, but the same low pass filter as before, acting on the
velocity.

0 0.1 0.2 0.3 0.4 0.5 0.6

Time [s]

0

0.5

1

1.5

2

2.5

3

A
n
g
le

 [
ra

d
]

(a) Rotor angle (θ)

0 0.1 0.2 0.3 0.4 0.5 0.6

Time [s]

0

20

40

60

80

100

120

140

160

A
n
g
. 
v
e
lo

c
it
y
 [
ra

d
/s

]

(b) Angular velocity (ω)

Figure 4.13: Step response for the position PID controller. The controller per-
forms the step in roughly 0.2 seconds while being limited to ±8π rad/s. The speed
reference was followed with only a minor overshoot when viewing the ω estimation.

42



4. Results & Discussion

4.3.5 LQR velocity control
The LQR velocity controller performs close to the simulation, as can be seen in
Figure 4.14. The blue line represents the estimated velocity on the hardware test
while the yellow line is the speed estimation in simulation. The estimation in hard-
ware is close to the simulation until close to the reference, where some oscillations
start. These are the same oscillations that were present for the PID controller men-
tioned in Section 4.3.2. Additionally the LQR controller was not able to remove the
steady state error as fast in hardware as compared to simulations, despite the use of
an integrating state. The likely reason for this was that the cost (Q) of the integrat-
ing state could not be large enough without the system becoming uncontrollable and
causing the lqi-command in MATLAB to fail. The initial steady state error which
prompted the use of an integrating state was likely caused by model error.

0 0.1 0.2 0.3 0.4 0.5

Time [s]

0

1

2

3

4

5

6

7

A
n

g
. 

v
e

lo
c
it
y
 [

ra
d

/s
]

Figure 4.14: Step response for the LQR velocity controller. The simulated speed
estimation (ωsim) is very close to the actual estimation (ω) from the hardware test.
Some oscillations occur close to the reference after the step has been given.

43



4. Results & Discussion

4.3.6 LQR position control
In Figure 4.15 the results from the LQR position step responses can be seen. The
step responses in simulation (yellow) and in hardware (blue) are very close to each
other in both velocity and position. The larger overshoot present in the velocity
state compared to simulation was likely caused by the filtering of the velocity state
in the hardware, which was not modelled in the simulation. This suggests that the
model accurately captured the dynamics of the stepper motor. This controller is
also affected by the speed limitation discussed earlier, even more so than the PID
due to the fast response in velocity.

0 0.1 0.2 0.3 0.4 0.5 0.6

Time [s]

0

0.5

1

1.5

2

2.5

3

A
n
g
le

 [
ra

d
]

(a) Rotor angle (θ)

0 0.1 0.2 0.3 0.4 0.5 0.6

Time [s]

0

5

10

15

20

25

30

35

40

A
n
g
. 
v
e
lo

c
it
y
 [
ra

d
/s

]

(b) Angular velocity (ω)

Figure 4.15: Step response for the position LQR controller

44



4. Results & Discussion

4.4 Discussion

4.4.1 Angle sensor
The challenges when developing a FOC for a stepper motor mainly boil down to
accurately measuring the rotor angle and the phase currents while outputing the
correct voltage on the H-Bridge. The angle is vital as this determines the values
and orientation of the phase voltages through the inverse park transform. This is
especially prevalent in stepper motors due to their large number of poles. Every pole
multiplies the number of electrical revolutions per mechanical revolution, effectively
dividing the resolution of the angle sensor proportionally with regards to discrete
steps per electrical revolution. This further increases the demands on the angle
sensor accuracy. During this project it was found that while the angle sensor was
very accurate it was not very linear. It consistently reported the same measured
angle for the same orientations, however it did not always present an angle that
matched the physical orientation, sometimes differing more than 1◦ which can be
seen in Figure 4.8. Fortunately, due to the repeatable nature of the measurements
this was remedied by the use of a lookup table, mapping the measured angles to
the actual rotor positions. This lookup table was created by driving the motor
using an open-loop control scheme and recording the commanded angles versus the
measured angles. The creation of the lookup, the calibration, is only required once
per motor/driver pair as this is stored in the flash memory of the ESP32. The use of
this calibration improved the linearity of the sensor greatly, as shown by the yellow
line in Figure 4.8. To put this in to context, for a 200 steps per revolution motor
this error equates to ±5◦ accuracy on the electrical revolution.

4.4.2 Phase current
The current measurements were another challenge faced during this project. Because
the FOC is mainly a current controller the current measurements are another aspect
vital to the controllers functionality. The shunt resistance had to be selected with
care to make sure that it was small enough to not interfere with the phase current too
much, while still being large enough to produce a voltage that could be measured.
In the end it was selected as 40 mΩ which resulted in a voltage drop of 40 mV/A and
a current conversion of 0.8 V/A after the amplification of 20. In order to improve
the performance of the onboard ADC the amplifier that was used outputs a biased
voltage. The ADC in the ESP32 performs best in the region around Vcc/2, which is
where the voltage equivalent to 0 A was placed. Positive currents caused the voltage
to increase and negative resulted in a decrease, allowing the ADC to operate in its
best performing region most of the time.

4.4.3 H-Bridge voltage
In order to place the correct voltage over the motor phases the voltage used to
calculate the duty cycle of the PWM had to be compensated to take into account
the losses in the H-Bridge and the shunt resistance. In the H-Bridge there is a voltage

45



4. Results & Discussion

drop for every MOSFET the current passes through, which normally is two. Because
the resistances in the H-Bridge and shunt resistor are small the compensated voltage
is largely dependant on the motor resistance. For a motor with larger resistance the
compensated voltage was very close to the uncompensated, while for motors that
have < 2 Ω in phase resistance the voltages varied significantly, which is expected
when studying (3.16) and (3.17).

4.4.4 Current control
The PI current controllers in the FOC performed very well. The rise time in both
simulation and hardware matched the rise time selected during gain calculation
(Figure 4.1a and 4.11a), providing the motor was kept still or was loaded. When
the rotor was allowed to move unlaoded the rotor accelerated very quickly which in
turn caused high back-emf to be generated. The back-emf reached a voltage higher
than the source voltage before the controllers could reach their respective setpoints
(Figure 4.1b and 4.11c), which caused them to level off at a point lower than the
setpoint. This can be seen in both the simulation and hardware. Given ideal inputs
(unlimited source voltage, ideal DAC) the setpoint is eventually reached, as was
showed in Figure 4.3.

4.4.5 Velocity control
Two different controllers were tested for velocity control, PID and LQR. When com-
paring the step responses for the controllers in simulation (Figure 4.4a and 4.6a) it
is clear that the LQR performed slightly better. The reason for this could insuf-
ficient tuning of PID controller. The tuning of the PID followed the step by step
process described earlier in Section 3.3.1, which might not be the most ideal way of
tuning. The LQR on the other hand did not require much tuning at all to reach a
better result than the PID.
In hardware the results show the same tendency as in simulation, the LQR is faster
to reach the setpoint (Figure 4.12 vs. 4.14). However the LQR seems to have some
issues with fully reaching the setpoint, even with an integrating state (Figure 4.14),
an issue which the PID does not seem to have (Figure 4.12) to the same extent.

4.4.6 Position control
Here again PID and LQR were tested, and again LQR is performing the best in
the simulations (Figure 4.5a and 4.7a). The PID is slower to reach the setpoint
compared to the LQR and furthermore the LQR has the option of providing a
reference for the velocity as well. This enables a "soft" speed limit to be set, soft
meaning that the controller might violate the speed reference, but will generally
keep to it (Figure 4.7b).
In contrast to previous controllers the PID and LQR seems to have similar perfor-
mance on the hardware. A possible reason for this is likely the speed restriction
which had to be imposed in the position cases. This restriction limited the advan-
tage the LQR had by being faster to accelerate, and thus potentially reaching a

46



4. Results & Discussion

higher top speed than PID. Another reason for the similar performance might be
due to the selection of velocity reference for the LQR. The velocity reference was
selected by means of a proportional gain on the position error, effectively a P con-
troller. This might not have been the ideal reference and more performance could
be possible with a proper selection of reference trajectory.

47



4. Results & Discussion

48



5
Conclusion

This master’s thesis investigated model based control (LQR) combined with Field
Oriented Control for permanent magnet stepper motors. The FOC, the LQR and
a PID controller were simulated and implemented on the target hardware. The
FOC controlled the currents in the motor to produce a desired torque, while the
two other controllers provided the torque reference based on an external reference
(velocity and/or position).

The FOC worked very well in both simulation and hardware. The currents reached
their setpoints within the rise time specified during the controller design (10 ms)
when the rotor was fixed or put under a dynamic load. The controller was not able
to keep the setpoint if the motor was unloaded and allowed to reach a very high
velocity, due to back-emf overpowering the source voltage available.

Both the PID and the LQR worked well in both simulation and hardware, though
with the LQR controller outperforming the PID in both velocity control and in the
position control in simulation as well as hardware. In velocity control the LQR was
able to change speed from 0 to 6 rad/s twice as fast as the PID (0.03 s vs 0.06 s).
For position control the difference was reduced. The LQR moved the motor from
0 to 3 rad in 0.15 s while the same movement was executed in 0.2 s for the PID.
This reduced difference was attributed to speed limitations and reference trajectory
selection.

The most suitable controller for stepper motor control depends on the availability of
motor parameters. LQR requires a good knowledge of the motor parameters, while
PID does not. Given close to correct motor parameters LQR gives the best perfor-
mance, however PID is not far behind and is most suitable if the motor parameters
are not readily available.

49



5. Conclusion

50



6
Future Work

6.1 Speed limitation
Identification and correction of the errors that lead to the speed being limited is the
next step for this project. Without the limitation there would likely be a clearer
winner between the LQR and PID is the position control test, the the LQR would
not be as hampered.

6.2 PI-controller decoupling and back-emf com-
pensation

With the speed limitation lifted the coupling that was disregarded in this project
would have to be added, as this is much more prevalent at higher velocities. The
same is true for the back-emf which also is highly dependant on the velocity. At
low speeds this can be disregarded, but not at higher speeds. The addition of these
two compensators would allow the current controller to perform better at higher
speeds.

51



6. Future Work

52



Bibliography

[1] Richard Barry. FreeRTOS. Feb. 2019. url: https://www.freertos.org/
index.html.

[2] M. Bendjedia et al. “Position Control of a Sensorless Stepper Motor”. In:
IEEE Transactions on Power Electronics 27.2 (Feb. 2012), pp. 578–587. issn:
0885-8993. doi: 10.1109/TPEL.2011.2161774.

[3] DMOS Microstepping Driver with Translator And Overcurrent Protection.
A4982. Rev. 5. Allegro Microsystems. May 2014.

[4] DRV8825 Stepper Motor Controlelr IC. DRV8825. Rev. F. Texas Instruments.
July 2014.

[5] DRV887x H-Bridge Motor Drivers With Integrated Current Sense and Regu-
lation. DRV8876. Rev. 1.0. TexasInstruments. Oct. 2018.

[6] ESP32. ESP32. Rev. 2.8. Espressif. Jan. 2019.
[7] ESP32 Technical Reference Manual. ESP32. Rev. 4.0. Espressif Systems. Dec.

2018.
[8] Espressif. Espressif IoT Development Framework. Feb. 2019. url: https://

github.com/espressif/esp-idf.
[9] Lennart Harnefors. Control of Variable-Speed Drives. Department of Electron-

ics, Mälardalen University, Sept. 2002.
[10] hauptmech. What are good strategies for tuning PID loops? Oct. 2012. url:

https://robotics.stackexchange.com/a/174.
[11] B. Henke et al. “Modeling of hybrid stepper motors for closed loop operation”.

In: IFAC Proceedings Volumes 46.5 (Apr. 2013), pp. 177–183. doi: 10.3182/
20130410-3-CN-2034.00042.

[12] D. Mathew J Paul. “A Novel Vector Control Strategy For Bipolar Stepper
Motor”. In: International Journal of Scientific & Engineering Research 5.11
(Nov. 2014), pp. 1133–1139. issn: 2229-5518.

[13] W. Kim, C. Yang, and C. C. Chung. “Design and Implementation of Sim-
ple Field-Oriented Control for Permanent Magnet Stepper Motors Without
DQ Transformation”. In: IEEE Transactions on Magnetics 47.10 (Oct. 2011),
pp. 4231–4234. issn: 0018-9464. doi: 10.1109/TMAG.2011.2157956.

[14] Kitware. CMake. 2001. url: https://cmake.org/overview/.
[15] J. Kordik. “Comparing Open Loop and StepSERVO Closed Loop Stepper

Systems”. In: (July 2015).
[16] LMP860x, LMP860x-Q1 60-V, Bidirectional, Low- or High-Side, Voltage-Output,

Current-Sensing Amplifiers. LMP860x. Rev. G. TexasInstruments. Jan. 2014.

53

https://www.freertos.org/index.html
https://www.freertos.org/index.html
https://doi.org/10.1109/TPEL.2011.2161774
https://github.com/espressif/esp-idf
https://github.com/espressif/esp-idf
https://robotics.stackexchange.com/a/174
https://doi.org/10.3182/20130410-3-CN-2034.00042
https://doi.org/10.3182/20130410-3-CN-2034.00042
https://doi.org/10.1109/TMAG.2011.2157956
https://cmake.org/overview/


Bibliography

[17] P. Pillay and R. Krishnan. “Modeling of permanent magnet motor drives”. In:
IEEE Transactions on Industrial Electronics 35.4 (Nov. 1988), pp. 537–541.
issn: 0278-0046. doi: 10.1109/41.9176.

[18] C. Rusu, I. Birou, and E. Szoke. “Model based design controller for the stepper
motor”. In: 2008 IEEE International Conference on Automation, Quality and
Testing, Robotics. Vol. 2. May 2008, pp. 175–179. doi: 10.1109/AQTR.2008.
4588816.

[19] TLE5012B. TLE5012B. Rev. 2.1. Infineon. June 2018.
[20] TMC2130-LA DATASHEET. TMC2130. Rev. 1.10. Trinamic Motion Control

GmbH & Co. KG. May 2018.
[21] M. Zribi and J. Chiasson. “Position control of a PM stepper motor by exact

linearization”. In: IEEE Transactions on Automatic Control 36.5 (May 1991),
pp. 620–625. issn: 0018-9286. doi: 10.1109/9.76368.

54

https://doi.org/10.1109/41.9176
https://doi.org/10.1109/AQTR.2008.4588816
https://doi.org/10.1109/AQTR.2008.4588816
https://doi.org/10.1109/9.76368

	List of Figures
	List of Tables
	Abbreviations
	Introduction
	Background
	Aim
	Limitations
	Ethical aspects

	Theory
	Permanent Magnet Stepper Motors
	Principle of operation
	Modeling
	Mechanical model
	Electrical model

	Control
	Traditional control
	Full stepping
	Half stepping
	Micro stepping / Wave stepping

	Closed loop control
	Field Oriented Control
	Controlling direct and quadrature forces
	PI - Current control
	Model based motor control


	Implementation
	Model
	Field Oriented Control
	Velocity and position control
	PID
	LQR

	Hardware
	ESP32
	Angle sensor
	H-bridge

	C implementation
	Motor control
	The Floating Point Unit


	Results & Discussion
	Simulation results
	Current control
	PID velocity control
	PID position control
	LQR velocity control
	LQR position control

	Measurement results
	Angle sensor
	Current measurements

	Motor control results
	Current control
	PID velocity control
	Speed limiting
	PID position control
	LQR velocity control
	LQR position control

	Discussion
	Angle sensor
	Phase current
	H-Bridge voltage
	Current control
	Velocity control
	Position control


	Conclusion
	Future Work
	Speed limitation
	PI-controller decoupling and back-emf compensation

	Bibliography

