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Technology
FREDRIK HELLQUIST
NILS RASMARK
Department of Mechanics and Maritime Sciences
Division of Dynamics
Chalmers University of Technology

Abstract

Buildings exposed to vibrations from heavy road or train traffic do not normally risk
being damaged, but the vibrations can cause discomfort to the users. Performing
a detailed dynamic analysis is expensive and time consuming. Consequently, they
are rarely performed with regard to comfort vibrations. Fagerström and Lindors-
son (2017) studied a simple method of analysing beams and frame structures with
respect to comfort vibrations. As a continuation of their work, this thesis aims to
further develop a simple and effective method for studying comfort vibrations of
buildings by incorporating plates into the method. In addition, it is investigated if
the vibration of a plate can be predicted by interpolation of the known vibrations of
similar plates. A calculation program in MATLAB is developed where the simplified
analyses can be performed. The results are compared to analyses performed with a
commercial FE program.

The study shows a large spread in the results between the simple and the more
advanced method. The behaviour of plates are more complicated than beams and
requires a higher understanding to be able to interpret the results correctly. If one
takes careful measures with regards to the mesh, the dominant frequency range of
the applied response spectrum and the natural frequencies of the studied plates,
the simplified method provides results with reasonable accuracy. The study also
shows that an interpolation between plates with similar geometry and boundary
conditions to obtain the response is not easily performed, due to relatively small
parameter differences potentially causing profound changes in the behaviour.

Keywords: RSA, THA, plates, MPF, response spectrum, structural dynamics, vi-
brations, Natural frequency, eigenfrequency, FEM.
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Beräkning av vibrationer i det tidiga projekteringsskedet
En jämförande studie av den dynamiska responsen på plattor utsatta för markrörelse
med användning av responsspektrumanalys och tidshistorieanalys
Examensarbete inom masterprogrammet Konstruktionsteknik och Byggnadsteknologi
FREDRIK HELLQUIST
NILS RASMARK
Institutionen för Mekanik och maritima vetenskaper
Avdelningen Dynamik
Chalmers tekniska högskola

Sammanfattning

En byggnad utsatt för vibrationer från exempelvis tung väg- eller tågtrafik riskerar
normalt inte att skadas av vibrationerna, men vibrationerna kan orsaka obehag för
människor i byggnaden. Att utföra en detaljerad dynamisk analys är dyrt och tid-
skrävande och därför utförs de sällan med avseende på komfortvibrationer. Fager-
ström and Lindorsson (2017) studerade en enkel metod för analys av balkar och
ramkonstruktioner med avseende på komfortvibrationer. Som en fortsättning på
deras arbete syftar detta examensarbete till att vidareutveckla en enkel och effektiv
metod för analys av komfortvibrationer för byggnader genom att inkorporera plat-
tor i metoden. Dessutom undersöks om vibrationen hos en platta kan förutsägas
genom interpolering av kända vibrationer i liknande plattor. Ett beräkningsprogram
i MATLAB utvecklas där de förenklade analyserna kan utföras. Resultaten jämförs
med analyser utförda med ett kommersiellt FE-program.

Studien visar en stor spridning i resultaten mellan den enkla och den mer avancerade
metoden. Plattors beteende är mer komplicerat än balkars och kräver en högre
förståelse för att kunna tolka resultaten korrekt. Om stor noggrannhet läggs på
plattans elementindelning, det dominerande frekvensområdet för det applicerade
responsspektrumet och de naturliga frekvenserna hos de plattor som studeras, kan
den förenklade metoden ge resultat med rimlig noggrannhet. Studien visar också
att en interpolering mellan liknande plattor för att erhålla responsen av en platta
är svårt att genomföra på ett säkert sätt på grund av de många parametrar som
påverkar olika plattor olika mycket.

Nyckelord: RSA, THA, plattor, MPF, responsspektrum, strukturdynamik, vibra-
tioner, naturlig frekvens, egenfrekvens, FEM.
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1
Introduction

1.1 Background

Vibrations in structures are of large importance for several reasons, ranging from
ultimate limit capacity when the structure is subjected to earthquake or impact
loads, to serviceability cases when for example traffic vibrations or human activity
induce discomfort for the users of the building. The dynamic properties of the
building have a large influence on the behaviour when subjected to dynamic loads.
Performing detailed dynamic analysis is costly and time consuming, and as a result,
dynamic analyses with regards to comfort vibrations are often not performed. Since
the comfort of the users of a structure is an important aspect of construction there
is a need to investigate the dynamic properties of the structure while avoiding the
issue of increased cost that a detailed dynamic analysis requires. Therefore, there
is a general need for a simplified efficient method to predict problems with comfort
vibrations, or in unclear cases give an indication if a more detailed analysis would
be needed.

One method for simplified dynamic analysis is the Response Spectrum Analysis
(RSA), which is in frequent use for earthquake analysis worldwide. Combining
a response spectrum with a structure’s Modal Participation Factors (MPF) and
eigenvectors is a fast and simple method to obtain results of comparable accuracy
to the much more resource- and time consuming Time History Analysis (THA) for
earthquake applications.

Fagerström and Lindorsson (2017) studied the RSA method for beams and frame
structures with regard to comfort vibrations. They obtained good results for vi-
bration response at the connection between the walls and floors. To analyse the
vibrations a person would experience in a building, it is necessary to find the vibra-
tional response on the floor that they are standing or sitting on. In order to perform
such an analysis, the incorporation of plates is a necessity.
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1.2 Aim

Following the work of Fagerström and Lindorsson (2017), this thesis aims to continue
development of a simple and efficient method for the study of comfort vibrations for
buildings by incorporating plates into the method.

1.3 Scope of the study

The study primarily revolves around the accuracy of results between RSA and THA
for various plates. The effect that plate geometry, support conditions and element
mesh have on the MPF and eigenfrequencies are also studied. In addition, it is
investigated if MPF and eigenfrequencies can be interpolated from data of other
plates with similar dimensions and support conditions.

1.4 Limitations

Several key elements of analysing comfort vibrations are omitted from the study,
these include absolute response, methods of combining local and global analysis and
methods to incorporate comfort weighting. The concepts are explained in theory
and discussed, as they are important parts of the comfort vibration analysis. Simple
linear elastic material models are used, and nonlinear phenomena such as concrete
cracking are not included in the analyses. Effects of damping are considered in
a simplified way in the models through modal damping. No in-depth study of
the damping phenomenon is made and the subject is only briefly touched upon.
Vibrational loads that are studied are assumed to have fully reached the structure.
Hence, geotechnical conditions and transfer of vibrations through the foundation
are not considered. Of the various integration methods, this study applies the
Newmark-β method.

1.5 Method

A literature study of structural dynamics through textbooks, technical reports and
scientific articles comprise the first part of the study. The literature study focuses
on numerical integration methods, THA and RSA.

To be able to run fast analyses a script that is able to perform a RSA is developed in
MATLAB. THA, verification of RSA results, and RSA of computationally heavier
models are done in ADINA FEM.
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Using the RSA and THA, plates with varying support conditions and dimensions
are studied. The accuracy of the MATLAB RSA script is verified with ADINA RSA
and comparison of RSA against THA is made. An investigation is made into how the
MPF and eigenfrequencies are affected by plate geometry and support conditions.
In addition, a study on how mesh refinement affects THA and RSA is made.

1.6 Outline of the report

The report consists of a theory chapter (Chapter 2), a method chapter (Chapter 3),
a result chapter (Chapter 4) and finally a conclusion chapter (Chapter 5).

In Chapter 2 background theory needed to perform and understand the methods
and results in upcoming chapters of the thesis is given. It includes an introduction
of vibration and basic theory of structural dynamics. Also explanations of the THA,
RSA and numerical integration methods are given here.

Chapter 3 describes how the calculation tools MATLAB and ADINA have been
used to calculate the MPF and perform the RSA and THA. General properties and
information of the plate analysis performed in Chapter 4 are introduced as well as
the traffic loads that have been used.

Chapter 4 presents the results of the modal contribution study and the comparative
study of RSA and THA for various plates. An in-depth analysis of two plates were
made and the results are also presented in this chapter. In addition of presenting
the results an introductory discussion is held for some of the results.

Chapter 5 covers more in depth discussions and conclusions of the results. Proposi-
tions for further studies are given as well as recommendations for improvements of
the analysis carried out in the thesis.

In the appendices, graphs from the modal contribution study and some additional
tables from the THA and RSA comparison are shown.
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2
Theory

2.1 Orientation

The theory chapter explains the theory on which the thesis work is based on. It
covers the basics of vibrations, fundamentals of structure dynamics, Response spec-
trum analysis (RSA), Time history analysis (THA), numerical integration methods
and comfort weighting.

2.2 Basic concepts of vibration

2.2.1 Orientation

This section covers some of the basic concepts of vibrations such as natural vibration
modes, free and forced vibration, relative and absolute response, illustrations of
beam and plate vibration and an example of free vibration in order to explain the
basic concepts.

2.2.2 Introduction to vibrations

At the most basic level, a vibration is when a particle or a system of particles
oscillates periodically around it’s equilibrium point, which is a consequence of the
particle or system being disturbed from its equilibrium state in some way (Merriam-
Webster, 2018). Ways to disturb a particle or system from equilibrium include
displacement, velocity, acceleration or an external force. All these terms are in
reality very much related to each other, but in the mathematical study of dynamic
systems they are viewed separately. The vibration of any system depends on the
four parameters mass, stiffness, damping and external force.
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2.2.3 Free vibrations, Forced vibrations and natural modes

A system which is excited by a short disturbance from its equilibrium state will
continue to vibrate for a time, even when no external exciting source remain on
the system. This is known as free vibration, and an intuitive example of it can be
seen by striking a guitar string. The system will vibrate with a combination of its
natural modes. A continuous system has an infinite amount of natural modes, while
a n-degree of freedom system will have n natural modes. The free vibration is a
simultaneous combination of all of a systems’ natural modes, but the lower modes
contain more energy and are typically the most significant while the low energy
higher modes are of less significance. A natural mode is accompanied by a natural
frequency, in structural dynamics a natural mode is described by an eigenvector and
the natural frequency by its associated eigenvalue, this is covered in Section 2.3.5.
Forced vibrations implies, unlike free vibrations, that the disturbing factor remains
on the system. Often this disturbance is in the shape of an external dynamic force.

2.2.3.1 Beam vibration

Simply supported beams vibrate much like the aforementioned example of a guitar
string, see Figure 2.1. The first mode, also known as the fundamental mode is a
half sine wave. Each following mode will have an extra hump and an extra node.
The nodes are the points of the beam that have zero movement in a natural mode.
For the n-DOF beam in the example there are n modes with n associated natural
frequencies.

(a) Beam at rest (b) First mode

(c) Second mode (d) Third mode

Figure 2.1: The first natural vibration modes for a simply supported beam: (a)
Beam at rest, no vibration; (b) Beam vibrating in its first natural mode; (c) Beam
vibrating in its second natural mode; and, (d) Beam vibrating in its third natural
mode.
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2.2.3.2 Plate vibration

Unlike the beam element, plates are two-dimensional and thus exhibit a more com-
plex vibrational behaviour. For instance, many modes will have a twin mode in
the perpendicular direction, which will have a different natural frequency than its
twin mode if the plate is not symmetrical with regards to support conditions and
dimensions. The plate vibration behaviour is studied thoroughly in later sections
of the thesis, but examples of the first few vibrational modes of a simply supported
quadratic plate can be seen in Figure 2.2.

(a) First mode (b) Second and third mode

(c) Fourth mode (d) Fifth mode

Figure 2.2: The first natural vibration modes for a simply supported quadratic
plate. (b) Shows a twin mode.

The natural frequency of a plate can easily be analytically calculated. Equation
2.1 shows a formula that can be used to calculate the fundamental frequency for
a simply supported quadratic or rectangular plate (Feldmann, Heinemeyer, and
Völling, 2007).

f = α

a2

√√√√ Et3

12m(1− ν) α = 1.57(1 + (a
b

)2) (2.1)

Where E is the Young’s Modulus, m is the mass of the plate, ν is the Poisson’s
ratio, t is the thickness of the plate, a and b are the length and width of the plate.
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2.2.3.3 Example of free vibration with mass-spring system

To illustrate a basic example of free vibration, a mass-spring system is used, as
shown in Figure 2.3a. In the mass-spring system a linear elastic spring is assumed.
This means that the spring force fs is proportional to the displacement u with the
spring constant k, i.e the constitutive relation:

fs = ku. (2.2)

k
m

u

(a) mass-spring

u

fs m

(b) free body diagram

Figure 2.3: Mass-spring system with its free-body diagram for dynamic equilibrium

In the free body diagram in Figure 2.3b using Newton’s second law: ∑
Fx = müx,

and the constitutive relation fs = ku the equation of motion for the system is
obtained as

mü+ ku = 0. (2.3)

Equation 2.3 is a second-order linear ordinary differential equation with the com-
plementary (homogeneous)1 solution as in Equation 2.4. As there is no external
force present in this system the particular solution up = 0, which makes the general
solution u(t) = uc + up = uc. When there is an external force the system undergoes
forced vibration, which is covered in Section 2.3.2

u(t) = A1cos(ωnt) + A2sin(ωnt). (2.4)

Here ωn =
√

k
m

is defined as the undamped circular natural frequency. Make special
notice that this parameter is dependant on the relation of stiffness to mass. The
constants A1 and A2 can be found with the use of the initial conditions u(0) = u0
and u̇(0) = v0 which gives A1 = u0 and A2 = v0

ωn
. A simple case to study is with

initial conditions consisting of a prescribed displacement of u0 6= 0 and no initial
velocity v0 = 0. Inserting the initial conditions into Equation 2.4 and its derivative
u̇ gives

u(t) = u0cos(ωnt). (2.5)

The system will oscillate with an amplitude of u0 over a period Tn = 2π
ωn
. The

undamped natural frequency f = ωn

2π gives the cycles per second. Figure 2.4 shows the
sinusoidal behaviour of Equation 2.5, it can also be seen that the motion continues

1In structural dynamics the homogeneous solution of a differential equation is denoted comple-
mentary solution, by convention.
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with the same amplitude indefinitely. No realistic structural system will behave this
way, since energy will dissipate from the system. The dissipation of energy is called
damping.

u0
Tn

Displacement

Time

Figure 2.4: Graph of u(t) = u0cos(ωnt) starting from u0 with period time Tn = 2π
ωn
.

2.2.3.4 Damping

A structure subjected to an excitation will vibrate with decreasing amplitude for a
period of time. The progressively decreasing magnitude of the vibration is the result
of dissipation of energy from the structure during the vibration. Many processes are
involved in the energy dissipation, an example of which is friction. In structural
dynamics the dissipation of energy is referred to as damping. The damping of
a structure depend on many different factors that are difficult to consider, it is
therefore generally impossible to predict the exact damping properties of a structure.
It can be measured when the structure is completed, but the behaviour is very
difficult to predict. Thus, taking damping into account is problematic, but several
methods to model it exist. The most common way to handle damping in structural
dynamics is the linear viscous dashpot model (Craig and Kurdila, 2006). The linear
viscous damping model describes the damping force as fd = c(u̇2 − u̇1) where c is
the coefficient of viscous damping and (u̇2 − u̇1) is the relative velocity of the two
points on each end of the dashpot, see Figure 2.5.

u̇1 u̇2
c

Figure 2.5: Linear viscous dashpot damping element.

The viscous dashpot model with the coefficient of viscous damping is handled sim-
ilarly to the linear spring model. The difference is that the spring acts by storing
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energy while the damping dashpot dissipates energy. In addition to c, the damping
model introduces the critical damping coefficient ccr = 2

√
km and the damping ra-

tio ζ = c
ccr

, Section 2.3.2 illustrates the use of these coefficients in equations. The
damping ratio ζ has the property that it states which of the three different damping
behaviours a system will have.

• The system is underdamped: ζ < 1

• The system is overdamped: ζ > 1

• The system is critically damped: ζ = 1

Underdamped
Critically damped
Overdamped

Displacement

Time

Figure 2.6: The three different cases of damping: underdamped (ζ < 1), critically
damped (ζ = 1) and overdamped (ζ > 1).

2.2.3.5 Resonance

The natural frequency, ωn, is an important parameter when studying dynamics.
When a system is subjected to an external dynamic force where the frequency of
the force is the same as the natural frequency of the system, it will cause the system
to resonate. Resonance will increase the amplitude of the motion continuously,
theoretically until the displacement approaches infinity. For real structures this is
obviously not the case, as a brittle structure would eventually fail when deformations
become large enough and a ductile structure would start to yield, changing the
stiffness properties and thus the natural frequency which would cause the resonant
behaviour to cease. Nevertheless, avoiding resonance behaviour is a very important
aspect of structural design (Chopra, 2014). Figure 2.7 shows the resonance behaviour
in a simple manner.
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Time

Displacement

Figure 2.7: Resonance behaviour, when the frequency of an external load Ω = ωn
.

2.2.4 Relative and absolute response

When a system has a moving base it becomes important to distinguish between rela-
tive response and absolute response. The principle is shown in Figure 2.8, where the
displacement of the tip of a cantilever beam is illustrated. The relative displacement
drel is the displacement of the tip of the beam relative to its base, the ground dis-
placement dg is the displacement of the base with regard to its original position and
the absolute displacement is the total sum dabs = dg + drel. For comfort vibrations
it’s important to examine the absolute response, since the absolute response of a
vibration is the one a person feels when standing on a floor in a vibrating structure,
for example.

dg drel

dabs

Figure 2.8: Ground motion, relative motion and absolute motion.
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2.2.5 Comfort vibration

Comfort vibration has to do with the experience of vibrations. The human body’s
reaction when subjected to vibration is complicated. Different parts of the body
have different frequency ranges that it is sensitive to and the sensitivity also varies
between individuals. To be able to assess the vibration of a building with regards
to discomfort for the users, frequency weightings curves has been developed by
the International Standards Organisation (ISO). The weighting curves consider the
direction of the vibration and the frequency (Brüel and Kjaer, 1989). Frequencies
which the human body is more sensitive to are given a higher weighting factor and
in this way a transformation of measured vibration into experienced discomfort is
obtained. A human inside a vibrating building will experience the absolute response
of the vibration and therefore it is the absolute response that are of most interest
when it comes to comfort vibration.

2.3 Basic equations for dynamic systems

2.3.1 Orientation

This section covers the basic equations used for SDOF and MDOF systems. It
will include the concepts of forced vibration, damping and moving base introduced
in Section 2.2 into the equations. This section also includes a description of the
numerical integration method Newmark-β, which for this thesis is the method used
to solve the differential equations.

2.3.2 Basic equations for SDOF-systems

Analogously to Section 2.2.3.3, a mass-spring-damper system with a moving base
is used to illustrate the SDOF system, as seen in Figure 2.9a. Here m is mass,
k is the spring constant, c is the coefficient of viscous damping, p(t) is the time
dependent external force acting on the mass. Since the mass only moves in the
lateral direction with one displacement coordinate defined it is a SDOF system.
The total displacement is defined as u(t) but denoted u in equations. Figure 2.9b
shows a free body diagram of the system.
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uz
k

c

m
p(t)

(a) Mass spring damper with
moving base.

p(t)m
fs
fd

uz

(b) Free body diagram.

Figure 2.9: Mass-spring-damper with moving base and the free body diagram.

Using the force-displacement relationship with assumed linear relationship for the
spring (Equation 2.8), the damping (Equation 2.9) together with Newton’s second
law (Equation 2.6), the equation of motion (Equation 2.10) is obtained.∑

Fx = p(t)− fs − fd = ma (2.6)

a = ü (2.7)

fs = ku (2.8)

fd = cu̇ (2.9)

mü+ cu̇+ ku = p(t) (2.10)

Dividing both sides of the equation with m and introducing the undamped circular
natural frequency ωn =

√
k
m
, viscous damping factor ζ = c

ccr
and the critical damping

coefficient ccr = 2
√
km, Equation 2.10 can be expressed as Equation 2.11

ü+ 2ζωnu̇+ ω2
nu = p(t)

m
(2.11)

If the system has a moving base, denoted z(t), the same procedure instead gives:

mü+ cu̇+ ku = cż + kz + p(t) (2.12)

Defining the displacement relative to the mass as w = u− z gives:

m(ẅ + z̈) + cẇ + kw = p(t) (2.13)

Subtracting mz̈ from both sides gives:

mẅ + cẇ + kw = p(t)−mz̈ (2.14)

dividing with m on both sides gives:

ẅ + 2ζωnẇ + ω2
nw = p(t)

m
− z̈ (2.15)
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2.3.3 Basic equations for MDOF-systems

To be able to perform adequate analyses of a system it is typically insufficient to
look at only one degree of freedom. Again the use of a simple mass-spring-damper-
system is used to illustrates the principles for a MDOF-system, see Figure 2.10. The
difference from a SDOF system is that Newton’s second law now is implemented
for each degree-of-freedom resulting in the same number of equations of motion as
degrees of freedom. Figure 2.11 shows the free body diagram and Equations 2.16
and 2.17 show the resulting force summation.

u1 u2z

p(t)
k1 k2

c1 c2

m1 m2

Figure 2.10: Mass-spring-damper system with external force and moving base.

p(t)fs1

fd1
m1 m2

fs2

fd2

u1 u2z

Figure 2.11: Free body diagram of the MDOF mass-spring-damper system.

∑
F1 = −fs1 − fd1 + fs2 + fd2 = m1ü1 = m1(z̈ + ẅ1) (2.16)∑
F2 = −fs2 − fd2 + p(t) = m2ü2 = m2(z̈ + ẅ2) (2.17)

Using the following force-displacement relation with assumption of linear elastic
spring force

fs1 = k1(u1 − z) = k1w1 (2.18)

fs2 = k2(u2 − u1) = k2(w2 − w1) (2.19)

fd1 = c1(u̇1 − ż) = c1ẇ1 (2.20)

fd2 = c2(u̇2 − u̇1) = c2(ẇ2 − ẇ1) (2.21)

combined with the Newtons second law give two equation of motions as

m1ẅ1 + c1ẇ1 + k1w1 − c2(ẇ2 − ẇ1)− k2(w2 − w1) = −m1z̈ (2.22)

m2ẅ2 + c2(ẇ2 − ẇ1) + k2(w2 − w1) = p(t)−m2z̈ (2.23)
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Writing Equation 2.22 and 2.23 on matrix form result in Equation 2.24

Mẅ+Cẇ+Kw = p(t) + peff (t), (2.24)

where M is the mass matrix, K is the stiffness matrix, C is the viscous damping
matrix, peff (t) is the effective force vector, p(t) is the load vector, w is the rel-
ative displacement vector, ẇ is the relative velocity vector and ẅ is the relative
acceleration vector.

M =
[
m1 0
0 m2

]
K =

[
k1 + k2 −k2
−k2 k2

]
C =

[
c1 + c2 −c2
−c2 c2

]
(2.25)

peff (t) =
{
−m1z̈
−m2z̈

}
p(t) =

{
0
pt

}
w =

{
w1
w2

}
ẇ =

{
ẇ1
ẇ2

}
ẅ =

{
ẅ1
ẅ2

}
(2.26)

If the base motion is zero the equation of motion in the same manner as shown
above becomes

Mü+Cu̇+Ku = p(t). (2.27)

2.3.4 Plate elements

There are several ways to model plates in the finite element method. The underlying
plate equation can for example be based on Kirchhoff plate theory or Mindlin plate
theory. The main difference between the two theories is that Kirchhoff theory makes
the assumption that plane sections normal to the mid plain remain plane and normal
to the mid-plane during deformation. This is a simplification that correlates well
for thin plates at low frequencies and makes the Kirchhoff plate theory rather easy
to use and is therefore also the most commonly used plate theory. For thicker
plates Mindlin theory, which is a more precise theory, is to prefer (Ottosen and
Petersson, 1992).

Several different element types can be used for plate analysis, which one to use
depends on the type of analysis concluded. For example, one can use solid elements,
shell elements, plates with plain stress or plain strain assumptions and so on.

2.3.5 Mode superposition

The natural eigenfrequencies are solved by looking at an undamped system of free
vibration, i.e where p(t) = 0. An example of an equation for such a system is shown
in Equation 2.28

Mü+Ku = 0. (2.28)
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Assuming harmonic motion u = Ucos(ωt) in Equation 2.28 results in an eigenvalue
problem as

(K − ω2M)U = 0 (2.29)
where the nontrivial solution, i.e U 6= 0, allows calculation of ω by solving
det(K − ω2M) = 0. The number of natural eigenfrequencies is the same as the
number of free DOF. For each eigenfrequency ωr there exists an eigenvector φr with
the same length as the number of DOF.

φr.j =



φ1
φ2
...
φi
...
φn


(2.30)

where i = 1, 2...n is the number of DOF and j = 1, 2...m is the mode number. All
the eigenvectors creates the eigenmatrix Φ.

Φ =



φ1.1 φ1.2 · · · φ1.j · · · φ1.m
φ2.1 φ2.2 · · · φ2.j · · · φ2.m
... ... . . . ... ... ...
φi.1 φi.2 · · · φi.j

. . . φi.m
... ... ... ... . . . ...

φn.1 φn.2 · · · φn.i · · · φn.m


(2.31)

To solve the equation of motion for a MDOF-system as Equation 2.27 the whole
system needs to be solved simultaneously since the coupled equations are dependant
of each other (Craig and Kurdila, 2006). That means that Equations 2.22 and 2.23
needs to be solved simultaneously since they are coupled. If a system consists of a
large number of DOF this can be problematic. The mode superposition method is a
method which transforms the coupled equations to uncoupled equations by utilising
the orthogonality property of the eigenvectors. Introducing the definition of modal
mass Mr and modal stiffness Kr, with r and s being natural modes r 6= s, as

Mr = φTrMφr, Kr = φTrKφr. (2.32)

When r 6= s the modes r and s are orthogonal with respect to the mass and stiffness
matrix if ωr 6= ωs, which implies the relation

φTrMφs = 0, φTrKφs = 0. (2.33)

Combining the relations of Equations 2.32 and 2.33 can be used to form diagonal
mass and stiffness matrices, called the modal mass and modal stiffness matrices as

Mm = ΦTMΦ = diag(M1,M2, ...,MN),
Km = ΦTKΦ = diag(K1, K2, ..., KN). (2.34)
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The generalised damping matrix C is not necessarily diagonal. However, in order to
simplify the damping model it is often times assumed to be diagonal, in which case
the modal damping matrix can be formed as

Cm = ΦTCΦ = diag(C1, C2, ..., CN). (2.35)

The modal mass, stiffness and damping matrices are advantageous due to being
diagonal, as the use of them uncouples the equations of motion. In order to use
these properties, the principle coordinates η(t) are introduced and defined as

u(t) = Φη(t). (2.36)

Multiplication from the left of ΦT to Equation 2.27 gives

ΦTMü+ ΦTCu̇+ ΦTKu = ΦTp(t). (2.37)

Introducing Equation 2.36 in 2.37 gives

Mmη̈ +Cmη̇ +Kmη = fm (2.38)

where Mm is the modal mass matrix, Km is the modal stiffness matrix and Cm is
the generalised damping matrix defined as in Equations 2.34 and 2.35. The vector
fm is defined as the modal force vector as

fm = ΦTp(t), (2.39)

2.3.6 Direct integration methods

To obtain the response of an SDOF or MDOF system exposed to more complex
loads, numerical solutions are required (Chopra, 2014). Both linear and nonlinear
systems can be solved with a time-stepping scheme using time-step ∆t. In such a
scheme the derivatives appearing in the equation of motion are approximated by
numerical integration. There are several different numerical integration methods
where this procedure is used, one of which is the Newmark-β method. Newmark-
β is an implicit method, meaning that the discretised displacement field ui+1 is
expressed by the velocity (u̇i+1) and acceleration (üi+1) fields at present times and
earlier times. The resulting time scheme at time step i + 1 for an SDOF linear
system is expressed as

müi+1 + cu̇i+1 + kui+1 = pi+1. (2.40)

In the Newmark β method it is assumed that the displacement vector ui+1 and its
derivative u̇i+1 can be expressed according to Equation 2.41 and 2.42 (Chopra, 2014),
the approximately equal sign is used to signify the approximation.

u̇i+1 ≈ u̇i + (1− γ)∆tüi + (γ∆t)üi+1 (2.41)
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ui+1 ≈ ui + ∆tu̇i + ((1
2 − β)(∆t)2)üi + (β(∆t)2)üi+1 (2.42)

Applying Equation 2.41 and 2.42 in 2.40 gives an equation for üi+1 expressed in
terms of ui, u̇i, üi and pi+1 as

üi+1 ≈
pi+1 − c(u̇i + ((1− γ)∆t)üi − k(ui + ∆tu̇i + ((0.5− β)(∆t)2)üi

m+ cγ∆t+ kβ(∆t)2 (2.43)

With initial conditions u(0) = u0 and v(0) = u̇0 the initial acceleration can be
calculated according as

ü0 = p0 − cu̇0 − ku0

m
. (2.44)

With a known force the acceleration can now be solved for i = 0 with Equation
2.43. Thereafter the velocity can be calculated with Equation 2.41 and finally the
displacement is calculated with Equation 2.42. Then the same calculations are
performed iteratively for i = 1, 2, 3...

The parameters β and γ control the stability and accuracy. Throughout the study
the constant average method, which is a special case of the Newmark-β method with
β =1

4 and γ=1
2 , will be used. This gives an unconditionally stable system, which

means that the system will provide a solution independent of the size of the time
step used. The results of a unconditionally stable analysis may still be inaccurate if
the time step is too large, but there is no stability constraint on the time step which
is the case for a conditionally stable analysis. For the constant average method
Equations 2.41 and 2.42 become

u̇i+1 ≈ u̇i + ∆t
2 (üi + üi+1) (2.45)

ui+1 ≈ ui + (∆t)2

4 (üi + üi+1) (2.46)

With initial conditions as described above üi+1 can be expressed in terms of ui, u̇i,
üi and pi+1 as

üi+1 ≈
pi+1 − c(u̇i + ∆t

2 üi)− k(ui + ∆tu̇i + (∆t)2

4 üi)
m+ c∆t

2 + k (∆t)2

4

. (2.47)

2.4 Applications of structural dynamics

2.4.1 Orientation

In this section two different types of analyses, THA and RSA are introduced. Addi-
tionally, the theory that enables analyses of MDOF-system through the use of modal
participation factors and modal combination rules is presented. In the analysis of
a structure subjected to vibration, both the total and relative response in terms of
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displacement, velocity or acceleration could be of interest depending on the type of
structure and type of analysis. It is usually not important in which direction the
response maximum will take place, hence the sign preceding the response output is
regularly disregarded. Thus the outputs are given as absolute values. Therefore it
is the peak values, i.e the absolute maximum values that is of special interest.

2.4.2 Time History Analysis

A SDOF-system subjected to a ground motion will have a response that is depen-
dant on the natural frequency, or natural vibration period, and the damping ratio
(Chopra, 2014). In a THA the response for each natural frequency and damping
ratio of interest, at each time step over a time period, is calculated. The result is
the response as a function of time. To obtain accurate results a sufficiently short
time step is required. If an MDOF system is to be analysed a method for modal
analysis such as mode superposition, which was described in Chapter 2.3.5, is nec-
essary. Generally a THA results in large quantities of output data and is therefore
time consuming to perform. Figure 2.12 shows an example of a ground motion and
the associated THA for the vertical DOF of the middle node in a plate. Figure
2.12a shows the ground motion that the plate i subjected to and Figure 2.12b the
corresponding THA in form of relative acceleration.
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Figure 2.12: Example of ground motion and the associated THA.

2.4.3 Response Spectrum Analysis

2.4.3.1 Orientation

The following section explains how to perform a complete RSA. It explains calcula-
tion of response spectra, calculation of MPF and how to combine the results of the
response spectra and MPF using modal combination rules.

, Mechanics and Maritime Sciences, Master’s Thesis 2018:55 19



2. Theory

2.4.3.2 Calculation of response spectrum

As mentioned previously, a THA of an MDOF system is time consuming and com-
putationally heavy. In order to save time, one can perform a RSA instead. In order
to do a RSA one first needs to create response spectra for acceleration, velocity and
displacement. Basically, the procedure is to perform a THA for a SDOF system for
one specific natural frequency, a damping ratio ζ and a ground motion signal. From
the resulting time history of the relative acceleration, velocity and displacement,
the absolute maximum values are extracted and inserted into frequency-response
graphs. This procedure is then repeated for a second natural frequency, then a third
etc. The iterations continue until the responses have been calculated for the entire
frequency range of interest. The basic method is described as a flowchart in
Figure 2.13.
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Figure 2.13: Procedure for calculation of response spectra.

The end result of the calculations are the response spectra for acceleration, velocity
and displacement. A graph of an acceleration response spectrum can be seen in
Figure 2.14
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Figure 2.14: Graph of response spectrum with the relative acceleration response
for the frequency range 1-200 [Hz].

From a RSA, it is possible to calculate both relative and absolute response, see
Section 2.2.4. To distinguish between the values from the response spectrum and
the actual response in a MDOF system it is convenient to introduce a notation for
the response spectrum values. According to Chopra (2014), the relative displace-
ment spectrum, Sd, the relative velocity spectrum, Sv, and the relative acceleration
spectrum, Sa, from the RSA are commonly defined as

Sd = uo(ω, ζ) ≡ max | u(t, ω, ζ) |, (2.48a)
Sv = u̇o(ω, ζ) ≡ max | u̇(t, ω, ζ) |, (2.48b)
Sa = üo(ω, ζ) ≡ max | ü(t, ω, ζ) |, (2.48c)

where u, u̇ and ü is the relative displacement, velocity and acceleration respectively.
The absolute response spectra are defined as

Sd.abs = uto(ω, ζ) = max | u(t, ω, ζ) + ug(t, ω, ζ) |, (2.49a)
Sv.abs = u̇to(ω, ζ) = max | u̇(t, ω, ζ) + u̇g(t, ω, ζ) |, (2.49b)
Sa.abs = üto(ω, ζ) = max | ü(t, ω, ζ) + üg(t, ω, ζ) |, (2.49c)

where ug, u̇g and üg is the ground displacement, velocity and acceleration respec-
tively. As can be seen in Equations 2.48 to 2.49 the response spectra are independent
of time.

2.4.3.3 Spectral displacement, pseudovelocity and pseudoacceleration

In earthquake analysis with response spectra, it is often useful to look at spec-
tral displacement, spectral pseudovelocity and spectral pseudoacceleration (Craig and
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Kurdila, 2006). These are defined as

Sd(T, ζ) = wmax = 1
ωn
W (tm), (2.50a)

Sv(T, ζ) = W (tm) = ωnSd, (2.50b)
Sa(T, ζ) = ω2

nSd = ωnSv, (2.50c)

W (t) =
∫ t

0
z̈(τ)e−ζωn(t−τ)sinωn(t− τ)dτ. (2.50d)

Equation 2.50d is the Duhamel integral solution of

mẅ + cẇ + kw = −mz̈ (2.51)

which is Equation 2.14 when there is no external force. The study will not utilise
this method, but as will be mentioned in the method chapter, ADINA converts
between physical quantities using the relations of Equations 2.50a, 2.50b and 2.50c.

2.4.3.4 Modal participation factor

As explained in Section 2.3.5, the superposition method can be used to uncouple
the equations of a MDOF-system by introducing principle coordinates and modal
matrices. In a similar way the modal participation factor is used together with the
eigenvectors to obtain the response from all the modes in the MDOF-system. For a
system, subjected to a ground motion in form of a single-support excitation and no
external force, Equation 2.38 in Section 2.3.5 can be written as

Mmη̈ +Cmη̇ +Kmη = −φTMrüg (2.52)

where r is the influence coefficient vector that relate the relative displacement of a
DOF to the base motion (Datta, 2010). The calculation of the influence coefficient
vector is explained in Section 2.4.3.5. The influence coefficient vector has the same
amount of rows as the number of DOF of the analysed system. The DOF that are
in the same direction as the ground motion will cause the corresponding rows of the
influence coefficient vector to be equal to one, with all other rows being zero. The
influence coefficient vector helps to transform the response of a SDOF-system to
the response of a MDOF-system (Pozzi and Der Kiureghian, 2015). The principle
coordinates, η, also called the modal displacement response, allows the relative
displacement to be expressed as Equation 2.36. Assuming modal damping, dividing
Equation 2.52 with modal mass results in

η̈j + 2ζjωj η̇j + ω2
j ηj = −Γjüg. (2.53)

Γj is defined as the modal participation factor (MPF). One MPF exist for each mode
j, where j = 1, 2...m. The MPF can be calculated as

Γj =
φTjMr

φTjMφj
. (2.54)
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Each unique mode has one specific MPF tied to it. The MPF for all modes can be
collected in a column vector Γ,

Γ =



Γ1
Γ2
...

Γj
...

Γm.


(2.55)

Equation 2.53 is an uncoupled equation and can be solved as a SDOF-system. The
maximum modal displacement for mode j is calculated as

ηj.max = ΓjSd(ωj, ζj). (2.56)

Combining Equations 2.56 and 2.36, the relative displacement for a specific mode j
and DOF i can be expressed as

ui.j = φi.jΓjSd(ωj, ζj). (2.57)

In the same way other spectral values can be used to obtain the maximum response
for a specific mode and DOF in a MDOF-system. To complete the RSA and get the
total response, the response of all the modes in the analysis needs to be combined.
This is accomplished with the use of one of the modal combination rules, described
in Section 2.4.3.7.

2.4.3.5 Calculation of the influence coefficient vector

The influence coefficient vector was briefly introduce in Section 2.4.3.4. As men-
tioned, the number of rows of the vector are the same as number of DOF in the
system. A common way to reduce the system is to remove the DOFs that are pre-
scribed to zero, most commonly these are the boundary conditions. If so, only the
free DOFs are left and the size of the influence coefficient vector is reduced to have
the same number of rows as free DOFs. For small systems, the influence coeffi-
cient vector can manually be set to one for rows corresponding to DOF that are in
the same direction as the ground motion, and zero for the rest. For larger system,
manual creation of the influence coefficient vector becomes unmanageable.

Datta (2010) proposes a method to calculate the influence coefficient vector using
the stiffness matrix K. The first step is to decide if some of the DOFs can be
condensed out of the analysis. If that is the case, the stiffness matrix is rearranged
so that values belonging to the DOFs that should be removed, i.e condensed out,
are placed in the lower right. Let c be the notation for condensed-DOFs, d is the
notation for number of dynamic-DOFs, equal to the number of remaining DOFs.
The rearranged and partitioned stiffness matrix takes the form

K =
[
Kdd Kdc

Kcd Kcc

]
. (2.58)
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Kcc is the matrix consisting of values connected to the DOFs that are condensed
out. The condensed stiffness matrix Kd is then calculated as

Kd = Kdd −KdcK
−1
cc Kcd. (2.59)

When the condensed stiffness matrix Kd is calculated a new rearrangement is per-
formed. The matrix Kd is rearranged, so the prescribed DOF are at the bottom
and free DOF at the top. Let n be equal to the number of free DOF and s equal to
the number of prescribed DOF. The values belonging to the prescribed DOF should
be placed in the lower right and the partitioning should be

Kd =
[
Knnd Knsd

Ksnd Kssd

]
. (2.60)

Kssd is the matrix consisting of values belonging to the prescribed DOF and Knnd

is the matrix consisting of values belonging to the remaining free DOF. Now the
influence coefficient matrix can be calculated as

R = −K−1
nndKnsd. (2.61)

The influence coefficient matrix will be of the size n×s, where each row is represent-
ing one free DOF. Hence, the number of rows is equal to the number of free DOF.
By the same logic, each column is connected to one of the s prescribed DOF. It is
now possible to create the influence coefficient vector r from the influence coefficient
matrix R. By choosing the columns corresponding to prescribed DOF, that are in
the same direction as the ground motion that the system is subjected to, and adding
them together one obtains the influence coefficient vector.

2.4.3.6 Product of MPF and eigenvector

As explained in Section 2.4.3.4 the MPF is calculated using the influence coefficient
vector, mass and stiffness matrix and the eigenvector. Since the MPF is calculated
using the eigenvector, the vector norm of the eigenvector will decide the value of
the MPF. Effectively this means that the MPF alone can not be compared directly
unless the comparison entails MPFs calculated using the same eigenvector norm. For
calculations of the actual response the MPF must be multiplied with the eigenvector
value corresponding to the node of interest, as can be seen in Equation 2.57. When
all the factors have been multiplied the normalisation of the eigenvector does not
have an effect on the end result. It should be the same regardless of how the vector
is normalised.

2.4.3.7 Modal combination rules

The individual modal responses shown in Section 2.4.3.4 are combined into a total
response using one of the modal combination rules (Datta, 2010). There are three
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main modal combination rules which are ABSSUM, SRSS and CQC. ABSSUM is
short for absolute sum of maximum values of response, and as the name indicates
the method takes the absolute value for each mode and sums it to get the total
response. This results in an upper bound solution since neither the time at which
the peak values occur or whether it is a positive or negative value is taken into
account in the spectral values as explained in Section 2.4.3. To calculate the total
displacement of a certain DOF i, with influence from all m modes, the equation
when using ABSSUM is

ui.max =
m∑
j=1
| ui.j | . (2.62)

SRSS is short for square root of sum of squares and the method is well suited
for structures with outspread natural frequencies (Datta, 2010). Again, assuming
response in form of displacement the total displacement for DOF i is

ui.max =
√√√√ m∑
j=1

u2
i.j. (2.63)

As can be seen in Equation 2.63 the spectral values are squared before summation
and the square root is taken for the summed response to result in the total absolute
response.

If the structures has natural frequencies which are not well spread out the CQC rule,
complete quadratic combination, is better to use (Datta, 2010). CQC is a variant
of the SRSS rule, where a second term is added under the square root, compare
Equation 2.63 and Equation 2.64. The CQC is calculated as

ui.max =
√√√√ m∑
j=1

u2
i.j +

m∑
j=1

m∑
k=1

pjkui.jui.k. (2.64)

where both j and k represent the mode number. The second term is only valid
for when j 6= k. pjk is the correlation coefficient and has a value between 0-1 and
Equation 2.65 shows a common definition (Datta, 2010). Through the second term
in Equation 2.64, the CQC consider how well the spectral response for different
modes correlate, where

pjk = ζ2(1 + βjk)2

(1− βjk)2 + 4ζ2βjk
, β = ωj

ωk
. (2.65)

According to Chopra (2014), the SRSS and CQC results should be interpreted as a
mean of the peak values and are most accurate for ground motion with a smooth
response spectrum.
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3.1 Calculation tools

3.1.1 Orientation

This section describes the functionality and general properties of the tools that is
used in the thesis work. The tools consist of MATLAB scripts with functions from
the CALFEM package and the commcercial software ADINA FEM. For brevity,
the MATLAB and CALFEM scripts are referred to as the MATLAB script, the
MATLAB program, MATLAB or simply the script in the thesis. For the purpose of
this thesis a key assumption is that the results from the THA in ADINA is considered
as the correct answer in comparisons. Furthermore, a distinction is made between a
full RSA and the parts that comprise the RSA. The RSA is the combined results of
a MPF analysis and a response spectrum. Some analyses are done on the response
spectrum or the MPF separately, while others are done on a full RSA. Hence, when
only MPF or response spectra are mentioned, it does not refer to the full RSA,
which is the combined results.

3.1.2 MATLAB

3.1.2.1 Description of general properties

The MATLAB script performs dynamic FEM analysis of Kirchhoff plate elements.
Some functions from the CALFEM package are used in this script. The plate
stiffness and mass matrices used for the analysis were taken explicitly from Szi-
lard (2004). The element type used is plain stress 4 node quadrilateral elements
with 12 DOF per element. The specifics of the setup is shown in Figure 3.1.
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Figure 3.1: Four node rectangular quadrilateral element with three DOF per node,
vertical displacement and x− y rotations.

3.1.2.2 Purpose and function of the script

The script serves two primary functions. The first pertaining to calculation of the
MPF’s and natural frequencies of plates, and the second being calculation of a
response spectrum using a ground motion signal as input. The results of these
two calculations can then be combined, achieving a RSA for a plate. The MPF
calculation is done in accordance with the theory explained in Section 2.4.3.4. This
analysis is possible for rectangular plates of any length-width ratio, with three types
of boundary conditions in any configuration. The boundary conditions are simply
supported (SS), fixed (clamped) and free (unsupported). Element density can be
changed, but only functions for an equal number of elements in x and y direction.
The output from this calculation are the natural frequencies, eigenvectors and MPFs.
Since the complete eigenvectors are calculated and stored in the output, it is possible
to study any node of choice.

The calculation of the response spectrum is done in accordance with the Newmark-
β method explained in Section 2.3.6. The input consist of a ground motion signal
as acceleration, a chosen frequency range to study and general properties such as
initial conditions and damping ratio. The output consist of the peak response at
each frequency in the provided frequency range, which is the response spectrum as
explained in theory Section 2.4.3.

Finally, the script combines the output of the two analysis into the relative response
for each mode as per Equation 2.57 and then combine these into the total relative
response according to the modal combination rule SRSS, see Equation 2.63.
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3.1.3 ADINA

3.1.3.1 Description of general properties

All types of analysis in ADINA are done using four node quadrilateral shell elements
with 24 DOF per element. The ADINA shell elements are based on Mindlin plate
theory (ADINA, Theory and Modeling Guide 2012), which implies that it provides a
better description of thick plate behaviour than the MATLAB script. However, for
slender plates the results should be similar. The plates are modelled using isotropic
linear elastic materials. The analyses that ADINA is used for is development of
response spectra, MPF analysis, RSA and THA. For all the analyses in ADINA a
damping ratio of 0.02 (2%) is used.

3.1.3.2 Horizontal modes

As mentioned in the previous section ADINA has 24 DOF per four-node element,
this includes DOF in-plane of the plate. Consequently, some vibrational modes
from ADINA analysis are horizontal/in plane vibration. As the MATLAB script is
modelled without in-plane DOF it does not have any horizontal modes. This study
omits horizontal vibrations, but the presence of horizontal modes in ADINA has
the consequence that its mode numbers are shifted upwards each time a horizontal
mode appear. However, this does not affect the vertical response.

3.1.3.3 Generation of response spectrum with ADINA

To generate a response spectrum with ADINA a SDOF system is created by mod-
elling a massless cantilever beam with a large point mass at the free end, see Figure
3.2. The beam model is then subjected to a mass proportional load as a ground
acceleration. The model is simulated using a dynamic implicit analysis where the
displacement, velocity and acceleration of the point mass as a function of the fre-
quency comprise the response spectra. The response spectra generated in ADINA
is used for verification of the response spectra generated in MATLAB.

m

Figure 3.2: Cantilever beam with point mass, model used for generation of response
spectrum in ADINA.
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3.1.3.4 MPF with ADINA

A MPF analysis in ADINA is done by choosing modal participation factors as anal-
ysis type on the model of choice. It calculates the natural frequencies, eigenvectors
and MPFs.

3.1.3.5 RSA with ADINA

The RSA in ADINA is done the same way as the MPF analysis, with the difference
that a response spectrum needs to be loaded into the post-processing file. Due to
how ADINA converts the physical quantities of the output into pseudoresponse the
inserted response spectrum is required to have the same unit as the desired output.
For example, if the response spectrum has the physical quantity acceleration, the
relative acceleration output will be calculated numerically. However, the relative
velocity and displacement is in fact the spectral pseudovelocity and spectral displace-
ment, as explained in Section 2.4.3.3. For ADINA RSA, the modal combination rule
SRSS (Equation 2.63) is used unless otherwise specified.

3.1.3.6 THA with ADINA

For the THA the ground response as acceleration is inserted as a time function
into ADINA. To run a THA in ADINA there are three options: dynamic explicit,
dynamic implicit and mode superposition. The mode superposition method, see
Section 2.3.5, carries the advantage that the number of modes accounted for in
the analysis can be chosen. Since the higher modes have negligible contribution to
the total response the mode superposition method is used, which is beneficial for
computation time. The results of ADINA THA is the primary tool used to analyse
the accuracy of RSA.

3.1.4 Number of elements and convergence

As will be shown in the results in Chapter 4 the mesh size and convergence is a
complex matter in this study. Due to this there is no general choice with regards to
mesh size and convergence in the method chapter.
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3.2 General properties and information with re-
gard to the plate analysis

3.2.1 Orientation

This chapter explains the notations, definitions and general parameters that are
used in the plate analyses and the results in Chapter 4. It contains information on
the location and names of specific nodes, how plate sides are named, plate properties
that are used in all analyses and the ground motions used as loads.

3.2.1.1 Names of the plate sides

For all the plates in the study, the plate sides are denoted as a and b, where a is the
length and b is the width, as shown in Figure 3.3.

Side a

Side a

Side bSide b

Figure 3.3: Name of the sides of the studied plates.

3.2.1.2 Nodal map and introduction to terminology used in the following
chapters

The study is for all cases done for vertical response and unless otherwise specified
done by analysis of the response in the centre node, denoted d. The location of
the nodes checked and their nomenclature can be seen in Figure 3.4. Many of
the analyses includes the product φΓ, where Γ is the MPF and φ is a single value
from the eigenmatrix which corresponds to a specific DOF and a specific mode. As
this factor will be referred to frequently in the thesis, it is given the name modal
contribution. As an example, the modal contribution of mode 2 in node c means the
factor φΓ where Γ is the MPF of Mode 2 and φ is the value from the eigenmatrix
corresponding to Mode 2 and the vertical DOF in Node c. Graphs with φΓ on
the y-axis will mean vertical modal contribution for centre node, unless otherwise
specified.
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As will be seen further on in the thesis, there are many natural modes which do not
activate when a plate is subjected to a uniform ground motion of the entire plate.
This means that for both analyses types there are many modes which will have zero
contribution to the response. In order to make for a better reading experience, the
term contributing mode will be used with reference to modes that have a contribution
to the response. For example, when the second contributing mode of a plate is
mentioned, it will refer to the second natural mode which contributes to the total
vertical response. If the plate in question receives contribution to the total response
from the natural modes 1, 4, 8 and 16, the first contributing mode is mode 1, the
second contributing mode refers to mode 4, and so on.

Node a Node b Node a

Node a Node b Node a

Node d Node cNode c

Figure 3.4: Rectangular plate with the node names and positions.

3.2.1.3 Properties in common for all plates

The study entails both quadratic and rectangular plates, which have variable side
lengths and in some cases variable thickness. However, all the plates in the study
share the properties in Table 3.1. The properties chosen are typical concrete prop-
erties.

Table 3.1: Properties used for all the studied plates.

Density [kg/m3] Young’s modulus [GPa] Poisson’s ratio [ - ]
2500 30 0.2

3.2.2 Ground motions used as input for the analysis

3.2.2.1 Traffic load 1

The bulk of the analyses are done using the same ground motion. The ground motion
is a measurement from a construction site in Halmstad, Sweden. It is the measured
ground velocity with respect to time, and the origin of the ground motion is a train
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passing near the measurement site. The indata obtained from the measurement is
the velocity measured 65000 times in a 16 second period. This signal is converted to
acceleration by numerical derivation, due to easier compatibility with the Newmark-
β method. The ground motion converted into acceleration can be seen in Figure
3.5. Unless otherwise specified this is the ground motion used for the analyses.
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Figure 3.5: Ground acceleration 1. Vibration is the result of a train passage.

3.2.2.2 Traffic load 2

Some plates are analysed with a second ground motion input. The second ground
motion is the same as the one used in (Fagerström and Lindorsson, 2017), shown in
Figure 3.6.
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Figure 3.6: Ground acceleration 2.
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4
Results

4.1 Orientation

This chapter presents the results of the modal contribution study and the compar-
ative study of RSA and THA for various plates. As will become evident in this
chapter the conformity of results between THA and RSA was poor for a handful of
plates. For this reason an in-depth analysis of two plates were made and the results
are presented in this chapter. Modal contribution was explained in Section 3.2.1.2.

4.2 Study of modal contribution

4.2.1 Orientation

In this section modal contributions calculated with MATLAB are compared with
modal contributions calculated with ADINA. This was done in order to verify the
results from the MATLAB script with ADINA. An investigation of the relation
between plate geometry and modal contribution is performed by studying several
quadratic plates with different side lengths and rectangular plates with varying
length/width-ratios. The section also includes an investigation into the viability
of interpolating modal contribution and eigenfrequencies from data of other plates.
Section 4.3 covers a large parameter study of plates with respect to RSA and THA,
but parts of that study pertain specifically to the modal contribution, which is
presented in this section.

, Mechanics and Maritime Sciences, Master’s Thesis 2018:55 35



4. Results

4.2.2 Plates analysed in modal contribution study

4.2.2.1 Geometry of studied quadratic plates

To investigate how the modal contribution correlates with the size of the plate, the
modal contribution for seven simply supported quadratic plates was studied. The
only difference between the plates is the length of their sides. The Young’s modulus,
density and Poisson’s ratio for the plates are shown in Table 3.1, and the geometry
of the plates in Table 4.1. Two analyses were performed for the plates. Analysis 1
was performed with a constant thickness. This led to plate Q1 and Q2 being very
thick in relation to their width and length. Analysis 2 was performed with variable
thickness of the plates so that the first mode frequency was the same for all plates.
The chosen frequency is the first mode frequency for a 5 × 5 m2 simply supported
plate with thickness 0.2 m, i.e plate Q4 from Table 4.1.

Table 4.1: Geometry of the studied quadratic plates.

Analysis 1 Analysis 2
Plate Width [m] Length [m] Thickness [m] Thickness [m]

Q1 1 1 0,2 0.0080
Q2 2 2 0.2 0.0320
Q3 4 4 0.2 0.1280
Q4 5 5 0.2 0.2000
Q5 8 8 0.2 0.5120
Q6 16 16 0.2 2.0480
Q7 32 32 0.2 8.1920

4.2.2.2 Geometry of studied rectangular plates

The modal contribution for six simply supported plates, with varying ratio between
the width and length but constant thickness of 0.2 m, was studied to investigate the
relation between the modal contribution and the geometry of the plate. Table 4.2
shows the geometry of the plate. The Young’s modulus, density and Poisson’s ratio
for the plates are shown in Table 3.1. The ratios were chosen partly so that there
would be considerable difference in stiffness between the smallest and the largest
plate, but also so that the plates are mirrored so that the long side is ten, five and
two times the length of the short side.

Table 4.2: Geometry of the studied rectangular plates.

Plate Width [m] Length [m] Ratio width/length
R1 5 50 0.1
R2 5 25 0.2
R3 5 10 0.5
R4 5 2.5 2
R5 5 1 5
R6 5 0.5 10
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4.2.2.3 Geometry of plates in parameter study

To limit the amount of variables of the studied plates, several properties were kept
constant through the parameter study. The Young’s modulus, density and Poisson’s
ratio for the plates are shown in Table 3.1. The thickness of all plates are 0.2
m. Table 4.3 shows the boundary conditions and geometry of the studied plates.
Notations for the side of the plates are described in Figure 3.3. All the studied plates
have symmetric boundary conditions, i.e opposite sides have the same boundary
conditions. The plates are named so that the letter indicates the boundary condition
and the number indicates the geometry. Five different boundary conditions and
geometries were studied, resulting in a total of 25 plates. However, due to plate
type A and B having the same boundary conditions along the entire rim there are
21 unique plates. A schematic figure of the plate types can be seen in Figure 4.1
and the dimensions and BC’s of all the plates are shown in Table 4.3.

3m
9m

4m

8m 5m

5m 8m

4m 3m

9m

A B C D E

1 2 3 4 5

3m
9m

4m

8m 5m

5m 8m

4m 3m

9mD1 D2 D3 D4 D5

Figure 4.1: Schematic of the different plate types, exemplifying with the dimen-
sions and BCs of plate type D.
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Table 4.3: Name and geometry of plates in parameter study. SS is short for simply
supported.

BC Length [m]
Plate Side a Side b Side a Side b

A1 SS SS 9 3
A2 SS SS 8 4
A3 SS SS 5 5
A4 SS SS 4 8
A5 SS SS 3 9
B1 Fixed Fixed 9 3
B2 Fixed Fixed 8 4
B3 Fixed Fixed 5 5
B4 Fixed Fixed 4 8
B5 Fixed Fixed 3 9
C1 SS Fixed 9 3
C2 SS Fixed 8 4
C3 SS Fixed 5 5
C4 SS Fixed 4 8
C5 SS Fixed 3 9
D1 SS Free 9 3
D2 SS Free 8 4
D3 SS Free 5 5
D4 SS Free 4 8
D5 SS Free 3 9
E1 Fixed Free 9 3
E2 Fixed Free 8 4
E3 Fixed Free 5 5
E4 Fixed Free 4 8
E5 Fixed Free 3 9

4.2.3 Number of elements used in modal contribution study

To verify that the mesh is sufficiently fine in the modal contribution study, a conver-
gence study was performed. As explained in Section 2.4.3.4, the modal contribution
is calculated using the influence coefficient vector, mass- and stiffness matrix and the
eigenvector. At this stage of the study, it was assumed that the convergence of the
modal contribution is closely linked with the convergence of the natural frequencies.
Figure 4.2 shows the convergence of the first mode frequency calculated with the
MATLAB script. With analytical calculation, using Equation 2.1, the first mode
frequency for plate A3/Q4 becomes 25.6 Hz. It can be observed that at around 100
elements the first mode frequency is rather accurate.
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Figure 4.2: Graph of how the first mode frequency of plate A3/Q4 calculated with
the MATLAB program converges depending on number of elements.

Figure 4.3 displays how the frequencies for the first 65 modes of plate Q4 calculated
with ADINA varies depending on number of elements. Here it can be observed that
a 10× 10 mesh deviates noticeably from a 20× 20 mesh for modes above the tenth
mode.
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Figure 4.3: Convergence of frequencies calculated with ADINA.

It was decided that for the purpose of the modal contribution study a mesh of 20×20
elements was a fine enough mesh for all the plates in the modal contribution study.
Figure 4.4a shows the modal contribution on the vertical mid DOF for plate A1
calculated with a mesh of 20×20 elements and with 30×90 elements. The results
are very similar for the first three contributing modes but deviations on the frequency
starts to appear after the third contributing mode.

Figure 4.4b shows how the accumulated contribution on the vertical mid DOF is
increasing when more modes are included in the analysis. The accumulated contribu-
tion is normalised with respect to total contribution, i.e when the graph approaches
1 on the y-axis the total contribution has been reached. The total contribution is
referring to the response when all modes used in the plate analysis are included. The
two sets of meshes give a slightly different result. With a finer mesh the later modes
have slightly more influence, but for both meshes the 15 first modes represent over
95 % of the total contribution. Due to closely spaced frequencies for some modes,
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the order of where certain modes appear differs between the two sets of meshes,
which is the reason the curves in Figure 4.4b increase at different number of modes.
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Figure 4.4: Study of the impact on modal contribution with different element sizes

4.2.4 Modal contribution in MATLAB verified with modal
contribution in ADINA

Verification of the calculations of the modal contribution obtained with MATLAB
was done by comparison with ADINA modal contribution. Figure 4.5 shows the
modal contribution for the first 13 contributing modes for the centre node in plate
Q4 with a thickness of 0.2 m.
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Figure 4.5: Comparison of modal contribution calculated with MATLAB and
ADINA for plate Q4 with thickness of 0.2 m and 400 elements.

The results conform well between MATLAB and ADINA for the first 5 contributing
modes. For the higher modes a frequency difference start to appear, but the modal
contribution is similar. In Table 4.4 the numerical values from the same comparison
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as shown in Figure 4.5 are displayed. The modal contribution is described quite well
up to frequencies of 600 Hz, and is comparatively low for frequencies exceeding that
value. Consequently, the results were considered to be of sufficient accuracy since
the principal load used for this thesis has a negligible response for frequencies that
high.

Table 4.4: Comparison of frequency and modal contribution from MATLAB and
ADINA for plate Q4 with thickness of 0.2 m and 400 elements.

ADINA MATLAB Difference [%] ADINA MATLAB Difference [%]
Frequency Frequency Frequency φΓ φΓ φΓ

25.57 25.62 -0.20 1.61 1.61 0.06
128.38 127.98 0.31 -1.04 -1.04 0.28
227.06 228.40 -0.59 0.17 0.17 0.63
338.26 332.79 1.62 0.59 0.59 0.74
428.87 429.52 -0.15 -0.19 -0.19 0.54
616.75 623.69 -1.12 0.06 0.05 3.96
663.64 640.47 3.49 -0.39 -0.38 2.42
743.97 732.02 1.61 0.13 0.12 0.88
911.05 916.54 -0.60 -0.07 -0.07 1.93
1117.44 1052.18 5.84 0.27 0.26 4.89
1178.29 1137.38 3.47 0.02 -0.08 439.05
1185.98 1196.34 -0.87 -0.09 0.02 125.55
1329.32 1310.16 1.44 0.05 0.05 2.17

4.2.5 Results from the study of modal contribution

4.2.5.1 Study of modal contribution for quadratic plates

To further verify the modal contribution calculated with MATLAB, the first mode
frequency and the modal contribution for the seven quadratic plates were calculated
in ADINA and compared with MATLAB.

The geometry of the studied plates are described in Table 4.1. The first frequency
mode was calculated with analytic formulas, see Equation 2.1, and with ADINA
and MATLAB. As described in Section 4.2.2.1 an analysis using constant thickness
for the seven plates was performed. Table 4.5 shows the first mode frequency and
Table 4.6 shows the modal contribution for Analysis 1.
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Table 4.5: Comparison of the first mode frequency calculated analytically, and
with ADINA and MATLAB.

Analysis 1 First mode frequency [Hz] Difference [%]
Plate Analytical value ADINA MATLAB ADINA vs MATLAB

Q1 640.95 580.17 640.49 -10.40
Q2 160.24 155.99 160.12 -2.65
Q3 40.06 39.84 40.03 -0.48
Q4 25.64 25.57 25.62 -0.20
Q5 10.01 10.02 10.01 0.14
Q6 2.50 2.51 2.50 0.33
Q7 0.63 0.63 0.63 0.38

Table 4.6: Comparison of modal contribution of the first mode calculated with
ADINA and MATLAB.

Analysis 1 φΓ
Plate ADINA MATLAB Difference [%]
Q1 1.5380 1.6092 -4.63
Q2 1.5900 1.6092 -1.21
Q3 1.6078 1.6092 -0.09
Q4 1.6101 1.6092 0.06
Q5 1.6127 1.6092 0.22
Q6 1.6140 1.6092 0.30
Q7 1.6144 1.6092 0.32

The results for plate Q3-Q7 present similar values but for plate Q2 and especially Q1
the difference is larger. Since the thickness for the plates are kept constant, plates
with short sides, as Q1 and Q2, are thicker relative to their sides which is likely to
be the cause of the discrepancy. Both MATLAB and the analytical formula applies
Kirchhoff (slender) plate theory, while ADINA shell elements apply Mindlin plate
theory, which is more suitable for thick plates. It is likely that plates Q1 and Q2
fell into the region of thick plates, and should therefore be calculated with Mindlin
theory.

To avoid the thick plates resulting from the constant thickness, a second analysis
was performed. For Analysis 2 the plate thicknesses are varied so the first mode
frequency is constant. The chosen frequency is the first mode frequency for plate
Q4. Table 4.1 shows the thicknesses of the plates for Analysis 2 and Table 4.7 shows
the frequencies calculated analytically, with ADINA and with MATLAB. Table 4.8
shows the modal contribution for the first mode in the centre node for Analysis 2.

Table 4.7: Comparison of the first mode frequency calculated analytically, and
with ADINA and MATLAB.

Analysis 2 First mode frequency [Hz] Difference [%]
Plate Analytical value Adina MATLAB ADINA vs MATLAB

Q1 25.6380 25.7147 25.6195 0.37
Q2 25.6380 25.6932 25.6195 0.29
Q3 25.6380 25.6190 25.6195 0.00
Q4 25.6380 25.5695 25.6195 -0.20
Q5 25.6380 25.3749 25.6195 -0.96
Q6 25.6380 24.5419 25.6195 -4.39
Q7 25.6380 22.0250 25.6195 -16.32
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Table 4.8: Comparison of the modal contribution calculated with ADINA and
MATLAB.

Analysis 2 φΓ
Plate ADINA MATLAB Difference [%]
Q1 1.6143 1.6092 0.32
Q2 1.6138 1.6092 0.28
Q3 1.6117 1.6092 0.15
Q4 1.6101 1.6092 0.06
Q5 1.6038 1.6092 -0.34
Q6 1.5766 1.6092 -2.07
Q7 1.5092 1.6092 -6.63

As can bee seen in Tables 4.7 and 4.8 the frequencies and modal contributions for
plate Q1 to Q7 are practically constant for MATLAB and the analytical frequency
calculation. ADINA has a small difference that increases for the thicker plates.
Again, the reason could be that ADINA applies Mindlin theory, since plates Q6 and
Q7 which have the largest divergence are very thick.

From the two analyses of the square plates it seems as if the frequencies and modal
contribution calculated with MATLAB are reliable, assuming that the calculations
are limited to slender plates. Plates Q1 and Q2 for Analysis 1, and plates Q6 and
Q7 for analysis 2 have extreme geometries that are very unlikely to appear in a real
plate in a building. The rest of the study analyses plates that can comfortably be
categorised as slender plates, hence Kirchhoff plate theory should suffice well.

If the thick plates are disregarded from both analyses, the results of the quadratic
plate analysis indicate that the modal contribution is independent of the size of the
plate as long as the boundary conditions are constant.

4.2.5.2 Study of modal contribution for rectangular plates

To further investigate the relation between modal contribution and the geometry of
the plate, six simply supported rectangular plates with varying ratio between the
length and width were studied. Table 4.2 shows the geometry of the plates and Table
4.9 shows the modal contribution of the first five contributing modes calculated with
MATLAB.

Table 4.9: Modal contribution of the first five contributing modes on the centre
node for 6 rectangular plates calculated with MATLAB.

Plate φΓ1 φΓ2 φΓ3 φΓ4 φΓ5
R1 1.57 0.51 0.30 0.20 0.14
R2 1.60 0.52 0.30 0.20 0.14
R3 1.61 0.52 0.30 0.51 0.17
R4 1.61 0.52 0.30 0.51 0.17
R5 1.60 0.52 0.30 0.20 0.14
R6 1.57 0.51 0.30 0.20 0.14

The modal contribution changes marginally with changing length/width ratio, but

, Mechanics and Maritime Sciences, Master’s Thesis 2018:55 43



4. Results

the mirrored plates have the same modal contribution. Since the natural frequencies
are different for the mirrored plates, it implies that the natural frequencies does not
affect the modal contribution.

In Figure 4.6 the modal contribution for the plates in Table 4.2 have been plotted
against frequency normalised with respect to the first mode frequency. Modes with
up to 45 times as high frequency as the first mode frequency have been included.
Again, it can be observed that the value of the modal contributions are the same for
the mirrored plates and that the modes are located at the same normalised frequency.
In other words, two plates with the same boundary conditions along the entire rim
will have identical looking graphs if the plates have the same length/width ratio and
the frequency axis is normalised with respect to the first mode frequency. Another
important observation is that for plates that do not have the same length/width
ratio the natural frequencies of certain modes can change significantly.
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(b) Plate R6, with ratio 10.
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(c) Plate R2, with ratio 0.2.
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(d) Plate R5, with ratio 5.
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(e) Plate R3, with ratio 0.5.
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(f) Plate R4, with ratio 2.

Figure 4.6: Modal contribution plotted in relation to frequency which has been
normalised with the first mode frequency of the plate. For clarity, modal contribu-
tions smaller than 10−9 are not shown in the graph. Calculations were performed
with MATLAB
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4.2.5.3 Study of possibilities for interpolation of modal contribution for
different plates

To investigate if the modal contributions for a plate can be interpolated from the
modal contribution for similar plates, plate A1 was used. Two additional plates
based on A1 were added, with the same length but the width was changed from 3
to 4 and 5 m respectively, resulting in three plates with the same length and fairly
close width. The modal contribution for the three plates were studied. Figure 4.7
shows the modal contribution on the vertical centre node for the three plates plotted
against the frequency normalised with respect to the first mode frequency.
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Figure 4.7: Modal contribution on vertical mid DOF plotted in relation to nor-
malised frequency.

There is a clear pattern and regularity in the behaviour for the first three contribut-
ing modes. For these modes the modal contribution is of the same magnitude, and
the normalised frequency for the plate with dimension 4×9 m2 lies between the two
other plates. For higher modes the plates start to behave differently, and as was
observed in Section 4.2.4, this can be caused by insufficient mesh density. However,
the discrepancy that appears on the higher modes can also be a result of modes
”switching” place when the stiffness and mass conditions change. This phenomenon
makes interpolation risky, because the difference in stiffness and mass between two
plates can significantly change at which frequency a mode with large modal contri-
bution appears. Interpolating the first few contributing modes between plates that
are more or less identical with only one geometric parameter differing slightly will
probably result in a decent approximation, but the usefulness of that option is fairly
limited.

4.2.5.4 Study of modal contribution for plates in Parameter study

The modal contributions were calculated for the plates presented in Section 4.2.2.3.
The results are presented in form of graphs similar to the one in Figure 4.5 and
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are found in Appendix A. The study shows that there are similarities to be found
for the modal contribution between similar plate geometries and BC’s. The modal
contributions of the first mode for plates with the same boundary conditions typ-
ically have similar magnitude. However, the similarities beyond that are few, and
its clearly difficult to recognise patterns.

4.3 Comparison of THA and RSA

4.3.1 Orientation

In this section the comparative study of THA and RSA is presented. It includes
comparison of response spectra calculated in ADINA and MATLAB and comparison
of a complete RSA performed in ADINA and MATLAB. The parameter study of 21
plates where the maximum responses were calculated with RSA and then compared
with THA is also covered here. The maximum response was calculated in terms
of relative acceleration, velocity and displacement. During the parameter study it
was discovered that the RSA for some plates needed a rather fine mesh resulting in
MATLAB calculations being very time consuming. Therefore it was decided to per-
form the RSA with ADINA in the parameter study to be able to obtain converged
results quicker than what would have been possible with MATLAB. However, the
parameter study from the coarse mesh provided interesting insight into the conver-
gence behaviour when compared with the parameter study using fine mesh, which
is why it is kept here.

4.3.2 Geometry of studied plates in parameter study

The parameter study with comparison between RSA and THA are performed for
the plates described in Section 4.2.2.3. A modal damping of 2 % was used when
calculating the response spectrum in all analyses.

4.3.3 Initial number of elements used in parameter study

Performing a THA is very time consuming, and the time required to complete an
analysis increases dramatically as the number of elements increase. The aim of the
comparison is to investigate how well the results of the RSA match the results of
the THA. Hence, the actual magnitudes of the calculated responses are of lesser
importance. After consideration of the time required to perform a THA and the
number of plates which would be analysed, it was decided that the 20×20 mesh
used for the modal contribution study would be sufficient, see Section 4.2.3.
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4.3.4 Verification of response spectrum calculated with ground
motion from Traffic load 1

To verify the response spectrum calculated with MATLAB a response spectrum was
created with ADINA as described in Section 3.1.3.3. Figure 4.8 shows the response
spectra calculated with ADINA and MATLAB. The two different spectra show good
conformity, thus the calculation of the response spectra are considered reliable.

In Figure 4.8a Traffic load 1 is shown. The original time step for the measured traffic
load was 2.44 × 10−4 seconds and with time period of about 16 seconds resulting
in over 65600 time steps. To decrease the time required for the calculations it was
decided to remove two thirds of the original time history and thereby reduce the
amount of time steps to 21870, with a time step of 7.32 × 10−4 seconds. A THA
and RSA were performed with both the original and the reduced traffic load for a
plate. The results obtained were the same for the two traffic loads and therefore the
reduced traffic load was assumed to be reliable.
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Figure 4.8: Response spectrum calculated with ADINA and MATLAB in form of
relative responses based on ground acceleration.
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4.3.5 RSA with MATLAB verified through RSA with AD-
INA

In Section 4.2.5.1 and 4.2.5.2 the results of the modal contribution calculated with
MATLAB conform well with modal contribution calculated with ADINA. The next
step in a RSA is to combine the modal contribution with the response spectrum
as shown in Equation 2.57. To obtain the total response, the single responses are
combined into the total response using one of the modal combination rules described
in Chapter 2.4.3.7, for the parameter study SRSS (Equation 2.63) was used.

To verify the RSA calculated with MATLAB, plates A3 and D5 from Table 4.3 were
studied. The response spectrum calculated with MATLAB was loaded into the post-
processing file of a Modal participation analysis in ADINA, and the total response
is the result. The modal damping used was set to 2 % and the modal combination
rule SRSS was used in both ADINA and MATLAB. Since the purpose of this study
was to confirm the RSA calculations, a mesh of 20x20 elements was used to limit the
calculation time with the MATLAB program. Table 4.10 shows the total relative
acceleration, velocity, displacement and first mode frequency calculated with both
MATLAB and ADINA. The results conform well and the largest deviation is 1.87
%. The results indicate that the calculations done in MATLAB are reliable. The
small deviation could be explained by the small frequency offset that was observed
in Section 4.2.4.

Table 4.10: Comparison of RSA calculated with MATLAB and ADINA. The
responses at the centre of the plates is compared.

Plate A3 Plate D5
MATLAB ADINA Difference [%] MATLAB ADINA Difference [%]

arel[ mm/s2] 922 909 -1.42 431 423 -1.87
vrel [mm/s] × 10−1 19.77 19.80 0.13 10.48 10.47 -0.05
drel [mm]× 10−4 77.98 77.21 -1.00 51.45 52.22 1.47
First mode frequency [Hz] 25.62 25.57 -0.20 3.89 3.90 0.10

4.3.6 Parameter study of THA compared with RSA using
coarse mesh

The differences between the relative acceleration, relative velocity and relative dis-
placement from THA and RSA for the plates in the parameter study using a coarse
mesh are displayed in Table 4.11. The complete results from the comparison of THA
and RSA using a coarse mesh can be seen in Appendix B.
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Table 4.11: Comparison of responses with RSA and THA with coarse mesh

Difference [%]
Plate arel vrel drel
A1/A5 16.46 2.44 12.38
A2/A4 16.71 18.26 21.26
A3 6.39 17.75 -1.78
B1/B5 7.97 4.03 6.34
B2/B4 8.05 9.42 4.80
B3 -4.35 1.41 -1.86
C1 23.83 18.65 19.73
C2 -0.22 18.79 0.10
C3 3.36 15.96 5.23
C4 10.41 14.41 13.09
C5 -0.72 -4.34 -2.76
D1 3.09 10.18 2.78
D2 -1.18 3.65 5.08
D3 8.87 7.64 4.95
D4 -64.43 -86.32 -24.35
D5 -72.17 -89.60 -16.07
E1 21.82 26.64 29.24
E2 22.35 20.73 19.16
E3 21.95 13.66 7.54
E4 18.75 16.95 22.65
E5 -57.04 -48.24 -10.60

There is a large spread in difference between THA and RSA for the three responses
in all plates. For the relative displacement the difference varies from THA being
29.24 % larger than the RSA to 24.24 % smaller. For the relative velocity the same
spread is from 28.73 % greater to 89.60 % smaller and for the relative acceleration
22.35 % greater to 72.17 % smaller. Due to the large spread and the substantial
inaccuracy of some plates it was decided to perform another convergence study.

4.3.7 Refined mesh in parameter study

The parameter study covered in Section 4.3.6 revealed a large spread in the con-
formity between THA and RSA. The only obvious observation that could be made
was that the beam-like plates D4, D5 and E5 stood out with significant deviation
between the analysis types. Some sample analyses with finer meshes were done for a
few plates at this point, including D5. Some plates changed significantly with finer
mesh, while others did not. It was decided to perform a convergence study for one
of the plates that seemed to be very sensitive with respect to mesh refinement. The
plate of choice was A1, which has the dimensions 3×9 m and is simply supported on
all edges. The convergence study started at a mesh of 6×18 elements for the short
and long side, respectively. Each subsequent analysis added 6 and 18 elements up
until a mesh of 48×144 elements for the last analysis. The convergence of the first
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mode frequency and the response in form of the relative acceleration, velocity and
displacement were studied and are shown in Figure 4.9.
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Figure 4.9: Convergence study of the first mode frequency and responses with
RSA and THA for plate A1/A5.

Unlike the 5×5 simply supported plate in Section 4.2, plate A1 needs more than 400
elements to reach convergence for all four studied quantities, especially for THA and
particularly for acceleration in THA. However, it can also be noted that the differ-
ence between the converged and non-converged results are rather small with respect
to frequency. The first mode frequency only differs about 0.2 Hz and therefore a
modal contribution study seems not to be as sensitive to the mesh size.

It can be observed that the convergence differs slightly between the different re-
sponses, and displacement seems to require more elements. From Figure 4.9 it
becomes clear that the THA and RSA does not converge towards the same value.
RSA is an approximate method and therefore it is not expected that the THA and
RSA will yield the exact same response. Furthermore, THA and RSA converge from
different directions, and also seems to change direction slightly as more elements are
added.

As mentioned previously, a THA is very time consuming when using a large number
of elements. Therefore, it was decided that a mesh of 30×90 elements, i.e 2700
elements, gave a good enough result for plate A1 both with THA and RSA.
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Plate A1 has the dimension of 3×9 meters and a mesh of 30×90 elements results in
10 cm2 quadratic elements. This value was chosen as the updated mesh size for the
parameter study. Since different plates seem to require very different mesh densities,
it would have been preferable to complete convergence studies for each plate in the
parameter study using both RSA and THA. However, such a convergence study
would have been extremely time consuming to complete. Knowing that it might
not be sufficient for all the plates in the parameter study, it was decided that an
element size of 10 cm2 should be used.

4.3.8 Parameter study of THA compared with RSA using
refined mesh

4.3.8.1 Orientation

This sections covers the results from the parameter study of the 21 plates using the
10 cm2 mesh mentioned in the previous section. The results for each type of plate
A, B, C, D and E are handled in separate sections. The results are given as response
of the vertical mid DOF in terms of relative acceleration, velocity and displacement,
and the difference between the THA and RSA. In Section 4.3.8.7 the difference of
all plates in the parameter study are shown and analysed.

4.3.8.2 Plate type A

Table 4.12 shows the responses of the vertical mid DOF for the plates of type A.
Due to symmetry plate A1 is equal to A5 and A2 is equal to A4, which is why A4
and A5 are omitted. The responses obtained with RSA are consistently larger than
the responses of THA. There is a noticeably large spread in results between THA
and RSA, ranging from 2.49 % to 28.49 % difference.

Table 4.12: Comparison of response with THA and RSA in the plates of type A.

arel[ mm/s2] Difference vrel [mm/s] × 10−1 Difference drel [mm]× 10−3 Difference
RSA THA [%] RSA THA [%] RSA THA [%]

A1/A5 1153 1182 2.49 32.89 35.96 8.55 9.56 10.65 10.21
A2/A4 1117 1291 13.46 28.29 37.78 25.12 8.84 12.37 28.49
A3 931 970 3.96 19.55 24.19 19.21 7.75 8.08 4.13

4.3.8.3 Plate type B

Table 4.13 shows the responses of the vertical mid DOF for the plates of type B.
Again, for symmetry reasons plates B4 and B5 are omitted. Overall, the plates
of type B show fairly good conformity between the THA and RSA for all three
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responses. The largest deviation is 8.08 %. The THA has larger responses than the
RSA for plate B2/B4 and B3. For plate B1/B5 the relative acceleration is greater
for THA while the relative velocity and relative displacement is larger with RSA.

Table 4.13: Comparison of response with THA and RSA in the plates of type B.

arel[ mm/s2] Difference vrel [mm/s] × 10−1 Difference drel [mm]× 10−3 Difference
RSA THA [%] RSA THA [%] RSA THA [%]

B1/B5 1697 1754 3.27 31.67 30.85 -2.68 6.73 6.31 -6.62
B2/B4 1802 1805 0.17 47.80 52.00 8.08 13.87 14.38 3.51
B3 1758 1897 7.31 42.96 45.54 5.67 12.72 13.14 3.25

4.3.8.4 Plate type C

Table 4.14 shows the responses of the vertical mid DOF for the plates of type C. The
largest difference for plate type C is 13.89 %. Generally the conformity between the
THA and RSA is fairly good for all three responses. The THA has higher response
than RSA for plate C1 and C4. For plate C5 the relative displacement is the only
quantity higher for THA than RSA. For plate C2 and C3 the relative velocity and
relative acceleration is higher for THA.

Table 4.14: Comparison of response with THA and RSA in the plates of type C.

arel[ mm/s2] Difference vrel [mm/s] × 10−1 Difference drel [mm]× 10−3 Difference
RSA THA [%] RSA THA [%] RSA THA [%]

C1 1060 1195 11.26 30.92 34.93 11.49 9.07 10.40 12.80
C2 1038 1018 -2.01 27.20 29.20 6.87 11.34 13.17 13.89
C3 1080 1059 -1.95 21.04 23.68 11.16 6.74 6.90 2.32
C4 1783 2045 12.81 49.26 55.63 11.46 14.83 16.88 12.12
C5 1613 1557 -3.58 31.05 29.74 -4.39 6.78 6.30 -7.74

4.3.8.5 Plate type D

Table 4.15 shows the responses of the vertical mid DOF for the plates of type D. The
plates of type D show a very large spread in conformity of results. Plates D1, D2
and D3 show good conformity while plate D4 and D5 present a very large disparity
between THA and RSA. Besides the relative acceleration of plate D3, plates D1, D2
and D3 have higher responses with THA. The largest difference for plate D1, D2
and D3 is 14.60 %. For plate D4 and D5 all the responses are higher for RSA and
the largest difference is 100 %.
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Table 4.15: Comparison of response with THA and RSA in the plates of type D.

arel[ mm/s2] Difference vrel [mm/s] × 10−1 Difference drel [mm]× 10−3 Difference
RSA THA [%] RSA THA [%] RSA THA [%]

D1 585 611 4.22 14.60 16.64 12.26 5.06 5.11 0.99
D2 458 476 3.84 10.95 11.36 3.57 4.58 4.90 6.56
D3 409 405 -0.99 12.34 12.72 3.00 5.02 5.14 2.44
D4 459 308 -48.82 11.88 5.94 -100.01 6.21 5.33 -16.36
D5 449 235 -91.13 10.64 6.00 -77.22 5.34 4.53 -18.03

4.3.8.6 Plate type E

Table 4.16 shows the responses of the vertical mid DOF for the plates of type
E. Plates E1-E4 all show a fairly good conformity with the largest difference at
13.85%. Besides the relative acceleration for plate E1 all responses for plates E1-
E4 are higher for THA. Plate E5 show a significant difference between RSA and
THA, with relative acceleration and velocity reaching 54.79 and 50.74 % difference,
respectively. Similarly to plates D4 and D5, plate E5 has significantly smaller values
of THA response compared to RSA response.

Table 4.16: Comparison of response with THA and RSA in the plates of type E.

arel[ mm/s2] Difference vrel [mm/s] × 10−1 Difference drel [mm]× 10−3 Difference
RSA THA [%] RSA THA [%] RSA THA [%]

E1 1068 1042 -2.43 22.04 22.39 1.54 4.81 4.82 0.19
E2 820 951 13.85 25.01 27.81 10.07 7.34 7.86 6.55
E3 582 660 11.75 17.08 18.54 7.87 6.17 6.65 7.20
E4 1170 1181 0.98 29.92 29.94 0.04 8.71 9.87 11.69
E5 642 415 -54.79 17.87 11.86 -50.74 6.54 6.03 -8.35

4.3.8.7 Summary of difference between THA and RSA from parameter
study

In Table 4.17 a summary of the difference between THA and RSA for all the plates
in the parameter study are displayed together with the first mode frequency of the
plates.
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Table 4.17: Comparison of responses, as percentage difference between RSA and
THA with the fine mesh. Positive difference means the THA is larger than RSA.

First mode Difference [%]
frequency [Hz] arel vrel drel

A1/A5 39.35 2.49 8.55 10.21
A2/A4 24.95 13.46 25.12 28.49
A3 25.54 3.96 19.21 4.13
B1/B5 81.88 3.27 -2.68 -6.62
B2/B4 49.23 0.17 8.08 3.51
B3 46.16 7.31 5.67 3.25
C1 40.72 11.26 11.49 12.80
C2 27.63 -2.01 6.87 13.89
C3 37.24 -1.95 11.16 2.32
C4 47.72 12.81 11.46 12.12
C5 81.18 -3.58 -4.39 -7.74
D1 35.31 4.22 12.26 0.99
D2 19.87 3.84 3.57 6.56
D3 12.67 -0.99 3.00 2.44
D4 4.93 -48.82 -100.01 -16.36
D5 3.89 -91.13 -77.22 -18.03
E1 78.94 -2.43 1.54 0.19
E2 44.78 13.85 10.07 6.55
E3 28.73 11.75 7.87 7.20
E4 11.24 0.98 0.04 11.69
E5 8.87 -54.79 -50.74 -8.35

There is a large spread in results between the responses in RSA and THA for all
three motions. When studying the relative displacement the smallest difference is
0.19 % while the largest is as much as 28.49 %. When considering all responses,
the largest difference is over 100 %. Evidently plate type B, which is fixed along all
edges, has a relatively small deviation between the THA and RSA. The rectangular
plates D4, D5 and E5, all with the long sides unsupported show large deviations
and have a low first mode frequency. An interesting observation is that plate E4,
which also has the long sides unsupported and a relatively low first mode frequency,
has much better conformity than the other plates with similar boundary conditions
and geometries.

For the large majority of the plates there is a positive sign in front of the percentage
difference, which means that THA results are higher than the RSA. The highest
positive difference is 28.49 % in relative displacement for plate A2/A4.

There seems to be a difference between THA and RSA that is fairly general, ranging
from 0-30% which is most often with a positive sign. Aside from that general differ-
ence, there is another type of difference between RSA and THA which is unique to
plates D4, D5 and E5. These plates have significantly higher percentage difference
between THA and RSA. Unlike the other plates, the difference is concentrated pri-
marily to acceleration and velocity, and the responses are all lower for THA than
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for RSA. In order to understand the reasons behind these results, a more thorough
study of plate D5 and B3 is made. The reasons these plates were chosen were that it
seemed prudent to investigate a plate that had a very large difference between THA
and RSA, and one which had a relatively small difference. These in-depth studies
are covered in Sections 4.4.3 and 4.4.4.

4.3.9 Comparison of results from parameter study with fine
and coarse mesh

For some plates, the percentage difference between THA and RSA changed notice-
ably between the coarse mesh, i.e the 20×20 mesh, and the fine mesh, i.e the 10 cm2

mesh described in Section 4.3.7. Table 4.18 shows the percentage change in response
between the coarse mesh and the fine mesh. As an example, looking at acceleration
difference for plate A1, by increasing the amount of elements the RSA changed 2.52
% and the THA changed 13.78%.

Table 4.18: Percentage difference of responses between analyses with 20×20 mesh
and 10 cm2 mesh.

arel[%] vrel[%] drel[%]
RSA THA RSA THA RSA THA

A1 2.52 -13.78 0.74 6.95 0.34 -2.14
A2 11.19 7.73 10.31 17.84 5.45 14.13
A3 0.99 -1.57 -1.15 0.64 -0.64 5.19
B1 5.84 1.04 6.81 0.29 9.93 -2.54
B2 5.46 -2.64 3.43 2.00 3.58 2.27
B3 3.17 13.98 -4.56 -0.04 -7.89 -2.48
C1 -1.27 -17.97 1.34 -7.35 3.90 -4.40
C2 5.00 3.30 -1.99 -16.97 -4.68 9.77
C3 -0.92 -6.46 -0.09 -5.81 -1.13 -4.24
C4 -1.85 0.88 -2.00 -5.51 0.39 -0.72
C5 -4.95 -7.93 -0.44 -0.49 4.53 -0.10
D1 1.57 2.72 -1.95 0.41 2.67 0.88
D2 2.74 7.57 -1.22 -1.31 -2.40 -0.81
D3 -0.52 -11.40 -0.59 -5.64 1.65 -0.94
D4 -3.82 6.04 -4.10 -11.75 -1.87 4.68
D5 4.02 -6.55 1.54 7.97 3.68 2.05
E1 19.68 -5.23 22.97 -3.38 25.58 -4.97
E2 4.86 -5.55 6.46 -6.12 8.42 -5.86
E3 0.31 -12.71 2.40 -4.15 3.97 3.62
E4 2.06 -19.35 3.05 -16.69 2.66 -11.13
E5 -5.13 -3.63 -3.07 -4.80 -2.59 -0.50

Table 4.18 underlines the complexity of convergence for the plates. The first conver-
gence study, covered in Section 4.2.3, was unfortunately made for plate A3, which is
one of the plates that converged with the fewest amount of elements for both RSA
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and THA. Some plates, for example E1, changed considerably for RSA while having
decent convergence in THA with the coarse mesh. In the opposite situation, plate
E4 did not change much with respect to RSA but saw a large difference in THA. To
summarise, it is evident that the convergence behaviour is erratic. One could very
well end up in a situation where a chosen mesh results in a situation where the RSA
is converged while the THA is not for one plate, with the opposite being true for
another plate.

4.3.10 Convergence study of a plate sensitive to mesh size

Initially it was assumed that the RSA needed approximately the same mesh as the
plates in the modal contribution study, i.e 20×20 elements, see Section 4.2.3.

The comparison of the parameter study using both the coarse mesh and fine mesh,
see Section 4.3.9, revealed that the sensitivity for the element size varies both be-
tween plate and analysis type. Especially plate E1 was discovered to be sensitive
to the number of elements needed for the RSA. Another convergence study of the
RSA response for plate E1 was performed. The geometry of plate E1, which has a
first mode frequency of approximately 79 Hz, is shown in Table 4.3 and Figure 4.10
shows the result of the convergence study.
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Figure 4.10: Convergence study of the first mode frequency and responses with
RSA for plate E1.
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Evidently, 30×90 elements, i.e 2700 elements, produce results that are not converged.
However, the magnitude in the difference between 2700 elements and 7000 elements
is relatively small. Thus, increasing the amount of elements for the RSA of plate
E1 would not change the results dramatically.

4.3.11 RSA using modal combination rule ABSSUM

In Section 2.4.3.7 the different modal combination rules were described. All RSA
analyses performed thus far has applied the modal combination rule SRSS, Equation
2.63. The results produced with RSA using SRSS have mostly resulted in responses
with smaller values than THA, see Table 4.17. An alternative modal combination
rule is the ABSSUM rule, Equation 2.62, which gives considerably more conservative
results. Table 4.19 shows the difference between THA and RSA when ABSSUM is
applied for the plates in the parameter study. Again, the studied responses are rel-
ative acceleration, relative velocity and relative displacement. The complete results
from the comparison of THA and RSA using ABSSUM can be seen in Appendix C.

Table 4.19: Difference between the responses with THA and RSA using modal
combination rule ABSSUM.

Difference[%]
Plate arel vrel drel
A1/A5 -87.12 -35.07 -19.51
A2/A4 -85.76 -25.59 -6.89
A3 -71.82 -14.45 -11.31
B1/B5 -55.65 -33.14 -23.75
B2/B4 -73.67 -19.26 -10.65
B3 -50.60 -18.87 -5.26
C1 -81.06 -29.31 -11.46
C2 -132.42 -51.80 -9.01
C3 -106.02 -36.01 -16.44
C4 -52.65 -16.56 -3.27
C5 -62.22 -33.22 -26.23
D1 -31.74 -4.38 -10.53
D2 -55.23 -26.12 -4.58
D3 -72.26 -28.41 -13.88
D4 -193.67 -238.57 -60.60
D5 -283.40 -197.86 -62.17
E1 -22.33 -7.26 -5.82
E2 -29.12 -8.69 -6.59
E3 -57.11 -27.36 -10.22
E4 -63.62 -43.24 -29.59
E5 -193.18 -138.33 -60.96

Applying the modal combination rule ABSSUM results in RSA consistently obtain-
ing a higher response than THA for all the plates in the parameter study. However,
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the spread in accuracy becomes even greater than with SRSS. Evidently, ABSSUM
will result in a large overestimation for some plates. Relative velocity and relative
acceleration in particular reach very high values with a significant difference with
respect to THA. The largest difference is 283.40 %. For the relative displacement
the differences between THA and RSA lies between 3 % and 63 %. Nevertheless,
using ABSSUM seems to consistently produce conservative results.

4.4 In depth study of plates from parameter study

4.4.1 Orientation

Due to the spread of results between the RSA and THA that was observed in
the parameter study covered in Section 4.3.8, a closer investigation of two plates
of choice was performed. The chosen plates were plate D5 which had the largest
deviation and plate B3 which had a small deviation between RSA and THA. These
plates were chosen in order to study the difference which caused plate D5 to have
low conformity and B3 to have high conformity. Furthermore, this section includes
studies of the length of time-step used for THA and of how the number of modes
used affect the RSA. The deformed shapes of D5 and B3 in THA at the time of
maximum displacement will also be studied, with the purpose of understanding
their behaviour. This section will also cover analyses of plates D5 and B3, when
subjected to Traffic Load 2, further described in Section 4.4.2. However, unless
otherwise specified, ground motion from Traffic load 1 are used for the analyses i
this section.

4.4.2 Response spectrum from Traffic load 2

To further examine the D5 and B3 plate, it was subjected to Traffic load 2. The
traffic load was applied to a THA of the D5 and B3 plate. Response spectra of
Traffic load 2 was calculated and used with the modal contributions from the D5
and D3 plate. The results of these analyses can be viewed in Sections 4.4.3.6 and
4.4.4.3. Traffic load 2 and its resulting response spectra can be seen in Figure 4.11.
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Figure 4.11: The ground acceleration for Traffic load 2 and the response spectra
calculated from the ground acceleration.

In Figure 4.8 the response spectra of Traffic load 1 can be viewed for comparison.
One major difference between the two traffic loads is the frequency range where the
peak response is located. For Traffic load 1 the peak responses are in the range
of approximately 58-130 Hz, see Figure 4.8, whereas Traffic load 2 has its major
response in the 1-10 Hz region. The second difference is the amplitude, where for
example the acceleration of Traffic load 1 produces a response spectrum that peaks
close to 3000 mm/s2, see Figure 4.8b, whereas the acceleration peaks below 80
mm/s2 for Traffic load 2, see Figure 4.11b.

4.4.3 In depth analysis of plate with large deviation between
THA and RSA, plate D5

4.4.3.1 Analysis of the entire time history

As was shown in Section 4.3.8, plate D5 had the largest deviation between the
results of RSA and THA. Due to this, the behaviour of D5 in THA and RSA was
analysed further. In the parameter study, the highest single response in the centre
node was compared with THA and RSA. To get a better understanding of the plate
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behaviour, the entire time history of the centre node was studied, see Figure 4.12.
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Figure 4.12: The applied ground motion signal and complete time history of the
mid node in plate D5 for all three responses.

It is clear from the graphs in Figure 4.12 that all the maximum responses arise in
close proximity to the maximum values of the ground motion signal, which occurs
around the 14 second mark. After the maximum response has been reached, all
the responses begin to subside, with displacement being the slowest to do so. Since
the ground motion ends at the same time as the time period analysed, all three
responses fail to subside down to zero before the end of the analysis, displacement
in particular. However, it is clear from all three graphs that all the responses are
moving towards zero and that no maximum values could be missed because of this.
Furthermore, it can be noted that the displacement curve has a more sparse graph
compared to the denser graphs of the velocity and acceleration. This indicates that
the displacement is influenced more from the lower modes than acceleration and
velocity

It can also be noted that both the maximum values of ground motion and the
maximum responses are concentrated within a short space of time. Plate D5 has the
lowest natural frequencies of all the plates in the parameter study, and consequently
there is less chance of several modes reaching peak values simultaneously within a
short space of time. The significance of this will be covered more in Section 4.4.3.5.
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4.4.3.2 Study of general response in plate D5

To investigate the difference in general behaviour between RSA and THA, additional
nodes in the plate were studied. Figure 3.4 shows the notations and location of the
studied nodes, and Table 4.20 show the results of the comparison.

Table 4.20: Comparison of the relative response of plate D5 calculated with THA
and RSA.

Plate D5 arel [mm/s2] Difference vrel [mm/s]×10−1 Difference drel [mm]×10−3 Difference
Node RSA THA % RSA THA % RSA THA %

a 336.34 411.81 18.33 7.89 11.75 32.84 3.94 4.96 20.55
b 477.12 386.62 -23.41 11.14 10.68 -4.30 5.52 4.73 -16.63
c 317.27 253.63 -25.09 7.55 6.46 -16.83 3.82 4.78 20.23
d 449.069 234.95 -91.13 10.64 6.00 -77.22 5.34 4.53 -18.03

There is a significant difference in the response between RSA and THA for all
four nodes. Notably, the location of the largest responses are different in the two
analyses. In the THA the largest response is found at node a and in the RSA at
node b. Another observation is that the maximum response occur at the plate edge,
rather than the centre line.

4.4.3.3 Investigation on how the time-step length influence THA re-
sponse

The accuracy of THA can depend significantly on the length of the time-step used
for the analysis. A suitable length of the time-step depends on the highest frequency
that should be included in the analysis. A suitable guideline is to use a time-step,
∆t, shorter than 1/20 of the period of the highest eigenfrequency, i.e ∆t < T/20
where T = 1/f . In the study of plate D5 a time-step of 7.32×10−4 seconds and 200
modes have been used. The eigenfrequency for mode 200 is approximately 1850 Hz.
To describe such a high frequency it would require a time-step of about 2.7× 10−5

seconds, which is a considerably smaller value than the one used in the analyses.
Following the guideline, a time-step of 7.32 × 10−4 seconds should permit study of
modes up to a frequency of about 68 Hz.

To investigate if the difference of the THA and RSA was a result of insufficiently
short time-steps a comparison of the response including only the first few modes was
performed. Two analyses were done each for THA and RSA, the first using only the
first mode and the second using the first four modes. The reason for including four
modes in the second analysis was that modes one and four are contributing modes
for both THA and RSA, whereas modes two and three are not. The fourth mode
of plate D5 has a natural frequency of approximately 36 Hz, which indicates that it
should be described well with the time-step 7.32× 10−4. The results of the analyses
are shown in Table 4.21. The first mode analysis shows well corresponding results
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Table 4.21: Comparison of RSA and THA in the centre of the plates, i.e node d,
including 1 and 4 modes.

1 mode 4 modes
Plate D5 RSA THA Difference % RSA THA Difference %

arel[ mm/s2] 358.49 356.27 -0.62 408.48 172.05 -137.42
vrel [mm/s]× 10−1 9.14 9.07 -0.79 10.38 5.45 -90.43
drel [mm]× 10−3 5.03 4.93 -1.97 5.33 4.70 -13.41

between THA and RSA, whereas the four mode analysis result in markedly different
responses. The relative acceleration deviates 133%, even though the frequency of
this mode is well below the limit according to the time-step guideline.

4.4.3.4 Investigation on how the number of modes influence the response
of RSA

An additional control that the fourth mode was correctly described with the time-
step is to compare the modal contribution of MATLAB with ADINA. Figure 4.13
show the influence of the modal contribution on the middle node of plate D5 calcu-
lated both with ADINA and MATLAB.
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Figure 4.13: Influence on the response of the mid DOF according RSA with
MATLAB and ADINA.

The modal contribution and its corresponding frequency matches well up until the
17th mode, from then and upwards the frequency differs increasingly but the value
of the modal contribution matches well between MATLAB and ADINA. This is an
expected result and was observed already in Section 4.2.4. It can be argued that the
difference in frequency above the 17th mode has small influence on the response. In
part because the modal contribution is low, but also because the response spectrum
of Traffic Load 1 has very low response at frequencies above 200 Hz. The second
data point in Figure 4.13 represents the fourth mode and has a natural frequency
of approximately 36 Hz, evidently mode four is very similar between MATLAB and
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ADINA. However, as was shown in Table 4.21 the THA and RSA begin to deviate
significantly when Mode 4 is added. This implies the THA and RSA deviate even
at low frequencies that correlate well between MATLAB and ADINA.

To show that the higher modes contribute negligibly to the total response for Traffic
load 1, Figure 4.14 displays how the response of the RSA is increasing when more
modes are included in the analysis. The accumulated response is normed with re-
spect to total response, i.e when the graph approaches 1 on the Y axis the total
response is approached. The total response is referring to the response of the plate
with 200 modes included in the analysis. As can be observed the relative displace-
ment nearly reaches its total response by inclusion of just four modes. Including
modes 10 and 17 pushes all the responses above 99% of total response.
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Figure 4.14: Increase of the response on the mid node with increasing number of
modes calculated with MATLAB and a 20 ×20 mesh. The contributing modes are
modes 1, 4, 10 and 17.

As mentioned in Section 4.2.3 a mesh of 20×20 was used for the MPF study. Since
only a general behaviour is illustrated with the normed response data in Figure
4.14 the data is from calculation in MATLAB with a 20×20 mesh. Figure 4.15
displays the four modes that contributes to the majority of the total response of the
midnode in plate D5, i.e mode 1, 4, 10 and 17 which was observed in Figure 4.14. A
comparison with the displacements of the plate at the time for the largest response
in the THA, see Figure 4.16, illustrates the difference of the plate displacements for
the RSA and THA.

4.4.3.5 How mode interaction influences the difference of RSA and THA

Based on the results in Sections 4.4.3.3 and 4.4.3.4 it was concluded that neither
the time-step of the THA nor the inclusion of too high modes were the source of the
discrepancy of plate D5. At this point, the hypothesis was that in THA the modes
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might not have sufficient time to reach full interaction during the brief window of
peak ground motion from Traffic Load 1. A more hands-on approach was tried. The
basic idea was to look at the displacement of the plate in the THA around the time
of maximum response and see how the modes interacted at that point in the time
history. As previously mentioned, the modes 1, 4, 10 and 17 provided nearly 100% of
the total response for the RSA, with mode 1 and 4 having the largest contribution.
These modes are shown in Figure 4.15, the deformed shape of plate D5 at the time
of maximum displacement in the THA is shown in Figure 4.16.

(a) Mode 1 (b) Mode 4

(c) Mode 10 (d) Mode 17

Figure 4.15: The four modes that contributes to the majority of the response for
plate D5 according to RSA.

(a) Displacement at times step when
the plate has its largest displacement,
which occuri node a

(b) Displacement at times step when
centre of the plate, node d, has its
largest displacement.

Figure 4.16: Displacements of plate D5 at time steps with largest displacements
according THA.

The deformed shape of D5 at the time of maximum displacement in THA, Figure
4.16a, clearly shows significant presence of Mode 1 and 4, moreover it can be seen
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that the modes are counteracting each other with respect to displacement in the
centre node, but interacting with respect to displacement in nodes a and c. For
RSA, contribution of all modes are stacked for all three modal combination rules.
THA describes how the specific plate reacts to a specific load for each individual
time-step. Consequently, in THA it is possible that the modes do not interact fully.
The possibility of low interaction is increased if the mode frequencies are low and
the duration of maximum ground motion is short, which both are true for plate D5
with Traffic load 1. Figure 4.17 attempts to illustrate the basic principle behind the
large difference between THA and RSA for plate D5.

Mode 1

Mode 4

RSA with SRSS

Mode 1

Mode 4

THA if modes are counteracting

Figure 4.17: Illustration of how responses from modes are combined to a total
response in RSA and THA.

As is shown in Table 4.20, the RSA reaches its maximum values of displacement
at nodes b and THA at nodes a and c, which are nodes located on the free edges.
The reason for the free edges having slightly higher response is because modes 1,
4, 10 and 17 all have a very slight concavity perpendicular to the main direction.
In addition, there is a small contribution from modes 8 and 13, which can be seen
in Figure 4.18. These two modes have a rather small modal contribution, but their
natural frequencies are 87.7 and 135.6 Hz, which both are in regions of high response
in the Response spectrum for Traffic load 1. Due to the modal contribution being
so low for these modes, they have a low contribution to the total response, but their
contributions are largest along the free edge.
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(a) Mode 8
(b) Mode 13

Figure 4.18: Modes 8 and 13 for plate D5, which contributes to the response at
the free edge.

4.4.3.6 Analysis with Traffic load 2

The results of the THA and RSA of plate D5 with Traffic load 2 can be seen in Table
4.22. The results of the comparison of THA and RSA of plate D5 for Traffic load 2
show significantly better conformity compared to Traffic load 1. With Traffic load
1 the difference is 16%, 90% and 72 % for displacement, velocity and acceleration,
respectively. For Traffic load 2 all three responses differ less than 2 % between the
THA and RSA, see Table 4.22

Table 4.22: Comparison of THA and RSA of plate D5 calculated with Traffic load
2.

Plate D5 RSA THA Difference [%]
arel[ mm/s2] 24.64 25.10 1.83
vrel [mm/s]× 10−1 10.51 10.48 -0.27
drel [mm]× 10−3 43.87 43.85 -0.05

The good correspondence here is reasonable considering that the response spectra of
Traffic load 2, see Figure 4.11, all have very low response above 10 Hz. This means
that of the contributing modes in D5, only mode one will see significant activation.
Hence, there is no situation with modes counteracting each other for this load. The
displacement and velocity spectra are both practically zero above 10 Hz, whereas
there is a small value of acceleration past that point. Acceleration is the parameter
deviating the most between RSA and THA for this ground motion.

4.4.3.7 Maximum response of plate D4, E4 and E5.

Based on the observations made in Section 4.4.3.5, plates D4 and E5 were studied
with respect to the deformed shape at the time of maximum response in THA. Plate
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E4 was also studied, to see why it had so much better conformity of results between
THA and RSA.

(a) D4, maximum displacement
(b) D5, maximum displacement

(c) E4, maximum displacement (d) E5, maximum displacement

Figure 4.19: Plates D4, D5, E4 and E5 at the time of maximum displacement in
THA.

As can be seen in Figure 4.19a, plate D4 has a response very similar to D5 with
the first two contributing modes counteracting each other. The same can be seen
for plate E5 in Figure 4.19d, but with much higher influence from the second con-
tributing mode. Plate E4, Figure 4.19c, receives a majority of its response from the
second contributing mode. In fact it is hard to even distinguish the contribution
of the first mode in the figure. For plate E4, the first contributing mode is Mode
1 with a natural frequency of 11.24 Hz. The second contributing mode, which is
Mode 6, has a natural frequency of 60.31 Hz. Consulting the graphs of the response
spectra of Traffic load 1 in Figure 4.8, one can see that the first mode of plate E4 is
in a region of very low response. On the other hand, Mode 6 is very close to highest
peak of the response spectra. Furthermore, it is evident that for plate E4 in THA,
the first and second contributing mode are interacting in the plate center, which
explains the good conformity between THA and RSA for this plate.

4.4.4 In depth analysis of plate with small deviation be-
tween THA and RSA, plate B3

4.4.4.1 Analysis of the entire time story

Plate B3 in the parameter study described in Chapter 4.3.8 showed a relative small
deviation between the THA and RSA. To investigate why the results in a THA and
RSA were similar a deeper study of the plate was made. Figure 4.20 shows the
complete THA of the mid node of plate B3 and the ground acceleration that was
used as input data.
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(a) Input data for the THA in form of
ground acceleration.
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(b) Relative acceleration of mid node
in plate B3 from THA.
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(c) Relative velocity of mid node in
plate B3 from THA.
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(d) Relative displacement of mid node
in plate B3 from THA.

Figure 4.20: Complete THA of the mid node in plate B3.

Comparing Figure 4.20d with Figure 4.12d, it is evident that the displacement time
history of the mid node for B3 is denser than for plate D5. Since plate B3 has higher
natural frequencies than D5, it is an expected result.

Looking at the modal contribution graph for plate B3, Figure 4.21, it is observed
that modes 1 and 6 have the largest modal contributions. Comparing the frequency
of mode 1 and 6, see Figure 4.21 with the response spectrum, see Figure 4.8 only
mode 1 is residing in a region of high response in the response spectra. Mode 6 is
still within the active region of the response spectra, but should have significantly
lower contribution to total response than Mode 1. It is expected then, that for plate
B3 a significant portion of the contribution to the response should come from Mode
1, and considerably smaller contributions coming from Mode 6 and later modes.
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Figure 4.21: Influence on the response of the mid DOF according to RSA with
MATLAB and ADINA.

4.4.4.2 Investigation on how the modes influence the response

Figure 4.22 displays how the responses are increasing with more modes included in
the analysis similarly to Figure 4.15 and as was explained in Section 4.4.3.
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Figure 4.22: Increase of the response on the mid node with increasing number of
modes.

In accordance with the predictions made from Figure 4.21, the response is influenced
mostly from Mode 1. So much so, that by including only Mode 1 the relative
displacement practically reaches its total response. Relative velocity is also close to
its total with Mode 1, but relative acceleration receives a relative large contribution
from Mode 6.

Table 4.23 shows the response of THA and RSA with inclusion of Mode 1, and
when including Modes 1 and 6. The first and sixth mode have natural frequencies
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of approximately 46 and 166 Hz, respectively. The RSA and THA show conforming
results both when only the response from the first mode is included and when the
response from the first six modes are included.

Table 4.23: Comparison of RSA and THA including 1 and 6 modes.

1 mode 6 modes
Plate B3 RSA THA Difference[%] RSA THA Difference [%]

arel[mm/s2] 1333.37 1344.50 0.75 1741.39 1867.67 0.68
vrel [mm/s]× 10−1 41.57 41.31 -0.63 42.94 46.16 0.70
drel [mm]× 10−3 12.67 12.87 1.54 12.72 13.16 0.34

Figure 4.23 shows the shapes of Modes 1 and 6 for plate B3, Figure 4.24 shows
the deformed shape of B3 at the time of maximum displacement in THA. As was
shown in Figure 4.22, the displacement receives more than 99% of its total response
from Mode 1, which can be observed from the deformed shape of B3 at the time of
maximum displacement in THA. Since Mode 6 receives contribution for acceleration
and velocity, but not displacement, it is not visible at all.

(a) Mode 1 (b) Mode 6

Figure 4.23: The two modes that contributes to the majority of the response for
plate B3 according to RSA.

Figure 4.24: Displacements at the time of largest response in plate B3 in THA.

The good conformity for displacement is readily explained by the fact that displace-
ment is in practice only affected by mode 1, so there is no case of modes counter-
acting each other for displacement, as was seen with plate D5 in Section 4.4.3.5.
However, D5 saw a smaller deviation for displacement which was fairly in tune with
many other plates, again due to mode 1 having such a dominating influence on the
displacement. The largest discrepancies were seen with velocity and acceleration,
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which for B3 conforms fairly well between RSA and THA. This is believed to be due
to B3 having so much higher natural frequencies for its first two contributing modes
that they achieve full interaction for velocity and acceleration whereas D5 did not.

4.4.4.3 Analysis with Traffic load 2

The results of the THA and RSA of plate B3 with Traffic load 2 can be seen in
Table 4.24. Just as was observed for plate D5 in Chapter 4.4.3.6 plate B3 shows
better conformity between THA and RSA with Traffic load 2 compared to Traffic
load 1. With Traffic load 1 the difference is 7.31 %, 5.67 % and 3.25 % for the
relative displacement, velocity and acceleration, respectively. For Traffic load 2 the
largest difference is 3.20 % for plate B3.

Table 4.24: Comparison of THA and RSA of plate B3 calculated with Traffic load
2.

Plate B3 RSA THA Difference [%]
arel[ mm/s2] 16.98 17.54 3.20
vrel [mm/s]× 10−2 5.77 5.73 -0.67
drel[mm]× 10−4 2.20 2.16 -1.89

For plate B3 only the first mode is within the frequency range to be affected by the
response spectrum for Traffic load 2. Hence no case of modes counteracting each
other in THA is present. Thus the conformity of THA and RSA is expected in this
case.
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5.1 Orientation

This chapter includes a summary of the general and specific observations made based
on the results in Chapter 4. Here the results are analysed and discussed. It includes
the topics of convergence, influence of the load applied and the general accuracy
of the method. Free discussion about the results and the understanding of them
are also covered. Advice on how to approach the RSA method for plates, how to
avoid different pitfalls and how to interpret results correctly are also made here.
The chapter closes with a recommendation on further studies for the method.

5.2 Interpretation and analysis of results

5.2.1 Plates with large differences between results of THA
and RSA, plates D4, D5 and E5.

As was shown in Chapter 4, there were three plates with substantial difference be-
tween THA and RSA, they are plates D4, D5 and E5. These plates, when subjected
to Traffic load 1, exhibit a behaviour that is unique to them, which at first sight
produced large errors that initially called into question if the method is reliable or
not. The conclusion is that these three plates show significant discrepancies between
RSA and THA because of how the contributing modes interact with each other when
subjected to Traffic load 1. All three plates exhibit peak responses around the short
time period when the ground excitation of Traffic Load 1 is at its largest, but the
RSA show significantly higher response by large percentages. Figure 4.17 shows the
principle of what is happening for these plates. The RSA always stacks all modal
contribution, while in the THA it is possible that two contributing modes can coun-
teract each other in a certain position of the plate. When studying the deformed
shape of plates D4, D5 and E5 at the time of the peak response in THA (Figure 4.19)
the first two contributing modes are clearly visible and counteracting each other in
the centre node. One thing in common for all three plates is that the first contribut-
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ing mode is located in a region of low response, while the second contributing mode
is in a region of higher response. When the first and second contributing modes are
the most dominant, with fairly low natural frequencies, they have lower probability
of achieving maximum contribution at the same time. A very interesting special case
is Plate E4, which has good conformity between THA and RSA. As was explained in
Section 4.4.3.7, plate E4’s second contributing mode has a natural frequency that is
very close to the largest peak of the response spectrum. Its first contributing mode
is in a low response region of the spectra. As a result, the second contributing mode
dominates the behaviour of E4 at the time of maximum response. In Figure 4.19c,
it is also visible that the small influence of the first contributing mode is working
in the same direction as the second contributing mode. Hence the good conformity
between RSA and THA for this plate.

One can argue that from a designer perspective, the results of the RSA are in these
circumstances preferable. While the THA gives a more realistic response for this
exact particular ground motion, it is very far from the worst case scenario which
could happen for a similar ground response that has a slightly longer time window of
peak motion. The discrepancy of these plates could therefore be considered to be an
advantage for the RSA, since the worst case scenario could be a possible outcome for
another slightly different ground motion. Regardless if it is considered an advantage
or not, the large differences in response for the three plates are not a result of the
method being inaccurate, as was feared at first.

5.2.2 General accuracy of results

As Fagerström and Lindorsson (2017) showed, the conformity between RSA and
THA was very good for beam elements. The initial hypothesis was that plates
would show similar conformity. This proved to be a false assumption, as the plates
of the parameter study can diverge significantly between RSA and THA. However,
as was shown in Section 4.4.3.5 and explained in the previous section, the largest
differences between RSA and THA was a result of the THA not reaching maximum
mode interaction during the short time period of maximum ground motion for three
plates. The rest of the plates of the parameter study show a fairly good conformity,
which for all but one single response fall within the expected margin of error for
the method. The reason for the general difference of 1 − 30% between THA and
RSA is believed to be caused by the modal combination rules not being ideal for
jagged response spectra. If the response spectrum is jagged, which was the case in
this study, a fairly small shift in the natural frequency of a dominant contributing
mode can have a significant impact on the calculated response. As an example, the
acceleration response spectrum of Traffic Load 1 has its maximum response of 2830
mm/s2 at 58.44 Hz. If the studied plate has a significant mode around 58.44 Hz an
error of 2-3 % for the frequency can result in a difference of more than 30 % for the
acceleration response for that mode. If the mode in the example has a large modal
contribution, the error in calculated response can become substantial. Consequently,
all modes with high modal contribution, which have natural frequencies within the
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dominant frequency range of the response spectrum, needs to be calculated with
great precision.

Another reason for the large difference between RSA and THA can be because of
convergence error, which is covered in the following section.

5.2.3 Convergence

The convergence studies were fairly complicated in the work on this thesis. There
are many different parameters that can be studied in the convergence, such as mode
frequencies, the modal contribution and the total response. Evidently, when having
all the results of the study at hand, different plate types have different requirements
on the mesh density. There is also a difference between how many elements that
were needed for convergence for the RSA and THA, and it varied between plates.
There is no discernible pattern or general rule that plates of a certain geometry and
boundary conditions require a more or less dense mesh. It is also highly erratic
which one of RSA and THA that require the more dense mesh. As there was not
enough time to complete convergence studies on all 21 plates for both RSA and THA
it is possible that there are plates which have not converged fully for the mesh used
in the parameter study. This is a potential error source for the final results of the
parameter study. However, the difference in results between the parameter study
with 20×20 elements and the one with 10 cm2 elements, as well as a few sample
cases studied, both indicate that the results would not change notably with even
finer meshes.

5.2.4 Interpolation of modal contribution

The investigation of interpolation of modal contribution from plates with similar ge-
ometries indicated that it cannot be done easily. For the low frequency contributing
modes with precisely calculated frequencies and eigenvectors, there is a relation-
ship between the geometry, the modal contribution and the frequency. In the study
only one parameter was changed, the width of the plate. Even with such a small
difference, the study showed that only the first three contributing modes could be
used for interpolation. For contributing modes beyond the third, modes started
appearing in different order. This might have to do with the convergence of higher
mode frequencies, which is a problem that can be circumvented with a denser mesh.
However, a more crucial problem is that if the stiffness and mass proportions of a
plate changes enough, the modes will not appear in the same order or with the same
frequency. The point where this mode shift happens would need to be investigated
thoroughly to enable accurate interpolation. To produce tables that include enough
material to be of use would require a very large parameter study which should have
very dense meshes to ensure convergence. In this thesis the first few contributing
modes have been the most influential on the total response. It could be argued that
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you would only need the first 1-4 contributing modes, which could enable interpo-
lation. However, since the RSA method produce results that differ up to 30 % from
THA for relative response, it is presumably not a prudent choice. The results that
are of interest for a designer is the comfort weighted total response. Both absolute
response and comfort weighting adds to the potential error. Risking bad results for
the relative response by interpolation could eventually be compounding to a large
error.

5.2.5 Natural modes activated with uniform vibration

One surprising result with both RSA and THA was that many natural modes were
not activated by the applied ground motion. In RSA it manifested in that the modal
contribution of modes that were assumed to have a large contribution to vertical
motion were in fact close to zero. As can be observed from the graphs of modal
contribution in Appendix A, all plates have a large quantity of modes with no modal
contribution. When looking at the response in the centre node this was not noticed,
since most of the lower modes with zero modal contribution are modes that have
no response in the centre because of their mode shape. The issue was noticed when
the response in other nodes than the centre node was studied. It seemed very odd
that, for example mode 2, would have no influence on vertical motion in the quarter
points of the plates. This, in combination with the large difference between THA
and RSA initially caused concern about whether the method itself was faulty. It
seemed obvious at the time that mode 2 should have a large influence on the vertical
motion. However, in THA no trace of these modes could be seen when studying the
deformed plate in ADINA. In Figure 4.15 the largest contributing modes of plate
D5 are shown. It is evident that the most influential contributing modes for D5 are
the typical beam modes, but only beam mode 1, 3, 5 and 7, which are equivalent to
D5’s mode 1, 4, 10 and 17, contribute to the vertical response. After going back and
reviewing the results of Fagerström and Lindorsson (2017), it was noticed that the
beams studied in their report exhibited similar behaviour. The conclusion drawn
from this was that uniform shaking of a beam or a plate only activates the modes
with an odd number of half sine waves. This find also resulted in the introduction of
the term contributing mode, which was introduced in Chapter 3 and has been used
throughout the thesis.

5.3 Advice and options when using the method

5.3.1 Importance of conservative results and use of the modal
combination rules

As was explained in Section 5.2.2 the results of the parameter study is within the
expected margin of error for the method. Since the method is supposed to give a
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fast method of obtaining approximate results, relatively small errors could be ac-
ceptable as long as the results are conservative. Hence, the largest problem with the
results is that the they are in many cases not conservative. One way to make sure
that RSA produce conservative results is to apply the modal combination rule AB-
SSUM, Equation 2.62. The comparison between THA and RSA consistently resulted
in larger response with RSA using ABSSUM. ABSSUM is generally considered to
produce insufficiently accurate results, due to large overestimation of response. How-
ever, even though the study showed some large differences, using ABSSUM could
be a useful alternative from a designer’s point of view to get a worst case scenario
of the expected response. Possibly the two modal combination rules could be com-
bined to obtain a mean value of the response to obtain conservative results with
less overestimation. As has been mentioned previously, all three modal combination
rules presented in this thesis are developed to work for smoother response spectra.
Ideally, continued work on this method should try to incorporate smooth response
spectra. This can be done by so called widening of the response spectrum. This is
not covered in the thesis, but is an option worth exploring further.

5.3.2 Optimisation of MATLAB script

As the thesis progressed, it was discovered that a much denser element mesh was
required than what was originally anticipated. At this point, MATLAB had to
be abandoned when performing the second parameter study. Due to the initial
assumption of a much coarser mesh requirement, no substantial effort went into the
optimisation of the MATLAB code. MATLAB is definitely a great tool to use for
an analysis such as this, and it provided several advantages with respect to ease of
obtaining results. However, if MATLAB is to be used the code needs to be well
optimised to run the analyses with dense meshes effectively. In this study, it was
decided that a switch to ADINA would be a more efficient use of time.

5.3.3 Application of symmetry conditions to reduce model
size

Again, the initial assumption at the outset of the work on this thesis was that the
element mesh would not need to be very dense. This assumption was partly based on
the results of Fagerström and Lindorsson (2017). In their study good convergence
was obtained for models with just 16 beam elements. This had the consequence
that the work was initiated with the assumption that the plates would not need
very dense meshes to converge well, which proved to be false. Since the element
mesh density turned out to be very important, it is worth exploring the use of plate
symmetry conditions to cut the model size in half, or even to one quarter. That
could save immensely on the calculation time when going forward with this method.
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5.3.4 Relationship between boundary conditions and accu-
racy of results

The parameter study included plates with five different sets of boundary conditions
(BC), these are shown in Figure 4.1. Naturally, there are far more compositions of
BC that could be studied. Each plate type was studied with five different geometries.
There is some indication that some BC compositions provide better conformity
of results than others between RSA and THA. Plate type B and C had better
conformity between THA and RSA compared to plate type A, D and E. However, it
is likely that the accuracy of results greatly depend on the the dominant frequencies
of the ground motion and the natural frequencies of the plates, so one should not
draw general conclusions on how the BC affect the accuracy of the method.

5.4 Further studies

5.4.1 Modal combination rules and widening of response
spectra

In this thesis, the modal combination rules ABSSUM and SRSS were used. These
two and CQC are the most frequently used modal combination rules when perform-
ing RSA for earthquake response. As has been mentioned earlier in the chapter,
all three modal combination rules are best used with smooth response spectra. A
literature study on an alternative modal combination rule better suited for ground
motion caused by train or heavy road traffic could result in improvement of the con-
formity between THA and RSA for plates. Another option to explore is to widen
the response spectra in order to smoothen the spectra used for the analysis, which
would increase the accuracy of the modal combination rules.

5.4.2 Absolute response

While our study ended up focusing exclusively on relative response, the simple
method to calculate comfort vibrations builds upon comfort weighting of the abso-
lute response. Fagerström and Lindorsson (2017) recommended further studies into
a general method to combine the modal contribution with the absolute response in
a manner that produce accurate results.
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5.4.3 Comfort weighting

The subject of comfort weighting is crucial to the usefulness of the method. Again,
Fagerström and Lindorsson (2017) recommended further studies into how to apply
comfort weighting to the absolute response in a satisfying manner.

5.5 Final conclusions

The most important lesson learned during the work on this thesis was that plates are
significantly more complicated than beams with respect to dynamic effects. Hence,
some precautions must be taken when analysing plates, both in RSA and THA.
RSA for plates can be significantly affected by the dominant modes of the plate
with respect to the dominant frequency range of the response spectra. Convergence
studies are crucial both when doing RSA and THA. If possible, convergence studies
should be done for both analysis types if the methods are compared with each other.
In the case of THA, it is good to remember that the results obtained might not be
the worst case scenario, as was the case with a few of the plates in this study. If
there are large discrepancies in results, its good to study the deformed shape in
THA to better understand what is happening.

Throughout the analysis in the thesis it has been shown that RSA does not neces-
sarily provide a conservative result. Before choosing which modal combination rule
to use in the RSA it is important to consider the intention of the analysis. If results
on the safe side are desirable, then ABSSUM could be considered. If a more precise
result is desirable SRSS could be the better choice, but one should know that SRSS
might result in an underestimation of the response.

Regardless of the choice of modal combination rule, to be able to interpret the results
correctly it is necessary to have a good understanding of the interplay between the
response spectra and the plate behaviour, and make sure that results have converged.
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Figure A.1: Modal contribution on the vertical mid DOF of plate A1.
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Figure A.2: Modal contribution on the vertical mid DOF of plate A2.
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Figure A.3: Modal contribution on the vertical mid DOF of plate A3.
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Figure A.4: Modal contribution on the vertical mid DOF of plate A4.
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Figure A.5: Modal contribution on the vertical mid DOF of plate A5.
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Figure A.6: Modal contribution on the vertical mid DOF of plate B1.
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Figure A.7: Modal contribution on the vertical mid DOF of plate B2.
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Figure A.8: Modal contribution on the vertical mid DOF of plate B3.
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Figure A.9: Modal contribution on the vertical mid DOF of plate B4.
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Figure A.10: Modal contribution on the vertical mid DOF of plate B5.
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Figure A.11: Modal contribution on the vertical mid DOF of plate C1.
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Figure A.12: Modal contribution on the vertical mid DOF of plate C2.
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Figure A.13: Modal contribution on the vertical mid DOF of plate C3.
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Figure A.14: Modal contribution on the vertical mid DOF of plate C4.
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Figure A.15: Modal contribution on the vertical mid DOF of plate C5.
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Figure A.16: Modal contribution on the vertical mid DOF of plate D1.
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Figure A.17: Modal contribution on the vertical mid DOF of plate D2.
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Figure A.18: Modal contribution on the vertical mid DOF of plate D3.
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Figure A.19: Modal contribution on the vertical mid DOF of plate D4.
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Figure A.20: Modal contribution on the vertical mid DOF of plate D5.
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Figure A.21: Modal contribution on the vertical mid DOF of plate E1.
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Figure A.22: Modal contribution on the vertical mid DOF of plate E2.
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Figure A.23: Modal contribution on the vertical mid DOF of plate E3.
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A. Graphs from the parameter study of modal contribution
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Figure A.24: Modal contribution on the vertical mid DOF of plate E4.
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Figure A.25: Modal contribution on the vertical mid DOF of plate E5.
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B
Results from the comparison of
THA and RSA using a coarse

mesh

Table B.1: Comparison of relative acceleration with THA and RSA using a mesh
of 20×20 elements.

arel [mm/s2] Difference
Plate RSA THA [%]
A1/A5 1124 1345 16.46
A2/A4 992 1191 16.71
A3 922 985 6.39
B1/B5 1598 1736 7.97
B2/B4 1704 1853 8.05
B3 1702 1631 -4.35
C1 1074 1410 23.83
C2 986 984 -0.22
C3 1090 1128 3.36
C4 1816 2027 10.41
C5 1693 1681 -0.72
D1 576 594 3.09
D2 445 440 -1.18
D3 411 451 8.87
D4 476 289 -64.43
D5 431 250 -72.17
E1 858 1097 21.82
E2 780 1004 22.35
E3 580 744 21.95
E4 1145 1410 18.75
E5 675 430 -57.04
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B. Results from the comparison of THA and RSA using a coarse mesh

Table B.2: Comparison of relative velocity with THA and RSA using a mesh of
20×20 elements.

vrel [mm/s] × 10−1 Difference
Plate RSA THA [%]
A1/A5 32.64 33.46 2.44
A2/A4 25.37 31.04 18.26
A3 19.77 24.04 17.75
B1/B5 29.52 30.76 4.03
B2/B4 46.16 50.96 9.42
B3 44.92 45.56 1.41
C1 30.51 37.50 18.65
C2 27.74 34.16 18.79
C3 21.06 25.06 15.96
C4 50.24 58.70 14.41
C5 31.18 29.89 -4.34
D1 14.89 16.58 10.18
D2 11.09 11.51 3.65
D3 12.41 13.44 7.64
D4 12.37 6.64 -86.32
D5 10.48 5.53 -89.60
E1 16.98 23.14 26.64
E2 23.39 29.51 20.73
E3 16.67 19.31 13.66
E4 29.01 34.93 16.95
E5 18.42 12.43 -48.24
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B. Results from the comparison of THA and RSA using a coarse mesh

Table B.3: Comparison of relative displacement with THA and RSA using a mesh
of 20×20 elements.

drel [mm] × 10−3 Difference
Plate RSA THA [%]
A1/A5 9.53 10.88 12.38
A2/A4 8.36 10.62 21.26
A3 7.80 7.66 -1.78
B1/B5 6.06 6.47 6.34
B2/B4 13.37 14.05 4.80
B3 13.72 13.47 -1.86
C1 8.71 10.86 19.73
C2 11.87 11.88 0.10
C3 6.82 7.19 5.23
C4 14.77 17.00 13.09
C5 6.48 6.30 -2.76
D1 4.93 5.07 2.78
D2 4.69 4.94 5.08
D3 4.94 5.19 4.95
D4 6.32 5.08 -24.35
D5 5.14 4.43 -16.07
E1 3.58 5.06 29.24
E2 6.73 8.32 19.16
E3 5.93 6.41 7.54
E4 8.48 10.97 22.65
E5 6.71 6.07 -10.60
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C
Results from the comparison of
THA and RSA using ABSSUM

Table C.1: Comparison of relative acceleration with THA and RSA using AB-
SSUM.

arel [mm/s2] Difference
RSA THA [%]

A1/A5 2212 1182 -87.12
A2/A4 2398 1291 -85.76
A3 1666 970 -71.82
B1/B5 2731 1754 -55.65
B2/B4 3135 1805 -73.67
B3 2856 1897 -50.60
C1 2163 1195 -81.06
C2 2365 1018 -132.42
C3 2182 1059 -106.02
C4 3121 2045 -52.65
C5 2527 1557 -62.22
D1 805 611 -31.74
D2 739 476 -55.23
D3 698 405 -72.26
D4 905 308 -193.67
D5 901 235 -283.40
E1 1275 1042 -22.33
E2 1229 951 -29.12
E3 1037 660 -57.11
E4 1933 1181 -63.62
E5 1216 415 -193.18
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C. Results from the comparison of THA and RSA using ABSSUM

Table C.2: Comparison of relative velocity with THA and RSA using ABSSUM.

vrel [mm/s] × 10−1 Difference
RSA THA [%]

A1/A5 48.57 35.96 -35.07
A2/A4 47.45 37.78 -25.59
A3 27.69 24.19 -14.45
B1/B5 41.07 30.85 -33.14
B2/B4 62.01 52.00 -19.26
B3 54.13 45.54 -18.87
C1 45.17 34.93 -29.31
C2 44.33 29.20 -51.80
C3 32.21 23.68 -36.01
C4 64.84 55.63 -16.56
C5 39.62 29.74 -33.22
D1 17.37 16.64 -4.38
D2 14.33 11.36 -26.12
D3 16.33 12.72 -28.41
D4 20.11 5.94 -238.57
D5 17.88 6.00 -197.86
E1 24.01 22.39 -7.26
E2 30.22 27.81 -8.69
E3 23.62 18.54 -27.36
E4 42.88 29.94 -43.24
E5 28.26 11.86 -138.33
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C. Results from the comparison of THA and RSA using ABSSUM

Table C.3: Comparison of relative displacement with THA and RSA using AB-
SSUM.

drel [mm] × 10−3 Difference
RSA THA [%]

A1/A5 12.73 10.65 -19.51
A2/A4 13.22 12.37 -6.89
A3 9.00 8.08 -11.31
B1/B5 7.81 6.31 -23.75
B2/B4 15.91 14.38 -10.65
B3 13.83 13.14 -5.26
C1 11.59 10.40 -11.46
C2 14.36 13.17 -9.01
C3 8.04 6.90 -16.44
C4 17.43 16.88 -3.27
C5 7.95 6.30 -26.23
D1 5.65 5.11 -10.53
D2 5.12 4.90 -4.58
D3 5.86 5.14 -13.88
D4 8.57 5.33 -60.60
D5 7.34 4.53 -62.17
E1 5.10 4.82 -5.82
E2 8.38 7.86 -6.59
E3 7.33 6.65 -10.22
E4 12.79 9.87 -29.59
E5 9.71 6.03 -60.96

, Mechanics and Maritime Sciences, Master’s Thesis 2018:55 XVII



C. Results from the comparison of THA and RSA using ABSSUM

XVIII , Mechanics and Maritime Sciences, Master’s Thesis 2018:55



D
MATLAB code

D.1 RSA code

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
% RSA.m Sc r i p t f o r c a l c u l a t i n g response spec t ra f o r
%r e l a t i v e response us ing ground motion from ex c e l s h e e t
% By Ni l s Rasmark & Fredr ik H e l l q u i s t (2018)
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
clc
clear a l l
close a l l
c l e a r v a r s −except MPFResults
%Checks the type o f input s i g n a l chosen
[ ~ , s t o rage ] = x l s r e ad ( " RSA_original . x l sx " , " S ta r t " , " J2 " ) ;
cho i c e=s t r i n g ( s to rage ) ;
%to t i s a v a r i a b l e wi th the count o f indata po in t s
%mass i s f o r t h i s s c r i p t chosen as unity , wh i l e k i s changed
%based on de s i r ed f requency
M = 1;
%damping r a t i o z e t a i s an input t ha t can be chosen
zeta = x l s r e ad ( " RSA_original . x l sx " , " S ta r t " , "G3 " ) ;
%newmark c o e f f i c i e n t a l f a
a l f a = x l s r ead ( " RSA_original . x l sx " , " S ta r t " , "G4 " ) ;
%newmark c o e f f i c i e n t be ta
beta = xl s r ead ( " RSA_original . x l sx " , " S ta r t " , "G5 " ) ;
%s t a r t i n g f requency f o r the response spectrum
f s t a r t = x l s r e ad ( " RSA_original . x l sx " , " S ta r t " , "G7 " ) ;
%ending f requency f o r the response spectrum
fend=x l s r e ad ( " RSA_original . x l sx " , " S ta r t " , "G8 " ) ;
%f i s used f o r l oops
%f = f s t a r t ;
%number o f f requency increments
f s t e p = x l s r e ad ( " RSA_original . x l sx " , " S ta r t " , "G10 " ) ;
%s i z e o f f requency increment f o r each i t e r a t i o n
df = x l s r e ad ( " RSA_original . x l sx " , " S ta r t " , "G9 " ) ;
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D. MATLAB code

%I n i t i a l Condi t ions
%i n i t i a l v e l o c i t y
v0 = x l s r e ad ( " RSA_original . x l sx " , " S ta r t " , "G12 " ) ; %[m/s ]
%i n i t i a l d i sp lacement
d0 = x l s r e ad ( " RSA_original . x l sx " , " S ta r t " , "G13 " ) ; %[m]
%cr ea t e s f requency vec t o r and reads the input s i g n a l
% fVec=fCut ;
% fVec=zeros ( f s t e p , 1 ) ;
% fo r i =1: f s t e p
% fVec ( i ,1)= f s t a r t ∗(1+df /100)^( i −1);
% end
%%

i f cho i c e == " Displacement "
Tot = x l s r e ad ( " RSA_original . x l sx " , " S ta r t " , " Z1 " ) ;
ins igna lRange=s t r c a t ( ’Z3 : Z ’ ,num2str(Tot+2)) ;
e l s e i f cho i c e == " Ve loc i ty "
Tot = x l s r e ad ( " RSA_original . x l sx " , " S ta r t " , "X1 " ) ;
ins igna lRange=s t r c a t ( ’X3 :X ’ ,num2str(Tot+2)) ;
e l s e i f cho i c e == " Acce l e r a t i on "
Tot = x l s r e ad ( " RSA_original . x l sx " , " S ta r t " , "K3 " ) ;
ins igna lRange=s t r c a t ( ’ J3 : J ’ ,num2str(Tot+2)) ;
end
timeRange=s t r c a t ( ’ I3 : I ’ ,num2str(Tot+2)) ;
t imevec=x l s r e ad ( " RSA_original . x l sx " , " S ta r t " , timeRange ) ;
inS igna lVec=x l s r e ad ( " RSA_original . x l sx " , . . .
" S ta r t " , ins igna lRange ) ;
shor t IndataPo int s=round(Tot /3 ) ;
shor t Indata=zeros ( short IndataPoints , 1 ) ;
for i = 1 : shor t IndataPo int s
shor t Indata ( i )=1+3∗( i −1);
end

inS igna lVec=inS igna lVec ( short Indata ’ ) ;
t imevec=timevec ( shortIndata ’ ) ;

Tot=shor t IndataPo int s ;
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Input s i g n a l p roce s s ing
%Checks the chosen input s i g n a l format and a l l o c a t e s
%vec to r s i z e s based %on the number o f d e r i v a t i v e s
%needed to conver t the input s i g n a l to
%ac c e l e r a t i o n
dt = timevec (2 ) − t imevec ( 1 ) ;
i f cho i c e == " Displacement "
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D. MATLAB code

%two d e r i v a t i v e s needed f o r convers ion to a c c e l e r a t i o n
der iva t iveOrde r = 2 ;
dgVec=zeros (Tot , 1 ) ;
vgVec=zeros (Tot − 1 , 1 ) ;
agVec=zeros (Tot − 2 , 1 ) ;
for i = 1 : length ( dgVec )
dgVec ( i ) = inS igna lVec ( i ) ;
end
for i = 1 : length ( vgVec )
vgVec ( i ) = ( inS igna lVec ( i + 1) − inS igna lVec ( i ) ) / . . .
( t imevec ( i + 1) − t imevec ( i ) ) ;
end
for i = 1 : length ( agVec )
agVec ( i ) = ( vgVec ( i + 1) − vgVec ( i ) ) / . . .
( t imevec ( i + 1) − t imevec ( i ) ) ;
end
e l s e i f cho i c e == " Ve loc i ty "
%one d e r i v a t i v e needed f o r convers ion to a c c e l e r a t i o n
der iva t iveOrde r = 1 ;
dgVec=zeros (Tot − 1 , 1 ) ;
vgVec=zeros (Tot , 1 ) ;
agVec=zeros (Tot − 1 , 1 ) ;
vtot = 0 ;
for i = 1 : length ( vgVec )
vgVec ( i , 1 ) = inS igna lVec ( i , 1 ) ;
vtot = vtot + vgVec ( i , 1 ) ;
end
for i = 1 : length ( agVec )
agVec ( i , 1 ) = ( inS igna lVec ( i + 1) − inS igna lVec ( i ) ) . . .
/ ( t imevec ( i + 1) − t imevec ( i ) ) ;
end
d_past = 0 ;
vim = vtot / length ( vgVec ) ;
for i = 1 : length ( dgVec )
dgVec ( i , 1 ) = d_past + . . .
( ( inS igna lVec ( i + 1) + inS igna lVec ( i ) ) / 2) ∗ . . .
( t imevec ( i + 1) − t imevec ( i ) ) ;%− vim ;
d_past = dgVec ( i ) ;
end
e l s e i f cho i c e == " Acce l e r a t i on "
%no d e r i v a t i v e s needed f o r convers ion to a c c e l e r a t i o n
der iva t iveOrde r = 0 ;
dgVec=zeros (Tot − 3 , 1 ) ;
vgVec=zeros (Tot − 2 , 1 ) ;
agVec=zeros (Tot−1 ,1) ;
a tot =0;
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vtot=0;
for i = 1 : length ( agVec )
agVec ( i ) = inS igna lVec ( i ) ;
a tot = atot + agVec ( i , 1 ) ;
end
v_past = 0 ;
aim = atot / length ( agVec ) ;
for i = 1 : length ( vgVec )
vgVec ( i , 1 ) = v_past + . . .
( ( agVec ( i + 1) + agVec ( i ) ) / 2− aim ) ∗ . . .
( t imevec ( i + 1) − t imevec ( i ) ) ;
vtot=vtot+vgVec ( i , 1 ) ;
v_past = vgVec ( i ) ;
end
vgVec (1 ,1)=0;
d_past = 0 ;
vim = vtot / length ( vgVec ) ;
for i = 1 : length ( dgVec )
dgVec ( i , 1 ) = d_past + . . .
( ( vgVec ( i + 1) + vgVec ( i ) ) / 2−vim ) ∗ . . .
( t imevec ( i + 1) − t imevec ( i ) ) ;
d_past = dgVec ( i ) ;
end
end
maxDataPoints=min ( [ length ( agVec ) ; length ( vgVec ) ; . . .
length ( dgVec ) ] ) ;

% %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%% Create Response Spectrum
%Prea l l o c a t e v e c t o r s i z e based on number o f time s t e p s
%and d e r i v a t i v e order
[ ~ , lMPF]= s ize (MPFResults ) ;
nOfPlates=lMPF/3 ;
% nOfPlates=l en g t h ( fVec ) ;
RSAResults={1, nOfPlates ∗6} ;
for RSALoop=1: nOfPlates
fVec=MPFResults {1 ,RSALoop∗3−1};
f s t e p=length ( fVec ) ;
%when us ing the MPFs f o r f r e qu en c i e s%
%fo r c e
f tVec=zeros ( ( Tot − der iva t iveOrde r ) , 1 ) ;
%r e l a t i v e a c c e l e r a t i o n
aVec=zeros ( ( Tot − der iva t iveOrde r ) , 1 ) ;
%r e l a t i v e v e l o c i t y
vVec=zeros ( ( Tot − der iva t iveOrde r ) , 1 ) ;
%r e l a t i v e d i sp lacement
dVec=zeros ( ( Tot − der iva t iveOrde r ) , 1 ) ;
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%ab so l u t e a c c e l e r a t i o n
aabsVec=zeros ( ( Tot − der iva t iveOrde r ) , 1 ) ;
%ab so l u t e ( t o t a l ) v e l o c i t y
vabsVec=zeros ( ( Tot − der iva t iveOrde r ) , 1 ) ;
%ab so l u t e ( t o t a l ) d i sp lacement
dabsVec=zeros ( ( Tot − der iva t iveOrde r ) , 1 ) ;
%maximum va lue s o f a b s o l u t e ( t o t a l ) a c c e l e r a t i o n
aabsmaxVec=zeros ( f s t ep , 1 ) ;
%maximum va lue s o f a b s o l u t e ( t o t a l ) v e l o c i t y
vabsmaxVec=zeros ( f s t ep , 1 ) ;
%maximum va lue s o f a b s o l u t e ( t o t a l ) d i sp lacement
dabsmaxVec=zeros ( f s t ep , 1 ) ;
%maximum va lue s o f r e l a t i v e a c c e l e r a t i o n
arelmaxVec=zeros ( f s t ep , 1 ) ;
%maximum va lue s o f r e l a t i v e v e l o c i t y
vrelmaxVec=zeros ( f s t ep , 1 ) ;
%maximum va lue s o f r e l a t i v e d i sp lacement
drelmaxVec=zeros ( f s t ep , 1 ) ;
% % Loop c y c l i n g through a l l the chosen f r e qu en c i e s
for j = 1 : f s t e p
f = fVec ( j , 1 ) ;
k = 4 ∗ pi ^ 2 ∗ f ^ 2 ∗ M; %[N/m] spr ing s t i f f n e s s
W = sqrt ( k / M) ; %[ rad/ s ] na tura l f requency omega
c = 2 ∗ zeta ∗ W ∗ M; %[Ns/m] damping c o e f f i c i e n t c
%i n i t i a l c ond i t i on s f o r time loop
ag0 = agVec ( 1 , 1 ) ;
f 0 = −M ∗ ag0 ; %[N]
a0 = f0 / M − 2 ∗ zeta ∗ W ∗ v0 − W ^ 2 ∗ d0 ; %[m/s ^2]
aabs0 = a0 − f 0 / M; %[m/s ^2]
dp = d0 ; %s u f f i x p s tands f o r prev ious
vp = v0 ;
ap = a0 ;
%as s i gn s the i n i t i a l c ond i t i on s to the v e c t o r s
aabsVec (1 , 1 ) = aabs0 ;
f tVec (1 , 1 ) = f0 ;
aVec (1 , 1 ) = a0 ;
vVec (1 , 1 ) = v0 ;
dVec (1 , 1 ) = d0 ;
%[m] e f f e c t i v e mass , used f o r Newmark method
meff = M + c ∗ a l f a ∗ dt + k ∗ beta ∗ dt ^ 2 ;
%Loop c y c l i n g through the time s t e p s s t a r t i n g from
%po s i t i o n 2
for i = 2 : maxDataPoints
ag = agVec ( i , 1 ) ; %ground a c c e l e r a t i o n
vg = vgVec ( i , 1 ) ; %ground v e l o c i t y
dg = dgVec ( i , 1 ) ; %ground v e l o c i t y
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f t = −M ∗ ag ; %for c e
%r e l a t i v e a c c e l e r a t i o n
a = ( . . .
−M ∗ ag . . .
− c ∗ ( (1 − a l f a ) ∗ dt ∗ ap + vp ) . . .
− k ∗ ( (1 / 2) ∗ dt ^ 2 ∗ (1 − 2 ∗ beta ) ∗ . . .
ap + dt ∗ vp + dp ) ) / meff ;
%r e l a t i v e v e l o c i t y
v = ap ∗ dt ∗ (1 − a l f a ) + a ∗ dt ∗ a l f a + vp ;
%r e l a t i v e d i sp lacement
d = ap ∗ (1 / 2) ∗ dt ^ 2 ∗ (1 − 2 ∗ beta ) . . .
+ a ∗ dt ^ 2 ∗ beta + vp ∗ dt + dp ;
aabs = a + ag ; %ab so l u t e a c c e l e r a t i o n
agVec ( i , 1 ) = ag ;
f tVec ( i , 1 ) = f t ;
aVec ( i , 1 ) = a ;
vVec ( i , 1 ) = v ;
dVec ( i , 1 ) = d ;
aabsVec ( i , 1 ) = aabs ;
vabs = v + vg ;
vabsVec ( i , 1 ) = vabs ;
dabs = d + dg ;
dabsVec ( i , 1 ) = dabs ;
ap = a ;
vp = v ;
dp = d ;
end
aabsmaxVec ( j , 1 ) = max(abs ( aabsVec ) ) ;
vabsmaxVec ( j , 1 ) = max(abs ( vabsVec ) ) ;
dabsmaxVec ( j , 1 ) = max(abs ( dabsVec ) ) ;
arelmaxVec ( j , 1 ) = max(abs ( aVec ) ) ;
vrelmaxVec ( j , 1 ) = max(abs ( vVec ) ) ;
drelmaxVec ( j , 1 ) = max(abs ( dVec ) ) ;
end
RSAResults {1 ,RSALoop∗6−5}=arelmaxVec ;
RSAResults {1 ,RSALoop∗6−4}=vrelmaxVec ;
RSAResults {1 ,RSALoop∗6−3}=drelmaxVec ;
RSAResults {1 ,RSALoop∗6−2}=aabsmaxVec ;
RSAResults {1 ,RSALoop∗6−1}=vabsmaxVec ;
RSAResults {1 ,RSALoop∗6}=dabsmaxVec ;
end
%%
%c l e a r v a r s −excep t MPFResults RSAResults
modalResponse=zeros ( nOfPlates , 3 ) ;
format long
for i =1: nOfPlates
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Arel=RSAResults {1 , i ∗6−5};
Vrel=RSAResults {1 , i ∗6−4};
Drel=RSAResults {1 , i ∗6−3};
MPF=MPFResults {1 , i ∗3} ;
modalResponseA=(MPF.∗ Arel ) . ^ 2 ;
modalResponseV=(MPF.∗ Vrel ) . ^ 2 ;
modalResponseD=(MPF.∗ Drel ) . ^ 2 ;
modalResponse ( i ,1)= sqrt (sum(modalResponseA ) ) ;
modalResponse ( i ,2)= sqrt (sum(modalResponseV ) ) ;
modalResponse ( i ,3)= sqrt (sum(modalResponseD ) ) ;
end
% %%
% f r e q s=zeros ( 5 , 1 ) ;
% fo r i =1:5
% b l a g g=MPFResults {1 , i ∗3−1};
% f r e q s ( i ,1)= b l a g g ( 1 , 1 ) ;
% end
% %% Plot Response spectrum
% a x l b l = @(h ) [ x l a b e l (h , ’ f [ Hz ] ’ ) , . . .
%legend ( ’ Re la t i ve ’ , ’ Absolute ’ ) ] ;
%
% f i g u r e (1)
% semi logx ( fVec ( : , 1 ) , arelmaxVec ( : , 1 ) , ’ k− ’);
% ho ld on
% %l o g l o g ( fVec ( : , 1 ) , aabsmaxVec ( : , 1 ) , ’ k−− ’);
% t i t l e ( ’ Re l a t i v e a c c e l e r a t i on ’ )
% gr i d on
% a x l b l ( gca ) ;
% y l a b e l ( ’ a [mm/s ^2 ] ’ ) ;
% f i g u r e (2)
% semi logx ( fVec ( : , 1 ) , vrelmaxVec ( : , 1 ) , ’ k− ’);
% ho ld on
% %l o g l o g ( fVec ( : , 1 ) , vabsmaxVec ( : , 1 ) , ’ k−− ’);
% t i t l e ( ’ Re l a t i v e v e l o c i t y ’ )
% a x l b l ( gca ) ;
% y l a b e l ( ’ v [mm/s ] ’ ) ;
% gr i d on
% f i g u r e (3)
% semi logx ( fVec ( : , 1 ) , drelmaxVec ( : , 1 ) , ’ k− ’);
% ho ld on
% %l o g l o g ( fVec ( : , 1 ) , dabsmaxVec ( : , 1 ) , ’ k−− ’);
% t i t l e ( ’ Re l a t i v e disp lacement ’ )
% a x l b l ( gca ) ;
% y l a b e l ( ’ d [mm] ’ ) ;
% gr i d on
% f i g u r e (4)
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% semi logx ( fVec ( : , 1 ) , aabsmaxVec ( : , 1 ) , ’ k−− ’);
% t i t l e ( ’ Abso lu te a c c e l e r a t i on ’ )
% a x l b l ( gca ) ;
% y l a b e l ( ’ a [mm/s ^2 ] ’ ) ;
% gr i d on
% f i g u r e (5)
% l o g l o g ( fVec ( : , 1 ) , vabsmaxVec ( : , 1 ) , ’ k−− ’);
% t i t l e ( ’ Abso lu te v e l o c i t y ’ )
% a x l b l ( gca ) ;
% y l a b e l ( ’ v [mm/s ] ’ ) ;
% gr i d on
% f i g u r e (6)
% l o g l o g ( fVec ( : , 1 ) , dabsmaxVec ( : , 1 ) , ’ k−− ’);
% t i t l e ( ’ Abso lu te disp lacement ’ )
% a x l b l ( gca ) ;
% y l a b e l ( ’ d [mm] ’ ) ;
% gr i d on
%
% a x l b l = @(h ) [ x l a b e l (h , ’ t [ s ] ’ ) ] ;
% f i g u r e (7)
% p l o t ( t imevec ( 1 : end−1 ,1) , agVec ( : , 1 ) , ’ k− ’);
% t i t l e ( ’Ground acce l e r a t i on ’ )
% gr i d on
% a x l b l ( gca ) ;
% y l a b e l ( ’ a [mm/s ^2 ] ’ ) ;
% f i g u r e (8)
% p l o t ( t imevec ( : , 1 ) , vgVec ( : , 1 ) , ’ k− ’);
% t i t l e ( ’Ground v e l o c i t y ’ )
% a x l b l ( gca ) ;
% y l a b e l ( ’ v [mm/s ] ’ ) ;
% gr i d on
% f i g u r e (9)
% p l o t ( t imevec ( 1 : end−1 ,1) , dgVec ( : , 1 ) , ’ k− ’);
% t i t l e ( ’Ground disp lacement ’ )
% a x l b l ( gca ) ;
% y l a b e l ( ’ d [mm] ’ ) ;
% gr i d on

D.2 MPF code

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
% p l a t e .m Sc r i p t f o r c a l c u l a t i n g modal c on t r i b u t i on f o r
% rec t angu l a r p l a t e s
% By Ni l s Rasmark & Fredr ik H e l l q u i s t (2018)
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%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
clc
clear a l l
close a l l
t ic
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
% This s e c t i on i s c u r r en t l y d i s a b l e d due to performance
% i s sue s , i t enab l e s read ing the indata from the p l a t e
% e x c e l s h e e t
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
% T = read t a b l e ( ’ P la te . x l s x ’ , ’ Range ’ , ’C1 :C12 ’ , . . .
’ ReadVariableNames ’ , f a l s e ) ;
% Indata=T. Var1 ;
% a = s t r 2doub l e ( Indata ( 1 ) ) ;
% b = s t r 2doub l e ( Indata ( 2 ) ) ;
% th = s t r 2doub l e ( Indata ( 3 ) ) ; %Thickness o f p l a t e
% nelX = s t r 2doub l e ( Indata ( 4 ) ) ;
% nelY = s t r 2doub l e ( Indata ( 5 ) ) ;
% E = s t r 2doub l e ( Indata ( 6 ) ) ; %E−modulus
% dens i t y = s t r 2doub l e ( Indata ( 7 ) ) ; % den s i t y
% ny = s t r 2doub l e ( Indata ( 8 ) ) ; %Poissons r a t i o
% SideADown = s t r i n g ( Indata ( 1 2 ) ) ;
% SideATop = s t r i n g ( Indata ( 1 1 ) ) ;
% SideBLef t = s t r i n g ( Indata ( 9 ) ) ;
% SideBRight = s t r i n g ( Indata ( 1 0 ) ) ;
toc

% a = x l s r e ad ( " P la te . x l s x " , " S t a r t " , "B2 " ) ;
% b = x l s r e ad ( " P la te . x l s x " , " S t a r t " , "B3 " ) ;
%Thickness o f p l a t e
% th = x l s r e ad ( " P la te . x l s x " , " S t a r t " , "B4 " ) ;
% nelX = x l s r e ad ( " P la te . x l s x " , " S t a r t " , "B5 " ) ;
% nelY = x l s r e ad ( " P la te . x l s x " , " S t a r t " , "B6 " ) ;
%E−modulus
% E = x l s r e ad ( " P la te . x l s x " , " S t a r t " , "B8 " ) ;
% den s i t y
% den s i t y = x l s r e ad ( " P la te . x l s x " , " S t a r t " , "B9 " ) ;
%Poissons r a t i o
% ny = x l s r e ad ( " P la te . x l s x " , " S t a r t " , "B10 " ) ;
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
%I f the e x c e l indata i s d i s a b l e d t h e s e v a r i a b l e s e t t i n g s
%needs to be enab led
SideADown = "SS " ; %Fi x i t y cho ices , "SS " , " f i x e d " or " f r e e "
SideATop = "SS " ;
SideBLeft = " f r e e " ;
SideBRight = " f r e e " ;
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i f P l o t ="Yes " ;
%I f "Yes " , w i l l p l o t nModes number o f c on t r i b u t i n g modes
nModes=30; %Number o f modes to p l o t
nelX = 20 ; %Number o f e lements X d i r e c t i o n
nelY = 20 ; %Number o f e lements Y d i r e c t i o n
E = 30 e9 ; %E−modulus
dens i ty = 2500 ; % dens i t y
ny = 0 . 2 ; %Poissons r a t i o

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
%Setup f o r FEM ana l a y s i s
ne l = nelX ∗ nelY ; %t o t a l number o f e lements
nex = nelX + 1 ; %number o f nodes , x d i r e c t i o n
ney = nelY + 1 ; %number o f nodes , y d i r e c t i o n
nNode = nex ∗ ney ; % t o t a l number o f modes
ndof = nNode ∗ 3 ; %t o t a l number o f Dofs
Dof = Dofs (nNode ) ; %Creates the Dof matrix
% Creates the Edof Matrix
Edof = Edofs ( nel , nelX , nelY , Dof ) ;
%Creates the BC matrix and the number o f l o c ked Dofs
[BC, nlockedDofs ] = bc ( nelY , nelX , nex , ney , nNode , . . .
SideADown , SideATop , SideBLeft , SideBRight ) ;
%number o f f r e e do f s
n f r eeDo f s = ndof − nlockedDofs ;
%These two l i n e s c r ea t e s a column vec to r
f r e eDo f=linspace (1 , ndof , ndof ) ’ ;
f r e eDo f (BC)= [ ] ; %conta in ing a l l f r e e Dofs
%Vector wi th a l l f r e e Dofs f o l l owed by a l l l o c ked
%by the boundary cond i t i on s
sorted_DOF=[ f r e eDo f ;BC ] ;
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
%When s tudy ing one p l a t e only , s e t a to de s i r e d s i z e and
%p l a t e r a t i o such t ha t b g e t s the d e s i r ed dimension
a = [ 3 ] ;
b= [ 9 ] ;
nPlate=length ( a ) ;
th = 0 . 2 ; %Thickness o f p l a t e .
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
%When ana l y s ing mu l t i p l e p l a t e s , s e t the p l a t e r a t i o s f o r
%the number o f d e s i r e d p l a t e s and the p l a t e t h i c k n e s s in
%thVec
%p l a t eRa t i o ( : , 1 )= [ 1 ] ’ ;
%For mu l t i p l e p l a t e check
%thVec =[0.008 0.032 0.128 0.512 2.048 8 . 1 9 2 ] ;
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
%For wr i t i n g p l a t e ra t i o , f r e q u en c i e s and PHI∗MPF to an
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%exc e l s h e e t t h i s must be enab led and s e t to d e s i r ed va l u e s .
% RatioColumn=’B’ ;
% fColumn=’A’ ;
% MPFColumn=’B’ ;
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
%When f i r s t mode f requency wi th corresponding MPF
%i s o f i n t e r e s t
%f_and_MPF=zeros ( 6 , 2 ) ;
%Big loop w i l l run one i t e r a t i o n per p l a t e r a t i o
% s p e c i f i e d in the p l a t eRa t i o v ec t o r . I f the p l a t e r a t i o
%only has one va lue i t w i l l j u s t run once
MPFResults={1, nPlate ∗3} ;
vertDof=zeros (nNode , 1 ) ;
for i =1:nNode
vertDof ( i ,1)=1+( i −1)∗3;
end
Maxdof=zeros ( length ( a ) , 1 ) ;
for bigLoop = 1 : nPlate %b i g l o o p s t a r t
%th=thVec ( bigLoop ) ; %fo r ana l y s i s o f s e v e r a l p l a t e s
%with v a r i a b l e %th i c kne s s , comment t h i s and uncomment
%the s i n g l e t h i c k n e s s parameter above
%s p e c i a l case ana l y s i s o f mu l t i p l e quadra t i c p l a t e s

%a=2^(bigLoop −1);
%Reca l cu l a t i n g b dimension f o r each loop
%b = a/nPlate ( bigLoop ) ;
l x = a ( bigLoop ) / nelX ; % Element width
l y = b( bigLoop ) / nelY ; % Element h e i g h t
k=zeros ( ndof , ndof ) ; %g l o b a l s t i f f n e s s matrix
m=zeros ( ndof , ndof ) ; %g l o b a l mass matrix
%Ca l cu l a t i on o f e lement s t i f f n e s s and mass matrix and
%assemb l ing in t o g l o b a l
for i = 1 : ne l
[ ke ,me]=plateDyn (ny , E, dens i ty , lx , ly , th ) ;
k = assem (Edof ( i , : ) , k , ke ) ;
m = assem (Edof ( i , : ) , m, me ) ;
end
%reduced g l o b a l s t i f f n e s s matrix w. r . t BC
k2=k( freeDof , f r e eDo f ) ;
%reduced g l o b a l mass matrix w. r . t BC
m2=m( freeDof , f r e eDo f ) ;
%e i g enva l u e s and e i g en v e c t o r s
[ L , e igVect ]= e igen (k ,m,BC( : , 1 ) ) ;
%Norms the e i g en v e c t o r s to 1
for i =1: n f r e eDo f s
e igVect ( : , i ) = e igVect ( : , i )/norm( e igVect ( : , i ) ) ;
end
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disp ( ’ Eigenvalue ␣ s o l u t i o n s ␣ completed ’ ) ; toc
Phi=eigVect ( f reeDof , : ) ; %Ext rac t s e i g en v e c t o r s f o r f r e e Dofs
f=sqrt (L)/(2∗ pi ) ; %r e c a l c u l a t e s e i g enva l u e s to Frequency [Hz ]
midDof=(nex∗ney /2)∗3−1/2; %I d e n t i f i e s the middle v e r t i c a l DoF
%Ca l cu l a t e s modal p a r t i c i p a t i o n f a c t o r s
MPF=MPF_Plate(BC, ndof , k , Phi , nNode , m2, n f r e eDo f s ) ;
%Midresponse i s MPF∗PHI
midResponse=zeros ( length ( e igVect ) , length (MPF) ) ;
vertEigen=zeros ( s ize ( e igVect ) ) ;
vertEigen ( vertDof , : )= e igVect ( vertDof , : ) ;
for allMPF=1: length (MPF)
midResponse ( : , allMPF)=( vertEigen ( : , allMPF ) . ∗MPF(allMPF ) ) ;
end
midResponseSquared=midResponse . ^ 2 ;
allSum=sum( midResponseSquared , 2 ) ;
allSRSS=(allSum ) . ^ 0 . 5 ;
[ maxVal , Maxdof ( bigLoop )]=max( allSRSS ) ;
%Maxdof ( : )=[316 346 631 661 946 976 ] ;
%Maxdof ( : )=[661 976 ] ;
Maxdof=[midDof ] ;
%Pos i t i on s conta ins the mid responses t ha t have a va lue
%l a r g e r than 10^−9. This i s to remove MPF∗PHI which
%have very low con t r i b u t i on
midResponseMax=(e igVect (Maxdof ( bigLoop ) , : ) ) ’ . ∗MPF;
Po s i t i on s =((abs (midResponseMax ( : , 1 ) ) ) > 10^−100) ’;
%fCut and MPFCut conta ins the f requency and mid response
%where the c on t r i b u t i on i s l a r g e r than 10^−9;
fCut=f ( Pos i t i ons , 1 ) ;
MPFCut=midResponseMax ( Pos i t i ons , : ) ;
%Dimensions=[ s t r c a t ( ’ a= ’ , num2str ( a ( bigLoop ) ) ) ;
%s t r c a t ( ’ b= ’ , num2str ( b ( bigLoop ) ) ) ] ;
pos1=bigLoop∗3−2;
pos2=bigLoop∗3−1;
pos3=bigLoop ∗3 ;
MPFResults {1 , pos1}=num2str(Maxdof ( bigLoop ) ) ;
MPFResults {1 , pos2}=fCut ;
MPFResults {1 , pos3}=MPFCut;
%%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
%I f the f requency and mid response i s o f i n t e r e s t , i f used
%be sure to uncomment the d e c l a r a t i on o f t h i s matrix above
% f_and_MPF( bigLoop ,1)= f ( 1 ) ;
% f_and_MPF( bigLoop ,2)=midResponse ( 1 ) ;
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
toc
disp ( ’ I t e r a t i o n ␣ completed ’ ) ;
%run RSA.m
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%%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
% Writes the fCut , MPFCut and r a t i o to e x c e l s h e e t
% s i z eRa t i o=a/b ;
% shee t=’Sheet3 ’ ;
% nEle=l en g t h (MPFCut) ;
% fRange= s t r c a t ( s p r i n t f ( ’%c3:%c ’ , fColumn , fColumn ) , . . .
% num2str ( nEle +2));
% MPFRange= s t r c a t ( s p r i n t f ( ’%c3:%c ’ ,MPFColumn, . . .
% MPFColumn) , num2str ( nEle +2));
% RatioRange= s p r i n t f ( ’%c1:%c1 ’ , RatioColumn , RatioColumn ) ;
% x l s w r i t e ( ’FandMPF. x l s x ’ , fCut , shee t , fRange ) ;
% x l s w r i t e ( ’FandMPF. x l s x ’ ,MPFCut, sheet ,MPFRange ) ;
% x l s w r i t e ( ’FandMPF. x l s x ’ , s i z eRat io , shee t , RatioRange ) ;
% RatioColumn=RatioColumn+2;
% fColumn=fColumn+2;
% MPFColumn=MPFColumn+2;
% toc
%%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

end %BIGLOOP END
toc
disp ( ’ F in i shed ! ’ )
% c l e a r v a r s −excep t MPFResults
% fo r i= 1 : l e n g t h ( dimensions )
% %%
% se t (0 , ’ DefaultTextFontname ’ , ’CMU Ser i f ’ )
% ne l S t r i n g=num2str ( ne l ) ;
% %p l a t e t y p e=s t r i n g ( [{ ’316 ’} { ’346 ’} { ’631 ’} { ’661 ’} . . .
%{ ’946 ’} { ’ 976 ’ } ] ) ;
% fo r i = 1 : l e n g t h (a )
%f i g u r e ( i )
%p lo tFreq=MPFResults {1 , i ∗3−1};
%plotMPF=abs (MPFResults {1 , i ∗3}) ;
%semi logx ( p lo tFreq , plotMPF , ’ k .− ’ ) ;
%ho ld on
%p l o t T i t l e=s t r c a t ({ ’ P la te type ’} ,{ ’D5’} , { ’ , ’} , . . .
%{ ne l S t r i n g } , %{’ ’} ,{ ’ Elements ’ } , { ’ , Dof ’} , . . .
% num2str (Maxdof ( i ) ) ) ;
%t i t l e ( p l o t T i t l e ) ;
%x l a b e l ( ’ Frequency [Hz ] ’ ) ;
%y l a b e l ( ’Modal con t r i bu t i on ’ )
%nTickMarks=c e i l ( plotMPF (1 ) / 0 . 2 ) ;
%tickVecY=( l i n s p a c e (0 , nTickMarks ∗0.2 , nTickMarks+1));
%y t i c k s ( tickVecY )
%gr i d on
%ho ld o f f
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%end
%
%t e s t=sum(midResponse ’ ) ;
%
%Surface p l o t s o f a l l modes
% This w i l l p l o t nMode number o f modes , but on ly p l o t
%the modes which s a t i s f y the cond i t i on t ha t
%PHI∗MPF> 10^−9;
% Matrix con ta in ing a l l the v e r t i c a l Dofs ,
%used f o r su r f a c e p l o t purposes
vertDofMatrix=zeros (nNode/nex , nNode/ney ) ;
for i = 1 : ney
for j= 1 : nex
vertDofMatrix ( i , j )=( i −1)∗nex∗3+ j ∗3−2;
end
end
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
i n t r e s s an tDo f=linspace (1 , n f reeDofs , n f r e eDo f s ) ’ ;
ModerAttKolla=int r e s santDo f ’ ;%in t r e s san tDo f ( Pos i t ions ’ , 1 ) ;
Zstore=zeros ( nex , ney ) ;
Z={1,nModes } ;
[X,Y]=meshgrid ( 0 : l x : a ( 1 ) , 0 : l y : b ( 1 ) ) ;
nModes=30;
%for zMatrix=1:nModes
for zMatrix=18:18
for i =1:ney
for j =1:nex
Zstore ( i , j )=e igVect ( vertDofMatrix ( i , j ) , . . .
ModerAttKolla ( zMatrix ) ) ;
end
end
p l o tT i t l e=s t r c a t ( ’Mode ’ ,{ ’ ␣ ’ } ,num2str( zMatrix ) ,{ ’ ␣ ’ } , . . .
’ Natural ␣ f requency : ’ ,{ ’ ␣ ’ } ,num2str( fCut ( zMatrix ) ) ) ;
Z{1 , zMatrix}=Zstore ;
hold on
f igure ( zMatrix )
surf (X,Y, Zstore )
daspect ( [ 2 0 20 1 ] )
t i t l e ( p l o tT i t l e )
colormap ( ’ gray ’ )
axis o f f
hold o f f
end
% %% Plot Nodegrid
% CheckDofs=[346 661 976 ] ’ ;
% i j I n d e x=zeros ( l e n g t h ( CheckDofs ) , 2 ) ;
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% for i = 1: l e n g t h ( CheckDofs )
% [ i j I n d e x ( i , 1 ) , i j I n d e x ( i ,2) ]= f i nd ( ver tDofMatr ix == . . .
% CheckDofs ( i ) ) ;
% end
% z0=zeros (21 ,21) ;
% f i g u r e (1)
% ho ld on
% daspec t ( [ 1 1 1 ] )
% su r f (X,Y, z0 )
% colormap ( ’ white ’ )
% ax i s o f f
% NodeNum=s t r i n g ( [106 126 211 221 231 316 336 ] ) ;
% fo r i =1: l e n g t h ( CheckDofs )
% f i g u r e (1)
% x=X( i j I n d e x ( i , 1 ) , i j I n d e x ( i , 2 ) ) ;
% y=Y( i j I n d e x ( i , 1 ) , i j I n d e x ( i , 2 ) ) ;
% p l o t 3 ( x , y , 0 , ’ ko ’ ) ;
% end
% ho ld o f f
% %%
% Zny=Z{1 ,1};
% f i g u r e (1)
% ho ld on
% p l o t 3 (X(20 ,41) ,Y(20 ,41) , Zny (20 ,41) , ’ o ’ ) ;
% %%
% Zny=−Z{1 ,1};
% f i g u r e (1)
% su r f (X,Y, Zny)
% colormap ( ’ gray ’ )
% ax i s o f f
% ho ld o f f
% %%
% % Prin t ing o f a l l MPF∗ phi to e x c e l s h e e t
% % All_MPF={1, l e n g t h ( dimensions ) } ;
% % fo r i =1: l e n g t h ( dimensions )
% %All_MPF{1 , i}=f_and_MPF( i , ( ( abs (f_and_MPF( i , :))) >10^−9)) ’ ;
% % end
% % column=’B’ ;
% % shee t=’ t e s t i n g ’ ;
% % toc
% % fo r i =1: l e n g t h ( dimensions )
% % [ nEle ,~]= s i z e (All_MPF{1 , i } ) ;
% % rnge= s t r c a t ( s p r i n t f ( ’%c2:%c ’ , column , column ) , . . .
% num2str ( nEle +1));
% % x l s w r i t e ( ’ Dimensions . x l s x ’ ,All_MPF{1 , i } , shee t , rnge ) ;
% % column=column+1;
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% % end
% %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
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