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Abstract

The advent of cheap depth cameras such as Microsoft Kinect together with modern re-
construction algorithms implemented for the Graphics Processing Unit (GPU) offers the
potential of many new exciting applications. In this thesis, a scanning booth equipped
with three Kinect cameras is built, where a user can scan their head and upper body
into a high-quality textured 3D model. This is done using a variant of the KinectFusion
algorithm, adapted to work with multiple cameras. The system operates in real-time
and the reconstructed model is presented within seconds.
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1
Introduction

Capturing a high quality model of a human head is of interest in a variety of domains,
primarily for the entertainment industry in the creation of 3D models for movies and
games, but also for applications in medicine, and for archival purposes. Commercial
solutions for scanning human bodies and heads already exists, but these systems are
often very expensive and often requires an expert to operate. These systems may also
spend a lot of time computing before completing the final 3D model.

1.1 Objective

The objective in this thesis was to build a system using commodity hardware, where
a user could scan their head and upper body in 3D. The goal was a system that was
robust, simple to use, and in real-time, so that it could be used without an operator as
a booth in the Universeum Science Discovery Center.

1.2 Motivating technologies

Several technologies have come together recently to inspire the direction of this work.
The biggest is the recent availability of cheap 3D depth cameras, particularly the

Kinect camera from Microsoft, originally intended as a motion sensing input device for
the Xbox 360 game console. It was instantly recognized by researchers and the robotics
community as an affordable camera that could capture 3D images in real-time.

Another motivation is the recent progress in algorithms for simultaneously tracking
camera pose and incrementally reconstructing the underlying 3D model, using data ac-
quired from different viewpoints. In particular, the novel fusion algorithm KinectFusion
[1] inspired this thesis.

Highly related to these algorithms is the emergence of the Graphic Processor Unit
(GPU) as a general purpose computing device, found in nearly any PC, and with mas-
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1.3. RELATED WORK CHAPTER 1. INTRODUCTION

sively more computational power than the CPU. This enables many algorithms to be
run in real-time.

1.3 Related work

The introduction of the Microsoft Kinect opened up a new field for 3D camera tracking
and reconstruction. One of the most prominent approaches is the KinectFusion algorithm
[1] that demonstrated a real-time dense 3D scanning system for static indoor scenes.
Several extensions of this algorithm has since been made, for example expanding the
scanning area using a moving volume [2], [3], and changing the representation to an
octree [4]. Also, at least one commercial solution using this algorithm has appeared [5].

Some other approaches using the Kinect, specifically targeted at scanning human
bodies have appeared. In [6], they use a Kinect to generate a body shape by fitting a
number of parameters from a body model to the Kinect depth and color data. The 3D
model is then generated from this template body model using the estimated parameters.
This approach is not sufficient for this work since the goal is to reconstruct a detailed
personalized head and upper body.

In [7], they attempt to reconstruct the full human body using three Kinects and a
turntable. They solve the problem of the person not standing still during the capture
process by a global non-rigid registration where each body part is aligned separately.
Although this technique allows to capture the full body, the details and resolution is not
as good as from KinectFusion. Also, even if this reconstruction algorithm only takes
about 6 minutes, it is still too slow for a booth at Universeum.

Therefore, the approach in this work is based on the KinectFusion algorithm [1],
modified to work with multiple cameras. Also, the speed and accuracy of the original
algorithm is improved by tailoring it to the specific purpose as a 3D version of a photo
booth. To mitigate the problem of non-rigid motion, only the head and upper body
is reconstructed. This paper provides a detailed description of the implementation,
including hardware setup and how the model is textured and post-processed. Finally,
the system is evaluated and a large number of scanning results are presented.

1.4 Outline of thesis

The next chapter ‘Preliminaries’ describes some basic theory needed. It also describes
the Kinect hardware and how it works, and how to calibrate it.

Chapter 3, ‘Method’, describes the software implemented in this thesis, and the
hardware built.

Chapter 4, ‘Result’, presents some scanning results, and a discussion about the ro-
bustness of the system.

Finally, Chapter 5, ‘Conclusion’, gives a summary of the project and some concluding
remarks.
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2
Preliminaries

2.1 Homogeneous coordinates

Homogeneous coordinates are common in computer graphics because they allow opera-
tions such as translation, rotation, scaling and perspective projection to be implemented
as matrix operations.

A vector in three-dimensional Cartesian space is extended homogeneously using the
mapping xy

z

→

x

y

z

1


and the reverse operation back to Cartesian space is called the homogeneous divide

x

y

z

w

→
x/wy/w

z/w

 .

Transformations of these homogeneous points are represented as 4× 4 matrices. Trans-
lation, which is a non-linear transform in R3, can now be represented linearly with

1 0 0 tx

0 1 0 ty

0 0 1 tz

0 0 0 1



x

y

z

1

 =


x+ tx

y + tt

z + tz

1
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z

z = 1

z = 0

Projection

Figure 2.1: Perspective projection.

Another type of transformation that becomes linear is the perspective projection. When
the human eye views a scene, objects in the distance appear smaller than objects close
by, and this is known as perspective. The simplest perspective projection uses the
origin as the center of projection and z = 1 as the image plane, as in figure 2.1. This
transformation can be represented as

1 0 0 0

0 1 0 0

0 0 1 0

0 0 1 0



x

y

z

1

 =


x

y

z

z

→
x/zy/z

1

 .

Rotation is a linear transform in R3 already, and is represented with the matrices

Rx(θ) =


1 0 0 0

0 cos θ − sin θ 0

0 sin θ cos θ 0

0 0 0 1

 , Ry(θ) =


cos θ 0 sin θ 0

0 1 0 0

− sin θ 0 cos θ 0

0 0 0 1

 ,

Rz(θ) =


cos θ − sin θ 0 0

sin θ cos θ 0 0

0 0 1 0

0 0 0 1

 .

Transformations are composed together with matrix multiplication, usually with any
projection as the last operation.

2.2 Iterated closest point

Later on, we will face the problem of geometrically aligning two 3D models together.
This will be solved as an optimization problem where the goal is to minimize the sum of
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squared distances between the two models. One of the models will be a surface S in 3D
space, and the other model will be a set P of 3D points (a point cloud), so the objective
function F to be minimized can be expressed as

F (T ) =
∑
p∈P

dist2 (T p, S)

where T is a transformation, and dist is the closest distance between the point T p and
the surface S.

This minimization problem is solved for every depth frame captured, and is one of
the most computationally intensive task in the reconstruction process. It is solved using
a local search, and this is adequate because the incremental transformation between two
consecutive frames is relatively small.

2.2.1 Gauss–Newton algorithm

Starting with the previous transformation as an initial guess, steps are taken toward the
minimum by iteratively approximating the location of the optimal transformation. This
is done by linearizing the distance function for each point — calculating the derivative
with respect to each transformation parameter, and solving the resulting matrix equa-
tion with linear least squares. The global minimum will be found provided the initial
estimation is within the convex basin. This algorithm is known as the Gauss–Newton
algorithm.

Thus, at each step, the transformation parameters t1, . . . , tn are calculated by solving

min
t∈Rn

∥∥∥∥∥∥∥∥


distp1
...

distpm

−

∂ distp1/∂t1 · · · ∂ distp1/∂tn

...
. . .

...

∂ distpm/∂t1 · · · ∂ distpm/∂tn



t1
...

tn


∥∥∥∥∥∥∥∥
2

and the current estimate is updated with T ← f (t1, . . . , tn)T where f is a function that
constructs a valid transformation out of the parameters t1, . . . , tn.

2.2.2 Parametrization and Lie groups

In the previous section, we used a parametrization t1, . . . , tn, and a function f to com-
bine them into a valid transformation. We have seen how to represent transforma-
tions as 4×4 matrices manipulating homogeneous coordinates, but as a parametrization
when optimizing, they are not so appropriate. The main problem is that they are
over-parameterized, in that a proper rigid transformation only has 6 degrees of freedom
(DOF), but a 4 × 4 matrix has 16. This means that most combinations of parameters
do not even represent valid transformations.

Several different parametrizations exists with only 6 DOF, for example Euler angles
and unit quaternions. In this thesis however, a parametrization will be used that is ideal
for optimizations in which derivatives are considered, namely the Lie group associated
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with the local 6-DOF space of proper rigid transformations. Lie groups in general will
not be discussed, just how this specific Lie group arises.

Consider a parametrization

f (t1, t2, t3, t4, t5, t6) = Rx (t1)Ry (t2)Rz (t3)Tx (t4)Ty (t5)Tz (t6)

where Rx,y,z and Tx,y,z are the rotation and translation matrices respectively. The
choice of order in which they are multiplied together is arbitrary, but leads to different
results. This suggest that there is some better, unambiguous, way to combine t1, . . . , t6
into a transformation. Since each of the rotation and translation matrices fulfill the equa-

tion H(t) = H
(
t
k

)k
, one idea is to divide each value ti with a large integer k, multiply

the matrices together, and then raise the product to k, thus mixing the multiplication
order:

f (t1, t2, t3, t4, t5, t6) =

(
Rx

(
t1
k

)
Ry

(
t2
k

)
Rz

(
t3
k

)
Tx

(
t4
k

)
Ty

(
t5
k

)
Tz

(
t6
k

))k

.

In the limit, this leads to

f (t1, t2, t3, t4, t5, t6) =

=

(
Rx

(
t1
k

)
Ry

(
t2
k

)
Rz

(
t3
k

)
Tx

(
t4
k

)
Ty

(
t5
k

)
Tz

(
t6
k

))k

=

= exp

(
k log

(
Rx

(
t1
k

)
Ry

(
t2
k

)
Rz

(
t3
k

)
Tx

(
t4
k

)
Ty

(
t5
k

)
Tz

(
t6
k

)))
→

→ exp
(
t1Rx

′(0) + t2Ry
′(0) + t3Rz

′(0) + t4Tx
′(0) + t5Ty

′(0) + t6Tz
′(0)
)

=

= exp


0 −t3 t2 t4

t3 0 −t1 t5

−t2 t1 0 t6

0 0 0 0

when k →∞,

where exp and log is the matrix exponential and matrix logarithm respectively. The
matrix exponential is defined as

exp (A) =
∞∑
k=0

1

k!
Ak

and converges quickly for rigid transformations.
The matrices

{
f (t1, t2, t3, t4, t5, t6)

∣∣ t ∈ R6
}

constructed in this way are in fact al-
ways proper rigid transformations, and when combined with the operation matrix mul-
tiplication, they form a Lie group.
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2.2.3 Iteratively reweighted least squares

Using notations from the previous sections, the optimal transformation T ∗ that best
aligns the two models P and S is defined as

T ∗ = arg min
T

F (T ) = arg min
T

∑
p∈P

dist2 (T p, S).

Assuming the distances are normally distributed around zero, T ∗ represent the solution
of the maximum-likelihood problem. This assumption is not correct however, and the
sum in this form is dominated by outliers. To handle this problem and make the measure
more robust, a function ρ is introduced that weighs the residuals:

T ∗ = arg min
T

∑
p∈P

ρ (dist (T p,M)) .

To be able to solve this optimization problem using linear least squares as described
earlier, the sum must be transformed into a sum of weighted squares. This is done by
approximating ρ locally around a current residual r0:

ρ(r0 + r) ≈ ω(r0) (r0 + r)2 .

Several different choices for ρ was tested in this thesis, including for example the L1

norm, but the final norm chosen was the Tukey norm [8], where

ωrmax(r) = max

(
0, 1−

(
r

rmax

)2
)2

.

With this norm, outliers with residual > rmax have no influence at all. The appearance
of this function can be seen in figure 2.2, this is to be compared with for example ω = 1
for the L2 norm.

Figure 2.2: Tukey weight function.
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2.3 Kinect

An overview of the Kinect hardware can be seen in figure 2.3. The Kinect sensor consists
of three parts; a camera that captures color images, an IR laser emitter, and another
camera that only captures IR light. The IR laser emitter and IR camera are used to
create a depth map using a structured light technique. The IR laser emits a known
pseudorandom dot pattern of IR light at 830 nm. Figure 2.4 shows an example of this
pattern. The dot pattern is observed with the IR camera, and the detected dots are
compared against the known pattern. This is like a stereo camera system, but with one
of the cameras replaced with a static virtual image of the dot pattern. Since the IR
camera has a certain horizontal separation from the IR emitter, the IR dots will end up
at different image locations depending on the depth. The difference in image location of
the IR dot, seen by the IR camera and the IR emitter respectively, is known as disparity.
This is illustrated in figure 2.5. The disparity values from each IR dot are used to create
a disparity map of size 640×480, where each disparity value is stored as a 11-bit integer.
This is the actual raw data that is sent from the Kinect to the computer, at a frame rate

Figure 2.3: The Kinect Camera.

Figure 2.4: IR dot pattern.
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x x

c
e

disparity = x  - x

c
e

IR Camera IR Emitter

Figure 2.5: Disparity.

of 30 Hz. The disparity values have a one-to-one correspondence to a depth value.
The Kinect unit is optimized for detecting objects about 2.5 meters way, and cannot

detect objects closer than ∼ 0.5 meters, mainly because the IR dots become too intense
to distinguish at this range, as can be seen in figure 2.6.

Figure 2.6: IR dots close up.

The RGB-camera in the Kinect unit has a frame rate of 10 Hz when used in the
highest resolution mode, which is a 1280× 1024 Bayer image.

Kinect calibration

Each Kinect unit is calibrated at the factory, and has built in numbers for converting the
disparity values to depth values, and also for mapping 3D points to the color camera.
However, the factory calibration uses a simple model where depth values are fast to
compute, and it is possible to improve the accuracy using a more complex model at the
expense of some computation time. The calibration model used in this thesis is from
[9], and the calibration parameters were estimated using a toolbox accompanying that
paper. An image from the calibration procedure can be seen in figure 2.7.
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Figure 2.7: Calibrating Kinect camera using toolbox accompanying [9].

The algorithm from [9] simultaneously calibrates the color camera and the depth
camera in the Kinect, as well as the relative pose between them. The color camera
intrinsics is based on the following model: a 3D point p is transformed into image
coordinates (u, v) through the equations

xn =

(
xn

yn

)
=

(
px/pz

py/pz

)
,

xg =

(
2k3xnyn + k4

(
r2 + 2x2n

)
2k4xnyn + k3

(
r2 + 2y2n

)
)

, r2 = x2n + y2n,(
xk

yk

)
=
(
1 + k1r

2 + k2r
4 + k5r

6
)
xn + xg,(

u

v

)
=

(
fxxk + u0

fyyk + v0

)

where k =
(
k1, . . . , k5

)
are distortion coefficients, f the focal lengths, and (u0, v0) the

image center.
A disparity value d from the disparity map at coordinates (u, v) is transformed into
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a 3D point p through the equations

dk = d+Du,v exp (α0 − α1d),

z =
1

c1dk + c0
,pxpy

pz

 =

(u− u0) / (fxz)

(v − v0) / (fyz)

z

 ,

where f is the focal lengths for the depth camera, (u0, v0) the image center of the depth
camera, and α0, α1, c0, c1, Du,v are distortion coefficients.

Note that Du,v is a distortion value for each pixel in the depth map, figure 2.8 shows
an example of this spatial distortion pattern.

Figure 2.8: Distortion values Du,v.
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3
Method

This chapter describes the approach used to achieve the results in this thesis and dis-
cusses some implementation choices.

The main design choice stood between

• a single-camera system, where the camera either rotates around the person or the
person stands on a rotating turntable,

• a multi-camera system, where the cameras are placed around the person.

The approach with multiple cameras was considered more appealing for several reasons.
First, the scanning procedure becomes faster with a multi-camera system, and it is
also less intrusive than a system where the user has to stand on a rotating turntable.
Secondly, it was considered mechanically simpler, and in return, more algorithmically
complex and novel, to use multiple cameras.

3.1 Hardware

This section will briefly describe the hardware built for this thesis.

3.1.1 Scanning booth

The scanning booth has a triangular base and the frame is built with aluminium square
tubes. The height of the booth is 2 meters. An overview of the booth can be seen in
figure 3.1. The booth is equipped with three Kinect cameras, placed at the corners of
the triangle. Each camera is connected to a trolley that can slide up and down the
vertical tube. Each trolley is connected to a servo at the top of the booth that can pull
it up and down, as shown in figure 3.1(d). The servos are controlled from the PC via a
microcontroller (Parallax Propeller), seen in figure 3.1(c).

12
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1.5 m

Camera 2 Camera 3

Camera 1

Too close

Too close

Too close

Person

(a) Top view sketch. (b) Scanning booth at Cybercom office.

(c) Parallax Propeller. (d) Servo and trolley.

Figure 3.1: Scanning booth.
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3.1.2 PC

The software developed in this thesis is running on a PC equipped with an AMD Phenom
CPU and an Nvidia GeForce GTX 570.

3.2 Software overview

The software was originally intended to be an extension and modification of the Kinect-
Fusion algorithm [1] implemented in the Point Cloud Library (PCL) under the name
KinFu. The intention was to modify the source code so that data from all cameras could
be integrated concurrently into a single coherent model directly. However, it later turned
out necessary to run each camera separately during the scanning procedure, and then
merge all data as a post-processing step. One reason for this is that it is difficult to
align the cameras in the beginning of the procedure, because each camera sees an almost
independent part of the head and there is little overlap. Alignment is easier to do at the
end of the procedure, when each camera has acquired data from many different point
of views. Another reason for separating tracking and merging, as it turned out, is that
some people turn their necks during scanning, and this breaks the assumption of model
as a rigid body. To avoid this problem, tracking was restricted to only include the head,
but the post-processing step reconstructs the upper body too. If the person turns his
neck excessively during scanning, only the head is reconstructed properly.

3.2.1 Performance issues and simplified model

The KinFu algorithm could barely handle the full frame of a single camera, and using
three cameras would cause a delay at the end of the scanning procedure, twice as long as
the procedure itself. During scanning, each camera essentially sees only one part of the
person from slightly different point of views, so the full generality of the KinectFusion
algorithm is unnecessary. For these reasons, a simpler algorithm was implemented for
the tracking phase, that was fast enough to handle all three cameras concurrently. The
simplified algorithm uses a model consisting of a single high-resolution depth image,
called the reference frame. Each frame is tracked against the reference frame, and then
fused into it, improving tracking for subsequent frames. An example of how the initial
and final reference frames may look can be seen in figure 3.2.

3.2.2 Aligning cameras and post-processing

A reference frame is created for each camera, and at the end of the scanning procedure,
the relative pose between them are calculated. After aligning the reference frames, depth
frames from different cameras can be integrated into a globally aligned framework. This
is done using the original integration method from KinectFusion, which will be described
later. This integration algorithm was extracted from the KinFu source code and rewritten
slightly. This is the only part of the KinectFusion algorithm that actually ended up in
the final implementation.

14



3.2. SOFTWARE OVERVIEW CHAPTER 3. METHOD

Figure 3.2: Reference frame for each camera. The top grayscale image is the actual depth
frame. The bottom colored image is the spatial derivatives of the corresponding depth frame,
which reveals more details.
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3.2.3 Software

Besides KinFu, another module from PCL was used, called gpu::people. This module can
segment out body parts from a point cloud, figure 3.3 shows an example. This module
was used for detecting when a person enters the booth, and also for locating the head.
The head location was calculated from the point cloud by fitting a sphere with constant
radius ≈ 10 cm to the points labeled as head.

The module is designed to work with a camera placed horizontally and not vertically,
and where the person is not so close to the camera, so a pre-processing step was imple-
mented where the point-cloud is reprojected to suit the module. Also, all points outside
the booth were filtered out to help the module further.

Figure 3.3: Body part segmentation by gpu::people.

Kinect driver

Initially, the OpenNI driver was used to fetch data from the Kinect cameras, as it
is the standard driver for PCL. However, the OpenNI driver had problems working
with multiple cameras. Also, by default, it sends the depth map generated using the
factory calibration model, and it was problematic to gain fast access to the raw disparity
data. The raw data is needed for the more sophisticated calibration model described
in section 2.3. For these reasons, the driver was changed to libfreenect, which allows
direct access to the unprocessed data stream for both the depth data and the RGB data.
A fast implementation of the sophisticated calibration model was implemented, relying
heavily on SSE vector instructions for the CPU, that convert the packed stream of raw
11-bit disparity values directly into a calibrated mesh that can be rendered on the GPU.

3.2.4 Step-by-step outline of scanning procedure

This is an outline of how the system works:

• A person enters the booth. This is detected with gpu::people.

• The head position is calculated, and a reference frame is created for each camera.
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• The cameras start moving up and down, and the relative pose between each frame
and its corresponding reference frame is calculated. The frames are then fused into
the reference frames to improve further tracking.

• All raw depth frames from the scanning procedure are globally aligned against each
other, and sent to a post-processing step where a high-quality model is built.

• A triangular mesh is then generated from this model, and colored using the RGB-
frames captured during the scanning procedure.

• The final model is presented for the user as a shaded rotating animation, both
with and without colors. It is also possible to render the model in 3D on a stereo
display.

3.3 Camera tracking

Camera tracking is the most critical step in the processing pipeline. If the algorithm
loses track of camera pose for any frame, it is likely that it will also fail for all subsequent
frames. Tracking is also coupled with positive feedback, in that an accurate pose esti-
mation results in a more detailed reference frame, which in turn results in more precise
pose estimations for subsequent frames. The quality of the final model is also highly
dependent on the accuracy of the estimated camera pose.

The tracking algorithm is a specific implementation of the iterated closest point (ICP)
algorithm, using iteratively reweighted least squares with the Tukey norm where, in each
step, the dist function is parametrized over the associated Lie group and solved with
the Gauss–Newton algorithm. This is explained in more detail in section 2.2. The only
unknown left is how the dist function is defined. The model used for tracking against,
calledM in section 2.2, is the reference frame. The function dist is a metric, that takes
a 3D point as input, and returns the distance to the other model (the reference frame).
To be true to ICP, this distance should be the distance to the closest point, but this is
relaxed to be the projective point-to-plane distance described soon. The 3D points used
as argument to the dist function, called P in section 2.2, are generated from the raw
depth frames.

3.3.1 Reference frame representation

The reference frame, ref , is a high-resolution, orthographically projected depth map.
An example can be seen in figure 3.2. Projection is done orthographic instead of projec-
tive, because fewer point become occluded by each other that way, and it also simplifies
further computation. The dimension of the reference frame is 512 × 512, where each
element is a floating point value representing the depth. The reference frame represents
a physical square of 26 cm× 26 cm, meaning that each pixel represents a patch of about
0.5 mm× 0.5 mm. Thus, a pixel refu,v represents the 3D point

(
ku, kv, refu,v

)
, where

k = 26
512 cm.
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These points are regarded as connected to each other spatially, so that they form a
continuous surface, even though the reference frame may contain some depth irregulari-
ties.

3.3.2 Projective point-to-plane distance

Since the reference frame is regarded as a continuous surface, each pixel refu,v in the
reference frame can be seen as a local plane, with surface normal

nu,v =

∆refu,v/∆ku

∆refu,v/∆kv

−1

 =


refu+1,v−refu−1,v

2k
refu,v+1−refu,v−1

2k

−1

 .

The distance for a point p to the reference frame is then calculated by projecting p onto
the reference frame, resulting in some (u, v, z) = proj (p, ref), and then calculating
the distance between this projected point and the local plane at refu,v

dist (p, ref) =


 ku

kv

refu,v

−
kukv
z


 • nu,v

‖nu,v‖
=
z − refu,v

‖nu,v‖
,

where (u, v, z) = proj (p, ref) .

This distance is not necessarily the closest, but this metric works well in practice and is
fast to compute.

3.3.3 Implementation details

To make the algorithm fast enough, all parts were implemented on a GPU. The geo-
metrical transformation of a depth frame, together with the projection proj onto the
reference frame, is perfectly suited for a GPU. This is a rendering problem and can be
done using standard functions in the Open Graphics Library (OpenGL), utilizing all
specialized hardware in the GPU. First, the raw depth frame is converted to a triangular
mesh, connecting each point to its neighbors, and then rendered using the pose estima-
tion together with a projection that corresponds to the reference frame. This results in
a new depth map z, with the same format as the reference frame, see figure 3.4.

The distance function can then be simplified to work on z directly with

dist
(
zu,v, refu,v

)
=

zu,v − refu,v

‖nu,v‖
.

Then, the derivatives of this function with respect to the transformation parameters
are calculated, and used for estimating the location of the optimal pose as described in
section 2.2. This is also implemented on the GPU, using the Compute Unified Device
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Figure 3.4: One iteration in the alignment process.

Architecture (CUDA) platform, working directly on the depth map z generated in the
previous step. The derivatives and weights from the Tukey norms are calculated in par-
allel for each pixel zu,v, and the matrix products used to solve the linear least squares
problem are constructed directly, without constructing any intermediate matrix. The
resulting matrix products are just a 6×6 matrix and a vector with 6 elements, and they
are sent back to the CPU. On the CPU, the normal equation is solved using standard
Gaussian elimination, and the result is used to construct a new estimation of the optimal
camera pose, using the associated Lie group described in section 2.2.2.

This process is iterated several times. The parameter used in the Tukey norm, rmax,
is updated every iteration. The choice of rmax affects the cost landscape, and if chosen
too small while the depth frame is not properly aligned, may cause the algorithm to get
stuck in a local minimum. Therefore, rmax is set to a high value in the first iteration (70
mm), and slowly lowered to a small value (2 mm), over the course of 13 iterations. Also,
the first 8 iterations are performed on a scaled-down version of ref with size 128× 128.
This reduces computation time somewhat, but the main reason is to smooth the cost
landscape and improve the chance of finding the global minimum.

The computation time for one iteration using a reference frame of size 512 × 512 takes
about 0.3 ms, including rendering and calculating the linear least squares problem. For
all three cameras, the algorithm needs to do 3 · 13 · 30 = 1170 iterations per second,
which it can handle without problems.

3.3.4 Data integration with reference frame

After the optimal camera pose has been calculated in the tracking step, the frame is
integrated into the reference frame. This is done using a running average for each depth
value.

19



3.4. HIGH-QUALITY MODEL GENERATION CHAPTER 3. METHOD

3.4 High-quality model generation

After all frames have been tracked, they are sent to a post-processing step where a single
coherent high-quality model is generated. This is done using the integration algorithm
from KinectFusion [1].

Generating a high-quality model is more involved than simply concatenating all points
into a coherent framework. Each Kinect generates over 9 million points per second, so
there is an abundance of points, and the main problem is how to fuse them together and
remove outliers. Working with explicit points directly is not very convenient, and the
underlying depth maps actually contain more information. A pixel in a depth map is
not only a point, it also indicates that the ray between the point and the camera consists
of empty space. This information is easier exploited in an implicit data format.

3.4.1 Implicit format

In an implicit method, the surface of the model is represented by a signed distance
function (SDF) f : R3 7→ R that maps each point in R3 to a value that represents the
signed distance to the nearest surface. These values are positive outside of the model,
and negative inside. Distance here does not necessarily mean Euclidean distance. In
fact, in this particular implementation, distance values are bounded to [−1, 1]. However,
close to the surface, distance values vary smoothly and form a pseudo-Euclidean metric.
The actual surface is implicitly defined as the isosurface (zero-crossing) of the SDF.

Using an implicit function has many advantages over explicit representations such
as point clouds. It becomes easier to fuse data together, and deal with uncertainty and
multiple measurements.

In this particular implementation, the signed distance value f (p) for a point p is
calculated in the following way: for each depth map Di, project p onto Di and compare
the distance value ds stored there with the actual distance dp to p. If these values are
close enough according to some threshold t, |ds − dp| < t, this gives a signed distance
value of (ds − dp) /t.

If instead ds is significantly greater than dp, this indicates that p lies on the ray
of empty space between the camera and the observed point, and this gives a capped
distance value of 1.

If instead ds is significantly less than dp, no distance value can be calculated, because
p is occluded and may be close to another surface behind the observed point.

The final signed distance value for p is the average of the signed distance value from
each depth map, calculated in this way. The algorithm is explained in more detail in
algorithm 1 and figure 3.5.
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Figure 3.5: Illustration of variables used in the calculation of signed distance values.

Data: Aligned depth maps Di, distance threshold t
Result: Signed distance value f (p) for point p
s := 0
w := 0
foreach depth map Di do

if p in view of depth map Di then
(u, v) := project p onto Di

ds := distance stored in Di at (u, v)
dp := actual distance from p to camera
diff := (ds − dp) / t
if diff ≥ −1 then

sdf := min(1, diff) comment: cap the value so that sdf ∈ [−1, 1]
s += sdf comment: running total sum
w += 1 comment: running count

end

end

end
return s / w comment: average distance

Algorithm 1: Calculation of signed distance values.
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Choice of threshold t

The default threshold value is 30 mm in the KinFu implementation. This is a fairly high
value, where few distance values get capped, resulting in the zero-crossing becoming the
‘mean’ in some sense. Under the particular circumstances scanning is performed in this
thesis, it was beneficial to lower the threshold value to 1 mm. With this value, most
distance values get capped, so the influence from each depth map is similar to the sign
function. This shifts the zero-crossing towards the ‘median’ rather than the ‘mean’,
making it more robust to outliers.

3.4.2 Volumetric representation and GPU implementation

The previous section described how the implicit function f is calculated for an arbitrary
point p. To make it numerically feasible, f is only evaluated at a finite number of
points, namely at the vertices of a a regular three dimensional grid. In this particular
implementation, the grid consists of 5123 vertices, and the side of each cell in the grid
represents a physical size of about 0.75 mm.

The algorithm is implemented to be fast on a GPU, where the bottleneck often is
memory access. Random access in global GPU memory is prohibitively slow. However, it
is possible to store relatively small matrices as textures in the GPU, where random access
bandwidth is improved by a texture cache, optimized for locality in two dimensions. To
utilize this, each depth map is sent and stored on the GPU as a texture, one at a time.
Then for each depth map, all values in the grid are updated in parallel, where memory
can be accessed sequentially, and projection onto the depth map is implemented as
texture lookups.

3.4.3 Polygonal mesh generation and coloring

The mesh generation is the final step in the model generation pipeline. It takes the grid
of signed distance values, described in the previous section, and extracts the isosurface
from this scalar field, as a triangular mesh. This is done using the Marching cubes [10]
algorithm. This algorithm looks at the eight surrounding vertices for each cell in the
grid, and checks if a zero-crossing takes place inside the cell (some vertices have different
signs). If a zero-crossing takes place, it calculates where the isosurface intersects the cell
edges using linear interpolation, and then creates a polygon from these intersections,
representing the surface passing through the cell.

This algorithm was not implemented as part of the thesis, since there is a suitable
implementation of this algorithm for the GPU in the Point Cloud Library.

Data cleansing

The mesh generation may generate small fragments of polygons floating around the
actual head, due to noise in the input data. To remove these, a disjoint-set data structure
was implemented to calculate the size of each connected mesh component. Then only
the biggest component is kept, which hopefully is the head.
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Coloring

A color is computed for each vertex in the final mesh in the following way. The RGB-
frames acquired during scanning get associated with the depth frame acquired closest in
time (from the same Kinect unit). Then these depth maps are converted to point clouds,
and colored, by projecting each point to the associated RGB-frame and looking up the
color. Then all these colored points are inserted into a global grid. The purpose of the
grid is to be able to find the closest colored points for an arbitrary query point fast.

This grid is not constructed explicitly, instead, the cell index for each colored point
is calculated, and then sorted upon. Looking up the colored points in a particular cell
is then implemented as a binary search of the cell index.

This is faster than constructing an explicit grid, because most of the cells are empty,
and there are more cells in the grid than actual points.

After the grid of colored points has been created, each vertex in the mesh finds its 10
closest colored points in the grid. This is done by searching an increasing neighborhood
around the vertex until 10 points have been found.

The 10 colored points are then sorted according to the green component. Green is
the most reliable component because the RGB-camera uses a Bayer filter. The final color
calculated for the vertex is then the average of the 4 colors in the middle. The reason
to not take the average of all 10 colored points is that they often contains outliers.
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4
Result

The scanning booth has been standing in the Cybercom office for two months at the time
of writing. Each scanning generates a model that is presented for the user as rotating
animation, both with and without colors, as in figure 4.1. It is also possible to present
the model in 3D, as in figure 4.2, but this requires the user to wear special 3D glasses.

Figure 4.1: Rotating animation of model.

Figure 4.2: Stereo display.
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The delay between the end of the scanning procedure and presentation of the model
is typically only a few seconds, since most of the work is done during scanning. The
animation is stored as a movie and uploaded to a web-based file storage (Google Drive).
This folder has accumulated a number of movies during the past two months.

4.1 Evaluation

Some people have received instructions on how to use the booth, and some people have
just stepped inside the booth on their own. The instructions given was to turn slightly
back and forth during scanning, while keeping the neck stiff. If the person stands still,
some areas will not be seen by any camera during scanning. It also makes it more
difficult to align data between cameras. A typical, but still successful, result of a person
standing still during scanning can be seen in figure 4.3.

Another source of error is non-rigid motion, the most common by far is turning the
neck. A typical result of a person turning his neck can be seen in figure 4.4.

Figure 4.3: Result of person standing still.

Figure 4.4: Only head is reconstructed properly after non-rigid motion.

A more major cause of error is tracking failure. This can happen for a number of
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Figure 4.5: Example results after tracking failure.

reasons. The most common is that the part of the head that is tracked goes out of sight.
This can happen for example if the person comes too close to the camera, since the
Kinect can not see objects closer than ∼ 0.5 meters, as illustrated in figure 3.1(a). The
current implementation does not do any sanity checks of the tracking and integrates all
frames regardless of tracking quality. Integrating a misaligned frame usually corrupts
the reference frame and the final model, as can be seen in figure 4.5.

However, in most cases when the person has received instructions, the scanning works
well. Some examples can be seen in figure 4.6.
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Figure 4.6: Successful scannings.
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5
Conclusion

This project shows that it is possible to use Kinect cameras to reconstruct 3D models
with a quality comparable to models generated from commercial solutions. The use
of modern algorithms and data structures for reconstruction overcomes the low-quality
output from the Kinect cameras. Also, the reconstruction can be done in real-time using
a commodity GPU.

Given well-formed data, the system implemented in this thesis generates very encour-
aging results. However, the system is not as reliable as initially intended, and users
need to receive instructions to get good results. In hindsight, more time should have
been spent on observing how people behave during scanning, and how data looks under
these circumstances. The biggest source of error is non-rigid motion from the user, and
tracking failure when a user gets to close to a camera. Instead, most of the effort was
spent calibrating and tweaking the algorithm to produce good results under near-ideal
circumstances.
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