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Abstract

A vehicle’s ability to determine its position relative to the road is a crucial feature for
active safety functions and autonomous driving. Consequently, autonomous vehicles and
current vehicles featuring active safety systems are usually equipped with a lane detection
system that estimates the position of the vehicle relative to the road lane markings.

The field of active safety has grown exponentially during the past decade, which in
turn has hugely increased the demand for functional testing. Virtual environments are
particularly economical, rapid, and safe for functional testing and are today also used to
simulate autonomous driving.

The aim of this thesis was to design and implement a model for a visual-based lane
detection system to be integrated in the virtual environment used for functional tests at
Volvo Cars. A virtual camera model with appurtenant camera algorithms was developed
and enabled the computation of a 2D-image through projection of points in 3D-space
from the virtual environment, mimicking the behavior of a real visual lane detection
system.

To emulate the real performance of the sensor, various software components were mod-
eled and their outputs compared to field data from a production lane detection system.
A multivariate analysis was executed to characterize the real system’s error and improve
the virtual model. The error performance was modeled with a 3-dimensional confidence
curve together with a low pass FIR filter to create the extreme boundaries of the sensor.
The model of the system behavior was merged with the camera model to create a vision
based virtual lane detection system. This virtual system was integrated and verified in
the virtual environment for functional test at Volvo Cars.
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Introduction

1.1 Background

ATAL road accidents is the 8th most common cause of death worldwide with over 1.2
F million casualties yearly [1]. Research shows that around 93% of all traffic accidents
are caused by human deficiencies [2]. The increment in number of road accidents has
led to a fast growth in the market of active safety systems, which is why, it is now one
of the most resource focused research and development areas in the field of automotive
design. A contribution to the expansion is the improved hardware accessories now avail-
able on the market such as high performance processors, which enables solid real time
computation, and a great selection of sensors to monitor the surroundings of the car.
These are the most critical prerequisites in the process of obtaining fully self-driving
cars. Active safety does not only generate a safer driving environment for the costumer
but also provides the driver with various types of supporting functions which immensely
improves the overall driving experience.

One of the most crucial components in the development of active safety is the lane detec-
tion system (LDJS) which actively finds the lane markers on the road. Lane detection is a
well-studied field and has been researched since the mid-1980s [3]. Due to the constraint
that the LDS should perform in real time speed a lot of the initial studies conducts
some major simplifications and assumptions such as straight road, constant road width
etc. to lower the computation pressure on the processor. Even tough this constrain has
repressed the field, the exponential growth of processor power the last couple of decades
has enabled the use of complex computer vision algorithms and encouraged the studies
of lane detection even further.

The LDS is used to determine the position of the host vehicle relative to the road,
estimate the heading direction and to give road information such as number of lanes,
road width, curvature etc. Functions such as lane keeping aid (LK A), adaptive cruise
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control (ACC), lane departure warning systems (LDW) and curve speed adaptation
(CSA) all depend on a reliable and accurate LDS.

T
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Figure 1.1: Lane marker detection is a crucial component in the field of active safety [4].

As active safety functions, increase in both complexity and number so does the need of
a virtual testing environment to support further development. Functional tests through
simulations offers both fast and safe response on the behavior of a active safety function
which is therefore a preferable function evaluation method. As hardware tests are both
expensive and slow as well as unsafe, they should hence preferably be used in the final
stage of the development line. Consequently, Volvo cars has developed a simulation
environment called Volvo Cars Traffic Simulator (VCTS) which enables assessment of
active safety functions and testing of critical traffic scenarios. The (VCT'S) environment
supplies the function developer with quick feedback, which is why the simulator is a key
component in Volvos everyday work of creating innovative and intelligent active safety
functions. The simulator consists of a huge amount of models, representing different
components in the actual vehicle, which all together makes a virtual representation.
The more accurate the models mimics the behavior of the component it is representing,
the higher accuracy level the overall simulator can obtain. Even though the LDS is
a crucial component in the field of active safety, most of the research that has been
conducted in the field has focused on real life implementations.

For reasons like this, it is of great importance to have a virtual representation of the
LDS that accurately mimics the performance of the real system. The work presented in
this report will consequently be focused on the exploration on how a virtual LDS can
be constructed found on a real vision based LDS and how to most effectively capture
the behavior and performance of the system in its entire area of application. The master
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thesis is carried out in cooperation with Volvo Cars to design and implement a visual-
based LDS to be integrated in the virtual environment used for functional tests at Volvo.
Even though the work is focused on the modelling of an LDS, it can be applied in a
broader field, for any type of system modelling. The work will be restricted to include
only camera vision LDS which is by far the most common approach due to its simplicity
and low hardware cost. Usually multiple cameras are used to capture a broader range
spectrum and thereby give the LDS preferable properties on both short, mid as well as
long range. This report will only focus on single camera setup but the work can easily
be expanded to include multiple camera LDS.

1.2 Previous research

If the LDS system is stripped down to its most fundamental components the task of
the system is to capture the 3-dimensional world in its proximity, interpret the data as
well as distinguishing the road lanes from the rest of the data set and finally map the
positions of the lane markers in 3D-space. One way of capturing the surroundings is
by using a LIDAR-system that with great precision can measure both range and light
intensity at multiple points in 3D-space. The LIDAR is characterized by high accuracy
but to an excessively high cost which is why the LIDAR system is not suitable for mass
production. More conventionally a camera is used to transform the 3-dimensional world
into 2D-space.

The identification of a lane marker in a 2D-picture is the most complex and time con-
suming process in an LDS system. Most commonly a lane marker is defined as a region
with high contrast around its proximity with limited intensity gradients internally. A lot
of research includes Hough transformation to distinguish the lane pixels from the rest
[5] but multiple other approaches exists such as particle filtering [6] or hue-saturation-
intensity (HSI) analysis [7]. As mentioned previously a lot of different models have been
developed through the years which all applies different assumptions to simplify this com-
plicated task. In [8] the algorithm is based on a straight line model and assumes that the
road have a relative low curve ratio. The algorithm is effective for straight road situa-
tions but does not cover the whole spectrum of road geometries such as roundabouts and
turns. A different approach is to utilize a parabolic model [9] which has less constraints
regarding to group the road geometries into features.

1.3 Objectives and contribution

As previously shown, a great deal of research has been conducted for real life imple-
mentations of LDS. However, the aim of this project is to contribute with a virtual
representation of the LDS which in the development process would enable fast and safe
response through simulations. The main focus of the research presented in this report
will therefore be the development of a virtual LDS that effectively can emulate the be-
havior and the performance of a real LDS. The research will, as previously stated, be
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focused on visual based LDS. Today a lot of active safety functions utilizes the on board
camera which visually monitors the surroundings of the vehicle. The camera is therefore
a very important component to be included in functional tests. The thesis will for this
reason research the possibility of including a virtual visual component in Software In the
Loop (SIL) tests.

Apart from trying to implement a virtual representation of the LDS the goal of this
research is to analyse the behavior of the LDS and by that pinpoint the factors that is
influential on its performance. The knowledge gained from this analysis could aid the
field by identifying the factors that is contributing to major errors thereby reducing the
LDS performance.

Even though the target of the project is to emulate a LD.JS, the techniques developed
can be generally applied for other types of sensor modelling tasks.

1.4 Approach

As the parabolic lane detection model gives the highest degree of generality as well
as geometrically freedom the work presented in this report will be focused on system
modelling of a parabolic LDS. Even though a parabolic system will be modelled it can
generally be applied to include a broader field of lane detection models. The lanes in
a parabolic L DS model is represented by a higher order polynomial which takes the
longitudinal range from the host vehicle as the input and gives the lateral offset as the
output like in equation (1.2). The parameter ag is the estimated lateral offset from the
host vehicle to the lane at the present time stamp which is shown in figure 1.2.

f(aj) =an - T" + ap_1 ~1‘n_1....a1'ZL‘—|—a0 (1'1)
0<z<d (1.2)

ao
| d (1.3)

Ap

By creating a polynomial from the positions of the known feature points in the image the
lane markers are transformed from a discrete representation to a continuous which gives
the system access to the lane positions at any range. The order of the polynomial can be
chosen according to preference where a higher order polynomial can theoretically obtain
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Latteral
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Figure 1.2: The figure shows how the polynomial representation of the lane marker is
defined where the x-axis is the range from the origin of the host car and the y-axis is the
lateral offset. ag is the zero order parameter in equation (1.2) and is by definition the lateral
offset closest to the host vehicle.

a higher accuracy and a broader geometry span but to the cost of a higher computation
load while lower orders gives the opposite. For this work, a third order polynomial LDJS
will be analysed but the emulation model will be constructed to allow any preferred
polynomial order.

A A

i)

Figure 1.3: Overview of the LDS function. The system takes a 3-Dimensional environment
as input and produces the position of the lane markers in 3D-space as output.
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The objective of the LDS can thereby be decomposed into the process of tuning the
entries in the parameter vector shown in equation 1.3 to the values that minimizes the
error. Like figure 1.3 shows, the system is fed with a 3D-environment, interprets the
surroundings and outputs the lane marker positions in the form of the parameter vector
at any given time stamp. The 3D-world in the simulation environment is represented by
a point cloud scenario. The scenario includes roads, vehicles, pedestrians and animals,
which the host car can interact with. The objects are constructed by multiple points in
3D-space, referenced to a common global coordinate system.

An alternative approach to the model structure presented in figure 1.3 is the one in
figure 1.4. Here the LDS, which serves as a black box, has been decomposed into two
subsystems, a virtual camera and a lane detection algorithm block. There are many
advantages gained from this type of setup compared to the initial concept. For instance,
extracting the camera from the L DS will facilitate the black box modelling. A camera is
a well-known application which easily can be represented virtually so by separating the
hardware function from the software functions, the unknown components in the black
box will then be decreased, which in turn simplifies the modelling. The size of a black
box should preferably be restricted as much as possible to make it easier to pin point
and emulate special features in the system.

\
i —> Camera| —> —> LDA —> ))

Figure 1.4: Alternative system model approach where a virtual camera is implemented to
convert the 3D-environment into a 2-dimensional image which serves as input for the lane
detection algorithm.

A second advantage is the gained natural error that will be included in the camera. For
instance, the model will naturally emulate discretisation errors due to the fact that the
image is represented by a pixel grid and not a continuous space. These types of errors
are relatively small and could consequently be complicated to capture in a black box
modelling process. As they most definitely will be included in the real LDS it is an
error that should be included in the virtual system.

The final benefit gained from this setup is the enabling of hardware evaluation. By
having a virtual model of the camera the system performance can be tested based on
different camera settings. Camera settings that can be tested are position, alignment,
pixel resolution, view angle, focus length etc. This will give the virtual LDS a great
advantage as it can be used to check if a better hardware solution can supply a better
outcome or if a cheaper camera can receive similar results. Next chapter will present the
virtual camera model with the appurtenant algorithms.



Method

This chapter is created to guide the reader through the execution of the project and
to describe how the final lane detection model is obtained. The chapter is divided into
four sections ( Virtual Camera Model, System Performance, Data Acquisition, Principal
Component Analysis) which all includes multiple subsections.

To create the lane polynomials f(x), a virtual camera model is initially used to project
the surrounding 3D-points onto the camera image. The camera then distinguish the
detected lane positions and projects them back into 3D-space. The virtual camera model,
along with the appurtenant camera algorithms are described in section 2.1.

Lane Detection
Algorithm

¢e
Pscenario— e P Lanes— ®_’Plane,est —>f(X)

Figure 2.1: Graphical schematics over how the LDS converts a point cloud in a simula-
tion scenario Pgeenario into third degree polynomials f(x), representing the estimated lane
markers by using a Virtual Camera Model and a model over the Lane Detection Algorithm.

When the camera model has mapped the detected lane points back to 3D the lane
positions Prqnes are situated almost perfectly compared to the true positions of the lane
markers. The only error that has been added in the image process are errors caused by
the hardware in the camera. As this alone, does not capture the entire behaviour of the
LDS a lane detection algorithm block has been added with the purpose of shifting the
perfect positioned points to a location where the LD.S probably would have estimated
them to according to the error performance of the system. The analysis of the system
performance is described in section 2.2 along with a tool, specially developed to help the
user visualize the behaviour of the LDS.
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Section 2.3 describes how LDS field data collected through real life test expeditions,
can be extracted and computed to form the input for the virtual LD.S model with the
purpose of mimicking the error performance. The chapter is then finished with section
2.4, which describes a common statistical tool for multivariate analysis which was used
to analyse which factors most affects the LDS.

2.1 Virtual camera model

As argued in section 1.4 the use of a virtual camera model has multiple advantages. By
including a camera, the input to the lane detection algorithm will be in 2D-space which
is what the real Lane Detection Algorithm (LDA) computations are based on. This
isolates the real unknown components and thereby aids the modelling of the LD A black
box.

Figure 2.2: An example of a single time instance in a point cloud scenario including a left
curved road, two cars (red boxes) and the host vehicle with its field of view. All points are
referenced relative to the common global coordinate system [z,y,z].

The camera model interacts with a 3D world and projects points in its field of view onto
the camera image. Figure 2.2 shows a scenario where the host car and two additional
drivers (red boxes) are driving on a left curved road. All points in the 3D-world are ref-
erenced relative to a common global coordinate system. The roads consists of stationary
points while objects like cars, animals or pedestrians are allowed motion throughout the
simulation.
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Figure 2.3: The three coordinates systems necessary for the camera model to fully function.
The camera coordinate system are denoted [z¢,yc,z.] while the vehicle coordinate system is
denoted [z4,yy,2y]. The camera system is coupled to the vehicle coordinate system while the
vehicle system is coupled to the global system called [X,Y,Z]

2.1.1 Coordinate systems and transformations

The camera model is utilizing three coordinate systems, [Z¢,ye,2c], [Zv,Yv,20] and [X,Y,Z]
which are defined in figure 2.3. All three coordinate systems are right hand oriented
Cartesian systems in euclidean space. Coordinate system [z.,y.,z.] defines the posi-
tion and motion of the camera and is defined relative to the vehicle coordinate system
[y,Yv,2p] Which in turn is defined relative to the global coordinate system [X,Y,Z].

The z-axis of the camera system is targeted in the negative field of view direction ac-
cording to the standard convention [10]. Figure 2.4 shows a more detailed declaration of
the camera coordinate system and includes the camera image plane. The image plane is
where the three dimensional points that are included in the field of view are projected
on and represented in 2D-space. The angles a and 8 are the so called field of view
angles which determines the propagation of the image plane. « is commonly considered
as a design parameter which comes as a property of the camera while S are determined
through equation (2.1) where M, N are the resolution values. The spread of the image
plane is calculated with equations (2.2)-(2.3) with the use of the camera focus length f.

B =tan* (% - tan (a)) (2.1)
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+Z -y

Figure 2.4: Definition of the camera coordinate system including view angles «, 5 and the
image plane stretching from — fx to fx and from —fy to fy. The camera system is faces in
the negative field of view direction.

fo=[f tana (2.2)

fy=1Ff tanp (2.3)

The camera and the vehicle both has six degrees of freedom coupled to the vehicle- and
the global coordinate system respectively. The camera has three position coordinate
[c,Ye,2c) and three orientation coordinates [0.,¢.,1.] which are tied to the vehicle system.
Generally the position and the orientation of the camera is stationary throughout a
simulation but can be modelled with motions like vibrations. The vehicle has the position
vector [Z,,Yy,2,] and the orientation vector [6,,,¢,,%,] which are referenced relative to the
global coordinate system displayed in figure 2.5. Rotation angle 6 describes the rotation
of a coordinate system relative to its corresponding reference system around the x-axis
while ¢ and v denotes the rotations around the y- and the z-axis.

10
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Y
Z Z
A A A
Z, Z,
0 P
X Y
Y=< u X=< v X
X Y
Y, Xy

(a) Graphical definition of (b) Graphical definition of (¢) Graphical definition of
the 6 -angle. the ¢ -angle. the 9 -angle.

Figure 2.5: A graphical definition of the rotation angles 6,,¢,,%, where 6, is a rotation
of the vehicle coordinate system around the x,-axis relative to the global coordinate system
while ¢,, and v, denotes rotations around the y,- and the z,-axis respectively.

1 0 0 cos¢p 0 —sing cosyy siny 0
Ry =10 cosf sin6 R, = 0 1 0 R, = |—siny cosy 0
0 —sinf cosf sing 0 cos¢ 0 0 1

To translate a point from one coordinate system to another the point needs to be rotated
according to the present orientation of its coordinate system. The rotation of a coordi-
nate system in Euclidean space are done with the rotation matrices Rx, Ry, Rz [11]. To
define the orientation of a system, Tait-Bryan angles are used with an extrinsic rotation
method (X-Y-Z). Due to the fact that rotation in Euclidean space is a non-commutative
process, the arrangement of the rotation matrices is of great importance.

Pg - Rz(_d}v) . Ry(_¢v) : Rx(_av) : [Rcavaeh . Rz(_wc) : Ry(_¢c) : Rx(_ec) ‘E"‘Oc] +0v

(2.4)
s s T s 2T
CosS5  Sin 5 Cos g sin” 5 0O 0 -1
Reamaveh = | —sin g cos? % — COS g sin % =1-1 0 O (2.5)
0 sin g cos g 0O 1 0

Equation (2.4) shows how a point in the camera frame P, is converted into point in the
global coordinate system P,. The camera point is initially rotated extrinsically to align

11
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with the vehicle coordinate system according to its current state of orientation. As the
camera is pointing in the negative field of view direction shown in figure 2.3, rotation
matrix Regmoven 1S used to rotate the camera frame in the same alignment as the vehicle
frame. The matrix is simply obtained by rotation the coordinate system eccentrically
90° around the z-axis and -90° around the y-axis. The location of the camera origin
o, relative to the host vehicle is added and then rotated according to the Tait-Bryan
state of the vehicle. Finally the position of the host car relative to the global frame o, is
added. To convert a point in the global space to the camera coordinate system equation
(2.6) can be applied.

Pc - Rx(ec) ' Ry<¢c) . Rz(wc) . Rcam?veh . [Rm(ev) : Ry(¢v) : Rz(wv) : [ﬁg - Ov] — Oc (2'6)

2.1.2 Field of View Algorithm

The virtual camera model needs the ability to determine if a point lies inside or outside
its field of view to fully function. The most obvious reason for a field of view algorithm is
to enable control and restriction over what the camera can see but it is also beneficial to
speed up the computation as well as to disable bugs generated through false projection.
If points that lies on the positive z-axis (behind the camera) are projected onto the image
plane it will be falsely positioned on the inverse part of the image plane which will create
an image effect.

Figure 2.6: The field of view volume which is bounded geometrically by a polyhedron with
its central line stretching from the optical center 0 to the end point of the field of view E.

The field of view is geometrically bounded by a four sided polyhedron with a central

12
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line stretching from its optical centre O to the end of sight F (see figure 2.6). In theory
the optical endpoint lies on an infinite distance away from the optical centre but as the
camera discretizes the continuous world, the range of sight is bounded by the camera
resolution. The field of view volume is determined by the field of view angles a and (8
according to equation (2.1)-(2.3).

Ps

Figure 2.7: A description of how the field of view angle algorithm determines if a points
is inside or outside the field of view by checking if the projection of the view vector Wop
ends up on the optical view segment Vpg or not. Here points P, and Ps are rejected while
P, is passed on for further investigation.

The first step on checking if a point is inside the field of view volume or not is to look at
the projection of the vector between the optical centre O and the point of investigation
P denoted Wpp onto the optical view segment Vpop (see figure 2.7). The vector Wop
should pass the condition in equation (2.7) as well as the condition in equation (2.8).
Point P in figure 2.7 fails the condition in equation (2.7) as its projection lies on the
wrong side of the optical centre giving it a negative projection vector. Point Pj is
projected on the far side of the optical end point which generates a projection vector
larger than the optical line segment which in turn contravenes against the condition in
equation (2.8). The only point in figure 2.7 that will be clarified by the algorithm is P»
that passes on for further investigation. Points that pulls through these two conditions
are bounded to lie inside the two infinite planes Py, o and Py g in figure 2.6.

Wop e Vor > 0 (2.7)
Vor ¢ Vor > Wop @ Vog (2.8)

If a point is cleared through tests (2.7) and (2.8) the algorithm needs to check if it
is inside the four sided polyhedron. If the point passes this test it can be concluded
that the point lies in the camera field of view and should thereby be projected onto the
image screen, otherwise it should be discarded. To determine the state of the point, the
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(a) (b)

Figure 2.8: (a) Shows the orthogonal triangle that is used to determine the range from
the optical center to the point where the projection ends up. (b) Shows the field of view
rectangle on range a, its corresponding side vectors Vi and V, as well as the vector from
corner 1 to the point that is to be investigated.

algorithm first needs to calculate where on the optical line segment OF the projection
ends up. This is done by looking at the simple orthogonal triangle in figure 2.8a. The
distance b is the closest range to the line segment and is calculated through equation (2.9)
where & denotes the cross product of the two vectors Vo and Wop. The hypotenuse
h is the norm of the view vector Wop. Through an elementary Pythagorean Theorem
operation the distance a can be found with equation (2.11).

IVorxWorl||
p— 1oeror| (2.9)
Vol
h = [[Worpl| (2.10)

a=vh?—b (2.11)

Once the distance on the optical line segment has been determined the algorithm can
calculate the rectangle that bounds the field of view polyhedron in 2-dimensions at this
specific range. The rectangle has corner points P; — Py and the coordinates of the points
are displayed below:

P, =[-a-tana, a-tanf, —a
P,=[ a-tana, a-tanp,—a
Py =[—a-tana, —a-tan 3, — aj
Py=[ a-tana, —a-tanf, —d]

The final assessment is to check if the point lies inside the bounding rectangle shown in
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figure 2.8b. This is done by projecting the point onto the side vectors V7 and V5 and
check if it fulfils all conditions in equation (2.12).

WeVi >0 Wela>0 VieVi>WelV; Vool >Wel, (2.12)

If a point manage all tests up to this stage, it can be concluded that the point lies
inside or on the boundary of the field of view polyhedron and should thereby be further
processed for projection onto the camera image.

2.1.3 Obstacles and Ray Intersection

To make the virtual camera model more authentic it is essential to include an algorithm
that handles obstacles which blocks the camera view. This is a feature which is very
hard to accurately emulate without the presence of the virtual camera which again
shows the major benefit of having the model. Figure 2.9 clearly displays the problem
that occurs in the absence of an obstacle algorithm. Figure 2.9a shows a real life lane
estimation scenario. The view of the host car is blocked by a truck which prevents the
algorithm from estimating the lanes further away. Figure 2.9b on the other hand, shows
a possible estimation of the same scenario but without any ray intersection algorithm.
View blockage is thereby a very important feature to capture which encourage further
investigation of the algorithm.
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(a) Lane marker estimation in a real traffic sit- (b) Virtual lane marker estimation without a
uation. ray intersection algorithm.

Figure 2.9: (a) The lane estimation from a real LDS. Due to blockage, caused by the
truck in front of the host car the LDS can only estimate the lane markers up to the visible
point. (b) Simulation of the same scenario with a virtual LDS which lacks the competence
of view intersection.

The points in the 3D simulation environment represents light sources that emits rays of

light theoretically in all directions. The ray with the trajectory that stretches from the
source of emission to the optical centre is the ray of interest and will be projected on the
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camera image. The task of the ray intersection algorithm is to check if any of the objects
present at the 3D scenario breaks any these paths. Figure 2.10 shows a simulation where
an object intersect a ray of light which prevents it from reaching the camera image.

Figure 2.10: A simulated scenario where a car blocks the camera view by intersecting the
ray between the point of light emission and the camera origin.

n;
A 4 2

1

Figure 2.11: The geometrical definition of an obstacle in the 3D-environment. Every
obstacle has six sides with six individual norm vectors. Norm vectors 1-3 are situated in
corner number 1 while 4-6 are placed in corner 8.

Objects in the 3D simulation environment are represented by boxes like in figure 2.10.
The approach of having objects bounded by boxes is conventionally used and helps to
simplify the calculations which spares a lot of computational power [10]. More complex
rendering algorithms exists which allows a broader spectrum of geometries, but due to
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the fact that the simulations should work in near real time speed these algorithms are too
heavy computational wise and will thus not be included. Every obstacle, more accurately
consists of six sides with six individual norm vectors that defines the plane where the
side is fixed onto (see figure 2.11).

0O

Figure 2.12: A geometrical definition of the intersection algorithm. The ray of light
is represented by the vector u which stretches from the source of emission to the optical
center. The obstacle plane is defined by its norm vector n which in this figure is situated
at the corner point ¢. Vector v is the vector between the corner point and the source of
emission while P; denotes the intersection point.

To check if an intersection occurs between the plane where the side of investigation are
situated and the ray between the point of interest and the camera, equation (2.13) is
used. If the condition in equation (2.14) is fulfilled it can be concluded that the ray
intersects the plane in the point P;, otherwise the two points O and P lies on the same
side of the plane and will accordingly not be interrupted by it.

nev

5= (2.13)
0<s <1 (2.14)
p(s)=P+u-s (2.15)

If an intersection occurs, the point of intersection P; is found with equation (2.15) which
is the linear equation of the light ray. Once the point of intersection is found it needs to
be concluded if the intersection occurs inside or outside the rectangle which defines the
side of investigation. This is done with the projection analysis presented in section 2.1.2
(see equation (2.12)).

If an intersection is detected the algorithm should stop the investigation and discard the
point, otherwise it should keep screening through the sides of all the objects that lies in
the area of interest.
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(a) Simulated scenario with disabled ray intersection algorithm.

(b) Simulated scenario with enabled ray intersection algorithm.

Figure 2.13: Demonstration of the effect of the ray intersection algorithm. Both pictures
shows an identical scenario where two cars are driving in front of the host car and blocking
its view. In picture (a) the algorithm is disabled while it is activated in picture (b).

Figure 2.13 shows a simulated scenario where two cars are blocking the view of the host
car where the camera is mounted on. Figure 2.13a shows the camera image generated
with the ray intersection algorithm was turned off. As a result of the disabling of the
algorithm, some points behind the cars are projected on the image even though they
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should be blocked. In figure 2.13b on the other hand the algorithm is activated which
prevented the blocked points from being projected on to the camera image.

Figure 2.14 demonstrates complications that can transpire from having a LDS with
absence of a ray intersection algorithm. In figure 2.14a the system produces a perfect
lane detection result even though some of the lane marking points on the right lane (red)
should not be visible for the system. On the contrary figure 2.14b shows a much more
realistic result due to the presence of the ray intersection algorithm and is what would
be expected in a real life lane detection situation.

L L L I I I I I L L L L L L L L
1 20 30 40 a0 =] 70 a0 1 20 30 40 50 B0 70 &0
x X

(a) Top view perspective of the detected lane (b) Top view perspective of the detected lane
points from the scenario in figure 2.13a where points from the scenario in figure 2.13b where
the ray intersection algorithm was dissabled.  the ray intersection algorithm was activated.

Figure 2.14: The resulting lane detection from the scenario in figure 2.13. Figure (a) has
a perfect detection even though the two cars are blocking the view of the right lane (red).
Figure (b) shows a more realistic result where parts of the right lane could not be detected
due to the blocking objects in front of the host car which would be the case in a real life
situation.

2.1.4 3D-projection

If a point in the in the 3D environment passes both the field of view test and the ray
intersection algorithm it is considered to be a valid point and should thereby be projected
onto the image plane. The projection is executed with the linear projection operation
displayed in equations (2.16)-(2.17) [12]. Variables u and v denotes the continuous
coordinates in the image plane and are plotted in figure 2.15. The image coordinates are
bounded by the region R which is described by equation (2.18).

Tc - f

= 2.16
u=" (216)
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Y
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PC= [XC 7Ycazc] !

Figure 2.15: A point in the Euclidean space of the camera frame P, with coordinates
[e,Ye,ze] Will be projected on the image position u with coordinates [u,v] in the intrinsically
2D image plane which is located on a distance f (focus length) from the origin.

(2.17)

R = (U7U)7_fm§U§fm_fy§U§fy (218)

To represent the continuous camera image digitally the image needs to be converted into
a corresponding discrete data structure. This is done with a square grid pixel system
that is represented by an image matrix I with equivalent size as the resolution values
[M x N]. The position in the image matrix is decided by mapping the coordinate to the
closest pixel cell with equations (2.19)-(2.20). This will generate a natural discretization
error which will be a part of the inaccuracies of the real LDS and consequently this is a
feature which is desirable to capture. A decreased resolution implies that the distance the
continuous point u possibly needs to move in order to fit the discrete structure increases
and through that, so does the error. By introducing the pixel error the virtual model
gains the advantage of simulating how different hardware setups effects the final result
which can give guidance in the decision of the visual component for the real system. This
can help the user answer questions like: Is it beneficial to invest in a more expensive
camera with higher resolution? Or does a cheaper camera obtain similar results? By
having this function the hardware could be tuned to the setup that is most efficient
economically but still obtains desired results.
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_ut fa
n=|"%% NH (2.19)

B v+ f,
m—H[l— 2fyy} M” (2.20)

Figure 2.16 shows how three different resolution settings effects the final image. Other
hardware parameters that can be simulated with this model are: Focus length (f), the
orientation of the camera on the car or the view angle ().

(a) 160x120 (b) 320x240 (c) 640x480

Figure 2.16: A simulated scenario captured with three different resolution values in 4:3
scale.

2.1.5 Inverse 3D-projection

Once the 3D-scenario has been composed down to a 2D-image representation the input
for the LDS is fully constructed. A real LDJS analysis the images fed from the camera
and then tries to distinguish the lane pixels from the rest.

Once the lane pixels are discovered the LDS tries to map the 2D-image positions back
into 3D Euclidean space. This is a very complicated task as information has been lost
during the transition from the high to the low dimension state. As this transition is an
information consuming process, in order to go the inverse direction information needs
to be fed. The additional component that is needed is data about how far away from
the camera the point is situated. In other words the z-component which is lost during
the 3D-projection. Without any reference information this is an impossible task, using
only one frame. The most conventional approach for this problem is to analyse multiple
frames and compare the movement between the frames with the ego motion of the car.
The work presented in this report will not be focused on the process of mapping the
2D-positions back to 3D-space. Instead we will assume that the mapping process is
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executed perfectly and then shift the points in 3D-space to match the error performance
of the real LDS.

u= 2”]\']f9” — fa (2.21)

v=2f, [1- %} — 1, (2.22)
u-z vz

P = [—T,—T,z} (2.23)

Once the z-component has been estimated the pixels can be inverse projected with
equations (2.21)-(2.23). Equation (2.23) gives the coordinates of the point relative to the
camera coordinate system. The point can then easily be converted to the global frame by
using equation (2.4). By transforming the points from their original position in 3D-space,
to the camera image and then projected inversely back into the 3D-environment, errors
due to camera settings are included. The camera model also gives a way of evaluating
what parts of the lane markers that are visible by the image sensor which gives a natural
estimation of the lane distance. Next chapter will present a way of evaluating the system
performance followed by a chapter that shows how this can be implemented and emulated
in a virtual system.

Figure 2.17: An image pixel can easily be projected back to 3D-space once the unknown
z-component has been estimated which was lost during the degradation of dimensions.
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2.2 System Performance

The camera model, developed in the previous section is used to locate the lane pixels,
map them back to 3D-space and by that process include natural errors due to camera
settings. This alone gives a model which is close to ideal and thereby fails to capture
the real system behaviour. To emulate the LDS virtually, knowledge about the system
performance needs to be gained. Questions like: How does the system perform in specific
situations? , When are the system error high/low?, What state variables effects the
system performance? are queries that needs to be investigated in advance to recognize
the areas of focus for the modelling process. To get an insight in how the black box
LDS works, a specialized software tool called Ezpedition Log Examiner(ELE) has been
developed, which helps the user to investigate the functionality of the LDS.

2.2.1 Expedition Log Examiner

The task of the expedition log examiner is simply to process and analyse the data from
the LDS that has been logged during testing expeditions. With the help of Volvo Cars
corporation, over 400 TB of expedition data, corresponding to approximately half a year
of effective driving has been provided for the investigation of the LDS behaviour. The
ELFE is a matlab based GUI that mainly is intended as a visualisation tool to aid the
user in the investigation of the L DS performance at any expedition instance.
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Figure 2.18: The main layout of the expedition log examiner. The program consists of
two plot windows. The left window shows the trajectory of the host car for the selected
expedition log which guides and helps the user to browse around in the loaded scenario.
The right window is the analysis window which includes multiple functions that evaluates
and visualizes the performance of the system in different ways.

Figure 2.18 shows the main layout of the ELFE software. The program consists of two
plotting objects. The left window displays the trajectory of the host car for the selected
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expedition log and is intended as a tool to guide and help the user to browse around in
the loaded scenario. The second window is the analysis window which includes multiple
functions to evaluate and visualize the performance of the system.
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Log infor

Log Time: 56.484[s] Total Log time: 80.7913
Log Frame: 2345 Number of Frames: 3354
LeftLans Rangs:  22.3563[m] Include Lane Change:  YES
Right Lane Range:  27.0146[] Lane Change time: 512803
Yaw -1.0398[mRad/s]

(a) A captured camera image of a real expedi- (b) Identical scenario loaded into the expedi-
tion scenario. tion log examiner.

Figure 2.19: The main function of the ELE describes graphically. Figure (a) displays a
camera image captured from a expedition scenario. The data collected during the scenario
was fed to the expedition log examiner and the result is shown in figure (b). The dashed
blue line represents the trajectory of the host car, the continuous black line is the position
of the lane markers while the blue and the red lines are the LDS estimation of the left and
right lane markers.

Figure 2.19a shows a camera image captured from a hardware test expedition. The data
collected during the expedition was then fed to the expedition log examiner and the
results are displayed in figure 2.19b. The blue dashed line is the trajectory of the host
car which is calculated through equation (2.24) and (2.25) where ¢ denotes the yaw
angle while V' is the vehicle velocity. All entities are stated in the discrete domain. The
vehicle orientation is given by a gyroscopic sensor which outputs the yaw rate 1/)[%].
The yaw rate is then converted to the global orientation variable 1) through the discrete
integration shown in equation (2.26).

X(k+1)=V(k)-At-cos (¢(k)) + X (k) (2.24)
Y(k+1)=V(k)-At-sin (¢(k)) + Y (k) (2.25)
k
Y(k) =Y w(i) - (t(i +1) — (i) (2.26)
=1
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Due to the fact that all of the entities are measured through different sensors with indi-
vidual capturing frequencies a sensor fusion process has been conducted to synchronize
all the data. The sensor fusion is executed with and linear interpolation which is a valid
assumption due to the relatively high frequencies of the full set of sensors. This implies a
low deviation from a linear behaviour between two data points and thereby small errors
received from the linear interpolation. The interpolation is executed through equation
(2.27) and displayed in figure 2.20 where the top line represents the velocity data timeline
while the bottom line is the yaw-direction timeline. As can be seen both data sets are
captured with different frequencies which is why the interpolation process in equation
(2.27) is needed.

(i) = v + () (=) (227)

by by
Vh—1 Upe

Figure 2.20: Interpolation schematics for the applied sensor fusion where the top line
represents the velocity data timeline while the bottom line is the yaw-direction timeline.

The bold red and blue lines in figure 2.19 are the lane marker representations which is
estimated by the LDS at the selected time stamp. As previously mentioned the LDS
estimation is given in the form of a 3rd order polynomial as in equation 1.2 and a distance
value, d; for the left lane and d, for the right. The distance values specifies for what
longitudinal range the polynomials are valid. If demanded, the FLFE will plot out the
polynomials which aids the user to investigate the LDJS behaviour. The information
panel below the scenario figure gives the user information about the properties that are
listed below:
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Current time stamp ¢ e Total log time T’

Current frame number n

e Total number of frames N
e Left lane distance d
e Right lane distance d, e Occurrence of lane change

e Yaw rate ¢ e Lane change time stamp TjuneChange

To gain perception on how accurate the LDJS polynomials are, the ELFE software calcu-
lates reference lines (black lines in figure 2.19) and plots them at the positions where it
estimates that the lane markers are situated. This is done with a Ground Truth Analysis
method (GT'A). The prediction of the reference lines are based on the assumption that
the LDS polynomials are most accurate close to the origin. There are many concepts
that supports this assumption, for instance the fact that the pixel discretization error
is smallest close to the camera and increases linearly further away from it. It is also
common to fit the lane marker polynomials in a manner that minimizes the error to the
detected points close to the host vehicle as this information is more important than road
information further ahead.

S

(XLVL+1 5YL;+1 )

(XLi—j =YL571 )

(XR¢+1 ‘YRi~l )

Figure 2.21: The figure is a graphical description of how the GTA-algorithm is utilized
to define the reference lines of the lane markers. For every time instance where a unique
polynomial prediction is present the left and right lanes can be estimated by shifting the
lateral offset parameter ag in equation 1.2 perpendicular to the car.

The GTA-algorithm calculates the reference lines by shifting the lateral offset parameters
ao in equation 1.2 perpendicular to the car for every time instance where a unique
polynomial estimation is present. By pre-processing this information for all available
camera frames the left and right reference lines can be determined, which is a fairly
accurate representation of the ground truth. To achieve higher accuracy a LIDAR system
can be used which can estimate a much more detailed position of the ground truth
reference line. The coordinates of the lane markers are established through equations
(2.28)-(2.29) where [X;, Y;] is the position of the host car at instance ¢ while ag is the
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lateral offset represented by the zero-coefficient in the parameter vector. [Xp,Y7] denotes

the position of the left lane but the same equations can be used to calculate the position
of the right lane [Xg,YR|.

XLi =X+ arg - Sin(@[}i) (2.28)

Y., =Y —ar, - cos(¢i) (2.29)

The right window in figure 2.18 is the analysis window which displays the system perfor-
mance in different aspects. Between the orientation window and the analysis window is
the function selection bar where the user can select which aspect ELE should evaluate
the system performance on. The ELE includes four main functions that investigates
four key aspects of the system, but the software can be extended to include more tests
according to the preference of the user.

2.2.1.1 Road width function
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Figure 2.22: Description of the road width function in the FLFE software. At the selected
time stamp the road width is over estimated due to an incorrect prediction of the LDS.

The first analysis function is the road width function. As the road width should be
more or less constant this functions helps the user to detect anomalies and incorrect
estimations. Figure 2.22 shows the road width function in action. At the selected time
stamp the road width value is abnormally high because of the sudden lane flip which
can be seen in the orientation window to the left. The simulated scenario is taken from
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the real life expedition displayed in figure 2.23. In the selected instance, the road is
suddenly converted from a single lane road to a double. The LDS then switches its
estimation from the continuous left lane to the dashed middle lane which is the cause
of this strange road width behaviour. By using the road width function the user can
detect similar types of anomalies and then decide whether this type of behaviour should
be included in the final virtual LD.S model or if it should be discarded.

Figure 2.23: A scenario where a single lane road is converted into two lanes which causes
the LDS to change its estimation.

2.2.1.2 Distance function

The second analysis function is the distance function which helps the user to visualize
the propagation of the distance variables d; and d, (see figure 2.24). As the distance
variables are output variables from the LD.S it is also of great importance to investigate
how they change and what factors they are dependent on. For all the functions there is a
switch included which can be toggled to time or yaw that tells the FLFE to sort the data
either chronologically by time or by yaw rate. This tool is very helpful, especially for
the distance function as it can be used to investigate if high curvature roads affects the
distance variables or not. As can be seen in figure 2.24 the range estimation is exposed
to extreme fluctuations.
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Figure 2.24: The range estimation function which shows the

distance variables d; and d,..

2.2.1.3 Error analysis function
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Figure 2.25: The expedition log examiner includes an error function which computes the
lane errors at a certain range, specified by the user. The FLFE also marks the polynomial
points and the corresponding points on the reference lines in the orientation window.

The ELFE also offers the possibility to investigate the errors at different ranges which

is done with the error function.

The user simply selects the range value where the

ELFE should compute the lane errors and clicks on the range function. In addition to
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plotting the resulting errors in the analysis window for all time stamps the ELE also
marks the estimated point on the polynomial and the corresponding reference point in
the orientation window (see figure 2.25).

The errors are calculated according to the error definition defined in the Error Definition
section below. The error analysis function is a powerful tool and gives great insight of
how the system behaves in different situations.

2.2.1.4 Error/Range function

To get an insight of how the distance from the polynomial origin affects the error the Er-
ror/Range function has been included in the ELE software. The Error/Range function
calculates the error for several predefined range values and displays the current error plot
for the selected time stamp and the lanes that the user selects (red=left lane, blue=right
lane).
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Distance(m)

Figure 2.26: The Error/Range function provided in the ELE software gives the user an
insight on how the error function is affected by the range. The plot shows how the error on
the y-axis increases with increased distance for the left lane (red curve) and the right (blue
curve).

2.2.2 Error definition

When talking about system performance we more specifically consider analysis of the
errors introduced by the LDS. For this reason it is of great importance to establish
a system error definition. Lane marker system errors can be defined in multiple ways
which all have different down/up-sides. As the output of the system is a higher order
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polynomial, a natural error definition would be to regard the deviation of the polynomial
parameters in vector A from the coefficients of the ideal polynomial located in vector
A* like in equation (2.30). Even if this method is focused directly on the system output
it is not so intuitive and very hard to apply. Deviations in one parameters can cause
considerably high errors even if the rest of the parameters are perfectly tuned.

€0 ag ag

=] (2:30)
en an, ay
E A A*

A superior approach for the error definition is to consider the distance e between the
estimated polynomial and the reference line at different ranges x like in figure 2.27. This
method is much more intuitive as it is considerably more understandable to visualize, plus
the fact that this distance in the end is the critical entity for the active safety functions
which is what the virtual LD.S should capture. By using this error definition the points
detected from the camera model can be shifted from their near perfect positions to match
the error of the LDS. When the points finally has been shifted, a polynomial can be
constructed using a poly fit algorithm on the manipulated lane points.

Figure 2.27: Description of the applied error definition which is utilized in the LDS per-
formance analysis. The error e is defined as the distance between the estimated polynomial
and the reference line at range z.

Given a polynomial with a coefficient vector Ay, defining the left lane or Ar defining the
right lane an estimated lane marker point p;, or pi, at range = can be found through
equations (2.31)-(2.36) where X, and Y, are the current positions of the host vehicle.
The entity f(A,z) denotes the polynomial function in (1.2) with the coefficient vector
A and the range x as input variables. The lateral offset at the current time stamp is
represented by the O-coefficient in each coefficient vectors which is represented by ar,,
for the lateral offset to the left lane and ap, for the lateral offset to the right lane.

xp =Xy — lag,| -sin (¢) , yr =Yy + |ar,| - cos () (2.31)
xr = Xy + |ag,y| - sin (¥) , yr =Y, — |ag,| - cos (¢) (2.32)
p1,, = o+ - cos(y) + (f(AL,x) + |CLL0|) - sin (1)) (2.33)
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Py, =y + 2 sin(®) — (F(Az) + laz|) - cos(s) (23
Pig, = Tr + 3 - cos(¥) + (f(Ar,x) + |ar,|) - sin(v) (2.35)
DPlg, = Yr +T- sin(v)) — (f(AR,x) + ]aRO‘) - cos (1)) (2.36)

By using equations (2.31)-(2.36) the LDS estimation of the global position for the left
and right lane, denoted p1, = [p1,,,p1,,] and p1, = [P1g,.P1z,] can be determined for
any range .

When the coordinates of the lane estimation point is determined the objective is to find
the corresponding point on the reference line in order to find the lane error. As the
reference lines are represented in the discrete domain the method of finding the lane
error is not trivial. Just taking the distance between the estimated point p; and the
closest point in the reference line would not generate a good error prediction as this
definition would be dependent on how sparsely the reference points are sampled which
is directly dependent on the speed of the host car and the frame rate of the camera.
This definition would generate high errors for high speeds due to the increment in the
sampling distance between the reference points which in turn would create a system
behaviour that is not connected to the real LDS.

Figure 2.28: A graphical definition of lane error algorithm. The point p; denotes the point
of investigation on the LDS polynomial while p, and p3 are the closest and second closest
points in the reference line array.
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Instead of just taking the closest point in the reference point array the lane error algo-
rithm finds points between two reference points by assuming a linear behaviour between
the two sampling instances. This assumption is valid due to the fact that deviation from
a linear behaviour is only present in situations with high curvature. In these cases the
speed of the host car are almost exclusively reduced which implies that the reference
points are sampled with higher density which in turn counters this effect. To find a
corresponding reference point py (see figure 2.28) to an estimated lane marker point p;
the closest point in the reference array po is determined. The point in the reference array
that lies closest to p; is the one that satisfies equation (2.37).

VX = PL2+ (Y, — P2 = min<\/(Xr P2 (Y, - Ply)Q) (2.37)

The second closest point to p; is denoted p3 and can likewise be found with equation
(2.37). These three points together forms the triangle shown in figure 2.29 with side
lengths d1, d2 and d3.

V] = p2 — P1 (2.38)

V2 =p3—p1 (2.39)

P1

Figure 2.29: The estimated lane point p; together with the reference points ps and ps
forms the triangle shown in the figure where the height of the triangle e is the lane error.

The height of the triangle is the lane error e and can be determined through equation
(2.40)-(2.41).

a = atan2(||vy z val| , v1 e v2) (2.40)

di-dy
3

- sin(a) (2.41)

(&
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To determine the point on the reference line which lies between the points py and p3
equations (2.42)-(2.45) can be used.

P2

Figure 2.30: A graphical description of how to mathematically determine point p, that
lies between the two reference points py and ps.

s=/d3 — e? (2.42)
p=22"% (2.43)

Tro — I3
x4 = x3 + 5 cos(f) (2.44)
Ya = y3 + s - sin(f) (2.45)

As this approach only calculates the absolute distance between the predicted point and
the ground truth insufficient information is gained to be able to fully shift the lane marker
points. This method alone does not provide information about whether the estimated
point is located to the left of the reference line or if it is located to the right. To provide
the model with this information an algorithm has been developed that determines the
location of the error. To compute this the algorithm uses three vectors: v.s stretching
from the position of the host car to the estimated lane point, vj4y, stretching from the car
to the reference point and wvg; which denotes the vehicle direction vector. The vectors
are defined in equations (2.46)-(2.48) and displayed in figure 2.31.

Vest = p1 — Py (246)

Vlgne = P4 — Py (247)

vy — (Ko _p (2.48)
Y, + sin (¢)

When the three vectors vest,Vjgne and vg;, are computed the angles of veyr and vigpe
relative to vg; can be determined through equation (2.49)-(2.50). The lane error e*
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Figure 2.31: Graphical definition of the algorithm that decides on which side of the refer-
ence line the estimated lane point lies. If 6.; is larger than 6}, the point lies to the left of
the lane, otherwise it lies to the right.

is located to the left of its reference line if 0.5 > 0j4ne according to equation (2.51),
otherwise it is located to the right. Errors located to the left is denoted with a negative
sign while errors positioned to the right assumes positive values.

Blane = cos™! (ene 2L (2.49)
HvlaneH ’ HvdiTH
fust = cos™ (20 (2.50)
[Vestl - [[vair |

—‘€|, if Hest Z elane

e*(€,0est,01ane) = (2.51)

le|],  otherwise
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2.3 Data Acquisition

To construct the virtual LD.S, data needs to be gathered to serve as input for the system
model. As the expedition log examiner only serves as a visualisation tool to aid the user
to analyse the behaviour and the performance of the LDS the development of a second
software is required.

The additional software, called the Expedition Log Scanner (ELS) was constructed to
scan through the expedition logs, extract and then form the data which would serve as
the foundation for the virtual LDS model. The user simply designates which dimensions
that is desired to be included in the LD S model and selects the expedition logs that is to
be examined and then executes the program with the scan button (see figure 2.32). The
E LS then scans through the selected logs and calculates the system errors according to
the error definition in section 2.2.2. The error is computed for all selected dimensions
and all time instances. The results from every expedition can be displayed in the plot
window by either enabling the Left Lane, Right Lane or the Trajectory button below the
window. If the save images button is enabled the E'LS will save both the Left Lane and
the Right Lane picture as well as the Trajectory image. The images are helpful as they
displays the results of the extraction which aids the user to pick out logs with unreliable
data. However, the save image process will slow down the scanning speed immensely.

a}(ped\t\onlog;canner E = @
~

Untitled 1
% & OEE

Dimension Trajectory plot

@ Range
1
@ Yaw Rate
") Speed 05
@ Acceleration N 0 >
_) Lightning condtions ,

@ Rain

Log folder 100
- - a0 100
\Joakim\Documents\CHALMERS\Master Thesis\ELS\ i} =0

Save folder ¥
WJoakimDocuments\CHALMERS\Master Thesis\ELSL
@ Left Lane @ Right Lane @ Trajectory

@ save images Progress Log Number
Inttial Log number 0.33333 1

Log Progress SCAM
1

1

Figure 2.32: Grapghical layout of the Expedition Log Scanner (ELS). The user selects
the dimensions that is to be extracted and specifies the location of the folder that contains
the expedition logs a swell as the folder where FLS should save the data. If desired, the
FELS also displays the results of the extraction and saves the images to the save folder. In
this figure the E LS displays the trajectory of the host car with detected positions of the left
and right lane which aids the user to analyse the validity of the specific log.
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The ELS software includes in total 6 different dimensions. If the range dimension is
selected, E'LS applies a specific function that evaluates the system error for every range
value r, specified in the range vector R and for every time stamp. By default the evaluate
up to range function is activated. This function only allows ELS to compute the lane
errors up to the polynomial ranges dy, and d, which are estimated by the LD.S. The range
vector is by default set to [1:2:100], but can be specified according to the preferences of
the user.

Other dimensions that is important to analyse are the lightning and weather conditions.
These are the dimensions that can have a direct affect on the image quality which in turn
can effect the quality of the lane estimation. The lightning conditions are represented
with a Boolean variable that states if the expedition was carried out during daytime or
at night. The weather condition variables checks the occurrence of rain. To determine
this condition the E LS checks if the wipers on the front window are activated. If true,
the wipers are most likely active due to rain and the E'LS then assumes this weather
condition.

Besides the range dimension and the camera conditions the ELS also offers the oppor-

tunity to extract vehicle states. The available states are yaw rate [%i], speed [] and

acceleration [37]. The dimensions that are included in the Expedition Log Scanner are

stated in the list below.

e Range [m] e Acceleration [3]
e Yaw Rate ["] e Lightning condition
e Speed [Z] e Weather condition

The output of the ELS is the data matrix D which is displayed below. The matrix
consists of n-number of columns, representing the selected dimensions and m-number of
rows which represents the number of data points. The data matrix for every log will be
saved separately in the location specified in the save directory field.

n Dimensions

di1 di2 diz ... din
doy doos dog ... dop

_dml dm2 dm3 dmn_
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The final stage in the data acquisition process is to merge all of the extracted data
matrices into one unified matrix. To enable this process a merge script called the merge-
Data.m has been developed. The mergeData script takes a folder directory as input and
then scans this directory for extracted data matrices. The gathered matrices are then
merged into one large matrix which is saved into the same folder directory.

The ELS also includes a secondary task which is to filter out data from abnormal an
unwanted scenarios which should not be captured in the virtual lane detection model.
An abnormal situation which causes anomalies in the error estimation occurs when the
host car is executing a lane change. This complication is displayed in figure 2.33. In
(a) the host car is executing a lane change where consequently the original left lane will
eventually become the right lane while the inner road edge will become the left lane
estimation. The scenario was inserted into the expedition log examiner which is shown
in (b). This causes abnormally high error values due to the fact that the left lane (blue
line) is evaluated relative to the new left lane (the road edge) while the right lane error
is computed relative to the old left lane.

Analysis plot

75
o
65 9

[ Fr

Edit Range

Scenario Plot-

@ Leftlane

45

@ Right lane
@ Leftlane est

2 @ Right lane est

685 690 695 700 705 710 715 720
3 5 LANE CHANGE

Log inforr
Log Time: 33.7244]s] Total Log time: 81.152
Log Frame: 529 Number of Frames: 1349
LeftLane Range:  30.8599[m] Include Lane Change:  YES

Right Lane Range:  31.4667[m] Lane Change time:  80.7657
Yaw: 0.072084[mRad/s]

(a) Expedition scenario where the host car is
executing a lane change from the right lane to (b) The expedition scenario shown in (a)
the left. (Displayed lane estimation is not au- loaded into the expedition log examiner which
thentic) shows complications caused by the lane change.

Figure 2.33: Undesirable errors can be caused by extreme maneuvers like lane change. In
(a) the host car is executing a lane change. The scenario was then loaded into the expedition
log examiner which is shown in figure (b). Consequently the left polynomial error is estimated
relative to the lane edge on the second lane while the right lane is estimated relative to the
mid marker which previously was the left lane estimation.

The result of the false lane estimation caused by the lane change is plotted in figure
2.34a. The figure shows the 3-dimensional error profile for the scenario displayed in
figure 2.33 with range [m| and yaw rate [%] as input dimensions. In absence of a filter
that extracts these scenarios the lane estimation errors from the lane change will end
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up as a ceiling in the error profile with extremely large values. If this type behaviour is
not filtered away from the final input data to the LDS-model, there is a risk that these
error profiles will affect and impoverish the model. Figure 2.34b show the resulting error
profile when the FLS-software has executed the lane change filter process. As can be
seen the error behaviour is now totally excluded and only the real system behaviour is
present.

Left Lane error Left Lane error

Yaw (racls) 40 Distance Yaw (radss) il Distance

(a) Error profile with included lane change er- (b) Error profile with excluded lane change er-
rors. TOrs.

. . . . . d
Figure 2.34: The 3D- error profile with respect to range [m] (x-axis) and yaw rate ["¢]

(y-axis) for one specific expedition log. The image displays how the ELS software filters
out anomalies and abnormal scenarios caused by actions like lane change. In figure (a) no
filtering has occurred which thereby causes this strange high error region while in (b), this
region has been excluded by the ELS filers.

With the E LS-software the user can construct and form the error data according to the
desired preferences. The error data can then be used as input data for the LD.S model.
It also gives visual aid which helps the user to understand how the system behaves and
to pinpoint what dimensions it is affected of. Figure 2.35 on the next page displays the
system behaviour for three different scenarios. Figures on the left side represents the
left lane estimation while the figures on the right are the right lane estimations. The
error profiles are plotted in respect to range [m] (x-axis) and yaw rate ["24] (y-axis). As
can be seen in the figure a trend of increasing lane error with increasing range values is
present, more on this under the Result section.
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Left Lane error Right Lane error
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(a) Left lane error profile for scenario 1. (b) Right lane error profile for scenario 1.
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(c) Left lane error profile for scenario 2. (d) Right lane error profile for scenario 2.
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(e) Left lane error profile for scenario 3. (f) Right lane error profile for scenario 3.

Figure 2.35: The 3-dimensional error profile for 3 different scenarios with range [m] on the
x-axis, yaw rate [%’l] on the y-axis and the error values [m] on the z-axis. As can be seen

in the figure there is a trend of increasing error with increasing range.
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2.4 Principal Component Analysis

As the relevant dimensions which are influencing on the LD.S is unknown, a multivariate
analysis is required to determine which variables the virtual model should take as input.
The expedition log examiner gives the user an intuition on how different types of variables
affects the LDS but does not give conclusive perception. There are multiple types of
statistical techniques which can aid in this process but to gain knowledge in this specific
matter a Principal Component Analysis (PC A) has been conducted.

Principal component analysis is a well-established and developed tool in the field of
statistics used for multivariate problems. The method implies a linear orthogonal trans-
formation and was initially introduced by Karl Pearson in 1901 [13]. The PCA takes
a set of data observations with any number of possibly correlated dimensions as input
and then computes a new set of uncorrelated orthogonal variables called principal com-
ponents [14]. The number of principal components is always less or equal to the number
of initial dimensions. For this project the principal component analysis was utilized for
dimension reduction which is one of the most common purposes of the method.

Geometrically the PCA tries to enclose the given n-dimensional input data set with
an n-dimensional ellipse composed of orthogonal Eigen-vectors. The dimension that
contributes with the highest variance will be the primary principal component and the
component that explains most of the correlations in the original data set. The primary
principal component is followed by the secondary component which stands for the second
largest variance and so on. In this way, the principal component analysis lists the input
variables according to their relevance in the original data-set.

The initial step in the Principal component Analysis is to subtract the mean d from
every dimension vector in the data set. This process is followed by the computation
of the covariance matrix C' [15]. The covariance matrix contains all covariance values
calculated for all included dimensions with equation (2.52).

ceuldsdy) = 1 (dix — di) (dy — dy) (2.52)

(n=1)

ccv(dy,dy)  ccv(dy,da) ... cev(dy,dy)
oo cco(de,dy)  cev(de,de) ... ccu(da,dy,)
| ccv(dn,d1)  ccv(dn,d2) ... ccv(dn,dy) ]
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When the covariance matrix C' has been calculated the only remaining process is to
identify the Eigen-values and -vectors of the matrix. The eigenvalues gives informa-
tion about the variance of each dimension which in turn declares how much a specific
dimension contributes to the variance in the original data set. The Eigen-vectors are
the principal components which all together constructs the n-dimensional ellipse that
encloses the original data set in R™. As the covariance matrix is a symmetric matrix
and due to the fact that the principal components are Eigen-vectors to the matrix the
components are all orthogonal and thereby linearly independent to each other [16].
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Results

The following chapter will include the discoveries and results, concluded from the research
in this project. The results are based on the input data matrix D formed through
the process described in section 2.3, Data Acquisition. The data was collected from
expedition logs spanning over 30 hours. The final data matrix has 7 columns representing
the input dimensions range, yaw rate, speed, acceleration, lightning conditions, weather
conditions and the resulting error. The matrix also consists of over 94 million rows
which corresponds to the collected observations.
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Figure 3.1: The figure shows the distributions curves for the input data.
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Figure 3.1 shows the distribution of the input data set. The top left sub figure shows how
the range dimension is distributed. As can be seen the range dimension is discretized
from 0-100 with an interval of 2 meters as these values where specified in the range
vector R during the FLS data acquisition. The reason to why the range dimension is
not evenly distributed from 0-100 is because of the eval up to range function in the ELS
software which prevents error estimations above the limit where the L DS has declared
the polynomial to be valid.

The yaw rate is evenly distributed around 0 which is reasonable as this indicates that
roughly the same amount of left turns as right turns has been executed while the majority
of the expedition time where accomplished on straight roads.

The error distribution curve is plotted in figure 3.2. The results indicates that most of
the time, the LDS is producing accurate estimations with low error values.

” 104 Error distribution cume
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Figure 3.2: Distribution curve of the recieved error values.

The chapter begins with section 3.1, describing the results from the multivariate anal-
ysis, which was conducted to investigate which dimensions that constitutes a dominant
influence on the LDS.

The multivariate analysis section is followed by section 3.2 which illustrates the results
from the analysis of the data, that was created through the data acquisition process.
The section covers analysis of the data density as well as identifies the operating points

of the LDS.
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In section 3.3 the error performance of the real LDJS' is modeled based on the data and
foundings from the two previous sections.

The result chapter is finished with section 3.4 which describes the architecture of the
final virtual lane detection model which binds together all results, discovered from the
thesis.

3.1 Multivariate Analysis

Prior to the modelling of the virtual model a multivariate analysis was applied to deter-
mine which dimensions that should be included in the final system model. The analysis
was executed with the Principal Component Analysis technique which is described more
thorough in section 2.4, Principal Component Analysis.

The data matrix D with its 6 input dimensions was fed to the PCA-function and the
result of the principal component analysis is displayed in table below.

Dimension Explanation (%) | Variance
Range 93.83 630.9
Speed 6.14 41.3
Acceleration 0.02 0.13
Lightning Conditions 0.003 0.019
Yaw Rate 0.00 0.00
Weather Conditions 0.00 0.00

Table 3.1: The table shows the results of the principal component analysis with the received
variance for every input dimension and the percentage of the variance share.

The results displayed in table 3.1 indicates that the majority (94%) of the variance can
be described with the range dimension. This means that if only the range dimension
would be included in the final LDS-model, the model would still be able to capture 94%
of the system behaviour under the assumption that all of the necessary dimensions has
been included and enough data has been captured for all of the dimensions in the PC'A.

One reasonable explanation to why the range variable is so influential on the lane detec-
tion error performance could be that the discretization error due to the pixel representa-
tion in the camera increases linearly with range(x) according to equation (3.1) where f
denotes the focal length while P, represents the pixel width. The error is plotted against
the range in figure 3.3 with red markers. The continuous black line in the bottom of the
figure represents equation (3.1). This alone does not explain much of the error profile
but as this only represents a single pixel, and a lane consists of multiple pixels, this can
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be a plausible explanation. The pixel errors could also explain why the LDS produces
an area of errors rather than a line. Equation (3.1) only gives the maximum possible
error due to the discretization of the continuous space. The discretization error can
thereby assume any value between zero and the maximum error in equation (3.1). This
probabilistic effect therefore contributes to the area error profile.
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Figure 3.3: The system error profile in respect to range. The black continuous line repre-

sents the maximum discretazation error for one pixel which is stated in equation (3.1).

With support of the results from the Principal Component Analysis, it can be concluded
that the original 6-dimensional model can be reduced into 2-dimensions (Range, Speed)
without any noticeable effect on the system performance.
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3.2 Field Data Analysis

The correlation between the input variable and the error values for both the range- and
the speed-dimension is not deterministic as both of the error profiles will form an area
like in figure 3.3 rather than a line. Consequently, the 3-dimensional error profile will be
represented by a volume instead of a surface (see figure 2.35).

This fact complicates the data analysis process as it is not possible to draw any con-
clusions about the error performance by only looking at figure 3.3. Most of the plotted
data is just single occurrences which does not say anything about the real sensor per-
formance but blocks the view of the more frequently occurring error values. To handle
this problem the error profiles has been plotted with a density scatter plot function and
the results are displayed in figure 3.4. The density plots are utilized to get a perception
regarding the input and output data. It is of great importance to be certain that the
data is reliable before used to create a model, which is the reason why the density plots
are utilized.
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(a) Error density plot for the range dimen- (b) Error density plot for the speed dimen-
sion. sion.

Figure 3.4: Error density plots for the range variable as well as the speed dimension. High
color temperature indicates high data density and vise verse.

As can be seen most of the data is concentrated in the low error region, which is supported
by the histogram results in figure 3.2. We can from these results draw the conclusion that
usually, the LDS executes with high performance meaning that it successfully estimates
the lane markers with low error influence. Even though these density plots gives a
perception on how the LDS performs regarding the Range and the Speed dimension, it
does not provide the complete picture of the LDS performance. The problem is that
both dimensions are inter correlated and should therefore be plotted against each other.
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Figure 3.5: A 3D-density plot in respect to the 3 dimensions Range, Speed and Error
created with the scatterplot3D.m script. Red color indicates regions with high density and
the density decreases with decreased color temperature.

To solve this problem a special software has been developed for this project called scat-
terplot3D.m. As the name reveals the task of the scatterplot3D.m script is to make a
density curve in 3D. The software encloses the data space with a cube divided into mul-
tiple sub cubes. The script then searches through the whole space and calculates how
many data points that occurs in every sub cube. The resolution of the sub cubes can be
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specified by the user. When every data point has been counted into its cube the software
calculates the share every cube represents in respect to the whole space or to a single
dimension. Figure 3.5 shows the resulting density plot from when the scatterplot3D.m
was executed on the input data set.

Once again it can be seen that, the majority of the data ends up in the low error region
with less and less data occurrences in the direction of the positive error axis. The figure
also highlights that a blind spot exists in the data set at high range and low speed. To
further investigate this issue a density plot over the range/speed data was created, which
is shown in figure 3.6.
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Figure 3.6: A density plot of the Range/Speed data. For high range and low speed there
is a blind spot due to the fact that this is an extremely unusual combination.

The density plot confirms the fact that a blind spot exists in the low speed/high range
region. The reason for the blind spot is that this specific range/speed combination is
extremely rare and was not present during the expedition logs that was collected for
the input data set. At low speeds, the LDS does not estimate the polynomial far away
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from the host car as this information is redundant. On the other hand, at high speeds
scenarios like when driving on a highway, the L DS makes far estimations as information
further ahead is more important in these situations. To confirm this conclusion, another
density plot was created (see figure 3.7).

The figure shows the value of the LD.S polynomial distance variable d in respect to speed
of the host car. Graphically, there is a perfect match between the missing piece in this
density plot and the blind spot in figure 3.6. Data is not collected in the blind spot
because the LDS does not have a valid representation in this area and the evalupZrange
function therefor prevents E LS-software to compute data in this region. The upper limit
of the polynomial distance variable seams to follow a strict linear behaviour judging from
the results in figure 3.7. This blind spot does not constitute any problem for the virtual
lane detection sensor as the real LDS does not not operate in this region. The virtual
LDS should therefor also refrain from operating in this area.
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Figure 3.7: A density plot over the LDS polynomial distance variable d in respect to
the speed of the host car. The distance variable denotes how far the LDS estimates the
polynomial to be valid. The graph indicates that there is a linear relationship between the
speed and the distance variable.

20



3.3. LANE DETECTION ALGORITHM CHAPTER 3. RESULTS

3.3 Lane Detection Algorithm

The major complication regarding the modelling process is the fact that the system
behaviour is non-deterministic. This fact renders the 3D error profile to occupy a volume
in the range-speed-error space instead of a deterministic surface (see figure 3.8).
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Figure 3.8: The 3D-error performance in respect to Speed and Range. The system perfor-
mance is non deterministic which renders the LD.S profile to occupy a volume instead of a
deterministic surface.

To construct a model which represents the error volume is impossible with simple mod-
elling tools like a nonlinear or linear regression models. A possible solution would be to
use the already gained linear model from the principal component analysis but as this
model only spans a plane, the model would not be very accurate.

As the LDS includes some randomness which can not be captured, some sort of statistical
probabilistic model needs to be applied. To get a perception on the behaviour of the
system, confidence level curves of the error profiles was created (see figure 3.9-3.10).
Figure 3.9 shows the confidence curve over the range/error distribution. The curve was
created by dividing the input into intervals and then adding values to each interval until a
certain level of confidence had been reached. The division into intervals comes naturally
for the range variables as it is already discretized into sub groups. The confidence level
analysis produces the boundary curves for where we can be sure that a certain amount
of data (up to the confidence level) is gathered under. As can be seen in figure 3.9 the
confidence level curves seems to approach a linear behaviour for 97% of the data.
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Figure 3.9: Confidence level curve for the range/error profile.

For confidence levels above 97%, the curves are nonlinear at high range. One explanation
for this is the reduction of data density in this region. Single occurrences with high error
values will consequently be more influential where the data density is low which could
be the reason for this nonlinear behaviour.

An identical confidence level procedure was executed on the speed/error data and the
results are plotted in figure 3.10. The speed domain was divided into multiple intervals
and the confidence level for every interval was calculated similar to the procedure in
figure 3.9. The difference between the speed domain and the range domain is that the
range domain is naturally divided into sub intervals from the start (see figure 3.4a)
while the speed data is distributed irregularly stretching from its min to its max value.
The consequence of this irregularity is that the confidence curve is affected by strong
fluctuations. The reason for the fluctuations is randomness in the data density for each
bin. Omne bin could potentially include a huge amount of data while the neighbour
bin could be almost empty due to the fact that the data isn’t evenly distributed. As
previously argued, bins with low data density will be more sensitive to high valued
occurrences and could therefor give a peak in the confidence curve. To solve these
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fluctuations a low pass FIR filter was applied to the original data and the results are
displayed by the red curve in figure 3.10. A trend that is noticeable in the confidence
level curve is that low speed values gives low errors.
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Figure 3.10: Confidence level curve for the speed/error profile. The blue line is the original
confidence curve which is influenced by a lot of fluctuations. A low pass FIRfilter was applied
to the fluctuating signal and the results are plotted in the red curve.

Even though the 2-dimensional confidence level curves gives some perception on the
system performance, no certain conclusions can be drawn as these two variables are inter
correlated. To deal with this complication a rather unique solution has been developed
that utilizes the confidence levels in 3-dimensions. A special script called conf3D.m which
executes this procedure has been developed. The script divides the range/speed data
domain into a grid space and calculates the confidence value for every grid piece. As the
3D-confidence level curve also is sensitive to the grid resolution, the unprocessed output
will be strongly influenced by fluctuations. The solution to this issue is, as previously,
to apply a low pass FIR-filter to cut away the fluctuation peaks.
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Figure 3.11: The 3D-confidence curve of the model with a confidence level of 95%. The
model indicates that the system produces increased error values with increased speed and
range values. 54
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The results of the 3D-confidence curve model is displayed in figure 3.11. As can be
seen in the figure, the 3D-confidence curve combined with the low pass FIR filter gives
remarkable results. The system error profile is now represented by single surface instead
of a volume. The surface marks the 95% confidence level. We can thereby conclude
that 95% of the LDS errors, lies below this confidence surface. Different models with
different confidence levels can be modelled in the same way which gives the user the
opportunity to choose the model that has the preferred confidence level. It is worth to
note that the 3D-model in figure 3.11 also includes the previously mentioned blind spot
in the region of low speed and high range. The model is thus not valid in this lineally
bounded region.

To convert the surface into the form of an equation a nonlinear regression model can
be applied. As the surface has a rather complicated shape it is very hard to represent
the whole surface with a single regression model. The parametrization of the model
would therefor infuse inaccuracies due to deviations from the true surface which is not
preferable. Instead of representing the system with a nonlinear regression model which
give unwanted errors the model could be represented by a 2-dimensional look up table.
For data inputs that lies in between the grid points linear interpolation could be applied
to increase the accuracy even further.
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3.4 LDS model architecture

The purpose of this section is to demonstrate the final architecture of the virtual LDS,
developed in this thesis. Figure 3.12 is a block diagram representation of the final model
including the virtual camera model and the adjustment for the system performance.

The simulation environment block represents the entire simulation which interacts with
the virtual LDS. The simulation environment provides the camera model with the
virtual 3D-world as well as the current states of the host vehicle. The 3D-world is
represented by a 3zN sized environment vector which includes the positions of all the
points in the entire virtual environment. The state variables that are provided to the
camera are the orientation of the host vehicle [0,,¢,,1,] as well as its global position
[Xy,Yy,Zy]. Based on these input variables, the camera model then calculates the current
2D-image and from that the positions of the left and the right lane markers. The positions
are gathered in two separate vectors containing the locations of the left and the right
lane markers.

The lane position vectors, along with the current speed of the host car are then filtered
through the range/speed filter block which prevents the virtual LDS from operating
in the area where the real LDS does not operate based on the findings in section 3.2.
The filter block analyses the range of every lane point in the lane vectors and compares
that to the current speed of the host car. If a point is located in the restricted area
it is extracted and discarded from the lane position vector. Without this block, points
located in the restricted area will be further processed by the LDS performance block
which in turn will apply no error to points in the area. This could lead to optimistic
estimations of the lanes, which consequently could be critical in evaluation of active
safety functions.

The remaining lane points are then further processed and shifted in space according
to the error value they receive from the LDS performance block. The error value is
calculated according to the speed of the host car and the range of the lane point with
the 2D-look up table developed in section 3.3. To convert the adjusted lane positions to
a polynomial representation a conventional polynomial fit tool can easily be used which
fits a 3rd degree polynomial lane position vectors. By doing this, the lane vectors which
are have a discrete representations are converted into a continuous media giving the user
the opportunity to calculate the lane positions at any location of the lane estimation.
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Figure 3.12: A block diagram, explaining the final structure of the virtual LDS. The
simulation environment supplies the camera model with the virtual world as well as the
state of the host car. The camera model is the processing the virtual world and calculates
the positions of the left and the right lanes, saved in two separate vectors. The lane po-
sition vectors, together with the current speed of the host car are processed through the
range/speed filter which prevents the virtual LDS from operating in areas where the real
LDS isn’t operating. The remaining lane positions are then adjusted with the 2D-look up
table that represents the sensor performance.
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As the camera model can be heavy computationally a alternative approach has been
developed which overrides the visual component. The simulation environment could
provide the virtual LDS directly with the position vectors of the left and the right lane.
By extracting the points in the virtual environment that represents the lanes up to a
certain range these vectors can be created without the camera model. The range would
be determined by the current speed of the host car according to the findings in section
3.2. By doing this, computational power is saved to the cost of the lost perks which the
camera model provides. The lane positions would not be influenced by errors introduced
by the hardware setting of the visual component which is natural error that preferably
should be included in the virtual LDS. By overriding the visual component there is also
no way for the system to prevent lane estimations due to blocking, which is achieved
by the ray intersection algorithm. This could be a critical function as in absence of it,
the simulation environment could be given more information than it would have been
provided in a similar real life situation.

Figure 3.13 shows a schematic overview of how the virtual LDS' interact with the simu-
lation. The simulation environment block provides the LDS with the position and the
orientation of the host car, the current speed as well as the virtual 3D-environment and
the LDS computes the left and the right lane polynomials.
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Figure 3.13: Schematics over how the LDS model interacts with the simulation environ-
ment. The simulation environment provides the LDS with the position and the orientation
of the host car, the current speed as well as the virtual 3d-environment. The LDS then
calculates the two polynomials representing the left and the right lanes and outputs them
to the simulation environment.
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The virtual LDS model was finally implemented in a virtual environment using the
architecture defined in figure 3.12 and verified through simulations. Figure 3.14 shows
a visualisation from the results from the lane detection in the simulation. Figure 3.14a
shows a overview of the lane detection, where the blue line represents the left lane
estimation while the red line represents the right. Figure 3.14b displays the same scenario
from the perspective of the camera where the estimated 3D-point of the lanes, where
projected onto the camera image.
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Figure 3.14: Images created through simulation where the final virtual LDS model was
implemented. (a) Shows the resulting lane detection from a overview perspective. (b) Shows
the resulting lane detection from the view of the virtual camera.

As the real LDS operates in a non deterministic manner, their is no way of accurately
validate the model by running the virtual model parallel with the real system an expect
identical estimations. Instead, real life scenarios where compared with similar scenarios
in the simulation environment to conclude that the virtual L D.S behaves similarly to the
real LDS.
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Discussion

The purpose of this chapter is to summarise the project and to guide the readers with
interest of further development. The knowledge gained from the research will be stated
in the Main conclusions section among with opinions about alternative approaches.

The Main conclusions section is followed up with the section about further research
which is intended as an encouragement for further development in the field as well as to
pinpoint the areas of focus. Here, suggestions about factors that will improve the model
additionally will be stated.

4.1 Main Conclusions

Through the work, conducted in this thesis a visual based virtual LDS was developed
and evaluated using two main blocks, a camera model and a black box lane detection
algorithm. The two blocks where then proven to be combinable to create a final virtual
LDS. The system was then verified by integration with a virtual simulation environment.

By creating a visual component and including that in the virtual LD.S model, multiple
benefits were gained. Instead of just treating the LDS as a single black box system,
the camera component was extracted from the black box, and modelled separately. This
gave among others, the ability to test different types of hardware settings. The hardware
evaluation feature can help the user to tune the real hardware setup into the gear that
is the most favourable solution regarding, economics, performance etc. The hardware
evaluation area is a very promising area with a lot of potential but it needs some further
investigations and development before it can be utilized in an effective manner. As the
virtual camera model, developed through this project is relatively simple in relation to
modern visual systems some comparison is needed to evaluate the validity of the virtual
camera model. Even though the entire hardware performance most probably can not
be captured with the model, the camera provides another key feature to the LDS. The
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ray intersection algorithm, included in the model gives the opportunity to have segment
interruption due to view blockage which otherwise would be really hard to program. This
component makes the virtual LDS much more realistic by enabling smart estimation
of the the length of the lanes. Even though the algorithm increases the performance of
the system, it requires higher complexity of the simulations environment as all objects
needs to include entities about their spacial representations such as their 8 sides and
appurtenant norm vectors. Another downside with the algorithm is that it was shown
to require a lot of computational power which rendered the simulation to slow down.
The virtual camera model was also shown to introduces natural errors due to pixel
discretization which is a crucial component in the system performance. This feature
adds the randomness to the virtual model due to the fact that points in continuous
space needs to move different distances dependent on where they are situated to be able
to fit the pixel representation. This is an error which is really hard to model naturally.
In addition to all of these benefits gained from the camera model the model also enables
the user to save to processed virtual images and use them for visualisation purposes.
The extra gained visualisation tool can be highly helpful for simulation analysis. Apart
from all the advantages with the virtual camera, the model was shown to slow down
the simulation process. The camera is therefore not suited for real time simulations.
The model was developed to be optimal in the aspect of computational power but point
cloud scenarios with high point density can all the same force the camera model to slow
down the simulation speed. To overcome this problem, the system has been designed
with the possibility of overriding the virtual camera model when using the LDS in the
way described in section 3.4. This gives the user the possibility of disabling the camera
to gain extra computational speed.

The research, conducted on reveling the black box LDA gave some insight in the func-
tionality of the lane detection algorithm and knowledge about how the system operates.
In an early stage, it was concluded that the LD S operates in a non-deterministic manner
regarding the error performance. This is most likely explained by the fact that the dis-
cretisation error, introduced by the camera model adds some sort of random behaviour
which causes the error performance occupy a volume instead of deterministic surface.

Another conclusion that can be drawn after the black box modeling process are the
results from the multivariate analysis. The multivariate analysis gave proof that the
LDS is mainly influenced by the two dimensions speed and range while other dimensions
like yaw rate and acceleration are redundant. One explanation to why this is the case
is that the range is the key aspect to the error in the LDS. The error related to the
range variable is most likely based on two factors. The first is the fact that the error,
infused by the pixel representation increases linearly with range from the optical center
according to equation 3.1 presented in section 3.1. The equation shows the maximal
distance a continuous point on the camera image needs to be moved to fit the discrete
pixel representation. It was also proved that this alone does not explain the entire error
profile, but as this only displays the possible error for one pixel a higher error would be
expected for a lane which consists of multiple pixels. A second factor that also explains
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the error/range relation is the fact that the real LDS does not far from perfectly, pin
points the locations of the lane pixels. A false estimation will, with the same affect as in
equation 3.1 grow linearly with range. So why does the speed dimension affect the error
performance of the LDS? One explanation is that the speed of the host car affects the
LDS ability of estimating long range lanes. As shown the thesis, the LD S estimates low
range polynomials for low speed while higher speeds enables estimations further away. As
the range, through this relation is correlated to the speed, the speed in turn has an affect
on the error performance of the LDS. One alternative approach to the one presented
in this report would be to only use the speed as a range estimator variable and in turn
only use the range dimension as the input variable for estimating the error and by that
create a 2D-model instead of the 3D-model, presented in this report. Another surprising
result gained from the multivariate analysis conducted in this thesis was that yaw rate
had very little affect on the error performance of the LDS. The initial hypothesis in
the beginning of the project was that yaw rate would aggravate the lane estimation
process. High yaw rate values would imply high road curvature which would make the
estimation much more difficult due to the higher geometrical complexity. One reasonable
explanation to why this phenomena does not occur is that the yaw rate is measured as a
state of the car at the time instance when the polynomial is estimated. This does not say
anything about the future road curvature even though the lane estimation further away
is dependent on future curvature values. The measuring technique would be accurate in
a scenario where the vehicle is in a curve with constant curvature but not in situations
where the host vehicle is driving on a straight road with an oncoming curve. To further
investigate this problem, the ELS could be updated to calculate future yaw rate values.
An experiment where pure curvature situations are included could then be conducted to
investigate how the system behaves.

By analysing the performance of the lane detection algorithm it was shown that a strong
correlation between the current speed of the host car and the distance which the LDJS
estimates the lane polynomials to be valid exist. The correlation between the two vari-
ables is most likely caused by a software boundary programed by a function developer.
The boundary most likely exist due to the fact that for low velocities, long range infor-
mation is not necessary for the on board active safety functions as it is only information
about the proximity of the vehicle which is important. For higher velocities, information
further away from the host vehicle is more critical which therefore needs to be accessible
by the active safety functions. The behaviour was extracted and included in the final
virtual LDS model.

Finally it was showed how a rather unique technique using 3D-confidence level curves
with applied low pass filters could be utilized to model the system performance. The
technique was encouraged by the fact that the error profiles was influenced by ran-
domness which made the error values occupying a nondeterministic volume. As normal
mathematical modelling techniques could not be applied to model a nondeterministic
space, the 3D-confidence level curve approach was successfully developed. As this ap-
proach is sensitive to areas with low data density, the technique could be devious if a

62



4.2. FURTHER RESEARCH CHAPTER 4. DISCUSSION

data distribution analysis has not been applied in prior. As the resulting model is a sta-
tistical model which only captures the extreme performance of the system it will never
have the ability of being deterministic. The virtual model can thereby never be executed
in parallel with the real system with expectancy of perfect correlation between the two.
The task of creating a fully deterministic model is not possible so the purpose of the
LDS is more accurately to capture the average behaviour or the extremes.

The two main blocks were successfully combined and verified by integration with a virtual
environment. The final virtual LD.S model was shown to generate multiple advantages
such as the ability of being automatically tuned. If the real LDS would be updated,
either through software or through hardware improvements, the virtual system can be
tuned to run according to the new system performance. The user would simply evaluate
the updated LDS by collecting field data through expeditions and then feed the data
to the programs that was developed in this thesis. This feature could possibly be used
for more then just preserving the relevance of the system. As the performance of the
virtual LDS adapts to the received field data, the user can apply this method to create
multiple models which could be used for different scenarios. Potential scenarios could
for example be, weather conditions, specific traffic scenarios or lightning conditions. The
data, extracted for this thesis did not include enough field data influenced by bad weather
conditions or expeditions carried out during night time to be able to draw any definite
conclusions about their relevance. Based on the perception regarding the behaviour of
the LDS that was gained through this project, if these variables where to be included
they would most definitely benefit from being modelled into separate models rather than
to be included as input variables. The user can then create a library of models including
a night model, a rain model etc to more accurately emulate the wanted performance of
the virtual LDS.

4.2 Further Research

The errors are calculated relative to the ground truth line which is computed by pre-
processing the polynomial estimations and taking the O-range predictions for all polyno-
mial instances. The ground truth lines are thereby constituted on the assumption that
the system is making absolute accurate predictions in the proximity of the car. This
kind of nested error definition where the LDS is evaluated relative to itself is ideally
not preferable. A better solution would be to evaluate the performance of the system
relative to a well know and independent system like a LIDAR. The LIDAR-system
provides high level of accuracy and is uncorrelated to the LDS. The best solution would
therefore be to run the LIDAR and the LDS parallel while collecting data and then
base the ground truth analysis on the LIDAR output. This approach would provide
data closer to the truth which in turn would generate a more accurate model.

A deeper data distribution analysis similar to the one executed in section 3.2 would
potentially benefit the LDS model. By gather data to fill in the gaps in the distribution
curves to evenly distribute the input data, the distribution effect can be totally excluded
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which would isolate the pure effect of the model. The L DS model in this thesis, designed
with the 3D-confidence level method could potentially be affected by the difference in
data density in the scope of the system. To effectively collect data in the distribution
gaps it is suggested a script that scans through expedition logs and finds occasions where
these specific situations occurs is developed. It would also be beneficial to collect field
data, including extreme situations such as extreme weather or night time driving. As
the field data collected for this thesis did not include enough data, that was influenced
by this conditions no absolute conclusions can be draw about their affect on the LDS.

An additional area where further research can be applied, is the final confidence curve
model. The model covers the top surface which represents the extremes. This is not
always wrong when testing active safety functions. If the extremes are covered by the
active safety features, so are the less severe situations, but to develop a more realistic
LDS the system should be modelled to cover the volume which is occupied by the error
profile. One approach to model the volume is to discretise the volume with multiple
confidence level surfaces. The LDS model should then jump between these confidence
levels and a probabilistic variable should decide how frequently the LD.S should be at
every level. In this way, the model will obtain a dynamic behaviour which will bring the
virtual LDS one step closer to a to the real LDS.
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Software Description

The following chapter is intended as a manual for all the software’s that has been de-
veloped during the project. The functionality of each program is describes as well as
guidelines to how the user should handle the software.

A.1 ELE

The purpose of the Expedition Log Examiner is to help the user to analyse the perfor-
mance of the lane detection sensor. The function takes a data structure, collected from
an expedition as input and then computes and evaluates the sensor performance during
this expedition. The performance is then visualized for the user in the ELE graphical
user interface window.

In order to initialize the Expedition Log Examiner, in prior to starting the software the
user needs to load the expedition log data that should be investigated so the structure
element called LOGDATA is available in the matlab workspace. When the data suc-
cessfully has been inserted into matlab the ELFE is ready to be executed. Starting the
expedition log examiner will open the graphical user interface window which is displayed
in the figure below. The program needs about 3-5 seconds to initialize without any input
from the user. Giving the ELFE inputs during the initialization process could render the
program to give out error messages which would stop the logexaminer. The software
will indicate when it is fully initialized by blinking the function buttons.

The user interface consists of two plot windows with appurtenant control buttons. The
left window is the navigation window which helps the user to navigate through the
selected expedition log with the help of the slider control below the plot window. The
trajectory of the car will be visualized and the user can specify if the ground truth line
and the lane estimation should be plotted for the left and the right lane. The user can
also control zoom of the navigation window by specifying a value in the zoom text box. If
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the auto zoom tick box is disabled, FLFE will display the whole trajectory of the selected
expedition log. Next to the zoom box is the check box which enables a small window
that displays the whole trajectory during zoom operations. For further navigation an
information panel has been added below the navigation window. The panel gives the
user information about the current state of the vehicle as well as general information
about the selected expedition log.

The second plot window is the analysis window which displays the results of the sensor
evaluation. The user has the option to choose analysis methods from four different
functions, the road width function, the lane error function, the range function and the
Error/Range function. When the user has selected a function, ELE will evaluate the
sensor performance of the lane detection sensor and display it in the analysis plot window.
ELFE will also mark the selected time instance selected in the navigation window with a
black cross in the analysis window so the use knows exactly where in the analysis results
a specific time instance is located. The user can also choose if the analysis data should
be sorted chronologically or sorted by the yaw rate. This is done with the panel below
the analysis plot window.
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A.2 ELS

The Expedition Log Scanner is a GUI-based tool which aids the user to extract and com-
pute data from expeditions logs which serves as the foundation for the LDS performance
analysis. The processed data will be saved in individual data matrices, separately for
every expedition log that has been fed to the program.

The user specifies, the location of the log data in the Log folder window and the location
where F'LS should save the processed data in the Save folder window. The data in
located in the Log folder must include a variable called LOGDATA.

The user can also specify which dimensions the F LS should evaluate the sensor against
by marking the wanted dimensions in the radio button list. The included are: Range,
Yaw Rate, Speed, Acceleration, Lightning Conditions and Weather conditions.

expeditionlogscanner EI =] @
]

Untitled 1
+\' _\' QT? \E

Dimension Trajectory plot

@ Range

@ Yaw Rate
Speed

@ Acceleration - u] >
Lightning conditions

@ Rain

Log folder
; - &0 100
\Joakim\Documents\CHALMERS\Waster Thesis\ELS\ 0 50

Save folder b 3

\Joakim\Documents\CHALMERS\Waster Thesis\ELS\
@ Left Lane @ Right Lane @ Trajectory

@ save images Progress Log Number
Initial Log number 0.33333 1

Log Progress SCAN

1

1

To help the user to analyse the processed logs, the performance of the sensor can be
displayed in the plot window on the right hand side. The user can choose from displaying
the performance of the sensor on the left lane, right lane or displaying the trajectory
with the lane estimations. The images can also be saved to the save folder by turning
on the save images. This helps the user to sort out the logs which are not valid and
should not be included in the sensor evaluation. Note that the save process slows down
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the extraction procedure.

By altering the Initial Log number input the user can control where the extraction should
start. This could be helpful for example if the ELE was terminated during extraction.
Instead of starting from the beginning of the log list the ELFE can start where the process
was terminated.

When everything is defined according to the preferences of the user the software is ready
to be executed by pressing the SCAN button.

A.3 mergeData.m

The mergeData script was developed to merge the data extracted from the expedition
log scanner into one unified matrix as this is much more suitable for further analysis.
In prior to call the function, the user should gather all of the .mat files that should be
merged into one or multiple folders. The directories to the folders then serves as input to
the mergeData function. The location of the folders should be specified in a char array.

The software does not merge matrices of different size to avoid dimension mixing. If this
different size values are detected the software will give out a warning message and ignore
the matrix. Given that the function is included in matlab’s search path the software is
called with the following command:

D=mergeData(folders)

A.4 scatterplot3D.m

The scatterplot3D was created to enable visualization of data density in 3-dimensions.
The software divides the space represented by the input data into a 3D-grid and then
computes the data density in every grid element. The user specifies a Nx3 sized matrix
containing the data that is to be analysed and the function will calculate the correspond-
ing density matrix.

scatter3D(D,res)

A.5 ldsTune.m

The purpose of the ldsTune.m script is to tune the lane detection sensor model accord-
ing to the input data, fed to the function. The function calculates the 3-dimensional
confidence curve on the input data specified in matrix D. The matrix should include 3
dimensions and N observations in order for the program to function. The function is
executed with either of the commands, stated below.

ldsModel=1dsTune (D, conf)
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ldsModel=1dsTune (D, conf,res)

The ldsTune script calculates the confidence surface for the input data up to the con-
fidence level that is specified in conf. The user can also alter the resolution of the 2nd
input dimension by stating a resolution value in res. By default, 1dsTune will give the
resolution value 500 which means that the speed dimension will be sorted into 500 bins.

The output of the function is an LDS model in the form of a 2D-look up table with
appurtenant X and Y values. The output will be saved in the form of a struct.
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Software Schematics

Figure B.1 below shows the schematics over how the software’s, developed in this thesis
should be utilized and how they should interact with each other. The main input for
the software system is field data, collected through test expeditions.

72



APPENDIX B. SOFTWARE SCHEMATICS
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Figure B.1
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